WO2023199742A1 - Valve device - Google Patents

Valve device Download PDF

Info

Publication number
WO2023199742A1
WO2023199742A1 PCT/JP2023/012525 JP2023012525W WO2023199742A1 WO 2023199742 A1 WO2023199742 A1 WO 2023199742A1 JP 2023012525 W JP2023012525 W JP 2023012525W WO 2023199742 A1 WO2023199742 A1 WO 2023199742A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer layer
displacement
fulcrum
point
sub
Prior art date
Application number
PCT/JP2023/012525
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 三ツ橋
陽一郎 河本
公和 小原
勇気 佐藤
教文 小宅
靖樹 廣田
崇史 山内
Original Assignee
株式会社デンソー
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 株式会社豊田中央研究所 filed Critical 株式会社デンソー
Publication of WO2023199742A1 publication Critical patent/WO2023199742A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic

Definitions

  • the present disclosure relates to a valve device.
  • Patent Document 1 describes a drive section that is displaced by changing its own temperature depending on whether or not it is energized, a movable section that amplifies the displacement of the drive section based on the principle of leverage, and a drive section that transmits the amplified displacement by the movable section.
  • a MEMS valve is disclosed that has a valve body that opens and closes a flow passage hole by moving when the valve body is opened and closed. MEMS is an abbreviation for Micro Electro Mechanical Systems.
  • the MEMS valve described in Patent Document 1 it may be desirable to further increase the opening area when the valve is opened, but according to the inventor's study, in order to do so, the MEMS valve may be There is a risk that your body size will increase. This is true not only for MEMS valves but also for valve devices in general that move valve bodies using the principle of leverage.
  • the present disclosure provides a valve device that amplifies the displacement of the drive unit caused by temperature changes depending on the presence or absence of energization and transmits it to the valve body using the lever principle, and increases the opening area when the valve is opened while suppressing an increase in body size. The purpose is to reduce the body size while suppressing the reduction in the opening area when the valve is opened.
  • the valve device includes: a first outer layer; a second outer layer; an intermediate layer sandwiched between the first outer layer and the second outer layer and forming a fluid chamber through which fluid flows; A first flow hole that can communicate with the fluid chamber is formed in the first outer layer or the second outer layer, A second flow passage hole that can communicate with the fluid chamber is formed in the first outer layer or the second outer layer,
  • the intermediate layer includes a drive unit that is displaced by changing its own temperature depending on whether or not electricity is applied; a displacement amplification member that is biased by the drive unit and amplifies the displacement of the drive unit when the drive unit is displaced; a movable part that rotates around a fulcrum part by receiving the displacement amplified by the displacement amplification member at a force point;
  • the valve body includes a valve body that adjusts the opening degree of the second flow path hole with respect to the fluid chamber by being biased from a point of action of the movable portion and moving within the fluid chamber when the movable portion rotates.
  • the displacement amplifying member amplifies the displacement of the drive part, so it is possible to increase the opening area when the valve is opened while suppressing an increase in the size of the valve device, or , it becomes possible to reduce the body size while suppressing the reduction in the opening area when the valve is opened.
  • FIG. 3 is a front view of a microvalve.
  • FIG. 3 is a side view of a microvalve.
  • FIG. 3 is an exploded view of parts of a microvalve.
  • FIG. 3 is a front view of the microvalve when no electricity is applied, with the first outer layer omitted.
  • FIG. 3 is a front view of the intermediate layer with potential and current depicted.
  • FIG. 3 is a front view of the intermediate layer when energized. It is a conceptual diagram showing the difference between a conventional lever and a two-stage lever.
  • FIG. 7 is a front view of the microvalve according to the second embodiment when the current is not energized, with the first outer layer omitted.
  • FIG. 3 is a front view of the intermediate layer with potential and current depicted.
  • FIG. 7 is a exploded view of parts of a microvalve in a third embodiment.
  • FIG. 3 is a front view of the microvalve when no electricity is applied, with the first outer
  • the microvalve Y1 is a plate-shaped valve component, and is mainly composed of a semiconductor chip. Therefore, the microvalve Y1 can be configured to be small.
  • the thickness of the microvalve Y1 is, for example, 2 mm
  • the length in the longitudinal direction perpendicular to the thickness direction is, for example, 10 mm
  • the length in the transverse direction, perpendicular to both the longitudinal direction and the thickness direction is, for example, 5 mm.
  • the size is not limited to this.
  • the microvalve Y1 itself may be a valve that opens and closes a fluid (eg, gas, liquid) flow path, or may be a pilot valve that drives another valve.
  • the microvalve Y1 is a MEMS valve including a first outer layer Y11, an intermediate layer Y12, and a second outer layer Y13, all of which are semiconductors.
  • the first outer layer Y11, the intermediate layer Y12, and the second outer layer Y13 are rectangular plate-shaped members each having approximately the same outer shape, and are laminated in the order of the first outer layer Y11, the intermediate layer Y12, and the second outer layer Y13. . That is, the intermediate layer Y12 is sandwiched between the first outer layer Y11 and the second outer layer Y13 from both sides.
  • the second outer layer Y13 is arranged on the side closest to the bottom wall of the valve casing Y2.
  • the structures of the first outer layer Y11, intermediate layer Y12, and second outer layer Y13, which will be described later, are formed by a semiconductor manufacturing process such as chemical etching.
  • the first outer layer Y11 is an electrode port layer in which a non-conductive oxide film is formed on the surface of a conductive semiconductor member. As shown in FIG. 3, two through holes Y14 and Y15 are formed in the first outer layer Y11, passing through the front and back sides. The ends of the electrical wiring on the microvalve Y1 side are inserted into the through holes Y14 and Y15, respectively. As another example, both of the through holes Y14 and Y15 may be formed in the second outer layer Y13, or one of the through holes Y14 and Y15 may be formed in the first outer layer Y11 and the other in the second outer layer Y13. good.
  • the second outer layer Y13 is a channel hole layer in which a non-conductive oxide film is formed on the surface of a conductive semiconductor member. As shown in FIGS. 3 and 4, the second outer layer Y13 is formed with a first passage hole Y16 and a second passage hole Y17 that penetrate the front and back sides.
  • the hydraulic diameter of each of the first passage hole Y16 and the second passage hole Y17 is, for example, 0.1 mm or more and 3 mm or less, but is not limited thereto.
  • the first channel hole Y16 and the second channel hole Y17 may both be formed in the first outer layer Y11, or one may be formed in the first outer layer Y11 and the other may be formed in the first outer layer Y11. 2 may be formed on the outer layer Y13.
  • the intermediate layer Y12 is a conductive semiconductor member, and is an actuator layer sandwiched between the first outer layer Y11 and the second outer layer Y13. Since the intermediate layer Y12 contacts the oxide film of the first outer layer Y11 and the oxide film of the second outer layer Y13, the first outer layer Y11 and the second outer layer Y13 are electrically non-conductive. As shown in FIG. 4, the intermediate layer Y12 includes a first fixed part Y121, a second fixed part Y122, a plurality of first ribs Y123, a plurality of second ribs Y124, a spinal column Y125, a first fulcrum part Y126, and a movable part.
  • the intermediate layer Y12 includes a displacement amplifying member Y131, a second fulcrum portion Y132, a third fixed portion Y133, and a fourth fixed portion Y134.
  • the first fixing part Y121, the second fixing part Y122, the third fixing part Y133, and the fourth fixing part Y134 are members fixed to the first outer layer Y11 and the second outer layer Y13 by adhesive or the like.
  • the first fixed part Y121 includes a second fixed part Y122, a first rib Y123, a second rib Y124, a spinal column Y125, a first fulcrum part Y126, a movable part Y127, a valve body Y128, a displacement amplification member Y131, and a second fulcrum part Y132.
  • the third fixing part Y133, and the fourth fixing part Y134 are formed in the same fluid chamber Y19 so as to be separated by a slit and surrounded.
  • the fluid chamber Y19 is a chamber surrounded by the first fixing portion Y121, the first outer layer Y11, and the second outer layer Y13.
  • the first fixing portion Y121, the first outer layer Y11, and the second outer layer Y13 correspond to the base as a whole.
  • the electrical wiring is electrical wiring for changing and displacing the temperatures of the plurality of first ribs Y123 and the plurality of second ribs Y124.
  • the fixation of the first fixing portion Y121 to the first outer layer Y11 and the second outer layer Y13 prevents fluid from leaking from the microvalve Y1 from this fluid chamber Y19 through a path other than the first channel hole Y16 and the second channel hole Y17. This is done in a way that suppresses the
  • the second fixing part Y122 is surrounded by the first fixing part Y121 and is arranged apart from the first fixing part Y121 and the fourth fixing part Y134 via a slit.
  • the third fixed part Y133 is surrounded by the first fixed part Y121 and is arranged apart from the first fixed part Y121, the movable part Y127, and the first rib Y123 via a slit. Further, the third fixed part Y133 is also separated from the second fixed part Y122. The third fixed part Y133 is arranged between the plurality of first ribs Y123 and the movable part Y127.
  • the fourth fixing part Y134 is surrounded by the first fixing part Y121 and is arranged apart from the first fixing part Y121, the second fixing part Y122, the second rib Y124, and the displacement amplifying member Y131 via a slit. Further, the fourth fixed part Y134 is also separated from the third fixed part Y133. The fourth fixed portion Y134 is arranged between the plurality of second ribs Y124 and the movable portion Y127.
  • the plurality of first ribs Y123, the plurality of second ribs Y124, the spinal column Y125, the first fulcrum part Y126, the movable part Y127, the valve body Y128, and the second fulcrum part Y132 are connected to the first outer layer Y11 and the second outer layer Y13. It is not fixed to the outer layer, but is movable relative to the first outer layer Y11 and the second outer layer Y13.
  • the spinal column Y125 has an elongated rod shape extending in the lateral direction of the rectangular shape of the intermediate layer Y12. Therefore, the spinal column Y125 extends in a direction intersecting the longitudinal direction of the displacement amplifying member Y131 and the longitudinal direction of the movable portion Y127. One longitudinal end of the spinal column Y125 is connected to a displacement amplifying member Y131.
  • the plurality of first ribs Y123 are arranged on one side of the spinal column Y125 in a direction perpendicular to the longitudinal direction of the spinal column Y125.
  • the plurality of first ribs Y123 are arranged in the longitudinal direction of the spinal column Y125 with a slit in between.
  • Each first rib Y123 has an elongated rod shape and can expand and contract depending on the temperature.
  • Each first rib Y123 is connected to the first fixed portion Y121 at one end in the longitudinal direction, and connected to the spinal column Y125 at the other end.
  • Each first rib Y123 extends obliquely with respect to the spinal column Y125 so that the closer it is from the first fixed part Y121 side to the spinal column Y125 side, the more it is offset toward the displacement amplifying member Y131 side in the longitudinal direction of the spinal column Y125. ing.
  • the plurality of first ribs Y123 extend parallel to each other.
  • the plurality of second ribs Y124 are arranged on the other side of the spinal column Y125 in a direction perpendicular to the longitudinal direction of the spinal column Y125.
  • the plurality of second ribs Y124 are arranged in the longitudinal direction of the spinal column Y125 with slits in between.
  • Each second rib Y124 has an elongated rod shape and can expand and contract depending on the temperature.
  • Each second rib Y124 is connected to the second fixed portion Y122 at one end in the longitudinal direction, and connected to the spinal column Y125 at the other end.
  • Each second rib Y124 extends obliquely with respect to the spinal column Y125 so that the closer it is from the second fixing part Y122 side to the spinal column Y125 side, the more offset it is toward the displacement amplifying member Y131 side in the longitudinal direction of the spinal column Y125.
  • the plurality of second ribs Y124 extend parallel to each other.
  • the plurality of first ribs Y123, the plurality of second ribs Y124, and the spinal column Y125 as a whole correspond to the drive section.
  • the second fulcrum portion Y132 has a rod shape that extends non-orthogonally and parallel to the spinal column Y125. One end of the second fulcrum portion Y132 is connected to the displacement amplifying member Y131, and the other end is connected to the third fixed portion Y133. The extending direction of the second fulcrum portion Y132 and the longitudinal direction of the displacement amplifying member Y131 intersect with each other. A side surface of the second fulcrum portion Y132, that is, an end surface of the second fulcrum portion Y132 in a direction intersecting the extending direction of the second fulcrum portion Y132 faces the slit.
  • the displacement amplifying member Y131 has an elongated rod shape that extends in a direction intersecting the spinal column Y125 and the second fulcrum portion Y132 at approximately 90°.
  • the displacement amplifying member Y131 can expand and contract depending on the temperature. Further, most of the displacement amplifying member Y131 extends along the longitudinal direction of the movable portion Y127. Further, the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 is bent toward the movable portion Y127, and connected to the movable portion Y127 at the bent end.
  • portion of the displacement amplifying member Y131 that extends along the longitudinal direction of the movable portion Y127 may extend linearly, may be gently curved, or may meander and move as a whole. It may extend along the longitudinal direction of portion Y127. Note that the portion of the displacement amplifying member Y131 extending along the longitudinal direction of the movable portion Y127 may be at an angle of less than 45° with respect to the longitudinal direction of the movable portion Y127 as a whole.
  • the first force point YV1 is the connection point between the displacement amplifying member Y131 and the movable portion Y127.
  • the second force point YV2 is the connection point between the spinal column Y125 and the displacement amplifying member Y131.
  • the second fulcrum part Y132, the second point of force YV2, and the first point of force YV1 extend from the end of the displacement amplifying member Y131 on the second fulcrum part Y132 side to the end of the displacement amplifying member Y131 on the movable part Y127 side along the longitudinal direction of the displacement amplifying member Y131. They are lined up in this order. Therefore, the distance from the second fulcrum part Y132 to the first force point YV1 is longer than the distance from the second fulcrum part Y132 to the second force point YV2. This relationship holds true even if the distance referred to here is a straight-line distance, and also holds true even if the distance referred to here is a distance along the longitudinal direction of the displacement amplifying member Y131.
  • the first fulcrum portion Y126 has a rod shape that extends across the movable portion Y127. One end of the first fulcrum portion Y126 in the extending direction is connected to the movable portion Y127. The other end of the first fulcrum portion Y126 in the extending direction is connected to the fourth fixed portion Y134. A side surface of the first fulcrum portion Y126, that is, an end surface of the first fulcrum portion Y126 in a direction intersecting the extending direction of the first fulcrum portion Y126 faces the slit.
  • the movable portion Y127 has an elongated bar shape extending along the longitudinal direction of the intermediate layer Y12. One end of the movable portion Y127 is connected to the first fulcrum portion Y126. An end of the movable portion Y127 opposite to the first fulcrum portion Y126 is connected to a valve body Y128.
  • the length along the longitudinal direction of the intermediate layer Y12 from the end of the movable part Y127 on the first fulcrum part Y126 side to the end on the valve body Y128 side is 1/2 or more of the total length of the intermediate layer Y12 in the longitudinal direction. It is.
  • the point of action YV3 is the connection point between the movable portion Y127 and the valve body Y128.
  • the second force point YV2 is a force point for the movable portion Y127, and is a point of action for the displacement amplification member Y131.
  • the first fulcrum part Y126, the first force point YV1, and the point of action YV3 are arranged along the longitudinal direction of the movable part Y127 from the end of the movable part Y127 on the first fulcrum part Y126 side toward the end of the movable part Y127 on the valve body Y128 side. , arranged in this order. Therefore, the distance from the first fulcrum Y126 to the point of application YV3 is longer than the distance from the first fulcrum Y126 to the first point of force YV1. This relationship holds true even if the distance referred to here is a straight-line distance, and also holds true even if the distance referred to here is a distance along the longitudinal direction of the movable portion Y127.
  • the valve body Y128 has a rectangular outer shape that extends in a direction of approximately 90° with respect to the longitudinal direction of the movable portion Y127, that is, extends in the lateral direction of the intermediate layer Y12. This valve body Y128 can move together with the movable part Y127 within the fluid chamber Y19.
  • the valve body Y128 has a frame shape that surrounds a window hole Y120 that passes through the front and back sides of the intermediate layer Y12. Therefore, the window hole Y120 also moves integrally with the valve body Y128. Window hole Y120 is part of fluid chamber Y19. By moving as described above, the valve body Y128 changes the degree of opening of the second passage hole Y17 with respect to the window hole Y120.
  • the first channel hole Y16 is always open and communicates with the window hole Y120 (that is, with the fluid chamber Y19).
  • the first application point Y129 near the portion of the first fixing portion Y121 that connects with the plurality of first ribs Y123 there is a microelectronic wiring that passes through the through hole Y14 of the first outer layer Y11 shown in FIG.
  • the valve Y1 side end is connected.
  • the microvalve Y1 side end of the electric wiring passing through the through hole Y15 of the first outer layer Y11 shown in FIG. 3 is connected to the second application point Y130 of the second fixing part Y122.
  • the operation of the microvalve Y1 will be explained.
  • the intermediate layer Y12 is in the state shown in FIG. 4.
  • the first flow path hole Y16 is open (for example, fully open or half open) with respect to the window hole Y120, and the second flow path hole Y17 is completely opened with respect to the window hole Y120 by being blocked by the valve body Y128. It will be in a closed state.
  • the position of the valve body Y128 at this time is referred to as the non-energized position.
  • a voltage is applied between the first application point Y129 and the second application point Y130 by the electric wiring.
  • a voltage of 12V is applied to the first application point Y129 and 0V to the second application point Y130, but the voltage is not limited to this.
  • the second fixing portion Y122 is electrically connected to the first fixing portion Y121 via the plurality of second ribs Y124 and the plurality of first ribs Y123.
  • This current causes the plurality of first ribs Y123 and the plurality of second ribs Y124 to generate heat.
  • each of the plurality of first ribs Y123 and the plurality of second ribs Y124 expands in the longitudinal direction.
  • the potentials of the third fixed part Y133, fourth fixed part Y134, movable part Y127, and valve body Y128 are the same potential as the spinal column Y125, that is, about 6V, which is half of 12V. Then, no current flows through the displacement amplifying member Y131, the movable portion Y127, and the valve body Y128. Therefore, in the displacement amplifying member Y131, there is neither heat generation due to energization nor expansion caused by the heat generation.
  • the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spinal column Y125 toward the second force point YV2.
  • the energized spinal column Y125 pushes the displacement amplifying member Y131 at the second force point YV2.
  • the displacement amplifying member Y131 rotates around the second fulcrum part Y132, using the second fulcrum part Y132 as a fulcrum.
  • the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 also moves in the direction of pushing the movable portion Y127 at the first force point YV1.
  • the movable portion Y127 thus biased by the displacement amplifying member Y131 at the first force point YV1 rotates around the first fulcrum portion Y126 with the first fulcrum portion Y126 as a fulcrum.
  • the valve body Y128 connected to the end of the movable part Y127 opposite to the first fulcrum part Y126 also moves in the longitudinal direction toward the side where the displacement amplifying member Y131 pushes the movable part Y127.
  • the position of the valve body Y128 after the movement is referred to as the energized position.
  • the first passage hole Y16 is open (for example, fully open or half open) with respect to the window hole Y120, and the second passage hole Y17 is also open.
  • the first passage hole Y16 of the valve body Y128 is in an open state (for example, fully open or half open) with respect to the window hole Y120.
  • the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spinal column Y125 to the side opposite to the second force point YV2 side.
  • the energized spinal column Y125 pulls the displacement amplifying member Y131 toward the spinal column Y125 on the second force point YV2 side.
  • the displacement amplifying member Y131 rotates around the second fulcrum part Y132, using the second fulcrum part Y132 as a fulcrum.
  • the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 also moves in the direction of pulling the movable portion Y127 at the first force point YV1.
  • the movable portion Y127 thus biased by the displacement amplifying member Y131 at the first force point YV1 rotates around the first fulcrum portion Y126 with the first fulcrum portion Y126 as a fulcrum.
  • the valve body Y128 connected to the end of the movable part Y127 opposite to the first fulcrum part Y126 also moves in the longitudinal direction toward the side where the displacement amplifying member Y131 pulls the movable part Y127.
  • the valve body Y128 returns to the de-energized position and stops.
  • the movable part Y127 functions as a lever with the first fulcrum part Y126 as the fulcrum, the first point of force YV1 as the point of force, and the point of action YV3 as the point of action.
  • the straight line distance from the first fulcrum part Y126 to the point of application YV3 is longer than the straight line distance from the first fulcrum part Y126 to the first force point YV1 in a plane parallel to the plate surface of the intermediate layer Y12. long. Therefore, the amount of movement of the point of application YV3 is larger than the amount of movement of the first point of effort YV1. Therefore, the amount of displacement of the displacement amplifying member Y131 at the first force point YV1 is amplified by the lever and transmitted to the valve body Y128.
