WO2023198007A1 - Anti-nectin-4 antibodies and bispecific antibodies - Google Patents

Anti-nectin-4 antibodies and bispecific antibodies Download PDF

Info

Publication number
WO2023198007A1
WO2023198007A1 PCT/CN2023/087392 CN2023087392W WO2023198007A1 WO 2023198007 A1 WO2023198007 A1 WO 2023198007A1 CN 2023087392 W CN2023087392 W CN 2023087392W WO 2023198007 A1 WO2023198007 A1 WO 2023198007A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
antibodies
antigen
seq
nectin
Prior art date
Application number
PCT/CN2023/087392
Other languages
French (fr)
Inventor
Zhong Wang
Haizhou Zhang
Original Assignee
Bj Bioscience Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bj Bioscience Inc. filed Critical Bj Bioscience Inc.
Publication of WO2023198007A1 publication Critical patent/WO2023198007A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the Nectin family is the Ca 2+ -independent immunoglobulin-like molecules consisting of four members, Nectin-1, -2, -3, and -4.
  • the Nectin proteins play a role in cell-cell adhesion. They bind afadin, an actin filament (F-actin) -binding protein, through their cytoplasmic tails and associate with the actin cytoskeleton, and regulate many other cellular activities such as movement, differentiation, polarization, and the entry of viruses, in cooperation with other cell adhesion molecules and cell surface membrane receptors.
  • F-actin actin filament
  • Nectin-4 also known as poliovirus receptor-related protein 4 (PVRL4) , is a single pass type I transmembrane protein of about 52 kDa in size.
  • the extracellular domain of Nectin-4 has three Ig-like subdomains designated as V, C1 and C2.
  • Nectins 1, 2 and 3 are widely expressed in adult tissues, but Nectin-4 is expressed specifically in the embryo and placenta. However, it has been shown that Nectin-4 can be expressed in various cancer cells, making it a suitable target for cancer therapy.
  • the present disclosure provides single-domain antibodies having binding specificity to the human Nectin-4 protein. These antibodies can cross-react to cynomolgus Nectin-4. With the excellent binding affinity and the small size, these antibodies can suitably be used to generate bispecific antibodies, such as those that also target an immune cell.
  • a single-domain antibody or antigen-binding fragment thereof having specificity to a human Nectin-4 protein comprising a CDR1, a CDR2 and a CDR3, wherein the CDR1, CDR2 and CDR3, respectively, comprise the CDR1, CDR2 and CDR3 sequences of any one of antibodies CMB7-1, CMB7-2, CMB7-3, CMB7-4, or CMB7-5.
  • These example antibodies have amino acid sequences as set forth in SEQ ID NOs: 1-5.
  • the CDR1, CDR2 and CDR3, respectively comprise the amino acid sequences of SEQ ID NOs: 6-8, SEQ ID NOs: 9-11, SEQ ID NOs: 12-14, SEQ ID NOs: 15-17, or SEQ ID NOs: 18-20.
  • the single-domain antibody comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-5.
  • bispecific antibody comprising the single-domain antibody or antigen-binding fragment thereof disclosed herein and a second antibody or antigen-binding fragment having specificity to an antigen different from Nectin-4.
  • the antigen is human CD3.
  • the bispecific antibody comprises four of the single-domain antibodies, each fused to a heavy chain variable region (VH) or a light chain variable region (VL) of a full Fab antibody having specificity to the human CD3.
  • each single-chain domain antibody is fused to the VH or VL through a peptide linker.
  • the peptide linker has a length that is longer than 7 amino acids. In some embodiments, the peptide linker has a length that is shorter than 50 amino acids.
  • Methods are also provided, for using the disclosed antibodies or fragment for treating diseases such as cancer.
  • FIG. 1 shows SDS-PAGE images confirming the expression of the antibodies.
  • FIG. 2 shows the results of the ELISA-based antibody affinity testing.
  • FIG. 3 shows that all anti-human Nectin-4 VHH antibodies cross-reacted to cynomolgus Nectin-4.
