WO2023199838A1 - Flow switch and flow switch attachment method - Google Patents

Flow switch and flow switch attachment method Download PDF

Info

Publication number
WO2023199838A1
WO2023199838A1 PCT/JP2023/014223 JP2023014223W WO2023199838A1 WO 2023199838 A1 WO2023199838 A1 WO 2023199838A1 JP 2023014223 W JP2023014223 W JP 2023014223W WO 2023199838 A1 WO2023199838 A1 WO 2023199838A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
flow switch
piezoelectric film
sensor section
fixed
Prior art date
Application number
PCT/JP2023/014223
Other languages
French (fr)
Japanese (ja)
Inventor
芽衣 渡邊
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023199838A1 publication Critical patent/WO2023199838A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement

Definitions

  • the present invention relates to a flow switch that detects fluid flow and a flow switch mounting method.
  • a water flow switch described in Patent Document 1 As an invention related to a conventional flow switch and flow switch mounting method, for example, a water flow switch described in Patent Document 1 is known.
  • This water flow switch includes a flow rate switch and a differential pressure operated opening/closing section.
  • the flow switch detects small flow rates in the flow path.
  • the differential pressure operation opening/closing section opens the flow path based on the flow rate detected by the flow rate switch.
  • Such a water flow switch is provided in a flow path through which water flows.
  • an object of the present invention is to provide a flow switch and a flow switch mounting method that can detect the flow of fluid without contacting the fluid to be detected.
  • a flow switch includes: A flow switch that detects the flow of fluid flowing in a tube that is flexible and has a curved part, The flow switch is comprising a sensor section that detects deformation of the tube, The sensor section is fixed to the outer peripheral surface of the tube and to the curved section.
  • a flow switch mounting method includes: A flow switch mounting method for mounting a sensor section on a tube that is flexible and has a curved section, the method comprising: The sensor section is fixed to the outer peripheral surface of the tube and to the curved section so that the sensor section detects deformation of the tube.
  • direction is defined as follows.
  • the direction in which the fluid flows is defined as a first direction DIR1.
  • a direction perpendicular to the first direction DIR1 is defined as a second direction DIR2.
  • a third direction DIR3 is defined as a direction opposite to the second direction DIR2.
  • the second direction DIR2 and the third direction DIR3 are orthogonal to the first direction DIR1.
  • the direction in which the first upper main surface US1 and the first lower main surface LS1 of the piezoelectric film 11 are lined up in a state in which the piezoelectric film 11 is expanded into a plane is defined as the up-down direction.
  • the direction in which the long sides of the piezoelectric film 11 extend is defined as the left-right direction.
  • the direction in which the short side of the piezoelectric film 11 extends when viewed in the vertical direction is defined as the front-back direction.
  • the up-down direction, the left-right direction, and the front-back direction are orthogonal to each other. Note that the definition of direction in this specification is an example. Therefore, the direction when the flow switch 1 is actually used does not need to be the same as the direction in this specification.
  • the vertical direction may be reversed in FIGS. 1 to 15.
  • the left and right directions in FIGS. 1 to 15 may be reversed.
  • the front and rear directions may be reversed in FIGS. 1 to 15.
  • X and Y are parts or members of the flow switch 1.
  • each part of X is defined as follows.
  • the upper part of X means the upper half of X.
  • the upper end of X means the upper end of X.
  • the upper end of X means the upper end of X and its vicinity. This definition also applies to directions other than the upward direction.
  • X is located above Y
  • X is located directly above Y. Therefore, when viewed in the vertical direction, X overlaps Y.
  • "X is located above Y” means that X is located directly above Y, and that X is located diagonally above Y. Therefore, when viewed in the vertical direction, X may or may not overlap Y. This definition also applies to directions other than the upward direction.
  • X and Y are electrically connected means that electricity is conducted between X and Y. Therefore, X and Y may be in contact with each other, or X and Y may not be in contact with each other. When X and Y are not in contact with each other, a conductive Z is placed between X and Y.
  • FIG. 1 is a perspective view of a flow switch 1 according to the first embodiment.
  • FIG. 2 is a plan view of the sensor section 3 according to the first embodiment viewed from below.
  • FIG. 3 is a cross-sectional view taken along line AA of the sensor section 3 according to the first embodiment.
  • FIG. 4 is a side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, viewed from the front.
  • FIG. 5 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the first embodiment.
  • FIG. 6 is a side view of the tube 2 and the sensor section 3 viewed from the front in a state where the sensor section 3 according to the first embodiment is not fixed to the tube 2.
  • FIG. 1 is a perspective view of a flow switch 1 according to the first embodiment.
  • FIG. 2 is a plan view of the sensor section 3 according to the first embodiment viewed from below.
  • FIG. 3 is a cross-sectional view taken along line AA of the sensor section
  • FIG. 7 is a front side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, in a state where water 5 is not flowing inside the tube 2.
  • FIG. 8 is a front side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, with water 5 flowing inside the tube 2.
  • FIG. 9 is a side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, viewed from the front.
  • FIG. 10 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the first modification.
  • FIG. 11 is a side view of the tube 2 and the sensor section 3 viewed from the front in a state where the sensor section 3 according to the first modification is not fixed to the tube 2.
  • FIG. 12 is a front side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, in a state where water 5 is not flowing inside the tube 2.
  • FIG. 13 is a front side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, with water 5 flowing inside the tube 2.
  • FIG. 14 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the second modification.
  • FIG. 15 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the third modification.
  • FIG. 1 is a perspective view of a flow switch 1 according to the first embodiment.
  • FIG. 2 is a plan view of the sensor section 3 according to the first embodiment viewed from below.
  • FIG. 3 is a cross-sectional view taken along line AA of the sensor section 3 according to the first embodiment.
  • FIG. 4 is a side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, viewed from the front.
  • FIG. 5 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the first embodiment.
  • the flow switch 1 detects the flow of fluid flowing inside the flexible tube 2.
  • the material of the tube 2 is, for example, metal or resin. Therefore, the tube 2 is elastically deformed.
  • the flow switch 1 includes a sensor section 3, as shown in FIG.
  • the sensor section 3 detects deformation of the tube 2.
  • the deformation of the tube 2 detected by the sensor unit 3 is bending of the tube 2.
  • the sensor section 3 has flexibility.
  • the sensor section 3 has a first upper main surface US1 and a first lower main surface LS1 that are arranged in the vertical direction.
  • the normal direction of the first upper major surface US1 and the first lower major surface LS1 is the vertical direction.
  • the first upper main surface US1 is located above the first lower main surface LS1.
  • the sensor section 3 has a rectangular shape when viewed in the vertical direction.
  • the sensor section 3 has a longitudinal direction extending in the left-right direction. Further, the sensor section 3 has a transversal direction extending in the front-rear direction. That is, the length of the sensor section 3 in the left-right direction is longer than the length of the sensor section 3 in the front-back direction.
  • the sensor section 3 includes a piezoelectric film 11, an upper electrode 12a, and an electrode member 13, as shown in FIG.
  • the piezoelectric film 11 has a sheet shape. Therefore, as shown in FIG. 3, the piezoelectric film 11 has a second upper main surface US2 and a second lower main surface LS2 that are arranged in the vertical direction. The normal direction of the second upper major surface US2 and the second lower major surface LS2 is the vertical direction. The second upper main surface US2 is located above the second lower main surface LS2. Further, as shown in FIG. 2, the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 have a longitudinal direction extending in the left-right direction when the piezoelectric film 11 is developed into a plane. There is.
  • the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 have a transversal direction extending in the front-rear direction when the piezoelectric film 11 is developed into a plane. That is, the length of the piezoelectric film 11 in the left-right direction is longer than the length of the piezoelectric film 11 in the front-back direction.
  • the piezoelectric film 11 has a rectangular shape when viewed in the vertical direction, as shown in FIG. That is, the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 are arranged in the vertical direction (the second upper main surface US2 and the second lower main surface It has a rectangular shape when viewed in the normal direction of the main surface LS2.
  • the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 have a long side extending in the left-right direction and a short side extending in the front-rear direction when the piezoelectric film 11 is developed into a plane. are doing.
  • the piezoelectric film 11 generates an electric charge according to the amount of deformation of the piezoelectric film 11.
  • the piezoelectric film 11 is a PLA film. Below, the piezoelectric film 11 will be explained in more detail.
  • the piezoelectric film 11 has a characteristic that the polarity of the charge generated when the piezoelectric film 11 is stretched in the left-right direction is opposite to the polarity of the charge generated when the piezoelectric film 11 is stretched in the front-back direction.
  • the piezoelectric film 11 is a film formed from a chiral polymer.
  • the chiral polymer is, for example, polylactic acid (PLA), particularly L-type polylactic acid (PLLA).
  • PLLA which is a chiral polymer, has a main chain having a helical structure.
  • PLLA has piezoelectricity in which molecules are oriented by being uniaxially stretched.
  • the piezoelectric film 11 has a piezoelectric constant of d14.
  • the uniaxial stretching direction OD of the piezoelectric film 11 forms an angle of 45 degrees with respect to each of the left-right direction and the front-back direction in a state where the piezoelectric film 11 is developed flatly.
  • This 45 degrees includes, for example, an angle including approximately 45 degrees ⁇ 10 degrees.
  • the piezoelectric film 11 generates an electric charge when the piezoelectric film 11 is stretched in the left-right direction or in the front-back direction.
  • the polarity of the charge generated by the piezoelectric film 11 when the piezoelectric film 11 is stretched in the left-right direction is different from the polarity of the charge generated by the piezoelectric film 11 when the piezoelectric film 11 is stretched in the front-back direction.
  • the piezoelectric film 11 when the piezoelectric film 11 is stretched in the left-right direction, it generates negative charges. For example, when the piezoelectric film 11 is stretched in the front-back direction, it generates a positive charge.
  • the magnitude of the charge depends on the amount of deformation of the piezoelectric film 11 due to expansion or compression. More precisely, the magnitude of the charge is proportional to the differential value of the amount of deformation of the piezoelectric film 11 due to expansion or compression.
  • the upper electrode 12a is a ground electrode.
  • the upper electrode 12a has an upper main surface and a lower main surface that are arranged in the vertical direction.
  • the upper electrode 12a is connected to ground.
  • the upper electrode 12a is provided on the second upper main surface US2 of the piezoelectric film 11, as shown in FIG.
  • the upper electrode 12a covers the entire second upper main surface US2 of the piezoelectric film 11.
  • the upper electrode 12a includes an adhesive layer (not shown).
  • the upper electrode 12a is fixed to the second upper main surface US2 of the piezoelectric film 11 by this adhesive layer.
  • the upper main surface of the upper electrode 12a is the first upper main surface US1 of the sensor section 3.
  • the electrode member 13 is provided on the second lower main surface LS2 of the piezoelectric film 11, as shown in FIG. Further, the electrode member 13 includes a lower electrode 12b and a flexible printed circuit board 14.
  • the lower electrode 12b is a signal electrode. A detection signal is output from the lower electrode 12b.
  • the lower electrode 12b is provided on the upper main surface of the flexible printed circuit board 14, which will be described later, as shown in FIG. That is, the lower electrode 12b is a conductor layer provided on the upper main surface of the uppermost insulator layer among a plurality of insulator layers of the flexible printed circuit board 14, which will be described later.
  • the flexible printed circuit board 14 is a flexible circuit board.
  • the flexible printed circuit board 14 has an upper main surface and a lower main surface that are arranged in the vertical direction.
  • the flexible printed circuit board 14 includes a signal line, a ground line, and a plurality of insulating layers.
  • the plurality of insulator layers are stacked in the vertical direction.
  • the signal line and the ground line are conductor layers provided on the insulator layer.
  • the signal line is electrically connected to the lower electrode 12b.
  • a detection signal output from the lower electrode 12b is transmitted to the signal line.
  • the ground line is electrically connected to the upper electrode 12a.
  • the ground line is connected to ground potential.
  • the lower main surface of the flexible printed circuit board 14 is the first lower main surface LS1 of the sensor section 3.
  • such a sensor section 3 is fixed to the outer circumferential surface OS of the tube 2 via an adhesive 4. More specifically, the adhesive 4 covers the entire first lower main surface LS1 of the sensor section 3. Further, the adhesive 4 is fixed to the outer peripheral surface OS of the tube 2.
  • the sensor unit 3 is fixed to the outer peripheral surface OS of the tube 2 such that the long sides of the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 extend in the first direction DIR1. .
  • the short sides of the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 extend around the tube 2 when viewed in the left-right direction.
  • the tube 2 has a left straight part 21L, a right straight part 21R, and a curved part 22, as shown in FIG.
  • the left straight portion 21L has a shape extending from the lower left direction to the upper right direction, and is not curved.
  • the right straight portion 21R has a shape extending from the upper left direction to the lower right direction, and is not curved.
  • the curved portion 22 has a shape extending in the left-right direction and includes a shape curved so as to protrude upward.
  • the sensor section 3 is fixed to the curved section 22.
  • water 5 flows within the tube 2, as shown in FIG.
  • Water 5 is an example of the fluid of the present invention.
  • the water 5 flows within the tube 2 from the left end of the left straight section 21L to the right end of the right straight section 21R. That is, in the left straight portion 21L, the first direction DIR1 is the upper right direction. Further, in the right straight portion 21R, the first direction DIR1 is the lower right direction.
  • the curved section 22 the water 5 flows inside the tube 2 from the left end of the curved section 22 to the right end of the curved section 22 . That is, in this embodiment, the first direction DIR1 is the upper right direction in the left portion of the curved portion 22. Further, in the right portion of the curved portion 22, the first direction DIR1 is the lower right direction. Further, at the center position of the curved portion 22 in the left-right direction, the first direction DIR1 is the right direction.
  • the curved portion 22 includes a shape that is curved so as to protrude in the second direction DIR2.
  • the second direction DIR2 is an upward direction.
  • the third direction DIR3 is the downward direction.
  • the outer edge of the cross section perpendicular to the first direction DIR1 of the tube 2 includes a circular shape, as shown in FIG.
  • the inner edge of the cross section perpendicular to the first direction DIR1 of the tube 2 includes a circular shape.
  • the outer peripheral surface OS includes a first region A1 located in a second direction DIR2 from the center O of the tube 2 and a second region A2 located in a third direction DIR3 from the center O of the tube 2 when viewed in the first direction DIR1. have.
  • the sensor section 3 is fixed to the first area A1.
  • FIG. 6 is a side view of the tube 2 and the sensor section 3 viewed from the front in a state where the sensor section 3 according to the first embodiment is not fixed to the tube 2.
  • FIG. 7 is a front side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, in a state where water 5 is not flowing inside the tube 2.
  • FIG. 8 is a front side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, with water 5 flowing inside the tube 2.
  • FIG. 8 in order to explain how the tube 2 and the sensor part 3 deform, the deformation of the tube 2 and the sensor part 3 is emphasized.
  • the longitudinal direction of the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 extends in the left-right direction. Further, in a state where the sensor section 3 is not fixed to the tube 2, the lateral direction of the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 extends in the front-rear direction. Furthermore, the piezoelectric film 11 is slightly extended in the left-right direction with the sensor section 3 not being fixed to the tube 2. By moving the sensor section 3 downward from above the curved section 22 toward the curved section 22, as shown in FIG. , and fixed to the curved portion 22.
  • the sensor section 3 is fixed to the first region A1 and the curved section 22.
  • the sensor section 3 is fixed to the tube 2 and is slightly extended in the left-right direction.
  • tension is generated in the sensor section 3 to cause it to contract in the first direction DIR1 and in the opposite direction to the first direction DIR1.
  • the sensor section 3 can detect the deformation of the tube 2.
  • the magnitude of the charge generated by the piezoelectric film 11 is proportional to the differential value of the amount of deformation of the piezoelectric film 11 due to expansion or compression. That is, when the sensor section 3 is fixed to the tube 2 and the water 5 is not flowing inside the tube 2, the piezoelectric film 11 does not generate an electric charge. A detection signal indicating that the tube 2 is not deformed is transmitted to the signal line.
  • the flow velocity of the water 5 located in the second direction DIR2 from the center O of the tube 2 is higher than the flow velocity of the water 5 located in the third direction DIR3 from the center O of the tube 2. big. Therefore, when the water 5 begins to flow inside the tube 2, the curved portion 22 deforms due to elastic deformation. More specifically, when the water 5 begins to flow within the tube 2, the curved portion 22 receives a force F from the water 5, as shown in FIG. Specifically, in the left straight portion 21L, the water 5 travels in the upper right direction.
  • the curved portion 22 includes a shape that curves so as to protrude in the second direction DIR2.
  • the water 5 collides with a portion of the inner peripheral surface of the curved portion 22 located in the second direction DIR2 from the center O of the tube 2.
  • the traveling direction of the water 5 changes, and the water 5 flows along the curved portion 22.
  • the water 5 applies a force F to the curved portion 22.
  • the direction of the force F is the second direction DIR2 because the curved portion 22 includes a curved shape so as to protrude upward.
  • the curved portion 22 deforms due to elastic deformation. More specifically, the curved portion 22 deforms by elastic deformation so that the diameter of the curved portion 22 becomes larger.
  • the sensor section 3 is deformed so as to expand in the first direction DIR1. Therefore, the piezoelectric film 11 is stretched in the left-right direction. As a result, the piezoelectric film 11 generates negative charges.
  • a detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
  • the force F that the curved portion 22 was receiving from the water 5 becomes smaller.
