WO2023199504A1 - Method for manufacturing discharge device, and discharge device - Google Patents

Method for manufacturing discharge device, and discharge device Download PDF

Info

Publication number
WO2023199504A1
WO2023199504A1 PCT/JP2022/017910 JP2022017910W WO2023199504A1 WO 2023199504 A1 WO2023199504 A1 WO 2023199504A1 JP 2022017910 W JP2022017910 W JP 2022017910W WO 2023199504 A1 WO2023199504 A1 WO 2023199504A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge device
manufacturing
conductive film
power supply
dielectric tube
Prior art date
Application number
PCT/JP2022/017910
Other languages
French (fr)
Japanese (ja)
Inventor
有波 塩田
昌樹 葛本
学 生沼
裕己 永井
光史 佐藤
Original Assignee
三菱電機株式会社
学校法人工学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 学校法人工学院大学 filed Critical 三菱電機株式会社
Priority to JP2022559626A priority Critical patent/JP7203295B1/en
Priority to PCT/JP2022/017910 priority patent/WO2023199504A1/en
Publication of WO2023199504A1 publication Critical patent/WO2023199504A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present application relates to a method of manufacturing a discharge device and a discharge device.
  • Some conventional discharge devices have a structure in which a dielectric tube is disposed inside a tubular ground electrode, and the outer surface of the dielectric tube faces the inner surface of the ground electrode with a gap in between.
  • a conductive film for applying high voltage is provided on the inner surface of the dielectric tube, and functions as a high voltage electrode for generating discharge. Then, by supplying a raw material gas containing oxygen to the gap and applying a high voltage between both electrodes, a discharge is generated in the gap, and this discharge generates ozonized gas.
  • a film forming process is required to form a conductive film on the inner surface of the dielectric tube, and various methods have been disclosed.
  • a method for manufacturing a discharge device disclosed in Patent Document 1 an aluminum coating is formed on the inner surface of a dielectric tube by thermal spraying, and then a Ni-Cr coating is further sprayed on the aluminum coating to form a conductive film.
  • a method of forming a film is shown.
  • a method of manufacturing a discharge device disclosed in Patent Document 2 a method is disclosed in which a stainless steel film is formed on the inner surface of a dielectric tube by a sputtering method or a vapor deposition method.
  • film forming methods such as the thermal spraying method, sputtering method, and vapor deposition method described in Patent Documents 1 and 2 require complicated steps to form a conductive film, and the film forming apparatus itself is expensive. There was a problem. Furthermore, after forming a conductive film on the inner surface of the dielectric tube, a separate process is required to join the power supply part for connecting the high voltage electrode and the high voltage power source to the dielectric tube. There was a problem that there were concerns about peeling or poor electrical contact.
  • the present application discloses a technique for solving the above-mentioned problems, and aims to provide a method for manufacturing a discharge device and a discharge device with simple steps and low cost and high quality.
  • a method for manufacturing a discharge device disclosed in the present application includes the steps of injecting a solution for forming a conductive film into a dielectric tube whose one end is sealed, and forming the conductive film on the inner surface of the dielectric tube. It is characterized by containing.
  • the discharge device disclosed in the present application includes a high voltage electrode provided with the conductive film, a ground electrode facing the high voltage electrode with a gap therebetween, and a high voltage between the high voltage electrode and the ground electrode.
  • the present invention is characterized in that it includes a high voltage power supply that applies a voltage, and a power supply line that connects the high voltage power supply and the power supply section of the high voltage electrode.
  • a low-cost, high-quality discharge device can be manufactured through a simple process, and the manufacturing cost of the device itself can be suppressed.
  • FIG. 3 is a flowchart diagram for explaining a manufacturing process of a discharge device by the method of manufacturing a discharge device according to the first embodiment.
  • FIG. 2 is a plan view showing a process of manufacturing a discharge device by the method of manufacturing a discharge device according to Embodiment 1.
  • FIG. 2 is a perspective view showing a process of manufacturing a discharge device by the method of manufacturing a discharge device according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a process of manufacturing a discharge device by the method of manufacturing a discharge device according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a process of manufacturing a discharge device by the method of manufacturing a discharge device according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a process of manufacturing a discharge device by the method of manufacturing a discharge device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the configuration of a high voltage electrode formed by the method for manufacturing a discharge device according to the first embodiment.
  • FIG. 7 is a perspective view showing a power feeding section used in the method of manufacturing a discharge device according to Embodiment 2.
  • FIG. 3 is a cross-sectional view showing the configuration of a discharge device according to Embodiment 3.
  • FIG. 1 is a flowchart showing a process for manufacturing a discharge device according to a method for manufacturing a discharge device according to Embodiment 1 of the present application.
  • 2 to 5 are diagrams for explaining each manufacturing process in FIG. 1.
  • FIG. 2 is a developed view of a power supply member used for forming a conductive film
  • FIG. 3 is a perspective view of a processed power supply part.
  • FIGS. 4 and 5 are cross-sectional views of the dielectric tube into which the power feeding section is inserted, and show a state before a conductive film is formed on the dielectric tube and a state after a solution for forming a conductive film is injected into the dielectric tube, respectively.
  • a method for manufacturing a discharge device according to Embodiment 1 of the present application will be described using these figures.
  • a power supply member formed of a thin metal plate used for forming a conductive film is processed into a cylindrical shape in order to be inserted into a dielectric tube whose one side is sealed (step S101 in FIG. 1).
  • the power supply member 1 is a metal plate with a thickness of approximately 0.1 mm, and is composed of a surface 1a consisting of a rectangular side A and a side B, and a surface 1b consisting of a rectangular side C and a side D. has been done.
  • the direction parallel to side B is the X-axis direction
  • the direction perpendicular to side B is the Y-axis direction.
  • the surface 1b is preferably located at the center of the side B, but does not necessarily need to be located at the center.
  • Side A is preferably 20 mm or more, more preferably 20 to 40 mm.
  • Side B is preferably 50 mm or more, more preferably 52.5 to 53 mm. By setting the diameter to 52.5 to 53 mm, when the surface 1a of the power feeding member 1 is made into a cylindrical shape and inserted into the dielectric tube, the power feeding member 1 spreads into the dielectric tube, and the adhesion can be further improved.
  • the side C is 5 mm or more.
  • Side D is preferably 10 mm or more, and more preferably 10 to 20 mm from the viewpoint of strength of the power supply member.
  • side C is shorter than side B in FIG. 2, it may be the same length as side B.
  • Examples of the material of the power supply member 1 include silver (Ag), copper (Cu), lithium (Li), nickel (Ni), manganese (Mn), zinc (Zn), and cobalt (Co). From the viewpoint of good electrical contact, Cu and Ag are preferred, and Cu is more preferred.
  • the power supply part 11 By processing the surface 1a of the power supply member 1 into a cylindrical shape by rolling the Y-axis direction as the rotation axis, the power supply part 11 having a cylindrical portion 11a as shown in FIG. 3 is formed. This makes it possible to improve the adhesion between the power feeding part and the dielectric tube when inserting the power feeding part into the dielectric tube, which will be described later.
  • it is desirable that the sides A of the cylindrical portion 11a are joined without any gaps, but they may be joined in an overlapping manner.
  • the cylindrical portion 11a of the power supply section 11, which has been processed into a cylindrical shape, is inserted along the inner surface of the dielectric tube 2 (step S102 in FIG. 1).
  • the power feeding section 11 allows the cylindrical portion 11a to be completely inserted into the dielectric tube 2, but a part of the lead wire 11b of the power feeding section 11, which is the surface 1b, is inserted into the dielectric tube 2. It is installed inside the dielectric tube 2 at a position where a part thereof protrudes outside the dielectric tube 2. Thereby, the power supply line for connection to the high voltage power supply and the power supply section can be easily connected.
  • a portion of the cylindrical portion 11a may protrude outside the dielectric tube 2.
  • a solution for forming a conductive film is injected into the dielectric tube 2 into which the power supply section 11 is inserted (step S103 in FIG. 1).
  • Solution 3 for forming conductive film 4 on dielectric tube 2 is injected up to the height of side A of power supply section 11 .
  • FIG. 5 shows the state after the solution 3 for forming the conductive film 4 is injected into the dielectric tube 2.
  • Solution 3 is a mixed solution containing a metal precursor liquid and an organic reducing agent.
  • the solution 3 there is no particular restriction on the content of the metal precursor liquid and the organic reducing agent in the mixed solution obtained by mixing the metal precursor liquid and the organic reducing agent.
  • the metal precursor liquid is a mixed solution containing at least one selected from the group consisting of metal complexes and metal salts (hereinafter collectively referred to as specific metal compound), at least one selected from ammonia and amine, and a solvent.
  • specific metal compound metal complexes and metal salts
  • examples of the metal contained in the metal precursor liquid include Ag, Cu, Li, Ni, Mn, Zn, and Co.
  • the metal complex contains NH 3 ligand, RNH 2 ligand (R represents an alkylene group), OH 2 ligand, and diamine-derived ligand such as ethylenediamine and hexamethylene diamine, which can form a metal complex. It is preferable that it is a reaction product between one or more compounds for forming a metal complex selected from compounds having as a partial structure and a metal ion.