  • FIG. 4 illustrates two formats (Format A and Format B) of tested bispecific antibodies.
  • FIG. 5 shows the results of T cell activation assays in the presence of Nectin-4-expressing cells.
  • FIG. 6-7 show the results of T cell killing of target Nectin-4-expressing cells (FIG. 6: MCF-7 cells; FIG. 7: T-47D cells) .
  • a or “an” entity refers to one or more of that entity; for example, “an antibody, ” is understood to represent one or more antibodies.
  • the terms “a” (or “an” ) , “one or more, ” and “at least one” can be used interchangeably herein.
  • polypeptide is intended to encompass a singular “polypeptide” as well as plural “polypeptides, ” and refers to a molecule composed of monomers (amino acids) linearly linked by amide bonds (also known as peptide bonds) .
  • polypeptide refers to any chain or chains of two or more amino acids, and does not refer to a specific length of the product.
  • polypeptides dipeptides, tripeptides, oligopeptides, “protein, ” “amino acid chain, ” or any other term used to refer to a chain or chains of two or more amino acids, are included within the definition of “polypeptide, ” and the term “polypeptide” may be used instead of, or interchangeably with any of these terms.
  • polypeptide is also intended to refer to the products of post-expression modifications of the polypeptide, including without limitation glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, or modification by non-naturally occurring amino acids.
  • a polypeptide may be derived from a natural biological source or produced by recombinant technology, but is not necessarily translated from a designated nucleic acid sequence. It may be generated in any manner, including by chemical synthesis.
  • nucleic acids such as DNA or RNA
  • isolated refers to molecules separated from other DNAs or RNAs, respectively, that are present in the natural source of the macromolecule.
  • isolated as used herein also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.
  • an “isolated nucleic acid” is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state.
  • isolated is also used herein to refer to cells or polypeptides which are isolated from other cellular proteins or tissues. Isolated polypeptides is meant to encompass both purified and recombinant polypeptides.
  • the term “recombinant” as it pertains to polypeptides or polynucleotides intends a form of the polypeptide or polynucleotide that does not exist naturally, a non-limiting example of which can be created by combining polynucleotides or polypeptides that would not normally occur together.
  • “Homology” or “identity” or “similarity” refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An “unrelated” or “non-homologous” sequence shares less than 40%identity, though preferably less than 25%identity, with one of the sequences of the present disclosure.
  • a polynucleotide or polynucleotide region (or a polypeptide or polypeptide region) has a certain percentage (for example, 60 %, 65 %, 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 98 %or 99 %) of “sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences.
  • This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Ausubel et al. eds. (2007) Current Protocols in Molecular Biology. Preferably, default parameters are used for alignment.
  • One alignment program is BLAST, using default parameters.
  • Biologically equivalent polynucleotides are those having the above-noted specified percent homology and encoding a polypeptide having the same or similar biological activity.
  • an equivalent nucleic acid or polynucleotide refers to a nucleic acid having a nucleotide sequence having a certain degree of homology, or sequence identity, with the nucleotide sequence of the nucleic acid or complement thereof.
  • a homolog of a double stranded nucleic acid is intended to include nucleic acids having a nucleotide sequence which has a certain degree of homology with or with the complement thereof. In one aspect, homologs of nucleic acids are capable of hybridizing to the nucleic acid or complement thereof.
  • an equivalent polypeptide refers to a polypeptide having a certain degree of homology, or sequence identity, with the amino acid sequence of a reference polypeptide.
  • the sequence identity is at least about 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%.
  • the equivalent polypeptide or polynucleotide has one, two, three, four or five addition, deletion, substitution and their combinations thereof as compared to the reference polypeptide or polynucleotide.
  • the equivalent sequence retains the activity (e.g., epitope-binding) or structure (e.g., salt-bridge) of the reference sequence.
  • Hybridization reactions can be performed under conditions of different “stringency” .
  • a low stringency hybridization reaction is carried out at about 40 °C in about 10 x SSC or a solution of equivalent ionic strength/temperature.