  • the displacement amplifying member Y131 functions as a lever having the second fulcrum portion Y132 as a fulcrum, the second force point YV2 as a force point, and the first force point YV1 as a point of action.
  • the straight line distance from the second fulcrum part Y132 to the first force point YV1 is longer than the straight line distance from the second fulcrum part Y132 to the second force point YV2 in a plane parallel to the plate surface of the intermediate layer Y12. ,long. Therefore, the amount of movement of the first point of effort YV1 is larger than the amount of movement of the second point of effort YV2. Therefore, the amount of displacement of the spinal column Y125 due to thermal expansion of the plurality of first ribs Y123 and the plurality of second ribs Y124 is amplified by the lever and transmitted to the movable portion Y127.
  • the microvalve Y1 configured in this manner can be easily downsized compared to a solenoid valve and a stepping motor.
  • the microvalve Y1 is formed of a semiconductor chip as described above.
  • the displacement amount due to thermal expansion is amplified by using a lever, which makes the valve device smaller and smaller when compared to a valve device that uses a solenoid valve or a stepping motor without using such a lever.
  • the noise reduction effect is high.
  • the amount of displacement due to thermal expansion can be suppressed compared to the amount of movement of the valve body Y128, so power consumption for driving the valve body Y128 can also be reduced. Further, since it is possible to eliminate impact noise when the electromagnetic valve is driven, noise can be reduced.
  • the displacement amplifying member Y131 when the spinal column Y125 is displaced, the displacement amplifying member Y131 is biased by the spinal column Y125, amplifies the displacement of the spinal column Y125, and transmits it to the movable part Y127. In this way, in addition to the movable portion Y127 that utilizes the principle of leverage, the displacement amplifying member Y131 amplifies the displacement of the spinal column Y125. Therefore, it is possible to increase the opening area of the microvalve Y1 when the valve is open while suppressing an increase in the size thereof, or to reduce the size of the microvalve Y1 while suppressing a reduction in the opening area when the valve is open.
  • the lever is When two stages are used in series, the degree of amplification of the amount of movement of the valve body relative to the amount of displacement of the spinal column becomes greater.
  • the displacement amplifying member Y131 when the spinal column Y125 is displaced, the displacement amplifying member Y131 is biased by the spinal column Y125 at the second force point YV2, and the displacement amplifying member Y131 rotates around the second fulcrum portion Y132, thereby amplifying the displacement.
  • the member Y131 urges the movable portion Y127 at the first force point YV1.
  • the distance from the second fulcrum portion Y132 to the first force point YV1 is longer than the distance from the second fulcrum portion Y132 to the second force point YV2. That is, the displacement amplifying member Y131 also functions as a lever separately from the movable portion Y127.
  • the displacement amplifying member Y131 extends along the longitudinal direction of the movable portion Y127.
  • the first point of effort YV1 is located closer to the first fulcrum portion Y126 than the second point of effort YV2.
  • the location where the displacement amplified by the displacement amplification member Y131 is transmitted to the movable portion Y127 ie, the first force point YV1 can be brought closer to the first fulcrum portion Y126. This increases the amount of amplification of displacement due to the action of the lever in the movable portion Y127.
  • the operation of the microvalve Y1 of this embodiment will be explained.
  • the intermediate layer Y12 is in the state shown in FIG. 8.
  • the positions of the plurality of first ribs Y123, the plurality of second ribs Y124, the spinal column Y125, the displacement amplifying member Y131, the movable part Y127, and the valve body Y128 are the same as those in the first embodiment when energization is not performed. is the same as
  • a voltage is applied between the first application point Y129 and the second application point Y130 by the electric wiring.
  • a voltage of 12V is applied to the first application point Y129 and 0V to the second application point Y130, but the voltage is not limited to this.
  • the potential of the fourth fixed part Y134 is also 12V. Therefore, the second fixed part Y122 is electrically connected to the first fixed part Y121 via the fourth fixed part Y134, the first fulcrum part Y126, the movable part Y127, the displacement amplification member Y131, the spinal column Y125, and the plurality of first ribs Y123. do. Therefore, in the displacement amplifying member Y131, a current flows from the first force point YV1 to the spinal column Y125 as indicated by the broken line arrow. This current causes the displacement amplification member Y131 to generate heat and expand in its longitudinal direction. Note that the potential of the third fixed portion Y133 is an intermediate potential higher than 6V and lower than 12V.
  • the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spinal column Y125 toward the second force point YV2 side. do.
  • the energized spinal column Y125 pushes the displacement amplifying member Y131 at the second force point YV2.
  • the displacement amplifying member Y131 rotates around the second fulcrum part Y132, using the second fulcrum part Y132 as a fulcrum.
  • the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 also moves in the direction of pushing the movable portion Y127 at the first force point YV1.
  • the displacement amplifying member Y131 is energized and its temperature rises, the length of the displacement amplifying member Y131 in the longitudinal direction increases. Therefore, the amount of displacement of the movable portion Y127 at the first force point YV1 increases by the increased amount.
  • the displacement amplifying member Y131 is urged by the spinal column Y125 and is energized to increase its own temperature and expand. The displacement of the spinal column Y125 is further amplified and transmitted to the movable portion Y127.
  • the movable portion Y127 thus biased by the displacement amplifying member Y131 at the first force point YV1 rotates around the first fulcrum portion Y126 with the first fulcrum portion Y126 as a fulcrum.
  • the valve body Y128 connected to the end of the movable part Y127 opposite to the first fulcrum part Y126 also moves in the longitudinal direction toward the side where the displacement amplifying member Y131 pushes the movable part Y127.
  • the opening states of the first passage hole Y16 and the second passage hole Y17 when the valve body Y128 is in this energized position are the same as in the first embodiment.
  • the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spinal column Y125 to the side opposite to the second force point YV2 side.
  • the energized spinal column Y125 pulls the displacement amplifying member Y131 toward the spinal column Y125 on the second force point YV2 side.
  • the displacement amplifying member Y131 rotates around the second fulcrum part Y132, using the second fulcrum part Y132 as a fulcrum.
  • the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 also moves in the direction of pulling the movable portion Y127 at the first force point YV1.
  • the length in the longitudinal direction of the displacement amplifying member Y131 decreases, the amount of displacement of the movable portion Y127 at the first force point YV1 increases accordingly.
  • the movable portion Y127 thus biased by the displacement amplifying member Y131 at the first force point YV1 rotates around the first fulcrum portion Y126 with the first fulcrum portion Y126 as a fulcrum.
  • the valve body Y128 connected to the end of the movable part Y127 opposite to the first fulcrum part Y126 also moves in the longitudinal direction toward the side where the displacement amplifying member Y131 pulls the movable part Y127.
  • the valve body Y128 returns to a predetermined de-energized position and stops.
  • a flow path (not shown) that is located outside the microvalve Y1 and communicates with the first flow path hole Y16, and a flow path that is outside the microvalve Y1 and communicates with the second flow path hole Y17. Communication with other flow paths (not shown) via the window hole Y120 is cut off.
  • the displacement amplifying member Y131 when the spinal column Y125 is energized, the displacement amplifying member Y131 is energized by the spinal column Y125 and is energized to increase its own temperature and expand, thereby suppressing the displacement of the spinal column Y125. Amplify. With this configuration, the displacement amplifying member Y131 not only functions as a lever, but also expands and contracts when energized, thereby amplifying the displacement of the spinal column Y125. That is, the displacement of the spinal column Y125 can be more strongly amplified. Further, in this embodiment, similar effects can be obtained from the same configuration and operation as in the first embodiment.
  • FIGS. 10 and 11 a third embodiment will be described using FIGS. 10 and 11. This embodiment differs from the first embodiment in the structures of the intermediate layer Y12 and the second outer layer Y13.
  • the first channel hole Y16 has a rectangular shape extending in the lateral direction of the second outer layer Y13.
  • a plurality of sub-channel holes Y171, Y172, Y173, Y174, and Y175 are provided in place of the single second channel hole Y17 of the first embodiment.
  • sub-channel holes Y171 to Y175 are arranged at positions offset from the first channel hole Y16 in the longitudinal direction of the second outer layer Y13. Further, the sub-channel holes Y171 to Y175 are arranged in a line in the lateral direction of the second outer layer Y13. Furthermore, each of the sub-channel holes Y171 to Y175 has a rectangular shape and extends in the longitudinal direction of the second outer layer Y13. These sub flow passage holes Y171 to Y175 constitute the second flow passage hole as a whole.
  • the structure of the intermediate layer Y12 differs from the first embodiment in the following points.
  • the fluid chamber Y19 of this embodiment is formed to communicate with the first flow path hole Y16 and the sub flow path holes Y171 to Y175.
  • the shape of the valve body Y128 of this embodiment is different from that of the first embodiment.
  • the valve body Y128 of this embodiment includes a base portion 80, a plurality of sub-valve bodies 81, 82, 83, 84, 85, and eight parts that reinforce the plurality of sub-valve bodies 81 to 85. It has a reinforcing part 86.
  • the base portion 80, the sub-valve bodies 81 to 85, and the plurality of reinforcing portions 86 are integrally formed as a whole, but as another example, they may be formed separately and then joined.
  • the number of sub-valve bodies 81 to 85 is five, but as other examples, the number may be two or more and four or less, or six or more. Further, in the examples of FIGS. 10 and 11, the number of reinforcing portions 86 is eight, but as other examples, the number may be seven or less (for example, one or two), or it may be nine or more. It's okay. Further, two reinforcing portions 86 are provided between any adjacent sub-valve bodies among the sub-valve bodies 81 to 85, and two reinforcing portions 86 are provided between adjacent sub-valve bodies. The number of is not limited to two. Further, the reinforcing portion 86 may be provided only between some adjacent sub-valve bodies among the sub-valve bodies 81 to 85.
  • the base portion 80 is a member that connects to the movable portion Y127 at the point of action YV3 and extends in the lateral direction of the intermediate layer Y12.
  • the sub-valve bodies 81 to 85 are arranged in a line spaced apart in the lateral direction of the intermediate layer Y12. Furthermore, the longitudinal direction of each of the sub-valve bodies 81 to 85 extends in the longitudinal direction of the intermediate layer Y12. Further, the end portion of each of the sub-valve bodies 81 to 85 on the movable portion Y127 side in the longitudinal direction is connected to the base portion 80.
  • each of the sub-valve bodies 81 to 85 has through holes 81a, 82a, 83a, 84a that penetrate from one end to the other end in the thickness direction of the intermediate layer Y12 and extend in the longitudinal direction of the intermediate layer Y12. 85a is formed. Therefore, the sub-valve bodies 81 to 85 are frames that annularly surround the through holes 81a to 85a, respectively.
  • the inner circumferential edges of the sub-valve bodies 81 to 85 are connected to the sub-channel holes Y171 to Y175 so that the outer circumferential edges of the sub-channel holes Y171 to Y175 can be completely surrounded from the outside. It is formed wider than the outer peripheral edge of Y175.
  • each of the sub-valve bodies 81 to 85 contacts the first outer layer Y11 at one end in the thickness direction of the intermediate layer Y12, and contacts the second outer layer Y13 at the other end.
  • the sub-valve bodies 81-85 seal between the respective through holes 81a-85a and other parts in the fluid chamber Y19.
  • Each of the reinforcing portions 86 extends in the lateral direction of the intermediate layer Y12 between any two adjacent sub-valve bodies among the sub-valve bodies 81 to 85 so as to be connected to the two sub-valve bodies at both ends.
  • one reinforcing portion 86 may be divided into three or more parts and connected to three or more of the sub-valve bodies 81 to 85. These reinforcing portions 86 improve the overall strength of the valve body Y128.
  • Each reinforcing portion 86 is spaced apart from one or both of the first outer layer Y11 and the second outer layer Y13. That is, each reinforcing portion 86 does not function as a fluid seal within the fluid chamber Y19.
  • the intermediate layer Y12 is in the state shown in FIG. 11.
  • the first passage hole Y16 communicates with the fluid chamber Y19, but the sub passage holes Y171 to Y175 are surrounded by sub valve bodies 81 to 85, respectively. Therefore, in the fluid chamber Y19, the sub flow passage holes Y171 to Y175 are blocked off from the first flow passage hole Y16 by the sub valve bodies 81 to 85.
  • the position of the valve body Y128 at this time is referred to as the non-energized position. In this case, the microvalve Y1 is in a closed state.
  • a voltage is applied between the first application point Y129 and the second application point Y130 by the electric wiring.
  • a voltage is applied, a current flows in each of the first rib Y123 and the second rib Y124 in the intermediate layer Y12, similarly to the first embodiment.
  • This current causes the plurality of first ribs Y123 and the plurality of second ribs Y124 to generate heat.
  • each of the first rib Y123 and the second rib Y124 expands in its longitudinal direction.
  • the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spinal column Y125 toward the second force point YV2.
  • the energized spinal column Y125 pushes the displacement amplifying member Y131 at the second force point YV2.
  • the displacement amplifying member Y131 rotates around the second fulcrum part Y132, using the second fulcrum part Y132 as a fulcrum.
  • the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 also moves in the direction of pushing the movable portion Y127 at the first force point YV1.
  • the movable part Y127 rotates around the first fulcrum part Y126, using the first fulcrum part Y126 as a fulcrum.
  • the entire valve body Y128 rotates about the first fulcrum part Y126 in the longitudinal direction in the direction in which the displacement amplifying member Y131 pushes the movable part Y127.
  • the sub-valve bodies 81 to 85 similarly rotate around the first fulcrum portion Y126.
  • the positions of the through holes 81a to 85a change, and the relative positional relationship between the through holes 81a to 85a and the sub flow passage holes Y171 to Y175 changes.
  • some or all of the sub-channel holes Y171 to Y175 protrude from the through holes 81a to 85a, respectively.
  • the first flow path hole Y16 communicates with the sub flow path holes Y171 to Y175.
  • the position of the valve body Y128 at this time is referred to as the energized position.
  • the microvalve Y1 is in an open state.
  • the fluid flows through the outside of the microvalve Y1, the first flow path hole Y16, the fluid chamber Y19, the sub flow path holes Y171 to Y175, and the outside of the microvalve Y1 in this order or in the reverse order.
  • the voltage application from the electrical wiring to the first application point Y129 and the second application point Y130 is stopped. Then, current no longer flows through the plurality of first ribs Y123 and the plurality of second ribs Y124, and the temperature of the plurality of first ribs Y123 and the plurality of second ribs Y124 decreases. As a result, each of the plurality of first ribs Y123 and the plurality of second ribs Y124 contracts in the longitudinal direction. As a result of such thermal contraction, the valve body Y128 returns to a predetermined non-energized position and stops in the same mechanism as in the first embodiment. Through such operation, the sub-valve bodies 81-85 move within the fluid chamber Y19 to adjust the opening degrees of the sub-channel holes Y171-Y175 with respect to the first channel hole Y16, respectively.
  • the reinforcing portion 86 for reinforcing the sub-valve bodies 81-85 is connected to a plurality of the sub-valve bodies 81-85. With this configuration, the reinforcement portion 86 increases the strength of the valve body Y128 against the pressure of the fluid flowing into the fluid chamber Y19.
  • the plurality of first ribs Y123, the plurality of second ribs Y124, and the displacement amplifying member Y131 generate heat when energized, and expand as their own temperature rises due to the heat generation.
  • these members may also be constructed from a shape memory material that changes length as the temperature changes.
  • both the opening degree of the second passage hole Y17 with respect to the window hole Y120 and the opening degree of the first passage hole Y16 with respect to the window hole Y120 may be adjusted in conjunction with each other.
  • the two holes that can communicate with the window hole Y120 from the outside of the microvalve Y1 are the first flow path hole Y16 and the second flow path hole Y17.
  • the opening degrees of the third and subsequent flow passage holes may or may not be adjusted by the movement of the valve body Y128.
  • the shape and size of the microvalve Y1 are not limited to those shown in the above embodiment.
  • the microvalve Y1 is capable of controlling a very small flow rate and has a first flow path hole Y16 and a second flow path hole Y17 having a hydraulic diameter that does not clog minute dust existing in the flow path. good.
  • the displacement amplifying member Y131 is composed of one lever.
  • the displacement amplifying member Y131 may be composed of a plurality of levers connected in series.
  • a MEMS valve is exemplified as an example of a valve device that amplifies the displacement of the drive unit caused by a temperature change depending on the presence or absence of energization using the principle of leverage and transmits the amplified displacement to the valve body.
  • a valve device may be other than a MEMS valve.
  • the displacement amplifying member Y131 acts as a lever to amplify the amount of displacement of the spinal column Y125 and transmits it to the movable part Y127, and at the same time expands and contracts in the longitudinal direction by being energized, thereby increasing the displacement of the spinal column Y125.
  • the amount of displacement is amplified and transmitted to the movable part Y127.
  • the displacement amplifying member Y131 may not act and may amplify the amount of displacement of the spinal column Y125 and transmit it to the movable portion Y127 only by expanding and contracting in the longitudinal direction when energized.
  • the first point of effort YV1 is located closer to the first fulcrum portion Y126 than the second point of effort YV2.
  • this does not necessarily have to be the case. That is, the second point of force YV2 may be located closer to the first fulcrum portion Y126 than the first point of force YV1.
  • the displacement amplifying member Y131 is turned upside down in the paper with the spinal column Y125 and the second force point YV2 as the center.
  • the second fulcrum part Y132 which is the center of rotation of the displacement amplification member Y131, is arranged closer to the second fixed part Y122 than the spinal column Y125
  • the first force point is the connection point between the displacement amplification member Y131 and the movable part Y127.
  • YV1 is arranged closer to the valve body Y128 than the spinal column Y125.
  • the first fulcrum part Y126, the second fulcrum part Y132, the second force point YV2, and the first force point YV1 are arranged in this order from the second fixed part Y122 toward the valve body Y128, but even in this case,
  • the displacement amplifying member Y131 functions as a lever.
  • the first fulcrum part Y126, the first force point YV1, the second force point YV2, and the second fulcrum part Y132 are lined up in this order from the second fixing part Y122 toward the valve body Y128. There is.
  • Modification 9 Furthermore, the modification 8 is modified so that the second fulcrum portion Y132, the second force point YV2, the first fulcrum portion Y126, and the first force point YV1 are arranged in the order from the second fixing portion Y122 toward the valve body Y128. Good too. That is, the position of the first fulcrum portion Y126 may be shifted to approach the first force point YV1 compared to the eighth modification. In this example, unlike Modification 8, the position of the first fulcrum part Y126 is set so that the first point of effort YV1 is closer to the first fulcrum part Y126 than the second point of effort YV2. You can also do it.
  • Disclosure 1 a first outer layer (Y11); a second outer layer (Y13); an intermediate layer (Y12) that is sandwiched between the first outer layer and the second outer layer and forms a fluid chamber (Y19) through which fluid flows;
  • a first flow hole (Y16) that can communicate with the fluid chamber is formed in the first outer layer or the second outer layer
  • Second flow passage holes (Y17, Y171 to Y175) that can communicate with the fluid chamber are formed in the first outer layer or the second outer layer
  • the intermediate layer includes a drive unit (Y123, Y124, Y125) that is displaced by changing its own temperature depending on whether or not it is energized; a displacement amplification member (Y131) that is biased by the drive unit and amplifies the displacement of the drive unit when the drive unit is displaced; a movable part (Y127) that rotates around a fulcrum part (Y126) by receiving the displacement amplified by the displacement amplifying member at the force
  • a displacement amplifying member biases the movable part at the first force point;
  • the valve device according to disclosure 1 wherein the distance from the second fulcrum part to the first force point is longer than the distance from the second fulcrum part to the second force point.
  • the displacement amplifying member extends along the longitudinal direction of the movable part,
  • the valve device according to disclosure 2 wherein the first point of force is located closer to the first fulcrum portion than the second point of force.
  • Disclosure When the drive unit is energized, the displacement amplification member is energized by the drive unit and is energized to increase its own temperature and expand, thereby amplifying the displacement of the drive unit. 4.
  • the second channel hole has a plurality of sub-channel holes (Y171 to Y175)
  • the valve body has a plurality of sub-valve bodies (81 to 85) and a reinforcing part (86) for reinforcing the plurality of sub-valve bodies,
  • the plurality of sub-valve bodies move within the fluid chamber to respectively adjust the opening degree of the plurality of sub-channel holes with respect to the first channel hole,
  • the valve device according to any one of Disclosures 1 to 4, wherein the reinforcing portion is connected to a plurality of the plurality of sub-valve bodies.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

