WO2023203689A1 - Wireless communication system, wireless communication control method, and base station - Google Patents

Wireless communication system, wireless communication control method, and base station Download PDF

Info

Publication number
WO2023203689A1
WO2023203689A1 PCT/JP2022/018310 JP2022018310W WO2023203689A1 WO 2023203689 A1 WO2023203689 A1 WO 2023203689A1 JP 2022018310 W JP2022018310 W JP 2022018310W WO 2023203689 A1 WO2023203689 A1 WO 2023203689A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
module
base station
relay device
modules
Prior art date
Application number
PCT/JP2022/018310
Other languages
French (fr)
Japanese (ja)
Inventor
純一 岩谷
笑子 篠原
裕介 淺井
泰司 鷹取
知之 山田
芳孝 清水
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/018310 priority Critical patent/WO2023203689A1/en
Publication of WO2023203689A1 publication Critical patent/WO2023203689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a technology for controlling a wireless terminal that performs wireless communication by switching between multiple channels.
  • Wireless communication systems including base stations and wireless terminals are known.
  • a typical example of a wireless communication system is a public wireless LAN (Local Area Network).
  • a wireless LAN for public use, for example, a use case is assumed in which data is transmitted from a base station to a wireless terminal such as a computer terminal or a smartphone terminal.
  • IoT Internet of Things
  • Non-Patent Document 1 In connection with wireless communication for IoT, the use of unlicensed Sub-1 GHz band has been institutionalized in various countries around the world (see Non-Patent Document 1). In Japan, the 920 MHz band is allocated as a frequency band for electronic tag systems. For example, LPWA (Low Power Wide Area) wireless communication systems such as LoRa (registered trademark) and WiSUN (registered trademark) are known as active electronic tag systems. Furthermore, the use of IEEE 802.11ah, which is one of the wireless LAN standards, is also being considered.
  • LPWA Low Power Wide Area wireless communication systems
  • LoRa registered trademark
  • WiSUN registered trademark
  • IEEE 802.11ah which is one of the wireless LAN standards, is also being considered.
  • the wireless communication device limits data transmission to comply with this total transmission time limit, throughput is also limited.
  • a total transmission time of up to 360 seconds for each channel per hour, or 720 seconds in total is allowed. Therefore, in order to improve throughput, it is conceivable to perform wireless communication while changing the channel used by the housing of the wireless communication device.
  • One object of the present invention is to provide a technology that can simplify the process of switching channels used by a wireless terminal.
  • the first aspect relates to wireless communication systems.
  • the wireless communication system is a wireless terminal including a plurality of wireless modules that perform wireless communication on mutually different channels; A base station that performs wireless communication with multiple wireless modules, A plurality of relay devices that relay wireless communication between each of the plurality of wireless modules and a base station are provided.
  • the wireless terminal uses one of the plurality of wireless modules as a used module, and stops data transmission from wireless modules other than the used module.
  • the base station is determining a usage schedule for each of the plurality of wireless modules so that the transmission time rate of each of the plurality of wireless modules of the wireless terminal does not exceed a predetermined upper limit; It is configured to notify the wireless terminal of usage schedule information.
  • Each of the plurality of wireless modules operates as a usage module according to a usage schedule determined by the base station.
  • the second aspect relates to a wireless communication control method that controls wireless communication between a wireless terminal and a base station via a plurality of relay devices.
  • a wireless terminal includes a plurality of wireless modules that perform wireless communication using different channels, uses one of the wireless modules as a used module, and stops data transmission from wireless modules other than the used module.
  • the plurality of relay devices relay wireless communication between each of the plurality of wireless modules and the base station.
  • the wireless communication control method is In the base station, determining a usage schedule for each of the plurality of wireless modules such that the transmission time rate of each of the plurality of wireless modules of the wireless terminal does not exceed a predetermined upper limit; Notifying usage schedule information from a base station to a wireless terminal; and operating each of the plurality of wireless modules as a usage module according to a usage schedule determined by the base station.
  • the third aspect relates to a base station that performs wireless communication with wireless terminals via a plurality of relay devices.
  • a wireless terminal includes a plurality of wireless modules that perform wireless communication using different channels, uses one of the wireless modules as a used module, and stops data transmission from wireless modules other than the used module.
  • the plurality of relay devices relay wireless communication between each of the plurality of wireless modules and the base station.
  • the base station includes a control unit.
  • the control section is determining a usage schedule for each of the plurality of wireless modules so that the transmission time rate of each of the plurality of wireless modules of the wireless terminal does not exceed a predetermined upper limit;
  • the information on the usage schedule is notified to the wireless terminal, and each of the plurality of wireless modules is configured to operate as a usage module according to the usage schedule.
  • a wireless terminal includes a plurality of wireless modules that perform wireless communication using mutually different channels.
  • the channel used for wireless communication can be easily changed. Since there is no need to switch channels within a single wireless module, it is possible to simplify the processing required for channel switching.
  • FIG. 1 is a block diagram showing the basic configuration of a wireless communication system according to an embodiment.
  • 3 is a timing chart for explaining an overview of data transmission control involving module switching processing according to an embodiment.
  • FIG. 2 is a block diagram for explaining an overview of a control unit according to an embodiment. It is a block diagram showing an example of composition of a control part concerning an embodiment.
  • 1 is a block diagram showing a configuration example of a wireless communication system according to an embodiment.
  • FIG. 2 is a conceptual diagram for explaining a first processing example by a control unit according to an embodiment.
  • 5 is a timing chart for explaining a first processing example by a control unit according to an embodiment.
  • 7 is a flowchart illustrating a first processing example by the control unit according to the embodiment.
  • FIG. 1 is a block diagram showing the basic configuration of a wireless communication system according to an embodiment.
  • 3 is a timing chart for explaining an overview of data transmission control involving module switching processing according to an embodiment.
  • FIG. 2 is a block
  • FIG. 7 is a conceptual diagram for explaining a second example of processing by the control unit according to the embodiment.
  • 7 is a timing chart for explaining a second example of processing by the control unit according to the embodiment.
  • 7 is a flowchart illustrating a second example of processing by the control unit according to the embodiment.
  • FIG. 7 is a conceptual diagram for explaining a third example of processing by the control unit according to the embodiment. It is a flowchart which shows the 3rd example of processing by a control part concerning an embodiment.
  • FIG. 1 is a block diagram showing the basic configuration of a wireless communication system 1 according to the present embodiment.
  • the wireless communication system 1 includes a wireless terminal 10, a base station 20, and a plurality of relay devices 30.
  • the wireless terminal 10 and the base station 20 perform wireless communication with each other via the relay device 30.
  • relay device 30 relays wireless communication between wireless terminal 10 and base station 20.
  • the relay device 30 also makes it possible to accommodate wireless terminals 10 that are far away from the base station 20.
  • the wireless communication system 1 is a wireless LAN system.
  • the wireless communication system 1 performs wireless communication using the unlicensed Sub-1 GHz band.
  • the wireless communication system 1 performs wireless communication using the 920 MHz band.
  • the wireless terminal 10 can perform wireless communication by switching between multiple channels (frequency channels). More specifically, the wireless terminal 10 includes a plurality of wireless modules 11 that perform wireless communication using different channels that do not overlap with each other. Each wireless module 11 includes, for example, a network interface controller (network interface card). The plurality of wireless modules 11 are each connected to the plurality of relay devices 30. That is, the plurality of wireless modules 11 perform wireless communication with the single base station 20 via each of the plurality of relay devices 30. In other words, the plurality of relay devices 30 relay wireless communication between each of the plurality of wireless modules 11 and the single base station 20.
  • network interface controller network interface card
  • the wireless terminal 10 includes a first wireless module 11-1 and a second wireless module 11-2.
  • the first wireless module 11-1 is set to perform wireless communication on the first channel CH-1.
  • the first wireless module 11-1 is connected to the first relay device 30-1 and performs wireless communication with the base station 20 via the first relay device 30-1 on the first channel CH-1.
  • the second wireless module 11-2 is set to perform wireless communication on a second channel CH-2 that does not overlap with the first channel CH-1.
  • the second wireless module 11-2 is connected to the second relay device 30-2 and performs wireless communication with the base station 20 via the second relay device 30-2 on the second channel CH-2.
  • Module Switching Process By switching the wireless module 11 used by the wireless terminal 10, the channel used for wireless communication can be easily switched.
  • One of the plurality of wireless modules 11 that is selectively used is hereinafter referred to as a "used module 11S.”
  • the usage module 11S can also be called a “selection module”. Further, the process of switching the used module 11S in the wireless terminal 10 will be referred to as “module switching process” hereinafter.
  • the wireless terminal 10 uses one of the plurality of wireless modules 11 as the module 11S to transmit data. More specifically, the wireless terminal 10 includes a plurality of wireless modules 11, as well as an upper layer 12 and a selector 13. The selector 13 receives transmission data from the upper layer 12 and outputs the transmission data to the usage module 11S. The selector 13 does not send the transmission data to any wireless module 11 other than the used module 11S. The used module 11S transmits transmission data from the upper layer 12, and the wireless modules 11 other than the used module 11S stop data transmission.
  • FIG. 2 is a timing chart for explaining an overview of data transmission control accompanied by module switching processing according to the present embodiment.
  • switching between the first wireless module 11-1 (first channel CH-1) and the second wireless module 11-2 (second channel CH-2) will be considered.
  • the first wireless module 11-1 is selected as the module to be used 11S. Data transmission from the first wireless module 11-1 is permitted, but data transmission from the second wireless module 11-2 is prohibited. That is, the period from time t1 to t2 is a transmission permission period PA for the first wireless module 11-1, and a transmission prohibition period PB for the second wireless module 11-2.
  • the wireless terminal 10 uses the first wireless module 11-1 as the usage module 11S, and performs wireless communication with the base station 20 on the first channel CH-1 via the first relay device 30-1. On the other hand, the wireless terminal 10 stops data transmission from the second wireless module 11-2.
  • the wireless terminal 10 switches the module 11S in use from the first wireless module 11-1 to the second wireless module 11-2.
  • the second wireless module 11-2 is selected as the module to be used 11S. Data transmission from the second wireless module 11-2 is permitted, but data transmission from the first wireless module 11-1 is prohibited. That is, the period from time t2 to t3 is a transmission prohibited period PB for the first wireless module 11-1, and a transmission permitted period PA for the second wireless module 11-2.
  • the wireless terminal 10 uses the second wireless module 11-2 as the usage module 11S, and performs wireless communication with the base station 20 on the second channel CH-2 via the second relay device 30-2. On the other hand, the wireless terminal 10 stops data transmission from the first wireless module 11-1.
  • the wireless terminal 10 switches the module 11S in use from the second wireless module 11-2 to the first wireless module 11-1.
  • the period from time t3 to t4 is the same as the period from time t1 to t2.
  • the transmission permission period PA does not overlap between the first wireless module 11-1 and the second wireless module 11-2. Furthermore, the transmission prohibition period PB does not overlap between the first wireless module 11-1 and the second wireless module 11-2.
  • the transmission time rate of each wireless module 11 can be calculated from the transmission time of each wireless module 11 in the measurement period PM.
  • the wireless communication system 1 includes a "control unit 100" that manages and controls the module switching process.
  • FIG. 3 is a block diagram for explaining an overview of the control unit 100.
  • the control unit 100 monitors and manages the transmission time and transmission time rate of each of the plurality of wireless modules 11 (multiple channels) of the wireless terminal 10 . Then, the control unit 100 determines a usage schedule for each of the plurality of wireless modules 11 so that the transmission time rate of each of the plurality of wireless modules 11 of the wireless terminal 10 does not exceed a predetermined upper limit.
  • the usage schedule includes a transmission permission period PA assigned to each wireless module 11.
  • the usage schedule can also be called transmission timing.
  • the usage schedule is determined so that at least the transmission time rate of each wireless module 11 does not exceed a predetermined upper limit.
  • control unit 100 controls the wireless terminal 10 to perform module switching processing according to the determined usage schedule. That is, the control unit 100 controls the wireless terminal 10 to switch the usage module 11S according to the determined usage schedule. The wireless terminal 10 switches the usage module 11S according to the usage schedule determined by the control unit 100. Each wireless module 11 operates as a usage module 11S according to the usage schedule determined by the control unit 100.
  • the wireless terminal 10 includes a plurality of wireless modules 11 that perform wireless communication using mutually different channels.
  • the channel used for wireless communication can be easily changed. Since there is no need to switch channels within a single wireless module 11, it is possible to simplify the processing required for channel switching. Furthermore, since restarting the wireless terminal 10 is not required for channel switching, communication interruption time is reduced and service quality is prevented from deteriorating.
  • the control unit 100 determines the usage schedule of each wireless module 11 so that the transmission time rate of each wireless module 11 of the wireless terminal 10 does not exceed a predetermined upper limit. Since the control unit 100 accurately manages the transmission time rate of each wireless module 11, it is possible to use each channel up to the upper limit of the transmission time rate. That is, it becomes possible to expand the transmission time rate of the wireless terminal 10 as a whole and effectively improve throughput.
  • the wireless terminal 10 since the wireless terminal 10 includes a plurality of wireless modules 11, redundancy is ensured and reliability is improved.
  • the relay device 30 also makes it possible to accommodate a wireless terminal 10 that is far away from the base station 20.
  • FIG. 4 is a block diagram showing a configuration example of the control unit 100 according to the present embodiment.
  • the control unit 100 includes one or more processors 110 (hereinafter simply referred to as "processors 110") and one or more storage devices 120 (hereinafter simply referred to as “storage devices 120"). It is a computer equipped with.
  • processor 110 includes a CPU (Central Processing Unit).
  • the storage device 120 stores various information necessary for processing by the processor 110. Examples of the storage device 120 include volatile memory, nonvolatile memory, HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
  • the control program 130 is a computer program executed by the processor 110.
  • the functions of the control unit 100 are realized by the processor 110 executing the control program 130.
  • Control program 130 is stored in storage device 120.
  • the control program 130 may be recorded on a computer-readable recording medium.
  • the control program 130 may be provided to the control unit 100 via a network.
  • Module switching management information 200 is stored in the storage device 120.
  • Module switching management information 200 is information for managing module switching processing.
  • the module switching management information 200 includes the transmission time and transmission time rate of each of the plurality of wireless modules 11 of the wireless terminal 10.
  • the module switching management information 200 may include a usage schedule for each of the plurality of wireless modules 11.
  • the usage schedule includes a transmission permission period PA (eg, a combination of start time and duration) assigned to each wireless module 11.
  • PA transmission permission period assigned to each wireless module 11.