  • the metal in the metal complex is preferably the same type as the power supply member 1 of the power supply unit 11.
  • Preferred examples of the metal complex include copper ethylenediaminetetraacetate and copper tetraammine, which contain Cu as the metal. From the viewpoint of good electrical contact, Cu, Ag, etc. are preferred, and Cu is more preferred.
  • a metal salt is a metal compound that has the function of dissociating into a metal ion in a water-containing solvent and forming a metal complex.
  • Metal salts in this disclosure refer to metal salts that are soluble in water at 25°C. Soluble in water at 25°C refers to solubility in water at 25°C of 0.1% by mass or more, preferably 1% by mass or more. Since the metal salt is soluble in water, the metal salt dissociates in a solvent containing water to become metal ions, and the metal ions react with amines contained in the solvent to obtain a metal complex. Furthermore, when a compound for forming a complex is contained in the solvent if desired, the metal ion and the compound for forming a complex may react to form a metal complex.
  • the compound for forming a metal complex includes at least one selected from ammonia, ammonium formate, and ethylenediaminetetraacetic acid (hereinafter referred to as H 4 EDTA), and these compounds can be used as an aqueous solution. It is preferably included in the mixed liquid. Among these, it is more preferable that the liquid mixture contains an aqueous H 4 EDTA solution as a compound for forming a metal complex.
  • H 4 EDTA ethylenediaminetetraacetic acid
  • the metal precursor liquid may contain both a metal complex and a metal salt.
  • the liquid mixture may be a combination of metal complexes containing the same metal and different ligands, or a combination of metal complexes containing different metals. In terms of synthesis suitability, it is preferable to use a combination of metal complexes containing the same type of metal.
  • ammonia has the same basicity as amines, at least one selected from ammonia and amines may be collectively referred to as "amines" hereinafter.
  • the amines may be contained in the mixed solution as a salt compound.
  • the mixed solution may contain only one type of amine, or may contain two or more types of amines.
  • an aqueous solvent such as water or a mixture of water and alcohol
  • the water preferably has a low content of impurities, particularly ions other than metal ions, and from this point of view, it is preferable to use purified water, ion-exchanged water, pure water, or the like.
  • the alcohol include monohydric alcohols having 1 to 10 carbon atoms such as methanol, ethanol, isopropanol, n-propanol, isobutanol, and n-butanol, ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, and glycerin. Examples include polyhydric alcohols.
  • the aqueous solvent is preferably water or a mixture of water and a monohydric alcohol having 1 to 5 carbon atoms; , and an alcohol selected from propanol, and water is even more preferred.
  • the metal precursor liquid can be prepared by containing a specific metal compound and amines in a solvent and thoroughly stirring and mixing the mixture. Mixing may be performed at room temperature, or may be performed by heating the solvent to 40° C. to 60° C. for the purpose of promoting dissolution.
  • the organic reducing agent contains at least one kind selected from compounds having a carboxy group.
  • the organic reducing agent is preferably selected from organic carboxylic acid compounds having a carboxy group in the molecule and functioning as a reducing agent.
  • the organic reducing agent examples include at least one selected from ascorbic acid, citric acid, oxalic acid, formic acid, and 3,4,5-trihydroxybenzoic acid, which provides better conductive film formation properties. From the viewpoint that it is, it is preferably at least one selected from ascorbic acid, citric acid, and 3,4,5-trihydroxybenzoic acid, and at least one selected from ascorbic acid and citric acid. is more preferable.
  • the organic reducing agent is preferably used as an aqueous solution. It is preferable that the water used for preparing the aqueous solution does not contain metal ions or that the concentration of metal ions is as low as possible from the viewpoint of uniformity of the obtained metal film. Therefore, the water used for preparing the aqueous solution should be It is preferable to use purified water, ion-exchanged water, pure water, or the like.
  • water as a solvent may be heated to 30°C to 60°C, preferably 35°C to 45°C, for the purpose of improving solubility. . Further, the dissolution may be performed while stirring.
  • a solution for forming a conductive film is allowed to stand in the dielectric tube 2 for a predetermined period of time to form a conductive film 4 on the dielectric tube 2 (step S104 in FIG. 1).
  • the conductive film 4 is also formed between the power supply section 11 and the inner surface of the dielectric tube 2 .
  • the power supply part 11 and the conductive film 4 are made of the same type of metal, and the power supply part 11 and the conductive film 4 have excellent adhesion.
  • Cu when used as the metal, Cu nanoparticles derived from a Cu complex adhere to the base material to form a Cu film, resulting in good electrical contact.
  • the particle size of the metal particles formed into a film is preferably 0.1 to 10 ⁇ m, more preferably 1 ⁇ m.
  • the thickness of the conductive film 4 formed on the inner surface of the dielectric tube 2 is preferably 0.1 to 10 ⁇ m from the viewpoint of corrosion resistance, electrical conductivity, and productivity.
  • the metal complex contained in the solution 3 has an ammonium group, a ligand derived from ethylenediamine, etc.
  • the metal complex has good adhesion to the dielectric tube. Therefore, a conductive film formed using the metal complex can be expected to have excellent adhesion to the dielectric tube.
  • the standing time is preferably 6 hours or more, more preferably 12 hours or more, for example at room temperature (25° C.).
  • the composition layer for forming the conductive film 4 which is a metal film formed inside the dielectric tube 2 as a base material
  • the metal contained in the solution 3 is adsorbed to the base material, forming the conductive film 4. is formed.
  • the upper limit of the standing time it can be set to 120 hours or less, preferably 90 hours or less.
  • the dielectric tube 2 may be placed in a circle in the direction of gravity. It may also be rotated at an angle of 90°, 180°, etc. in the circumferential direction.
  • FIG. 6 shows a high voltage electrode using a dielectric tube 2 on which a conductive film 4 is formed by the method for manufacturing a discharge device according to the first embodiment described above.
  • the solution 3 for forming the conductive film 4 is injected into the dielectric tube 2 whose one end is sealed, and the dielectric tube 2 is Since the method includes the step of forming the conductive film 4 on the inner surface of the conductive film, it is possible to form a dense conductive film at a lower cost than by thermal spraying or sputtering. Furthermore, since the step of inserting the cylindrical power feeding part 11 along the inner surface of the dielectric tube 2 and forming the conductive film 4 between the power feeding part 11 and the inner surface of the dielectric tube 2 is included. Formation of the conductive film and connection of the power supply portion to the conductive film can be performed simultaneously, and a low-cost, high-quality discharge device can be manufactured with a simple process.
  • Embodiment 2 In the first embodiment, a case was explained in which a normal thin metal plate was used to form the power feeding section 11, but in a second embodiment, a case was explained in which a thin metal plate provided with a through hole was used.
  • FIG. 7 is a perspective view showing a power feeding section used in the method for manufacturing a discharge device according to Embodiment 2 of the present application.
  • the power supply section 21 used in the second embodiment has a plurality of through holes 21h provided in the cylindrical portion 21a, which is the joint surface of the power supply section 21 connected to the inner surface of the dielectric tube 2.
  • the outer diameter of the through hole 21h is preferably 2 to 5 mm. Although it is preferable that there be a plurality of through holes 5, there may be only one through hole.
  • the adhesion between the power supply section 21 and the conductive film 4 can be further improved.
  • the through hole 21h is provided in the power feeding section 21 at the joint surface with the dielectric tube 2, so that the method of manufacturing the discharge device according to the second embodiment.
  • the adhesion between the power feeding section and the conductive film can be further improved, and a discharge device of even higher quality can be manufactured.
  • FIG. 8 is a sectional view showing the configuration of a discharge device according to Embodiment 3 of the present application.
  • a discharge device 100 according to the third embodiment includes a high voltage electrode 6 provided with a conductive film 4 formed by the discharge device manufacturing method described in the first and second embodiments. , a grounding electrode 8 facing the high-voltage electrode 6 through a gap, a high-voltage power supply 9 that applies a high voltage between the high-voltage electrode 6 and the grounding electrode 8, and connecting the high-voltage power supply 9 and the power supply unit 11.
  • a power supply line 10 is provided, a raw material gas is supplied to the gap, and a high voltage is applied between the high voltage electrode 6 and the ground electrode 8, thereby generating active species in the gap.
  • the source gas contains, for example, oxygen, and at this time, active species such as oxygen atoms and ozone are generated.
  • the discharge device 100 is equipped with the high voltage electrode 6 provided with the conductive film 4 formed by the method for manufacturing the discharge device described in the first and second embodiments described above. Manufacturing costs can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention includes a step for injecting a solution (3) for forming an electroconductive film (4) into the interior of a dielectric tube (2), of which one end is sealed, and forming an electroconductive film (4) on the inner surface of the dielectric tube (2), as a result of which a fine electroconductive film (4) is formed. The present invention furthermore includes a step for inserting a cylindrical electric power supply part (11) along the inner surface of the dielectric tube (2) and forming the electroconductive film (4) between the electric power supply part (11) and the inner surface of the dielectric tube (2), as a result of which formation of the electroconductive film (4) and connection of the electric power supply part (11) to the electroconductive film (4) are performed simultaneously, and manufacturing is performed using a simple process at low cost and with high quality.

