WO2023198912A1 - Method for producing a transparent substrate comprising a coating - Google Patents

Method for producing a transparent substrate comprising a coating Download PDF

Info

Publication number
WO2023198912A1
WO2023198912A1 PCT/EP2023/059823 EP2023059823W WO2023198912A1 WO 2023198912 A1 WO2023198912 A1 WO 2023198912A1 EP 2023059823 W EP2023059823 W EP 2023059823W WO 2023198912 A1 WO2023198912 A1 WO 2023198912A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
chosen
precursor
surfactant
substrate
Prior art date
Application number
PCT/EP2023/059823
Other languages
French (fr)
Inventor
Clément Robert
Quentin MAGDELAINE-GUILLOT DE SUDUIRAU
Cécile MONTEUX
Laurent Maillaud
Frédéric MONDIOT
Original Assignee
Saint-Gobain Glass France
Centre National De La Recherche Scientifique
Sorbonne Universite
École Supérieure de Physique et de Chimie Industrielles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France, Centre National De La Recherche Scientifique, Sorbonne Universite, École Supérieure de Physique et de Chimie Industrielles filed Critical Saint-Gobain Glass France
Publication of WO2023198912A1 publication Critical patent/WO2023198912A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • C03C17/322Polyurethanes or polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • C03C17/324Polyesters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • C03C17/326Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/476Tin oxide or doped tin oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Definitions