  • the usage schedule can also be called transmission timing.
  • the storage device 120 may further store relay device status information 300.
  • Relay device status information 300 indicates the status of each relay device 30 connected to base station 20.
  • Relay device status information 300 includes identification information of each relay device 30.
  • the relay device status information 300 includes information (number, etc.) of the wireless terminals 10 and wireless modules 11 under each relay device 30.
  • the relay device status information 300 may include the distance between each relay device 30 and the subordinate wireless terminal 10.
  • the relay device status information 300 may include the traffic status and transmission time rate of each relay device 30.
  • the relay device status information 300 may include the used channel and transmission power of each relay device 30.
  • the control unit 100 communicates with each relay device 30 and acquires relay device status information 300 from each relay device 30.
  • FIG. 5 is a block diagram showing a configuration example of the wireless communication system 1 when the base station 20 includes the control unit 100. Since the base station 20 includes the control unit 100, it becomes possible to efficiently determine the usage schedule of each wireless module 11 of each wireless terminal 10. Moreover, complicated processing in the wireless terminal 10 is not necessary.
  • FIG. 6 is a conceptual diagram for explaining a first processing example by the control unit 100 included in the base station 20.
  • FIG. 7 is a timing chart for explaining a first processing example by the control unit 100 included in the base station 20.
  • the control unit 100 monitors the transmission time and transmission time rate of each of the plurality of wireless modules 11 of the wireless terminal 10, and updates the module switching management information 200 (see FIG. 4). Further, the control unit 100 determines a usage schedule for each of the plurality of wireless modules 11. For example, the control unit 100 basically determines the usage schedule of each wireless module 11 so that the usage module 11S is switched at regular intervals. However, the control unit 100 determines the usage schedule of each wireless module 11 based on the module switching management information 200 so that the transmission time rate of each wireless module 11 does not exceed a predetermined upper limit. Although the trigger for the module switching process is arbitrary, the usage schedule is determined so that at least the transmission time rate of each wireless module 11 does not exceed a predetermined upper limit.
  • the usage schedule includes a transmission permission period PA assigned to each wireless module 11, that is, a transmission permission period PA during which each wireless module 11 operates as a usage module 11S.
  • the transmission permission period PA is defined, for example, by a combination of a start time and a duration.
  • the transmission permission period PA is set so as not to overlap among the plurality of wireless modules 11.
  • the control unit 100 instructs the wireless terminal 10 to switch the usage module 11S according to the determined usage schedule. More specifically, the control unit 100 generates schedule information SKD indicating the determined usage schedule, and notifies the wireless terminal 10 of the schedule information SKD.
  • Each of the plurality of wireless modules 11 operates as a usage module 11S according to a usage schedule determined by the control unit 100. That is, the wireless terminal 10 switches the usage module 11S according to the usage schedule determined by the control unit 100.
  • the first wireless module 11-1 and the second wireless module 11-2 of the wireless terminal 10 are connected to the first relay device 30-1 and the second relay device 30-2, respectively. It is connected.
  • the control unit 100 determines a usage schedule regarding the first wireless module 11-1. At this time, the control unit 100 determines the usage schedule of the first wireless module 11-1 based on the module switching management information 200 so that the transmission time rate of the first wireless module 11-1 does not exceed a predetermined upper limit. do. Then, the control unit 100 transmits first schedule information SKD-1 regarding the usage schedule of the first wireless module 11-1 to the first relay device 30-1 connected to the first wireless module 11. The first relay device 30-1 receives the first schedule information SKD-1 and transmits the first schedule information SKD-1 to the first wireless module 11-1. That is, the control unit 100 notifies the first schedule information SKD-1 to the first wireless module 11-1 via the first relay device 30-1.
  • TWT Target Wake Time
  • the first wireless module 11-1 operates as the usage module 11S according to the first schedule information SKD-1 determined by the control unit 100. That is, the first wireless module 11-1 operates as the usage module 11S during the transmission permission period PA determined by the control unit 100.
  • the first relay device 30-1 relays wireless communication between the base station 20 and the first wireless module 11-1 according to the first schedule information SKD-1.
  • control unit 100 determines a usage schedule regarding the second wireless module 11-2. At this time, the control unit 100 determines the usage schedule of the second wireless module 11-2 based on the module switching management information 200 so that the transmission time rate of the second wireless module 11-2 does not exceed a predetermined upper limit. do. Then, the control unit 100 transmits second schedule information SKD-2 regarding the usage schedule of the second wireless module 11-2 to the second relay device 30-2 connected to the second wireless module 11. The second relay device 30-2 receives the second schedule information SKD-2 and transmits the second schedule information SKD-2 to the second wireless module 11-2. That is, the control unit 100 notifies the second wireless module 11-2 of the second schedule information SKD-2 via the second relay device 30-2. At this time, TWT may be used.
  • the second wireless module 11-2 operates as the usage module 11S according to the second schedule information SKD-2 determined by the control unit 100. That is, the second wireless module 11-2 operates as the usage module 11S during the transmission permission period PA determined by the control unit 100.
  • the second relay device 30-2 relays wireless communication between the base station 20 and the second wireless module 11-2 according to the second schedule information SKD-2.
  • the control unit 100 may also consider the timing of downlink traffic from the base station 20 and determine the schedule to match the timing of downlink traffic from the base station 20.
  • the control unit 100 may update the usage schedule of each wireless module 11. For example, the control unit 100 grasps the communication quality and traffic situation of the base station 20. The traffic situation may include the transmission time rate of the base station 20. The control unit 100 updates the usage schedule of each wireless module 11 based on the communication quality and traffic situation of the base station 20. Then, the control unit 100 notifies the wireless module 11 of schedule information SKD indicating the updated usage schedule.
  • FIG. 8 is a flowchart showing a first processing example by the control unit 100 included in the base station 20.
  • step S110 the control unit 100 determines whether a connection state update notification has been received from any relay device 30.
  • the connection state update notification is a notification indicating that the connection state between the relay device 30 and the wireless terminal 10 (wireless module 11) has been updated. If a connection state update notification is received (step S110; Yes), the process proceeds to step S111.
  • step S111 the control unit 100 determines a usage schedule for each wireless module 11 under the relay device 30. At this time, the usage schedule of each wireless module 11 is determined so that the transmission permission periods PA do not overlap among the multiple wireless modules 11.
  • step S112 the control unit 100 notifies the corresponding wireless module 11 of schedule information SKD indicating the usage schedule via the relay device 30.
  • the control unit 100 determines the usage schedule of each wireless module 11 so that the transmission time rate of each wireless module 11 of the wireless terminal 10 does not exceed a predetermined upper limit. Since the control unit 100 accurately manages the transmission time rate of each wireless module 11, it is possible to use each channel up to the upper limit of the transmission time rate. That is, it becomes possible to expand the transmission time rate of the wireless terminal 10 as a whole and effectively improve throughput.
  • the base station 20 since the base station 20 includes the control unit 100, it is possible to efficiently determine the usage schedule of each wireless module 11 of each wireless terminal 10. Moreover, complicated processing in the wireless terminal 10 is not necessary.
  • connection process between the wireless module 11 and the relay device 30 will be considered in particular.
  • the control unit 100 specifies the optimal one from among the plurality of relay devices 30 (connection destination candidates).
  • the control unit 100 constantly monitors the status of each relay device 30 connected to the base station 20 and updates the relay device status information 300 (see FIG. 4).
  • the relay device status information 300 includes information on the wireless terminals 10 and wireless modules 11 under each relay device 30.
  • the relay device status information 300 includes the traffic status of each relay device 30 and the transmission time rate as a relay device.
  • the control unit 100 sets the priority of each relay device 30 based on the relay device status information 300. For example, the control unit 100 grasps the congestion status of the relay device 30 based on the available bandwidth, the number of connected terminals, and the like. Then, the control unit 100 lowers the priority of the relay device 30 with less available radio resources. As another example, if there is also a restriction on the transmission time rate regarding the downlink traffic from the relay device 30 to the wireless terminal 10, the control unit 100 grasps the current status of the downlink traffic and the transmission time rate. Then, the control unit 100 lowers the priority of the relay device 30 with less margin in the transmission time rate. Then, the control unit 100 selects a relay device 30 to which the wireless module 11 is connected according to the priority of each relay device 30.
  • FIGS. 9 and 10 A second processing example will be described with reference to FIGS. 9 and 10.
  • the base station 20 is connected to a first relay device 30-1, a second relay device 30-2, and a third relay device 30-3.
  • the first wireless module 11-1 of the wireless terminal 10 transmits a connection destination inquiry INQ to the nearby relay device 30.
  • each relay device 30 Upon receiving the connection destination inquiry INQ, each relay device 30 transmits a connection destination inquiry notification NTF to the control unit 100.
  • the control unit 100 selects the connection destination of the first wireless module 11-1 from among the relay devices 30 that are not connected to other wireless modules 11.
  • the control unit 100 sets the priority of each relay device 30 based on the relay device status information 300, and selects the connection destination of the first wireless module 11-1 according to the priority.
  • the first relay device 30-1 has the highest priority and is selected.
  • the control unit 100 instructs the selected first relay device 30-1 to respond to the first wireless module 11-1.
  • the first relay device 30-1 returns a response RES to the first wireless module 11-1, which is the connection destination inquiry source.
  • connection processing is performed between the first wireless module 11-1 and the first relay device 30-1.
  • the second wireless module 11-2 of the wireless terminal 10 transmits a connection destination inquiry INQ to the nearby relay device 30.
  • each relay device 30 transmits a connection destination inquiry notification NTF to the control unit 100.
  • the control unit 100 selects the connection destination of the second wireless module 11-2 from among the relay devices 30 that are not connected to other wireless modules 11.
  • the control unit 100 sets the priority of each relay device 30 based on the relay device state information 300, and selects the connection destination of the second wireless module 11-2 according to the priority.
  • the second relay device 30-2 has the highest priority and is selected.
  • the control unit 100 instructs the selected second relay device 30-2 to respond to the second wireless module 11-2.
  • the second relay device 30-2 returns a response RES to the second wireless module 11-2, which is the connection destination inquiry source.
  • connection processing is performed between the second wireless module 11-2 and the second relay device 30-2.
  • FIG. 11 is a flowchart showing a second example of processing by the control unit 100 included in the base station 20.
  • step S120 the control unit 100 determines whether a connection destination inquiry notification NTF has been received from at least one relay device 30.
  • the connection destination inquiry notification NTF is a notification indicating that the relay device 30 has received the connection destination inquiry INQ from the wireless module 11. If the connection destination inquiry notification NTF is received (step S120; Yes), the process proceeds to step S121.
  • step S121 the control unit 100 sets the priority of each relay device 30 based on the relay device status information 300. Then, the control unit 100 selects one relay device 30 to which the wireless module 11 is connected based on the priority of each relay device 30.
  • step S122 the control unit 100 instructs the selected relay device 30 to respond to the wireless module 11 that is the connection destination inquiry source.
  • the second processing example it is possible to appropriately select the connection destination of the wireless module 11 according to the state of the relay device 30 (traffic, transmission time rate, etc.). Become.
  • the first processing example and the second processing example described above it is possible to further efficiently improve throughput.
  • FIG. 12 is a conceptual diagram for explaining a third processing example by the control unit 100 included in the base station 20.
  • the control unit 100 determines at least one of the channel used and the transmission power of each relay device 30.
  • the control unit 100 constantly monitors the status of each of the multiple relay devices 30 connected to each of the multiple wireless modules 11, and updates the relay device status information 300 (see FIG. 4).
  • the relay device status information 300 includes information on the wireless terminals 10 and wireless modules 11 under each relay device 30.
  • the relay device status information 300 includes the distance between each relay device 30 and the subordinate wireless terminal 10.
  • the relay device status information 300 includes the traffic status and used channels of each relay device 30.
  • the control unit 100 determines at least one of the channel used and the transmission power of each relay device 30 based on the relay device status information 300. For example, the control unit 100 increases the transmission power of the relay device 30 as the distance between the relay device 30 and the subordinate wireless terminal 10 increases. As another example, the control unit 100 may determine the channels used by each relay device 30 so that the channels used do not overlap among the plurality of relay devices 30. As still another example, the control unit 100 may determine the channel to be used by each relay device 30 based on the communication state and communication quality between the base station 20 and each relay device 30.
  • the control unit 100 instructs each relay device 30 to operate according to the determined usage channel/transmission power. More specifically, the control unit 100 generates relay device control information CON indicating the used channel/transmission power determined for each relay device 30. Then, the control unit 100 notifies each relay device 30 of the relay device control information CON. Each relay device 30 operates according to the used channel/transmission power indicated by the relay device control information CON.
  • the control unit 100 generates first relay device control information CON-1 indicating the used channel/transmission power determined for the first relay device 30-1. Then, the control unit 100 notifies the first relay device 30-1 of the first relay device control information CON-1. The first relay device 30-1 operates according to the used channel/transmission power indicated by the first relay device control information CON-1. The same applies to the second relay device 30-2.
  • FIG. 13 is a flowchart showing a third example of processing by the control unit 100 included in the base station 20.
  • step S130 the control unit 100 determines whether a connection state update notification has been received from any relay device 30.
  • the connection state update notification is a notification indicating that the connection state between the relay device 30 and the wireless terminal 10 (wireless module 11) has been updated. If a connection status update notification is received (step S130; Yes), the process proceeds to step S131.
  • step S131 the control unit 100 determines at least one of the channel used and the transmission power of the relay device 30 based on the relay device state information 300.
  • step S132 the control unit 100 instructs the relay device 30 to operate according to the determined usage channel/transmission power.
  • the third processing example it is possible to improve communication quality by controlling the transmission power of the relay device 30 and the channels used.
  • 1...Wireless communication system 10...Wireless terminal, 11...Wireless module 11, 11-1...First wireless module, 11-2...Second wireless module, 11S...Using module, 12...Upper layer, 13...Selector, 20 ...Base station, 30...Relay device, 30-1...First relay device, 30-2...Second relay device, 100...Control unit, 110...Processor, 120...Storage device, 130...Control program, 200...Module switching Management information, 300...Relay device status information, CON...Relay device control information, INQ...Connection destination inquiry, NTF...Connection destination inquiry notification, PA...Transmission permission period, PB...Transmission prohibition period, SKD...Schedule information