  • the force F that the curved portion 22 was receiving from the water 5 becomes zero.
  • the curved portion 22 deforms due to elastic deformation. More specifically, the curved portion 22 returns to the shape in which water 5 is not flowing through the tube 2 due to elastic deformation. Specifically, the curved portion 22 deforms by elastic deformation so that the diameter of the curved portion 22 becomes smaller. Thereby, the sensor section 3 is deformed so as to contract in the first direction DIR1. Therefore, the piezoelectric film 11 is compressed in the left-right direction. As a result, the piezoelectric film 11 generates positive charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
  • the flow switch 1 the flow of fluid can be detected without contacting the fluid to be detected. More specifically, the tube 2 is flexible and has a curved portion 22. Thereby, when the fluid starts flowing inside the tube 2, the curved portion 22 receives a force F from the fluid. As a result, when fluid begins to flow within the tube 2, the curved portion 22 deforms. Further, when the fluid flowing inside the tube 2 completely stops, the force F that the curved portion 22 was receiving from the fluid becomes zero. As a result, when fluid begins to flow within the tube 2, the curved portion 22 deforms. Therefore, the flow switch 1 includes a sensor section 3 that detects the deformation of the tube 2.
  • the sensor section 3 is fixed to the outer circumferential surface OS of the tube 2 and to the curved section 22 . Thereby, the flow switch 1 does not come into contact with the fluid to be detected. Further, in the flow switch 1, the sensor section 3 detects the deformation of the curved section 22, thereby detecting the flow of fluid. As a result, the flow switch 1 can detect the flow of fluid without coming into contact with the fluid to be detected.
  • the sensitivity for detecting fluid flow can be improved.
  • the curved portion 22 of the tube 2 includes a shape that curves so as to protrude in the second direction DIR2.
  • the outer circumferential surface OS of the tube 2 includes a first area A1 located in a second direction DIR2 from the center O of the tube 2, and a third direction from the center O of the tube 2, as viewed from the first direction DIR1 in which the fluid flows. It has a second area A2 located at DIR3.
  • the sensor part 3 can be easily fixed to the outer peripheral surface OS of the tube 2 and to the curved part 22. More specifically, the sensor section 3 includes a piezoelectric film 11. Further, the piezoelectric film 11 has a sheet shape. Thereby, the sensor section 3 has flexibility. As a result, according to the flow switch 1, the sensor section 3 can be easily fixed to the outer circumferential surface OS of the tube 2 and to the curved section 22.
  • the flow switch 1 that can detect the flow of fluid without coming into contact with the fluid to be detected can be attached to the tube 2. More specifically, the tube 2 is flexible and has a curved portion 22. The sensor part 3 is fixed to the outer peripheral surface OS of the tube 2 and to the curved part 22 so that the sensor part 3 detects the deformation of the tube 2. As a result, according to the flow switch attachment method, the flow switch 1 that can detect the flow of fluid can be attached to the tube 2 without coming into contact with the fluid to be detected.
  • FIG. 9 is a side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, viewed from the front.
  • FIG. 10 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the first modification.
  • FIG. 11 is a side view of the tube 2 and the sensor section 3 viewed from the front in a state where the sensor section 3 according to the first modification is not fixed to the tube 2.
  • FIG. 12 is a front side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, in a state where water 5 is not flowing inside the tube 2.
  • FIG. 13 is a front side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, with water 5 flowing inside the tube 2.
  • the deformation of the tube 2 and the sensor section 3 is emphasized.
  • the flow switch 1a according to the first modification only the parts that are different from the flow switch 1 according to the first embodiment will be explained, and the rest will be omitted.
  • the flow switch 1a is different from the flow switch 1 in that the sensor section 3 is fixed to the second region A2 of the outer peripheral surface OS of the tube 2, as shown in FIGS. 9 and 10.
  • the sensor section 3 By moving the sensor section 3 upward toward the curved section 22 from below the curved section 22 as shown in FIG. , and fixed to the curved portion 22.
  • the sensor section 3 is fixed to the second region A2 and the curved section 22.
  • the sensor section 3 is fixed to the tube 2 and is slightly extended in the left-right direction. As a result, while the sensor section 3 is fixed to the tube 2, tension is generated in the sensor section 3 to cause it to contract in the first direction DIR1 and in the opposite direction to the first direction DIR1. Thereby, the sensor section 3 can detect the deformation of the tube 2.
  • the magnitude of the charge generated by the piezoelectric film 11 is proportional to the differential value of the amount of deformation of the piezoelectric film 11 due to expansion or compression. That is, when the sensor section 3 is fixed to the tube 2 and the water 5 is not flowing inside the tube 2, the piezoelectric film 11 does not generate an electric charge. A detection signal indicating that the tube 2 is not deformed is transmitted to the signal line.
  • the curved portion 22 deforms due to elastic deformation, as shown in FIG. Thereby, the sensor section 3 is deformed so as to contract in the first direction DIR1. Therefore, the piezoelectric film 11 is compressed in the left-right direction. As a result, the piezoelectric film 11 generates positive charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
  • the force F that the curved portion 22 was receiving from the water 5 becomes smaller.
  • the force F that the curved portion 22 was receiving from the water 5 becomes zero.
  • the curved portion 22 deforms due to elastic deformation. More specifically, the curved portion 22 returns to the shape in which water 5 is not flowing through the tube 2 due to elastic deformation. Specifically, the curved portion 22 deforms by elastic deformation so that the diameter of the curved portion 22 becomes smaller. Thereby, the sensor section 3 is deformed so as to expand in the first direction DIR1. Therefore, the piezoelectric film 11 is stretched in the left-right direction. As a result, the piezoelectric film 11 generates negative charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
  • the flow switch 1a as described above also has the same effects as the flow switch 1.
  • FIG. 14 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the second modification.
  • the flow switch 1b according to the second modification only the parts that are different from the flow switch 1 according to the first embodiment will be explained, and the rest will be omitted.
  • the flow switch 1b is different from the flow switch 1 in that the sensor section 3 is fixed across the first area A1 and the second area A2 of the outer peripheral surface OS of the tube 2, as shown in FIG. do.
  • the area of the portion of the outer circumferential surface OS of the tube 2 where the sensor section 3 in the first region A1 is fixed is as shown in FIG. larger than the area of the part.
  • the curved portion 22 deforms due to elastic deformation.
  • the portion of the piezoelectric film 11 fixed to the first region A1 of the outer circumferential surface OS of the tube 2 is deformed so as to extend in the first direction DIR1.
  • the portion of the piezoelectric film 11 fixed to the second region A2 of the outer peripheral surface OS of the tube 2 is deformed so as to contract in the first direction DIR1. Since the area of the first region A1 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed is larger than the area of the second region A2 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed, The piezoelectric film 11 generates negative charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
  • the force F that the curved portion 22 was receiving from the water 5 becomes smaller.
  • the force F that the curved portion 22 was receiving from the water 5 becomes zero.
  • the curved portion 22 deforms due to elastic deformation. More specifically, the curved portion 22 returns to the shape in which water 5 is not flowing through the tube 2 due to elastic deformation. Specifically, the curved portion 22 deforms by elastic deformation so that the diameter of the curved portion 22 becomes smaller.
  • the portion of the piezoelectric film 11 fixed to the first region A1 of the outer circumferential surface OS of the tube 2 is deformed so as to contract in the first direction DIR1.
  • the portion of the piezoelectric film 11 fixed to the second region A2 of the outer peripheral surface OS of the tube 2 is deformed so as to extend in the first direction DIR1. Since the area of the first region A1 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed is larger than the area of the second region A2 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed, The piezoelectric film 11 generates positive charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
  • the flow switch 1b as described above also has the same effects as the flow switch 1.
  • FIG. 15 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the third modification.
  • the flow switch 1c according to the third modification only the parts different from the flow switch 1a according to the first embodiment will be explained, and the rest will be omitted.
  • the flow switch 1c differs from the flow switch 1a in that the sensor section 3 is fixed across the first area A1 and the second area A2 of the outer peripheral surface OS of the tube 2, as shown in FIG. do.
  • the area of the portion of the outer peripheral surface OS of the tube 2 where the sensor section 3 in the second region A2 is fixed is as shown in FIG. larger than the area of the part.
  • the curved portion 22 deforms due to elastic deformation.
  • the portion of the piezoelectric film 11 fixed to the first region A1 of the outer circumferential surface OS of the tube 2 is deformed so as to extend in the first direction DIR1.
  • the portion of the piezoelectric film 11 fixed to the second region A2 of the outer peripheral surface OS of the tube 2 is deformed so as to contract in the first direction DIR1. Since the area of the second region A2 of the outer circumferential surface OS of the tube 2 where the sensor section 3 is fixed is larger than the area of the first region A1 of the outer circumferential surface OS of the tube 2 where the sensor section 3 is fixed, The piezoelectric film 11 generates positive charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
  • the force F that the curved portion 22 was receiving from the water 5 becomes smaller.
  • the force F that the curved portion 22 was receiving from the water 5 becomes zero.
  • the curved portion 22 deforms due to elastic deformation. More specifically, the curved portion 22 returns to the shape in which water 5 is not flowing through the tube 2 due to elastic deformation. Specifically, the curved portion 22 deforms by elastic deformation so that the diameter of the curved portion 22 becomes smaller.
  • the portion of the piezoelectric film 11 fixed to the first region A1 of the outer circumferential surface OS of the tube 2 is deformed so as to contract in the first direction DIR1.
  • the portion of the piezoelectric film 11 fixed to the second region A2 of the outer peripheral surface OS of the tube 2 is deformed so as to extend in the first direction DIR1. Since the area of the second region A2 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed is larger than the area of the first region A1 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed, The piezoelectric film 11 generates negative charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
  • the flow switch 1c as described above also has the same effects as the flow switch 1a.
  • the flow switch according to the present invention is not limited to the flow switches 1, 1a to 1c, and can be modified within the scope of the gist. Furthermore, the structures of the flow switches 1, 1a to 1c may be combined arbitrarily.
  • the sensor section 3 does not have to have a rectangular shape when viewed in the vertical direction.
  • the rectangular shape includes a rectangle and a shape that is slightly modified from a rectangle.
  • the sensor section 3 only needs to have a longitudinal direction extending in the left-right direction.
  • each of the first upper principal surface US1 and the first lower principal surface LS1 is arranged in the normal direction of the first upper principal surface US1 and the first lower principal surface LS1 in a state in which the sensor unit 3 is developed into a plane. It may have an elliptical shape.
  • the piezoelectric film 11 does not have to have a rectangular shape when viewed in the vertical direction. In this case, the piezoelectric film 11 only needs to have a longitudinal direction extending in the left-right direction.
  • each of the second upper principal surface US2 and the second lower principal surface LS2 is arranged in the normal direction of the second upper principal surface US2 and the second lower principal surface LS2 in a state where the piezoelectric film 11 is developed into a plane. It may have an elliptical shape.
  • each of the first upper principal surface US1 and the first lower principal surface LS1 is arranged in the normal direction of the first upper principal surface US1 and the first lower principal surface LS1 in a state in which the sensor unit 3 is developed into a plane. In other words, it may have a square or circular shape.
  • each of the second upper principal surface US2 and the second lower principal surface LS2 is arranged in the normal direction of the second upper principal surface US2 and the second lower principal surface LS2 in a state where the piezoelectric film 11 is developed into a plane. In other words, it may have a square or circular shape.
  • the piezoelectric film 11 may be a film containing polylactic acid stretched in at least one axis.
  • the piezoelectric film 11 may have a piezoelectric constant of d31.
  • the piezoelectric film 11 having a piezoelectric constant of d31 is, for example, a PVDF (polyvinylidene fluoride) film.
  • the piezoelectric film 11 may be a piezoelectric ceramic.
  • the polarity of the charge generated by the piezoelectric film 11 when the piezoelectric film 11 is stretched in the left-right direction is the same as the polarity of the charge generated by the piezoelectric film 11 when the piezoelectric film 11 is stretched in the front-back direction. It's okay.
  • angles formed by the uniaxial stretching direction OD of the piezoelectric film 11 and each of the front-rear direction and left-right direction are not limited to 45 degrees.
  • the upper electrode 12a may be a signal electrode
  • the lower electrode 12b may be a ground electrode.
  • the lower electrode 12b may be provided between the upper main surface and the lower main surface of the flexible printed circuit board 14. That is, the lower electrode 12b may be located within the flexible printed circuit board 14.
  • the flexible printed circuit board 14 is not an essential component.
  • the tube 2 does not need to have the left straight section 21L and the right straight section 21R.
  • the fluid is not limited to water 5.
  • the fluid may be, for example, oil or air.
  • the adhesive 4 is not an essential component.
  • the curved portion 22 is not limited to being deformed by elastic deformation.
  • the curved portion 22 may be deformed by plastic deformation. Further, the curved portion 22 may be deformed by elastic deformation or plastic deformation. Even in these cases, the same effects as the flow switch 1 can be achieved.
  • a nozzle may be provided at the tip of the tube 2. In this case, a bend 22 is provided on the tube 2 so that the position of the nozzle can be changed. When the position of the nozzle changes, the curved portion 22 is elastically deformed. As a result, the radius of curvature of the curved portion 22 changes. Even in this case, the same effects as the flow switch 1 can be achieved.
  • the sensor section 3 may detect twisting of the tube 2 in the left-right direction.
  • the deformation direction of the tube 2 detected by the sensor section 3 is not limited to the left-right direction, but may be the up-down direction or the front-back direction, or may be any direction.
  • the deformation direction of the tube 2 detected by the sensor section 3 may be a plurality of directions.
  • the sensor section 3 may detect the amount of deformation or stress of the tube 2. Further, the sensor section 3 may include, for example, a strain gauge.
  • the outer edge of the cross section of the tube 2 perpendicular to the first direction DIR1 does not have to include a circular shape.
  • the inner edge of the cross section perpendicular to the first direction DIR1 of the tube 2 does not have to include a circular shape.
  • the flow switches 1, 1a to 1c may further include an arithmetic circuit that calculates the time when the fluid starts flowing and the time when the fluid starts to stop based on the detection signal output from the lower electrode 12b. For example, a determination value is set in the arithmetic circuit in advance. If the bending portion 22 is significantly deformed due to the operation of an external device installed at the tip of the tube 2 before the fluid starts flowing, the arithmetic circuit detects the detection signal if there is a time when the detection signal exceeds the threshold value. The detection signal at the time when is equal to or greater than the determination value may be masked.
  • the present invention has the following structure.
  • a flow switch that detects the flow of fluid flowing in a tube that is flexible and has a curved part,
  • the flow switch is comprising a sensor section that detects deformation of the tube,
  • the sensor section is fixed to the outer peripheral surface of the tube and the curved section. flow switch.
  • the outer circumferential surface has a first region located in a second direction from the center of the tube, and a second region located in a third direction from the center of the tube, when viewed in the first direction in which the fluid flows. death, the second direction and the third direction are orthogonal to the first direction, The third direction is the opposite direction to the second direction,
  • the curved portion includes a shape that curves so as to protrude in the second direction, the sensor section is fixed to the first region; The flow switch described in (1).
  • the outer circumferential surface has a first region located in a second direction from the center of the tube, and a second region located in a third direction from the center of the tube, when viewed in the first direction in which the fluid flows. death, the second direction and the third direction are orthogonal to the first direction, The third direction is the opposite direction to the second direction,
  • the curved portion includes a shape that curves so as to protrude in the second direction, the sensor section is fixed to the second region, The flow switch described in (1).
  • the sensor section is fixed across the first region and the second region, The area of the portion of the second region to which the sensor portion is fixed is larger than the area of the portion of the first region to which the sensor portion is fixed.
  • the sensor section includes a piezoelectric film.
  • the flow switch according to any one of (1) to (5).
  • the main surface of the piezoelectric film has a rectangular shape when viewed in the normal direction of the main surface of the piezoelectric film in a state in which the piezoelectric film is developed into a plane.
  • the flow switch described in (6) The flow switch described in (6).
  • the piezoelectric film is a film having polylactic acid stretched in at least one axial direction.
  • the flow switch according to any one of (6) to (8).
  • the main surface of the piezoelectric film has a longitudinal direction extending in the left-right direction and a transversal direction extending in the front-rear direction when the piezoelectric film is expanded into a plane,
  • the uniaxial stretching direction of the piezoelectric film forms an angle of 45 degrees with respect to the left-right direction and the front-back direction when the piezoelectric film is expanded flatly.
  • the deformation of the tube detected by the sensor unit is bending of the tube;
  • the flow switch according to any one of (1) to (10).
  • the curved portion deforms by elastic deformation or elastic deformation and plastic deformation.
  • the flow switch according to any one of (1) to (11).
  • an outer edge of a cross section of the tube perpendicular to the first direction in which the fluid flows includes a circular shape;
  • the fluid is water;
  • the flow switch according to any one of (1) to (13).
  • a flow switch mounting method for mounting a sensor section on a tube that is flexible and has a curved section comprising: fixing the sensor section to the outer peripheral surface of the tube and the curved section so that the sensor section detects deformation of the tube; How to install a flow switch.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