  • the subject of the present invention is a process for manufacturing a coated substrate, as well as the material comprising the coated substrate and its application in the field of glazing.
  • Coatings obtained using liquid deposition methods may, however, present certain defects such as homogeneity defects. In the majority of cases, we put up with these lack of homogeneity. These defects do not necessarily have a significant impact on the desired properties. This is particularly the case for opaque coatings or coatings with low light transmission, or coatings deposited on small surfaces. However, certain applications are more demanding, whether for technical or aesthetic reasons. These homogeneity defects can in fact affect the particularly optical properties of the coating, generating for example, more or less locally, moiré, wave, magnifying glass effects, etc.
  • the subject of the invention is therefore a method of manufacturing a material comprising a substrate coated with a coating, preferably transparent, on at least one of its faces, said method comprising a step of application to said face said substrate of an aqueous composition (called aqueous coating composition) containing at least one coating precursor and at least one surfactant, characterized in that the surfactant is chosen from:
  • the invention also relates to a material comprising a substrate coated with a coating on at least one of its faces, capable of being obtained according to the method described above.
  • a material has in particular a blur less than or equal to 2%, or even less than or equal to 1.5% or even less than or equal to 1%, and/or a clarity greater than or equal to 99%.
  • the substrate is preferably glass, or a polymeric organic material. It is preferably transparent, colorless (it can then be a clear or extra-clear glass) or colored, for example blue, green, gray or bronze.
  • the glass is preferably of the soda-lime-silico type, but it can also be of the borosilicate or alumino-borosilicate type glass, particularly for high temperature applications (oven doors, fireplace inserts, fire-resistant glazing).
  • Preferred polymeric organic materials are polycarbonate (PC), polymethyl methacrylate (PMMA) or polyethylene terephthalate (PET).
  • the substrate advantageously has at least one dimension greater than or equal to 20 cm, or even 1 m or even 2 m.
  • the thickness of the substrate generally ranges from 0.01 mm to 19 mm, preferably 0.02 to 15 mm.
  • the substrate can be rigid, in particular planar or curved, or flexible. In the case of a rigid substrate (in particular a sheet of glass, PMMA, or PC), this generally has a thickness of 0.4 to 12 mm, preferably 1 to 6 mm. In the case of a flexible substrate (in particular a polymer film), it generally has a thickness of 0.02 to 1 mm.
  • the substrate is preferably a sheet of glass.
  • the surfactant used in the manufacturing process according to the invention can be:
  • the CMC or Critical Micellar Concentration is the concentration at which a surfactant added to water begins to aggregate and form micelles. Below the CMC, the surfactant is in the free state. Above the CMC, the surfactant forms micelles.
  • the CMC can be measured in a known manner using the bubble method. The measurement is carried out at a temperature of 23°C.
  • the needle is placed in a container filled with the aqueous solution of the surfactant to be evaluated at a concentration of 1 g/l so as to form a rising bubble.
  • the bubble When the bubble is formed, its surface is free of surfactants. During the adsorption of surfactants on the surface, the surface tension varies with time, which leads to deformation of the bubble (this deformation is controlled by the balance between gravity and surface tension). We thus measure the dynamic surface tension which varies as a function of time.
  • the equilibrium surface tension is measured for different concentrations of the surfactant in water and then the equilibrium surface tension curve is plotted as a function of the surfactant concentration.
  • This curve generally presents two sections with different slopes: one of the sections corresponds to a surfactant concentration zone for which the surfactant is in the free state in water; the other section corresponds to a surfactant concentration zone for which the surfactant forms micelles.
  • the inflection point of the curve corresponds to the critical micellar concentration.
  • the surfactant has an adsorption time greater than or equal to 1 s, in particular 2 to 20 s, or even 5.6 to 15 s, or 6.0 at 10 s.
  • the adsorption time of the surfactant can be measured according to the method described in the article by H. Ritacco “Dynamic surface tension of aqueous solutions of ionic surfactants: role of electrostatics”, Langmuir, 2011, 27(3), pp. 1009-1014.
  • the dynamic surface tension is measured over the time of bubble formation, at 4 different concentrations of the surfactant in water at 0.1 CMC, 1 CMC , 10 CMC and 100 CMC. Then we establish the curve of the variation of the dynamic surface tension over time. We thus have a curve for each concentration tested.
  • Y Yeq + Ay ⁇ Ta in which: t is the time expressed in sy is the surface tension expressed in mN/m, y eq is the equilibrium surface tension expressed in mN/m, Ay is the amplitude of the decrease in surface tension expressed in mN/m, T a is the characteristic adsorption time expressed in s.
  • the curve with exponential adjustment corresponds to the variation of (y - y ec/ )/Ay as a function of t/T a .
  • the surfactant is chosen from anionic or non-ionic surfactants.
  • surfactant having an adsorption time greater than or equal to 1 s mention may be made of the surfactants of formula [Chem. 1] in which R 1 and R 2 are each independently chosen from hydrogen, linear or branched C1-C16 alkyl or aryl, and each X is independently chosen from hydrogen, sodium or potassium.
  • This surfactant has an adsorption time of 5.5 s.
  • a surfactant having a critical micellar concentration of less than 0.1 mM mention may be made of dodecanol pentaethylene glycol ether, also called C12E5, which has a CMC of 0.07 mM, and polyoxyethylene monooleate (20 OE) sorbitan, sold in particular under the name “Tween 80” by the company Sigma Aldrich, which has a CMC of 0.01 mM.
  • C12E5 dodecanol pentaethylene glycol ether
  • polyoxyethylene monooleate (20 OE) sorbitan sold in particular under the name “Tween 80” by the company Sigma Aldrich, which has a CMC of 0.01 mM.
  • the surfactant can be chosen from the surfactant of formula [Chem 2] above, dodecanol ether and pentaethylene glycol and polyoxyethylene (20 EO) sorbitan monooleate
  • the particular surfactant as defined above may be present in the aqueous coating composition in a content ranging from 0.001 to 10% by weight, relative to the total weight of the aqueous composition, preferably ranging from 0.01 to 1 % in weight.
  • the concentration of surfactant in the aqueous composition is generally 1 to 10 CMC.
  • the coating precursors present in the aqueous coating composition can be chosen from inorganic or metal-organic precursors, such as sol-gel precursors or alkali silicates, organic precursors, such as film-forming polymers, generally in aqueous dispersion form, or polymerizable monomers or oligomers and mixtures thereof.
  • inorganic or metal-organic precursors such as sol-gel precursors or alkali silicates
  • organic precursors such as film-forming polymers, generally in aqueous dispersion form, or polymerizable monomers or oligomers and mixtures thereof.
  • the aqueous coating composition may comprise at least 10% by weight, preferably at least 20% by weight, of coating precursors relative to the total weight of dry matter of the composition.
  • the coating precursor may be a sol-gel precursor chosen from the precursors of silica, titanium dioxide, zinc oxide, aluminum oxide, tin oxide, aluminum oxide. indium and yttrium oxide.
  • the sol-gel precursor can be chosen from metal alkoxides, in particular alkoxides of titanium, silicon, aluminum, zinc, tin or indium.
  • alkoxides are chosen from alkoxides of formula R n M, M being a metal chosen from titanium, silicon, aluminum, zinc, tin or indium, preferably titanium or silicon, n being an integer equal to the valence of the metal and each R being independently chosen from a C1-C4 alkyloxy, in particular methoxy, ethoxy or isopropoxy.
  • the metal alkoxides are preferably chosen from titanium or silicon alkoxides, in particular tetramethoxysilane, tetraethoxysilane, titanium(IV) tetraethoxide, titanium(IV) tetraisopropoxide.
  • yttrium oxide As precursor of yttrium oxide, mention may be made of yttrium nitrate or yttrium chloride (as described in the article by R. Melado-Vasquez “Sol-gel synthesis and antioxidant properties of yttrium oxide nanocrystallites incorporating P-123", Materials (Basel). 2014 Sep; 7(9): 6768-6778) or even yttrium acetate.
  • the sol-gel precursor can also be chosen from silicon halides, in particular silicon chloride.
  • the sol-gel precursor can also be silicic acid, for example as described in WO2010/103236.
  • the sol-gel precursor can also be a precursor of an organometallic nature.
  • This organometallic precursor can be an organosilane, such as that of formula 3 below: R 1 a a R 2b SiX (.4,-a ah b.) ( v 3) 7
  • R represents a non-hydrolyzable radical
  • R, different from R represents a radical carrying an epoxy or amino group
  • a+b is equal to 1, 2 or 3 or an oligomer derived from this silane.
  • the radical R 1 is preferably an alkyl radical, advantageously C1-C6, an alkenyl radical, advantageously C2-C6, for example vinyl, propenyl or butenyl, an alkynyl radical, advantageously C2 -C6, for example acetynyl or propargyl, or an aryl radical, advantageously C6-C10, for example phenyl or naphthyl.
  • the functional group carried by the radical R is linked to the silicon atom by an alkylene, alkenylene or alkynylene radical, optionally containing divalent groups such as O, S and/or NH.
  • the radical R contains 1 to 8 carbon atoms.
  • a is equal to 0, 1 or 2
  • b is equal to 1 or 2
  • the sum (a+b) is equal to 1 or 2.
  • organosilanes of formula 3 are glycidoxypropyltrimethyoxysilane (GLYMO), methyltriethoxysilane (MTEOS) and (3-aminopropyl)triethoxysilane (APTES). We can also use those described in US7857905.
  • GLYMO glycidoxypropyltrimethyoxysilane
  • MTEOS methyltriethoxysilane
  • APTES (3-aminopropyl)triethoxysilane
  • organometallic sol-gel precursor alone or in combination with other sol-gel precursors, in particular metal alkoxides, makes it possible to obtain a coating of inorganic-organic nature, also called hybrid.
  • the sol-gel precursor may be present in the aqueous coating composition in a content of 10% to 90% by weight, relative to the total weight of dry matter of the composition, and preferably from 20 to 80% by weight. weight.
  • the coating precursor may be an alkali silicate.