This valve device is provided with: a first outer layer (Y11); a second outer layer (Y13); and an interlayer (Y12) forming a fluid chamber (Y19). A first flow hole (Y16) enabling communication with the fluid chamber is formed in either the first outer layer or the second outer layer. A second flow hole (Y17, Y171-Y175) enabling communication with the fluid chamber is formed in either the first outer layer or the second outer layer. The interlayer includes: drive parts (Y123, Y124, Y125) that are displaced when their own temperature changes depending on whether there is electrical conduction; a displacement amplification member (Y131) that is urged by the drive parts and also amplifies the displacement of the drive parts when the drive parts are displaced; a movable part (Y127) that receives at a force point (YV1) the displacement that has been amplified by the displacement amplification member and thereby rotates about a fulcrum (Y126); and a valve element (Y128) for adjusting the degree of opening of the second flow hole with respect to the fluid chamber, by being urged from an application point (YV3) of the movable part and moving within the fluid chamber when the movable part rotates.

Description

弁装置valve device 関連出願への相互参照Cross-reference to related applications
 本出願は、2022年4月11日に出願された日本特許出願番号2022-065329号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2022-065329 filed on April 11, 2022, the contents of which are hereby incorporated by reference.
 本開示は、弁装置に関する。 The present disclosure relates to a valve device.
 特許文献1には、通電の有無に応じて自らの温度が変化することで変位する駆動部と、駆動部の変位を梃子の原理で増幅する可動部と、可動部によって増幅された変位が伝達されることで動いて流路孔を開閉する弁体とを有するMEMSバルブが開示されている。MEMSは、Micro Electro Mechanical Systemsの略称である。 Patent Document 1 describes a drive section that is displaced by changing its own temperature depending on whether or not it is energized, a movable section that amplifies the displacement of the drive section based on the principle of leverage, and a drive section that transmits the amplified displacement by the movable section. A MEMS valve is disclosed that has a valve body that opens and closes a flow passage hole by moving when the valve body is opened and closed. MEMS is an abbreviation for Micro Electro Mechanical Systems.
米国特許9505608号US Patent No. 9505608
 特許文献1に記載のMEMSバルブにおいて、開弁時の開口面積を更に大きくすることが望ましい場合があるが、発明者の検討によれば、そのためには、可動部を長くする等によりMEMSバルブの体格が大きくなってしまう恐れがある。このことは、MEMSバルブに限らず、梃子の原理を利用して弁体を動かす弁装置全般においても言える。本開示は、通電の有無に応じた温度変化によって発生する駆動部の変位を梃子の原理で増幅して弁体に伝える弁装置において、体格の増大を抑制しつつ開弁時の開口面積を増大させること、あるいは、開弁時の開口面積の低減を抑制しつつ体格を低減することを目的とする。 In the MEMS valve described in Patent Document 1, it may be desirable to further increase the opening area when the valve is opened, but according to the inventor's study, in order to do so, the MEMS valve may be There is a risk that your body size will increase. This is true not only for MEMS valves but also for valve devices in general that move valve bodies using the principle of leverage. The present disclosure provides a valve device that amplifies the displacement of the drive unit caused by temperature changes depending on the presence or absence of energization and transmits it to the valve body using the lever principle, and increases the opening area when the valve is opened while suppressing an increase in body size. The purpose is to reduce the body size while suppressing the reduction in the opening area when the valve is opened.
 本開示の1つの観点によれば、弁装置は、
 第1外層と、
 第2外層と、
 前記第1外層と前記第2外層に挟まれると共に流体が流通する流体室を形成する中間層と、を備え、
 前記第1外層または前記第2外層には、前記流体室と連通可能な第1流路孔が形成され、
 前記第1外層または前記第2外層には、前記流体室と連通可能な第2流路孔が形成され、
 前記中間層は、通電の有無に応じて自らの温度が変化することで変位する駆動部と、
 前記駆動部が変位したときに、前記駆動部に付勢されると共に前記駆動部の変位を増幅する変位増幅部材と、
 前記変位増幅部材によって増幅された変位を力点で受けることで、支点部を中心に回転する可動部と、
 前記可動部が回転する際に前記可動部の作用点から付勢されて前記流体室内で動くことで前記流体室に対する前記第2流路孔の開度を調整する弁体と、を有する。
According to one aspect of the present disclosure, the valve device includes:
a first outer layer;
a second outer layer;
an intermediate layer sandwiched between the first outer layer and the second outer layer and forming a fluid chamber through which fluid flows;
A first flow hole that can communicate with the fluid chamber is formed in the first outer layer or the second outer layer,
A second flow passage hole that can communicate with the fluid chamber is formed in the first outer layer or the second outer layer,
The intermediate layer includes a drive unit that is displaced by changing its own temperature depending on whether or not electricity is applied;
a displacement amplification member that is biased by the drive unit and amplifies the displacement of the drive unit when the drive unit is displaced;
a movable part that rotates around a fulcrum part by receiving the displacement amplified by the displacement amplification member at a force point;
The valve body includes a valve body that adjusts the opening degree of the second flow path hole with respect to the fluid chamber by being biased from a point of action of the movable portion and moving within the fluid chamber when the movable portion rotates.
 このように、梃子の原理を利用する可動部に加え、変位増幅部材が駆動部の変位を増幅するので、弁装置の体格の増大を抑制しつつ開弁時の開口面積を増大させること、あるいは、開弁時の開口面積の低減を抑制しつつ体格を低減することが、可能になる。 In this way, in addition to the movable part that uses the principle of leverage, the displacement amplifying member amplifies the displacement of the drive part, so it is possible to increase the opening area when the valve is opened while suppressing an increase in the size of the valve device, or , it becomes possible to reduce the body size while suppressing the reduction in the opening area when the valve is opened.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference numerals in parentheses attached to each component etc. indicate an example of the correspondence between that component etc. and specific components etc. described in the embodiments described later.
マイクロバルブの正面図である。FIG. 3 is a front view of a microvalve. マイクロバルブの側面図である。FIG. 3 is a side view of a microvalve. マイクロバルブの部品展開図である。FIG. 3 is an exploded view of parts of a microvalve. 非通電時のマイクロバルブの第1外層を省略した正面図である。FIG. 3 is a front view of the microvalve when no electricity is applied, with the first outer layer omitted. 電位および電流が表された中間層の正面図である。FIG. 3 is a front view of the intermediate layer with potential and current depicted. 通電時の中間層の正面図である。FIG. 3 is a front view of the intermediate layer when energized. 従来と梃子2段との違いを表す概念図である。It is a conceptual diagram showing the difference between a conventional lever and a two-stage lever. 第2実施形態に係る非通電時のマイクロバルブの第1外層を省略した正面図である。FIG. 7 is a front view of the microvalve according to the second embodiment when the current is not energized, with the first outer layer omitted. 電位および電流が表された中間層の正面図である。FIG. 3 is a front view of the intermediate layer with potential and current depicted. 第3実施形態におけるマイクロバルブの部品展開図である。FIG. 7 is a exploded view of parts of a microvalve in a third embodiment. 非通電時のマイクロバルブの第1外層を省略した正面図である。FIG. 3 is a front view of the microvalve when no electricity is applied, with the first outer layer omitted.
 (第1実施形態)
 以下、第1実施形態について説明する。図1、図2、図3に示すように、マイクロバルブY1は、板形状の弁部品であり、主として半導体チップによって構成されている。したがって、マイクロバルブY1を小型に構成できる。マイクロバルブY1の板厚は例えば2mmであり、厚さ方向に直交する長手方向の長さは例えば10mmであり、長手方向にも厚さ方向にも直交する短手方向の長さは例えば5mmであるが、サイズはこれに限定されない。マイクロバルブY1への供給電力が切り替わることで、マイクロバルブY1の流路構成が変化する。マイクロバルブY1は、例えば、それ自体が流体(例えば、気体、液体)の流路を開閉する弁であってもよいし、他の弁を駆動するパイロット弁であってもよい。
(First embodiment)
The first embodiment will be described below. As shown in FIGS. 1, 2, and 3, the microvalve Y1 is a plate-shaped valve component, and is mainly composed of a semiconductor chip. Therefore, the microvalve Y1 can be configured to be small. The thickness of the microvalve Y1 is, for example, 2 mm, the length in the longitudinal direction perpendicular to the thickness direction is, for example, 10 mm, and the length in the transverse direction, perpendicular to both the longitudinal direction and the thickness direction, is, for example, 5 mm. However, the size is not limited to this. By switching the power supplied to the microvalve Y1, the flow path configuration of the microvalve Y1 changes. For example, the microvalve Y1 itself may be a valve that opens and closes a fluid (eg, gas, liquid) flow path, or may be a pilot valve that drives another valve.
 マイクロバルブY1は、いずれも半導体である第1外層Y11、中間層Y12、第2外層Y13を備えたMEMSバルブである。第1外層Y11、中間層Y12、第2外層Y13は、それぞれが概ね同じ外形を有する長方形の板形状の部材であり、第1外層Y11、中間層Y12、第2外層Y13の順に積層されている。すなわち、中間層Y12が、第1外層Y11と第2外層Y13に両側から挟まれている。第1外層Y11、中間層Y12、第2外層Y13のうち、第2外層Y13が、バルブケーシングY2の底壁に最も近い側に配置される。後述する第1外層Y11、中間層Y12、第2外層Y13の構造は、化学的エッチング等の半導体製造プロセスによって形成される。 The microvalve Y1 is a MEMS valve including a first outer layer Y11, an intermediate layer Y12, and a second outer layer Y13, all of which are semiconductors. The first outer layer Y11, the intermediate layer Y12, and the second outer layer Y13 are rectangular plate-shaped members each having approximately the same outer shape, and are laminated in the order of the first outer layer Y11, the intermediate layer Y12, and the second outer layer Y13. . That is, the intermediate layer Y12 is sandwiched between the first outer layer Y11 and the second outer layer Y13 from both sides. Among the first outer layer Y11, intermediate layer Y12, and second outer layer Y13, the second outer layer Y13 is arranged on the side closest to the bottom wall of the valve casing Y2. The structures of the first outer layer Y11, intermediate layer Y12, and second outer layer Y13, which will be described later, are formed by a semiconductor manufacturing process such as chemical etching.
 第1外層Y11は、導電性の半導体部材の表面に非導電性の酸化膜が形成された電極ポート層である。第1外層Y11には、図3に示すように、表裏に貫通する2つの貫通孔Y14、Y15が形成されている。この貫通孔Y14、Y15に、それぞれ、電気配線のマイクロバルブY1側端が挿入される。なお、他の例として、貫通孔Y14、Y15は、両方が第2外層Y13に形成されていてもよいし、一方が第1外層Y11に形成され、他方が第2外層Y13に形成されてもよい。 The first outer layer Y11 is an electrode port layer in which a non-conductive oxide film is formed on the surface of a conductive semiconductor member. As shown in FIG. 3, two through holes Y14 and Y15 are formed in the first outer layer Y11, passing through the front and back sides. The ends of the electrical wiring on the microvalve Y1 side are inserted into the through holes Y14 and Y15, respectively. As another example, both of the through holes Y14 and Y15 may be formed in the second outer layer Y13, or one of the through holes Y14 and Y15 may be formed in the first outer layer Y11 and the other in the second outer layer Y13. good.
 第2外層Y13は、導電性の半導体部材の表面に非導電性の酸化膜が形成された流路穴層である。第2外層Y13には、図3、図4に示すように、表裏に貫通する第1流路孔Y16、第2流路孔Y17が形成されている。第1流路孔Y16、第2流路孔Y17の各々の水力直径は、例えば0.1mm以上かつ3mm以下であるが、これに限定されない。なお、他の例として、第1流路孔Y16、第2流路孔Y17は、両方が第1外層Y11に形成されていてもよいし、一方が第1外層Y11に形成され、他方が第2外層Y13に形成されてもよい。 The second outer layer Y13 is a channel hole layer in which a non-conductive oxide film is formed on the surface of a conductive semiconductor member. As shown in FIGS. 3 and 4, the second outer layer Y13 is formed with a first passage hole Y16 and a second passage hole Y17 that penetrate the front and back sides. The hydraulic diameter of each of the first passage hole Y16 and the second passage hole Y17 is, for example, 0.1 mm or more and 3 mm or less, but is not limited thereto. In addition, as another example, the first channel hole Y16 and the second channel hole Y17 may both be formed in the first outer layer Y11, or one may be formed in the first outer layer Y11 and the other may be formed in the first outer layer Y11. 2 may be formed on the outer layer Y13.
 中間層Y12は、導電性の半導体部材であり、第1外層Y11と第2外層Y13に挟まれたアクチュエータ層である。中間層Y12は、第1外層Y11の酸化膜と第2外層Y13の酸化膜に接触するので、第1外層Y11と第2外層Y13とも電気的に非導通である。中間層Y12は、図4に示すように、第1固定部Y121、第2固定部Y122、複数本の第1リブY123、複数本の第2リブY124、脊柱Y125、第1支点部Y126、可動部Y127、弁体Y128を有している。さらに中間層Y12は、変位増幅部材Y131、第2支点部Y132、第3固定部Y133、第4固定部Y134を有している。 The intermediate layer Y12 is a conductive semiconductor member, and is an actuator layer sandwiched between the first outer layer Y11 and the second outer layer Y13. Since the intermediate layer Y12 contacts the oxide film of the first outer layer Y11 and the oxide film of the second outer layer Y13, the first outer layer Y11 and the second outer layer Y13 are electrically non-conductive. As shown in FIG. 4, the intermediate layer Y12 includes a first fixed part Y121, a second fixed part Y122, a plurality of first ribs Y123, a plurality of second ribs Y124, a spinal column Y125, a first fulcrum part Y126, and a movable part. It has a portion Y127 and a valve body Y128. Further, the intermediate layer Y12 includes a displacement amplifying member Y131, a second fulcrum portion Y132, a third fixed portion Y133, and a fourth fixed portion Y134.
 第1固定部Y121、第2固定部Y122、第3固定部Y133、第4固定部Y134は、第1外層Y11、第2外層Y13に対して接着等で固定された部材である。第1固定部Y121は、第2固定部Y122、第1リブY123、第2リブY124、脊柱Y125、第1支点部Y126、可動部Y127、弁体Y128、変位増幅部材Y131、第2支点部Y132、第3固定部Y133、第4固定部Y134を同じ1つの流体室Y19内にスリットで隔てて囲むように形成されている。流体室Y19は、第1固定部Y121、第1外層Y11、第2外層Y13によって囲まれた室である。第1固定部Y121、第1外層Y11、第2外層Y13は、全体として基部に対応する。なお、電気配線は複数の第1リブY123および複数の第2リブY124の温度を変化させて変位させるための電気配線である。 The first fixing part Y121, the second fixing part Y122, the third fixing part Y133, and the fourth fixing part Y134 are members fixed to the first outer layer Y11 and the second outer layer Y13 by adhesive or the like. The first fixed part Y121 includes a second fixed part Y122, a first rib Y123, a second rib Y124, a spinal column Y125, a first fulcrum part Y126, a movable part Y127, a valve body Y128, a displacement amplification member Y131, and a second fulcrum part Y132. , the third fixing part Y133, and the fourth fixing part Y134 are formed in the same fluid chamber Y19 so as to be separated by a slit and surrounded. The fluid chamber Y19 is a chamber surrounded by the first fixing portion Y121, the first outer layer Y11, and the second outer layer Y13. The first fixing portion Y121, the first outer layer Y11, and the second outer layer Y13 correspond to the base as a whole. Note that the electrical wiring is electrical wiring for changing and displacing the temperatures of the plurality of first ribs Y123 and the plurality of second ribs Y124.
 第1固定部Y121の第1外層Y11および第2外層Y13に対する固定は、流体がこの流体室Y19から第1流路孔Y16、第2流路孔Y17以外を通ってマイクロバルブY1から漏出することを抑制するような形態で、行われている。第2固定部Y122は、第1固定部Y121に取り囲まれると共に、スリットを介して第1固定部Y121と第4固定部Y134から離れて配置される。 The fixation of the first fixing portion Y121 to the first outer layer Y11 and the second outer layer Y13 prevents fluid from leaking from the microvalve Y1 from this fluid chamber Y19 through a path other than the first channel hole Y16 and the second channel hole Y17. This is done in a way that suppresses the The second fixing part Y122 is surrounded by the first fixing part Y121 and is arranged apart from the first fixing part Y121 and the fourth fixing part Y134 via a slit.
 第3固定部Y133は、第1固定部Y121に取り囲まれると共に、第1固定部Y121、可動部Y127、第1リブY123からスリットを介して離れて配置される。また、第3固定部Y133は、第2固定部Y122からも離れている。第3固定部Y133は、複数本の第1リブY123と可動部Y127の間に配置されている。 The third fixed part Y133 is surrounded by the first fixed part Y121 and is arranged apart from the first fixed part Y121, the movable part Y127, and the first rib Y123 via a slit. Further, the third fixed part Y133 is also separated from the second fixed part Y122. The third fixed part Y133 is arranged between the plurality of first ribs Y123 and the movable part Y127.
 第4固定部Y134は、第1固定部Y121に取り囲まれると共に、第1固定部Y121、第2固定部Y122、第2リブY124、変位増幅部材Y131から、スリットを介して離れて配置される。また、第4固定部Y134は、第3固定部Y133からも離れている。第4固定部Y134は、複数本の第2リブY124と可動部Y127の間に配置されている。 The fourth fixing part Y134 is surrounded by the first fixing part Y121 and is arranged apart from the first fixing part Y121, the second fixing part Y122, the second rib Y124, and the displacement amplifying member Y131 via a slit. Further, the fourth fixed part Y134 is also separated from the third fixed part Y133. The fourth fixed portion Y134 is arranged between the plurality of second ribs Y124 and the movable portion Y127.
 複数本の第1リブY123、複数本の第2リブY124、脊柱Y125、第1支点部Y126、可動部Y127、弁体Y128、第2支点部Y132は、第1外層Y11、第2外層Y13に対して固定されておらず、第1外層Y11、第2外層Y13に対して変位可能である。 The plurality of first ribs Y123, the plurality of second ribs Y124, the spinal column Y125, the first fulcrum part Y126, the movable part Y127, the valve body Y128, and the second fulcrum part Y132 are connected to the first outer layer Y11 and the second outer layer Y13. It is not fixed to the outer layer, but is movable relative to the first outer layer Y11 and the second outer layer Y13.
 脊柱Y125は、中間層Y12の矩形形状の短手方向に伸びる細長い棒形状を有している。したがって、脊柱Y125は、変位増幅部材Y131の長手方向および可動部Y127の長手方向に対して交差する方向に伸びている。脊柱Y125の長手方向の一端は、変位増幅部材Y131に接続されている。 The spinal column Y125 has an elongated rod shape extending in the lateral direction of the rectangular shape of the intermediate layer Y12. Therefore, the spinal column Y125 extends in a direction intersecting the longitudinal direction of the displacement amplifying member Y131 and the longitudinal direction of the movable portion Y127. One longitudinal end of the spinal column Y125 is connected to a displacement amplifying member Y131.
 複数本の第1リブY123は、脊柱Y125の長手方向に直交する方向における脊柱Y125の一方側に配置される。そして、複数本の第1リブY123は、脊柱Y125の長手方向に、スリットを隔てて並んでいる。各第1リブY123は、細長い棒形状を有しており、温度に応じて伸縮可能となっている。 The plurality of first ribs Y123 are arranged on one side of the spinal column Y125 in a direction perpendicular to the longitudinal direction of the spinal column Y125. The plurality of first ribs Y123 are arranged in the longitudinal direction of the spinal column Y125 with a slit in between. Each first rib Y123 has an elongated rod shape and can expand and contract depending on the temperature.
 各第1リブY123は、その長手方向の一端で第1固定部Y121に接続され、他端で脊柱Y125に接続される。そして、各第1リブY123は、第1固定部Y121側から脊柱Y125側に近付くほど、脊柱Y125の長手方向の変位増幅部材Y131側に向けてオフセットされるよう、脊柱Y125に対して斜行している。そして、複数の第1リブY123は、互いに対して平行に伸びている。 Each first rib Y123 is connected to the first fixed portion Y121 at one end in the longitudinal direction, and connected to the spinal column Y125 at the other end. Each first rib Y123 extends obliquely with respect to the spinal column Y125 so that the closer it is from the first fixed part Y121 side to the spinal column Y125 side, the more it is offset toward the displacement amplifying member Y131 side in the longitudinal direction of the spinal column Y125. ing. The plurality of first ribs Y123 extend parallel to each other.
 複数本の第2リブY124は、脊柱Y125の長手方向に直交する方向における脊柱Y125の他方側に配置される。そして、複数本の第2リブY124は、脊柱Y125の長手方向にスリットを隔てて並んでいる。各第2リブY124は、細長い棒形状を有しており、温度に応じて伸縮可能となっている。 The plurality of second ribs Y124 are arranged on the other side of the spinal column Y125 in a direction perpendicular to the longitudinal direction of the spinal column Y125. The plurality of second ribs Y124 are arranged in the longitudinal direction of the spinal column Y125 with slits in between. Each second rib Y124 has an elongated rod shape and can expand and contract depending on the temperature.
 各第2リブY124は、その長手方向の一端で第2固定部Y122に接続され、他端で脊柱Y125に接続される。そして、各第2リブY124は、第2固定部Y122側から脊柱Y125側に近付くほど、脊柱Y125の長手方向の変位増幅部材Y131側に向けてオフセットされるよう、脊柱Y125に対して斜行している。そして、複数の第2リブY124は、互いに対して平行に伸びている。 Each second rib Y124 is connected to the second fixed portion Y122 at one end in the longitudinal direction, and connected to the spinal column Y125 at the other end. Each second rib Y124 extends obliquely with respect to the spinal column Y125 so that the closer it is from the second fixing part Y122 side to the spinal column Y125 side, the more offset it is toward the displacement amplifying member Y131 side in the longitudinal direction of the spinal column Y125. ing. The plurality of second ribs Y124 extend parallel to each other.
 複数本の第1リブY123、複数本の第2リブY124、脊柱Y125は、全体として、駆動部に対応する。 The plurality of first ribs Y123, the plurality of second ribs Y124, and the spinal column Y125 as a whole correspond to the drive section.
 第2支点部Y132は、脊柱Y125と非直交かつ平行に伸びる棒形状を有している。第2支点部Y132の一端は変位増幅部材Y131に接続されており、他端は第3固定部Y133に接続されている。第2支点部Y132の延伸方向と変位増幅部材Y131の長手方向は、互いに交差している。第2支点部Y132の側面は、すなわち、第2支点部Y132の延伸方向に交差する方向における第2支点部Y132の端面は、スリットに面している。 The second fulcrum portion Y132 has a rod shape that extends non-orthogonally and parallel to the spinal column Y125. One end of the second fulcrum portion Y132 is connected to the displacement amplifying member Y131, and the other end is connected to the third fixed portion Y133. The extending direction of the second fulcrum portion Y132 and the longitudinal direction of the displacement amplifying member Y131 intersect with each other. A side surface of the second fulcrum portion Y132, that is, an end surface of the second fulcrum portion Y132 in a direction intersecting the extending direction of the second fulcrum portion Y132 faces the slit.