Abstract

This wireless communication system comprises: a wireless terminal that comprises a plurality of wireless modules for performing wireless communication in channels differing from one another; a base station that performs wireless communication with the plurality of wireless modules; and a plurality of relay devices that relay the wireless communication between the base station and each of the plurality of wireless modules. The wireless terminal uses one of the plurality of wireless modules as a usage module and stops data transmission from wireless modules other than the usage module. The base station determines a usage schedule for each of the plurality of wireless modules such that the transmission time ratio of each of the plurality of wireless modules of the wireless terminal does not exceed a prescribed upper limit. In addition, the base station notifies each wireless module of information relating to the determined usage schedule. Each wireless module operates as the usage module in accordance with the usage schedule determined by the base station.

Description

無線通信システム、無線通信制御方法、及び基地局Wireless communication system, wireless communication control method, and base station
 本発明は、複数のチャネルを切り替えて無線通信を行う無線端末を制御する技術に関する。 The present invention relates to a technology for controlling a wireless terminal that performs wireless communication by switching between multiple channels.
 基地局と無線端末を含む無線通信システムが知られている。無線通信システムの代表的な例として、公衆用途の無線LAN(Local Area Network)が挙げられる。公衆用途の無線LANでは、例えば、基地局からコンピュータ端末やスマートフォン端末といった無線端末にデータを送信するユースケースが想定される。更に、近年のIoT(Internet of Things)端末の普及に伴い、無線端末側から基地局にデータを送信するユースケースが増加している。 Wireless communication systems including base stations and wireless terminals are known. A typical example of a wireless communication system is a public wireless LAN (Local Area Network). In a wireless LAN for public use, for example, a use case is assumed in which data is transmitted from a base station to a wireless terminal such as a computer terminal or a smartphone terminal. Furthermore, with the spread of IoT (Internet of Things) terminals in recent years, use cases for transmitting data from a wireless terminal to a base station are increasing.
 IoT用の無線通信に関連して、アンライセンスのSub-1GHz帯の利用が世界各国で制度化されている(非特許文献1参照)。日本では、920MHz帯が電子タグシステムの周波数帯として割り当てられている。例えば、アクティブ電子タグシステムとして、LoRa(登録商標)やWiSUN(登録商標)といったLPWA(Low Power Wide Area)の無線通信システムが知られている。また、無線LAN規格の一つであるIEEE 802.11ahの利用も検討されている。 In connection with wireless communication for IoT, the use of unlicensed Sub-1 GHz band has been institutionalized in various countries around the world (see Non-Patent Document 1). In Japan, the 920 MHz band is allocated as a frequency band for electronic tag systems. For example, LPWA (Low Power Wide Area) wireless communication systems such as LoRa (registered trademark) and WiSUN (registered trademark) are known as active electronic tag systems. Furthermore, the use of IEEE 802.11ah, which is one of the wireless LAN standards, is also being considered.
 920MHz帯では周波数チャネルの数が限られているため、使用するチャネルを変更しながら無線通信を行うケースも考えられる。 Since the number of frequency channels is limited in the 920 MHz band, there may be cases where wireless communication is performed while changing the channel to be used.
 例えば、国内では、920MHz帯利用時の総送信時間に制限が設けられており、1時間あたりの総送信時間は360秒以内である必要がある。無線通信装置はこの総送信時間制限を順守するようにデータ送信を制限するため、スループットも制限される。但し、重複しない2つのチャネルを切り替えて使用する無線通信装置の筐体に対しては、1時間当たり各チャネル毎に360秒、合計で720秒までの総送信時間が許容されている。よって、スループットを向上させるために、無線通信装置の筐体が使用するチャネルを変更しながら無線通信を行うことが考えられる。 For example, in Japan, there is a limit on the total transmission time when using the 920 MHz band, and the total transmission time per hour must be within 360 seconds. Because the wireless communication device limits data transmission to comply with this total transmission time limit, throughput is also limited. However, for a case of a wireless communication device that switches between two non-overlapping channels, a total transmission time of up to 360 seconds for each channel per hour, or 720 seconds in total, is allowed. Therefore, in order to improve throughput, it is conceivable to perform wireless communication while changing the channel used by the housing of the wireless communication device.
 無線端末が中継装置を介して基地局にデータを送信する場合について考える。チャネル毎に送信時間率の制約がある状況では、無線端末が使用するチャネルを切り替えることによってスループットを向上させることができる。但し、無線端末が備える無線モジュール内で使用チャネルを切り替えるには煩雑な処理が必要となる。 Consider the case where a wireless terminal transmits data to a base station via a relay device. In situations where there is a restriction on the transmission time rate for each channel, throughput can be improved by switching the channel used by a wireless terminal. However, complicated processing is required to switch the channel used within the wireless module included in the wireless terminal.
 本発明の1つの目的は、無線端末が使用するチャネルを切り替える処理を簡素化することができる技術を提供することにある。 One object of the present invention is to provide a technology that can simplify the process of switching channels used by a wireless terminal.
 第1の観点は、無線通信システムに関連する。
 無線通信システムは、
 互いに異なるチャネルで無線通信を行う複数の無線モジュールを備える無線端末と、
 複数の無線モジュールと無線通信を行う基地局と、
 複数の無線モジュールのそれぞれと基地局との間の無線通信を中継する複数の中継装置と
 を備える。
 無線端末は、複数の無線モジュールのうち1つを使用モジュールとして使用し、使用モジュール以外の無線モジュールからのデータ送信を停止する。
 基地局は、
 無線端末の複数の無線モジュールの各々の送信時間率が所定の上限を超えないように、複数の無線モジュールの各々の使用スケジュールを決定し、
 使用スケジュールの情報を無線端末に通知する
 ように構成される。
 複数の無線モジュールの各々は、基地局によって決定された使用スケジュールに従って使用モジュールとして動作する。
The first aspect relates to wireless communication systems.
The wireless communication system is
a wireless terminal including a plurality of wireless modules that perform wireless communication on mutually different channels;
A base station that performs wireless communication with multiple wireless modules,
A plurality of relay devices that relay wireless communication between each of the plurality of wireless modules and a base station are provided.
The wireless terminal uses one of the plurality of wireless modules as a used module, and stops data transmission from wireless modules other than the used module.
The base station is
determining a usage schedule for each of the plurality of wireless modules so that the transmission time rate of each of the plurality of wireless modules of the wireless terminal does not exceed a predetermined upper limit;
It is configured to notify the wireless terminal of usage schedule information.
Each of the plurality of wireless modules operates as a usage module according to a usage schedule determined by the base station.
 第2の観点は、複数の中継装置を介した無線端末と基地局との間の無線通信を制御する無線通信制御方法に関連する。
 無線端末は、互いに異なるチャネルで無線通信を行う複数の無線モジュールを備え、複数の無線モジュールのうち1つを使用モジュールとして使用し、使用モジュール以外の無線モジュールからのデータ送信を停止する。
 複数の中継装置は、複数の無線モジュールのそれぞれと基地局との間の無線通信を中継する。
 無線通信制御方法は、
 基地局において、無線端末の複数の無線モジュールの各々の送信時間率が所定の上限を超えないように、複数の無線モジュールの各々の使用スケジュールを決定することと、
 使用スケジュールの情報を基地局から無線端末に通知することと、
 基地局によって決定された使用スケジュールに従って、複数の無線モジュールの各々を使用モジュールとして動作させることと
 を含む。
The second aspect relates to a wireless communication control method that controls wireless communication between a wireless terminal and a base station via a plurality of relay devices.
A wireless terminal includes a plurality of wireless modules that perform wireless communication using different channels, uses one of the wireless modules as a used module, and stops data transmission from wireless modules other than the used module.
The plurality of relay devices relay wireless communication between each of the plurality of wireless modules and the base station.
The wireless communication control method is
In the base station, determining a usage schedule for each of the plurality of wireless modules such that the transmission time rate of each of the plurality of wireless modules of the wireless terminal does not exceed a predetermined upper limit;
Notifying usage schedule information from a base station to a wireless terminal;
and operating each of the plurality of wireless modules as a usage module according to a usage schedule determined by the base station.
 第3の観点は、複数の中継装置を介して無線端末と無線通信を行う基地局に関連する。
 無線端末は、互いに異なるチャネルで無線通信を行う複数の無線モジュールを備え、複数の無線モジュールのうち1つを使用モジュールとして使用し、使用モジュール以外の無線モジュールからのデータ送信を停止する。
 複数の中継装置は、複数の無線モジュールのそれぞれと基地局との間の無線通信を中継する。
 基地局は、制御部を含む。
 制御部は、
 無線端末の複数の無線モジュールの各々の送信時間率が所定の上限を超えないように、複数の無線モジュールの各々の使用スケジュールを決定し、
 使用スケジュールの情報を無線端末に通知し、複数の無線モジュールの各々を使用スケジュールに従って使用モジュールとして動作させる
 ように構成される。
The third aspect relates to a base station that performs wireless communication with wireless terminals via a plurality of relay devices.
A wireless terminal includes a plurality of wireless modules that perform wireless communication using different channels, uses one of the wireless modules as a used module, and stops data transmission from wireless modules other than the used module.
The plurality of relay devices relay wireless communication between each of the plurality of wireless modules and the base station.
The base station includes a control unit.
The control section is
determining a usage schedule for each of the plurality of wireless modules so that the transmission time rate of each of the plurality of wireless modules of the wireless terminal does not exceed a predetermined upper limit;
The information on the usage schedule is notified to the wireless terminal, and each of the plurality of wireless modules is configured to operate as a usage module according to the usage schedule.
 本発明によれば、無線端末は、互いに異なるチャネルで無線通信を行う複数の無線モジュールを備える。複数の無線モジュール間で使用モジュールを切り替えることによって、無線通信に使用されるチャネルを簡単に切り替えることができる。単一の無線モジュール内でチャネルを切り替える必要が無いため、チャネル切り替えに要する処理を簡素化することが可能となる。 According to the present invention, a wireless terminal includes a plurality of wireless modules that perform wireless communication using mutually different channels. By switching the module in use among a plurality of wireless modules, the channel used for wireless communication can be easily changed. Since there is no need to switch channels within a single wireless module, it is possible to simplify the processing required for channel switching.
実施の形態に係る無線通信システムの基本構成を示すブロック図である。FIG. 1 is a block diagram showing the basic configuration of a wireless communication system according to an embodiment. 実施の形態に係るモジュール切替処理を伴うデータ送信制御の概要を説明するためのタイミングチャートである。3 is a timing chart for explaining an overview of data transmission control involving module switching processing according to an embodiment. 実施の形態に係る制御部の概要を説明するためのブロック図である。FIG. 2 is a block diagram for explaining an overview of a control unit according to an embodiment. 実施の形態に係る制御部の構成例を示すブロック図である。It is a block diagram showing an example of composition of a control part concerning an embodiment. 実施の形態に係る無線通信システムの構成例を示すブロック図である。1 is a block diagram showing a configuration example of a wireless communication system according to an embodiment. 実施の形態に係る制御部による第1の処理例を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining a first processing example by a control unit according to an embodiment. 実施の形態に係る制御部による第1の処理例を説明するためのタイミングチャートである。5 is a timing chart for explaining a first processing example by a control unit according to an embodiment. 実施の形態に係る制御部による第1の処理例を示すフローチャートである。7 is a flowchart illustrating a first processing example by the control unit according to the embodiment. 実施の形態に係る制御部による第2の処理例を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining a second example of processing by the control unit according to the embodiment. 実施の形態に係る制御部による第2の処理例を説明するためのタイミングチャートである。7 is a timing chart for explaining a second example of processing by the control unit according to the embodiment. 実施の形態に係る制御部による第2の処理例を示すフローチャートである。7 is a flowchart illustrating a second example of processing by the control unit according to the embodiment. 実施の形態に係る制御部による第3の処理例を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining a third example of processing by the control unit according to the embodiment. 実施の形態に係る制御部による第3の処理例を示すフローチャートである。It is a flowchart which shows the 3rd example of processing by a control part concerning an embodiment.
 添付図面を参照して、本発明の実施の形態を説明する。 Embodiments of the present invention will be described with reference to the accompanying drawings.
 1.無線通信システムの概要
 1-1.基本構成
 図1は、本実施の形態に係る無線通信システム1の基本構成を示すブロック図である。無線通信システム1は、無線端末10、基地局20、及び複数の中継装置30を含んでいる。無線端末10と基地局20は、中継装置30を介して互いに無線通信を行う。言い換えれば、中継装置30は、無線端末10と基地局20との間の無線通信を中継する。中継装置30により、基地局20から遠く離れた無線端末10を収容することも可能となる。例えば、無線通信システム1は無線LANシステムである。例えば、無線通信システム1は、アンライセンスのSub-1GHz帯を利用して無線通信を行う。例えば、無線通信システム1は、920MHz帯を利用して無線通信を行う。
1. Overview of wireless communication system 1-1. Basic Configuration FIG. 1 is a block diagram showing the basic configuration of a wireless communication system 1 according to the present embodiment. The wireless communication system 1 includes a wireless terminal 10, a base station 20, and a plurality of relay devices 30. The wireless terminal 10 and the base station 20 perform wireless communication with each other via the relay device 30. In other words, relay device 30 relays wireless communication between wireless terminal 10 and base station 20. The relay device 30 also makes it possible to accommodate wireless terminals 10 that are far away from the base station 20. For example, the wireless communication system 1 is a wireless LAN system. For example, the wireless communication system 1 performs wireless communication using the unlicensed Sub-1 GHz band. For example, the wireless communication system 1 performs wireless communication using the 920 MHz band.
 本実施の形態に係る無線端末10は、複数のチャネル(周波数チャネル)を切り替えて無線通信を行うことができる。より詳細には、無線端末10は、互いに重複しない異なるチャネルで無線通信を行う複数の無線モジュール11を備えている。各無線モジュール11は、例えば、ネットワークインタフェースコントローラー(ネットワークインタフェースカード)を含んでいる。複数の無線モジュール11は、それぞれ、複数の中継装置30と接続される。つまり、複数の無線モジュール11は、複数の中継装置30のそれぞれを介して単一の基地局20と無線通信を行う。言い換えれば、複数の中継装置30は、複数の無線モジュール11のそれぞれと単一の基地局20との間の無線通信を中継する。 The wireless terminal 10 according to the present embodiment can perform wireless communication by switching between multiple channels (frequency channels). More specifically, the wireless terminal 10 includes a plurality of wireless modules 11 that perform wireless communication using different channels that do not overlap with each other. Each wireless module 11 includes, for example, a network interface controller (network interface card). The plurality of wireless modules 11 are each connected to the plurality of relay devices 30. That is, the plurality of wireless modules 11 perform wireless communication with the single base station 20 via each of the plurality of relay devices 30. In other words, the plurality of relay devices 30 relay wireless communication between each of the plurality of wireless modules 11 and the single base station 20.