  • a moderate stringency hybridization is typically performed at about 50 °C in about 6 x SSC, and a high stringency hybridization reaction is generally performed at about 60 °C in about 1 x SSC.
  • Hybridization reactions can also be performed under “physiological conditions” which is well known to one of skill in the art.
  • a non-limiting example of a physiological condition is the temperature, ionic strength, pH and concentration of Mg 2+ normally found in a cell.
  • a polynucleotide is composed of a specific sequence of four nucleotide bases: adenine (A) ; cytosine (C) ; guanine (G) ; thymine (T) ; and uracil (U) for thymine when the polynucleotide is RNA.
  • polynucleotide sequence is the alphabetical representation of a polynucleotide molecule. This alphabetical representation can be input into databases in a computer having a central processing unit and used for bioinformatics applications such as functional genomics and homology searching.
  • polymorphism refers to the coexistence of more than one form of a gene or portion thereof.
  • a polymorphic region can be a single nucleotide, the identity of which differs in different alleles.
  • polynucleotide and “oligonucleotide” are used interchangeably and refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides or analogs thereof. Polynucleotides can have any three-dimensional structure and may perform any function, known or unknown.
  • polynucleotides a gene or gene fragment (for example, a probe, primer, EST or SAGE tag) , exons, introns, messenger RNA (mRNA) , transfer RNA, ribosomal RNA, ribozymes, cDNA, dsRNA, siRNA, miRNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers.
  • a polynucleotide can comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs.
  • modifications to the nucleotide structure can be imparted before or after assembly of the polynucleotide.
  • the sequence of nucleotides can be interrupted by non-nucleotide components.
  • a polynucleotide can be further modified after polymerization, such as by conjugation with a labeling component.
  • the term also refers to both double-and single-stranded molecules. Unless otherwise specified or required, any embodiment of this disclosure that is a polynucleotide encompasses both the double-stranded form and each of two complementary single-stranded forms known or predicted to make up the double-stranded form.
  • encode refers to a polynucleotide which is said to “encode” a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA for the polypeptide and/or a fragment thereof.
  • the antisense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.
  • an “antibody” or “antigen-binding polypeptide” refers to a polypeptide or a polypeptide complex that specifically recognizes and binds to an antigen.
  • An antibody can be a whole antibody and any antigen binding fragment or a single chain thereof.
  • the term “antibody” includes any protein or peptide containing molecule that comprises at least a portion of an immunoglobulin molecule having biological activity of binding to the antigen.
  • CDR complementarity determining region
  • antibody fragment or “antigen-binding fragment” , as used herein, is a portion of an antibody such as F (ab’) 2 , F (ab) 2 , Fab’, Fab, Fv, scFv and the like. Regardless of structure, an antibody fragment binds with the same antigen that is recognized by the intact antibody.
  • antibody fragment includes aptamers, spiegelmers, and diabodies.
  • antibody fragment also includes any synthetic or genetically engineered protein that acts like an antibody by binding to a specific antigen to form a complex.
  • a “single-chain variable fragment” or “scFv” refers to a fusion protein of the variable regions of the heavy (V H ) and light chains (V L ) of immunoglobulins.
  • the regions are connected with a short linker peptide of ten to about 25 amino acids.
  • the linker can be rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the V H with the C-terminus of the V L , or vice versa. This protein retains the specificity of the original immunoglobulin, despite removal of the constant regions and the introduction of the linker.
  • ScFv molecules are known in the art and are described, e.g., in US patent 5,892,019.
  • antibody encompasses various broad classes of polypeptides that can be distinguished biochemically. Those skilled in the art will appreciate that heavy chains are classified as gamma, mu, alpha, delta, or epsilon ( ⁇ , ⁇ , ⁇ , ⁇ , ⁇ ) with some subclasses among them (e.g., ⁇ l- ⁇ 4) . It is the nature of this chain that determines the “class” of the antibody as IgG, IgM, IgA IgG, or IgE, respectively.
  • the immunoglobulin subclasses isotypes) e.g., IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgG 5 , etc.