 変位増幅部材Y131は、脊柱Y125および第2支点部Y132に対して約90°で交差する方向に伸びる細長い棒形状を有している。変位増幅部材Y131は、温度に応じて伸縮可能となっている。また、変位増幅部材Y131の大部分は、可動部Y127の長手方向に沿って伸びている。また、変位増幅部材Y131の第2支点部Y132とは反対側の端部は、可動部Y127側に折れ曲がり、折れ曲がった先で可動部Y127に接続されている。なお、変位増幅部材Y131のうち、可動部Y127の長手方向に沿って伸びている部分は、直線的に伸びていてもよいし、緩やかにカーブしていてもよいし、蛇行して全体として可動部Y127の長手方向に沿って伸びていてもよい。なお、変位増幅部材Y131のうち、可動部Y127の長手方向に沿って伸びている部分は、全体として、可動部Y127の長手方向に対して45°未満であればよい。 The displacement amplifying member Y131 has an elongated rod shape that extends in a direction intersecting the spinal column Y125 and the second fulcrum portion Y132 at approximately 90°. The displacement amplifying member Y131 can expand and contract depending on the temperature. Further, most of the displacement amplifying member Y131 extends along the longitudinal direction of the movable portion Y127. Further, the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 is bent toward the movable portion Y127, and connected to the movable portion Y127 at the bent end. Note that the portion of the displacement amplifying member Y131 that extends along the longitudinal direction of the movable portion Y127 may extend linearly, may be gently curved, or may meander and move as a whole. It may extend along the longitudinal direction of portion Y127. Note that the portion of the displacement amplifying member Y131 extending along the longitudinal direction of the movable portion Y127 may be at an angle of less than 45° with respect to the longitudinal direction of the movable portion Y127 as a whole.
 ここで、第2支点部Y132と、第1力点YV1と、第2力点YV2との位置関係について説明する。第1力点YV1は、変位増幅部材Y131と可動部Y127の接続箇所である。第2力点YV2は、脊柱Y125と変位増幅部材Y131の接続箇所である。 Here, the positional relationship between the second fulcrum portion Y132, the first force point YV1, and the second force point YV2 will be explained. The first force point YV1 is the connection point between the displacement amplifying member Y131 and the movable portion Y127. The second force point YV2 is the connection point between the spinal column Y125 and the displacement amplifying member Y131.
 第2支点部Y132、第2力点YV2、第1力点YV1は、変位増幅部材Y131の長手方向に沿って、変位増幅部材Y131の第2支点部Y132側の端部から可動部Y127側の端部に向けて、この順に並んでいる。したがって、第2支点部Y132から第1力点YV1までの距離は、第2支点部Y132から第2力点YV2までの距離よりも長い。この関係は、ここでいう距離が直線距離であっても成立し、ここでいう距離が変位増幅部材Y131の長手方向に沿った距離であっても成立する。 The second fulcrum part Y132, the second point of force YV2, and the first point of force YV1 extend from the end of the displacement amplifying member Y131 on the second fulcrum part Y132 side to the end of the displacement amplifying member Y131 on the movable part Y127 side along the longitudinal direction of the displacement amplifying member Y131. They are lined up in this order. Therefore, the distance from the second fulcrum part Y132 to the first force point YV1 is longer than the distance from the second fulcrum part Y132 to the second force point YV2. This relationship holds true even if the distance referred to here is a straight-line distance, and also holds true even if the distance referred to here is a distance along the longitudinal direction of the displacement amplifying member Y131.
 第1支点部Y126は、可動部Y127に交差して伸びる棒形状を有している。第1支点部Y126の延伸方向の一端は、可動部Y127に接続されている。第1支点部Y126の延伸方向の他端は、第4固定部Y134に接続されている。第1支点部Y126の側面は、すなわち、第1支点部Y126の延伸方向に交差する方向における第1支点部Y126の端面は、スリットに面している。 The first fulcrum portion Y126 has a rod shape that extends across the movable portion Y127. One end of the first fulcrum portion Y126 in the extending direction is connected to the movable portion Y127. The other end of the first fulcrum portion Y126 in the extending direction is connected to the fourth fixed portion Y134. A side surface of the first fulcrum portion Y126, that is, an end surface of the first fulcrum portion Y126 in a direction intersecting the extending direction of the first fulcrum portion Y126 faces the slit.
 可動部Y127は、中間層Y12の長手方向に沿って伸びる細長い棒形状を有している。可動部Y127の一方側の端部は、第1支点部Y126に接続されている。可動部Y127の第1支点部Y126側とは反対側の端部は、弁体Y128に接続されている。可動部Y127の第1支点部Y126側の端部から弁体Y128側の端部までの、中間層Y12の長手方向に沿った長さは、中間層Y12の長手方向の全長の1/2以上である。このように可動部Y127を長く形成することで、可動部Y127による梃子の作用を大きくすることができる。 The movable portion Y127 has an elongated bar shape extending along the longitudinal direction of the intermediate layer Y12. One end of the movable portion Y127 is connected to the first fulcrum portion Y126. An end of the movable portion Y127 opposite to the first fulcrum portion Y126 is connected to a valve body Y128. The length along the longitudinal direction of the intermediate layer Y12 from the end of the movable part Y127 on the first fulcrum part Y126 side to the end on the valve body Y128 side is 1/2 or more of the total length of the intermediate layer Y12 in the longitudinal direction. It is. By forming the movable portion Y127 to be long in this manner, the lever action of the movable portion Y127 can be increased.
 ここで、第1支点部Y126と、第1力点YV1と、作用点YV3との位置関係について説明する。作用点YV3は、可動部Y127と弁体Y128の接続箇所である。第2力点YV2は、可動部Y127にとっては力点であり、変位増幅部材Y131にとっては作用点である。 Here, the positional relationship between the first fulcrum portion Y126, the first force point YV1, and the point of application YV3 will be explained. The point of action YV3 is the connection point between the movable portion Y127 and the valve body Y128. The second force point YV2 is a force point for the movable portion Y127, and is a point of action for the displacement amplification member Y131.
 第1支点部Y126、第1力点YV1、作用点YV3は、可動部Y127の長手方向に沿って、可動部Y127の第1支点部Y126側の端部から弁体Y128側の端部に向けて、この順に並んでいる。したがって、第1支点部Y126から作用点YV3までの距離は、第1支点部Y126から第1力点YV1までの距離よりも長い。この関係は、ここでいう距離が直線距離であっても成立し、ここでいう距離が可動部Y127の長手方向に沿った距離であっても成立する。 The first fulcrum part Y126, the first force point YV1, and the point of action YV3 are arranged along the longitudinal direction of the movable part Y127 from the end of the movable part Y127 on the first fulcrum part Y126 side toward the end of the movable part Y127 on the valve body Y128 side. , arranged in this order. Therefore, the distance from the first fulcrum Y126 to the point of application YV3 is longer than the distance from the first fulcrum Y126 to the first point of force YV1. This relationship holds true even if the distance referred to here is a straight-line distance, and also holds true even if the distance referred to here is a distance along the longitudinal direction of the movable portion Y127.
 弁体Y128は、その外形が、可動部Y127の長手方向に対して概ね90°の方向に伸びる、すなわち、中間層Y12の短手方向に伸びる、矩形形状を有している。この弁体Y128は、流体室Y19内において可動部Y127と一体に動くことができる。そして、弁体Y128は、中間層Y12の表裏に貫通する窓孔Y120を囲む枠形状となっている。したがって、窓孔Y120も、弁体Y128と一体的に移動する。窓孔Y120は、流体室Y19の一部である。弁体Y128は、上記のように動くことで、第2流路孔Y17の窓孔Y120に対する開度を変更する。第1流路孔Y16は、窓孔Y120に対して(すなわち、流体室Y19に対して)常に開状態で連通している。 The valve body Y128 has a rectangular outer shape that extends in a direction of approximately 90° with respect to the longitudinal direction of the movable portion Y127, that is, extends in the lateral direction of the intermediate layer Y12. This valve body Y128 can move together with the movable part Y127 within the fluid chamber Y19. The valve body Y128 has a frame shape that surrounds a window hole Y120 that passes through the front and back sides of the intermediate layer Y12. Therefore, the window hole Y120 also moves integrally with the valve body Y128. Window hole Y120 is part of fluid chamber Y19. By moving as described above, the valve body Y128 changes the degree of opening of the second passage hole Y17 with respect to the window hole Y120. The first channel hole Y16 is always open and communicates with the window hole Y120 (that is, with the fluid chamber Y19).
 また、第1固定部Y121のうち、複数の第1リブY123と接続する部分の近傍の第1印加点Y129には、図3に示した第1外層Y11の貫通孔Y14を通る電気配線のマイクロバルブY1側端が接続される。また、第2固定部Y122の第2印加点Y130には、図3に示した第1外層Y11の貫通孔Y15を通る電気配線のマイクロバルブY1側端が接続される。これら電気配線によって、マイクロバルブY1への通電、非通電の切り替えが行われる。 In addition, at the first application point Y129 near the portion of the first fixing portion Y121 that connects with the plurality of first ribs Y123, there is a microelectronic wiring that passes through the through hole Y14 of the first outer layer Y11 shown in FIG. The valve Y1 side end is connected. Moreover, the microvalve Y1 side end of the electric wiring passing through the through hole Y15 of the first outer layer Y11 shown in FIG. 3 is connected to the second application point Y130 of the second fixing part Y122. These electrical wirings are used to switch between energizing and de-energizing the microvalve Y1.
 ここで、マイクロバルブY1の作動について説明する。マイクロバルブY1への通電が行われていない状態では、中間層Y12は図4に示した状態になっている。このとき、第1流路孔Y16は窓孔Y120に対して開口(例えば全開、半開)の状態となり、第2流路孔Y17は弁体Y128に塞がれることで窓孔Y120に対して全閉の状態となる。このときの弁体Y128の位置を、非通電時位置という。 Here, the operation of the microvalve Y1 will be explained. When the microvalve Y1 is not energized, the intermediate layer Y12 is in the state shown in FIG. 4. At this time, the first flow path hole Y16 is open (for example, fully open or half open) with respect to the window hole Y120, and the second flow path hole Y17 is completely opened with respect to the window hole Y120 by being blocked by the valve body Y128. It will be in a closed state. The position of the valve body Y128 at this time is referred to as the non-energized position.
 マイクロバルブY1への通電が開始されると、電気配線によって第1印加点Y129、第2印加点Y130の間に電圧が印加される。ここでは、一例として、第1印加点Y129が12V、第2印加点Y130が0Vとなる電圧が印可されるとするが、これに限られない。 When energization to the microvalve Y1 is started, a voltage is applied between the first application point Y129 and the second application point Y130 by the electric wiring. Here, as an example, it is assumed that a voltage of 12V is applied to the first application point Y129 and 0V to the second application point Y130, but the voltage is not limited to this.
 電圧が印可されると、図5に示すように、中間層Y12において、第2固定部Y122の電位が12Vとなり、第1固定部Y121の電位が0Vとなる。したがって、第2固定部Y122が、複数の第2リブY124、複数の第1リブY123を介して、第1固定部Y121と導通する。その結果、複数の第1リブY123、複数の第2リブY124の各々において、破線矢印のように電流が流れる。この電流によって、複数の第1リブY123、複数の第2リブY124が発熱する。その結果、複数の第1リブY123、複数の第2リブY124の各々が、その長手方向に膨張する。 When a voltage is applied, as shown in FIG. 5, in the intermediate layer Y12, the potential of the second fixed part Y122 becomes 12V, and the potential of the first fixed part Y121 becomes 0V. Therefore, the second fixing portion Y122 is electrically connected to the first fixing portion Y121 via the plurality of second ribs Y124 and the plurality of first ribs Y123. As a result, current flows in each of the plurality of first ribs Y123 and the plurality of second ribs Y124 as indicated by the broken line arrow. This current causes the plurality of first ribs Y123 and the plurality of second ribs Y124 to generate heat. As a result, each of the plurality of first ribs Y123 and the plurality of second ribs Y124 expands in the longitudinal direction.
 なお、第3固定部Y133、第4固定部Y134、可動部Y127、弁体Y128の電位は、脊柱Y125と同様の電位、すなわち、12Vの半分の6V程度になる。そして、変位増幅部材Y131、可動部Y127、弁体Y128には、電流が流れない。したがって、変位増幅部材Y131では、通電に起因した発熱も、その発熱に起因した膨張もない。 Note that the potentials of the third fixed part Y133, fourth fixed part Y134, movable part Y127, and valve body Y128 are the same potential as the spinal column Y125, that is, about 6V, which is half of 12V. Then, no current flows through the displacement amplifying member Y131, the movable portion Y127, and the valve body Y128. Therefore, in the displacement amplifying member Y131, there is neither heat generation due to energization nor expansion caused by the heat generation.
 このような熱的な膨張の結果、複数の第1リブY123、複数の第2リブY124は、脊柱Y125を第2力点YV2側に付勢する。付勢された脊柱Y125は、第2力点YV2において、変位増幅部材Y131を押す。その結果、変位増幅部材Y131は、第2支点部Y132を支点として、第2支点部Y132を中心に回転する。変位増幅部材Y131の第2支点部Y132とは反対側の端部も、第1力点YV1において、可動部Y127を押す方向に、移動する。 As a result of such thermal expansion, the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spinal column Y125 toward the second force point YV2. The energized spinal column Y125 pushes the displacement amplifying member Y131 at the second force point YV2. As a result, the displacement amplifying member Y131 rotates around the second fulcrum part Y132, using the second fulcrum part Y132 as a fulcrum. The end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 also moves in the direction of pushing the movable portion Y127 at the first force point YV1.
 このように第1力点YV1において変位増幅部材Y131から付勢された可動部Y127は、第1支点部Y126を支点として、第1支点部Y126を中心に回転する。その結果、可動部Y127の第1支点部Y126とは反対側の端部に接続された弁体Y128も、その長手方向の、変位増幅部材Y131が可動部Y127を押す側に、移動する。移動した後の弁体Y128の位置を、通電時位置という。 The movable portion Y127 thus biased by the displacement amplifying member Y131 at the first force point YV1 rotates around the first fulcrum portion Y126 with the first fulcrum portion Y126 as a fulcrum. As a result, the valve body Y128 connected to the end of the movable part Y127 opposite to the first fulcrum part Y126 also moves in the longitudinal direction toward the side where the displacement amplifying member Y131 pushes the movable part Y127. The position of the valve body Y128 after the movement is referred to as the energized position.
 図6に示すように、弁体Y128が通電時位置にあるとき、第1流路孔Y16は窓孔Y120に対して開口(例えば全開、半開)の状態であり、第2流路孔Y17も弁体Y128に第1流路孔Y16は窓孔Y120に対して開口(例えば全開、半開)した状態となる。 As shown in FIG. 6, when the valve body Y128 is in the energized position, the first passage hole Y16 is open (for example, fully open or half open) with respect to the window hole Y120, and the second passage hole Y17 is also open. The first passage hole Y16 of the valve body Y128 is in an open state (for example, fully open or half open) with respect to the window hole Y120.
 したがってこの場合、マイクロバルブY1の外部から第1流路孔Y16を通って流体が窓孔Y120内に流入し、更に窓孔Y120から第2流路孔Y17を通って流体がマイクロバルブY1の外部に流出することができる。また、これとは逆の流体の流れも可能となる。すなわち、マイクロバルブY1の外部にあって第1流路孔Y16と連通する不図示の流路と、マイクロバルブY1の外部にあって第2流路孔Y17と連通する不図示の他の流路とが、窓孔Y120を介して連通する。 Therefore, in this case, fluid flows into the window hole Y120 from the outside of the microvalve Y1 through the first flow path hole Y16, and further, fluid flows from the outside of the microvalve Y1 through the second flow path hole Y17. can leak out. Also, the opposite flow of fluid is possible. That is, a flow path (not shown) that is outside the microvalve Y1 and communicates with the first flow path hole Y16, and another flow path (not shown) that is outside the microvalve Y1 and communicates with the second flow path hole Y17. communicate with each other via the window hole Y120.
 このようなマイクロバルブY1への通電時、第1印加点Y129、第2印加点Y130を介してマイクロバルブY1に供給される電力が大きいほど、非通電時位置に対する弁体Y128の移動量も大きくなる。これは、マイクロバルブY1に供給される電力が高いほど、第1リブY123、第2リブY124の温度が高くなり、膨張度合いが大きいからである。例えば第1印加点Y129、第2印加点Y130へ印加される電圧がPWM制御される場合、電圧のデューティ比が大きいほど非通電時に対する弁体Y128の移動量も大きくなる。 When the microvalve Y1 is energized, the greater the power supplied to the microvalve Y1 via the first application point Y129 and the second application point Y130, the greater the amount of movement of the valve body Y128 relative to the non-energized position. Become. This is because the higher the electric power supplied to the microvalve Y1, the higher the temperature of the first rib Y123 and the second rib Y124, and the greater the degree of expansion. For example, when the voltage applied to the first application point Y129 and the second application point Y130 is subjected to PWM control, the larger the duty ratio of the voltage, the larger the amount of movement of the valve body Y128 with respect to the non-energized state.
 また、マイクロバルブY1への通電が停止されたときは、電気配線から第1印加点Y129、第2印加点Y130への電圧印加が停止される。すると、複数の第1リブY123、複数の第2リブY124を電流が流れなくなり、複数の第1リブY123、複数の第2リブY124の温度が低下する。その結果、複数の第1リブY123、複数の第2リブY124の各々が、その長手方向に収縮する。 Furthermore, when the energization to the microvalve Y1 is stopped, the voltage application from the electrical wiring to the first application point Y129 and the second application point Y130 is stopped. Then, current no longer flows through the plurality of first ribs Y123 and the plurality of second ribs Y124, and the temperature of the plurality of first ribs Y123 and the plurality of second ribs Y124 decreases. As a result, each of the plurality of first ribs Y123 and the plurality of second ribs Y124 contracts in the longitudinal direction.
 このような熱的な収縮の結果、複数の第1リブY123、複数の第2リブY124は、脊柱Y125を第2力点YV2側とは反対側に付勢する。付勢された脊柱Y125は、第2力点YV2側において、変位増幅部材Y131を脊柱Y125側に引っ張る。その結果、変位増幅部材Y131は、第2支点部Y132を支点として、第2支点部Y132を中心に回転する。その結果、変位増幅部材Y131の第2支点部Y132とは反対側の端部も、第1力点YV1において、可動部Y127を引っ張る方向に、移動する。 As a result of such thermal contraction, the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spinal column Y125 to the side opposite to the second force point YV2 side. The energized spinal column Y125 pulls the displacement amplifying member Y131 toward the spinal column Y125 on the second force point YV2 side. As a result, the displacement amplifying member Y131 rotates around the second fulcrum part Y132, using the second fulcrum part Y132 as a fulcrum. As a result, the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 also moves in the direction of pulling the movable portion Y127 at the first force point YV1.
 このように第1力点YV1において変位増幅部材Y131から付勢された可動部Y127は、第1支点部Y126を支点として、第1支点部Y126を中心に回転する。その結果、可動部Y127の第1支点部Y126とは反対側の端部に接続された弁体Y128も、その長手方向の、変位増幅部材Y131が可動部Y127を引っ張る側に、移動する。その移動の結果、弁体Y128は、非通電時位置に戻って停止する。このとき、マイクロバルブY1の外部にあって第1流路孔Y16と連通する不図示の流路と、マイクロバルブY1の外部にあって第2流路孔Y17と連通する不図示の他の流路との、窓孔Y120を介した連通が、遮断される。 The movable portion Y127 thus biased by the displacement amplifying member Y131 at the first force point YV1 rotates around the first fulcrum portion Y126 with the first fulcrum portion Y126 as a fulcrum. As a result, the valve body Y128 connected to the end of the movable part Y127 opposite to the first fulcrum part Y126 also moves in the longitudinal direction toward the side where the displacement amplifying member Y131 pulls the movable part Y127. As a result of this movement, the valve body Y128 returns to the de-energized position and stops. At this time, a flow path (not shown) that is outside the microvalve Y1 and communicates with the first flow path hole Y16, and another flow path (not shown) that is outside the microvalve Y1 and communicates with the second flow path hole Y17. Communication with the road via the window hole Y120 is cut off.
 以上のように、可動部Y127は、第1支点部Y126を支点とし、第1力点YV1を力点とし、作用点YV3を作用点とする梃子として機能する。上述の通り、中間層Y12の板面に平行な面内における第1支点部Y126から第1力点YV1までの直線距離よりも、第1支点部Y126から作用点YV3までの直線距離の方が、長い。したがって、第1力点YV1の移動量よりも、作用点YV3の移動量の方が大きくなる。したがって、第1力点YV1における変位増幅部材Y131の変位量が、梃子によって増幅されて弁体Y128に伝わる。 As described above, the movable part Y127 functions as a lever with the first fulcrum part Y126 as the fulcrum, the first point of force YV1 as the point of force, and the point of action YV3 as the point of action. As mentioned above, the straight line distance from the first fulcrum part Y126 to the point of application YV3 is longer than the straight line distance from the first fulcrum part Y126 to the first force point YV1 in a plane parallel to the plate surface of the intermediate layer Y12. long. Therefore, the amount of movement of the point of application YV3 is larger than the amount of movement of the first point of effort YV1. Therefore, the amount of displacement of the displacement amplifying member Y131 at the first force point YV1 is amplified by the lever and transmitted to the valve body Y128.
 更に、変位増幅部材Y131は、第2支点部Y132を支点とし、第2力点YV2を力点とし、第1力点YV1を作用点とする梃子として機能する。上述の通り、中間層Y12の板面に平行な面内における第2支点部Y132から第2力点YV2までの直線距離よりも、第2支点部Y132から第1力点YV1までの直線距離の方が、長い。したがって、第2力点YV2の移動量よりも、第1力点YV1の移動量の方が大きくなる。したがって、複数の第1リブY123、複数の第2リブY124の熱的な膨張による脊柱Y125の変位量が、梃子によって増幅されて可動部Y127に伝わる。 Further, the displacement amplifying member Y131 functions as a lever having the second fulcrum portion Y132 as a fulcrum, the second force point YV2 as a force point, and the first force point YV1 as a point of action. As mentioned above, the straight line distance from the second fulcrum part Y132 to the first force point YV1 is longer than the straight line distance from the second fulcrum part Y132 to the second force point YV2 in a plane parallel to the plate surface of the intermediate layer Y12. ,long. Therefore, the amount of movement of the first point of effort YV1 is larger than the amount of movement of the second point of effort YV2. Therefore, the amount of displacement of the spinal column Y125 due to thermal expansion of the plurality of first ribs Y123 and the plurality of second ribs Y124 is amplified by the lever and transmitted to the movable portion Y127.