This flow switch is for detecting the flow of a fluid flowing inside a tube which is flexible and has a bending portion, and the flow switch comprises a sensor for detecting deformation of the tube. The sensor is fixed to the outer circumferential surface of the tube in the bending portion. As viewed along a first direction in which the fluid flows, the outer circumferential surface has: a first area positioned in a second direction from the center of the tube; and a second area positioned in a third direction from the center of the tube. The second direction and the third direction orthogonally intersect with the first direction. The third direction is a direction opposite to the second direction. The bending portion has a bending shape projecting in the second direction, and the sensor is fixed to the first area.

Description

フロースイッチ及びフロースイッチ取付方法Flow switch and flow switch installation method
 本発明は、流体の流れを検出するフロースイッチ及びフロースイッチ取付方法に関する。 The present invention relates to a flow switch that detects fluid flow and a flow switch mounting method.
 従来のフロースイッチ及びフロースイッチ取付方法に関する発明としては、例えば、特許文献1に記載の水流スイッチが知られている。この水流スイッチは、流量スイッチ及び差圧動作開閉部を備えている。流量スイッチは、流路における小流量の流れを検出する。また、差圧動作開閉部は、流量スイッチによる検出時の流量に基づいて流路を開く。このような水流スイッチは、水が流れる流路に設けられている。 As an invention related to a conventional flow switch and flow switch mounting method, for example, a water flow switch described in Patent Document 1 is known. This water flow switch includes a flow rate switch and a differential pressure operated opening/closing section. The flow switch detects small flow rates in the flow path. Further, the differential pressure operation opening/closing section opens the flow path based on the flow rate detected by the flow rate switch. Such a water flow switch is provided in a flow path through which water flows.
特開2007-285992号公報Japanese Patent Application Publication No. 2007-285992
 ところで、特許文献1に記載の水流スイッチにおいて、検出対象の流体と接触せずに、流体の流れを検出したいという要望がある。 By the way, in the water flow switch described in Patent Document 1, there is a desire to detect the flow of fluid without contacting the fluid to be detected.
 そこで、本発明の目的は、検出対象の流体と接触せずに、流体の流れを検出できるフロースイッチ及びフロースイッチ取付方法を提供することである。 Therefore, an object of the present invention is to provide a flow switch and a flow switch mounting method that can detect the flow of fluid without contacting the fluid to be detected.
 本発明の一形態に係るフロースイッチは、
 可撓性を有し、かつ、湾曲部を有するチューブ内を流れる流体の流れを検出するフロースイッチであって、
 前記フロースイッチは、
 前記チューブの変形を検出するセンサ部を備え、
 前記センサ部は、前記チューブの外周面、かつ、前記湾曲部に固定される。
A flow switch according to one embodiment of the present invention includes:
A flow switch that detects the flow of fluid flowing in a tube that is flexible and has a curved part,
The flow switch is
comprising a sensor section that detects deformation of the tube,
The sensor section is fixed to the outer peripheral surface of the tube and to the curved section.
 本発明の一形態に係るフロースイッチ取付方法は、
 可撓性を有し、かつ、湾曲部を有するチューブに対して、センサ部を取り付けるフロースイッチ取付方法であって、
 前記センサ部が前記チューブの変形を検出するように、前記センサ部を前記チューブの外周面、かつ、前記湾曲部に固定する。
A flow switch mounting method according to one embodiment of the present invention includes:
A flow switch mounting method for mounting a sensor section on a tube that is flexible and has a curved section, the method comprising:
The sensor section is fixed to the outer peripheral surface of the tube and to the curved section so that the sensor section detects deformation of the tube.
 本明細書において、方向を以下のように定義する。流体が流れる方向を第1方向DIR1と定義する。また、第1方向DIR1に直交する方向を第2方向DIR2と定義する。また、第3方向DIR3を第2方向DIR2の反対方向と定義する。第2方向DIR2及び第3方向DIR3は、第1方向DIR1に直交する。また、フロースイッチ1において、圧電フィルム11が平面に展開された状態で、圧電フィルム11の第1上主面US1及び第1下主面LS1が並ぶ方向を上下方向と定義する。また、上下方向に視て、圧電フィルム11の長辺が延びる方向を左右方向と定義する。上下方向に視て、圧電フィルム11の短辺が延びる方向を前後方向と定義する。上下方向、左右方向及び前後方向は、互いに直交している。なお、本明細書における方向の定義は、一例である。従って、フロースイッチ1の実使用時における方向と本明細書における方向とが一致している必要はない。また、図1乃至図15において上下方向が反転してもよい。図1乃至図15において左右方向が反転してもよい。図1乃至図15において前後方向が反転してもよい。 In this specification, direction is defined as follows. The direction in which the fluid flows is defined as a first direction DIR1. Further, a direction perpendicular to the first direction DIR1 is defined as a second direction DIR2. Further, a third direction DIR3 is defined as a direction opposite to the second direction DIR2. The second direction DIR2 and the third direction DIR3 are orthogonal to the first direction DIR1. Further, in the flow switch 1, the direction in which the first upper main surface US1 and the first lower main surface LS1 of the piezoelectric film 11 are lined up in a state in which the piezoelectric film 11 is expanded into a plane is defined as the up-down direction. Furthermore, when viewed in the vertical direction, the direction in which the long sides of the piezoelectric film 11 extend is defined as the left-right direction. The direction in which the short side of the piezoelectric film 11 extends when viewed in the vertical direction is defined as the front-back direction. The up-down direction, the left-right direction, and the front-back direction are orthogonal to each other. Note that the definition of direction in this specification is an example. Therefore, the direction when the flow switch 1 is actually used does not need to be the same as the direction in this specification. Further, the vertical direction may be reversed in FIGS. 1 to 15. The left and right directions in FIGS. 1 to 15 may be reversed. The front and rear directions may be reversed in FIGS. 1 to 15.
 以下では、X,Yは、フロースイッチ1の部品又は部材である。本明細書において、特に断りのない場合には、Xの各部について以下のように定義する。Xの上部とは、Xの上半分を意味する。Xの上端とは、Xの上方向の端を意味する。Xの上端部とは、Xの上端及びその近傍を意味する。この定義は、上方向以外の方向にも適用される。 In the following, X and Y are parts or members of the flow switch 1. In this specification, unless otherwise specified, each part of X is defined as follows. The upper part of X means the upper half of X. The upper end of X means the upper end of X. The upper end of X means the upper end of X and its vicinity. This definition also applies to directions other than the upward direction.
 また、「Xは、Yの上に位置している。」とは、XがYの真上に位置していることを意味する。従って、上下方向に視て、Xは、Yと重なっている。「Xは、Yより上に位置している。」とは、XがYの真上に位置していること、及び、XがYの斜め上に位置していることを意味する。従って、上下方向に視て、Xは、Yと重なっていてもよいし、Yと重なっていなくてもよい。この定義は、上方向以外の方向にも適用される。 Furthermore, "X is located above Y" means that X is located directly above Y. Therefore, when viewed in the vertical direction, X overlaps Y. "X is located above Y" means that X is located directly above Y, and that X is located diagonally above Y. Therefore, when viewed in the vertical direction, X may or may not overlap Y. This definition also applies to directions other than the upward direction.
 本明細書において、「XとYとが電気的に接続される」とは、XとYとの間で電気が導通していることを意味する。従って、XとYとが接触していてもよいし、XとYとが接触していなくてもよい。XとYとが接触していない場合には、XとYとの間に導電性を有するZが配置されている。 In this specification, "X and Y are electrically connected" means that electricity is conducted between X and Y. Therefore, X and Y may be in contact with each other, or X and Y may not be in contact with each other. When X and Y are not in contact with each other, a conductive Z is placed between X and Y.
 本発明によれば、検出対象の流体と接触せずに、流体の流れを検出できるフロースイッチ及びフロースイッチ取付方法を提供することができる。 According to the present invention, it is possible to provide a flow switch and a flow switch mounting method that can detect the flow of fluid without contacting the fluid to be detected.
図1は、第1の実施形態に係るフロースイッチ1の斜視図である。FIG. 1 is a perspective view of a flow switch 1 according to the first embodiment. 図2は、第1の実施形態に係るセンサ部3を下方向に視た平面図である。FIG. 2 is a plan view of the sensor section 3 according to the first embodiment viewed from below. 図3は、第1の実施形態に係るセンサ部3のA-Aにおける断面図である。FIG. 3 is a cross-sectional view taken along line AA of the sensor section 3 according to the first embodiment. 図4は、第1の実施形態に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。FIG. 4 is a side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, viewed from the front. 図5は、第1の実施形態に係るチューブ2、センサ部3及び接着材4のB-Bにおける断面図である。FIG. 5 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the first embodiment. 図6は、第1の実施形態に係るセンサ部3がチューブ2に固定されていない状態におけるチューブ2及びセンサ部3を前方向に視た側面図である。FIG. 6 is a side view of the tube 2 and the sensor section 3 viewed from the front in a state where the sensor section 3 according to the first embodiment is not fixed to the tube 2. 図7は、水5がチューブ2内を流れていない状態における第1の実施形態に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。FIG. 7 is a front side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, in a state where water 5 is not flowing inside the tube 2. 図8は、水5がチューブ2内を流れている状態における第1の実施形態に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。FIG. 8 is a front side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, with water 5 flowing inside the tube 2. 図9は、第1の変形例に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。FIG. 9 is a side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, viewed from the front. 図10は、第1の変形例に係るチューブ2、センサ部3及び接着材4のB-Bにおける断面図である。FIG. 10 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the first modification. 図11は、第1の変形例に係るセンサ部3がチューブ2に固定されていない状態におけるチューブ2及びセンサ部3を前方向に視た側面図である。FIG. 11 is a side view of the tube 2 and the sensor section 3 viewed from the front in a state where the sensor section 3 according to the first modification is not fixed to the tube 2. 図12は、水5がチューブ2内を流れていない状態における第1の変形例に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。FIG. 12 is a front side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, in a state where water 5 is not flowing inside the tube 2. 図13は、水5がチューブ2内を流れている状態における第1の変形例に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。FIG. 13 is a front side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, with water 5 flowing inside the tube 2. 図14は、第2の変形例に係るチューブ2、センサ部3及び接着材4のB-Bにおける断面図である。FIG. 14 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the second modification. 図15は、第3の変形例に係るチューブ2、センサ部3及び接着材4のB-Bにおける断面図である。FIG. 15 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the third modification.
 [第1の実施形態]
 以下に、本発明の第1の実施形態に係るフロースイッチ1の構成について図面を参照しながら説明する。図1は、第1の実施形態に係るフロースイッチ1の斜視図である。図2は、第1の実施形態に係るセンサ部3を下方向に視た平面図である。図3は、第1の実施形態に係るセンサ部3のA-Aにおける断面図である。図4は、第1の実施形態に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。図5は、第1の実施形態に係るチューブ2、センサ部3及び接着材4のB-Bにおける断面図である。
[First embodiment]
Below, the configuration of a flow switch 1 according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a flow switch 1 according to the first embodiment. FIG. 2 is a plan view of the sensor section 3 according to the first embodiment viewed from below. FIG. 3 is a cross-sectional view taken along line AA of the sensor section 3 according to the first embodiment. FIG. 4 is a side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, viewed from the front. FIG. 5 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the first embodiment.
 フロースイッチ1は、可撓性を有するチューブ2内を流れる流体の流れを検出する。チューブ2の材料は、例えば、金属又は樹脂である。従って、チューブ2は、弾性変形する。 The flow switch 1 detects the flow of fluid flowing inside the flexible tube 2. The material of the tube 2 is, for example, metal or resin. Therefore, the tube 2 is elastically deformed.
 フロースイッチ1は、図1に示すように、センサ部3を備えている。センサ部3は、チューブ2の変形を検出する。本実施形態では、センサ部3が検出するチューブ2の変形は、チューブ2の曲げである。また、センサ部3は、可撓性を有している。センサ部3は、上下方向に並ぶ第1上主面US1及び第1下主面LS1を有している。第1上主面US1及び第1下主面LS1の法線方向は、上下方向である。第1上主面US1は、第1下主面LS1の上に位置している。 The flow switch 1 includes a sensor section 3, as shown in FIG. The sensor section 3 detects deformation of the tube 2. In this embodiment, the deformation of the tube 2 detected by the sensor unit 3 is bending of the tube 2. Further, the sensor section 3 has flexibility. The sensor section 3 has a first upper main surface US1 and a first lower main surface LS1 that are arranged in the vertical direction. The normal direction of the first upper major surface US1 and the first lower major surface LS1 is the vertical direction. The first upper main surface US1 is located above the first lower main surface LS1.
 センサ部3は、図1に示すように、上下方向に視て、矩形状を有している。センサ部3は、左右方向に延びる長手方向を有している。また、センサ部3は、前後方向に延びる短手方向を有している。すなわち、センサ部3の左右方向の長さは、センサ部3の前後方向の長さより長い。 As shown in FIG. 1, the sensor section 3 has a rectangular shape when viewed in the vertical direction. The sensor section 3 has a longitudinal direction extending in the left-right direction. Further, the sensor section 3 has a transversal direction extending in the front-rear direction. That is, the length of the sensor section 3 in the left-right direction is longer than the length of the sensor section 3 in the front-back direction.
 センサ部3は、図2に示すように、圧電フィルム11、上電極12a及び電極部材13を含んでいる。圧電フィルム11は、シート形状を有している。従って、圧電フィルム11は、図3に示すように、上下方向に並ぶ第2上主面US2及び第2下主面LS2を有している。第2上主面US2及び第2下主面LS2の法線方向は、上下方向である。第2上主面US2は、第2下主面LS2の上に位置している。また、圧電フィルム11の第2上主面US2及び第2下主面LS2は、図2に示すように、圧電フィルム11が平面に展開された状態で、左右方向に延びる長手方向を有している。また、圧電フィルム11の第2上主面US2及び第2下主面LS2は、圧電フィルム11が平面に展開された状態で、前後方向に延びる短手方向を有している。すなわち、圧電フィルム11の左右方向の長さは、圧電フィルム11の前後方向の長さより長い。 The sensor section 3 includes a piezoelectric film 11, an upper electrode 12a, and an electrode member 13, as shown in FIG. The piezoelectric film 11 has a sheet shape. Therefore, as shown in FIG. 3, the piezoelectric film 11 has a second upper main surface US2 and a second lower main surface LS2 that are arranged in the vertical direction. The normal direction of the second upper major surface US2 and the second lower major surface LS2 is the vertical direction. The second upper main surface US2 is located above the second lower main surface LS2. Further, as shown in FIG. 2, the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 have a longitudinal direction extending in the left-right direction when the piezoelectric film 11 is developed into a plane. There is. Moreover, the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 have a transversal direction extending in the front-rear direction when the piezoelectric film 11 is developed into a plane. That is, the length of the piezoelectric film 11 in the left-right direction is longer than the length of the piezoelectric film 11 in the front-back direction.
 本実施形態では、圧電フィルム11は、図2に示すように、上下方向に視て、矩形状を有している。すなわち、圧電フィルム11の第2上主面US2及び第2下主面LS2は、圧電フィルム11が平面に展開された状態で、上下方向(圧電フィルム11の第2上主面US2及び第2下主面LS2の法線方向)に視て、矩形状を有している。また、圧電フィルム11の第2上主面US2及び第2下主面LS2は、圧電フィルム11が平面に展開された状態で、左右方向に延びる長辺、及び、前後方向に延びる短辺を有している。圧電フィルム11は、圧電フィルム11の変形量に応じた電荷を発生する。本実施形態では、圧電フィルム11は、PLAフィルムである。以下に、圧電フィルム11について、より詳細に説明する。 In this embodiment, the piezoelectric film 11 has a rectangular shape when viewed in the vertical direction, as shown in FIG. That is, the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 are arranged in the vertical direction (the second upper main surface US2 and the second lower main surface It has a rectangular shape when viewed in the normal direction of the main surface LS2. In addition, the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 have a long side extending in the left-right direction and a short side extending in the front-rear direction when the piezoelectric film 11 is developed into a plane. are doing. The piezoelectric film 11 generates an electric charge according to the amount of deformation of the piezoelectric film 11. In this embodiment, the piezoelectric film 11 is a PLA film. Below, the piezoelectric film 11 will be explained in more detail.
 圧電フィルム11は、圧電フィルム11が左右方向に伸張されたときに発生する電荷の極性が、圧電フィルム11が前後方向に伸張されたときに発生する電荷の極性と逆となる特性を有している。具体的には、圧電フィルム11は、キラル高分子から形成されるフィルムである。キラル高分子とは、例えば、ポリ乳酸(PLA)、特にL型ポリ乳酸(PLLA)である。キラル高分子からなるPLLAは、主鎖が螺旋構造を有する。PLLAは、一軸延伸されて分子が配向する圧電性を有する。圧電フィルム11は、d14の圧電定数を有している。圧電フィルム11の一軸延伸方向ODは、図2に示すように、圧電フィルム11が平面に展開された状態で、左右方向及び前後方向のそれぞれに対して45度の角度を形成している。この45度は、例えば、45度±10度程度を含む角度を含む。これにより、圧電フィルム11は、圧電フィルム11が左右方向に伸張されること又は前後方向に伸張されることにより、電荷を発生する。圧電フィルム11が左右方向に伸張されたときに圧電フィルム11が発生する電荷の極性は、圧電フィルム11が前後方向に伸張されたときに圧電フィルム11が発生する電荷の極性と異なる。圧電フィルム11は、例えば、左右方向に伸張されると負の電荷を発生する。圧電フィルム11は、例えば、前後方向に伸張されると正の電荷を発生する。電荷の大きさは、伸張又は圧縮による圧電フィルム11の変形量に依存する。より正確には、電荷の大きさは、伸張又は圧縮による圧電フィルム11の変形量の微分値に比例する。 The piezoelectric film 11 has a characteristic that the polarity of the charge generated when the piezoelectric film 11 is stretched in the left-right direction is opposite to the polarity of the charge generated when the piezoelectric film 11 is stretched in the front-back direction. There is. Specifically, the piezoelectric film 11 is a film formed from a chiral polymer. The chiral polymer is, for example, polylactic acid (PLA), particularly L-type polylactic acid (PLLA). PLLA, which is a chiral polymer, has a main chain having a helical structure. PLLA has piezoelectricity in which molecules are oriented by being uniaxially stretched. The piezoelectric film 11 has a piezoelectric constant of d14. As shown in FIG. 2, the uniaxial stretching direction OD of the piezoelectric film 11 forms an angle of 45 degrees with respect to each of the left-right direction and the front-back direction in a state where the piezoelectric film 11 is developed flatly. This 45 degrees includes, for example, an angle including approximately 45 degrees ±10 degrees. Thereby, the piezoelectric film 11 generates an electric charge when the piezoelectric film 11 is stretched in the left-right direction or in the front-back direction. The polarity of the charge generated by the piezoelectric film 11 when the piezoelectric film 11 is stretched in the left-right direction is different from the polarity of the charge generated by the piezoelectric film 11 when the piezoelectric film 11 is stretched in the front-back direction. For example, when the piezoelectric film 11 is stretched in the left-right direction, it generates negative charges. For example, when the piezoelectric film 11 is stretched in the front-back direction, it generates a positive charge. The magnitude of the charge depends on the amount of deformation of the piezoelectric film 11 due to expansion or compression. More precisely, the magnitude of the charge is proportional to the differential value of the amount of deformation of the piezoelectric film 11 due to expansion or compression.