 図1に示される例では、無線端末10は、第1無線モジュール11-1と第2無線モジュール11-2を含んでいる。第1無線モジュール11-1は、第1チャネルCH-1で無線通信を行うように設定されている。第1無線モジュール11-1は、第1中継装置30-1と接続され、第1中継装置30-1を介して基地局20と第1チャネルCH-1で無線通信を行う。一方、第2無線モジュール11-2は、第1チャネルCH-1と重複しない第2チャネルCH-2で無線通信を行うように設定されている。第2無線モジュール11-2は、第2中継装置30-2と接続され、第2中継装置30-2を介して基地局20と第2チャネルCH-2で無線通信を行う。 In the example shown in FIG. 1, the wireless terminal 10 includes a first wireless module 11-1 and a second wireless module 11-2. The first wireless module 11-1 is set to perform wireless communication on the first channel CH-1. The first wireless module 11-1 is connected to the first relay device 30-1 and performs wireless communication with the base station 20 via the first relay device 30-1 on the first channel CH-1. On the other hand, the second wireless module 11-2 is set to perform wireless communication on a second channel CH-2 that does not overlap with the first channel CH-1. The second wireless module 11-2 is connected to the second relay device 30-2 and performs wireless communication with the base station 20 via the second relay device 30-2 on the second channel CH-2.
 1-2.モジュール切替処理
 無線端末10が使用する無線モジュール11を切り替えることによって、無線通信に使用されるチャネルを簡単に切り替えることができる。複数の無線モジュール11のうち選択的に使用される1つを、以下、「使用モジュール11S」と呼ぶ。使用モジュール11Sを「選択モジュール」と呼ぶこともできる。また、無線端末10における使用モジュール11Sを切り替える処理を、以下、「モジュール切替処理」と呼ぶ。
1-2. Module Switching Process By switching the wireless module 11 used by the wireless terminal 10, the channel used for wireless communication can be easily switched. One of the plurality of wireless modules 11 that is selectively used is hereinafter referred to as a "used module 11S." The usage module 11S can also be called a "selection module". Further, the process of switching the used module 11S in the wireless terminal 10 will be referred to as "module switching process" hereinafter.
 無線端末10は、複数の無線モジュール11のうち1つを使用モジュール11Sとして使用してデータ送信を行う。より詳細には、無線端末10は、複数の無線モジュール11に加えて、上位レイヤ12及びセレクタ13を含んでいる。セレクタ13は、上位レイヤ12から送信データを受け取り、送信データを使用モジュール11Sの方に出力する。セレクタ13は、送信データを使用モジュール11S以外の無線モジュール11に流さない。使用モジュール11Sは、上位レイヤ12からの送信データを送信し、使用モジュール11S以外の無線モジュール11は、データ送信を停止する。 The wireless terminal 10 uses one of the plurality of wireless modules 11 as the module 11S to transmit data. More specifically, the wireless terminal 10 includes a plurality of wireless modules 11, as well as an upper layer 12 and a selector 13. The selector 13 receives transmission data from the upper layer 12 and outputs the transmission data to the usage module 11S. The selector 13 does not send the transmission data to any wireless module 11 other than the used module 11S. The used module 11S transmits transmission data from the upper layer 12, and the wireless modules 11 other than the used module 11S stop data transmission.
 次に、無線端末10が使用するチャネル毎に送信時間率の制約(上限)がある状況について考える。例えば、国内では、920MHz帯利用時の総送信時間に制限が設けられており、1時間あたりの総送信時間は360秒以内である必要がある。重複しない2つのチャネルを切り替えて使用する筐体に対しては、1時間当たり各チャネル毎に360秒、合計で720秒までの総送信時間が許容されている。よって、スループットを向上させるために、無線端末10における使用モジュール11Sを切り替えるモジュール切替処理が有効である。 Next, consider a situation where there is a restriction (upper limit) on the transmission time rate for each channel used by the wireless terminal 10. For example, in Japan, there is a limit on the total transmission time when using the 920 MHz band, and the total transmission time per hour must be within 360 seconds. For a case that switches between two non-overlapping channels, a total transmission time of 360 seconds for each channel per hour, for a total of 720 seconds, is allowed. Therefore, in order to improve throughput, module switching processing that switches the module 11S used in the wireless terminal 10 is effective.
 図2は、本実施の形態に係るモジュール切替処理を伴うデータ送信制御の概要を説明するためのタイミングチャートである。ここでは、上記の第1無線モジュール11-1(第1チャネルCH-1)と第2無線モジュール11-2(第2チャネルCH-2)の切り替えについて考える。 FIG. 2 is a timing chart for explaining an overview of data transmission control accompanied by module switching processing according to the present embodiment. Here, switching between the first wireless module 11-1 (first channel CH-1) and the second wireless module 11-2 (second channel CH-2) will be considered.
 時刻t1~t2の期間において、第1無線モジュール11-1が使用モジュール11Sとして選択される。第1無線モジュール11-1からのデータ送信は許可されるが、第2無線モジュール11-2からのデータ送信は禁止される。つまり、時刻t1~t2の期間は、第1無線モジュール11-1にとっては送信許可期間PAであり、第2無線モジュール11-2にとっては送信禁止期間PBである。無線端末10は、第1無線モジュール11-1を使用モジュール11Sとして使用し、第1中継装置30-1を介して基地局20と第1チャネルCH-1で無線通信を行う。その一方で、無線端末10は、第2無線モジュール11-2からのデータ送信を停止する。 During the period from time t1 to time t2, the first wireless module 11-1 is selected as the module to be used 11S. Data transmission from the first wireless module 11-1 is permitted, but data transmission from the second wireless module 11-2 is prohibited. That is, the period from time t1 to t2 is a transmission permission period PA for the first wireless module 11-1, and a transmission prohibition period PB for the second wireless module 11-2. The wireless terminal 10 uses the first wireless module 11-1 as the usage module 11S, and performs wireless communication with the base station 20 on the first channel CH-1 via the first relay device 30-1. On the other hand, the wireless terminal 10 stops data transmission from the second wireless module 11-2.
 時刻t2において、無線端末10は、使用モジュール11Sを第1無線モジュール11-1から第2無線モジュール11-2に切り替える。 At time t2, the wireless terminal 10 switches the module 11S in use from the first wireless module 11-1 to the second wireless module 11-2.
 時刻t2~t3の期間において、第2無線モジュール11-2が使用モジュール11Sとして選択される。第2無線モジュール11-2からのデータ送信は許可されるが、第1無線モジュール11-1からのデータ送信は禁止される。つまり、時刻t2~t3の期間は、第1無線モジュール11-1にとっては送信禁止期間PBであり、第2無線モジュール11-2にとっては送信許可期間PAである。無線端末10は、第2無線モジュール11-2を使用モジュール11Sとして使用し、第2中継装置30-2を介して基地局20と第2チャネルCH-2で無線通信を行う。その一方で、無線端末10は、第1無線モジュール11-1からのデータ送信を停止する。 During the period from time t2 to time t3, the second wireless module 11-2 is selected as the module to be used 11S. Data transmission from the second wireless module 11-2 is permitted, but data transmission from the first wireless module 11-1 is prohibited. That is, the period from time t2 to t3 is a transmission prohibited period PB for the first wireless module 11-1, and a transmission permitted period PA for the second wireless module 11-2. The wireless terminal 10 uses the second wireless module 11-2 as the usage module 11S, and performs wireless communication with the base station 20 on the second channel CH-2 via the second relay device 30-2. On the other hand, the wireless terminal 10 stops data transmission from the first wireless module 11-1.
 時刻t3において、無線端末10は、使用モジュール11Sを第2無線モジュール11-2から第1無線モジュール11-1に切り替える。時刻t3~t4の期間は、時刻t1~t2の期間と同様である。 At time t3, the wireless terminal 10 switches the module 11S in use from the second wireless module 11-2 to the first wireless module 11-1. The period from time t3 to t4 is the same as the period from time t1 to t2.
 送信許可期間PAは、第1無線モジュール11-1と第2無線モジュール11-2とで重複しない。また、送信禁止期間PBは、第1無線モジュール11-1と第2無線モジュール11-2とで重複しない。 The transmission permission period PA does not overlap between the first wireless module 11-1 and the second wireless module 11-2. Furthermore, the transmission prohibition period PB does not overlap between the first wireless module 11-1 and the second wireless module 11-2.
 尚、各無線モジュール11の送信時間率は、測定周期PMにおける各無線モジュール11の送信時間から算出可能である。 Note that the transmission time rate of each wireless module 11 can be calculated from the transmission time of each wireless module 11 in the measurement period PM.
 以上に説明されたモジュール切替処理を実現するために、本実施の形態に係る無線通信システム1は、モジュール切替処理の管理及び制御を行う「制御部100」を備える。 In order to realize the module switching process described above, the wireless communication system 1 according to the present embodiment includes a "control unit 100" that manages and controls the module switching process.
 図3は、制御部100の概要を説明するためのブロック図である。制御部100は、無線端末10の複数の無線モジュール11(複数のチャネル)の各々の送信時間及び送信時間率を監視、管理する。そして、制御部100は、無線端末10の複数の無線モジュール11の各々の送信時間率が所定の上限を超えないように、複数の無線モジュール11の各々の使用スケジュールを決定する。例えば、使用スケジュールは、各無線モジュール11に割り当てられる送信許可期間PAを含む。使用スケジュールを送信タイミングと呼ぶこともできる。モジュール切替処理のトリガとしては様々な例が考えられるが、少なくとも各無線モジュール11の送信時間率が所定の上限を超えないように使用スケジュールは決定される。 FIG. 3 is a block diagram for explaining an overview of the control unit 100. The control unit 100 monitors and manages the transmission time and transmission time rate of each of the plurality of wireless modules 11 (multiple channels) of the wireless terminal 10 . Then, the control unit 100 determines a usage schedule for each of the plurality of wireless modules 11 so that the transmission time rate of each of the plurality of wireless modules 11 of the wireless terminal 10 does not exceed a predetermined upper limit. For example, the usage schedule includes a transmission permission period PA assigned to each wireless module 11. The usage schedule can also be called transmission timing. Although various examples can be considered as triggers for module switching processing, the usage schedule is determined so that at least the transmission time rate of each wireless module 11 does not exceed a predetermined upper limit.
 更に、制御部100は、決定した使用スケジュールに従ってモジュール切替処理を行うように無線端末10を制御する。つまり、制御部100は、決定した使用スケジュールに従って使用モジュール11Sを切り替えるように無線端末10を制御する。無線端末10は、制御部100によって決定された使用スケジュールに従って使用モジュール11Sを切り替える。各無線モジュール11は、制御部100によって決定された使用スケジュールに従って使用モジュール11Sとして動作する。 Furthermore, the control unit 100 controls the wireless terminal 10 to perform module switching processing according to the determined usage schedule. That is, the control unit 100 controls the wireless terminal 10 to switch the usage module 11S according to the determined usage schedule. The wireless terminal 10 switches the usage module 11S according to the usage schedule determined by the control unit 100. Each wireless module 11 operates as a usage module 11S according to the usage schedule determined by the control unit 100.
 1-3.効果
 以上に説明されたように、本実施の形態によれば、無線端末10は、互いに異なるチャネルで無線通信を行う複数の無線モジュール11を備える。複数の無線モジュール11間で使用モジュール11Sを切り替えることによって、無線通信に使用されるチャネルを簡単に切り替えることができる。単一の無線モジュール11内でチャネルを切り替える必要が無いため、チャネル切り替えに要する処理を簡素化することが可能となる。また、チャネル切り替えに無線端末10の再起動は不要であるため、通信断時間が削減され、サービス品質の低下が防止される。
1-3. Effects As described above, according to the present embodiment, the wireless terminal 10 includes a plurality of wireless modules 11 that perform wireless communication using mutually different channels. By switching the used module 11S between the plurality of wireless modules 11, the channel used for wireless communication can be easily changed. Since there is no need to switch channels within a single wireless module 11, it is possible to simplify the processing required for channel switching. Furthermore, since restarting the wireless terminal 10 is not required for channel switching, communication interruption time is reduced and service quality is prevented from deteriorating.
 また、本実施の形態によれば、制御部100が、無線端末10の各無線モジュール11の送信時間率が所定の上限を超えないように、各無線モジュール11の使用スケジュールを決定する。制御部100が各無線モジュール11の送信時間率を正確に管理するため、送信時間率の上限まで各チャネルを使用することが可能となる。すなわち、無線端末10全体としての送信時間率を拡大し、スループットを効果的に向上させることが可能となる。 Furthermore, according to the present embodiment, the control unit 100 determines the usage schedule of each wireless module 11 so that the transmission time rate of each wireless module 11 of the wireless terminal 10 does not exceed a predetermined upper limit. Since the control unit 100 accurately manages the transmission time rate of each wireless module 11, it is possible to use each channel up to the upper limit of the transmission time rate. That is, it becomes possible to expand the transmission time rate of the wireless terminal 10 as a whole and effectively improve throughput.
 更に、本実施の形態によれば、無線端末10が複数の無線モジュール11を備えているため、冗長性が確保され、信頼性が向上する。 Furthermore, according to this embodiment, since the wireless terminal 10 includes a plurality of wireless modules 11, redundancy is ensured and reliability is improved.
 更に、本実施の形態によれば、中継装置30により、基地局20から遠く離れた無線端末10を収容することも可能となる。 Furthermore, according to this embodiment, the relay device 30 also makes it possible to accommodate a wireless terminal 10 that is far away from the base station 20.
 2.制御部の構成例
 図4は、本実施の形態に係る制御部100の構成例を示すブロック図である。図4に示される例において、制御部100は、1又は複数のプロセッサ110(以下、単に「プロセッサ110」と呼ぶ)と1又は複数の記憶装置120(以下、単に「記憶装置120」と呼ぶ)を備えるコンピュータである。例えば、プロセッサ110は、CPU(Central Processing Unit)を含んでいる。記憶装置120は、プロセッサ110による処理に必要な各種情報を格納する。記憶装置120としては、揮発性メモリ、不揮発性メモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、等が例示される。
2. Configuration Example of Control Unit FIG. 4 is a block diagram showing a configuration example of the control unit 100 according to the present embodiment. In the example shown in FIG. 4, the control unit 100 includes one or more processors 110 (hereinafter simply referred to as "processors 110") and one or more storage devices 120 (hereinafter simply referred to as "storage devices 120"). It is a computer equipped with. For example, processor 110 includes a CPU (Central Processing Unit). The storage device 120 stores various information necessary for processing by the processor 110. Examples of the storage device 120 include volatile memory, nonvolatile memory, HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
 制御プログラム130は、プロセッサ110によって実行されるコンピュータプログラムである。プロセッサ110が制御プログラム130を実行することにより、制御部100の機能が実現される。制御プログラム130は、記憶装置120に格納される。制御プログラム130は、コンピュータ読み取り可能な記録媒体に記録されてもよい。制御プログラム130は、ネットワーク経由で制御部100に提供されてもよい。 The control program 130 is a computer program executed by the processor 110. The functions of the control unit 100 are realized by the processor 110 executing the control program 130. Control program 130 is stored in storage device 120. The control program 130 may be recorded on a computer-readable recording medium. The control program 130 may be provided to the control unit 100 via a network.
 記憶装置120には、モジュール切替管理情報200が格納される。モジュール切替管理情報200は、モジュール切替処理を管理するための情報である。例えば、モジュール切替管理情報200は、無線端末10の複数の無線モジュール11のそれぞれの送信時間及び送信時間率を含む。モジュール切替管理情報200は、複数の無線モジュール11の各々の使用スケジュールを含んでいてもよい。例えば、使用スケジュールは、各無線モジュール11に割り当てられる送信許可期間PA(例:開始時刻と継続時間の組み合わせ)を含む。使用スケジュールを送信タイミングと呼ぶこともできる。 Module switching management information 200 is stored in the storage device 120. Module switching management information 200 is information for managing module switching processing. For example, the module switching management information 200 includes the transmission time and transmission time rate of each of the plurality of wireless modules 11 of the wireless terminal 10. The module switching management information 200 may include a usage schedule for each of the plurality of wireless modules 11. For example, the usage schedule includes a transmission permission period PA (eg, a combination of start time and duration) assigned to each wireless module 11. The usage schedule can also be called transmission timing.