Description

放電装置の製造方法および放電装置Discharge device manufacturing method and discharge device
 本願は、放電装置の製造方法および放電装置に関するものである。 The present application relates to a method of manufacturing a discharge device and a discharge device.
 酸素を含む原料ガス中での放電によりオゾンを発生させる放電装置がある。従来の放電装置の中には、管状の接地電極内部に誘電体管が配置された構造のものがあり、誘電体管の外面が接地電極の内面と空隙部を介して対向している。誘電体管の内面には、高電圧を印加するための導電膜が設けられており、放電を発生させる高電圧電極として機能している。そして、空隙部に酸素を含む原料ガスを供給し、両電極間に高電圧を印加することにより空隙部に放電が発生し、この放電によりオゾン化ガスが生成される。 There is a discharge device that generates ozone by discharging in a source gas containing oxygen. Some conventional discharge devices have a structure in which a dielectric tube is disposed inside a tubular ground electrode, and the outer surface of the dielectric tube faces the inner surface of the ground electrode with a gap in between. A conductive film for applying high voltage is provided on the inner surface of the dielectric tube, and functions as a high voltage electrode for generating discharge. Then, by supplying a raw material gas containing oxygen to the gap and applying a high voltage between both electrodes, a discharge is generated in the gap, and this discharge generates ozonized gas.
 上記のような放電装置を製造する際には、誘電体管内面に導電膜を形成する成膜工程が必要であり、様々な手法が開示されている。例えば、特許文献1で開示されている放電装置の製造方法においては、溶射法により誘電体管の内面にアルミ被膜を形成した後、さらにNi-Cr被膜をアルミ被膜上に溶射して導電膜を成膜するという手法が示されている。また、特許文献2に開示されている放電装置の製造方法においては、スパッタ法あるいは蒸着法により誘電体管の内面にステンレス・スチール膜を成膜するという手法が示されている。 When manufacturing the above-mentioned discharge device, a film forming process is required to form a conductive film on the inner surface of the dielectric tube, and various methods have been disclosed. For example, in the method for manufacturing a discharge device disclosed in Patent Document 1, an aluminum coating is formed on the inner surface of a dielectric tube by thermal spraying, and then a Ni-Cr coating is further sprayed on the aluminum coating to form a conductive film. A method of forming a film is shown. Further, in a method of manufacturing a discharge device disclosed in Patent Document 2, a method is disclosed in which a stainless steel film is formed on the inner surface of a dielectric tube by a sputtering method or a vapor deposition method.
特開平7-2501号公報(段落0010、図1)JP-A-7-2501 (Paragraph 0010, Figure 1) 特開2007-169134号公報(段落0017、図1)JP 2007-169134 (Paragraph 0017, Figure 1)
 しかしながら、特許文献1および2に記載の溶射法、スパッタ法および蒸着法のような成膜手法は、導電膜を成膜するまでの工程が煩雑であり、また、成膜装置自体が高価であるという問題があった。さらに、誘電体管の内面に導電膜を形成した後に、高電圧電極と高電圧電源とを接続するための給電部を別途誘電体管に接合する工程が必要であるが、接合した給電部の剥離あるいは電気的接触不良などが懸念されるという問題があった。 However, film forming methods such as the thermal spraying method, sputtering method, and vapor deposition method described in Patent Documents 1 and 2 require complicated steps to form a conductive film, and the film forming apparatus itself is expensive. There was a problem. Furthermore, after forming a conductive film on the inner surface of the dielectric tube, a separate process is required to join the power supply part for connecting the high voltage electrode and the high voltage power source to the dielectric tube. There was a problem that there were concerns about peeling or poor electrical contact.
 本願は、上記のような課題を解決するための技術を開示するものであり、簡易な工程で低コストかつ高品質な放電装置の製造方法および放電装置を得ることを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and aims to provide a method for manufacturing a discharge device and a discharge device with simple steps and low cost and high quality.
 本願に開示される放電装置の製造方法は、一端が封止された誘電体管の内部に導電膜を形成する溶液を注入し、前記誘電体管の内面に前記導電膜を形成する工程、を含むことを特徴とする。 A method for manufacturing a discharge device disclosed in the present application includes the steps of injecting a solution for forming a conductive film into a dielectric tube whose one end is sealed, and forming the conductive film on the inner surface of the dielectric tube. It is characterized by containing.
 本願に開示される放電装置は、上記導電膜が設けられた高電圧電極と、前記高電圧電極と空隙を介して対向する接地電極と、前記高電圧電極と前記接地電極との間に高電圧を印加する高電圧電源と、前記高電圧電源と前記高電圧電極の給電部を接続する給電線と、を備えたことを特徴とする。 The discharge device disclosed in the present application includes a high voltage electrode provided with the conductive film, a ground electrode facing the high voltage electrode with a gap therebetween, and a high voltage between the high voltage electrode and the ground electrode. The present invention is characterized in that it includes a high voltage power supply that applies a voltage, and a power supply line that connects the high voltage power supply and the power supply section of the high voltage electrode.
 本願によれば、簡易な工程で低コストかつ高品質な放電装置を製造することができ、装置自体の製造コストを抑制することができる。 According to the present application, a low-cost, high-quality discharge device can be manufactured through a simple process, and the manufacturing cost of the device itself can be suppressed.
実施の形態1による放電装置の製造方法による放電装置の製造工程を説明するためのフローチャート図である。FIG. 3 is a flowchart diagram for explaining a manufacturing process of a discharge device by the method of manufacturing a discharge device according to the first embodiment. 実施の形態1に係る放電装置の製造方法による放電装置の製造工程を示す平面図である。FIG. 2 is a plan view showing a process of manufacturing a discharge device by the method of manufacturing a discharge device according to Embodiment 1. FIG. 実施の形態1に係る放電装置の製造方法による放電装置の製造工程を示す斜視図である。FIG. 2 is a perspective view showing a process of manufacturing a discharge device by the method of manufacturing a discharge device according to the first embodiment. 実施の形態1に係る放電装置の製造方法による放電装置の製造工程を示す断面図である。FIG. 3 is a cross-sectional view illustrating a process of manufacturing a discharge device by the method of manufacturing a discharge device according to the first embodiment. 実施の形態1に係る放電装置の製造方法による放電装置の製造工程を示す断面図である。FIG. 3 is a cross-sectional view illustrating a process of manufacturing a discharge device by the method of manufacturing a discharge device according to the first embodiment. 実施の形態1に係る放電装置の製造方法により形成された高電圧電極の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of a high voltage electrode formed by the method for manufacturing a discharge device according to the first embodiment. 実施の形態2に係る放電装置の製造方法で用いる給電部を示す斜視図である。FIG. 7 is a perspective view showing a power feeding section used in the method of manufacturing a discharge device according to Embodiment 2. FIG. 実施の形態3に係る放電装置の構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of a discharge device according to Embodiment 3.
 以下、本願を実施するための実施の形態に係る放電装置の製造方法および放電装置について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。 Hereinafter, a method for manufacturing a discharge device and a discharge device according to an embodiment of the present application will be described in detail with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.
 実施の形態1.
 図1は、本願の実施の形態1に係る放電装置の製造方法による放電装置の製造工程を示すフローチャート図である。図2から図5は、図1の各製造工程を説明するための図である。図2は導電膜の成膜に用いられる給電部材の展開図であり、図3は加工した給電部の斜視図である。図4および図5は給電部を挿入した誘電体管の断面図であり、それぞれ誘電体管に導電膜を形成する前の状態、導電膜を形成するための溶液を注入した状態を示す。これらの図を用いて、本願の実施の形態1に係る放電装置の製造方法について説明する。
Embodiment 1.
FIG. 1 is a flowchart showing a process for manufacturing a discharge device according to a method for manufacturing a discharge device according to Embodiment 1 of the present application. 2 to 5 are diagrams for explaining each manufacturing process in FIG. 1. FIG. 2 is a developed view of a power supply member used for forming a conductive film, and FIG. 3 is a perspective view of a processed power supply part. FIGS. 4 and 5 are cross-sectional views of the dielectric tube into which the power feeding section is inserted, and show a state before a conductive film is formed on the dielectric tube and a state after a solution for forming a conductive film is injected into the dielectric tube, respectively. A method for manufacturing a discharge device according to Embodiment 1 of the present application will be described using these figures.