 上電極12aは、グランド電極である。上電極12aは、上下方向に並ぶ上主面及び下主面を有している。上電極12aは、グランドに接続される。上電極12aは、図3に示すように、圧電フィルム11の第2上主面US2に設けられている。上電極12aは、圧電フィルム11の第2上主面US2の全体を覆っている。上電極12aは、図示しない粘着層を含んでいる。そして、この粘着層により、上電極12aが圧電フィルム11の第2上主面US2に固定されている。上電極12aの上主面は、センサ部3の第1上主面US1である。 The upper electrode 12a is a ground electrode. The upper electrode 12a has an upper main surface and a lower main surface that are arranged in the vertical direction. The upper electrode 12a is connected to ground. The upper electrode 12a is provided on the second upper main surface US2 of the piezoelectric film 11, as shown in FIG. The upper electrode 12a covers the entire second upper main surface US2 of the piezoelectric film 11. The upper electrode 12a includes an adhesive layer (not shown). The upper electrode 12a is fixed to the second upper main surface US2 of the piezoelectric film 11 by this adhesive layer. The upper main surface of the upper electrode 12a is the first upper main surface US1 of the sensor section 3.
 電極部材13は、図3に示すように、圧電フィルム11の第2下主面LS2に設けられている。また、電極部材13は、下電極12b及びフレキシブルプリント基板14を有している。 The electrode member 13 is provided on the second lower main surface LS2 of the piezoelectric film 11, as shown in FIG. Further, the electrode member 13 includes a lower electrode 12b and a flexible printed circuit board 14.
 下電極12bは、信号電極である。下電極12bから検知信号が出力される。本実施形態では、下電極12bは、図3に示すように、後述するフレキシブルプリント基板14の上主面に設けられている。すなわち、下電極12bは、後述するフレキシブルプリント基板14の複数の絶縁体層の内の最も上に位置する絶縁体層の上主面に設けられている導体層である。 The lower electrode 12b is a signal electrode. A detection signal is output from the lower electrode 12b. In this embodiment, the lower electrode 12b is provided on the upper main surface of the flexible printed circuit board 14, which will be described later, as shown in FIG. That is, the lower electrode 12b is a conductor layer provided on the upper main surface of the uppermost insulator layer among a plurality of insulator layers of the flexible printed circuit board 14, which will be described later.
 フレキシブルプリント基板14は、可撓性を有する回路基板である。フレキシブルプリント基板14は、上下方向に並ぶ上主面及び下主面を有している。フレキシブルプリント基板14は、信号線、グランド線及び複数の絶縁体層を含んでいる。複数の絶縁体層は、上下方向に積層されている。信号線及びグランド線は、絶縁体層に設けられている導体層である。信号線は、下電極12bと電気的に接続されている。信号線には、下電極12bが出力する検知信号が伝送される。グランド線は、上電極12aと電気的に接続されている。グランド線は、グランド電位に接続されている。フレキシブルプリント基板14の下主面は、センサ部3の第1下主面LS1である。 The flexible printed circuit board 14 is a flexible circuit board. The flexible printed circuit board 14 has an upper main surface and a lower main surface that are arranged in the vertical direction. The flexible printed circuit board 14 includes a signal line, a ground line, and a plurality of insulating layers. The plurality of insulator layers are stacked in the vertical direction. The signal line and the ground line are conductor layers provided on the insulator layer. The signal line is electrically connected to the lower electrode 12b. A detection signal output from the lower electrode 12b is transmitted to the signal line. The ground line is electrically connected to the upper electrode 12a. The ground line is connected to ground potential. The lower main surface of the flexible printed circuit board 14 is the first lower main surface LS1 of the sensor section 3.
 このようなセンサ部3は、図4に示すように、接着材4を介して、チューブ2の外周面OSに固定される。より詳細には、接着材4は、センサ部3の第1下主面LS1の全体を覆っている。また、接着材4は、チューブ2の外周面OSに固定される。本実施形態では、センサ部3は、圧電フィルム11の第2上主面US2及び第2下主面LS2の長辺が第1方向DIR1に延びるように、チューブ2の外周面OSに固定される。圧電フィルム11の第2上主面US2及び第2下主面LS2の短辺は、左右方向に視て、チューブ2の周囲を周回している。 As shown in FIG. 4, such a sensor section 3 is fixed to the outer circumferential surface OS of the tube 2 via an adhesive 4. More specifically, the adhesive 4 covers the entire first lower main surface LS1 of the sensor section 3. Further, the adhesive 4 is fixed to the outer peripheral surface OS of the tube 2. In this embodiment, the sensor unit 3 is fixed to the outer peripheral surface OS of the tube 2 such that the long sides of the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 extend in the first direction DIR1. . The short sides of the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 extend around the tube 2 when viewed in the left-right direction.
 本実施形態では、チューブ2は、図4に示すように、左直線部21L、右直線部21R及び湾曲部22を有する。左直線部21Lは、左下方向から右上方向に延びる形状を有し、かつ、曲がっていない。右直線部21Rは、左上方向から右下方向に延びる形状を有し、かつ、曲がっていない。湾曲部22は、左右方向に延びる形状を有し、かつ、上方向に突出するように湾曲する形状を含んでいる。センサ部3は、湾曲部22に固定される。 In this embodiment, the tube 2 has a left straight part 21L, a right straight part 21R, and a curved part 22, as shown in FIG. The left straight portion 21L has a shape extending from the lower left direction to the upper right direction, and is not curved. The right straight portion 21R has a shape extending from the upper left direction to the lower right direction, and is not curved. The curved portion 22 has a shape extending in the left-right direction and includes a shape curved so as to protrude upward. The sensor section 3 is fixed to the curved section 22.
 より詳細には、本実施形態では、図4に示すように、水5がチューブ2内を流れる。水5は、本発明の流体の一例である。本実施形態では、水5は、チューブ2内を、左直線部21Lの左端から右直線部21Rの右端に流れる。すなわち、左直線部21Lにおいて、第1方向DIR1は、右上方向である。また、右直線部21Rにおいて、第1方向DIR1は、右下方向である。また、湾曲部22において、水5は、チューブ2内を、湾曲部22の左端から湾曲部22の右端に流れる。すなわち、本実施形態では、湾曲部22の左部において、第1方向DIR1は、右上方向である。また、湾曲部22の右部において、第1方向DIR1は、右下方向である。また、湾曲部22の左右方向の中央の位置において、第1方向DIR1は、右方向である。 More specifically, in this embodiment, water 5 flows within the tube 2, as shown in FIG. Water 5 is an example of the fluid of the present invention. In this embodiment, the water 5 flows within the tube 2 from the left end of the left straight section 21L to the right end of the right straight section 21R. That is, in the left straight portion 21L, the first direction DIR1 is the upper right direction. Further, in the right straight portion 21R, the first direction DIR1 is the lower right direction. Further, in the curved section 22 , the water 5 flows inside the tube 2 from the left end of the curved section 22 to the right end of the curved section 22 . That is, in this embodiment, the first direction DIR1 is the upper right direction in the left portion of the curved portion 22. Further, in the right portion of the curved portion 22, the first direction DIR1 is the lower right direction. Further, at the center position of the curved portion 22 in the left-right direction, the first direction DIR1 is the right direction.
 湾曲部22は、図4に示すように、第2方向DIR2に突出するように湾曲する形状を含んでいる。具体的には、第2方向DIR2は、上方向である。第3方向DIR3は、下方向である。 As shown in FIG. 4, the curved portion 22 includes a shape that is curved so as to protrude in the second direction DIR2. Specifically, the second direction DIR2 is an upward direction. The third direction DIR3 is the downward direction.
 また、チューブ2の第1方向DIR1に垂直な断面の外縁は、図5に示すように、円形状を含んでいる。また、チューブ2の第1方向DIR1に垂直な断面の内縁は、円形状を含んでいる。外周面OSは、第1方向DIR1に視て、チューブ2の中心Oより第2方向DIR2に位置する第1領域A1、及び、チューブ2の中心Oより第3方向DIR3に位置する第2領域A2を有している。本実施形態では、センサ部3は、第1領域A1に固定されている。 Further, the outer edge of the cross section perpendicular to the first direction DIR1 of the tube 2 includes a circular shape, as shown in FIG. Moreover, the inner edge of the cross section perpendicular to the first direction DIR1 of the tube 2 includes a circular shape. The outer peripheral surface OS includes a first region A1 located in a second direction DIR2 from the center O of the tube 2 and a second region A2 located in a third direction DIR3 from the center O of the tube 2 when viewed in the first direction DIR1. have. In this embodiment, the sensor section 3 is fixed to the first area A1.
 ところで、フロースイッチ1は、検出対象の流体と接触せずに、流体の流れを検出できる構造を有している。以下にこの構造について説明する。図6は、第1の実施形態に係るセンサ部3がチューブ2に固定されていない状態におけるチューブ2及びセンサ部3を前方向に視た側面図である。図7は、水5がチューブ2内を流れていない状態における第1の実施形態に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。図8は、水5がチューブ2内を流れている状態における第1の実施形態に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。なお、図8では、チューブ2及びセンサ部3が変形する様子を説明するため、チューブ2及びセンサ部3の変形を強調して示している。 By the way, the flow switch 1 has a structure that can detect the flow of fluid without coming into contact with the fluid to be detected. This structure will be explained below. FIG. 6 is a side view of the tube 2 and the sensor section 3 viewed from the front in a state where the sensor section 3 according to the first embodiment is not fixed to the tube 2. FIG. 7 is a front side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, in a state where water 5 is not flowing inside the tube 2. FIG. 8 is a front side view of the tube 2 to which the sensor section 3 according to the first embodiment is fixed, with water 5 flowing inside the tube 2. In addition, in FIG. 8, in order to explain how the tube 2 and the sensor part 3 deform, the deformation of the tube 2 and the sensor part 3 is emphasized.
 センサ部3がチューブ2に固定されていない状態で、圧電フィルム11の第2上主面US2及び第2下主面LS2の長手方向は、左右方向に延びている。また、センサ部3がチューブ2に固定されていない状態で、圧電フィルム11の第2上主面US2及び第2下主面LS2の短手方向は、前後方向に延びている。また、圧電フィルム11は、センサ部3がチューブ2に固定されていない状態で、僅かに左右方向に延ばされている。センサ部3を、図6に示すように、湾曲部22の上から湾曲部22に向けて下方向に移動させることにより、センサ部3を、図7に示すように、チューブ2の外周面OS、かつ、湾曲部22に固定する。本実施形態では、センサ部3を、第1領域A1かつ湾曲部22に固定する。センサ部3は、チューブ2に固定されている状態で、僅かに左右方向に延ばされている。これにより、センサ部3がチューブ2に固定されている状態で、センサ部3には、第1方向DIR1及び第1方向DIR1の反対方向に縮む張力が発生している。これにより、センサ部3は、チューブ2の変形を検出することができる。 When the sensor section 3 is not fixed to the tube 2, the longitudinal direction of the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 extends in the left-right direction. Further, in a state where the sensor section 3 is not fixed to the tube 2, the lateral direction of the second upper main surface US2 and the second lower main surface LS2 of the piezoelectric film 11 extends in the front-rear direction. Furthermore, the piezoelectric film 11 is slightly extended in the left-right direction with the sensor section 3 not being fixed to the tube 2. By moving the sensor section 3 downward from above the curved section 22 toward the curved section 22, as shown in FIG. , and fixed to the curved portion 22. In this embodiment, the sensor section 3 is fixed to the first region A1 and the curved section 22. The sensor section 3 is fixed to the tube 2 and is slightly extended in the left-right direction. As a result, while the sensor section 3 is fixed to the tube 2, tension is generated in the sensor section 3 to cause it to contract in the first direction DIR1 and in the opposite direction to the first direction DIR1. Thereby, the sensor section 3 can detect the deformation of the tube 2.
 圧電フィルム11が発生する電荷の大きさは、伸張又は圧縮による圧電フィルム11の変形量の微分値に比例する。すなわち、センサ部3がチューブ2に固定されている状態、かつ、水5がチューブ2内を流れていない状態で、圧電フィルム11は、電荷を発生しない。信号線には、チューブ2が変形していないことを示す検知信号が伝送される。 The magnitude of the charge generated by the piezoelectric film 11 is proportional to the differential value of the amount of deformation of the piezoelectric film 11 due to expansion or compression. That is, when the sensor section 3 is fixed to the tube 2 and the water 5 is not flowing inside the tube 2, the piezoelectric film 11 does not generate an electric charge. A detection signal indicating that the tube 2 is not deformed is transmitted to the signal line.
 水5がチューブ2内を流れている状態では、チューブ2の中心Oより第2方向DIR2に位置する水5の流速は、チューブ2の中心Oより第3方向DIR3に位置する水5の流速より大きい。従って、水5がチューブ2内を流れ始めると、湾曲部22は、弾性変形により、変形する。より詳細には、水5がチューブ2内を流れ始めると、湾曲部22は、図8に示すように、水5から力Fを受ける。具体的には、左直線部21Lでは、水5は、右上方向に進行する。湾曲部22は、第2方向DIR2に突出するように湾曲する形状を含んでいる。そのため、水5は、湾曲部22の内周面の内のチューブ2の中心Oより第2方向DIR2に位置する部分に衝突する。これにより、水5の進行方向が変化して、水5は、湾曲部22に沿って流れる。このとき、水5は、湾曲部22に力Fを与える。力Fの方向は、湾曲部22が上方向に突出するように湾曲する形状を含んでいることにより、第2方向DIR2である。これにより、湾曲部22は、弾性変形により、変形する。より詳細には、湾曲部22は、弾性変形により、湾曲部22の直径が大きくなるように変形する。これにより、センサ部3は、第1方向DIR1に伸張するように変形する。従って、圧電フィルム11は、左右方向に伸張される。その結果、圧電フィルム11は、負の電荷を発生する。信号線には、チューブ2が変形したことを示す検知信号が伝送される。 When the water 5 is flowing in the tube 2, the flow velocity of the water 5 located in the second direction DIR2 from the center O of the tube 2 is higher than the flow velocity of the water 5 located in the third direction DIR3 from the center O of the tube 2. big. Therefore, when the water 5 begins to flow inside the tube 2, the curved portion 22 deforms due to elastic deformation. More specifically, when the water 5 begins to flow within the tube 2, the curved portion 22 receives a force F from the water 5, as shown in FIG. Specifically, in the left straight portion 21L, the water 5 travels in the upper right direction. The curved portion 22 includes a shape that curves so as to protrude in the second direction DIR2. Therefore, the water 5 collides with a portion of the inner peripheral surface of the curved portion 22 located in the second direction DIR2 from the center O of the tube 2. As a result, the traveling direction of the water 5 changes, and the water 5 flows along the curved portion 22. At this time, the water 5 applies a force F to the curved portion 22. The direction of the force F is the second direction DIR2 because the curved portion 22 includes a curved shape so as to protrude upward. As a result, the curved portion 22 deforms due to elastic deformation. More specifically, the curved portion 22 deforms by elastic deformation so that the diameter of the curved portion 22 becomes larger. Thereby, the sensor section 3 is deformed so as to expand in the first direction DIR1. Therefore, the piezoelectric film 11 is stretched in the left-right direction. As a result, the piezoelectric film 11 generates negative charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
 チューブ2内を流れていた水5が停止し始めると、湾曲部22が水5から受けていた力Fが小さくなる。チューブ2内を流れていた水5が完全に停止すると、湾曲部22が水5から受けていた力Fは、零になる。これにより、湾曲部22は、弾性変形により、変形する。より詳細には、湾曲部22は、弾性変形により、水5がチューブ2内を流れていない状態の形状に戻る。具体的には、湾曲部22は、弾性変形により、湾曲部22の直径が小さくなるように変形する。これにより、センサ部3は、第1方向DIR1に縮むように変形する。従って、圧電フィルム11は、左右方向に圧縮される。その結果、圧電フィルム11は、正の電荷を発生する。信号線には、チューブ2が変形したことを示す検知信号が伝送される。 When the water 5 that was flowing inside the tube 2 begins to stop, the force F that the curved portion 22 was receiving from the water 5 becomes smaller. When the water 5 flowing through the tube 2 completely stops, the force F that the curved portion 22 was receiving from the water 5 becomes zero. As a result, the curved portion 22 deforms due to elastic deformation. More specifically, the curved portion 22 returns to the shape in which water 5 is not flowing through the tube 2 due to elastic deformation. Specifically, the curved portion 22 deforms by elastic deformation so that the diameter of the curved portion 22 becomes smaller. Thereby, the sensor section 3 is deformed so as to contract in the first direction DIR1. Therefore, the piezoelectric film 11 is compressed in the left-right direction. As a result, the piezoelectric film 11 generates positive charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
 [効果]
 フロースイッチ1によれば、検出対象の流体と接触せずに、流体の流れを検出することができる。より詳細には、チューブ2は、可撓性を有し、かつ、湾曲部22を有する。これにより、流体がチューブ2内を流れ始めると、湾曲部22は、流体から力Fを受ける。その結果、流体がチューブ2内を流れ始めると、湾曲部22は、変形する。また、チューブ2内を流れていた流体が完全に停止すると、湾曲部22が流体から受けていた力Fは、零になる。その結果、流体がチューブ2内を流れ始めると、湾曲部22は、変形する。そこで、フロースイッチ1は、チューブ2の変形を検出するセンサ部3を備えている。センサ部3は、チューブ2の外周面OS、かつ、湾曲部22に固定される。これにより、フロースイッチ1は、検出対象の流体と接触しない。また、フロースイッチ1は、センサ部3が湾曲部22の変形を検出することにより、流体の流れを検出する。その結果、フロースイッチ1によれば、検出対象の流体と接触せずに、流体の流れを検出することができる。
[effect]
According to the flow switch 1, the flow of fluid can be detected without contacting the fluid to be detected. More specifically, the tube 2 is flexible and has a curved portion 22. Thereby, when the fluid starts flowing inside the tube 2, the curved portion 22 receives a force F from the fluid. As a result, when fluid begins to flow within the tube 2, the curved portion 22 deforms. Further, when the fluid flowing inside the tube 2 completely stops, the force F that the curved portion 22 was receiving from the fluid becomes zero. As a result, when fluid begins to flow within the tube 2, the curved portion 22 deforms. Therefore, the flow switch 1 includes a sensor section 3 that detects the deformation of the tube 2. The sensor section 3 is fixed to the outer circumferential surface OS of the tube 2 and to the curved section 22 . Thereby, the flow switch 1 does not come into contact with the fluid to be detected. Further, in the flow switch 1, the sensor section 3 detects the deformation of the curved section 22, thereby detecting the flow of fluid. As a result, the flow switch 1 can detect the flow of fluid without coming into contact with the fluid to be detected.