 記憶装置120には、更に、中継装置状態情報300が格納されてもよい。中継装置状態情報300は、基地局20に接続される各中継装置30の状態を示す。中継装置状態情報300は、各中継装置30の識別情報を含む。また、中継装置状態情報300は、各中継装置30の配下の無線端末10及び無線モジュール11の情報(数、等)を含む。他の例として、中継装置状態情報300は、各中継装置30と配下の無線端末10との間の距離を含んでいてもよい。更に他の例として、中継装置状態情報300は、各中継装置30のトラヒック状況や送信時間率を含んでいてもよい。更に他の例として、中継装置状態情報300は、各中継装置30の使用チャネル及び送信電力を含んでいてもよい。制御部100は、各中継装置30と通信を行い、各中継装置30から中継装置状態情報300を取得する。 The storage device 120 may further store relay device status information 300. Relay device status information 300 indicates the status of each relay device 30 connected to base station 20. Relay device status information 300 includes identification information of each relay device 30. Further, the relay device status information 300 includes information (number, etc.) of the wireless terminals 10 and wireless modules 11 under each relay device 30. As another example, the relay device status information 300 may include the distance between each relay device 30 and the subordinate wireless terminal 10. As yet another example, the relay device status information 300 may include the traffic status and transmission time rate of each relay device 30. As yet another example, the relay device status information 300 may include the used channel and transmission power of each relay device 30. The control unit 100 communicates with each relay device 30 and acquires relay device status information 300 from each relay device 30.
 3.基地局が制御部を含む場合の処理例
 無線端末10自身が各無線モジュール11の送信時間率を管理し、各無線モジュール11の使用スケジュールを決定することは、煩雑であり非効率的である。そこで、以下では、基地局20が制御部100を含む場合について考える。
3. Processing example when the base station includes a control unit It is complicated and inefficient for the wireless terminal 10 itself to manage the transmission time rate of each wireless module 11 and determine the usage schedule of each wireless module 11. Therefore, below, a case where the base station 20 includes the control unit 100 will be considered.
 図5は、基地局20が制御部100を含む場合の無線通信システム1の構成例を示すブロック図である。基地局20が制御部100を含んでいるため、各無線端末10の各無線モジュール11の使用スケジュールを効率的に決定することが可能となる。また、無線端末10において煩雑な処理は不要となる。 FIG. 5 is a block diagram showing a configuration example of the wireless communication system 1 when the base station 20 includes the control unit 100. Since the base station 20 includes the control unit 100, it becomes possible to efficiently determine the usage schedule of each wireless module 11 of each wireless terminal 10. Moreover, complicated processing in the wireless terminal 10 is not necessary.
 以下、図5で示される無線通信システム1における処理について詳細に説明する。 Hereinafter, the processing in the wireless communication system 1 shown in FIG. 5 will be described in detail.
 3-1.第1の処理例
 図6は、基地局20に含まれる制御部100による第1の処理例を説明するための概念図である。図7は、基地局20に含まれる制御部100による第1の処理例を説明するためのタイミングチャートである。
3-1. First Processing Example FIG. 6 is a conceptual diagram for explaining a first processing example by the control unit 100 included in the base station 20. FIG. 7 is a timing chart for explaining a first processing example by the control unit 100 included in the base station 20.
 制御部100は、無線端末10の複数の無線モジュール11の各々の送信時間及び送信時間率を監視し、モジュール切替管理情報200(図4参照)を更新する。また、制御部100は、複数の無線モジュール11の各々の使用スケジュールを決定する。例えば、制御部100は、基本的に使用モジュール11Sが一定時間毎に切り替わるように、各無線モジュール11の使用スケジュールを決定する。但し、制御部100は、モジュール切替管理情報200に基づいて、各無線モジュール11の送信時間率が所定の上限を超えないように、各無線モジュール11の使用スケジュールを決定する。モジュール切替処理のトリガは任意であるが、少なくとも各無線モジュール11の送信時間率が所定の上限を超えないように使用スケジュールは決定される。 The control unit 100 monitors the transmission time and transmission time rate of each of the plurality of wireless modules 11 of the wireless terminal 10, and updates the module switching management information 200 (see FIG. 4). Further, the control unit 100 determines a usage schedule for each of the plurality of wireless modules 11. For example, the control unit 100 basically determines the usage schedule of each wireless module 11 so that the usage module 11S is switched at regular intervals. However, the control unit 100 determines the usage schedule of each wireless module 11 based on the module switching management information 200 so that the transmission time rate of each wireless module 11 does not exceed a predetermined upper limit. Although the trigger for the module switching process is arbitrary, the usage schedule is determined so that at least the transmission time rate of each wireless module 11 does not exceed a predetermined upper limit.
 使用スケジュールは、各無線モジュール11に割り当てられる送信許可期間PA、つまり、各無線モジュール11が使用モジュール11Sとして動作する送信許可期間PAを含む。送信許可期間PAは、例えば、開始時刻と継続時間の組み合わせにより規定される。送信許可期間PAは、複数の無線モジュール11間で重複しないように設定される。 The usage schedule includes a transmission permission period PA assigned to each wireless module 11, that is, a transmission permission period PA during which each wireless module 11 operates as a usage module 11S. The transmission permission period PA is defined, for example, by a combination of a start time and a duration. The transmission permission period PA is set so as not to overlap among the plurality of wireless modules 11.
 制御部100は、決定した使用スケジュールに従って使用モジュール11Sを切り替えるよう無線端末10に指示する。より詳細には、制御部100は、決定した使用スケジュールを示すスケジュール情報SKDを生成し、スケジュール情報SKDを無線端末10に通知する。複数の無線モジュール11の各々は、制御部100によって決定された使用スケジュールに従って使用モジュール11Sとして動作する。つまり、無線端末10は、制御部100によって決定された使用スケジュールに従って使用モジュール11Sを切り替える。 The control unit 100 instructs the wireless terminal 10 to switch the usage module 11S according to the determined usage schedule. More specifically, the control unit 100 generates schedule information SKD indicating the determined usage schedule, and notifies the wireless terminal 10 of the schedule information SKD. Each of the plurality of wireless modules 11 operates as a usage module 11S according to a usage schedule determined by the control unit 100. That is, the wireless terminal 10 switches the usage module 11S according to the usage schedule determined by the control unit 100.
 図6及び図7に示される例において、無線端末10の第1無線モジュール11-1及び第2無線モジュール11-2は、それぞれ、第1中継装置30-1及び第2中継装置30-2に接続されている。 In the examples shown in FIGS. 6 and 7, the first wireless module 11-1 and the second wireless module 11-2 of the wireless terminal 10 are connected to the first relay device 30-1 and the second relay device 30-2, respectively. It is connected.
 制御部100は、第1無線モジュール11-1に関する使用スケジュールを決定する。このとき、制御部100は、モジュール切替管理情報200に基づいて、第1無線モジュール11-1の送信時間率が所定の上限を超えないように、第1無線モジュール11-1の使用スケジュールを決定する。そして、制御部100は、第1無線モジュール11-1の使用スケジュールに関する第1スケジュール情報SKD-1を、第1無線モジュール11に接続された第1中継装置30-1に送信する。第1中継装置30-1は、第1スケジュール情報SKD-1を受信し、その第1スケジュール情報SKD-1を第1無線モジュール11-1に送信する。すなわち、制御部100は、第1スケジュール情報SKD-1を第1中継装置30-1を介して第1無線モジュール11-1に通知する。このとき、TWT(Target Wake Time)が利用されてもよい。第1無線モジュール11-1は、制御部100によって決定された第1スケジュール情報SKD-1に従って使用モジュール11Sとして動作する。つまり、第1無線モジュール11-1は、制御部100によって決定された送信許可期間PAにおいて使用モジュール11Sとして動作する。第1中継装置30-1は、第1スケジュール情報SKD-1に従って、基地局20と第1無線モジュール11-1との間の無線通信を中継する。 The control unit 100 determines a usage schedule regarding the first wireless module 11-1. At this time, the control unit 100 determines the usage schedule of the first wireless module 11-1 based on the module switching management information 200 so that the transmission time rate of the first wireless module 11-1 does not exceed a predetermined upper limit. do. Then, the control unit 100 transmits first schedule information SKD-1 regarding the usage schedule of the first wireless module 11-1 to the first relay device 30-1 connected to the first wireless module 11. The first relay device 30-1 receives the first schedule information SKD-1 and transmits the first schedule information SKD-1 to the first wireless module 11-1. That is, the control unit 100 notifies the first schedule information SKD-1 to the first wireless module 11-1 via the first relay device 30-1. At this time, TWT (Target Wake Time) may be used. The first wireless module 11-1 operates as the usage module 11S according to the first schedule information SKD-1 determined by the control unit 100. That is, the first wireless module 11-1 operates as the usage module 11S during the transmission permission period PA determined by the control unit 100. The first relay device 30-1 relays wireless communication between the base station 20 and the first wireless module 11-1 according to the first schedule information SKD-1.
 また、制御部100は、第2無線モジュール11-2に関する使用スケジュールを決定する。このとき、制御部100は、モジュール切替管理情報200に基づいて、第2無線モジュール11-2の送信時間率が所定の上限を超えないように、第2無線モジュール11-2の使用スケジュールを決定する。そして、制御部100は、第2無線モジュール11-2の使用スケジュールに関する第2スケジュール情報SKD-2を、第2無線モジュール11に接続された第2中継装置30-2に送信する。第2中継装置30-2は、第2スケジュール情報SKD-2を受信し、その第2スケジュール情報SKD-2を第2無線モジュール11-2に送信する。すなわち、制御部100は、第2スケジュール情報SKD-2を第2中継装置30-2を介して第2無線モジュール11-2に通知する。このとき、TWTが利用されてもよい。第2無線モジュール11-2は、制御部100によって決定された第2スケジュール情報SKD-2に従って使用モジュール11Sとして動作する。つまり、第2無線モジュール11-2は、制御部100によって決定された送信許可期間PAにおいて使用モジュール11Sとして動作する。第2中継装置30-2は、第2スケジュール情報SKD-2に従って、基地局20と第2無線モジュール11-2との間の無線通信を中継する。 Additionally, the control unit 100 determines a usage schedule regarding the second wireless module 11-2. At this time, the control unit 100 determines the usage schedule of the second wireless module 11-2 based on the module switching management information 200 so that the transmission time rate of the second wireless module 11-2 does not exceed a predetermined upper limit. do. Then, the control unit 100 transmits second schedule information SKD-2 regarding the usage schedule of the second wireless module 11-2 to the second relay device 30-2 connected to the second wireless module 11. The second relay device 30-2 receives the second schedule information SKD-2 and transmits the second schedule information SKD-2 to the second wireless module 11-2. That is, the control unit 100 notifies the second wireless module 11-2 of the second schedule information SKD-2 via the second relay device 30-2. At this time, TWT may be used. The second wireless module 11-2 operates as the usage module 11S according to the second schedule information SKD-2 determined by the control unit 100. That is, the second wireless module 11-2 operates as the usage module 11S during the transmission permission period PA determined by the control unit 100. The second relay device 30-2 relays wireless communication between the base station 20 and the second wireless module 11-2 according to the second schedule information SKD-2.
 制御部100は、基地局20からの下りトラヒックのタイミングも考慮して、基地局20からの下りトラヒックのタイミングと整合するようにスケジュールを決定してもよい。 The control unit 100 may also consider the timing of downlink traffic from the base station 20 and determine the schedule to match the timing of downlink traffic from the base station 20.
 通信の最中、制御部100は、各無線モジュール11の使用スケジュールを更新してもよい。例えば、制御部100は、基地局20の通信品質やトラヒック状況を把握する。トラヒック状況は、基地局20の送信時間率を含んでいてもよい。制御部100は、基地局20の通信品質やトラヒック状況に基づいて、各無線モジュール11の使用スケジュールを更新する。そして、制御部100は、更新後の使用スケジュールを示すスケジュール情報SKDを無線モジュール11に通知する。 During communication, the control unit 100 may update the usage schedule of each wireless module 11. For example, the control unit 100 grasps the communication quality and traffic situation of the base station 20. The traffic situation may include the transmission time rate of the base station 20. The control unit 100 updates the usage schedule of each wireless module 11 based on the communication quality and traffic situation of the base station 20. Then, the control unit 100 notifies the wireless module 11 of schedule information SKD indicating the updated usage schedule.
 図8は、基地局20に含まれる制御部100による第1の処理例を示すフローチャートである。 FIG. 8 is a flowchart showing a first processing example by the control unit 100 included in the base station 20.
 ステップS110において、制御部100は、いずれかの中継装置30から接続状態更新通知を受け取ったか否かを判定する。接続状態更新通知は、中継装置30と無線端末10(無線モジュール11)との間の接続状態が更新されたことを示す通知である。接続状態更新通知を受け取った場合(ステップS110;Yes)、処理は、ステップS111に進む。 In step S110, the control unit 100 determines whether a connection state update notification has been received from any relay device 30. The connection state update notification is a notification indicating that the connection state between the relay device 30 and the wireless terminal 10 (wireless module 11) has been updated. If a connection state update notification is received (step S110; Yes), the process proceeds to step S111.
 ステップS111において、制御部100は、当該中継装置30の配下の各無線モジュール11の使用スケジュールを決定する。このとき、複数の無線モジュール11間で送信許可期間PAが重複しないように、各無線モジュール11の使用スケジュールが決定される。 In step S111, the control unit 100 determines a usage schedule for each wireless module 11 under the relay device 30. At this time, the usage schedule of each wireless module 11 is determined so that the transmission permission periods PA do not overlap among the multiple wireless modules 11.
 ステップS112において、制御部100は、当該中継装置30を介して、使用スケジュールを示すスケジュール情報SKDを対応する無線モジュール11に通知する。 In step S112, the control unit 100 notifies the corresponding wireless module 11 of schedule information SKD indicating the usage schedule via the relay device 30.
 第1の処理例によれば、制御部100が、無線端末10の各無線モジュール11の送信時間率が所定の上限を超えないように、各無線モジュール11の使用スケジュールを決定する。制御部100が各無線モジュール11の送信時間率を正確に管理するため、送信時間率の上限まで各チャネルを使用することが可能となる。すなわち、無線端末10全体としての送信時間率を拡大し、スループットを効果的に向上させることが可能となる。 According to the first processing example, the control unit 100 determines the usage schedule of each wireless module 11 so that the transmission time rate of each wireless module 11 of the wireless terminal 10 does not exceed a predetermined upper limit. Since the control unit 100 accurately manages the transmission time rate of each wireless module 11, it is possible to use each channel up to the upper limit of the transmission time rate. That is, it becomes possible to expand the transmission time rate of the wireless terminal 10 as a whole and effectively improve throughput.
 また、基地局20が制御部100を含んでいるため、各無線端末10の各無線モジュール11の使用スケジュールを効率的に決定することが可能となる。また、無線端末10において煩雑な処理は不要となる。 Furthermore, since the base station 20 includes the control unit 100, it is possible to efficiently determine the usage schedule of each wireless module 11 of each wireless terminal 10. Moreover, complicated processing in the wireless terminal 10 is not necessary.
 3-2.第2の処理例
 第2の処理例では、特に、無線モジュール11と中継装置30との間の接続処理について考える。無線モジュール11が中継装置30に接続する際、接続先の候補として複数の中継装置30が存在するとする。この場合、制御部100は、複数の中継装置30(接続先候補)の中から最適な1つを指定する。
3-2. Second Processing Example In the second processing example, the connection process between the wireless module 11 and the relay device 30 will be considered in particular. When the wireless module 11 connects to the relay device 30, it is assumed that a plurality of relay devices 30 exist as connection destination candidates. In this case, the control unit 100 specifies the optimal one from among the plurality of relay devices 30 (connection destination candidates).