  • immunoglobulin classes are clearly within the scope of the present disclosure, the following discussion will generally be directed to the IgG class of immunoglobulin molecules.
  • IgG a standard immunoglobulin molecule comprises two identical light chain polypeptides of molecular weight approximately 23,000 Daltons, and two identical heavy chain polypeptides of molecular weight 53,000-70,000.
  • the four chains are typically joined by disulfide bonds in a “Y” configuration wherein the light chains bracket the heavy chains starting at the mouth of the “Y” and continuing through the variable region.
  • an antibody By “specifically binds” or “has specificity to, ” it is generally meant that an antibody binds to an epitope via its antigen-binding domain, and that the binding entails some complementarity between the antigen-binding domain and the epitope. According to this definition, an antibody is said to “specifically bind” to an epitope when it binds to that epitope, via its antigen-binding domain more readily than it would bind to a random, unrelated epitope.
  • the term “specificity” is used herein to qualify the relative affinity by which a certain antibody binds to a certain epitope.
  • antibody “A” may be deemed to have a higher specificity for a given epitope than antibody “B, ” or antibody “A” may be said to bind to epitope “C” with a higher specificity than it has for related epitope “D. ”
  • the terms “treat” or “treatment” refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the progression of cancer.
  • Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total) , whether detectable or undetectable.
  • “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment.
  • Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.
  • subject or “individual” or “animal” or “patient” or “mammal, ” is meant any subject, particularly a mammalian subject, for whom diagnosis, prognosis, or therapy is desired.
  • Mammalian subjects include humans, domestic animals, farm animals, and zoo, sport, or pet animals such as dogs, cats, guinea pigs, rabbits, rats, mice, horses, cattle, cows, and so on.
  • phrases such as “to a patient in need of treatment” or “a subject in need of treatment” includes subjects, such as mammalian subjects, that would benefit from administration of an antibody or composition of the present disclosure used, e.g., for detection, for a diagnostic procedure and/or for treatment.
  • Nectin-4 is a single pass type I transmembrane protein of about 52 kDa in size. Unlike Nectins 1, 2 and 3 which are widely expressed in adult tissues, Nectin-4 is expressed specifically in the embryo and placenta. However, Nectin-4 can also be expressed in various cancer cells, making it a suitable target for cancer therapy.
  • a single-domain antibody also known as a nanobody, is an antibody fragment consisting of a single monomeric variable antibody domain.
  • the earliest single-domain antibodies were engineered from heavy-chain antibodies found in camelids which are also referred to as VHH fragments.
  • each VHH includes three CDRs, CDR1, CDR2 and CDR3.
  • a VHH can further include constant domains such as CH2 and CH3.
  • VHH antibodies As shown in FIG. 2, all of the identified VHH antibodies, from CMB7-1 through CMB7-5, exhibited strong binding to the human Nectin-4 protein. All of these antibodies, meanwhile, also have strong affinity the counterpart cynomolgus protein (FIG. 3) , allowing them to be tested in cynomolgus monkeys as a preclinical model.
  • VHH 35 CMB7-1 (VHH 35)
  • VHH 35 CMB7-1
  • FIG. 5-7 demonstrate that bispecific antibodies of Format B exhibited excellent T cell activation and T cell killing activities.
  • these VHH antibodies can be suitably used for treating diseases such as cancer.
  • an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of CDR1, CDR2, and CDR3 of antibody CMB7-1, CMB7-2, CMB7-3, CMB7-4, or CMB7-5.
  • the sequences of these antibodies are provided in Table 1, as SEQ ID NOs: 1-5.
  • an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of SEQ ID NOs: 6-8. In one embodiment, provided is an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of SEQ ID NOs: 9-11. In one embodiment, provided is an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of SEQ ID NOs: 12-14.
  • an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of SEQ ID NOs: 15-17.
  • an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of SEQ ID NOs: 18-20.
  • an antibody or antigen-binding fragment that includes the amino acid sequence of any one of SEQ ID NOs: 1-5, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NOs: 1-5.
  • the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NOs: 1-24 retains the CDR sequences of the corresponding reference antibody.