 フロースイッチ1によれば、流体の流れを検出する感度を向上させることができる。より詳細には、チューブ2の湾曲部22は、第2方向DIR2に突出するように湾曲する形状を含んでいる。また、チューブ2の外周面OSは、流体が流れる第1方向DIR1に視て、チューブ2の中心Oより第2方向DIR2に位置する第1領域A1、及び、チューブ2の中心Oより第3方向DIR3に位置する第2領域A2を有している。これにより、流体がチューブ2内を流れ始めると、第1領域A1かつ湾曲部22には引張応力が働く。一方、流体がチューブ2内を流れ始めると、第2領域A2かつ湾曲部22には圧縮応力が働く。そこで、センサ部3は、第1領域A1に固定されている。これにより、引張応力により圧電フィルム11が変形することによって圧電フィルム11が発生する電荷と圧縮応力により圧電フィルム11が変形することによって圧電フィルム11が発生する電荷とが打ち消し合うことがない。従って、センサ部3の感度が向上する。その結果、フロースイッチ1によれば、流体の流れを検出する感度を向上させることができる。 According to the flow switch 1, the sensitivity for detecting fluid flow can be improved. More specifically, the curved portion 22 of the tube 2 includes a shape that curves so as to protrude in the second direction DIR2. Further, the outer circumferential surface OS of the tube 2 includes a first area A1 located in a second direction DIR2 from the center O of the tube 2, and a third direction from the center O of the tube 2, as viewed from the first direction DIR1 in which the fluid flows. It has a second area A2 located at DIR3. As a result, when the fluid starts flowing inside the tube 2, tensile stress acts on the first region A1 and the curved portion 22. On the other hand, when the fluid starts flowing inside the tube 2, compressive stress acts on the second region A2 and the curved portion 22. Therefore, the sensor section 3 is fixed to the first area A1. As a result, the charge generated in the piezoelectric film 11 when the piezoelectric film 11 is deformed by tensile stress and the charge generated in the piezoelectric film 11 when the piezoelectric film 11 is deformed by compressive stress do not cancel each other out. Therefore, the sensitivity of the sensor section 3 is improved. As a result, according to the flow switch 1, the sensitivity for detecting the flow of fluid can be improved.
 フロースイッチ1によれば、センサ部3をチューブ2の外周面OS、かつ、湾曲部22に固定しやすくなる。より詳細には、センサ部3は、圧電フィルム11を含んでいる。また、圧電フィルム11は、シート形状を有している。これにより、センサ部3は、可撓性を有している。その結果、フロースイッチ1によれば、センサ部3をチューブ2の外周面OS、かつ、湾曲部22に固定しやすくなる。 According to the flow switch 1, the sensor part 3 can be easily fixed to the outer peripheral surface OS of the tube 2 and to the curved part 22. More specifically, the sensor section 3 includes a piezoelectric film 11. Further, the piezoelectric film 11 has a sheet shape. Thereby, the sensor section 3 has flexibility. As a result, according to the flow switch 1, the sensor section 3 can be easily fixed to the outer circumferential surface OS of the tube 2 and to the curved section 22.
 フロースイッチ取付方法によれば、検出対象の流体と接触せずに、流体の流れを検出できるフロースイッチ1をチューブ2に取り付けることができる。より詳細には、チューブ2は、可撓性を有し、かつ、湾曲部22を有する。センサ部3がチューブ2の変形を検出するように、センサ部3をチューブ2の外周面OS、かつ、湾曲部22に固定する。その結果、フロースイッチ取付方法によれば、検出対象の流体と接触せずに、流体の流れを検出できるフロースイッチ1をチューブ2に取り付けることができる。 According to the flow switch attachment method, the flow switch 1 that can detect the flow of fluid without coming into contact with the fluid to be detected can be attached to the tube 2. More specifically, the tube 2 is flexible and has a curved portion 22. The sensor part 3 is fixed to the outer peripheral surface OS of the tube 2 and to the curved part 22 so that the sensor part 3 detects the deformation of the tube 2. As a result, according to the flow switch attachment method, the flow switch 1 that can detect the flow of fluid can be attached to the tube 2 without coming into contact with the fluid to be detected.
 [第1の変形例]
 以下に、本発明の第1の変形例に係るフロースイッチ1aについて、図を参照しながら説明する。図9は、第1の変形例に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。図10は、第1の変形例に係るチューブ2、センサ部3及び接着材4のB-Bにおける断面図である。図11は、第1の変形例に係るセンサ部3がチューブ2に固定されていない状態におけるチューブ2及びセンサ部3を前方向に視た側面図である。図12は、水5がチューブ2内を流れていない状態における第1の変形例に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。図13は、水5がチューブ2内を流れている状態における第1の変形例に係るセンサ部3を固定したチューブ2を前方向に視た側面図である。なお、図13では、チューブ2及びセンサ部3が変形する様子を説明するため、チューブ2及びセンサ部3の変形を強調して示している。なお、第1の変形例に係るフロースイッチ1aについては、第1の実施形態に係るフロースイッチ1と異なる部分のみ説明し、後は省略する。
[First modification]
A flow switch 1a according to a first modification of the present invention will be described below with reference to the drawings. FIG. 9 is a side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, viewed from the front. FIG. 10 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the first modification. FIG. 11 is a side view of the tube 2 and the sensor section 3 viewed from the front in a state where the sensor section 3 according to the first modification is not fixed to the tube 2. FIG. 12 is a front side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, in a state where water 5 is not flowing inside the tube 2. FIG. 13 is a front side view of the tube 2 to which the sensor section 3 according to the first modification is fixed, with water 5 flowing inside the tube 2. In addition, in FIG. 13, in order to explain how the tube 2 and the sensor section 3 deform, the deformation of the tube 2 and the sensor section 3 is emphasized. Regarding the flow switch 1a according to the first modification, only the parts that are different from the flow switch 1 according to the first embodiment will be explained, and the rest will be omitted.
 フロースイッチ1aは、図9及び図10に示すように、センサ部3がチューブ2の外周面OSの第2領域A2に固定されている点において、フロースイッチ1と相違する。 The flow switch 1a is different from the flow switch 1 in that the sensor section 3 is fixed to the second region A2 of the outer peripheral surface OS of the tube 2, as shown in FIGS. 9 and 10.
 センサ部3を、図11に示すように、湾曲部22の下から湾曲部22に向けて上方向に移動させることにより、センサ部3を、図12に示すように、チューブ2の外周面OS、かつ、湾曲部22に固定する。本実施形態では、センサ部3を、第2領域A2かつ湾曲部22に固定する。センサ部3は、チューブ2に固定されている状態で、僅かに左右方向に延ばされている。これにより、センサ部3がチューブ2に固定されている状態で、センサ部3には、第1方向DIR1及び第1方向DIR1の反対方向に縮む張力が発生している。これにより、センサ部3は、チューブ2の変形を検出することができる。 By moving the sensor section 3 upward toward the curved section 22 from below the curved section 22 as shown in FIG. , and fixed to the curved portion 22. In this embodiment, the sensor section 3 is fixed to the second region A2 and the curved section 22. The sensor section 3 is fixed to the tube 2 and is slightly extended in the left-right direction. As a result, while the sensor section 3 is fixed to the tube 2, tension is generated in the sensor section 3 to cause it to contract in the first direction DIR1 and in the opposite direction to the first direction DIR1. Thereby, the sensor section 3 can detect the deformation of the tube 2.
 圧電フィルム11が発生する電荷の大きさは、伸張又は圧縮による圧電フィルム11の変形量の微分値に比例する。すなわち、センサ部3がチューブ2に固定されている状態、かつ、水5がチューブ2内を流れていない状態で、圧電フィルム11は、電荷を発生しない。信号線には、チューブ2が変形していないことを示す検知信号が伝送される。 The magnitude of the charge generated by the piezoelectric film 11 is proportional to the differential value of the amount of deformation of the piezoelectric film 11 due to expansion or compression. That is, when the sensor section 3 is fixed to the tube 2 and the water 5 is not flowing inside the tube 2, the piezoelectric film 11 does not generate an electric charge. A detection signal indicating that the tube 2 is not deformed is transmitted to the signal line.
 水5がチューブ2内を流れ始めると、湾曲部22は、図13に示すように、弾性変形により、変形する。これにより、センサ部3は、第1方向DIR1に縮むように変形する。従って、圧電フィルム11は、左右方向に圧縮される。その結果、圧電フィルム11は、正の電荷を発生する。信号線には、チューブ2が変形したことを示す検知信号が伝送される。 When the water 5 begins to flow inside the tube 2, the curved portion 22 deforms due to elastic deformation, as shown in FIG. Thereby, the sensor section 3 is deformed so as to contract in the first direction DIR1. Therefore, the piezoelectric film 11 is compressed in the left-right direction. As a result, the piezoelectric film 11 generates positive charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
 チューブ2内を流れていた水5が停止し始めると、湾曲部22が水5から受けていた力Fが小さくなる。チューブ2内を流れていた水5が完全に停止すると、湾曲部22が水5から受けていた力Fは、零になる。これにより、湾曲部22は、弾性変形により、変形する。より詳細には、湾曲部22は、弾性変形により、水5がチューブ2内を流れていない状態の形状に戻る。具体的には、湾曲部22は、弾性変形により、湾曲部22の直径が小さくなるように変形する。これにより、センサ部3は、第1方向DIR1に伸張するように変形する。従って、圧電フィルム11は、左右方向に伸張される。その結果、圧電フィルム11は、負の電荷を発生する。信号線には、チューブ2が変形したことを示す検知信号が伝送される。 When the water 5 that was flowing inside the tube 2 begins to stop, the force F that the curved portion 22 was receiving from the water 5 becomes smaller. When the water 5 flowing through the tube 2 completely stops, the force F that the curved portion 22 was receiving from the water 5 becomes zero. As a result, the curved portion 22 deforms due to elastic deformation. More specifically, the curved portion 22 returns to the shape in which water 5 is not flowing through the tube 2 due to elastic deformation. Specifically, the curved portion 22 deforms by elastic deformation so that the diameter of the curved portion 22 becomes smaller. Thereby, the sensor section 3 is deformed so as to expand in the first direction DIR1. Therefore, the piezoelectric film 11 is stretched in the left-right direction. As a result, the piezoelectric film 11 generates negative charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
 以上のようなフロースイッチ1aにおいても、フロースイッチ1と同じ効果を奏する。 The flow switch 1a as described above also has the same effects as the flow switch 1.
 [第2の変形例]
 以下に、本発明の第2の変形例に係るフロースイッチ1bについて、図を参照しながら説明する。図14は、第2の変形例に係るチューブ2、センサ部3及び接着材4のB-Bにおける断面図である。なお、第2の変形例に係るフロースイッチ1bについては、第1の実施形態に係るフロースイッチ1と異なる部分のみ説明し、後は省略する。
[Second modification]
A flow switch 1b according to a second modification of the present invention will be described below with reference to the drawings. FIG. 14 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the second modification. Regarding the flow switch 1b according to the second modification, only the parts that are different from the flow switch 1 according to the first embodiment will be explained, and the rest will be omitted.
 フロースイッチ1bは、図14に示すように、センサ部3がチューブ2の外周面OSの第1領域A1と、第2領域A2と、に跨って固定されている点において、フロースイッチ1と相違する。 The flow switch 1b is different from the flow switch 1 in that the sensor section 3 is fixed across the first area A1 and the second area A2 of the outer peripheral surface OS of the tube 2, as shown in FIG. do.
 チューブ2の外周面OSの第1領域A1のセンサ部3が固定される部分の面積は、図14に示すように、チューブ2の外周面OSの第2領域A2のセンサ部3が固定される部分の面積より大きい。 As shown in FIG. 14, the area of the portion of the outer circumferential surface OS of the tube 2 where the sensor section 3 in the first region A1 is fixed is as shown in FIG. larger than the area of the part.
 水5がチューブ2内を流れ始めると、湾曲部22は、弾性変形により、変形する。これにより、チューブ2の外周面OSの第1領域A1に固定されている圧電フィルム11の部分は、第1方向DIR1に伸張するように変形する。一方、チューブ2の外周面OSの第2領域A2に固定されている圧電フィルム11の部分は、第1方向DIR1に縮むように変形する。チューブ2の外周面OSの第1領域A1のセンサ部3が固定される部分の面積が、チューブ2の外周面OSの第2領域A2のセンサ部3が固定される部分の面積より大きいため、圧電フィルム11は、負の電荷を発生する。信号線には、チューブ2が変形したことを示す検知信号が伝送される。 When the water 5 begins to flow inside the tube 2, the curved portion 22 deforms due to elastic deformation. As a result, the portion of the piezoelectric film 11 fixed to the first region A1 of the outer circumferential surface OS of the tube 2 is deformed so as to extend in the first direction DIR1. On the other hand, the portion of the piezoelectric film 11 fixed to the second region A2 of the outer peripheral surface OS of the tube 2 is deformed so as to contract in the first direction DIR1. Since the area of the first region A1 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed is larger than the area of the second region A2 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed, The piezoelectric film 11 generates negative charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
 チューブ2内を流れていた水5が停止し始めると、湾曲部22が水5から受けていた力Fが小さくなる。チューブ2内を流れていた水5が完全に停止すると、湾曲部22が水5から受けていた力Fは、零になる。これにより、湾曲部22は、弾性変形により、変形する。より詳細には、湾曲部22は、弾性変形により、水5がチューブ2内を流れていない状態の形状に戻る。具体的には、湾曲部22は、弾性変形により、湾曲部22の直径が小さくなるように変形する。これにより、チューブ2の外周面OSの第1領域A1に固定されている圧電フィルム11の部分は、第1方向DIR1に縮むように変形する。一方、チューブ2の外周面OSの第2領域A2に固定されている圧電フィルム11の部分は、第1方向DIR1に伸張するように変形する。チューブ2の外周面OSの第1領域A1のセンサ部3が固定される部分の面積が、チューブ2の外周面OSの第2領域A2のセンサ部3が固定される部分の面積より大きいため、圧電フィルム11は、正の電荷を発生する。信号線には、チューブ2が変形したことを示す検知信号が伝送される。 When the water 5 that was flowing inside the tube 2 begins to stop, the force F that the curved portion 22 was receiving from the water 5 becomes smaller. When the water 5 flowing through the tube 2 completely stops, the force F that the curved portion 22 was receiving from the water 5 becomes zero. As a result, the curved portion 22 deforms due to elastic deformation. More specifically, the curved portion 22 returns to the shape in which water 5 is not flowing through the tube 2 due to elastic deformation. Specifically, the curved portion 22 deforms by elastic deformation so that the diameter of the curved portion 22 becomes smaller. As a result, the portion of the piezoelectric film 11 fixed to the first region A1 of the outer circumferential surface OS of the tube 2 is deformed so as to contract in the first direction DIR1. On the other hand, the portion of the piezoelectric film 11 fixed to the second region A2 of the outer peripheral surface OS of the tube 2 is deformed so as to extend in the first direction DIR1. Since the area of the first region A1 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed is larger than the area of the second region A2 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed, The piezoelectric film 11 generates positive charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
 以上のようなフロースイッチ1bにおいても、フロースイッチ1と同じ効果を奏する。 The flow switch 1b as described above also has the same effects as the flow switch 1.
 [第3の変形例]
 以下に、本発明の第3の変形例に係るフロースイッチ1cについて、図を参照しながら説明する。図15は、第3の変形例に係るチューブ2、センサ部3及び接着材4のB-Bにおける断面図である。なお、第3の変形例に係るフロースイッチ1cについては、第1の実施形態に係るフロースイッチ1aと異なる部分のみ説明し、後は省略する。
[Third modification]
A flow switch 1c according to a third modification of the present invention will be described below with reference to the drawings. FIG. 15 is a sectional view taken along line BB of the tube 2, sensor section 3, and adhesive 4 according to the third modification. Regarding the flow switch 1c according to the third modification, only the parts different from the flow switch 1a according to the first embodiment will be explained, and the rest will be omitted.
 フロースイッチ1cは、図15に示すように、センサ部3がチューブ2の外周面OSの第1領域A1と、第2領域A2と、に跨って固定されている点において、フロースイッチ1aと相違する。 The flow switch 1c differs from the flow switch 1a in that the sensor section 3 is fixed across the first area A1 and the second area A2 of the outer peripheral surface OS of the tube 2, as shown in FIG. do.
 チューブ2の外周面OSの第2領域A2のセンサ部3が固定される部分の面積は、図15に示すように、チューブ2の外周面OSの第1領域A1のセンサ部3が固定される部分の面積より大きい。 As shown in FIG. 15, the area of the portion of the outer peripheral surface OS of the tube 2 where the sensor section 3 in the second region A2 is fixed is as shown in FIG. larger than the area of the part.
 水5がチューブ2内を流れ始めると、湾曲部22は、弾性変形により、変形する。これにより、チューブ2の外周面OSの第1領域A1に固定されている圧電フィルム11の部分は、第1方向DIR1に伸張するように変形する。一方、チューブ2の外周面OSの第2領域A2に固定されている圧電フィルム11の部分は、第1方向DIR1に縮むように変形する。チューブ2の外周面OSの第2領域A2のセンサ部3が固定される部分の面積が、チューブ2の外周面OSの第1領域A1のセンサ部3が固定される部分の面積より大きいため、圧電フィルム11は、正の電荷を発生する。信号線には、チューブ2が変形したことを示す検知信号が伝送される。 When the water 5 begins to flow inside the tube 2, the curved portion 22 deforms due to elastic deformation. As a result, the portion of the piezoelectric film 11 fixed to the first region A1 of the outer circumferential surface OS of the tube 2 is deformed so as to extend in the first direction DIR1. On the other hand, the portion of the piezoelectric film 11 fixed to the second region A2 of the outer peripheral surface OS of the tube 2 is deformed so as to contract in the first direction DIR1. Since the area of the second region A2 of the outer circumferential surface OS of the tube 2 where the sensor section 3 is fixed is larger than the area of the first region A1 of the outer circumferential surface OS of the tube 2 where the sensor section 3 is fixed, The piezoelectric film 11 generates positive charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