 より詳細には、制御部100は、基地局20に接続される各中継装置30の状態を常時監視し、中継装置状態情報300(図4参照)を更新する。例えば、中継装置状態情報300は、各中継装置30の配下の無線端末10及び無線モジュール11の情報を含む。他の例として、中継装置状態情報300は、各中継装置30のトラヒック状況及び中継装置としての送信時間率を含む。 More specifically, the control unit 100 constantly monitors the status of each relay device 30 connected to the base station 20 and updates the relay device status information 300 (see FIG. 4). For example, the relay device status information 300 includes information on the wireless terminals 10 and wireless modules 11 under each relay device 30. As another example, the relay device status information 300 includes the traffic status of each relay device 30 and the transmission time rate as a relay device.
 制御部100は、中継装置状態情報300に基づいて、各中継装置30の優先度を設定する。例えば、制御部100は、使用可能な帯域幅や接続中の端末数などに基づいて、中継装置30の混雑状況を把握する。そして、制御部100は、無線リソースの余裕が少ない中継装置30の優先度を下げる。他の例として、中継装置30から無線端末10への下りトラフィックに関しても送信時間率の制約がある場合、制御部100は、下りトラヒックと送信時間率の現在の状況を把握する。そして、制御部100は、送信時間率の余裕が少ない中継装置30の優先度を下げる。そして、制御部100は、各中継装置30の優先度に従って、無線モジュール11の接続先となる中継装置30を選択する。 The control unit 100 sets the priority of each relay device 30 based on the relay device status information 300. For example, the control unit 100 grasps the congestion status of the relay device 30 based on the available bandwidth, the number of connected terminals, and the like. Then, the control unit 100 lowers the priority of the relay device 30 with less available radio resources. As another example, if there is also a restriction on the transmission time rate regarding the downlink traffic from the relay device 30 to the wireless terminal 10, the control unit 100 grasps the current status of the downlink traffic and the transmission time rate. Then, the control unit 100 lowers the priority of the relay device 30 with less margin in the transmission time rate. Then, the control unit 100 selects a relay device 30 to which the wireless module 11 is connected according to the priority of each relay device 30.
 図9及び図10を参照して、第2の処理例を説明する。図9及び図10に示される例において、基地局20は、第1中継装置30-1、第2中継装置30-2、及び第3中継装置30-3に接続されている。 A second processing example will be described with reference to FIGS. 9 and 10. In the example shown in FIGS. 9 and 10, the base station 20 is connected to a first relay device 30-1, a second relay device 30-2, and a third relay device 30-3.
 無線端末10の第1無線モジュール11-1は、周辺の中継装置30に接続先照会INQを送信する。各中継装置30は、接続先照会INQを受信すると、接続先照会通知NTFを制御部100に送信する。接続先照会通知NTFに応答して、制御部100は、他の無線モジュール11と接続されていない中継装置30の中から、第1無線モジュール11-1の接続先を選択する。このとき、制御部100は、中継装置状態情報300に基づいて各中継装置30の優先度を設定し、優先度に応じて第1無線モジュール11-1の接続先を選択する。ここでは、例えば、第1中継装置30-1の優先度が最も高く、第1中継装置30-1が選択される。制御部100は、選択した第1中継装置30-1に対して、第1無線モジュール11-1に応答するよう指示する。制御部100からの指示に従って、第1中継装置30-1は、接続先照会元である第1無線モジュール11-1に応答RESを返す。その結果、第1無線モジュール11-1と第1中継装置30-1との間で接続処理が行われる。 The first wireless module 11-1 of the wireless terminal 10 transmits a connection destination inquiry INQ to the nearby relay device 30. Upon receiving the connection destination inquiry INQ, each relay device 30 transmits a connection destination inquiry notification NTF to the control unit 100. In response to the connection destination inquiry notification NTF, the control unit 100 selects the connection destination of the first wireless module 11-1 from among the relay devices 30 that are not connected to other wireless modules 11. At this time, the control unit 100 sets the priority of each relay device 30 based on the relay device status information 300, and selects the connection destination of the first wireless module 11-1 according to the priority. Here, for example, the first relay device 30-1 has the highest priority and is selected. The control unit 100 instructs the selected first relay device 30-1 to respond to the first wireless module 11-1. According to the instruction from the control unit 100, the first relay device 30-1 returns a response RES to the first wireless module 11-1, which is the connection destination inquiry source. As a result, connection processing is performed between the first wireless module 11-1 and the first relay device 30-1.
 その後、無線端末10の第2無線モジュール11-2は、周辺の中継装置30に接続先照会INQを送信する。各中継装置30は、接続先照会INQを受信すると、接続先照会通知NTFを制御部100に送信する。接続先照会通知NTFに応答して、制御部100は、他の無線モジュール11と接続されていない中継装置30の中から、第2無線モジュール11-2の接続先を選択する。このとき、制御部100は、中継装置状態情報300に基づいて各中継装置30の優先度を設定し、優先度に応じて第2無線モジュール11-2の接続先を選択する。ここでは、例えば、第2中継装置30-2の優先度が最も高く、第2中継装置30-2が選択される。制御部100は、選択した第2中継装置30-2に対して、第2無線モジュール11-2に応答するよう指示する。制御部100からの指示に従って、第2中継装置30-2は、接続先照会元である第2無線モジュール11-2に応答RESを返す。その結果、第2無線モジュール11-2と第2中継装置30-2との間で接続処理が行われる。 Thereafter, the second wireless module 11-2 of the wireless terminal 10 transmits a connection destination inquiry INQ to the nearby relay device 30. Upon receiving the connection destination inquiry INQ, each relay device 30 transmits a connection destination inquiry notification NTF to the control unit 100. In response to the connection destination inquiry notification NTF, the control unit 100 selects the connection destination of the second wireless module 11-2 from among the relay devices 30 that are not connected to other wireless modules 11. At this time, the control unit 100 sets the priority of each relay device 30 based on the relay device state information 300, and selects the connection destination of the second wireless module 11-2 according to the priority. Here, for example, the second relay device 30-2 has the highest priority and is selected. The control unit 100 instructs the selected second relay device 30-2 to respond to the second wireless module 11-2. According to the instruction from the control unit 100, the second relay device 30-2 returns a response RES to the second wireless module 11-2, which is the connection destination inquiry source. As a result, connection processing is performed between the second wireless module 11-2 and the second relay device 30-2.
 図11は、基地局20に含まれる制御部100による第2の処理例を示すフローチャートである。 FIG. 11 is a flowchart showing a second example of processing by the control unit 100 included in the base station 20.
 ステップS120において、制御部100は、少なくとも一つの中継装置30から接続先照会通知NTFを受け取ったか否かを判定する。接続先照会通知NTFは、当該中継装置30が無線モジュール11から接続先照会INQを受信したことを示す通知である。接続先照会通知NTFを受け取った場合(ステップS120;Yes)、処理は、ステップS121に進む。 In step S120, the control unit 100 determines whether a connection destination inquiry notification NTF has been received from at least one relay device 30. The connection destination inquiry notification NTF is a notification indicating that the relay device 30 has received the connection destination inquiry INQ from the wireless module 11. If the connection destination inquiry notification NTF is received (step S120; Yes), the process proceeds to step S121.
 ステップS121において、制御部100は、中継装置状態情報300に基づいて各中継装置30の優先度を設定する。そして、制御部100は、各中継装置30の優先度に基づいて、無線モジュール11の接続先となる1つの中継装置30を選択する。 In step S121, the control unit 100 sets the priority of each relay device 30 based on the relay device status information 300. Then, the control unit 100 selects one relay device 30 to which the wireless module 11 is connected based on the priority of each relay device 30.
 ステップS122において、制御部100は、選択した中継装置30に対して、接続先照会元の無線モジュール11に応答するよう指示する。 In step S122, the control unit 100 instructs the selected relay device 30 to respond to the wireless module 11 that is the connection destination inquiry source.
 以上に説明されたように、第2の処理例によれば、中継装置30の状態(トラヒック、送信時間率、等)に応じて、無線モジュール11の接続先を適切に選択することが可能となる。上述の第1の処理例と第2の処理例を組み合わせることにより、スループットを更に効率的に向上させることが可能となる。 As explained above, according to the second processing example, it is possible to appropriately select the connection destination of the wireless module 11 according to the state of the relay device 30 (traffic, transmission time rate, etc.). Become. By combining the first processing example and the second processing example described above, it is possible to further efficiently improve throughput.
 3-3.第3の処理例
 図12は、基地局20に含まれる制御部100による第3の処理例を説明するための概念図である。第3の処理例では、制御部100が、各中継装置30の使用チャネル及び送信電力の少なくとも一方を決定する。
3-3. Third Processing Example FIG. 12 is a conceptual diagram for explaining a third processing example by the control unit 100 included in the base station 20. In the third processing example, the control unit 100 determines at least one of the channel used and the transmission power of each relay device 30.
 より詳細には、制御部100は、複数の無線モジュール11のそれぞれに接続されている複数の中継装置30の各々の状態を常時監視し、中継装置状態情報300(図4参照)を更新する。例えば、中継装置状態情報300は、各中継装置30の配下の無線端末10及び無線モジュール11の情報を含む。他の例として、中継装置状態情報300は、各中継装置30と配下の無線端末10との間の距離を含む。更に他の例として、中継装置状態情報300は、各中継装置30のトラヒック状況や使用チャネルを含む。 More specifically, the control unit 100 constantly monitors the status of each of the multiple relay devices 30 connected to each of the multiple wireless modules 11, and updates the relay device status information 300 (see FIG. 4). For example, the relay device status information 300 includes information on the wireless terminals 10 and wireless modules 11 under each relay device 30. As another example, the relay device status information 300 includes the distance between each relay device 30 and the subordinate wireless terminal 10. As yet another example, the relay device status information 300 includes the traffic status and used channels of each relay device 30.
 制御部100は、中継装置状態情報300に基づいて、各中継装置30の使用チャネル及び送信電力の少なくとも一方を決定する。例えば、制御部100は、中継装置30と配下の無線端末10との間の距離が大きくなるにつれて、当該中継装置30の送信電力を増加させる。他の例として、制御部100は、複数の中継装置30の間で使用チャネルが重複しないように、各中継装置30の使用チャネルを決定してもよい。更に他の例として、制御部100は、基地局20と各中継装置30との間の通信状態や通信品質に基づいて、各中継装置30の使用チャネルを決定してもよい。 The control unit 100 determines at least one of the channel used and the transmission power of each relay device 30 based on the relay device status information 300. For example, the control unit 100 increases the transmission power of the relay device 30 as the distance between the relay device 30 and the subordinate wireless terminal 10 increases. As another example, the control unit 100 may determine the channels used by each relay device 30 so that the channels used do not overlap among the plurality of relay devices 30. As still another example, the control unit 100 may determine the channel to be used by each relay device 30 based on the communication state and communication quality between the base station 20 and each relay device 30.
 制御部100は、決定した使用チャネル/送信電力に従って動作するよう各中継装置30に指示する。より詳細には、制御部100は、各中継装置30に関して決定した使用チャネル/送信電力を示す中継装置制御情報CONを生成する。そして、制御部100は、中継装置制御情報CONを各中継装置30に通知する。各中継装置30は、中継装置制御情報CONで示される使用チャネル/送信電力に従って動作する。 The control unit 100 instructs each relay device 30 to operate according to the determined usage channel/transmission power. More specifically, the control unit 100 generates relay device control information CON indicating the used channel/transmission power determined for each relay device 30. Then, the control unit 100 notifies each relay device 30 of the relay device control information CON. Each relay device 30 operates according to the used channel/transmission power indicated by the relay device control information CON.
 例えば、制御部100は、第1中継装置30-1に関して決定した使用チャネル/送信電力を示す第1中継装置制御情報CON-1を生成する。そして、制御部100は、第1中継装置制御情報CON-1を第1中継装置30-1に通知する。第1中継装置30-1は、第1中継装置制御情報CON-1で示される使用チャネル/送信電力に従って動作する。第2中継装置30-2についても同様である。 For example, the control unit 100 generates first relay device control information CON-1 indicating the used channel/transmission power determined for the first relay device 30-1. Then, the control unit 100 notifies the first relay device 30-1 of the first relay device control information CON-1. The first relay device 30-1 operates according to the used channel/transmission power indicated by the first relay device control information CON-1. The same applies to the second relay device 30-2.
 図13は、基地局20に含まれる制御部100による第3の処理例を示すフローチャートである。 FIG. 13 is a flowchart showing a third example of processing by the control unit 100 included in the base station 20.
 ステップS130において、制御部100は、いずれかの中継装置30から接続状態更新通知を受け取ったか否かを判定する。接続状態更新通知は、中継装置30と無線端末10(無線モジュール11)との間の接続状態が更新されたことを示す通知である。接続状態更新通知を受け取った場合(ステップS130;Yes)、処理は、ステップS131に進む。 In step S130, the control unit 100 determines whether a connection state update notification has been received from any relay device 30. The connection state update notification is a notification indicating that the connection state between the relay device 30 and the wireless terminal 10 (wireless module 11) has been updated. If a connection status update notification is received (step S130; Yes), the process proceeds to step S131.
 ステップS131において、制御部100は、中継装置状態情報300に基づいて、当該中継装置30の使用チャネル及び送信電力の少なくとも一方を決定する。 In step S131, the control unit 100 determines at least one of the channel used and the transmission power of the relay device 30 based on the relay device state information 300.
 ステップS132において、制御部100は、当該中継装置30に対して、決定した使用チャネル/送信電力に従って動作するよう指示する。 In step S132, the control unit 100 instructs the relay device 30 to operate according to the determined usage channel/transmission power.
 第3の処理例によれば、中継装置30の送信電力や使用チャネルを制御することによって通信品質を改善することが可能となる。 According to the third processing example, it is possible to improve communication quality by controlling the transmission power of the relay device 30 and the channels used.
 3-4.第4の処理例
 上述の第1~第3の処理例のうち2以上の組み合わせも可能である。例えば、第1、第2、及び第3の処理例の組み合わせも可能である。
3-4. Fourth Processing Example A combination of two or more of the first to third processing examples described above is also possible. For example, a combination of the first, second, and third processing examples is also possible.
 1…無線通信システム, 10…無線端末, 11…無線モジュール11, 11-1…第1無線モジュール, 11-2…第2無線モジュール, 11S…使用モジュール, 12…上位レイヤ, 13…セレクタ, 20…基地局, 30…中継装置, 30-1…第1中継装置, 30-2…第2中継装置, 100…制御部, 110…プロセッサ, 120…記憶装置, 130…制御プログラム, 200…モジュール切替管理情報, 300…中継装置状態情報, CON…中継装置制御情報, INQ…接続先照会, NTF…接続先照会通知, PA…送信許可期間, PB…送信禁止期間, SKD…スケジュール情報 1...Wireless communication system, 10...Wireless terminal, 11...Wireless module 11, 11-1...First wireless module, 11-2...Second wireless module, 11S...Using module, 12...Upper layer, 13...Selector, 20 ...Base station, 30...Relay device, 30-1...First relay device, 30-2...Second relay device, 100...Control unit, 110...Processor, 120...Storage device, 130...Control program, 200...Module switching Management information, 300...Relay device status information, CON...Relay device control information, INQ...Connection destination inquiry, NTF...Connection destination inquiry notification, PA...Transmission permission period, PB...Transmission prohibition period, SKD...Schedule information