  • the alkali silicate can be chosen from sodium silicate, potassium silicate, lithium silicate, and mixtures thereof.
  • the alkali silicate is sodium or potassium silicate.
  • the alkali silicate may be present in the aqueous coating composition in a content of at least 20% by weight, relative to the total weight of dry matter of the composition, and preferably at least 35%. by weight, and typically up to 99% by weight, or even up to 90% or up to 80% by weight.
  • the coating precursor may be a film-forming polymer, preferably in aqueous dispersion (or latex).
  • film-forming polymer is meant a polymer capable of forming a film when applied to the surface of the substrate.
  • the film-forming polymer may be a polyurethane, an acrylic polymer, an alkyd polymer, or a polyester.
  • the film-forming polymer may be present in the aqueous coating composition in a content of at least 20% by weight, relative to the total weight of dry matter of the composition, and preferably at least 30% by weight. , and typically up to 90%, even up to 80% or even up to 60% by weight.
  • the coating precursor may be a polymerizable monomer or oligomer chosen from polyfunctional monomers or oligomers, for example with alcohol, isocyanate, cyclic ethers (in particular epoxy or oxetane) or acrylate functions. These can be crosslinked after deposition of the coating composition, for example by UV irradiation. Alternatively or cumulatively, they can crosslink by reaction with reactive functions of other precursors of the same or different nature, in particular organosilanes.
  • the coating composition may comprise mixtures of precursors of different natures, in particular at least one inorganic or metal-organic precursor, such as sol-gel precursors or alkali silicates, and at least one organic precursor, such as as film-forming polymers or polymerizable monomers or oligomers.
  • inorganic or metal-organic precursor such as sol-gel precursors or alkali silicates
  • organic precursor such as film-forming polymers or polymerizable monomers or oligomers.
  • the aqueous composition may also comprise a pore-forming agent.
  • the pore-forming agent is preferably solid, the choice of its size making it possible to vary the size of the pores.
  • the pore-forming agent is preferably particulate, in particular of substantially spherical shape, for example in the form of hollow or solid balls.
  • the blowing agent is preferably organic in nature.
  • the blowing agent comprises polymeric beads, in particular of a polymer chosen from polymethyl methacrylate (PMMA), methyl (meth) acrylate/(meth) acrylic acid copolymers, polycarbonates, polyesters. , polystyrene.
  • the blowing agent may be a non-film-forming polymer latex.
  • the coating composition may comprise other additives well known to those skilled in the art such as dyes, pigments, metal particles, metal salts, anti-UV agents, anti-oxidant agents, flame retardants, intumescent agents, stabilizing agents, plasticizers such as polyethylene glycol, pH adjusters such as tertiary amines and N- alkylalkanolamine, reinforcing agents such as inorganic particles, in particular silica particles.
  • additives are generally present in a content of at most 30% by weight relative to the total dry matter, preferably from 1 to 20% by weight.
  • the aqueous composition may further comprise an organic solvent such as ethanol, isopropanol, propanol, acetone, and mixtures thereof.
  • the organic solvent may be present in a content ranging from 0.1 to 20% by weight, relative to the total weight of the aqueous composition.
  • the aqueous composition does not include an organic solvent.
  • the aqueous composition typically has a dry matter content of 1 to 80% by weight, preferably 2 to 60% by weight.
  • the aqueous composition comprises a sol-gel precursor as described above
  • the aqueous composition has a dry matter content of 1 to 50% by weight.
  • the aqueous composition comprises an alkali silicate precursor as described above
  • the aqueous composition has a dry matter content of 10 to 60% by weight.
  • the aqueous composition comprises a film-forming polymer precursor as described above, the aqueous composition has a dry matter content of 10 to 80% by weight.
  • the application of the aqueous solution to the substrate can be carried out by any technique known to those skilled in the art, such as for example wet deposition techniques such as by spray coating, by curtain application (curtain coating), by spraying (flow coating), by roller application (roller coating), by laminar flow through a slot (slot die), by dipping or casting (dip coating), by blade (blade coating) , by screen printing or by inkjet.
  • wet deposition techniques such as by spray coating, by curtain application (curtain coating), by spraying (flow coating), by roller application (roller coating), by laminar flow through a slot (slot die), by dipping or casting (dip coating), by blade (blade coating) , by screen printing or by inkjet.
  • the application of the aqueous composition is preferably carried out by coating using at least one roller, and which makes it possible to precisely control the quantity of solution deposited as well as the spatial homogeneity of the deposit.
  • the substrate in particular glass
  • the substrate is preferably passed under a metering roller and an applicator roller in almost contact with each other and rotating in the same direction or in the opposite direction, the applicator roller being in contact with the face of the substrate to be coated, and the solution to be applied being poured from above between these two rollers.
  • There solution, passing between the metering roller and the applicator roller, is deposited on the surface of the latter, then is transferred to the face to be coated.
  • the precursor solution undergoes a pre-condensation step, typically for 20 min to 48 hours to obtain a coating composition.
  • This pre-condensation step may include heating the precursor solution to a temperature of 30 to 100°C.
  • the coating composition is then deposited on the substrate and dried.
  • the wet layer of aqueous composition deposited on the surface of the substrate may have a thickness of 0.5 to 500 ⁇ m, preferably of 1 to 200 ⁇ m.
  • the method according to the invention preferably comprises a drying step.
  • This step is intended to accelerate the evaporation of the water, and where applicable the organic solvent, contained in the wet layer deposited in order to obtain a coating.
  • the drying may be thermal drying, for example at a temperature between 20 and 200°C, or vacuum drying.
  • Vacuum drying can be advantageous in combination with the composition according to the invention to improve the optical quality of the coatings obtained. Vacuum drying can be carried out at a pressure below 100 Pa, preferably 1 to 30 Pa.
  • the drying time is preferably between 30 s and 24 hours, preferably 1 min to 30 min. In the case of vacuum drying, the drying time is preferably 30 s to 10 min.
  • the coating thus obtained typically has a thickness of 20 nm to 400 pm.
  • the coating obtained after drying can have a thickness ranging from 20 nm to 10 pm.
  • the coating obtained after drying can have a thickness ranging from 50 nm to 300 pm.
  • the coating obtained after drying can have a thickness ranging from 20 nm to 200 pm.
  • the coating obtained after drying can have a thickness ranging from 300 nm to 400 pm.
  • the method according to the invention may comprise, after the drying step, a heat treatment step.
  • the heat treatment can be carried out at a temperature of at least 400°C, in particular 500°C.
  • the heat treatment is preferably a glass tempering treatment.
  • Glass tempering involves heating the glass to a temperature generally above 600°C and then rapidly cooling it, usually using nozzles emitting cold air. This rapid cooling creates compressive stresses on the surface of the glass substrate, and therefore reinforces its mechanical and impact resistance.
  • This treatment step can make it possible in particular to eliminate any pore-forming agents possibly present in the coating obtained after the drying step, thus creating porosity within the coating and thus making it possible to lower its refractive index.
  • one or more thin layers can be interposed between the substrate surface and the coating according to the invention.
  • These may include, in particular, layers with an antistatic, thermal (heating by providing current supply, low-emissive, anti-solar, etc.), optical (reducing light reflection and/or making it more neutral) functions. the color in reflection of the substrate%), of a stack of anti-reflective layers...
  • the invention also relates to a material comprising a substrate coated with a coating on at least one of its faces capable of being obtained according to the method described above.
  • a material has in particular a blur less than or equal to 2%, or even less than or equal to 1.5% or even less than or equal to 1%, and/or a clarity greater than or equal to 99%.
  • the coating according to the invention is preferably a transparent coating typically having a light transmission greater than 30%, or even greater than 50%, or even greater than 70%, or even greater than 80%.
  • the blur measured according to the ASTM D1003 standard with an illuminant D65, corresponds to the ratio Td/Tt, Td being the diffuse transmission at an angle of more than 2.5° and Tt the total transmission.
  • the clarity measured under the same conditions corresponds to T n/(T p+T n), Tn being the diffuse transmission at an angle less than 2.5° and Tp the direct transmission.
  • Light transmission is measured according to the ISO 9050:2003 standard with a D65 illuminant and a 2° observer.
  • the present invention also relates to glazing for a land, air or water transport vehicle, for buildings, urban furniture (bus shelters, display screens, etc.), furnishings (furniture, tablets, etc.). .), interior design (aquarium, shower cabin, etc.), household appliances (refrigerator shelf, radiator, etc.), electronics (TV screen, computer screen, etc.).
  • Another object of the invention is the use of the material described above as glazing for a land, air or water transport vehicle, for buildings, urban furniture (bus shelters, display screens, etc.), furnishings (furniture, tablet, etc.), interior design (aquarium, shower cabin, etc.), household appliances (refrigerator shelf, radiator, etc.), electronics (TV screen, etc.).
  • 'computer a computer .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention relates to a method for coating a transparent substrate comprising the application to the substrate of an aqueous composition comprising a coating precursor and a surfactant having a critical minimum concentration of less than 1 mM or having a relaxation time of greater than or equal to 1 s. The invention also relates to the material obtained according to the method and to the use thereof as glazing.