 このように、変位増幅部材Y131、可動部Y127という直列に接続された2つの梃子が作用する。すなわち、脊柱Y125の変位量が、変位増幅部材Y131で増幅され、更に可動部Y127で増幅されて、弁体Y128に伝達される。 In this way, two levers connected in series, the displacement amplifying member Y131 and the movable part Y127, act. That is, the amount of displacement of the spinal column Y125 is amplified by the displacement amplifying member Y131, further amplified by the movable part Y127, and transmitted to the valve body Y128.
 このように構成されたマイクロバルブY1は、電磁弁およびステッピングモータと比べて容易に小型化できる。その理由の1つは、マイクロバルブY1が上述の通り半導体チップにより形成されていることである。また、上述の通り、梃子を利用して熱的な膨張による変位量が増幅されることも、そのような梃子を利用せずに電磁弁またはステッピングモータを利用する弁装置と比べた場合、小型化に寄与する。また、複数本の第1リブY123、複数本の第2リブY124の変位は熱に起因して発生するので、騒音低減効果が高い。 The microvalve Y1 configured in this manner can be easily downsized compared to a solenoid valve and a stepping motor. One of the reasons for this is that the microvalve Y1 is formed of a semiconductor chip as described above. Additionally, as mentioned above, the displacement amount due to thermal expansion is amplified by using a lever, which makes the valve device smaller and smaller when compared to a valve device that uses a solenoid valve or a stepping motor without using such a lever. Contribute to Further, since the displacement of the plurality of first ribs Y123 and the plurality of second ribs Y124 occurs due to heat, the noise reduction effect is high.
 また、梃子を利用しているので、熱的な膨張による変位量を弁体Y128の移動量より抑えることができるので、弁体Y128を駆動するための消費電力も低減することができる。また、電磁弁の駆動時における衝撃音を無くすことができるので、騒音を低減することができる。 Furthermore, since a lever is used, the amount of displacement due to thermal expansion can be suppressed compared to the amount of movement of the valve body Y128, so power consumption for driving the valve body Y128 can also be reduced. Further, since it is possible to eliminate impact noise when the electromagnetic valve is driven, noise can be reduced.
 また、脊柱Y125が変位したときに、変位増幅部材Y131は、脊柱Y125に付勢されると共に脊柱Y125部の変位を増幅して可動部Y127に伝達する。このように、梃子の原理を利用する可動部Y127に加え、変位増幅部材Y131が脊柱Y125の変位を増幅する。したがって、マイクロバルブY1の体格の増大を抑制しつつ開弁時の開口面積を増大させること、あるいは、開弁時の開口面積の低減を抑制しつつ体格を低減することが、可能になる。 Furthermore, when the spinal column Y125 is displaced, the displacement amplifying member Y131 is biased by the spinal column Y125, amplifies the displacement of the spinal column Y125, and transmits it to the movable part Y127. In this way, in addition to the movable portion Y127 that utilizes the principle of leverage, the displacement amplifying member Y131 amplifies the displacement of the spinal column Y125. Therefore, it is possible to increase the opening area of the microvalve Y1 when the valve is open while suppressing an increase in the size thereof, or to reduce the size of the microvalve Y1 while suppressing a reduction in the opening area when the valve is open.
 例えば、図7の左側に示すように、特許文献1のMEMSバルブのように梃子が矢印で示すように1個しかない場合に比べ、図7の右側の弁装置の矢印に示すように梃子を直列に2段用いた方が、脊柱の変位量に対する弁体の移動量の増幅度は大きくなる。 For example, as shown on the left side of FIG. 7, compared to the case where there is only one lever as shown by the arrow in the MEMS valve of Patent Document 1, the lever is When two stages are used in series, the degree of amplification of the amount of movement of the valve body relative to the amount of displacement of the spinal column becomes greater.
 (1)また、脊柱Y125が変位したときに、脊柱Y125によって変位増幅部材Y131が第2力点YV2で付勢されて変位増幅部材Y131が第2支点部Y132を中心に回転することで、変位増幅部材Y131が第1力点YV1で可動部Y127を付勢する。そして、第2支点部Y132から第1力点YV1までの距離は、第2支点部Y132から第2力点YV2までの距離よりも長い。すなわち、変位増幅部材Y131も可動部Y127とは別に梃子として働く。これにより、梃子の原理を利用して更にマイクロバルブY1の開弁時の開口面積の増大化または体格の低減を実現することができる。 (1) Also, when the spinal column Y125 is displaced, the displacement amplifying member Y131 is biased by the spinal column Y125 at the second force point YV2, and the displacement amplifying member Y131 rotates around the second fulcrum portion Y132, thereby amplifying the displacement. The member Y131 urges the movable portion Y127 at the first force point YV1. The distance from the second fulcrum portion Y132 to the first force point YV1 is longer than the distance from the second fulcrum portion Y132 to the second force point YV2. That is, the displacement amplifying member Y131 also functions as a lever separately from the movable portion Y127. Thereby, by utilizing the principle of leverage, it is possible to further increase the opening area or reduce the size of the microvalve Y1 when it is opened.
 (2)また、変位増幅部材Y131は、可動部Y127の長手方向に沿って伸びる。そして、第2力点YV2よりも、第1力点YV1の方が、第1支点部Y126に近い位置にある。これにより、変位増幅部材Y131によって増幅された変位を可動部Y127に伝達する箇所(すなわち第1力点YV1)を、より第1支点部Y126に近づけることができる。これにより、可動部Y127における梃子の作用による変位の増幅量が増大する。 (2) Furthermore, the displacement amplifying member Y131 extends along the longitudinal direction of the movable portion Y127. The first point of effort YV1 is located closer to the first fulcrum portion Y126 than the second point of effort YV2. Thereby, the location where the displacement amplified by the displacement amplification member Y131 is transmitted to the movable portion Y127 (ie, the first force point YV1) can be brought closer to the first fulcrum portion Y126. This increases the amount of amplification of displacement due to the action of the lever in the movable portion Y127.
 (第2実施形態)
 次に第2実施形態について説明する。本実施形態は、第1実施形態に対して、中間層Y12の構造が異なっている。具体的には、図8に示すように、第1実施形態で第2固定部Y122と第4固定部Y134を隔てていたスリットが廃され、第2固定部Y122と第4固定部Y134が接続されている。その他の構造は、第1実施形態と同様である。
(Second embodiment)
Next, a second embodiment will be described. This embodiment differs from the first embodiment in the structure of the intermediate layer Y12. Specifically, as shown in FIG. 8, the slit that separated the second fixing part Y122 and fourth fixing part Y134 in the first embodiment is eliminated, and the second fixing part Y122 and fourth fixing part Y134 are connected. has been done. The other structure is the same as that of the first embodiment.
 以下、本実施形態のマイクロバルブY1の作動について説明する。マイクロバルブY1への通電が行われていない状態では、中間層Y12は図8に示した状態になっている。このとき、複数本の第1リブY123、複数本の第2リブY124、脊柱Y125、変位増幅部材Y131、可動部Y127、弁体Y128の位置は、第1実施形態において通電が行われていないときと同じである。 Hereinafter, the operation of the microvalve Y1 of this embodiment will be explained. When the microvalve Y1 is not energized, the intermediate layer Y12 is in the state shown in FIG. 8. At this time, the positions of the plurality of first ribs Y123, the plurality of second ribs Y124, the spinal column Y125, the displacement amplifying member Y131, the movable part Y127, and the valve body Y128 are the same as those in the first embodiment when energization is not performed. is the same as
 マイクロバルブY1への通電が開始されると、電気配線によって第1印加点Y129、第2印加点Y130の間に電圧が印加される。ここでは、一例として、第1印加点Y129が12V、第2印加点Y130が0Vとなる電圧が印可されるとするが、これに限られない。 When energization to the microvalve Y1 is started, a voltage is applied between the first application point Y129 and the second application point Y130 by the electric wiring. Here, as an example, it is assumed that a voltage of 12V is applied to the first application point Y129 and 0V to the second application point Y130, but the voltage is not limited to this.
 電圧が印可されると、図9に示すように、中間層Y12において、第2固定部Y122の電位が12Vとなり、第1固定部Y121の電位が0Vとなる。その結果、第1実施形態と同様、複数の第1リブY123、複数の第2リブY124の各々において、破線矢印のように電流が流れる。この電流によって、複数の第1リブY123、複数の第2リブY124が発熱する。その結果、複数の第1リブY123、複数の第2リブY124の各々が、その長手方向に膨張する。 When a voltage is applied, as shown in FIG. 9, in the intermediate layer Y12, the potential of the second fixed part Y122 becomes 12V, and the potential of the first fixed part Y121 becomes 0V. As a result, as in the first embodiment, current flows in each of the plurality of first ribs Y123 and the plurality of second ribs Y124 as indicated by the broken line arrows. This current causes the plurality of first ribs Y123 and the plurality of second ribs Y124 to generate heat. As a result, each of the plurality of first ribs Y123 and the plurality of second ribs Y124 expands in the longitudinal direction.
 また、第2固定部Y122と第4固定部Y134が接続されているので、第4固定部Y134の電位も12Vになる。したがって、第2固定部Y122が、第4固定部Y134、第1支点部Y126、可動部Y127、変位増幅部材Y131、脊柱Y125、複数の第1リブY123を介して、第1固定部Y121と導通する。したがって、変位増幅部材Y131において、破線矢印のように、第1力点YV1から脊柱Y125へ電流が流れる。この電流によって、変位増幅部材Y131が発熱し、その長手方向に膨張する。なお、第3固定部Y133の電位は、6Vよりも高く12Vよりも低い中間電位となる。 Furthermore, since the second fixed part Y122 and the fourth fixed part Y134 are connected, the potential of the fourth fixed part Y134 is also 12V. Therefore, the second fixed part Y122 is electrically connected to the first fixed part Y121 via the fourth fixed part Y134, the first fulcrum part Y126, the movable part Y127, the displacement amplification member Y131, the spinal column Y125, and the plurality of first ribs Y123. do. Therefore, in the displacement amplifying member Y131, a current flows from the first force point YV1 to the spinal column Y125 as indicated by the broken line arrow. This current causes the displacement amplification member Y131 to generate heat and expand in its longitudinal direction. Note that the potential of the third fixed portion Y133 is an intermediate potential higher than 6V and lower than 12V.
 複数の第1リブY123、複数の第2リブY124の膨張により、第1実施形態と同様、複数の第1リブY123、複数の第2リブY124は、脊柱Y125を第2力点YV2側に付勢する。付勢された脊柱Y125は、第2力点YV2において、変位増幅部材Y131を押す。これにより、変位増幅部材Y131は、第2支点部Y132を支点として、第2支点部Y132を中心に回転する。その結果、変位増幅部材Y131の第2支点部Y132とは反対側の端部も、第1力点YV1において、可動部Y127を押す方向に、移動する。 Due to the expansion of the plurality of first ribs Y123 and the plurality of second ribs Y124, as in the first embodiment, the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spinal column Y125 toward the second force point YV2 side. do. The energized spinal column Y125 pushes the displacement amplifying member Y131 at the second force point YV2. As a result, the displacement amplifying member Y131 rotates around the second fulcrum part Y132, using the second fulcrum part Y132 as a fulcrum. As a result, the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 also moves in the direction of pushing the movable portion Y127 at the first force point YV1.
 それに加え、変位増幅部材Y131が通電されて温度が上昇することで、変位増幅部材Y131の長手方向の長さが増大する。したがって、その増大した分だけ、第1力点YV1における可動部Y127の変位量が増大する。すなわち変位増幅部材Y131は、複数の第1リブY123、複数の第2リブY124が通電されたときに、脊柱Y125に付勢されると共に通電されて自らの温度が上昇して膨張することで、脊柱Y125の変位を更に増幅して可動部Y127に伝達する。 In addition, as the displacement amplifying member Y131 is energized and its temperature rises, the length of the displacement amplifying member Y131 in the longitudinal direction increases. Therefore, the amount of displacement of the movable portion Y127 at the first force point YV1 increases by the increased amount. In other words, when the plurality of first ribs Y123 and the plurality of second ribs Y124 are energized, the displacement amplifying member Y131 is urged by the spinal column Y125 and is energized to increase its own temperature and expand. The displacement of the spinal column Y125 is further amplified and transmitted to the movable portion Y127.
 このように第1力点YV1において変位増幅部材Y131から付勢された可動部Y127は、第1支点部Y126を支点として、第1支点部Y126を中心に回転する。その結果、可動部Y127の第1支点部Y126とは反対側の端部に接続された弁体Y128も、その長手方向の、変位増幅部材Y131が可動部Y127を押す側に、移動する。弁体Y128がこの通電時位置にあるときの第1流路孔Y16、第2流路孔Y17の開口の状態については、第1実施形態と同じである。 The movable portion Y127 thus biased by the displacement amplifying member Y131 at the first force point YV1 rotates around the first fulcrum portion Y126 with the first fulcrum portion Y126 as a fulcrum. As a result, the valve body Y128 connected to the end of the movable part Y127 opposite to the first fulcrum part Y126 also moves in the longitudinal direction toward the side where the displacement amplifying member Y131 pushes the movable part Y127. The opening states of the first passage hole Y16 and the second passage hole Y17 when the valve body Y128 is in this energized position are the same as in the first embodiment.
 また、マイクロバルブY1への通電が停止されたときは、電気配線から第1印加点Y129、第2印加点Y130への電圧印加が停止される。すると、複数の第1リブY123、複数の第2リブY124を電流が流れなくなり、複数の第1リブY123、複数の第2リブY124の温度が低下する。その結果、複数の第1リブY123、複数の第2リブY124の各々が、その長手方向に収縮する。それと同時に変位増幅部材Y131を電流が流れなくなり、変位増幅部材Y131の温度が低下し、その長手方向に収縮する。 Furthermore, when the energization to the microvalve Y1 is stopped, the voltage application from the electrical wiring to the first application point Y129 and the second application point Y130 is stopped. Then, current no longer flows through the plurality of first ribs Y123 and the plurality of second ribs Y124, and the temperature of the plurality of first ribs Y123 and the plurality of second ribs Y124 decreases. As a result, each of the plurality of first ribs Y123 and the plurality of second ribs Y124 contracts in the longitudinal direction. At the same time, no current flows through the displacement amplification member Y131, the temperature of the displacement amplification member Y131 decreases, and the displacement amplification member Y131 contracts in its longitudinal direction.
 このような熱的な収縮の結果、複数の第1リブY123、複数の第2リブY124は、脊柱Y125を第2力点YV2側とは反対側に付勢する。付勢された脊柱Y125は、第2力点YV2側において、変位増幅部材Y131を脊柱Y125側に引っ張る。その結果、変位増幅部材Y131は、第2支点部Y132を支点として、第2支点部Y132を中心に回転する。その結果、変位増幅部材Y131の第2支点部Y132とは反対側の端部も、第1力点YV1において、可動部Y127を引っ張る方向に、移動する。その際、変位増幅部材Y131の長手方向の長さが減少するので、その分、第1力点YV1において、可動部Y127の変位量が増大する。 As a result of such thermal contraction, the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spinal column Y125 to the side opposite to the second force point YV2 side. The energized spinal column Y125 pulls the displacement amplifying member Y131 toward the spinal column Y125 on the second force point YV2 side. As a result, the displacement amplifying member Y131 rotates around the second fulcrum part Y132, using the second fulcrum part Y132 as a fulcrum. As a result, the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 also moves in the direction of pulling the movable portion Y127 at the first force point YV1. At this time, since the length in the longitudinal direction of the displacement amplifying member Y131 decreases, the amount of displacement of the movable portion Y127 at the first force point YV1 increases accordingly.
 このように第1力点YV1において変位増幅部材Y131から付勢された可動部Y127は、第1支点部Y126を支点として、第1支点部Y126を中心に回転する。その結果、可動部Y127の第1支点部Y126とは反対側の端部に接続された弁体Y128も、その長手方向の、変位増幅部材Y131が可動部Y127を引っ張る側に、移動する。その移動の結果、弁体Y128は、所定の非通電時位置に戻って停止する。このとき、第1実施形態と同様、マイクロバルブY1の外部にあって第1流路孔Y16と連通する不図示の流路と、マイクロバルブY1の外部にあって第2流路孔Y17と連通する不図示の他の流路との、窓孔Y120を介した連通が、遮断される。 The movable portion Y127 thus biased by the displacement amplifying member Y131 at the first force point YV1 rotates around the first fulcrum portion Y126 with the first fulcrum portion Y126 as a fulcrum. As a result, the valve body Y128 connected to the end of the movable part Y127 opposite to the first fulcrum part Y126 also moves in the longitudinal direction toward the side where the displacement amplifying member Y131 pulls the movable part Y127. As a result of this movement, the valve body Y128 returns to a predetermined de-energized position and stops. At this time, similarly to the first embodiment, a flow path (not shown) that is located outside the microvalve Y1 and communicates with the first flow path hole Y16, and a flow path that is outside the microvalve Y1 and communicates with the second flow path hole Y17. Communication with other flow paths (not shown) via the window hole Y120 is cut off.
 (1)以上の通り、変位増幅部材Y131は、脊柱Y125が通電されたときに、脊柱Y125に付勢されると共に通電されて自らの温度が上昇して膨張することで、脊柱Y125の変位を増幅する。このようになっていることで、変位増幅部材Y131は、梃子として働くのみならず、通電によって伸縮することで、脊柱Y125の変位を増幅する。すなわち、より強く脊柱Y125の変位を増幅することができる。また、本実施形態において、第1実施形態と同様の構成および作用からは、同様の効果が得られる。 (1) As described above, when the spinal column Y125 is energized, the displacement amplifying member Y131 is energized by the spinal column Y125 and is energized to increase its own temperature and expand, thereby suppressing the displacement of the spinal column Y125. Amplify. With this configuration, the displacement amplifying member Y131 not only functions as a lever, but also expands and contracts when energized, thereby amplifying the displacement of the spinal column Y125. That is, the displacement of the spinal column Y125 can be more strongly amplified. Further, in this embodiment, similar effects can be obtained from the same configuration and operation as in the first embodiment.
 (第3実施形態)
 次に第3実施形態について、図10、図11を用いて説明する。本実施形態は、第1実施形態に対して、中間層Y12、第2外層Y13の構造が異なっている。
(Third embodiment)
Next, a third embodiment will be described using FIGS. 10 and 11. This embodiment differs from the first embodiment in the structures of the intermediate layer Y12 and the second outer layer Y13.
 具体的には、第2外層Y13においては、第1流路孔Y16の形状が、第2外層Y13の短手方向に伸びる長方形形状となっている。また、第2外層Y13においては、第1実施形態の単一の第2流路孔Y17に代えて、複数のサブ流路孔Y171、Y172、Y173、Y174、Y175が設けられている。 Specifically, in the second outer layer Y13, the first channel hole Y16 has a rectangular shape extending in the lateral direction of the second outer layer Y13. Moreover, in the second outer layer Y13, a plurality of sub-channel holes Y171, Y172, Y173, Y174, and Y175 are provided in place of the single second channel hole Y17 of the first embodiment.
 これらサブ流路孔Y171~Y175は、第1流路孔Y16に対して第2外層Y13の長手方向にずれた位置に配置されている。また、サブ流路孔Y171~Y175は、第2外層Y13の短手方向に一列に並んでいる。また、サブ流路孔Y171~Y175の各々は、長方形形状を有し、第2外層Y13の長手方向に伸びている。これらサブ流路孔Y171~Y175が、全体として、第2流路孔を構成する。 These sub-channel holes Y171 to Y175 are arranged at positions offset from the first channel hole Y16 in the longitudinal direction of the second outer layer Y13. Further, the sub-channel holes Y171 to Y175 are arranged in a line in the lateral direction of the second outer layer Y13. Furthermore, each of the sub-channel holes Y171 to Y175 has a rectangular shape and extends in the longitudinal direction of the second outer layer Y13. These sub flow passage holes Y171 to Y175 constitute the second flow passage hole as a whole.
 また、中間層Y12の構造は、以下の点で第1実施形態と異なっている。まず、本実施形態の流体室Y19は、第1流路孔Y16およびサブ流路孔Y171~Y175に対して連通するように形成されている。 Furthermore, the structure of the intermediate layer Y12 differs from the first embodiment in the following points. First, the fluid chamber Y19 of this embodiment is formed to communicate with the first flow path hole Y16 and the sub flow path holes Y171 to Y175.
 また、本実施形態の弁体Y128の形状は、第1実施形態に対して異なっている。具体的には、本実施形態の弁体Y128は、ベース部80と、複数のサブ弁体81、82、83、84、85と、これら複数のサブ弁体81~85を補強する8個の補強部86とを有している。ベース部80と、サブ弁体81~85と、複数の補強部86は、全体として一体に形成されているが、他の例として、別体に形成された後に接合されてもよい。 Furthermore, the shape of the valve body Y128 of this embodiment is different from that of the first embodiment. Specifically, the valve body Y128 of this embodiment includes a base portion 80, a plurality of sub-valve bodies 81, 82, 83, 84, 85, and eight parts that reinforce the plurality of sub-valve bodies 81 to 85. It has a reinforcing part 86. The base portion 80, the sub-valve bodies 81 to 85, and the plurality of reinforcing portions 86 are integrally formed as a whole, but as another example, they may be formed separately and then joined.
 なお、図10、図11では、サブ弁体81~85の数が5個であるが、他の例として、2個以上4個以下でもよいし、6個以上でもよい。また、図10、図11の例では、補強部86の数は8個であるが、他の例として7個以下(例えば1個、2個)であってもよいし、9個以上であってもよい。また、サブ弁体81~85のうちどの隣り合うサブ弁体間にも、それらに接続される2個の補強部86が設けられているが、隣り合うサブ弁体間に設けられる補強部86の数は2個に限られない。また、サブ弁体81~85のうち一部の隣り合うサブ弁体間にのみ、補強部86が設けられていてもよい。 Note that in FIGS. 10 and 11, the number of sub-valve bodies 81 to 85 is five, but as other examples, the number may be two or more and four or less, or six or more. Further, in the examples of FIGS. 10 and 11, the number of reinforcing portions 86 is eight, but as other examples, the number may be seven or less (for example, one or two), or it may be nine or more. It's okay. Further, two reinforcing portions 86 are provided between any adjacent sub-valve bodies among the sub-valve bodies 81 to 85, and two reinforcing portions 86 are provided between adjacent sub-valve bodies. The number of is not limited to two. Further, the reinforcing portion 86 may be provided only between some adjacent sub-valve bodies among the sub-valve bodies 81 to 85.