 チューブ2内を流れていた水5が停止し始めると、湾曲部22が水5から受けていた力Fが小さくなる。チューブ2内を流れていた水5が完全に停止すると、湾曲部22が水5から受けていた力Fは、零になる。これにより、湾曲部22は、弾性変形により、変形する。より詳細には、湾曲部22は、弾性変形により、水5がチューブ2内を流れていない状態の形状に戻る。具体的には、湾曲部22は、弾性変形により、湾曲部22の直径が小さくなるように変形する。これにより、チューブ2の外周面OSの第1領域A1に固定されている圧電フィルム11の部分は、第1方向DIR1に縮むように変形する。一方、チューブ2の外周面OSの第2領域A2に固定されている圧電フィルム11の部分は、第1方向DIR1に伸張するように変形する。チューブ2の外周面OSの第2領域A2のセンサ部3が固定される部分の面積が、チューブ2の外周面OSの第1領域A1のセンサ部3が固定される部分の面積より大きいため、圧電フィルム11は、負の電荷を発生する。信号線には、チューブ2が変形したことを示す検知信号が伝送される。 When the water 5 that was flowing inside the tube 2 begins to stop, the force F that the curved portion 22 was receiving from the water 5 becomes smaller. When the water 5 flowing through the tube 2 completely stops, the force F that the curved portion 22 was receiving from the water 5 becomes zero. As a result, the curved portion 22 deforms due to elastic deformation. More specifically, the curved portion 22 returns to the shape in which water 5 is not flowing through the tube 2 due to elastic deformation. Specifically, the curved portion 22 deforms by elastic deformation so that the diameter of the curved portion 22 becomes smaller. As a result, the portion of the piezoelectric film 11 fixed to the first region A1 of the outer circumferential surface OS of the tube 2 is deformed so as to contract in the first direction DIR1. On the other hand, the portion of the piezoelectric film 11 fixed to the second region A2 of the outer peripheral surface OS of the tube 2 is deformed so as to extend in the first direction DIR1. Since the area of the second region A2 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed is larger than the area of the first region A1 of the outer peripheral surface OS of the tube 2 where the sensor section 3 is fixed, The piezoelectric film 11 generates negative charges. A detection signal indicating that the tube 2 has been deformed is transmitted to the signal line.
 以上のようなフロースイッチ1cにおいても、フロースイッチ1aと同じ効果を奏する。 The flow switch 1c as described above also has the same effects as the flow switch 1a.
 [その他の実施形態]
 本発明に係るフロースイッチは、フロースイッチ1,1a~1cに限らず、その要旨の範囲において変更可能である。また、フロースイッチ1,1a~1cの構造を任意に組み合わせてもよい。
[Other embodiments]
The flow switch according to the present invention is not limited to the flow switches 1, 1a to 1c, and can be modified within the scope of the gist. Furthermore, the structures of the flow switches 1, 1a to 1c may be combined arbitrarily.
 なお、センサ部3は、上下方向に視て、矩形状を有していなくてもよい。矩形状とは、矩形及び矩形を僅かに変形した形状を含む。この場合、センサ部3は、左右方向に延びる長手方向を有していればよい。例えば、第1上主面US1及び第1下主面LS1のそれぞれは、センサ部3が平面に展開された状態で、第1上主面US1及び第1下主面LS1のそれぞれの法線方向に見て、楕円状を有していてもよい。 Note that the sensor section 3 does not have to have a rectangular shape when viewed in the vertical direction. The rectangular shape includes a rectangle and a shape that is slightly modified from a rectangle. In this case, the sensor section 3 only needs to have a longitudinal direction extending in the left-right direction. For example, each of the first upper principal surface US1 and the first lower principal surface LS1 is arranged in the normal direction of the first upper principal surface US1 and the first lower principal surface LS1 in a state in which the sensor unit 3 is developed into a plane. It may have an elliptical shape.
 なお、圧電フィルム11は、上下方向に視て、矩形状を有していなくてもよい。この場合、圧電フィルム11は、左右方向に延びる長手方向を有していればよい。例えば、第2上主面US2及び第2下主面LS2のそれぞれは、圧電フィルム11が平面に展開された状態で、第2上主面US2及び第2下主面LS2のそれぞれの法線方向に見て、楕円状を有していてもよい。 Note that the piezoelectric film 11 does not have to have a rectangular shape when viewed in the vertical direction. In this case, the piezoelectric film 11 only needs to have a longitudinal direction extending in the left-right direction. For example, each of the second upper principal surface US2 and the second lower principal surface LS2 is arranged in the normal direction of the second upper principal surface US2 and the second lower principal surface LS2 in a state where the piezoelectric film 11 is developed into a plane. It may have an elliptical shape.
 なお、センサ部3の左右方向の長さは、センサ部3の前後方向の長さと同じであってもよい。例えば、第1上主面US1及び第1下主面LS1のそれぞれは、センサ部3が平面に展開された状態で、第1上主面US1及び第1下主面LS1のそれぞれの法線方向に見て、正方形状又は円形状を有していてもよい。 Note that the length of the sensor section 3 in the left-right direction may be the same as the length of the sensor section 3 in the front-back direction. For example, each of the first upper principal surface US1 and the first lower principal surface LS1 is arranged in the normal direction of the first upper principal surface US1 and the first lower principal surface LS1 in a state in which the sensor unit 3 is developed into a plane. In other words, it may have a square or circular shape.
 なお、圧電フィルム11の左右方向の長さは、圧電フィルム11の前後方向の長さと同じであってもよい。例えば、第2上主面US2及び第2下主面LS2のそれぞれは、圧電フィルム11が平面に展開された状態で、第2上主面US2及び第2下主面LS2のそれぞれの法線方向に見て、正方形状又は円形状を有していてもよい。 Note that the length of the piezoelectric film 11 in the left-right direction may be the same as the length of the piezoelectric film 11 in the front-back direction. For example, each of the second upper principal surface US2 and the second lower principal surface LS2 is arranged in the normal direction of the second upper principal surface US2 and the second lower principal surface LS2 in a state where the piezoelectric film 11 is developed into a plane. In other words, it may have a square or circular shape.
 なお、圧電フィルム11は、少なくとも一軸方向に延伸されているポリ乳酸を有するフィルムであってもよい。 Note that the piezoelectric film 11 may be a film containing polylactic acid stretched in at least one axis.
 なお、圧電フィルム11は、d31の圧電定数を有していてもよい。d31の圧電定数を有する圧電フィルム11は、例えば、PVDF(ポリフッ化ビニリデン)フィルムである。また、圧電フィルム11は、圧電セラミックであってもよい。 Note that the piezoelectric film 11 may have a piezoelectric constant of d31. The piezoelectric film 11 having a piezoelectric constant of d31 is, for example, a PVDF (polyvinylidene fluoride) film. Moreover, the piezoelectric film 11 may be a piezoelectric ceramic.
 なお、圧電フィルム11が左右方向に伸張されたときに圧電フィルム11が発生する電荷の極性は、圧電フィルム11が前後方向に伸張されたときに圧電フィルム11が発生する電荷の極性と同じであってもよい。 Note that the polarity of the charge generated by the piezoelectric film 11 when the piezoelectric film 11 is stretched in the left-right direction is the same as the polarity of the charge generated by the piezoelectric film 11 when the piezoelectric film 11 is stretched in the front-back direction. It's okay.
 なお、圧電フィルム11の一軸延伸方向ODと前後方向及び左右方向のそれぞれとが形成する角度は、45度に限られない。 Note that the angles formed by the uniaxial stretching direction OD of the piezoelectric film 11 and each of the front-rear direction and left-right direction are not limited to 45 degrees.
 なお、上電極12aが信号電極であり、下電極12bがグランド電極であってもよい。 Note that the upper electrode 12a may be a signal electrode, and the lower electrode 12b may be a ground electrode.
 なお、下電極12bは、フレキシブルプリント基板14の上主面と下主面との間に設けられていてもよい。すなわち、下電極12bは、フレキシブルプリント基板14内に位置していてもよい。 Note that the lower electrode 12b may be provided between the upper main surface and the lower main surface of the flexible printed circuit board 14. That is, the lower electrode 12b may be located within the flexible printed circuit board 14.
 なお、フレキシブルプリント基板14は、必須の構成要件ではない。 Note that the flexible printed circuit board 14 is not an essential component.
 なお、チューブ2は、左直線部21L及び右直線部21Rを有していなくてもよい。 Note that the tube 2 does not need to have the left straight section 21L and the right straight section 21R.
 なお、流体は、水5に限られない。流体は、例えば、油又は空気等であってもよい。 Note that the fluid is not limited to water 5. The fluid may be, for example, oil or air.
 なお、接着材4は、必須の構成要件ではない。 Note that the adhesive 4 is not an essential component.
 なお、湾曲部22は、弾性変形により、変形することに限られない。湾曲部22は、塑性変形により、変形してもよい。また、湾曲部22は、弾性変形及び塑性変形により、変形してもよい。これらの場合においても、フロースイッチ1と同じ効果を奏する。また、チューブ2の先端にノズルが設けられていてもよい。この場合、湾曲部22は、ノズルの位置が変化できるように、チューブ2に設けられる。ノズルの位置が変化すると、湾曲部22が弾性変形する。これにより、湾曲部22の曲率半径が変化する。この場合においても、フロースイッチ1と同じ効果を奏する。 Note that the curved portion 22 is not limited to being deformed by elastic deformation. The curved portion 22 may be deformed by plastic deformation. Further, the curved portion 22 may be deformed by elastic deformation or plastic deformation. Even in these cases, the same effects as the flow switch 1 can be achieved. Further, a nozzle may be provided at the tip of the tube 2. In this case, a bend 22 is provided on the tube 2 so that the position of the nozzle can be changed. When the position of the nozzle changes, the curved portion 22 is elastically deformed. As a result, the radius of curvature of the curved portion 22 changes. Even in this case, the same effects as the flow switch 1 can be achieved.
 なお、センサ部3は、チューブ2の左右方向周りの捻れを検出してもよい。また、センサ部3が検出するチューブ2の変形方向は、左右方向に限らず、上下方向又は前後方向であってもよく、任意の方向であってもよい。また、センサ部3が検出するチューブ2の変形方向は、複数の方向であってもよい。 Note that the sensor section 3 may detect twisting of the tube 2 in the left-right direction. Further, the deformation direction of the tube 2 detected by the sensor section 3 is not limited to the left-right direction, but may be the up-down direction or the front-back direction, or may be any direction. Moreover, the deformation direction of the tube 2 detected by the sensor section 3 may be a plurality of directions.
 なお、センサ部3は、チューブ2の変形量又は応力を検出してもよい。また、センサ部3は、例えば、歪ゲージを含んでいてもよい。 Note that the sensor section 3 may detect the amount of deformation or stress of the tube 2. Further, the sensor section 3 may include, for example, a strain gauge.
 なお、チューブ2の第1方向DIR1に垂直な断面の外縁は、円形状を含んでいなくてもよい。 Note that the outer edge of the cross section of the tube 2 perpendicular to the first direction DIR1 does not have to include a circular shape.
 なお、チューブ2の第1方向DIR1に垂直な断面の内縁は、円形状を含んでいなくてもよい。 Note that the inner edge of the cross section perpendicular to the first direction DIR1 of the tube 2 does not have to include a circular shape.
 なお、フロースイッチ1,1a~1cは、下電極12bから出力された検知信号に基づいて、流体の流れ始めの時刻及び流体の停止し始めの時刻を演算する演算回路を更に備えてもよい。例えば、あらかじめ、判定値を演算回路に設定する。流体が流れ始める前において、チューブ2の先端に設けられる外部機器の動作により、湾曲部22が大きく変形する場合、演算回路は、検知信号が判定値以上になった時刻がある場合に、検知信号が判定値以上になった時刻の検知信号をマスクしてもよい。 Note that the flow switches 1, 1a to 1c may further include an arithmetic circuit that calculates the time when the fluid starts flowing and the time when the fluid starts to stop based on the detection signal output from the lower electrode 12b. For example, a determination value is set in the arithmetic circuit in advance. If the bending portion 22 is significantly deformed due to the operation of an external device installed at the tip of the tube 2 before the fluid starts flowing, the arithmetic circuit detects the detection signal if there is a time when the detection signal exceeds the threshold value. The detection signal at the time when is equal to or greater than the determination value may be masked.
 本発明は、以下の構造を有する。 The present invention has the following structure.
(1)
 可撓性を有し、かつ、湾曲部を有するチューブ内を流れる流体の流れを検出するフロースイッチであって、
 前記フロースイッチは、
 前記チューブの変形を検出するセンサ部を備え、
 前記センサ部は、前記チューブの外周面、かつ、前記湾曲部に固定される、
 フロースイッチ。
(1)
A flow switch that detects the flow of fluid flowing in a tube that is flexible and has a curved part,
The flow switch is
comprising a sensor section that detects deformation of the tube,
The sensor section is fixed to the outer peripheral surface of the tube and the curved section.
flow switch.
(2)
 前記外周面は、前記流体が流れる第1方向に視て、前記チューブの中心より第2方向に位置する第1領域、及び、前記チューブの中心より第3方向に位置する第2領域、を有し、
 前記第2方向及び前記第3方向は、前記第1方向に直交し、
 前記第3方向は、前記第2方向の反対方向であり、
 前記湾曲部は、前記第2方向に突出するように湾曲する形状を含み、
 前記センサ部は、前記第1領域に固定される、
 (1)に記載のフロースイッチ。
(2)
The outer circumferential surface has a first region located in a second direction from the center of the tube, and a second region located in a third direction from the center of the tube, when viewed in the first direction in which the fluid flows. death,
the second direction and the third direction are orthogonal to the first direction,
The third direction is the opposite direction to the second direction,
The curved portion includes a shape that curves so as to protrude in the second direction,
the sensor section is fixed to the first region;
The flow switch described in (1).
(3)
 前記センサ部は、前記第1領域と、前記第2領域と、に跨って固定され、
 前記第1領域の前記センサ部が固定される部分の面積は、前記第2領域の前記センサ部が固定される部分の面積より大きい、
 (2)に記載のフロースイッチ。
(3)
The sensor section is fixed across the first region and the second region,
The area of the portion of the first region to which the sensor portion is fixed is larger than the area of the portion of the second region to which the sensor portion is fixed.
The flow switch described in (2).
(4)
 前記外周面は、前記流体が流れる第1方向に視て、前記チューブの中心より第2方向に位置する第1領域、及び、前記チューブの中心より第3方向に位置する第2領域、を有し、
 前記第2方向及び前記第3方向は、前記第1方向に直交し、
 前記第3方向は、前記第2方向の反対方向であり、
 前記湾曲部は、前記第2方向に突出するように湾曲する形状を含み、
 前記センサ部は、前記第2領域に固定される、
 (1)に記載のフロースイッチ。
(4)
The outer circumferential surface has a first region located in a second direction from the center of the tube, and a second region located in a third direction from the center of the tube, when viewed in the first direction in which the fluid flows. death,
the second direction and the third direction are orthogonal to the first direction,
The third direction is the opposite direction to the second direction,
The curved portion includes a shape that curves so as to protrude in the second direction,
the sensor section is fixed to the second region,
The flow switch described in (1).
(5)
 前記センサ部は、前記第1領域と、前記第2領域と、に跨って固定され、
 前記第2領域の前記センサ部が固定される部分の面積は、前記第1領域の前記センサ部が固定される部分の面積より大きい、
 (4)に記載のフロースイッチ。
(5)
The sensor section is fixed across the first region and the second region,
The area of the portion of the second region to which the sensor portion is fixed is larger than the area of the portion of the first region to which the sensor portion is fixed.
The flow switch described in (4).
(6)
 前記センサ部は、圧電フィルムを含む、
 (1)乃至(5)のいずれかに記載のフロースイッチ。
(6)
The sensor section includes a piezoelectric film.
The flow switch according to any one of (1) to (5).
(7)
 前記圧電フィルムの主面は、前記圧電フィルムが平面に展開された状態で、前記圧電フィルムの主面の法線方向に視て、矩形状を有する、
 (6)に記載のフロースイッチ。
(7)
The main surface of the piezoelectric film has a rectangular shape when viewed in the normal direction of the main surface of the piezoelectric film in a state in which the piezoelectric film is developed into a plane.
The flow switch described in (6).
(8)
 前記圧電フィルムが左右方向に伸張されたときに前記圧電フィルムが発生する電荷の極性は、前記圧電フィルムが前後方向に伸張されたときに前記圧電フィルムが発生する電荷の極性と異なる、
 (6)又は(7)に記載のフロースイッチ。
(8)
The polarity of the charge generated by the piezoelectric film when the piezoelectric film is stretched in the left-right direction is different from the polarity of the charge generated by the piezoelectric film when the piezoelectric film is stretched in the front-back direction.
The flow switch according to (6) or (7).
(9)
 前記圧電フィルムは、少なくとも一軸方向に延伸されているポリ乳酸を有するフィルムである、
 (6)乃至(8)のいずれかに記載のフロースイッチ。
(9)
The piezoelectric film is a film having polylactic acid stretched in at least one axial direction.
The flow switch according to any one of (6) to (8).
(10)
 前記圧電フィルムの主面は、前記圧電フィルムが平面に展開された状態で、左右方向に延びる長手方向を有し、かつ、前後方向に延びる短手方向を有し、
 前記圧電フィルムの一軸延伸方向は、前記圧電フィルムが平面に展開された状態で、前記左右方向及び前記前後方向に対して45度の角度を形成する、
 (9)に記載のフロースイッチ。
(10)
The main surface of the piezoelectric film has a longitudinal direction extending in the left-right direction and a transversal direction extending in the front-rear direction when the piezoelectric film is expanded into a plane,
The uniaxial stretching direction of the piezoelectric film forms an angle of 45 degrees with respect to the left-right direction and the front-back direction when the piezoelectric film is expanded flatly.
The flow switch according to (9).
(11)
 前記センサ部が検出する前記チューブの変形は、前記チューブの曲げである、
 (1)乃至(10)のいずれかに記載のフロースイッチ。
(11)
the deformation of the tube detected by the sensor unit is bending of the tube;
The flow switch according to any one of (1) to (10).
(12)
 前記湾曲部は、弾性変形、又は、弾性変形及び塑性変形により、変形する、
 (1)乃至(11)のいずれかに記載のフロースイッチ。
(12)
The curved portion deforms by elastic deformation or elastic deformation and plastic deformation.
The flow switch according to any one of (1) to (11).
(13)
 前記チューブの前記流体が流れる第1方向に垂直な断面の外縁は、円形状を含む、
 (1)乃至(12)のいずれかに記載のフロースイッチ。
(13)
an outer edge of a cross section of the tube perpendicular to the first direction in which the fluid flows includes a circular shape;
The flow switch according to any one of (1) to (12).
(14)
 前記流体は、水である、
 (1)乃至(13)のいずれかに記載のフロースイッチ。
(14)
the fluid is water;
The flow switch according to any one of (1) to (13).
(15)
 可撓性を有し、かつ、湾曲部を有するチューブに対して、センサ部を取り付けるフロースイッチ取付方法であって、
 前記センサ部が前記チューブの変形を検出するように、前記センサ部を前記チューブの外周面、かつ、前記湾曲部に固定する、
 フロースイッチ取付方法。
(15)
A flow switch mounting method for mounting a sensor section on a tube that is flexible and has a curved section, the method comprising:
fixing the sensor section to the outer peripheral surface of the tube and the curved section so that the sensor section detects deformation of the tube;
How to install a flow switch.
1,1a,1b,1c:フロースイッチ
2:チューブ
3:センサ部
4:接着材
5:水
11:圧電フィルム
12a:上電極
12b:下電極
13:電極部材
14:フレキシブルプリント基板
21L:左直線部
21R:右直線部
22:湾曲部
A1:第1領域
A2:第2領域
DIR1:第1方向
DIR2:第2方向
DIR3:第3方向
F:力
LS1:第1下主面
LS2:第2下主面
O:中心
OD:一軸延伸方向
OS:外周面
US1:第1上主面
US2:第2上主面
1, 1a, 1b, 1c: flow switch 2: tube 3: sensor part 4: adhesive 5: water 11: piezoelectric film 12a: upper electrode 12b: lower electrode 13: electrode member 14: flexible printed circuit board 21L: left linear part 21R: Right straight section 22: Curved section A1: First region A2: Second region DIR1: First direction DIR2: Second direction DIR3: Third direction F: Force LS1: First lower main surface LS2: Second lower main surface Surface O: Center OD: Uniaxial stretching direction OS: Outer peripheral surface US1: First upper principal surface US2: Second upper principal surface