Claims (8)

  1.  互いに異なるチャネルで無線通信を行う複数の無線モジュールを備える無線端末と、
     前記複数の無線モジュールと無線通信を行う基地局と、
     前記複数の無線モジュールのそれぞれと前記基地局との間の前記無線通信を中継する複数の中継装置と
     を備え、
     前記無線端末は、前記複数の無線モジュールのうち1つを使用モジュールとして使用し、前記使用モジュール以外の無線モジュールからのデータ送信を停止し、
     前記基地局は、
      前記無線端末の前記複数の無線モジュールの各々の送信時間率が所定の上限を超えないように、前記複数の無線モジュールの各々の使用スケジュールを決定し、
      前記使用スケジュールの情報を前記無線端末に通知する
     ように構成され、
     前記複数の無線モジュールの各々は、前記基地局によって決定された前記使用スケジュールに従って前記使用モジュールとして動作する
     無線通信システム。
    a wireless terminal including a plurality of wireless modules that perform wireless communication on mutually different channels;
    a base station that performs wireless communication with the plurality of wireless modules;
    a plurality of relay devices that relay the wireless communication between each of the plurality of wireless modules and the base station,
    The wireless terminal uses one of the plurality of wireless modules as a used module, and stops data transmission from wireless modules other than the used module,
    The base station is
    determining a usage schedule for each of the plurality of wireless modules such that a transmission time rate of each of the plurality of wireless modules of the wireless terminal does not exceed a predetermined upper limit;
    configured to notify information of the usage schedule to the wireless terminal,
    Each of the plurality of wireless modules operates as the usage module according to the usage schedule determined by the base station. The wireless communication system.
  2.  請求項1に記載の無線通信システムであって、
     前記複数の無線モジュールは、第1無線モジュールを含み、
     前記複数の中継装置は、前記第1無線モジュールと接続する第1中継装置を含み、
     前記基地局は、前記第1無線モジュールに関する前記使用スケジュールを決定し、前記第1無線モジュールに関する前記使用スケジュールの情報を前記第1中継装置を介して前記第1無線モジュールに通知し、
     前記第1無線モジュールは、前記第1無線モジュールに関する前記使用スケジュールに従って前記使用モジュールとして動作し、
     前記第1中継装置は、前記基地局と前記第1無線モジュールとの間の前記無線通信を中継する
     無線通信システム。
    The wireless communication system according to claim 1,
    The plurality of wireless modules include a first wireless module,
    The plurality of relay devices include a first relay device connected to the first wireless module,
    The base station determines the usage schedule regarding the first wireless module, and notifies the first wireless module of information on the usage schedule regarding the first wireless module via the first relay device;
    the first wireless module operates as the usage module according to the usage schedule for the first wireless module;
    The first relay device relays the wireless communication between the base station and the first wireless module. A wireless communication system.
  3.  請求項2に記載の無線通信システムであって、
     前記第1無線モジュールに関する前記使用スケジュールは、前記第1無線モジュールが前記使用モジュールとして動作する送信許可期間を含み、
     前記第1無線モジュールは、前記基地局によって決定された前記送信許可期間に前記使用モジュールとして動作する
     無線通信システム。
    The wireless communication system according to claim 2,
    The usage schedule regarding the first wireless module includes a transmission permission period during which the first wireless module operates as the usage module,
    The first wireless module operates as the usage module during the transmission permission period determined by the base station.
  4.  請求項1に記載の無線通信システムであって、
     前記複数の無線モジュールは、第1無線モジュールを含み、
     前記基地局は、更に、
      前記基地局に接続される各中継装置の状態を示す中継装置状態情報を保持し、
      前記第1無線モジュールからの接続先照会があった場合、前記中継装置状態情報に基づいて前記第1無線モジュールの接続先として第1中継装置を選択し、
      選択した前記第1中継装置に対して、前記第1無線モジュールに応答するよう指示する
     ように構成され、
     前記第1無線モジュールは、前記基地局によって選択された前記第1中継装置と接続する
     無線通信システム。
    The wireless communication system according to claim 1,
    The plurality of wireless modules include a first wireless module,
    The base station further includes:
    retaining relay device status information indicating the status of each relay device connected to the base station;
    When there is a connection destination inquiry from the first wireless module, selecting a first relay device as a connection destination of the first wireless module based on the relay device status information;
    configured to instruct the selected first relay device to respond to the first wireless module;
    The first wireless module connects to the first relay device selected by the base station. A wireless communication system.
  5.  請求項1に記載の無線通信システムであって、
     前記基地局は、更に、
      前記複数の中継装置の各々の状態を示す中継装置状態情報を保持し、
      前記中継装置状態情報に基づいて、前記複数の中継装置の各々の使用チャネル及び送信電力の少なくとも一方を決定し、
      決定した前記使用チャネル及び前記送信電力の前記少なくとも一方に従って動作するよう前記各々の中継装置に指示する
     ように構成された
     無線通信システム。
    The wireless communication system according to claim 1,
    The base station further includes:
    retaining relay device status information indicating the status of each of the plurality of relay devices;
    determining at least one of a used channel and transmission power of each of the plurality of relay devices based on the relay device state information;
    A wireless communication system configured to instruct each of the relay devices to operate according to at least one of the determined channel to be used and the determined transmission power.
  6.  複数の中継装置を介した無線端末と基地局との間の無線通信を制御する無線通信制御方法であって、
     前記無線端末は、互いに異なるチャネルで無線通信を行う複数の無線モジュールを備え、前記複数の無線モジュールのうち1つを使用モジュールとして使用し、前記使用モジュール以外の無線モジュールからのデータ送信を停止し、
     前記複数の中継装置は、前記複数の無線モジュールのそれぞれと前記基地局との間の前記無線通信を中継し、
     前記無線通信制御方法は、
     前記基地局において、前記無線端末の前記複数の無線モジュールの各々の送信時間率が所定の上限を超えないように、前記複数の無線モジュールの各々の使用スケジュールを決定することと、
     前記使用スケジュールの情報を前記基地局から前記無線端末に通知することと、
     前記基地局によって決定された前記使用スケジュールに従って、前記複数の無線モジュールの各々を前記使用モジュールとして動作させることと
     を含む
     無線通信制御方法。
    A wireless communication control method for controlling wireless communication between a wireless terminal and a base station via a plurality of relay devices, the method comprising:
    The wireless terminal includes a plurality of wireless modules that perform wireless communication on mutually different channels, uses one of the plurality of wireless modules as a used module, and stops data transmission from wireless modules other than the used module. ,
    The plurality of relay devices relay the wireless communication between each of the plurality of wireless modules and the base station,
    The wireless communication control method includes:
    In the base station, determining a usage schedule for each of the plurality of wireless modules so that a transmission time rate of each of the plurality of wireless modules of the wireless terminal does not exceed a predetermined upper limit;
    Notifying information of the usage schedule from the base station to the wireless terminal;
    A wireless communication control method comprising: operating each of the plurality of wireless modules as the usage module according to the usage schedule determined by the base station.
  7.  複数の中継装置を介して無線端末と無線通信を行う基地局であって、
     前記無線端末は、互いに異なるチャネルで無線通信を行う複数の無線モジュールを備え、前記複数の無線モジュールのうち1つを使用モジュールとして使用し、前記使用モジュール以外の無線モジュールからのデータ送信を停止し、
     前記複数の中継装置は、前記複数の無線モジュールのそれぞれと前記基地局との間の前記無線通信を中継し、
     前記基地局は、制御部を含み、
     前記制御部は、
      前記無線端末の前記複数の無線モジュールの各々の送信時間率が所定の上限を超えないように、前記複数の無線モジュールの各々の使用スケジュールを決定し、
      前記使用スケジュールの情報を前記無線端末に通知し、前記複数の無線モジュールの各々を前記使用スケジュールに従って前記使用モジュールとして動作させる
     ように構成された
     基地局。
    A base station that performs wireless communication with wireless terminals via multiple relay devices,
    The wireless terminal includes a plurality of wireless modules that perform wireless communication on mutually different channels, uses one of the plurality of wireless modules as a used module, and stops data transmission from wireless modules other than the used module. ,
    The plurality of relay devices relay the wireless communication between each of the plurality of wireless modules and the base station,
    The base station includes a control unit,
    The control unit includes:
    determining a usage schedule for each of the plurality of wireless modules such that a transmission time rate of each of the plurality of wireless modules of the wireless terminal does not exceed a predetermined upper limit;
    A base station configured to notify information of the usage schedule to the wireless terminal and cause each of the plurality of wireless modules to operate as the usage module according to the usage schedule.
  8.  請求項7に記載の基地局であって、
     前記複数の無線モジュールは、第1無線モジュールを含み、
     前記制御部は、更に、
      前記基地局に接続される各中継装置の状態を示す中継装置状態情報を保持し、
      前記第1無線モジュールから前記各中継装置への接続先照会に応答して、前記中継装置状態情報に基づいて前記第1無線モジュールの接続先として第1中継装置を選択し、
      選択した前記第1中継装置に対して、前記第1無線モジュールに応答するよう指示する
     ように構成された
     基地局。
    The base station according to claim 7,
    The plurality of wireless modules include a first wireless module,
    The control unit further includes:
    retaining relay device status information indicating the status of each relay device connected to the base station;
    In response to a connection destination inquiry from the first wireless module to each of the relay devices, selecting a first relay device as a connection destination of the first wireless module based on the relay device status information;
    The base station is configured to instruct the selected first relay device to respond to the first wireless module.
PCT/JP2022/018310 2022-04-20 2022-04-20 Wireless communication system, wireless communication control method, and base station WO2023203689A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018310 WO2023203689A1 (en) 2022-04-20 2022-04-20 Wireless communication system, wireless communication control method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018310 WO2023203689A1 (en) 2022-04-20 2022-04-20 Wireless communication system, wireless communication control method, and base station