 ベース部80は、作用点YV3において可動部Y127と接続すると共に、中間層Y12の短手方向に伸びる部材である。サブ弁体81~85は、中間層Y12の短手方向に一列に離間して並んでいる。また、サブ弁体81~85の各々の長手方向は、中間層Y12の長手方向に伸びている。また、サブ弁体81~85の各々の長手方向の可動部Y127側の端部は、ベース部80に接続されている。 The base portion 80 is a member that connects to the movable portion Y127 at the point of action YV3 and extends in the lateral direction of the intermediate layer Y12. The sub-valve bodies 81 to 85 are arranged in a line spaced apart in the lateral direction of the intermediate layer Y12. Furthermore, the longitudinal direction of each of the sub-valve bodies 81 to 85 extends in the longitudinal direction of the intermediate layer Y12. Further, the end portion of each of the sub-valve bodies 81 to 85 on the movable portion Y127 side in the longitudinal direction is connected to the base portion 80.
 また、サブ弁体81~85の各々には、中間層Y12の厚さ方向における一方側端から他方側端まで貫通すると共に中間層Y12の長手方向に伸びる貫通孔81a、82a、83a、84a、85aが形成されている。したがって、サブ弁体81~85は、それぞれ、貫通孔81a~85aを環状に囲む枠体である。 In addition, each of the sub-valve bodies 81 to 85 has through holes 81a, 82a, 83a, 84a that penetrate from one end to the other end in the thickness direction of the intermediate layer Y12 and extend in the longitudinal direction of the intermediate layer Y12. 85a is formed. Therefore, the sub-valve bodies 81 to 85 are frames that annularly surround the through holes 81a to 85a, respectively.
 図11に示すように、サブ弁体81~85の内周縁は、それぞれ、サブ流路孔Y171~Y175の外周縁を外側から全周に亘って囲むことができるよう、サブ流路孔Y171~Y175の外周縁よりも広く形成されている。 As shown in FIG. 11, the inner circumferential edges of the sub-valve bodies 81 to 85 are connected to the sub-channel holes Y171 to Y175 so that the outer circumferential edges of the sub-channel holes Y171 to Y175 can be completely surrounded from the outside. It is formed wider than the outer peripheral edge of Y175.
 また、サブ弁体81~85の各々は、中間層Y12の厚さ方向の一端において第1外層Y11に接触し他端において第2外層Y13に接触する。これによりサブ弁体81~85は、流体室Y19においてそれぞれ貫通孔81a~85aとそれ以外の部分との間をシールする。 Furthermore, each of the sub-valve bodies 81 to 85 contacts the first outer layer Y11 at one end in the thickness direction of the intermediate layer Y12, and contacts the second outer layer Y13 at the other end. As a result, the sub-valve bodies 81-85 seal between the respective through holes 81a-85a and other parts in the fluid chamber Y19.
 補強部86の各々は、サブ弁体81~85のうち隣り合ういずれか2つのサブ弁体の間で、それら2つのサブ弁体に両端で繋がるよう、中間層Y12の短手方向に伸びている。なお、他の例として、1つの補強部86が三又以上に分かれてサブ弁体81~85のうち3つ以上に繋がっていてもよい。これら補強部86により、弁体Y128全体の強度が向上している。各補強部86は、第1外層Y11と第2外層Y13のうち一方または両方と離間している。すなわち、各補強部86は流体室Y19内で流体のシールとしては機能しない。 Each of the reinforcing portions 86 extends in the lateral direction of the intermediate layer Y12 between any two adjacent sub-valve bodies among the sub-valve bodies 81 to 85 so as to be connected to the two sub-valve bodies at both ends. There is. In addition, as another example, one reinforcing portion 86 may be divided into three or more parts and connected to three or more of the sub-valve bodies 81 to 85. These reinforcing portions 86 improve the overall strength of the valve body Y128. Each reinforcing portion 86 is spaced apart from one or both of the first outer layer Y11 and the second outer layer Y13. That is, each reinforcing portion 86 does not function as a fluid seal within the fluid chamber Y19.
 以下、本実施形態のマイクロバルブY1の作動について説明する。マイクロバルブY1への通電が行われていない状態では、中間層Y12は図11に示した状態になっている。このとき、第1流路孔Y16は流体室Y19に対して連通しているが、サブ流路孔Y171~Y175は、それぞれ、サブ弁体81~85に囲まれている。したがって、流体室Y19において、第1流路孔Y16に対してサブ流路孔Y171~Y175がサブ弁体81~85によって遮断されている。このときの弁体Y128の位置を、非通電時位置という。この場合、マイクロバルブY1は閉弁状態となっている。 Hereinafter, the operation of the microvalve Y1 of this embodiment will be explained. When the microvalve Y1 is not energized, the intermediate layer Y12 is in the state shown in FIG. 11. At this time, the first passage hole Y16 communicates with the fluid chamber Y19, but the sub passage holes Y171 to Y175 are surrounded by sub valve bodies 81 to 85, respectively. Therefore, in the fluid chamber Y19, the sub flow passage holes Y171 to Y175 are blocked off from the first flow passage hole Y16 by the sub valve bodies 81 to 85. The position of the valve body Y128 at this time is referred to as the non-energized position. In this case, the microvalve Y1 is in a closed state.
 マイクロバルブY1への通電が開始されると、電気配線によって第1印加点Y129、第2印加点Y130の間に電圧が印加される。電圧が印可されると、中間層Y12において、第1実施形態と同様に、第1リブY123、第2リブY124の各々において電流が流れる。この電流によって、複数の第1リブY123、複数の第2リブY124が発熱する。その結果、第1リブY123、第2リブY124の各々が、その長手方向に膨張する。 When energization to the microvalve Y1 is started, a voltage is applied between the first application point Y129 and the second application point Y130 by the electric wiring. When a voltage is applied, a current flows in each of the first rib Y123 and the second rib Y124 in the intermediate layer Y12, similarly to the first embodiment. This current causes the plurality of first ribs Y123 and the plurality of second ribs Y124 to generate heat. As a result, each of the first rib Y123 and the second rib Y124 expands in its longitudinal direction.
 複数の第1リブY123、複数の第2リブY124の膨張により、複数の第1リブY123、複数の第2リブY124は、脊柱Y125を第2力点YV2側に付勢する。付勢された脊柱Y125は、第2力点YV2において、変位増幅部材Y131を押す。これにより、変位増幅部材Y131は、第2支点部Y132を支点として、第2支点部Y132を中心に回転する。その結果、変位増幅部材Y131の第2支点部Y132とは反対側の端部も、第1力点YV1において、可動部Y127を押す方向に、移動する。 Due to the expansion of the plurality of first ribs Y123 and the plurality of second ribs Y124, the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spinal column Y125 toward the second force point YV2. The energized spinal column Y125 pushes the displacement amplifying member Y131 at the second force point YV2. As a result, the displacement amplifying member Y131 rotates around the second fulcrum part Y132, using the second fulcrum part Y132 as a fulcrum. As a result, the end of the displacement amplifying member Y131 opposite to the second fulcrum portion Y132 also moves in the direction of pushing the movable portion Y127 at the first force point YV1.
 これにより可動部Y127は、第1支点部Y126を支点として、第1支点部Y126を中心に回転する。その結果、弁体Y128の全体が、その長手方向の、変位増幅部材Y131が可動部Y127を押す向きに、第1支点部Y126を中心に、回転する。 Thereby, the movable part Y127 rotates around the first fulcrum part Y126, using the first fulcrum part Y126 as a fulcrum. As a result, the entire valve body Y128 rotates about the first fulcrum part Y126 in the longitudinal direction in the direction in which the displacement amplifying member Y131 pushes the movable part Y127.
 これにより、サブ弁体81~85も同様に第1支点部Y126を中心に回転する。その回転の結果、貫通孔81a~85aの位置が変化し、貫通孔81a~85aとサブ流路孔Y171~Y175の相対位置関係が変化する。具体的には、サブ流路孔Y171~Y175の一部または全部が、それぞれ、貫通孔81a~85aからはみ出す。その結果、流体室Y19において、第1流路孔Y16がサブ流路孔Y171~Y175と連通する。 As a result, the sub-valve bodies 81 to 85 similarly rotate around the first fulcrum portion Y126. As a result of the rotation, the positions of the through holes 81a to 85a change, and the relative positional relationship between the through holes 81a to 85a and the sub flow passage holes Y171 to Y175 changes. Specifically, some or all of the sub-channel holes Y171 to Y175 protrude from the through holes 81a to 85a, respectively. As a result, in the fluid chamber Y19, the first flow path hole Y16 communicates with the sub flow path holes Y171 to Y175.
 このときの弁体Y128の位置を、通電時位置という。この場合、マイクロバルブY1は開弁状態となっている。このとき、マイクロバルブY1の外部、第1流路孔Y16、流体室Y19、サブ流路孔Y171~Y175、マイクロバルブY1の外部を、この順に、あるいはこの逆順に、流体が流通する。 The position of the valve body Y128 at this time is referred to as the energized position. In this case, the microvalve Y1 is in an open state. At this time, the fluid flows through the outside of the microvalve Y1, the first flow path hole Y16, the fluid chamber Y19, the sub flow path holes Y171 to Y175, and the outside of the microvalve Y1 in this order or in the reverse order.
 なお、通電量が変化すると、サブ流路孔Y171~Y175のうちそれぞれ貫通孔81a~85aからはみ出す部分のサイズが変化する。したがって、通電量を変化させることで、マイクロバルブY1内の流体の流量を調整することができる。 Note that when the amount of current applied changes, the sizes of the portions of the sub-channel holes Y171 to Y175 that protrude from the through holes 81a to 85a, respectively, change. Therefore, by changing the amount of energization, the flow rate of the fluid within the microvalve Y1 can be adjusted.
 また、マイクロバルブY1への通電が停止されたときは、電気配線から第1印加点Y129、第2印加点Y130への電圧印加が停止される。すると、複数の第1リブY123、複数の第2リブY124を電流が流れなくなり、複数の第1リブY123、複数の第2リブY124の温度が低下する。その結果、複数の第1リブY123、複数の第2リブY124の各々が、その長手方向に収縮する。このような熱的な収縮の結果、第1実施形態と同様の機序で、弁体Y128は、所定の非通電時位置に戻って停止する。このような作動により、サブ弁体81~85は、流体室Y19内で動くことでそれぞれサブ流路孔Y171~Y175の第1流路孔Y16に対する開度を調整する。 Furthermore, when the energization to the microvalve Y1 is stopped, the voltage application from the electrical wiring to the first application point Y129 and the second application point Y130 is stopped. Then, current no longer flows through the plurality of first ribs Y123 and the plurality of second ribs Y124, and the temperature of the plurality of first ribs Y123 and the plurality of second ribs Y124 decreases. As a result, each of the plurality of first ribs Y123 and the plurality of second ribs Y124 contracts in the longitudinal direction. As a result of such thermal contraction, the valve body Y128 returns to a predetermined non-energized position and stops in the same mechanism as in the first embodiment. Through such operation, the sub-valve bodies 81-85 move within the fluid chamber Y19 to adjust the opening degrees of the sub-channel holes Y171-Y175 with respect to the first channel hole Y16, respectively.
 (1)以上説明した通り、サブ弁体81~85を補強するための補強部86は、複数のサブ弁体81~85のうち複数に繋がっている。このようになっていることで、補強部86により、流体室Y19内に流入する流体の圧力に対する弁体Y128の強度が増す。 (1) As explained above, the reinforcing portion 86 for reinforcing the sub-valve bodies 81-85 is connected to a plurality of the sub-valve bodies 81-85. With this configuration, the reinforcement portion 86 increases the strength of the valve body Y128 against the pressure of the fluid flowing into the fluid chamber Y19.
 なお、第1実施形態に対する本実施形態のような変更は、第2実施形態にも適用可能である。また、本実施形態において、第1、第2実施形態と同様の構成および作用(例えば変位増幅部材Y131による梃子作用)からは、同様の効果が得られる。 Note that changes such as those made in this embodiment to the first embodiment can also be applied to the second embodiment. Further, in this embodiment, similar effects can be obtained from the same configuration and operation (for example, the lever action by the displacement amplification member Y131) as in the first and second embodiments.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。特に、ある量について複数個の値が例示されている場合、特に別記した場合および原理的に明らかに不可能な場合を除き、それら複数個の値の間の値を採用することも可能である。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、本開示は、上記各実施形態に対する以下のような変形例および均等範囲の変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち任意の組み合わせを、上記実施形態に適用することができる。
(Other embodiments)
The present disclosure is not limited to the embodiments described above, and can be modified as appropriate. Furthermore, the embodiments described above are not unrelated to each other, and can be combined as appropriate, except in cases where combination is clearly impossible. Furthermore, in each of the embodiments described above, the elements constituting the embodiments are not necessarily essential, except in cases where it is specifically stated that they are essential, or where they are clearly considered essential in principle. In addition, in each of the above embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is clearly stated that it is essential, or when it is clearly limited to a specific number in principle. It is not limited to that specific number, except in cases where In particular, when multiple values for a certain quantity are exemplified, it is also possible to adopt a value between those multiple values, unless otherwise specified or unless it is clearly impossible in principle. . In addition, in each of the above embodiments, when referring to the shape, positional relationship, etc. of constituent elements, etc., the shape, It is not limited to positional relationships, etc. Further, the present disclosure allows the following modifications and equivalent modifications to each of the above embodiments. Note that the following modifications can be independently selected to be applied or not to the above embodiment. That is, any combination of the following modifications can be applied to the above embodiment.
 (変形例1)
 上記各実施形態では、複数本の第1リブY123、複数本の第2リブY124、変位増幅部材Y131は、通電されることで発熱し、その発熱によって自らの温度が上昇することで膨張する。しかし、これら部材は、温度が変化すると長さが変化する形状記憶材料から構成されていてもよい。
(Modification 1)
In each of the embodiments described above, the plurality of first ribs Y123, the plurality of second ribs Y124, and the displacement amplifying member Y131 generate heat when energized, and expand as their own temperature rises due to the heat generation. However, these members may also be constructed from a shape memory material that changes length as the temperature changes.
 (変形例2)
 上記各実施形態では、弁体Y128が移動することで、窓孔Y120に対する第2流路孔Y17の開度が変化して、窓孔Y120に対する第1流路孔Y16の開度が前回に維持されるようになっている。しかし、必ずしもこのようになっておらずともよい。
(Modification 2)
In each of the above embodiments, when the valve body Y128 moves, the opening degree of the second flow path hole Y17 with respect to the window hole Y120 changes, and the opening degree of the first flow path hole Y16 with respect to the window hole Y120 is maintained as before. It is now possible to do so. However, this does not necessarily have to be the case.
 例えば、弁体Y128が移動することで、窓孔Y120に対する第2流路孔Y17の開度および窓孔Y120に対する第1流路孔Y16の開度の両方が連動して調整されてもよい。 For example, by moving the valve body Y128, both the opening degree of the second passage hole Y17 with respect to the window hole Y120 and the opening degree of the first passage hole Y16 with respect to the window hole Y120 may be adjusted in conjunction with each other.
 (変形例3)
 上記各実施形態では、マイクロバルブY1の外部から窓孔Y120に連通可能な孔は第1流路孔Y16、第2流路孔Y17の2つであった。しかし、マイクロバルブY1の外部から窓孔Y120に連通す3番目以降の流路孔があってもよい。3番目以降の流路孔も、弁体Y128の動きによって開度が調整されてもよいし、調整されなくてもよい。
(Modification 3)
In each of the embodiments described above, the two holes that can communicate with the window hole Y120 from the outside of the microvalve Y1 are the first flow path hole Y16 and the second flow path hole Y17. However, there may be a third or subsequent channel hole that communicates with the window hole Y120 from the outside of the microvalve Y1. The opening degrees of the third and subsequent flow passage holes may or may not be adjusted by the movement of the valve body Y128.
 (変形例4)
 マイクロバルブY1の形状やサイズは、上記実施形態で示したものに限られない。マイクロバルブY1は、極微小流量制御可能で、かつ、流路内に存在する微小ゴミを詰まらせないような水力直径の第1流路孔Y16、第2流路孔Y17を有していればよい。
(Modification 4)
The shape and size of the microvalve Y1 are not limited to those shown in the above embodiment. The microvalve Y1 is capable of controlling a very small flow rate and has a first flow path hole Y16 and a second flow path hole Y17 having a hydraulic diameter that does not clog minute dust existing in the flow path. good.
 (変形例5)
 上記実施形態では、変位増幅部材Y131は、1個の梃子から構成されている。しかし、変位増幅部材Y131は、直列に連接された複数の梃子から構成されていてもよい。
(Modification 5)
In the embodiment described above, the displacement amplifying member Y131 is composed of one lever. However, the displacement amplifying member Y131 may be composed of a plurality of levers connected in series.
 (変形例6)
 上記実施形態では、通電の有無に応じた温度変化によって発生する駆動部の変位を梃子の原理で増幅して弁体に伝える弁装置の一例としてMEMSバルブが例示されている。しかし、このような弁装置は、MEMSバルブ以外のものであってもよい。
(Modification 6)
In the embodiment described above, a MEMS valve is exemplified as an example of a valve device that amplifies the displacement of the drive unit caused by a temperature change depending on the presence or absence of energization using the principle of leverage and transmits the amplified displacement to the valve body. However, such a valve device may be other than a MEMS valve.
 (変形例7)
 上記第2実施形態では、変位増幅部材Y131は、梃子として作用することで脊柱Y125の変位量を増幅して可動部Y127に伝達すると同時に、通電されて長手方向に膨張、収縮することで脊柱Y125の変位量を増幅して可動部Y127に伝達する。しかし、変位増幅部材Y131は、作用せず、通電されて長手方向に膨張、収縮することのみによって脊柱Y125の変位量を増幅して可動部Y127に伝達してもよい。
(Modification 7)
In the second embodiment, the displacement amplifying member Y131 acts as a lever to amplify the amount of displacement of the spinal column Y125 and transmits it to the movable part Y127, and at the same time expands and contracts in the longitudinal direction by being energized, thereby increasing the displacement of the spinal column Y125. The amount of displacement is amplified and transmitted to the movable part Y127. However, the displacement amplifying member Y131 may not act and may amplify the amount of displacement of the spinal column Y125 and transmit it to the movable portion Y127 only by expanding and contracting in the longitudinal direction when energized.
 (変形例8)
 上記実施形態では、第2力点YV2よりも、第1力点YV1の方が、第1支点部Y126に近い位置にある。しかし、必ずしもこのようになっておらずともよい。すなわち、第2力点YV2の方が、第1力点YV1よりも、第1支点部Y126に近い位置にあってもよい。
(Modification 8)
In the embodiment described above, the first point of effort YV1 is located closer to the first fulcrum portion Y126 than the second point of effort YV2. However, this does not necessarily have to be the case. That is, the second point of force YV2 may be located closer to the first fulcrum portion Y126 than the first point of force YV1.
 そのような例としては、図4において、変位増幅部材Y131を脊柱Y125、第2力点YV2の部分を中心として紙面上下反転させたものがある。この例では、変位増幅部材Y131の回転の中心となる第2支点部Y132が脊柱Y125よりも第2固定部Y122側に配置され、変位増幅部材Y131と可動部Y127の接続点である第1力点YV1が脊柱Y125よりも弁体Y128側に配置される。 As an example of such a displacement amplifying member Y131 in FIG. 4, the displacement amplifying member Y131 is turned upside down in the paper with the spinal column Y125 and the second force point YV2 as the center. In this example, the second fulcrum part Y132, which is the center of rotation of the displacement amplification member Y131, is arranged closer to the second fixed part Y122 than the spinal column Y125, and the first force point is the connection point between the displacement amplification member Y131 and the movable part Y127. YV1 is arranged closer to the valve body Y128 than the spinal column Y125.
 このような例では、第2固定部Y122から弁体Y128に向けて第1支点部Y126、第2支点部Y132、第2力点YV2、第1力点YV1の順に並ぶが、これであっても、変位増幅部材Y131が梃子として機能する。なお、上記第1、第2実施形態では、第2固定部Y122から弁体Y128に向けて第1支点部Y126、第1力点YV1、第2力点YV2、第2支点部Y132、の順に並んでいる。 In such an example, the first fulcrum part Y126, the second fulcrum part Y132, the second force point YV2, and the first force point YV1 are arranged in this order from the second fixed part Y122 toward the valve body Y128, but even in this case, The displacement amplifying member Y131 functions as a lever. In the first and second embodiments, the first fulcrum part Y126, the first force point YV1, the second force point YV2, and the second fulcrum part Y132 are lined up in this order from the second fixing part Y122 toward the valve body Y128. There is.
 (変形例9)
 また、上記変形例8に対して、第2固定部Y122から弁体Y128に向けて第2支点部Y132、第2力点YV2、第1支点部Y126、第1力点YV1の順に並ぶよう変更してもよい。すなわち、変形例8に対して第1支点部Y126の位置を第1力点YV1に近づくようずらしてもよい。この例では、変形例8とは異なり、第2力点YV2よりも、第1力点YV1の方が、第1支点部Y126に近い位置にあるように、第1支点部Y126の位置を設定することもできる。
(Modification 9)
Furthermore, the modification 8 is modified so that the second fulcrum portion Y132, the second force point YV2, the first fulcrum portion Y126, and the first force point YV1 are arranged in the order from the second fixing portion Y122 toward the valve body Y128. Good too. That is, the position of the first fulcrum portion Y126 may be shifted to approach the first force point YV1 compared to the eighth modification. In this example, unlike Modification 8, the position of the first fulcrum part Y126 is set so that the first point of effort YV1 is closer to the first fulcrum part Y126 than the second point of effort YV2. You can also do it.
 (本開示の特徴)
[開示1]
 第1外層(Y11)と、
 第2外層(Y13)と、
 前記第1外層と前記第2外層に挟まれると共に流体が流通する流体室(Y19)を形成する中間層(Y12)と、を備え、
 前記第1外層または前記第2外層には、前記流体室と連通可能な第1流路孔(Y16)が形成され、
 前記第1外層または前記第2外層には、前記流体室と連通可能な第2流路孔(Y17、Y171~Y175)が形成され、
 前記中間層は、通電の有無に応じて自らの温度が変化することで変位する駆動部(Y123、Y124、Y125)と、
 前記駆動部が変位したときに、前記駆動部に付勢されると共に前記駆動部の変位を増幅する変位増幅部材(Y131)と、
 前記変位増幅部材によって増幅された変位を力点(YV1)で受けることで、支点部(Y126)を中心に回転する可動部(Y127)と、
 前記可動部が回転する際に前記可動部の作用点(YV3)から付勢されて前記流体室内で動くことで前記流体室に対する前記第2流路孔の開度を調整する弁体(Y128)と、を有する、弁装置。
[開示2]
 前記支点部は第1支点部であり、
 前記力点は第1力点であり、
 前記駆動部が変位したときに、前記駆動部によって前記変位増幅部材が第2力点(YV2)で付勢されて前記変位増幅部材が第2支点部(Y132)を中心に回転することで、前記変位増幅部材が前記第1力点で前記可動部を付勢し、
 前記第2支点部から前記第1力点までの距離は、前記第2支点部から前記第2力点までの距離よりも長い、開示1に記載の弁装置。
[開示3]
 前記変位増幅部材は、前記可動部の長手方向に沿って伸び、
 前記第2力点よりも、前記第1力点の方が、前記第1支点部に近い位置にある、開示2に記載の弁装置。
[開示4]
 前記変位増幅部材は、前記駆動部が通電されたときに、前記駆動部に付勢されると共に通電されて自らの温度が上昇して膨張することで、前記駆動部の変位を増幅する、開示1ないし3のいずれか1つに記載の弁装置。
[開示5]
 前記第2流路孔は、複数のサブ流路孔(Y171~Y175)を有し、
 前記弁体は、複数のサブ弁体(81~85)と、前記複数のサブ弁体を補強するための補強部(86)とを有し、
 前記複数のサブ弁体は、前記流体室内で動くことでそれぞれ前記複数のサブ流路孔の前記第1流路孔に対する開度を調整し、
 前記補強部は、前記複数のサブ弁体のうち複数に繋がっている、開示1ないし4のいずれか1つに記載の弁装置。