Description

Description Description
Titre : Procédé de fabrication d’un substrat transparent comprenant un revêtement Title: Process for manufacturing a transparent substrate comprising a coating
[001] La présente invention a pour objet un procédé de fabrication d’un substrat revêtu, ainsi que le matériau comprenant le substrat revêtu et son application dans le domaine du vitrage. [001] The subject of the present invention is a process for manufacturing a coated substrate, as well as the material comprising the coated substrate and its application in the field of glazing.
[002] Il est d’intérêt de traiter la surface de substrat tel que le verre pour en modifier les propriétés ou apporter de nouvelles fonctionnalité. Un des moyens utilisés pour traiter la surface de substrat est la technique de dépôt par voie liquide (appelée aussi wet coating) pour former un revêtement déposé. On cherche notamment à pouvoir déposer un revêtement de film transparent ayant de bonnes propriétés optiques. [002] It is of interest to treat the surface of a substrate such as glass to modify its properties or provide new functionality. One of the means used to treat the substrate surface is the liquid deposition technique (also called wet coating) to form a deposited coating. In particular, we seek to be able to deposit a transparent film coating having good optical properties.
[003] Les revêtements obtenus à l’aide de méthodes de dépôt par voie liquide peuvent cependant présenter certains défauts tels que des défauts d’homogénéité. Dans la majorité des cas, on s’accommode de ces défauts d’homogénéité. Ces défauts n’ont en effet pas nécessairement d’impact significatif sur les propriétés recherchées. C’est notamment le cas de revêtements opaques ou à faible transmission lumineuse, ou de revêtements déposés sur de petites surfaces. Certaines applications sont cependant plus exigeantes que ce soit pour des raisons techniques ou esthétiques. Ces défauts d’homogénéité peuvent en effet affecter les propriétés notamment optiques du revêtement, générant par exemple, plus ou moins localement, des effets de moiré, d’onde, de loupe, etc... [003] Coatings obtained using liquid deposition methods may, however, present certain defects such as homogeneity defects. In the majority of cases, we put up with these lack of homogeneity. These defects do not necessarily have a significant impact on the desired properties. This is particularly the case for opaque coatings or coatings with low light transmission, or coatings deposited on small surfaces. However, certain applications are more demanding, whether for technical or aesthetic reasons. These homogeneity defects can in fact affect the particularly optical properties of the coating, generating for example, more or less locally, moiré, wave, magnifying glass effects, etc.
[004] On recherche donc à disposer d’une méthode de dépôt par voie liquide permettant d’obtenir des revêtements présentant une qualité optique améliorée. [004] We are therefore seeking to have a liquid deposition method making it possible to obtain coatings having improved optical quality.
[005] On a découvert que l’emploi de tensioactifs particuliers tels que définis ci-après dans la composition aqueuse de revêtement servant au dépôt par voie liquide permettait d’améliorer les qualités optiques du revêtement obtenu. [005] It was discovered that the use of particular surfactants as defined below in the aqueous coating composition used for liquid deposition made it possible to improve the optical qualities of the coating obtained.
[006] L’invention a donc pour objet un procédé de fabrication d'un matériau comprenant un substrat revêtu d’un revêtement, de préférence transparent, sur au moins une de ses faces, ledit procédé comprenant une étape d'application sur ladite face dudit substrat d'une composition aqueuse (appelée composition aqueuse de revêtement) contenant au moins un précurseur de revêtement et au moins un tensioactif, caractérisé en ce que le tensioactif est choisi parmi : [006] The subject of the invention is therefore a method of manufacturing a material comprising a substrate coated with a coating, preferably transparent, on at least one of its faces, said method comprising a step of application to said face said substrate of an aqueous composition (called aqueous coating composition) containing at least one coating precursor and at least one surfactant, characterized in that the surfactant is chosen from:
- les tensioactifs ayant un temps d’absorption supérieur ou égal à 1 s ; ou - surfactants having an absorption time greater than or equal to 1 s; Or
- les tensioactifs ayant une concentration micellaire critique inférieure ou égal à 0,1 mM. [007] L’invention a également pour objet un matériau comprenant un substrat revêtu d’un revêtement sur au moins une de ses faces, susceptible d’être obtenu selon le procédé décrit précédemment. Un tel matériau présente notamment un flou inférieur ou égal à 2%, voire inférieur ou égal à 1 ,5% ou même inférieur ou égal à 1%, et/ou une clarté supérieure ou égale à 99%. - surfactants having a critical micellar concentration less than or equal to 0.1 mM. [007] The invention also relates to a material comprising a substrate coated with a coating on at least one of its faces, capable of being obtained according to the method described above. Such a material has in particular a blur less than or equal to 2%, or even less than or equal to 1.5% or even less than or equal to 1%, and/or a clarity greater than or equal to 99%.
[008] Substrat [008] Substrate
[009] Le substrat est de préférence un verre, ou une matière organique polymérique. Il est de préférence transparent, incolore (il peut s’agir alors d’un verre clair ou extra-clair) ou coloré, par exemple en bleu, vert, gris ou bronze. Le verre est de préférence de type silico-sodo-calcique, mais il peut également être en verre de type borosilicate ou alumino- borosilicate, notamment pour les applications à haute température (portes de four, inserts de cheminée, vitrages anti-feu). Les matières organiques polymériques préférées sont le polycarbonate (PC), le polyméthacrylate de méthyle (PMMA) ou le polyéthylènetérephtalate (PET). Le substrat présente avantageusement au moins une dimension supérieure ou égale à 20 cm, voire 1 m ou même 2 m. L’épaisseur du substrat varie généralement de 0,01 mm à 19 mm, de préférence de 0,02 à 15 mm. Le substrat peut être rigide, notamment plan ou bombé, ou flexible. Dans le cas d’un substrat rigide (notamment une feuille de verre, de PMMA, ou de PC), celui-ci présente généralement une épaisseur de 0,4 à 12 mm, de préférence de 1 à 6 mm. Dans le cas d’un substrat flexible (notamment un film polymère), celui-ci présente généralement une épaisseur de 0,02 à 1 mm. [009] The substrate is preferably glass, or a polymeric organic material. It is preferably transparent, colorless (it can then be a clear or extra-clear glass) or colored, for example blue, green, gray or bronze. The glass is preferably of the soda-lime-silico type, but it can also be of the borosilicate or alumino-borosilicate type glass, particularly for high temperature applications (oven doors, fireplace inserts, fire-resistant glazing). Preferred polymeric organic materials are polycarbonate (PC), polymethyl methacrylate (PMMA) or polyethylene terephthalate (PET). The substrate advantageously has at least one dimension greater than or equal to 20 cm, or even 1 m or even 2 m. The thickness of the substrate generally ranges from 0.01 mm to 19 mm, preferably 0.02 to 15 mm. The substrate can be rigid, in particular planar or curved, or flexible. In the case of a rigid substrate (in particular a sheet of glass, PMMA, or PC), this generally has a thickness of 0.4 to 12 mm, preferably 1 to 6 mm. In the case of a flexible substrate (in particular a polymer film), it generally has a thickness of 0.02 to 1 mm.
[0010] Le substrat est de préférence une feuille de verre. The substrate is preferably a sheet of glass.
[0011] Tensioactif [0011] Surfactant
Le tensioactif mis en œuvre dans le procédé de fabrication selon l’invention peut être :The surfactant used in the manufacturing process according to the invention can be:
- un tensioactif ayant un temps d’absorption supérieur ou égal à 1 s ; ou - a surfactant having an absorption time greater than or equal to 1 s; Or
- un tensioactif ayant une concentration micellaire critique inférieure ou égal à 0,1 mM. [0012] La CMC ou Concentration micellaire critique est la concentration à laquelle un tensioactif ajouté dans l’eau commence à s’agréger et forme des micelles. En dessous de la CMC, le tensioactif est à l’état libre. Au-dessus de la CMC, le tensioactif forme des micelles. - a surfactant having a critical micellar concentration less than or equal to 0.1 mM. [0012] The CMC or Critical Micellar Concentration is the concentration at which a surfactant added to water begins to aggregate and form micelles. Below the CMC, the surfactant is in the free state. Above the CMC, the surfactant forms micelles.
[0013] La CMC peut être mesurée de façon connue selon la méthode de la bulle. La mesure est effectuée à la température de 23 °C. [0013] The CMC can be measured in a known manner using the bubble method. The measurement is carried out at a temperature of 23°C.
[0014] On utilise un tensiomètre optique TRACKER de la société TECLIS et une aiguille courbe préalablement rincée avec de l’éthanol puis de l’eau desionisée et ensuite séchée. [0014] We use a TRACKER optical blood pressure monitor from the company TECLIS and a curved needle previously rinsed with ethanol then deionized water and then dried.
[0015] L’aiguille est placée dans un récipient rempli de la solution aqueuse du tensioactif à évaluer à la concentration de 1 g/l de façon à former une bulle montante. On forme d’abord 2 bulles montantes, puis on forme une nouvelle bulle pour effectuer les mesures. [0016] Lorsque la bulle est formée, sa surface est libre de tensioactifs. Au cours de l’adsorption des tensioactifs à la surface, la tension de surface varie en fonction du temps, ce qui conduit à une déformation de la bulle (cette déformation est contrôlée par l’équilibre entre la gravité et la tension de surface). On mesure ainsi la tension de surface dynamique qui varie en fonction du temps. The needle is placed in a container filled with the aqueous solution of the surfactant to be evaluated at a concentration of 1 g/l so as to form a rising bubble. We first form 2 rising bubbles, then we form a new bubble to carry out the measurements. [0016] When the bubble is formed, its surface is free of surfactants. During the adsorption of surfactants on the surface, the surface tension varies with time, which leads to deformation of the bubble (this deformation is controlled by the balance between gravity and surface tension). We thus measure the dynamic surface tension which varies as a function of time.
[0017] Lorsque la tension de surface dynamique atteint un plateau (la bulle atteint un équilibre), la mesure de la tension de surface permet de déterminer la tension de surface à l’équilibre de la solution aqueuse. [0017] When the dynamic surface tension reaches a plateau (the bubble reaches an equilibrium), measuring the surface tension makes it possible to determine the equilibrium surface tension of the aqueous solution.
[0018] On mesure la tension de surface à l’équilibre pour différentes concentrations du tensioactif dans l’eau puis on trace la courbe de la tension de surface à l’équilibre en fonction de la concentration en tensioactif. Cette courbe présente généralement deux sections de pentes différentes : une des sections correspond à une zone de concentrations du tensioactif pour laquelle le tensioactif est à l’état libre dans l’eau ; l’autre section correspond à une zone de concentrations du tensioactif pour laquelle le tensioactif forme des micelles. Le point d’inflexion de la courbe (croisement des pentes) correspond à la concentration micellaire critique. The equilibrium surface tension is measured for different concentrations of the surfactant in water and then the equilibrium surface tension curve is plotted as a function of the surfactant concentration. This curve generally presents two sections with different slopes: one of the sections corresponds to a surfactant concentration zone for which the surfactant is in the free state in water; the other section corresponds to a surfactant concentration zone for which the surfactant forms micelles. The inflection point of the curve (crossing of the slopes) corresponds to the critical micellar concentration.