 最初の製造工程では、導電膜の成膜に用いられる金属の薄板で形成された給電部材を、片側を封止した誘電体管に挿入するため筒状に加工する(図1のステップS101)。図2に示すように、給電部材1は、厚さ約0.1mmの金属板であり、辺Aと辺Bの矩形からなる面1aと、辺Cと辺Dの矩形からなる面1bで構成されている。 In the first manufacturing process, a power supply member formed of a thin metal plate used for forming a conductive film is processed into a cylindrical shape in order to be inserted into a dielectric tube whose one side is sealed (step S101 in FIG. 1). As shown in FIG. 2, the power supply member 1 is a metal plate with a thickness of approximately 0.1 mm, and is composed of a surface 1a consisting of a rectangular side A and a side B, and a surface 1b consisting of a rectangular side C and a side D. has been done.
 なお、辺Bに対して平行な方向をX軸方向、垂直な方向をY軸方向としている。面1bは辺Bの中心に位置していることが好ましいが、必ずしも中心に位置している必要はない。辺Aは20mm以上が好ましく、20~40mmがより好ましい。辺Bは50mm以上が好ましく、52.5~53mmがより好ましい。52.5~53mmにすることで、給電部材1の面1aを筒状にして誘電体管に挿入した際、給電部材1が誘電体管内に拡がり、より密着性を向上させることができる。辺Cは5mm以上であることが好ましい。辺Dは10mm以上が好ましく、給電部材の強度の観点から10~20mmがより好ましい。 Note that the direction parallel to side B is the X-axis direction, and the direction perpendicular to side B is the Y-axis direction. The surface 1b is preferably located at the center of the side B, but does not necessarily need to be located at the center. Side A is preferably 20 mm or more, more preferably 20 to 40 mm. Side B is preferably 50 mm or more, more preferably 52.5 to 53 mm. By setting the diameter to 52.5 to 53 mm, when the surface 1a of the power feeding member 1 is made into a cylindrical shape and inserted into the dielectric tube, the power feeding member 1 spreads into the dielectric tube, and the adhesion can be further improved. It is preferable that the side C is 5 mm or more. Side D is preferably 10 mm or more, and more preferably 10 to 20 mm from the viewpoint of strength of the power supply member.
 また、図2において辺Cは辺Bよりも短くなっているが、辺Bと同じ長さであってもよい。給電部材1の材質としては、例えば、銀(Ag)、銅(Cu)、リチウム(Li)、ニッケル(Ni)、マンガン(Mn)、亜鉛(Zn)、およびコバルト(Co)等が挙げられる。電気的接触が良好であるという観点からは、Cu、Agが好ましく、Cuがより好ましい。 Furthermore, although side C is shorter than side B in FIG. 2, it may be the same length as side B. Examples of the material of the power supply member 1 include silver (Ag), copper (Cu), lithium (Li), nickel (Ni), manganese (Mn), zinc (Zn), and cobalt (Co). From the viewpoint of good electrical contact, Cu and Ag are preferred, and Cu is more preferred.
 給電部材1の面1aを、Y軸方向を回転軸として丸め込み筒状に加工することで、図3に示すような筒状部分11aを有する給電部11が形成される。これにより、後述の工程である給電部を誘電体管の内部に挿入する際、給電部と誘電体管の密着性を向上させることができる。筒状に加工するに際して、筒状部分11aは辺A同士が隙間なく接合されていることが望ましいが、重なって接合されていてもよい。 By processing the surface 1a of the power supply member 1 into a cylindrical shape by rolling the Y-axis direction as the rotation axis, the power supply part 11 having a cylindrical portion 11a as shown in FIG. 3 is formed. This makes it possible to improve the adhesion between the power feeding part and the dielectric tube when inserting the power feeding part into the dielectric tube, which will be described later. When processing into a cylindrical shape, it is desirable that the sides A of the cylindrical portion 11a are joined without any gaps, but they may be joined in an overlapping manner.
 続いて、筒状に加工した給電部11の筒状部分11aを誘電体管2の内面に沿って挿入する(図1のステップS102)。図4に示すように、給電部11は、筒状部分11aを誘電体管2の内部に完全に挿入させるが、面1bである給電部11のリード線11bの一部は誘電体管2の内部に、一部は誘電体管2の外にはみ出す位置に設置させる。これにより、高電圧電源に接続するための給電線と給電部とを容易に接続することができる。なお、筒状部分11aは誘電体管2の内部に完全に挿入されていることが好ましいが、筒状部分11aの一部が誘電体管2の外にはみ出してもよい。 Next, the cylindrical portion 11a of the power supply section 11, which has been processed into a cylindrical shape, is inserted along the inner surface of the dielectric tube 2 (step S102 in FIG. 1). As shown in FIG. 4, the power feeding section 11 allows the cylindrical portion 11a to be completely inserted into the dielectric tube 2, but a part of the lead wire 11b of the power feeding section 11, which is the surface 1b, is inserted into the dielectric tube 2. It is installed inside the dielectric tube 2 at a position where a part thereof protrudes outside the dielectric tube 2. Thereby, the power supply line for connection to the high voltage power supply and the power supply section can be easily connected. Although it is preferable that the cylindrical portion 11a be completely inserted into the dielectric tube 2, a portion of the cylindrical portion 11a may protrude outside the dielectric tube 2.
 次いで、給電部11を挿入した誘電体管2の内部に導電膜を形成するための溶液を注入する(図1のステップS103)。誘電体管2に導電膜4を形成するための溶液3を、給電部11の辺Aの高さまで注入する。図5は、誘電体管2に導電膜4を形成するための溶液3を注入した後の状態を示す。溶液3は、金属前駆体液と有機還元剤を含む混合溶液である。なお、溶液3において、金属前駆体液と有機還元剤とを混合して得られる混合溶液中の金属前駆体液および有機還元剤の含有量には、特に制限はない。 Next, a solution for forming a conductive film is injected into the dielectric tube 2 into which the power supply section 11 is inserted (step S103 in FIG. 1). Solution 3 for forming conductive film 4 on dielectric tube 2 is injected up to the height of side A of power supply section 11 . FIG. 5 shows the state after the solution 3 for forming the conductive film 4 is injected into the dielectric tube 2. As shown in FIG. Solution 3 is a mixed solution containing a metal precursor liquid and an organic reducing agent. In addition, in the solution 3, there is no particular restriction on the content of the metal precursor liquid and the organic reducing agent in the mixed solution obtained by mixing the metal precursor liquid and the organic reducing agent.
 金属前駆体液は、金属錯体および金属塩からなる群より選ばれる少なくとも1種(以下、特定金属化合物と総称)と、アンモニアおよびアミンから選ばれる少なくとも1種と、溶媒と、を含む混合溶液である。金属前駆体液に含まれる金属としては、例えば、Ag、Cu、Li、Ni、Mn、Zn、Co等が挙げられる。 The metal precursor liquid is a mixed solution containing at least one selected from the group consisting of metal complexes and metal salts (hereinafter collectively referred to as specific metal compound), at least one selected from ammonia and amine, and a solvent. . Examples of the metal contained in the metal precursor liquid include Ag, Cu, Li, Ni, Mn, Zn, and Co.
 金属錯体は、金属錯体を生成し得るNH配位子、RNH配位子(Rはアルキレン基を表す)、OH配位子、エチレンジアミン、ヘキサメチレンジアミン等のジアミン由来の配位子を部分構造として有する化合物から選ばれる金属錯体形成用の化合物の1種以上と、金属イオンとの反応生成物であることが好ましい。金属錯体における金属としては、給電部11の給電部材1と同種であることが好ましい。金属錯体としては、例えば、金属としてCuを含む、エチレンジアミン四酢酸銅、テトラアンミン銅等が好ましく挙げられる。電気的接触が良好であるという観点からは、Cu、Ag等が好ましく、Cuがより好ましい。 The metal complex contains NH 3 ligand, RNH 2 ligand (R represents an alkylene group), OH 2 ligand, and diamine-derived ligand such as ethylenediamine and hexamethylene diamine, which can form a metal complex. It is preferable that it is a reaction product between one or more compounds for forming a metal complex selected from compounds having as a partial structure and a metal ion. The metal in the metal complex is preferably the same type as the power supply member 1 of the power supply unit 11. Preferred examples of the metal complex include copper ethylenediaminetetraacetate and copper tetraammine, which contain Cu as the metal. From the viewpoint of good electrical contact, Cu, Ag, etc. are preferred, and Cu is more preferred.
 金属塩は、水を含む溶媒中で解離して金属イオンとなり、金属錯体を形成し得る機能を有する金属化合物である。本開示における金属塩とは、25℃の水に可溶な金属塩を指す。25℃の水に可溶とは、25℃の水に対する溶解度が0.1質量%以上であることを指し、溶解度は1質量%以上であることが好ましい。金属塩が水に可溶であることで、金属塩は水を含む溶媒中で解離して金属イオンとなり、当該金属イオンが溶媒中に含まれるアミン類と反応して金属錯体が得られる。さらに、溶媒中に所望により錯体形成用の化合物が含まれる場合には、当該金属イオンと錯体形成用の化合物とが反応して金属錯体が形成される場合がある。 A metal salt is a metal compound that has the function of dissociating into a metal ion in a water-containing solvent and forming a metal complex. Metal salts in this disclosure refer to metal salts that are soluble in water at 25°C. Soluble in water at 25°C refers to solubility in water at 25°C of 0.1% by mass or more, preferably 1% by mass or more. Since the metal salt is soluble in water, the metal salt dissociates in a solvent containing water to become metal ions, and the metal ions react with amines contained in the solvent to obtain a metal complex. Furthermore, when a compound for forming a complex is contained in the solvent if desired, the metal ion and the compound for forming a complex may react to form a metal complex.
 金属錯体形成用の化合物としては、より具体的には、アンモニア、ギ酸アンモニウム、及びエチレンジアミン四酢酸(以下、HEDTAと称する)から選ばれる少なくとも1種が挙げられ、これらの化合物は、水溶液として混合液中に含まれることが好ましい。なかでも、混合液は、金属錯体形成用化合物としてのHEDTA水溶液を含むことがより好ましい。 More specifically, the compound for forming a metal complex includes at least one selected from ammonia, ammonium formate, and ethylenediaminetetraacetic acid (hereinafter referred to as H 4 EDTA), and these compounds can be used as an aqueous solution. It is preferably included in the mixed liquid. Among these, it is more preferable that the liquid mixture contains an aqueous H 4 EDTA solution as a compound for forming a metal complex.