 
(Characteristics of the present disclosure)
[Disclosure 1]
a first outer layer (Y11);
a second outer layer (Y13);
an intermediate layer (Y12) that is sandwiched between the first outer layer and the second outer layer and forms a fluid chamber (Y19) through which fluid flows;
A first flow hole (Y16) that can communicate with the fluid chamber is formed in the first outer layer or the second outer layer,
Second flow passage holes (Y17, Y171 to Y175) that can communicate with the fluid chamber are formed in the first outer layer or the second outer layer,
The intermediate layer includes a drive unit (Y123, Y124, Y125) that is displaced by changing its own temperature depending on whether or not it is energized;
a displacement amplification member (Y131) that is biased by the drive unit and amplifies the displacement of the drive unit when the drive unit is displaced;
a movable part (Y127) that rotates around a fulcrum part (Y126) by receiving the displacement amplified by the displacement amplifying member at the force point (YV1);
a valve body (Y128) that adjusts the opening degree of the second flow path hole with respect to the fluid chamber by being biased from the point of action (YV3) of the movable section and moving within the fluid chamber when the movable section rotates; A valve device comprising:
[Disclosure 2]
The fulcrum part is a first fulcrum part,
The point of emphasis is a first point of emphasis,
When the drive section is displaced, the displacement amplification member is urged by the drive section at the second force point (YV2) and the displacement amplification member rotates around the second fulcrum section (Y132). a displacement amplifying member biases the movable part at the first force point;
The valve device according to disclosure 1, wherein the distance from the second fulcrum part to the first force point is longer than the distance from the second fulcrum part to the second force point.
[Disclosure 3]
The displacement amplifying member extends along the longitudinal direction of the movable part,
The valve device according to disclosure 2, wherein the first point of force is located closer to the first fulcrum portion than the second point of force.
[Disclosure 4]
Disclosure: When the drive unit is energized, the displacement amplification member is energized by the drive unit and is energized to increase its own temperature and expand, thereby amplifying the displacement of the drive unit. 4. The valve device according to any one of 1 to 3.
[Disclosure 5]
The second channel hole has a plurality of sub-channel holes (Y171 to Y175),
The valve body has a plurality of sub-valve bodies (81 to 85) and a reinforcing part (86) for reinforcing the plurality of sub-valve bodies,
The plurality of sub-valve bodies move within the fluid chamber to respectively adjust the opening degree of the plurality of sub-channel holes with respect to the first channel hole,
The valve device according to any one of Disclosures 1 to 4, wherein the reinforcing portion is connected to a plurality of the plurality of sub-valve bodies.