Publications (1)

Publication Number Publication Date
WO2023203689A1 true WO2023203689A1 (en) 2023-10-26

Family

ID=88419486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018310 WO2023203689A1 (en) 2022-04-20 2022-04-20 Wireless communication system, wireless communication control method, and base station

Country Status (1)

Country Link
WO (1) WO2023203689A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029197A (en) * 2013-07-30 2015-02-12 株式会社バッファロー Internet connection system, mobile terminal having data relay function, server device, connection method for connecting wireless lan terminal to internet, and computer program executed by computer having data relay function
JP2021509232A (en) * 2017-12-30 2021-03-18 インテル コーポレイション Wireless communication methods and equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029197A (en) * 2013-07-30 2015-02-12 株式会社バッファロー Internet connection system, mobile terminal having data relay function, server device, connection method for connecting wireless lan terminal to internet, and computer program executed by computer having data relay function
JP2021509232A (en) * 2017-12-30 2021-03-18 インテル コーポレイション Wireless communication methods and equipment

Similar Documents

Publication Publication Date Title
JP5168515B2 (en) Signaling method in mobile communication
KR20160118351A (en) System and method for virtual multi-point transceivers
US20110034196A1 (en) Mobile communication system, and method for controlling channel connection and control station in mobile communication system
JP2017538380A (en) Resource allocation method and system, and device and terminal having base station function
WO2017121098A1 (en) Uplink control plane signaling processing method and device for v2x services, and terminal
US10244433B2 (en) Enhanced mobility management within a mobile communication network
WO2020039487A1 (en) Terminal device, base station device, and communication system
JP2004015697A (en) Mobile communication system and load sharing system for multiple frequencies
EP2966904B1 (en) Channel switching method, device, and wireless terminal
JP5281312B2 (en) COMMUNICATION DEVICE, ITS CONTROL METHOD, COMPUTER PROGRAM
US20180026736A1 (en) Wireless communication system, base station device, mobile station device, and wireless communication control method
WO2023203689A1 (en) Wireless communication system, wireless communication control method, and base station
WO2023203692A1 (en) Wireless communication system, wireless communication control method, and wireless terminal
US20130336277A1 (en) Mesh network configuration in a white space band
JP2006270410A (en) Communication system, communication terminal apparatus, program, computer readable recording medium, and network dividing method
JP7106011B1 (en) Communication management device, communication management method and communication management program
JP2009141604A (en) Radio network control device and radiocommunication system
WO2018222343A1 (en) Auxiliary receivers for qos balancing in wireless communications
US11412445B2 (en) Access point management method, access point management apparatus, and access point management system
WO2023100240A1 (en) Wireless communication system, wireless terminal control method, control device, and control program
WO2019203007A1 (en) Wireless communication method, control device, and wireless communication system
US20100014488A1 (en) Mobile Communication System and Base Station Device
JP6983248B2 (en) Communication system and communication method
CN109429294B (en) Communication method, base station, relay node and device with storage performance
JP5282521B2 (en) COMMUNICATION CONTROL DEVICE, COMMUNICATION CONTROL METHOD, AND COMMUNICATION CONTROL PROGRAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938490

Country of ref document: EP

Kind code of ref document: A1