 なお、金属前駆体液は、金属錯体および金属塩の双方を含んでもよい。また、混合液が特定金属化合物を2種以上含有する場合、例えば、同じ金属を含み配位子の異なる金属錯体同士の組み合わせ、異なる金属を含む金属錯体同士の組み合わせのいずれであってもよい。合成適性上は、同種の金属を含む金属錯体同士の組み合わせであることが好ましい。 Note that the metal precursor liquid may contain both a metal complex and a metal salt. Further, when the liquid mixture contains two or more types of specific metal compounds, for example, it may be a combination of metal complexes containing the same metal and different ligands, or a combination of metal complexes containing different metals. In terms of synthesis suitability, it is preferable to use a combination of metal complexes containing the same type of metal.
 アンモニアは、アミンと同様の塩基性を有することから、以下、アンモニアおよびアミンから選ばれる少なくとも1種を「アミン類」と総称することがある。アミン類は、混合溶液中に、塩化合物として含まれていてもよい。混合溶液は、アミン類を1種のみ含んでもよく、2種以上を含んでもよい。 Since ammonia has the same basicity as amines, at least one selected from ammonia and amines may be collectively referred to as "amines" hereinafter. The amines may be contained in the mixed solution as a salt compound. The mixed solution may contain only one type of amine, or may contain two or more types of amines.
 溶媒は、水、水とアルコールとの混合物などの水性溶媒を用いることができる。水は、不純物、特に金属イオン以外のイオンの含有量が少ないことが好ましく、そのような観点からは、精製水、イオン交換水、純水などを用いることが好ましい。アルコールとしては、例えば、メタノール、エタノール、イソプロパノール、n-プロパノール、イソブタノール、n-ブタノール等の炭素数1~10の1価のアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、およびグリセリン等の多価アルコールが挙げられる。特定金属化合物の溶解性およびハンドリング性の観点からは、水性溶媒として、水、または、水と炭素数1~5の1価のアルコールとの混合物が好ましく、水、または、水と、メタノール、エタノール、およびプロパノールから選ばれるアルコールと、の混合物がより好ましく、水がさらに好ましい。 As the solvent, an aqueous solvent such as water or a mixture of water and alcohol can be used. The water preferably has a low content of impurities, particularly ions other than metal ions, and from this point of view, it is preferable to use purified water, ion-exchanged water, pure water, or the like. Examples of the alcohol include monohydric alcohols having 1 to 10 carbon atoms such as methanol, ethanol, isopropanol, n-propanol, isobutanol, and n-butanol, ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, and glycerin. Examples include polyhydric alcohols. From the viewpoint of solubility and handling properties of the specific metal compound, the aqueous solvent is preferably water or a mixture of water and a monohydric alcohol having 1 to 5 carbon atoms; , and an alcohol selected from propanol, and water is even more preferred.
 金属前駆体液は、溶媒中に、特定金属化合物とアミン類とを含有させ、十分に撹拌して
混合することで調製することができる。混合は、常温で行ってもよく、溶解を促進する目的で、溶媒を40℃~60℃に加温して行ってもよい。
The metal precursor liquid can be prepared by containing a specific metal compound and amines in a solvent and thoroughly stirring and mixing the mixture. Mixing may be performed at room temperature, or may be performed by heating the solvent to 40° C. to 60° C. for the purpose of promoting dissolution.
 有機還元剤は、カルボキシ基を有する化合物から選択される少なくとも1種を含むことが好ましい。有機還元剤として、分子内にカルボキシ基を有し、還元剤としての機能を有する有機カルボン酸化合物から適宜選択して用いることが好ましい。 It is preferable that the organic reducing agent contains at least one kind selected from compounds having a carboxy group. The organic reducing agent is preferably selected from organic carboxylic acid compounds having a carboxy group in the molecule and functioning as a reducing agent.
 有機還元剤としては、例えば、アスコルビン酸、クエン酸、シュウ酸、ギ酸、および3,4,5-トリヒドロキシ安息香酸等から選ばれる少なくとも1種が挙げられ、導電膜の形成性がより良好であるという観点からは、アスコルビン酸、クエン酸、および3,4,5-トリヒドロキシ安息香酸から選ばれる少なくとも1種であることが好ましく、アスコルビン酸、およびクエン酸から選ばれる少なくとも1種であることがより好ましい。 Examples of the organic reducing agent include at least one selected from ascorbic acid, citric acid, oxalic acid, formic acid, and 3,4,5-trihydroxybenzoic acid, which provides better conductive film formation properties. From the viewpoint that it is, it is preferably at least one selected from ascorbic acid, citric acid, and 3,4,5-trihydroxybenzoic acid, and at least one selected from ascorbic acid and citric acid. is more preferable.
 有機還元剤としてアスコルビン酸を含むことが、本開示の好ましい態様の一つとして挙げられる。有機還元剤は、水溶液として用いられることが好ましい。水溶液の調製に用いられる水は、金属イオンを含まないか、或いは、金属イオン濃度ができるだけ低いことが、得られる金属膜の均一性の観点から好ましく、従って、水溶液の調製に用いられる水は、精製水、イオン交換水、純水などを用いることが好ましい。特定還元剤を水に溶解する際には、溶解性を向上させる目的で、溶媒である水を30℃~60℃に加温してもよく、35℃~45℃に加温することが好ましい。また、溶解は撹拌しながら行ってもよい。 Inclusion of ascorbic acid as an organic reducing agent is mentioned as one of the preferred embodiments of the present disclosure. The organic reducing agent is preferably used as an aqueous solution. It is preferable that the water used for preparing the aqueous solution does not contain metal ions or that the concentration of metal ions is as low as possible from the viewpoint of uniformity of the obtained metal film. Therefore, the water used for preparing the aqueous solution should be It is preferable to use purified water, ion-exchanged water, pure water, or the like. When dissolving the specific reducing agent in water, water as a solvent may be heated to 30°C to 60°C, preferably 35°C to 45°C, for the purpose of improving solubility. . Further, the dissolution may be performed while stirring.
 続いて、導電膜形成用の溶液を誘電体管2に所定時間静置し、誘電体管2に導電膜4を形成させる(図1のステップS104)。図5に示す導電膜4を形成するための溶液3を注入した誘電体管2を所定時間静置させることで、誘電体管2の内面に金属錯体が吸着し、緻密な導電膜4が形成され、導電膜4が給電部11と誘電体管2の内面との間にも成膜される。緻密な膜を形成することにより、耐腐食性を高めることが可能となる。 Subsequently, a solution for forming a conductive film is allowed to stand in the dielectric tube 2 for a predetermined period of time to form a conductive film 4 on the dielectric tube 2 (step S104 in FIG. 1). By allowing the dielectric tube 2 injected with the solution 3 for forming the conductive film 4 shown in FIG. The conductive film 4 is also formed between the power supply section 11 and the inner surface of the dielectric tube 2 . By forming a dense film, it is possible to improve corrosion resistance.
 溶液3は給電部11と誘電体管2の間に染み込むため、給電部11と導電膜4が同種の金属であり、給電部11と導電膜4は密着性に優れている。例えば、金属としてCuを用いた場合には、Cu錯体に由来するCuのナノ粒子が基材に付着してCu膜が形成され、電気的接触が良好なものとなる。なお、導電性の観点から、成膜された金属粒子の粒径は0.1~10μmであることが好ましく、1μmがより好ましい。また、誘電体管2の内面に成膜された導電膜4の膜厚は、耐腐食性、電気伝導性、生産性の観点から、0.1~10μmであることが好ましい。 Since the solution 3 penetrates between the power supply part 11 and the dielectric tube 2, the power supply part 11 and the conductive film 4 are made of the same type of metal, and the power supply part 11 and the conductive film 4 have excellent adhesion. For example, when Cu is used as the metal, Cu nanoparticles derived from a Cu complex adhere to the base material to form a Cu film, resulting in good electrical contact. Note that from the viewpoint of conductivity, the particle size of the metal particles formed into a film is preferably 0.1 to 10 μm, more preferably 1 μm. Further, the thickness of the conductive film 4 formed on the inner surface of the dielectric tube 2 is preferably 0.1 to 10 μm from the viewpoint of corrosion resistance, electrical conductivity, and productivity.
 また、溶液3に含まれる金属錯体がアンモニウム基、エチレンジアミンに由来する配位子等を有する場合には、金属錯体は、誘電体管との密着性が良好となる。従って、当該金属錯体を用いて形成された導電膜は誘電体管との密着性に優れることが期待できる。 Furthermore, when the metal complex contained in the solution 3 has an ammonium group, a ligand derived from ethylenediamine, etc., the metal complex has good adhesion to the dielectric tube. Therefore, a conductive film formed using the metal complex can be expected to have excellent adhesion to the dielectric tube.
 静置時間は、例えば常温(25℃)においては、6時間以上であることが好ましく、12時間以上であることがより好ましい。基材としての誘電体管2の内部に形成された金属膜である導電膜4の形成用組成物層を静置することで、溶液3に含まれる金属が基材に吸着して導電膜4が形成される。静置時間の上限には特に制限はないが、生産性等を考慮すれば、120時間以下とすることができ、90時間以下が好ましい。なお、誘電体管2を静置させる場合、誘電体管2の設置方法に特に制限はなく、例えば、導電膜を形成するため静置している間に誘電体管2を重力方向に対し円周方向に90°、180°などの角度で回転させてもよい。 The standing time is preferably 6 hours or more, more preferably 12 hours or more, for example at room temperature (25° C.). By allowing the composition layer for forming the conductive film 4, which is a metal film formed inside the dielectric tube 2 as a base material, to stand still, the metal contained in the solution 3 is adsorbed to the base material, forming the conductive film 4. is formed. There is no particular restriction on the upper limit of the standing time, but considering productivity etc., it can be set to 120 hours or less, preferably 90 hours or less. Note that when the dielectric tube 2 is left standing, there is no particular restriction on the method of installing the dielectric tube 2. For example, while the dielectric tube 2 is left standing to form a conductive film, the dielectric tube 2 may be placed in a circle in the direction of gravity. It may also be rotated at an angle of 90°, 180°, etc. in the circumferential direction.