Claims (5)

  1.  第1外層(Y11)と、
     第2外層(Y13)と、
     前記第1外層と前記第2外層に挟まれると共に流体が流通する流体室(Y19)を形成する中間層(Y12)と、を備え、
     前記第1外層または前記第2外層には、前記流体室と連通可能な第1流路孔(Y16)が形成され、
     前記第1外層または前記第2外層には、前記流体室と連通可能な第2流路孔(Y17、Y171~Y175)が形成され、
     前記中間層は、通電の有無に応じて自らの温度が変化することで変位する駆動部(Y123、Y124、Y125)と、
     前記駆動部が変位したときに、前記駆動部に付勢されると共に前記駆動部の変位を増幅する変位増幅部材(Y131)と、
     前記変位増幅部材によって増幅された変位を力点(YV1)で受けることで、支点部(Y126)を中心に回転する可動部(Y127)と、
     前記可動部が回転する際に前記可動部の作用点(YV3)から付勢されて前記流体室内で動くことで前記流体室に対する前記第2流路孔の開度を調整する弁体(Y128)と、を有する、弁装置。
    a first outer layer (Y11);
    a second outer layer (Y13);
    an intermediate layer (Y12) that is sandwiched between the first outer layer and the second outer layer and forms a fluid chamber (Y19) through which fluid flows;
    A first flow hole (Y16) that can communicate with the fluid chamber is formed in the first outer layer or the second outer layer,
    Second flow passage holes (Y17, Y171 to Y175) that can communicate with the fluid chamber are formed in the first outer layer or the second outer layer,
    The intermediate layer includes a drive unit (Y123, Y124, Y125) that is displaced by changing its own temperature depending on whether or not it is energized;
    a displacement amplification member (Y131) that is biased by the drive unit and amplifies the displacement of the drive unit when the drive unit is displaced;
    a movable part (Y127) that rotates around a fulcrum part (Y126) by receiving the displacement amplified by the displacement amplifying member at the force point (YV1);
    a valve body (Y128) that adjusts the opening degree of the second flow path hole with respect to the fluid chamber by being biased from the point of action (YV3) of the movable section and moving within the fluid chamber when the movable section rotates; A valve device comprising:
  2.  前記支点部は第1支点部であり、
     前記力点は第1力点であり、
     前記駆動部が変位したときに、前記駆動部によって前記変位増幅部材が第2力点(YV2)で付勢されて前記変位増幅部材が第2支点部(Y132)を中心に回転することで、前記変位増幅部材が前記第1力点で前記可動部を付勢し、
     前記第2支点部から前記第1力点までの距離は、前記第2支点部から前記第2力点までの距離よりも長い、請求項1に記載の弁装置。
    The fulcrum part is a first fulcrum part,
    The point of emphasis is a first point of emphasis,
    When the drive section is displaced, the displacement amplification member is urged by the drive section at the second force point (YV2) and the displacement amplification member rotates around the second fulcrum section (Y132). a displacement amplifying member biases the movable part at the first force point;
    The valve device according to claim 1, wherein a distance from the second fulcrum to the first point of force is longer than a distance from the second fulcrum to the second point of force.
  3.  前記変位増幅部材は、前記可動部の長手方向に沿って伸び、
     前記第2力点よりも、前記第1力点の方が、前記第1支点部に近い位置にある、請求項2に記載の弁装置。
    The displacement amplifying member extends along the longitudinal direction of the movable part,
    The valve device according to claim 2, wherein the first point of force is located closer to the first fulcrum than the second point of force.
  4.  前記変位増幅部材は、前記駆動部が通電されたときに、前記駆動部に付勢されると共に通電されて自らの温度が上昇して膨張することで、前記駆動部の変位を増幅する、請求項1ないし3のいずれか1つに記載の弁装置。 The displacement amplification member amplifies the displacement of the drive unit by being energized by the drive unit and energized to increase its own temperature and expand when the drive unit is energized. The valve device according to any one of items 1 to 3.
  5.  前記第2流路孔は、複数のサブ流路孔(Y171~Y175)を有し、
     前記弁体は、複数のサブ弁体(81~85)と、前記複数のサブ弁体を補強するための補強部(86)とを有し、
     前記複数のサブ弁体は、前記流体室内で動くことでそれぞれ前記複数のサブ流路孔の前記第1流路孔に対する開度を調整し、
     前記補強部は、前記複数のサブ弁体のうち複数に繋がっている、請求項1ないし3のいずれか1つに記載の弁装置。
    The second channel hole has a plurality of sub-channel holes (Y171 to Y175),
    The valve body has a plurality of sub-valve bodies (81 to 85) and a reinforcing part (86) for reinforcing the plurality of sub-valve bodies,
    The plurality of sub-valve bodies move within the fluid chamber to respectively adjust the opening degree of the plurality of sub-channel holes with respect to the first channel hole,
    The valve device according to any one of claims 1 to 3, wherein the reinforcing portion is connected to a plurality of the plurality of sub-valve bodies.
PCT/JP2023/012525 2022-04-11 2023-03-28 Valve device WO2023199742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022065329 2022-04-11
JP2022-065329 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023199742A1 true WO2023199742A1 (en) 2023-10-19

Family

ID=88329510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012525 WO2023199742A1 (en) 2022-04-11 2023-03-28 Valve device

Country Status (1)

Country Link
WO (1) WO2023199742A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530683A (en) * 2008-08-09 2011-12-22 マイクラスタック、インク Improved microvalve device
JP2020143786A (en) * 2019-02-28 2020-09-10 株式会社デンソー Valve device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530683A (en) * 2008-08-09 2011-12-22 マイクラスタック、インク Improved microvalve device
JP2020143786A (en) * 2019-02-28 2020-09-10 株式会社デンソー Valve device

Similar Documents

Publication Publication Date Title
US9958081B2 (en) Shape memory alloy actuated valve assembly
JP3814132B2 (en) Pump and driving method thereof
US7011288B1 (en) Microelectromechanical device with perpendicular motion
US5325880A (en) Shape memory alloy film actuated microvalve
JP5695565B2 (en) Force mirror and variable mirror with distributed stiffness
KR20010067141A (en) Microelectromechanical valve having single crystalline components and associated fabrication method
US11028937B2 (en) Valve with shape memory alloy wire
US11555725B2 (en) Microstructured fluid flow control device
JP2007298126A (en) Valve mechanism and channel substrate
US9347577B2 (en) Combined thermal management unit
WO2023199742A1 (en) Valve device
KR100414513B1 (en) Semiconductor device and semiconductor micro actuator, semiconductor micro valve and semiconductor micro relay using thereof, semiconductor device manufacturing method and manufacturing method of semiconductor micro actuator
JP2008527263A (en) Microfluidic modulation valve
JP2024039911A (en) valve device
EP1921648A1 (en) Relay device using conductive fluid
EP3660333B1 (en) Piezoelectric bimorph servo valve
US7055797B2 (en) Micro-actuator, fabrication method thereof, and micro-actuating valve
JP2007032737A (en) Latch valve
JPH0225020Y2 (en)
JP2000246676A (en) Semiconductor micro-actuator, semiconductor micro-valve and semiconductor micro-relay
JP6442424B2 (en) Heat pump equipment
WO2006113344A2 (en) Actuators with connected diaphragms
JPH0435649Y2 (en)
Lu et al. A hybrid three-way valve for gas chromatography systems
JP2023177055A (en) Flow regulating valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024514880

Country of ref document: JP

Kind code of ref document: A