[0019] Selon un mode de réalisation de l’invention, le tensioactif a un temps d’adsorption supérieur ou égal à 1 s, en particulier de 2 à 20 s, voire de 5,6 à 15 s, ou de 6,0 à 10 s. According to one embodiment of the invention, the surfactant has an adsorption time greater than or equal to 1 s, in particular 2 to 20 s, or even 5.6 to 15 s, or 6.0 at 10 s.
[0020] Le temps d’adsorption du tensioactif peut être mesuré selon la méthode décrite dans l’article de H. Ritacco « Dynamic surface tension of aqueous solutions of ionic surfactants : role of electrostatics », Langmuir, 2011 , 27(3), p 1009-1014. [0020] The adsorption time of the surfactant can be measured according to the method described in the article by H. Ritacco “Dynamic surface tension of aqueous solutions of ionic surfactants: role of electrostatics”, Langmuir, 2011, 27(3), pp. 1009-1014.
[0021] Pour déterminer ce temps d’adsorption, on effectue la mesure de la tension de surface dynamique au cours du temps de la formation de la bulle, à 4 différentes concentrations du tensioactif dans l’eau à 0,1 CMC, 1 CMC, 10 CMC et 100 CMC. Puis on établit la courbe de la variation de la tension de surface dynamique au cours du temps. On a ainsi une courbe pour chaque concentration testée. To determine this adsorption time, the dynamic surface tension is measured over the time of bubble formation, at 4 different concentrations of the surfactant in water at 0.1 CMC, 1 CMC , 10 CMC and 100 CMC. Then we establish the curve of the variation of the dynamic surface tension over time. We thus have a curve for each concentration tested.
[0022] Les courbes obtenues sont ajustées par un modèle d’adsorption exponentiel à l’aide de la fonction suivante : f — [0022] The curves obtained are fitted by an exponential adsorption model using the following function: f —
Y = Yeq + Ay ■ Ta dans laquelle : t est le temps exprimé en s y est la tension de surface exprimée en mN/m, yeq est la tension de surface à l’équilibre exprimée en mN/m, Ay est l’amplitude de la diminution de la tension de surface exprimée en mN/m, Ta est le temps caractéristique d’adsorption exprimé en s. [0023] La courbe avec ajustement exponentiel correspond à la variation de (y - yec/)/Ay en fonction de t/Ta. Y = Yeq + Ay ■ Ta in which: t is the time expressed in sy is the surface tension expressed in mN/m, y eq is the equilibrium surface tension expressed in mN/m, Ay is the amplitude of the decrease in surface tension expressed in mN/m, T a is the characteristic adsorption time expressed in s. The curve with exponential adjustment corresponds to the variation of (y - y ec/ )/Ay as a function of t/T a .
[0024] On peut ainsi déduire de cette courbe la valeur du temps caractéristique d’adsorption Ta du tensioactif (valeur qui est indépendante de la concentration du tensioactif). We can thus deduce from this curve the value of the characteristic adsorption time T a of the surfactant (value which is independent of the concentration of the surfactant).
[0025] Avantageusement, le tensioactif est choisi parmi les tensioactifs anioniques ou non ioniques. Advantageously, the surfactant is chosen from anionic or non-ionic surfactants.
[0026] Comme tensioactif ayant un temps d’adsorption supérieur ou égal à 1s, on peut citer les tensioactifs de formule [Chem. 1]
Figure imgf000005_0001
dans laquelle R1 et R2 sont chacun indépendamment choisis parmi hydrogène, alkyle linéaire ou ramifié en C1-C16 ou aryle, et chaque X est indépendamment choisi parmi hydrogène, sodium ou potassium.
As a surfactant having an adsorption time greater than or equal to 1 s, mention may be made of the surfactants of formula [Chem. 1]
Figure imgf000005_0001
in which R 1 and R 2 are each independently chosen from hydrogen, linear or branched C1-C16 alkyl or aryl, and each X is independently chosen from hydrogen, sodium or potassium.
[0027] Un exemple d’un tel tensioactif est notamment le tensioactif de formule [Chem 2] vendu sous la dénomination commerciale « Dowfax® 2 A1 » par la société Dow Chemical.
Figure imgf000005_0002
[0027] An example of such a surfactant is in particular the surfactant of formula [Chem 2] sold under the trade name “Dowfax® 2 A1” by the company Dow Chemical.
Figure imgf000005_0002
Ce tensioactif présente un temps d’adsorption de 5,5 s. This surfactant has an adsorption time of 5.5 s.
[0028] Comme tensioactif ayant une concentration micellaire critique inférieure à 0,1 mM, on peut citer l’éther de dodécanol et de pentaéthylèneglycol, aussi appelé C12E5, qui présente une CMC de 0,07 mM, et le monooléate de polyoxyéthylène (20 OE) sorbitane, vendu notamment sous la dénomination « Tween 80 » par la société Sigma Aldrich, qui présente une CMC de 0,01 mM. As a surfactant having a critical micellar concentration of less than 0.1 mM, mention may be made of dodecanol pentaethylene glycol ether, also called C12E5, which has a CMC of 0.07 mM, and polyoxyethylene monooleate (20 OE) sorbitan, sold in particular under the name “Tween 80” by the company Sigma Aldrich, which has a CMC of 0.01 mM.
[0029] Dans un mode de réalisation particulier, le tensioactif peut être choisi parmi le tensioactif de formule [Chem 2] ci-dessus, l’éther de dodécanol et de pentaéthylèneglycol et le monooléate de polyoxyéthylène (20 OE) sorbitane [0030] Le tensioactif particulier tel que défini précédemment peut être présent dans la composition aqueuse de revêtement en une teneur allant de 0,001 à 10 % en poids, par rapport au poids total de la composition aqueuse, de préférence allant de 0,01 à 1 % en poids. Alternativement, la concentration en tensioactif dans la composition aqueuse est en général 1 à 10 CMC. [0029] In a particular embodiment, the surfactant can be chosen from the surfactant of formula [Chem 2] above, dodecanol ether and pentaethylene glycol and polyoxyethylene (20 EO) sorbitan monooleate The particular surfactant as defined above may be present in the aqueous coating composition in a content ranging from 0.001 to 10% by weight, relative to the total weight of the aqueous composition, preferably ranging from 0.01 to 1 % in weight. Alternatively, the concentration of surfactant in the aqueous composition is generally 1 to 10 CMC.
[0031] Précurseur [0031] Precursor
[0032] Les précurseurs de revêtement présents dans la composition aqueuse de revêtement peuvent être choisis parmi les précurseurs inorganiques ou métal-organiques, tels que les précurseurs sol-gel ou les silicates d’alcalins, les précurseurs organiques, tels que les polymères filmogènes, en général sous forme dispersion aqueuse, ou des monomères ou oligomères polymérisables et leurs mélanges. The coating precursors present in the aqueous coating composition can be chosen from inorganic or metal-organic precursors, such as sol-gel precursors or alkali silicates, organic precursors, such as film-forming polymers, generally in aqueous dispersion form, or polymerizable monomers or oligomers and mixtures thereof.
[0033] La composition aqueuse de revêtement peut comprendre au moins 10 % en poids, de préférence au moins 20 % en poids, de précurseurs de revêtement par rapport au poids total de matière sèche de la composition. The aqueous coating composition may comprise at least 10% by weight, preferably at least 20% by weight, of coating precursors relative to the total weight of dry matter of the composition.
[0034] Le précurseur de revêtement peut être un précurseur sol-gel choisi parmi les précurseurs de silice, de dioxyde de titane, d’oxyde de zinc, d’oxyde d’aluminium, d’oxyde d’étain, d’oxyde d’indium et d’oxyde d’yttrium. [0034] The coating precursor may be a sol-gel precursor chosen from the precursors of silica, titanium dioxide, zinc oxide, aluminum oxide, tin oxide, aluminum oxide. indium and yttrium oxide.
[0035] Le précurseur sol-gel peut être choisi parmi alcoxydes métalliques, notamment les alcoxydes de titane, de silicium, l’aluminium, de zinc, d’étain ou d’indium. Des exemples d’alcoxydes sont choisis parmi les alcoxydes de formule RnM, M étant un métal choisi parmi titane, silicium, aluminium, zinc, étain ou indium, de préférence titane ou silicium, n étant un entier égal à la valence du métal et chaque R étant indépendamment choisi parmi un alkyloxy en C1-C4, notamment méthoxy, éthoxy ou isopropoxy. Les alcoxydes métalliques sont de préférence choisis parmi les alcoxydes de titane ou de silicium, notamment le tétraméthoxysilane, le tétraéthoxysilane, le tétraéthoxyde de titane(IV), le trétraisopropoxide de titane(IV). The sol-gel precursor can be chosen from metal alkoxides, in particular alkoxides of titanium, silicon, aluminum, zinc, tin or indium. Examples of alkoxides are chosen from alkoxides of formula R n M, M being a metal chosen from titanium, silicon, aluminum, zinc, tin or indium, preferably titanium or silicon, n being an integer equal to the valence of the metal and each R being independently chosen from a C1-C4 alkyloxy, in particular methoxy, ethoxy or isopropoxy. The metal alkoxides are preferably chosen from titanium or silicon alkoxides, in particular tetramethoxysilane, tetraethoxysilane, titanium(IV) tetraethoxide, titanium(IV) tetraisopropoxide.
[0036] Comme précurseur d’oxyde d’yttrium, on peut citer le nitrate d’yttrium ou le chlorure d’yttrium (comme décrit dans l’article de R. Melado-Vasquez « Sol-gel synthesis and antioxidant properties of yttrium oxide nanocrystallites incorporating P-123 », Materials (Basel). 2014 Sep; 7(9): 6768-6778) ou encore l’acétate d’yttrium. As precursor of yttrium oxide, mention may be made of yttrium nitrate or yttrium chloride (as described in the article by R. Melado-Vasquez “Sol-gel synthesis and antioxidant properties of yttrium oxide nanocrystallites incorporating P-123", Materials (Basel). 2014 Sep; 7(9): 6768-6778) or even yttrium acetate.
[0037] Le précurseur sol-gel peut être également choisi parmi les halogénures de silicium, notamment le chlorure de silicium. The sol-gel precursor can also be chosen from silicon halides, in particular silicon chloride.
[0038] Le précurseur sol-gel peut être également l’acide silicique, par exemple comme décrit dans WO2010/103236. The sol-gel precursor can also be silicic acid, for example as described in WO2010/103236.
[0039] Le précurseur sol-gel peut également être un précurseur de nature organométallique. [0040] Ce précurseur organométallique peut être un organosilane, tel que celui de formule 3 suivante : R1 aaR2bSiX (.4,-aa-hb.) ( v3) 7 The sol-gel precursor can also be a precursor of an organometallic nature. This organometallic precursor can be an organosilane, such as that of formula 3 below: R 1 a a R 2b SiX (.4,-a ah b.) ( v 3) 7
1 2 1 dans laquelle R représente un radical non hydrolysable, R , different de R , représente un radical portant un groupe epoxy ou amino, X identiques ou différents, représentent un groupe hydroxyle ou un groupe hydrolysable, a et b, identiques ou différents, sont égaux à 0, 1, 2 ou 3, (a+b) est égal à 1, 2 ou 3, ou un oligomère dérivé de ce silane. 1 2 1 in which R represents a non-hydrolyzable radical, R, different from R, represents a radical carrying an epoxy or amino group, are equal to 0, 1, 2 or 3, (a+b) is equal to 1, 2 or 3, or an oligomer derived from this silane.
[0041] Dans la formule 3, le radical R1 est de préférence un radical alkyle, avantageusement en C1-C6, un radical alcényle, avantageusement en C2-C6, par exemple vinyle, propényle ou butényle, un radical alcynyle, avantageusement en C2-C6, par exemple acétynyle ou propargyle, ou un radical aryle, avantageusement en C6-C10, par exemple phényle ou naphtyle. [0041] In formula 3, the radical R 1 is preferably an alkyl radical, advantageously C1-C6, an alkenyl radical, advantageously C2-C6, for example vinyl, propenyl or butenyl, an alkynyl radical, advantageously C2 -C6, for example acetynyl or propargyl, or an aryl radical, advantageously C6-C10, for example phenyl or naphthyl.
2 2
[0042] Le groupe fonctionnel porte par le radical R est lie a l’atome de silicium par un radical alkylène, alcénylène ou alcynylène, éventuellement contenant des groupes divalents tels que O, S et/ou NH. Avantageusement, le radical R contient 1 à 8 atomes de carbone. The functional group carried by the radical R is linked to the silicon atom by an alkylene, alkenylene or alkynylene radical, optionally containing divalent groups such as O, S and/or NH. Advantageously, the radical R contains 1 to 8 carbon atoms.
[0043] De préférence, a est égal à 0, 1 ou 2, b est égal à 1 ou 2 et la somme (a+b) est égale à 1 ou 2. Preferably, a is equal to 0, 1 or 2, b is equal to 1 or 2 and the sum (a+b) is equal to 1 or 2.