 最後に、導電膜4を形成した溶液を誘電体管2から排出し(図1のステップS105)、誘電体管2の内部を乾燥させることで、導電膜4の形成が完了する。図6は、上記の実施の形態1に係る放電装置の製造方法により導電膜4を形成した誘電体管2を用いた高電圧電極である。 Finally, the solution in which the conductive film 4 was formed is discharged from the dielectric tube 2 (step S105 in FIG. 1), and the inside of the dielectric tube 2 is dried, thereby completing the formation of the conductive film 4. FIG. 6 shows a high voltage electrode using a dielectric tube 2 on which a conductive film 4 is formed by the method for manufacturing a discharge device according to the first embodiment described above.
 以上のように、本実施の形態1に係る放電装置の製造方法によれば、一端が封止された誘電体管2の内部に導電膜4を形成する溶液3を注入し、誘電体管2の内面に導電膜4を形成する工程、を含むようにしたので、溶射法およびスパッタ法と比較して安価で、かつ緻密な導電膜を成膜することができる。さらに、誘電体管2の内面に沿って筒状の給電部11を挿入し、給電部11と誘電体管2の内面との間に導電膜4を形成する工程、を含むようにしたので、導電膜の形成と給電部の導電膜への接続が同時にでき、簡易な工程で低コストかつ高品質な放電装置を製造することができる。 As described above, according to the method for manufacturing a discharge device according to the first embodiment, the solution 3 for forming the conductive film 4 is injected into the dielectric tube 2 whose one end is sealed, and the dielectric tube 2 is Since the method includes the step of forming the conductive film 4 on the inner surface of the conductive film, it is possible to form a dense conductive film at a lower cost than by thermal spraying or sputtering. Furthermore, since the step of inserting the cylindrical power feeding part 11 along the inner surface of the dielectric tube 2 and forming the conductive film 4 between the power feeding part 11 and the inner surface of the dielectric tube 2 is included. Formation of the conductive film and connection of the power supply portion to the conductive film can be performed simultaneously, and a low-cost, high-quality discharge device can be manufactured with a simple process.
 実施の形態2.
 実施の形態1では、給電部11の形成に通常の金属の薄板を用いた場合について説明したが、実施の形態2では、貫通穴が設けられた金属の薄板を用いた場合について説明する。
Embodiment 2.
In the first embodiment, a case was explained in which a normal thin metal plate was used to form the power feeding section 11, but in a second embodiment, a case was explained in which a thin metal plate provided with a through hole was used.
 図7は、本願の実施の形態2に係る放電装置の製造方法で用いる給電部を示す斜視図である。図7に示すように、実施の形態2で用いる給電部21は、誘電体管2の内面に接続する給電部21の接合面である筒状部分21aに、複数の貫通穴21hが設けられている。貫通穴21hの外径は2~5mmが好ましい。貫通穴5は複数あることが好ましいが、一つでもよい。実施の形態2に係る放電装置の製造方法で形成する高電圧電極のその他の構成およびその製造方法については、実施の形態1に係る放電装置の製造方法で形成する高電圧電極と同様であり、その説明を省略する。 FIG. 7 is a perspective view showing a power feeding section used in the method for manufacturing a discharge device according to Embodiment 2 of the present application. As shown in FIG. 7, the power supply section 21 used in the second embodiment has a plurality of through holes 21h provided in the cylindrical portion 21a, which is the joint surface of the power supply section 21 connected to the inner surface of the dielectric tube 2. There is. The outer diameter of the through hole 21h is preferably 2 to 5 mm. Although it is preferable that there be a plurality of through holes 5, there may be only one through hole. The other configurations and the manufacturing method of the high voltage electrode formed by the method for manufacturing a discharge device according to Embodiment 2 are the same as those for the high voltage electrode formed by the method for manufacturing a discharge device according to Embodiment 1, The explanation will be omitted.
 このように、給電部21に貫通穴21hを設けることで、給電部21と導電膜4の密着性をさらに向上させることができる。 By providing the through hole 21h in the power supply section 21 in this manner, the adhesion between the power supply section 21 and the conductive film 4 can be further improved.
 以上のように、本実施の形態2に係る放電装置の製造方法によれば、給電部21に、誘電体管2との接合面に貫通穴21hを設けるようにしたので、実施の形態1での効果に加えて、給電部と導電膜の密着性をさらに向上させることができ、さらに高品質な放電装置を製造することができる。 As described above, according to the method of manufacturing a discharge device according to the second embodiment, the through hole 21h is provided in the power feeding section 21 at the joint surface with the dielectric tube 2, so that the method of manufacturing the discharge device according to the second embodiment In addition to the above effects, the adhesion between the power feeding section and the conductive film can be further improved, and a discharge device of even higher quality can be manufactured.
 実施の形態3.
 図8は、本願の実施の形態3に係る放電装置の構成を示す断面図である。図8に示すように、本実施の形態3の放電装置100は、実施の形態1および実施の形態2で説明した放電装置の製造方法で形成した導電膜4が設けられた高電圧電極6と、高電圧電極6と空隙を介して対向する接地電極8と、高電圧電極6と接地電極8との間に高電圧を印加する高電圧電源9と、高電圧電源9と給電部11を接続する給電線10と、を備え、当該空隙部分に原料ガスを供給し、高電圧電極6と接地電極8間に高電圧を印加することにより、空隙部分で活性種を発生する。
Embodiment 3.
FIG. 8 is a sectional view showing the configuration of a discharge device according to Embodiment 3 of the present application. As shown in FIG. 8, a discharge device 100 according to the third embodiment includes a high voltage electrode 6 provided with a conductive film 4 formed by the discharge device manufacturing method described in the first and second embodiments. , a grounding electrode 8 facing the high-voltage electrode 6 through a gap, a high-voltage power supply 9 that applies a high voltage between the high-voltage electrode 6 and the grounding electrode 8, and connecting the high-voltage power supply 9 and the power supply unit 11. A power supply line 10 is provided, a raw material gas is supplied to the gap, and a high voltage is applied between the high voltage electrode 6 and the ground electrode 8, thereby generating active species in the gap.
 原料ガスは、例えば、酸素を含み、このとき活性種としては酸素原子およびオゾンなどが発生する。 The source gas contains, for example, oxygen, and at this time, active species such as oxygen atoms and ozone are generated.
 このように、放電装置100は、上記の実施の形態1および実施の形態2に記載の放電装置の製造方法により形成した導電膜4が設けられた高電圧電極6を備えることで、装置自体の製造コストを抑制することができる。 In this way, the discharge device 100 is equipped with the high voltage electrode 6 provided with the conductive film 4 formed by the method for manufacturing the discharge device described in the first and second embodiments described above. Manufacturing costs can be suppressed.
 以上のように、本実施の形態3に係る放電装置100によれば、上記の実施の形態1および実施の形態2に記載の放電装置の製造方法により形成した導電膜4が設けられた高電圧電極6と、高電圧電極6と空隙を介して対向する接地電極8と、高電圧電極6と接地電極8との間に高電圧を印加する高電圧電源9と、高電圧電源9と高電圧電極6の給電部11を接続する給電線10と、を備えるようにしたので、装置自体の製造コストを抑制することができる。 As described above, according to the discharge device 100 according to the third embodiment, the high voltage An electrode 6, a ground electrode 8 facing the high voltage electrode 6 with a gap in between, a high voltage power supply 9 that applies a high voltage between the high voltage electrode 6 and the ground electrode 8, and a high voltage power supply 9 and the high voltage Since the power supply line 10 that connects the power supply section 11 of the electrode 6 is provided, the manufacturing cost of the device itself can be suppressed.
 本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although this application describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments may be applicable to a particular embodiment. The present invention is not limited to, and can be applied to the embodiments alone or in various combinations. Accordingly, countless variations not illustrated are envisioned within the scope of the technology disclosed herein. For example, this includes cases where at least one component is modified, added, or omitted, and cases where at least one component is extracted and combined with components of other embodiments.
 2 誘電体管、3 溶液、4 導電膜、11 給電部、11a 筒状部分、100 放電装置。 2 dielectric tube, 3 solution, 4 conductive film, 11 power supply part, 11a cylindrical part, 100 discharge device.