Claims (15)

  1.  可撓性を有し、かつ、湾曲部を有するチューブ内を流れる流体の流れを検出するフロースイッチであって、
     前記フロースイッチは、
     前記チューブの変形を検出するセンサ部を備え、
     前記センサ部は、前記チューブの外周面、かつ、前記湾曲部に固定される、
     フロースイッチ。
    A flow switch that detects the flow of fluid flowing in a tube that is flexible and has a curved part,
    The flow switch is
    comprising a sensor section that detects deformation of the tube,
    The sensor section is fixed to the outer peripheral surface of the tube and the curved section.
    flow switch.
  2.  前記外周面は、前記流体が流れる第1方向に視て、前記チューブの中心より第2方向に位置する第1領域、及び、前記チューブの中心より第3方向に位置する第2領域、を有し、
     前記第2方向及び前記第3方向は、前記第1方向に直交し、
     前記第3方向は、前記第2方向の反対方向であり、
     前記湾曲部は、前記第2方向に突出するように湾曲する形状を含み、
     前記センサ部は、前記第1領域に固定される、
     請求項1に記載のフロースイッチ。
    The outer circumferential surface has a first region located in a second direction from the center of the tube, and a second region located in a third direction from the center of the tube, when viewed in the first direction in which the fluid flows. death,
    the second direction and the third direction are orthogonal to the first direction,
    The third direction is the opposite direction to the second direction,
    The curved portion includes a shape that curves so as to protrude in the second direction,
    the sensor section is fixed to the first region;
    Flow switch according to claim 1.
  3.  前記センサ部は、前記第1領域と、前記第2領域と、に跨って固定され、
     前記第1領域の前記センサ部が固定される部分の面積は、前記第2領域の前記センサ部が固定される部分の面積より大きい、
     請求項2に記載のフロースイッチ。
    The sensor section is fixed across the first region and the second region,
    The area of the portion of the first region to which the sensor portion is fixed is larger than the area of the portion of the second region to which the sensor portion is fixed.
    Flow switch according to claim 2.
  4.  前記外周面は、前記流体が流れる第1方向に視て、前記チューブの中心より第2方向に位置する第1領域、及び、前記チューブの中心より第3方向に位置する第2領域、を有し、
     前記第2方向及び前記第3方向は、前記第1方向に直交し、
     前記第3方向は、前記第2方向の反対方向であり、
     前記湾曲部は、前記第2方向に突出するように湾曲する形状を含み、
     前記センサ部は、前記第2領域に固定される、
     請求項1に記載のフロースイッチ。
    The outer circumferential surface has a first region located in a second direction from the center of the tube, and a second region located in a third direction from the center of the tube, when viewed in the first direction in which the fluid flows. death,
    the second direction and the third direction are orthogonal to the first direction,
    The third direction is the opposite direction to the second direction,
    The curved portion includes a shape that curves so as to protrude in the second direction,
    the sensor section is fixed to the second region,
    Flow switch according to claim 1.
  5.  前記センサ部は、前記第1領域と、前記第2領域と、に跨って固定され、
     前記第2領域の前記センサ部が固定される部分の面積は、前記第1領域の前記センサ部が固定される部分の面積より大きい、
     請求項4に記載のフロースイッチ。
    The sensor section is fixed across the first region and the second region,
    The area of the portion of the second region to which the sensor portion is fixed is larger than the area of the portion of the first region to which the sensor portion is fixed.
    The flow switch according to claim 4.
  6.  前記センサ部は、圧電フィルムを含む、
     請求項1乃至請求項5のいずれかに記載のフロースイッチ。
    The sensor section includes a piezoelectric film.
    The flow switch according to any one of claims 1 to 5.
  7.  前記圧電フィルムの主面は、前記圧電フィルムが平面に展開された状態で、前記圧電フィルムの主面の法線方向に視て、矩形状を有する、
     請求項6に記載のフロースイッチ。
    The main surface of the piezoelectric film has a rectangular shape when viewed in the normal direction of the main surface of the piezoelectric film in a state in which the piezoelectric film is developed into a plane.
    The flow switch according to claim 6.
  8.  前記圧電フィルムが左右方向に伸張されたときに前記圧電フィルムが発生する電荷の極性は、前記圧電フィルムが前後方向に伸張されたときに前記圧電フィルムが発生する電荷の極性と異なる、
     請求項6又は請求項7に記載のフロースイッチ。
    The polarity of the charge generated by the piezoelectric film when the piezoelectric film is stretched in the left-right direction is different from the polarity of the charge generated by the piezoelectric film when the piezoelectric film is stretched in the front-back direction.
    The flow switch according to claim 6 or claim 7.
  9.  前記圧電フィルムは、少なくとも一軸方向に延伸されているポリ乳酸を有するフィルムである、
     請求項6乃至請求項8のいずれかに記載のフロースイッチ。
    The piezoelectric film is a film having polylactic acid stretched in at least one axial direction.
    The flow switch according to any one of claims 6 to 8.
  10.  前記圧電フィルムの主面は、前記圧電フィルムが平面に展開された状態で、左右方向に延びる長手方向を有し、かつ、前後方向に延びる短手方向を有し、
     前記圧電フィルムの一軸延伸方向は、前記圧電フィルムが平面に展開された状態で、前記左右方向及び前記前後方向に対して45度の角度を形成する、
     請求項9に記載のフロースイッチ。
    The main surface of the piezoelectric film has a longitudinal direction extending in the left-right direction and a transversal direction extending in the front-rear direction when the piezoelectric film is expanded into a plane,
    The uniaxial stretching direction of the piezoelectric film forms an angle of 45 degrees with respect to the left-right direction and the front-back direction when the piezoelectric film is expanded flatly.
    The flow switch according to claim 9.
  11.  前記センサ部が検出する前記チューブの変形は、前記チューブの曲げである、
     請求項1乃至請求項10のいずれかに記載のフロースイッチ。
    the deformation of the tube detected by the sensor unit is bending of the tube;
    The flow switch according to any one of claims 1 to 10.
  12.  前記湾曲部は、弾性変形、又は、弾性変形及び塑性変形により、変形する、
     請求項1乃至請求項11のいずれかに記載のフロースイッチ。
    The curved portion deforms by elastic deformation or elastic deformation and plastic deformation.
    The flow switch according to any one of claims 1 to 11.
  13.  前記チューブの前記流体が流れる第1方向に垂直な断面の外縁は、円形状を含む、
     請求項1乃至請求項12のいずれかに記載のフロースイッチ。
    an outer edge of a cross section of the tube perpendicular to the first direction in which the fluid flows includes a circular shape;
    The flow switch according to any one of claims 1 to 12.
  14.  前記流体は、水である、
     請求項1乃至請求項13のいずれかに記載のフロースイッチ。
    the fluid is water;
    The flow switch according to any one of claims 1 to 13.
  15.  可撓性を有し、かつ、湾曲部を有するチューブに対して、センサ部を取り付けるフロースイッチ取付方法であって、
     前記センサ部が前記チューブの変形を検出するように、前記センサ部を前記チューブの外周面、かつ、前記湾曲部に固定する、
     フロースイッチ取付方法。
    A flow switch mounting method for mounting a sensor section on a tube that is flexible and has a curved section, the method comprising:
    fixing the sensor section to the outer peripheral surface of the tube and the curved section so that the sensor section detects deformation of the tube;
    How to install a flow switch.
PCT/JP2023/014223 2022-04-14 2023-04-06 Flow switch and flow switch attachment method WO2023199838A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022066733 2022-04-14
JP2022-066733 2022-04-14