[0044] Des exemples d’organosilane de de formule 3 sont le glycidoxypropyltriméthyoxysilane (GLYMO), le méthyltriéthoxysilane (MTEOS) et le (3- aminopropyl)triéthoxysilane (APTES). On peut également utiliser ceux décrits dans US7857905. Examples of organosilanes of formula 3 are glycidoxypropyltrimethyoxysilane (GLYMO), methyltriethoxysilane (MTEOS) and (3-aminopropyl)triethoxysilane (APTES). We can also use those described in US7857905.
[0045] L’utilisation d’un précurseur sol-gel organométallique, seul ou en combinaison avec d’autres précurseurs sol-gel, notamment des alcoxydes métalliques, permet d’obtenir un revêtement de nature inorganique-organique, appelé aussi hybride. The use of an organometallic sol-gel precursor, alone or in combination with other sol-gel precursors, in particular metal alkoxides, makes it possible to obtain a coating of inorganic-organic nature, also called hybrid.
[0046] Le précurseur sol-gel peut être présent dans la composition aqueuse de revêtement en une teneur de 10 % à 90 % en poids, par rapport au poids total de matière sèche de la composition, et de préférence de 20 à 80 % en poids. The sol-gel precursor may be present in the aqueous coating composition in a content of 10% to 90% by weight, relative to the total weight of dry matter of the composition, and preferably from 20 to 80% by weight. weight.
[0047] Le précurseur de revêtement peut être un silicate d’alcalin. The coating precursor may be an alkali silicate.
[0048] Le silicate d’alcalin peut être choisi parmi le silicate de sodium, le silicate de potassium, le silicate de lithium, et leurs mélanges. De préférence, le silicate d’alcalin est le silicate de sodium ou de potassium. The alkali silicate can be chosen from sodium silicate, potassium silicate, lithium silicate, and mixtures thereof. Preferably, the alkali silicate is sodium or potassium silicate.
[0049] Le silicate d’alcalin peut être présent dans la composition aqueuse de revêtement en une teneur d’au moins 20 % en poids, par rapport au poids total de matière sèche de la composition, et de préférence d’au moins 35 % en poids, et typiquement jusqu’à 99 % en poids, voire jusqu’à 90% ou jusqu’à 80% en poids. [0050] Le précurseur de revêtement peut être un polymère filmogène, de préférence en dispersion aqueuse (ou latex). On entend par « polymère filmogène » un polymère apte à former un film lorsqu’il est appliqué à la surface du substrat. The alkali silicate may be present in the aqueous coating composition in a content of at least 20% by weight, relative to the total weight of dry matter of the composition, and preferably at least 35%. by weight, and typically up to 99% by weight, or even up to 90% or up to 80% by weight. The coating precursor may be a film-forming polymer, preferably in aqueous dispersion (or latex). By “film-forming polymer” is meant a polymer capable of forming a film when applied to the surface of the substrate.
[0051] Le polymère filmogène peut être un polyuréthane, un polymère acrylique, un polymère alkyde, ou un polyester. The film-forming polymer may be a polyurethane, an acrylic polymer, an alkyd polymer, or a polyester.
[0052] Le polymère filmogène peut être présent dans la composition aqueuse de revêtement en une teneur d’au moins 20 % en poids, par rapport au poids total de matière sèche de la composition, et de préférence d’au moins 30% en poids, et typiquement jusqu’à 90%, voire jusqu’à 80% ou même jusqu’à 60% en poids. The film-forming polymer may be present in the aqueous coating composition in a content of at least 20% by weight, relative to the total weight of dry matter of the composition, and preferably at least 30% by weight. , and typically up to 90%, even up to 80% or even up to 60% by weight.
[0053] Le précurseur de revêtement peut être un monomère ou oligomère polymérisable choisi parmi les monomères ou oligomères polyfonctionnels, par exemples à fonctions alcool, isocyanates, éthers cycliques (notamment époxy ou oxétane) ou acrylates. Ceux-ci peuvent être réticulés après dépôt de la composition de revêtement, par exemple par irradiation aux UV. Alternativement ou cumulativement, ils peuvent réticuler par réaction avec des fonctions réactives d’autres précurseurs de nature identique ou différente, notamment des organosilanes. The coating precursor may be a polymerizable monomer or oligomer chosen from polyfunctional monomers or oligomers, for example with alcohol, isocyanate, cyclic ethers (in particular epoxy or oxetane) or acrylate functions. These can be crosslinked after deposition of the coating composition, for example by UV irradiation. Alternatively or cumulatively, they can crosslink by reaction with reactive functions of other precursors of the same or different nature, in particular organosilanes.
[0054] La composition de revêtement peut comprendre des mélanges de précurseurs de natures différentes, notamment au moins un précurseur inorganique ou métal-organique, tels que les précurseurs sol-gel ou les silicates d’alcalins, et au moins un précurseur organique, tels que les polymères filmogènes ou les monomères ou oligomères polymérisables. De telles compositions de revêtement permettent d’obtenir des revêtements hybrides organiques-inorganique. [0054] The coating composition may comprise mixtures of precursors of different natures, in particular at least one inorganic or metal-organic precursor, such as sol-gel precursors or alkali silicates, and at least one organic precursor, such as as film-forming polymers or polymerizable monomers or oligomers. Such coating compositions make it possible to obtain hybrid organic-inorganic coatings.
[0055] Lorsque le précurseur est un précurseur inorganique ou métal-organique, notamment un précurseur sol-gel, la composition aqueuse peut comprendre en outre un agent porogène. L'agent porogène est de préférence solide, le choix de sa taille permettant de faire varier la taille des pores. L'agent porogène est de préférence particulaire, notamment de forme sensiblement sphérique, par exemple sous forme de billes, creuses ou pleines. L'agent porogène est de préférence de nature organique. A titre d'exemple, l'agent porogène comprend des billes polymériques, en particulier d'un polymère choisi parmi le polyméthacrylate de méthyle (PMMA) , les copolymères méthyl (méth) acrylate/acide (méth)acrylique, les polycarbonates , les polyesters, le polystyrène . L’agent porogène peut être un latex de polymère non filmogène. When the precursor is an inorganic or metal-organic precursor, in particular a sol-gel precursor, the aqueous composition may also comprise a pore-forming agent. The pore-forming agent is preferably solid, the choice of its size making it possible to vary the size of the pores. The pore-forming agent is preferably particulate, in particular of substantially spherical shape, for example in the form of hollow or solid balls. The blowing agent is preferably organic in nature. By way of example, the blowing agent comprises polymeric beads, in particular of a polymer chosen from polymethyl methacrylate (PMMA), methyl (meth) acrylate/(meth) acrylic acid copolymers, polycarbonates, polyesters. , polystyrene. The blowing agent may be a non-film-forming polymer latex.
[0056] La composition de revêtement peut comprendre d’autres additifs bien connus de l’homme du métier tels que des colorants, des pigments, des particules métalliques, des sels métalliques, des agents anti-UV, des agents anti-oxydants, des agents ignifugeant, des agents intumescents, des agents stabilisateurs, des plastifiants tels que des polyéthylèneglycol, des ajusteurs de pH tels que les amines tertiaires et les N- alkylalkanolamine, des agents de renforcement tels que des particules inorganiques, notamment des particules de silice. Ces additifs sont généralement présents en teneur d’au plus 30% en poids par rapport au total de matière sèche, de préférence de 1 à 20% en poids. [0056] The coating composition may comprise other additives well known to those skilled in the art such as dyes, pigments, metal particles, metal salts, anti-UV agents, anti-oxidant agents, flame retardants, intumescent agents, stabilizing agents, plasticizers such as polyethylene glycol, pH adjusters such as tertiary amines and N- alkylalkanolamine, reinforcing agents such as inorganic particles, in particular silica particles. These additives are generally present in a content of at most 30% by weight relative to the total dry matter, preferably from 1 to 20% by weight.
[0057] La composition aqueuse peut comprendre en outre un solvant organique tel que l’éthanol, l’isopropanol, le propanol, l’acétone, et leurs mélanges. Le solvant organique peut être présent en une teneur allant de 0,1 à 20 % en poids, par rapport au poids total de la composition aqueuse. The aqueous composition may further comprise an organic solvent such as ethanol, isopropanol, propanol, acetone, and mixtures thereof. The organic solvent may be present in a content ranging from 0.1 to 20% by weight, relative to the total weight of the aqueous composition.
[0058] Dans un mode de réalisation du procédé selon l’invention, la composition aqueuse ne comprend pas de solvant organique. [0058] In one embodiment of the process according to the invention, the aqueous composition does not include an organic solvent.
[0059] La composition aqueuse présente typiquement une teneur en matière sèche de 1 à 80% en poids, de préférence 2 à 60% en poids. The aqueous composition typically has a dry matter content of 1 to 80% by weight, preferably 2 to 60% by weight.
[0060] Avantageusement, lorsque la composition aqueuse comprend un précurseur sol-gel tel que décrit précédemment, la composition aqueuse présente une teneur en matière sèche de 1 à 50 % en poids. Advantageously, when the aqueous composition comprises a sol-gel precursor as described above, the aqueous composition has a dry matter content of 1 to 50% by weight.
[0061] Avantageusement, lorsque la composition aqueuse comprend un précurseur silicate d’alcalin tel que décrit précédemment, la composition aqueuse présente une teneur en matière sèche de 10 à 60 % en poids. Advantageously, when the aqueous composition comprises an alkali silicate precursor as described above, the aqueous composition has a dry matter content of 10 to 60% by weight.
[0062] Avantageusement, lorsque la composition aqueuse comprend un précurseur polymère filmogène tel que décrit précédemment, la composition aqueuse présente une teneur en matière sèche de 10 à 80 % en poids. Advantageously, when the aqueous composition comprises a film-forming polymer precursor as described above, the aqueous composition has a dry matter content of 10 to 80% by weight.
[0063] Méthodes de dépôt [0063] Deposition methods
[0064] L'application de la solution aqueuse sur le substrat peut être réalisée par toute technique connue de l’homme du métier, comme par exemples des techniques de dépôt par voie humide telles que par pulvérisation (spray coating), par application au rideau (curtain coating), par aspersion (flow coating), par application au rouleau (roller coating), par écoulement laminaire à travers une fente (slot die), par trempage ou par coulée (dip coating), à la lame (blade coating), par sérigraphie (screen printing) ou par jet d’encre (inkjet). [0064] The application of the aqueous solution to the substrate can be carried out by any technique known to those skilled in the art, such as for example wet deposition techniques such as by spray coating, by curtain application (curtain coating), by spraying (flow coating), by roller application (roller coating), by laminar flow through a slot (slot die), by dipping or casting (dip coating), by blade (blade coating) , by screen printing or by inkjet.
[0065] L’application de la composition aqueuse est de préférence réalisée par enduction au moyen d'au moins un rouleau, et qui permet de contrôler précisément la quantité de solution déposée ainsi que l'homogénéité spatiale du dépôt. Selon cette technique, on fait de préférence défiler le substrat (notamment de verre) sous un rouleau doseur et un rouleau applicateur en quasi contact l'un avec l'autre et en rotation dans le même sens ou dans le sens opposé, le rouleau applicateur étant en contact avec la face du substrat à revêtir, et la solution à appliquer étant versée par le dessus entre ces deux rouleaux. La solution, passant entre le rouleau doseur et le rouleau applicateur, vient se déposer à la surface de ce dernier, puis est transférée à la face à revêtir. The application of the aqueous composition is preferably carried out by coating using at least one roller, and which makes it possible to precisely control the quantity of solution deposited as well as the spatial homogeneity of the deposit. According to this technique, the substrate (in particular glass) is preferably passed under a metering roller and an applicator roller in almost contact with each other and rotating in the same direction or in the opposite direction, the applicator roller being in contact with the face of the substrate to be coated, and the solution to be applied being poured from above between these two rollers. There solution, passing between the metering roller and the applicator roller, is deposited on the surface of the latter, then is transferred to the face to be coated.