Claims (11)

  1.  一端が封止された誘電体管の内部に導電膜を形成する溶液を注入し、前記誘電体管の内面に前記導電膜を形成する工程、
    を含むことを特徴とする放電装置の製造方法。
    Injecting a solution for forming a conductive film into a dielectric tube whose one end is sealed, and forming the conductive film on the inner surface of the dielectric tube;
    A method of manufacturing a discharge device, comprising:
  2.  前記誘電体管の内面に沿って筒状の給電部を挿入し、前記給電部と前記誘電体管の内面との間に前記導電膜を形成する工程、
    を含むことを特徴とする請求項1に記載の放電装置の製造方法。
    inserting a cylindrical power supply part along the inner surface of the dielectric tube, and forming the conductive film between the power supply part and the inner surface of the dielectric tube;
    The method of manufacturing a discharge device according to claim 1, further comprising the steps of:
  3.  前記給電部は、前記導電膜と同種の金属であることを特徴とする請求項2に記載の放電装置の製造方法。 3. The method of manufacturing a discharge device according to claim 2, wherein the power supply part is made of the same type of metal as the conductive film.
  4.  前記給電部は、金属の薄板を筒状に加工して形成することを特徴とする請求項2または請求項3に記載の放電装置の製造方法。 4. The method of manufacturing a discharge device according to claim 2, wherein the power feeding section is formed by processing a thin metal plate into a cylindrical shape.
  5.  前記給電部は、前記誘電体管との接合面に貫通穴が設けられたことを特徴とする請求項2から請求項4のいずれか1項に記載の放電装置の製造方法。 The method for manufacturing a discharge device according to any one of claims 2 to 4, wherein the power feeding section has a through hole provided in a joint surface with the dielectric tube.
  6.  前記導電膜を形成する溶液は、金属前駆体液と有機還元剤を含むことを特徴とする請求項1から請求項5のいずれか1項に記載の放電装置の製造方法。 The method for manufacturing a discharge device according to any one of claims 1 to 5, wherein the solution forming the conductive film contains a metal precursor liquid and an organic reducing agent.
  7.  前記金属前駆体液は、Ag、Cu、Li、Ni、Mn、Zn、およびCoからなる群より選択された少なくとも1種を含むことを特徴とする請求項6に記載の放電装置の製造方法。 7. The method for manufacturing a discharge device according to claim 6, wherein the metal precursor liquid contains at least one selected from the group consisting of Ag, Cu, Li, Ni, Mn, Zn, and Co.
  8.  前記有機還元剤は、アスコルビン酸、クエン酸、シュウ酸、ギ酸、および3,4,5-トリヒドロキシ安息香酸からなる群より選択された少なくとも1種を含むことを特徴とする請求項6または請求項7に記載の放電装置の製造方法。 6 or 7, wherein the organic reducing agent contains at least one selected from the group consisting of ascorbic acid, citric acid, oxalic acid, formic acid, and 3,4,5-trihydroxybenzoic acid. Item 7. A method for manufacturing a discharge device according to item 7.
  9.  前記形成された導電膜は、金属粒子の粒径が0.1~10μmであることを特徴とする請求項1から請求項8のいずれか1項に記載の放電装置の製造方法。 The method for manufacturing a discharge device according to any one of claims 1 to 8, wherein the formed conductive film has metal particles having a particle size of 0.1 to 10 μm.
  10.  前記形成された導電膜は、膜厚が0.1~10μmであることを特徴とする請求項1から請求項9のいずれか1項に記載の放電装置の製造方法。 The method for manufacturing a discharge device according to any one of claims 1 to 9, wherein the formed conductive film has a thickness of 0.1 to 10 μm.
  11.  請求項1から請求項10のいずれか1項に記載の放電装置の製造方法で形成された前記導電膜が設けられた高電圧電極と、
     前記高電圧電極と空隙を介して対向する接地電極と、
     前記高電圧電極と前記接地電極との間に高電圧を印加する高電圧電源と、
     前記高電圧電源と前記高電圧電極の給電部を接続する給電線と、
    を備えたことを特徴とする放電装置。
    A high voltage electrode provided with the conductive film formed by the method for manufacturing a discharge device according to any one of claims 1 to 10;
    a ground electrode facing the high voltage electrode with a gap therebetween;
    a high voltage power supply that applies a high voltage between the high voltage electrode and the ground electrode;
    a power supply line connecting the high voltage power supply and the power supply part of the high voltage electrode;
    A discharge device characterized by comprising:
PCT/JP2022/017910 2022-04-15 2022-04-15 Method for manufacturing discharge device, and discharge device WO2023199504A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022559626A JP7203295B1 (en) 2022-04-15 2022-04-15 Discharge device manufacturing method and discharge device
PCT/JP2022/017910 WO2023199504A1 (en) 2022-04-15 2022-04-15 Method for manufacturing discharge device, and discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017910 WO2023199504A1 (en) 2022-04-15 2022-04-15 Method for manufacturing discharge device, and discharge device