Publications (1)

Publication Number Publication Date
WO2023199838A1 true WO2023199838A1 (en) 2023-10-19

Family

ID=88329689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014223 WO2023199838A1 (en) 2022-04-14 2023-04-06 Flow switch and flow switch attachment method

Country Status (1)

Country Link
WO (1) WO2023199838A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150671A (en) * 2007-12-19 2009-07-09 National Institute Of Advanced Industrial & Technology Mass flowmeter
JP2010066184A (en) * 2008-09-12 2010-03-25 National Institute Of Advanced Industrial Science & Technology Mass flowmeter
JP2018179754A (en) * 2017-04-13 2018-11-15 アサヒビール株式会社 Flow detector and flow detection method
JP2019521350A (en) * 2016-07-21 2019-07-25 マイクロ・モーション・インコーポレーテッドMicro Motion Incorporated Vortex flowmeter with reduced process penetration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150671A (en) * 2007-12-19 2009-07-09 National Institute Of Advanced Industrial & Technology Mass flowmeter
JP2010066184A (en) * 2008-09-12 2010-03-25 National Institute Of Advanced Industrial Science & Technology Mass flowmeter
JP2019521350A (en) * 2016-07-21 2019-07-25 マイクロ・モーション・インコーポレーテッドMicro Motion Incorporated Vortex flowmeter with reduced process penetration
JP2018179754A (en) * 2017-04-13 2018-11-15 アサヒビール株式会社 Flow detector and flow detection method

Similar Documents

Publication Publication Date Title
US8857258B2 (en) Inertial force sensor
JP4929918B2 (en) Compound sensor
JP5287722B2 (en) Angular velocity sensor
US7876024B2 (en) Device and method for influencing vibration of a planar element
JP2007256235A (en) Inertia force sensor
US20170052027A1 (en) Vibration angular velocity sensor
WO2023199838A1 (en) Flow switch and flow switch attachment method
JP5070813B2 (en) Electronic component and manufacturing method thereof
US8970090B2 (en) Ultrasonic sensor
JPH02248865A (en) Acceleration detector
US20220307926A1 (en) Sensor
EP2330381A1 (en) Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
US10178472B1 (en) Omnidirectional acoustic sensor
JP5884456B2 (en) Intervening sensor and robot
JP4687085B2 (en) Compound sensor
JP5407259B2 (en) Angular velocity sensor element
WO2023171354A1 (en) Sensor
JP6769421B2 (en) Collision detector
WO2008035683A1 (en) Angular velocity sensor
WO2023223732A1 (en) Deformation detection sensor and electronic device
US11930712B2 (en) Arrangement structure of press sensor and electronic device
JP6074629B2 (en) Angular velocity sensor element and angular velocity sensor
WO2023153428A1 (en) Electronic device
WO2022045228A1 (en) Variable device
US20170219349A1 (en) Angular velocity sensor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788257

Country of ref document: EP

Kind code of ref document: A1