[0066] Lorsque la composition aqueuse comprend un précurseur sol-gel, avant d’être déposée sur le substrat, la solution de précurseurs subit une étape de pré-condensation, typiquement pendant 20 min à 48h pour obtenir une composition de revêtement. Cette étape de pré-condensation peut comprendre comprenant le chauffage de la solution de précurseurs à une température de 30 à 100°C. La composition de revêtement est ensuite déposée sur le substrat et séchée. [0066] When the aqueous composition comprises a sol-gel precursor, before being deposited on the substrate, the precursor solution undergoes a pre-condensation step, typically for 20 min to 48 hours to obtain a coating composition. This pre-condensation step may include heating the precursor solution to a temperature of 30 to 100°C. The coating composition is then deposited on the substrate and dried.
[0067] La couche humide de composition aqueuse déposée sur la surface du substrat peut avoir une épaisseur de 0,5 à 500 pm, de préférence de 1 à 200 pm. The wet layer of aqueous composition deposited on the surface of the substrate may have a thickness of 0.5 to 500 μm, preferably of 1 to 200 μm.
[0068] Etape de séchage [0068] Drying step
[0069] Immédiatement après l'étape d'application, le procédé selon l'invention comprend de préférence une étape de séchage. Cette étape est destinée à accélérer l'évaporation de l’eau, et le cas échéant du solvant organique, contenu la couche humide déposée afin d’obtenir un revêtement. Elle peut être mise en œuvre par tous moyens connus. Le séchage peut être un séchage thermique, par exemple à une température comprise entre 20 et 200 °C, ou bien un séchage sous vide. Le séchage sous-vide peut être avantageux en combinaison de la composition selon l’invention pour améliorer la qualité optique des revêtements obtenus. Le séchage sous vide peut être réalisé à une pression inférieure à 100 Pa, de préférence de 1 à 30 Pa. [0069] Immediately after the application step, the method according to the invention preferably comprises a drying step. This step is intended to accelerate the evaporation of the water, and where applicable the organic solvent, contained in the wet layer deposited in order to obtain a coating. It can be implemented by any known means. The drying may be thermal drying, for example at a temperature between 20 and 200°C, or vacuum drying. Vacuum drying can be advantageous in combination with the composition according to the invention to improve the optical quality of the coatings obtained. Vacuum drying can be carried out at a pressure below 100 Pa, preferably 1 to 30 Pa.
[0070] Le temps de séchage est de préférence compris entre 30 s et 24 heures, de préférence 1 min à 30 min. Dans le cas d’un séchage sous vide le temps de séchage est de préférence de 30 s à 10 min. The drying time is preferably between 30 s and 24 hours, preferably 1 min to 30 min. In the case of vacuum drying, the drying time is preferably 30 s to 10 min.
[0071] Après l’étape de séchage, le revêtement ainsi obtenu présente typiquement une épaisseur de 20 nm à 400 pm. [0071] After the drying step, the coating thus obtained typically has a thickness of 20 nm to 400 pm.
[0072] Avantageusement, lorsque le revêtement est obtenu à partir de précurseurs sol-gel métal-organique tels que décrits précédemment, le revêtement obtenu après séchage peut avoir une épaisseur allant de 20 nm à 10 pm. Advantageously, when the coating is obtained from metal-organic sol-gel precursors as described above, the coating obtained after drying can have a thickness ranging from 20 nm to 10 pm.
[0073] Avantageusement, lorsque le revêtement est obtenu à partir de précurseurs sol-gel organométalliques tel que décrits précédemment, le revêtement obtenu après séchage peut avoir une épaisseur allant de 50 nm à 300 pm. Advantageously, when the coating is obtained from organometallic sol-gel precursors as described above, the coating obtained after drying can have a thickness ranging from 50 nm to 300 pm.
[0074] Avantageusement, lorsque le revêtement est obtenu à partir de silicates d’alcalins tel que décrits précédemment, le revêtement obtenu après séchage peut avoir une épaisseur allant de 20 nm à 200 pm. Advantageously, when the coating is obtained from alkali silicates as described above, the coating obtained after drying can have a thickness ranging from 20 nm to 200 pm.
[0075] Avantageusement, lorsque le revêtement est obtenu à partir de précurseurs polymères filmogènes ou de monomètres ou oligomères polymérisables tels que décrits précédemment, le revêtement obtenu après séchage peut avoir une épaisseur allant de 300 nm à 400 pm. Advantageously, when the coating is obtained from film-forming polymer precursors or polymerizable monometers or oligomers as described previously, the coating obtained after drying can have a thickness ranging from 300 nm to 400 pm.
[0076] Etape facultative de chauffage [0076] Optional heating step
[0077] Lorsque le substrat est un substrat verrier et que le revêtement est au moins en partie inorganique, le procédé selon l’invention peut comprendre, après l’étape de séchage, une étape de traitement thermique. Le traitement thermique peut être effectué à une température d'au moins 400°C, notamment 500 °C. [0077] When the substrate is a glass substrate and the coating is at least partly inorganic, the method according to the invention may comprise, after the drying step, a heat treatment step. The heat treatment can be carried out at a temperature of at least 400°C, in particular 500°C.
[0078] Le traitement thermique est de préférence un traitement de trempe du verre. La trempe du verre consiste à réchauffer le verre à une température généralement supérieure à 600°C puis à le refroidir rapidement, généralement au moyen de buses émettant de l'air froid. Ce refroidissement rapide permet de créer des contraintes de compression en surface du substrat de verre, et donc de renforcer sa résistance mécanique et aux impacts. [0078] The heat treatment is preferably a glass tempering treatment. Glass tempering involves heating the glass to a temperature generally above 600°C and then rapidly cooling it, usually using nozzles emitting cold air. This rapid cooling creates compressive stresses on the surface of the glass substrate, and therefore reinforces its mechanical and impact resistance.
[0079] Cette étape de traitement peut permettre notamment d’éliminer les agents porogènes éventuellement présents dans le revêtement obtenu après l’étape de séchage, créant ainsi une porosité au sein du revêtement et permettant ainsi d'abaisser son indice de réfraction. [0079] This treatment step can make it possible in particular to eliminate any pore-forming agents possibly present in the coating obtained after the drying step, thus creating porosity within the coating and thus making it possible to lower its refractive index.
[0080] Dans l'application du substrat de l'invention comme vitrage (à base de matière plastique transparente ou de verre), une ou plusieurs couches minces, peuvent être interposées entre la surface substrat et le revêtement selon l’invention. Il peut s'agir, notamment, de couches à fonction antistatique, thermique (chauffante en la munissant d'amenées de courant, bas-émissive, anti-solaire...), optique (diminuant la réflexion lumineuse et/ou rendant plus neutre la couleur en réflexion du substrat...), d'un empilement de couches anti-reflets... En ce qui concerne de telles couches fonctionnelles appliquées de manière connue sur les vitrages, éventuellement sous forme d'empilements, on citera les demandes WO 97/10186, WO 02/02472, WO2012/072915, WO2019/008282. [0080] In the application of the substrate of the invention as glazing (based on transparent plastic material or glass), one or more thin layers can be interposed between the substrate surface and the coating according to the invention. These may include, in particular, layers with an antistatic, thermal (heating by providing current supply, low-emissive, anti-solar, etc.), optical (reducing light reflection and/or making it more neutral) functions. the color in reflection of the substrate...), of a stack of anti-reflective layers... With regard to such functional layers applied in a known manner on the glazing, possibly in the form of stacks, we will cite the requests WO 97/10186, WO 02/02472, WO2012/072915, WO2019/008282.
[0081] L’invention a également pour objet un matériau comprenant un substrat revêtu d’un revêtement sur au moins une de ses faces susceptible d’être obtenu selon le procédé décrit précédemment. Un tel matériau présente notamment un flou inférieur ou égal à 2%, voire inférieur ou égal à 1 ,5% ou même inférieur ou égal à 1%, et/ou une clarté supérieure ou égale à 99%. Le revêtement selon l’invention est de préférence un revêtement transparent présentant typiquement une transmission lumineuse supérieure à 30%, voire supérieure à 50%, ou même supérieure à 70%, ou encore supérieure à 80%. [0081] The invention also relates to a material comprising a substrate coated with a coating on at least one of its faces capable of being obtained according to the method described above. Such a material has in particular a blur less than or equal to 2%, or even less than or equal to 1.5% or even less than or equal to 1%, and/or a clarity greater than or equal to 99%. The coating according to the invention is preferably a transparent coating typically having a light transmission greater than 30%, or even greater than 50%, or even greater than 70%, or even greater than 80%.
[0082] Le flou, mesuré selon la norme ASTM D1003 avec un illuminant D65, correspond au rapport Td/Tt, Td étant la transmission diffuse à un angle de plus de 2,5° et Tt la transmission totale. La clarté mesurée dans les mêmes conditions, correspond à T n/(T p+T n), Tn étant la transmission diffuse à un angle inférieur à 2,5° et Tp la transmission directe. La transmission lumineuse est mesurée selon la norme ISO 9050:2003 avec un illuminant D65 et un observateur à 2°. [0082] The blur, measured according to the ASTM D1003 standard with an illuminant D65, corresponds to the ratio Td/Tt, Td being the diffuse transmission at an angle of more than 2.5° and Tt the total transmission. The clarity measured under the same conditions corresponds to T n/(T p+T n), Tn being the diffuse transmission at an angle less than 2.5° and Tp the direct transmission. Light transmission is measured according to the ISO 9050:2003 standard with a D65 illuminant and a 2° observer.
[0083] La présente invention porte également sur un vitrage pour un véhicule de transport terrestre, aérien ou aquatique, pour le bâtiment, le mobilier urbain (abribus, écran d'affichage ...), l'ameublement (mobilier, tablette ...), l'aménagement intérieur (aquarium, cabine de douche ...), l'électroménager (tablette de réfrigérateur, radiateur ...), l'électronique (écran de téléviseur, d'ordinateur ...). [0083] The present invention also relates to glazing for a land, air or water transport vehicle, for buildings, urban furniture (bus shelters, display screens, etc.), furnishings (furniture, tablets, etc.). .), interior design (aquarium, shower cabin, etc.), household appliances (refrigerator shelf, radiator, etc.), electronics (TV screen, computer screen, etc.).
[0084] Un autre objet de l'invention est l'utilisation du matériau décrit précédemment comme vitrage pour un véhicule de transport terrestre, aérien ou aquatique, pour le bâtiment, le mobilier urbain (abribus, écran d'affichage ...), l'ameublement (mobilier, tablette ...), l'aménagement intérieur (aquarium, cabine de douche ...), l'électroménager (tablette de réfrigérateur, radiateur ...), l'électronique (écran de téléviseur, d'ordinateur ...). Another object of the invention is the use of the material described above as glazing for a land, air or water transport vehicle, for buildings, urban furniture (bus shelters, display screens, etc.), furnishings (furniture, tablet, etc.), interior design (aquarium, shower cabin, etc.), household appliances (refrigerator shelf, radiator, etc.), electronics (TV screen, etc.). 'computer ...).