Publications (1)

Publication Number Publication Date
WO2023199504A1 true WO2023199504A1 (en) 2023-10-19

Family

ID=84887129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017910 WO2023199504A1 (en) 2022-04-15 2022-04-15 Method for manufacturing discharge device, and discharge device

Country Status (2)

Country Link
JP (1) JP7203295B1 (en)
WO (1) WO2023199504A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266304A (en) * 1985-05-21 1986-11-26 オツォニア・アクチェンゲゼルシャフト Ozonizer
JPH072501A (en) * 1993-04-23 1995-01-06 Meidensha Corp High-voltage electrode structure of ozone generator
JPH11500705A (en) * 1995-03-25 1999-01-19 ユーロフラム ゲーエムベーハー Ozonizer and manufacturing method thereof
WO2006103945A1 (en) * 2005-03-28 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Silent discharge type plasma device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002501B2 (en) 2019-07-29 2022-01-20 Ihi運搬機械株式会社 Unmanned aerial vehicle status check device and status check method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266304A (en) * 1985-05-21 1986-11-26 オツォニア・アクチェンゲゼルシャフト Ozonizer
JPH072501A (en) * 1993-04-23 1995-01-06 Meidensha Corp High-voltage electrode structure of ozone generator
JPH11500705A (en) * 1995-03-25 1999-01-19 ユーロフラム ゲーエムベーハー Ozonizer and manufacturing method thereof
WO2006103945A1 (en) * 2005-03-28 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Silent discharge type plasma device

Also Published As

Publication number Publication date
JPWO2023199504A1 (en) 2023-10-19
JP7203295B1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
JP4894266B2 (en) Conductive powder surface treatment method, conductive powder and conductive paste
KR101789213B1 (en) Method of Manufacturing Silver-Coated Copper Nano Wire Having Core-Shell Structure by Chemical Reduction Method
WO2011034019A1 (en) Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package
CN103464779B (en) Method for adopting sliver-coated nano copper composite particles to prepare conductive ink
KR20140027058A (en) Conductive powder, conductive material containing the conductive powder, and method for manufacturing the conductive powder
JP5512306B2 (en) Method for producing conductive particles
JPH0480303A (en) Manufacture of copper powder coated with silver
TWI593763B (en) Surface-coated copper filler, method for producing the same, and electrically conductive composition
JP2011076931A (en) Positive electrode material for lithium ion secondary battery, and method for manufacturing the same
CN102822920A (en) Electrode structure for capacitor, process for producing same, and capacitor including the electrode structure
TWI570750B (en) Conductive particle and conductive material having the same
JP5778941B2 (en) Method for producing silver-coated flake copper powder
WO2023199504A1 (en) Method for manufacturing discharge device, and discharge device
US20070138446A1 (en) Nickel powder and method of producing the same
KR101001631B1 (en) Method and apparatus for manufacturing silver nano-particles by electro-decomposition method
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
Sanchis-Gual et al. Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of Au nanoparticles
EP3355397A1 (en) Carrier-nanoparticle complex, preparation method therefor, and membrane electrode assembly including same
JP5695768B2 (en) Conductive powder and conductive material including the same
TW202219318A (en) Electrically conductive particle, and electrically conductive material and connection structure obtained using same
KR101599104B1 (en) Method for manufacturing metal particles with core-shell structure
KR101891143B1 (en) Pretretment of carbon nano tube and preparation of electro-conductive adhesive using the same
KR101586659B1 (en) A Controlling Method of Oxidizing Film of High explosive characteristics
WO2023013465A1 (en) Conductive particle, production method thereof and conductive material
WO2024043047A1 (en) Conductive particles, production method therefor, and conductive member

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022559626

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937483

Country of ref document: EP

Kind code of ref document: A1