Claims

Revendications Claims
[Revendication 1] Procédé de fabrication d'un matériau comprenant un substrat revêtu sur au moins une de ses faces, ledit procédé comprenant une étape d'application sur ladite au moins une face dudit substrat d'une composition aqueuse contenant au moins un précurseur de revêtement et au moins un tensioactif choisi parmi les tensioactifs ayant un temps d’adsorption supérieur ou égal à 1 s ou les tensioactifs ayant une concentration micellaire critique inférieure à 0,1 mM. [Claim 1] Method of manufacturing a material comprising a substrate coated on at least one of its faces, said method comprising a step of applying to said at least one face of said substrate an aqueous composition containing at least one precursor of coating and at least one surfactant chosen from surfactants having an adsorption time greater than or equal to 1 s or surfactants having a critical micellar concentration less than 0.1 mM.
[Revendication 2] Procédé selon la revendication 1, caractérisé en ce que le revêtement est un revêtement transparent présentant une transmission lumineuse supérieure à 30%, de préférence supérieure à 50%. [Claim 2] Method according to claim 1, characterized in that the coating is a transparent coating having a light transmission greater than 30%, preferably greater than 50%.
[Revendication 3] Procédé selon l’une des revendications précédentes, caractérisé en ce que le tensioactif est choisi parmi l’éther de dodécanol, le monooléate de polyoxyéthylène (20 OE) sorbitane et le composé de formule [Chem 2]
Figure imgf000013_0001
[Claim 3] Process according to one of the preceding claims, characterized in that the surfactant is chosen from dodecanol ether, polyoxyethylene (20 EO) sorbitan monooleate and the compound of formula [Chem 2]
Figure imgf000013_0001
[Revendication 4] Procédé selon l’une des revendications précédentes, caractérisé en ce que le précurseur de revêtement est choisi parmi les précurseurs inorganiques ou métal-organiques, tels que les précurseurs sol-gel ou les silicates d’alcalins, les précurseurs organiques, tels que les polymères filmogènes, ou les monomères ou oligomères polymérisables et leurs mélanges. [Claim 4] Method according to one of the preceding claims, characterized in that the coating precursor is chosen from inorganic or metal-organic precursors, such as sol-gel precursors or alkali silicates, organic precursors, such as film-forming polymers, or polymerizable monomers or oligomers and mixtures thereof.
[Revendication 5] Procédé selon l’une des revendications précédentes, caractérisé en ce que le précurseur de revêtement est un précurseur sol-gel choisi parmi les précurseurs de silice, de dioxyde de titane, d’oxyde de zinc, d’oxyde d’aluminium, d’oxyde d’étain, d’oxyde d’indium et d’oxyde d’yttrium. [Claim 5] Method according to one of the preceding claims, characterized in that the coating precursor is a sol-gel precursor chosen from the precursors of silica, titanium dioxide, zinc oxide, carbon dioxide, aluminum, tin oxide, indium oxide and yttrium oxide.
[Revendication 6] Procédé selon l’une des revendications précédentes, caractérisé en ce que le précurseur de revêtement est un polymère filmogène choisi parmi les polyuréthanes, les polymères acryliques, les polymères alkydes et les polyesters.[Claim 6] Method according to one of the preceding claims, characterized in that the coating precursor is a film-forming polymer chosen from polyurethanes, acrylic polymers, alkyd polymers and polyesters.
[Revendication 7] Procédé selon l’une des revendications précédentes, caractérisé en ce que le précurseur de revêtement est un monomère ou oligomère polymérisable choisi parmi les monomères ou oligomères polyfonctionnels à fonctions uréthanes, éthers cycliques (notamment époxy) ou acrylates. [Claim 7] Method according to one of the preceding claims, characterized in that the coating precursor is a chosen polymerizable monomer or oligomer among polyfunctional monomers or oligomers with urethane functions, cyclic ethers (in particular epoxy) or acrylates.
[Revendication 8] Procédé selon l’une des revendications précédentes, caractérisé en ce qu’il comprend une étape de séchage sous vide. [Claim 8] Method according to one of the preceding claims, characterized in that it comprises a vacuum drying step.
[Revendication 9] Matériau, notamment susceptible d’être obtenu selon le procédé de l’une quelconque des revendications 1 à 8. [Claim 9] Material, in particular capable of being obtained according to the process of any one of claims 1 to 8.
[Revendication 10] Vitrage pour un véhicule de transport terrestre, aérien ou aquatique, pour le bâtiment, le mobilier urbain, l'ameublement, l'aménagement intérieur, l'électroménager ou l'électronique, comprenant le matériau selon la revendication 9. [Claim 10] Glazing for a land, air or water transport vehicle, for buildings, street furniture, furnishings, interior design, household appliances or electronics, comprising the material according to claim 9.
PCT/EP2023/059823 2022-04-15 2023-04-14 Method for producing a transparent substrate comprising a coating WO2023198912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2203525 2022-04-15
FR2203525 2022-04-15

Publications (1)

Publication Number Publication Date
WO2023198912A1 true WO2023198912A1 (en) 2023-10-19

Family

ID=82595096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/059823 WO2023198912A1 (en) 2022-04-15 2023-04-14 Method for producing a transparent substrate comprising a coating

Country Status (1)

Country Link
WO (1) WO2023198912A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010186A1 (en) 1995-09-15 1997-03-20 Saint-Gobain Vitrage Photocatalytic coating substrate
WO2002002472A1 (en) 2000-07-06 2002-01-10 Saint-Gobain Glass France Transparent textured substrate and methods for obtaining same
US20070049683A1 (en) * 2005-08-25 2007-03-01 Hyundai Mobis Co., Ltd. Aqueous coating composition for plastic automotive interiors
US20100227147A1 (en) * 2007-09-13 2010-09-09 Siemens Aktiengesellschaft Transparente porous sio2 coating for a transparent sustrate material having improved optical properties
WO2010103236A1 (en) 2009-03-11 2010-09-16 Saint-Gobain Glass France Glass sheet having a sol-gel layer with improved properties
US7857905B2 (en) 2007-03-05 2010-12-28 Momentive Performance Materials Inc. Flexible thermal cure silicone hardcoats
WO2012072915A1 (en) 2010-11-29 2012-06-07 Saint-Gobain Glass France Anticorrosive and antifouling glass substrate for use in a wet atmosphere
US20120251718A1 (en) * 2011-03-28 2012-10-04 Intermolecular, Inc. Sol-gel transition control of coatings by addition of solidifiers for conformal coatings on textured glass
US20160083620A1 (en) * 2014-09-19 2016-03-24 Enki Technology, Inc. Optical enhancing durable anti-reflective coating
WO2019008282A2 (en) 2017-07-07 2019-01-10 Saint-Gobain Glass France Method for producing a textured glass substrate coated with an anti-reflective sol-gel-type coating
US20190284325A1 (en) * 2016-08-17 2019-09-19 A&At Llc Aqueous polyurethane dispersions, prepolymers, and shaped articles made therefrom

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010186A1 (en) 1995-09-15 1997-03-20 Saint-Gobain Vitrage Photocatalytic coating substrate
WO2002002472A1 (en) 2000-07-06 2002-01-10 Saint-Gobain Glass France Transparent textured substrate and methods for obtaining same
US20070049683A1 (en) * 2005-08-25 2007-03-01 Hyundai Mobis Co., Ltd. Aqueous coating composition for plastic automotive interiors
US7857905B2 (en) 2007-03-05 2010-12-28 Momentive Performance Materials Inc. Flexible thermal cure silicone hardcoats
US20100227147A1 (en) * 2007-09-13 2010-09-09 Siemens Aktiengesellschaft Transparente porous sio2 coating for a transparent sustrate material having improved optical properties
WO2010103236A1 (en) 2009-03-11 2010-09-16 Saint-Gobain Glass France Glass sheet having a sol-gel layer with improved properties
WO2012072915A1 (en) 2010-11-29 2012-06-07 Saint-Gobain Glass France Anticorrosive and antifouling glass substrate for use in a wet atmosphere
US20120251718A1 (en) * 2011-03-28 2012-10-04 Intermolecular, Inc. Sol-gel transition control of coatings by addition of solidifiers for conformal coatings on textured glass
US20160083620A1 (en) * 2014-09-19 2016-03-24 Enki Technology, Inc. Optical enhancing durable anti-reflective coating
US20190284325A1 (en) * 2016-08-17 2019-09-19 A&At Llc Aqueous polyurethane dispersions, prepolymers, and shaped articles made therefrom
WO2019008282A2 (en) 2017-07-07 2019-01-10 Saint-Gobain Glass France Method for producing a textured glass substrate coated with an anti-reflective sol-gel-type coating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. RITACCO: "Dynamic surface tension of aqueous solutions of ionic surfactants : role of electrostatics", LANGMUIR, vol. 27, no. 3, 2011, pages 1009 - 1014
R. MELADO-VASQUEZ: "Sol-gel synthesis and antioxidant properties of yttrium oxide nanocrystallites incorporating P-123", MATERIALS (BASEL, vol. 7, no. 9, September 2014 (2014-09-01), pages 6768 - 6778

Similar Documents

Publication Publication Date Title
US8182866B2 (en) Method of producing a substrate which is coated with a mesoporous layer and use thereof in ophthalmic optics
CN101384926B (en) Coating system
US4315091A (en) Coatings for thermoplastics
US8404349B2 (en) Laminate of an acrylic resin composition layer containing triazine based ultra-violet compounds and an organosiloxane resin composition layer
EP2519474B1 (en) Optical article comprising a temporary anti-fogging coating with improved durability
JP5183066B2 (en) Silica membrane and method for producing the same
FR2949111A1 (en) METHOD FOR MANUFACTURING A MESOPOROUS ANTISTATIC FILM-COATED SUBSTRATE AND ITS APPLICATION IN OPTICAL OPTICS
KR101553823B1 (en) Anti-reflection Composition, Its Manufacturing Process and Uses
EP0927144A1 (en) Substrate with improved hydrophilic or hydrophobic properties, comprising irregularities
Wang et al. Robust yet self-healing antifogging/antibacterial dual-functional composite films by a simple one-pot strategy
FR2927005A1 (en) ORGANIC-INORGANIC HYBRID MATERIAL, OPTICAL THIN LAYER OF THE MATERIAL, OPTICAL MATERIAL COMPRISING THE SAME, AND METHOD FOR MANUFACTURING SAME
FR2466493A1 (en) AQUEOUS COLLOIDAL SILICA COATING COMPOSITION AND SILANOL PARTIAL CONDENSATION PRODUCT
EP1798272A1 (en) Manufacturing process for an optical article and article so obtained
EP2938582B1 (en) Transparent substrate, in particular a glass substrate, coated with at least one at least bifunctional porous layer, manufacturing method and uses thereof
CN103771728A (en) Preparation method of coating having anti-reflection in visible light and near-infrared light areas and superhydrophobic coating
GB2424382A (en) Antireflective coatings
EP2303973B1 (en) Use of a non-photocatalytic porous coating as antisoiling coating
WO2023198912A1 (en) Method for producing a transparent substrate comprising a coating
CN102473765A (en) Coating agent for solar cell module, and solar cell module and production method for the solar cell module
EP2335096A1 (en) Antireflection coatings including scattered objects having two separate ranges with separate refraction indices
TWI301847B (en) Composition comprising a hydrolyzable organosilicon compound and coating obtained from the same
JPWO2006057119A1 (en) INORGANIC COATING COMPOSITION, LOW REFRACTIVE FILM COATING METHOD, AND METHOD FOR FORMING LOW REFRACTIVE FILM
AU2009227882B2 (en) Process for producing polarizing element
EP2627796B1 (en) Item comprising a mesoporous layer protected by a coating acting as a barrier to the sebum, and production method
WO2022132080A1 (en) Anti-reflective silica based temperable coating solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23720787

Country of ref document: EP

Kind code of ref document: A1