  • an antibody or antigen-binding fragment that includes the amino acid sequence of SEQ ID NO: 1, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 1.
  • the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 1 retains the CDR sequences of the corresponding reference antibody, such as SEQ ID NO: 6, 7 and 8.
  • an antibody or antigen-binding fragment that includes the amino acid sequence of SEQ ID NO: 2, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 2.
  • the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 2 retains the CDR sequences of the corresponding reference antibody, such as SEQ ID NO: 9, 10 and 11.
  • an antibody or antigen-binding fragment that includes the amino acid sequence of SEQ ID NO: 3, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 3.
  • the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 3 retains the CDR sequences of the corresponding reference antibody, such as SEQ ID NO: 12, 13 and 14.
  • an antibody or antigen-binding fragment that includes the amino acid sequence of SEQ ID NO: 4, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 4.
  • the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 4 retains the CDR sequences of the corresponding reference antibody, such as SEQ ID NO: 15, 16 and 17.
  • an antibody or antigen-binding fragment that includes the amino acid sequence of SEQ ID NO: 5, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 5.
  • the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 5 retains the CDR sequences of the corresponding reference antibody, such as SEQ ID NO: 18, 19 and 20.
  • an antibody or antigen-binding fragment that includes the amino acid sequence of any one of SEQ ID NO: 1-5, optionally with 1, 2, 3, 4, or 5 amino acid additions, deletions and/or substitutions.
  • the substitutions are conservative substitutions.
  • the additions, deletions and/or substitutions are within the framework regions.
  • the antibody or fragment further includes constant domains, such as CH2 and/or CH3.
  • the CH2 and/or CH3 are from human IgG1, IgG2, IgG3 or IgG4 sequences.
  • substitutions are conservative substitutions.
  • a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine) , acidic side chains (e.g., aspartic acid, glutamic acid) , uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine) , nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan) , beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalan
  • a nonessential amino acid residue in an immunoglobulin polypeptide is preferably replaced with another amino acid residue from the same side chain family.
  • a string of amino acids can be replaced with a structurally similar string that differs in order and/or composition of side chain family members.
  • Non-limiting examples of conservative amino acid substitutions are provided in the table below, where a similarity score of 0 or higher indicates conservative substitution between the two amino acids.
  • the antibody or fragment is of class IgG1, IgG2, IgG3 or IgG4. In some embodiments, the antibody or fragment is antibody-dependent cellular cytotoxicity (ADCC) -competent. In some embodiments, the antibody or fragment is not ADCC-competent.
  • ADCC antibody-dependent cellular cytotoxicity
  • these newly identified anti-Nectin-4 VHH antibodies are suitable for inclusion in a bispecific antibody.
  • Format B which is quadruple-valent with respect to Nectin-4, has strong binding to the cells. Further, when incubated with T cells (targeted by binding to CD3) and Nectin-4-expressing tumor cells, these bispecific antibodies exhibited strong T cell activation, and T cell mediated killing of the tumor cells.
  • a bispecific antibody that includes any of the VHH antibody of the present disclosure and a second antibody or antigen-binding fragment that binds another antigen.
  • the second antigen is a protein expressed on an immune cell.
  • Proteins on immune cells that can be targeted include, without limitation, CD3, CD47, PD1, PD-L1, 4-1BB, OX40, SIRPA, CD16, CD28, CTLA4, and CD27.
  • the immune cell surface protein is CD3.
  • a 4: 2 VHH: Fab format (Format B) has excellent therapeutic activity as compared to the other format tested.
  • the 4: 2 format is illustrated in FIG. 4B, which includes an antibody (e.g., anti-CD3) in the conventional Fab format, and four VHH unit specific to Nectin-4.
  • Each VHH is fused to the N-terminus of a variable region of the Fab, through a peptide linker, such as GS (GGGGS) (SEQ ID NO: 21) , GS (GGGGS) 3 (SEQ ID NO: 22) , and GS (GGGGS) 6 (SEQ ID NO: 23) .
  • the length of the peptide linker has significant effect on the bispecific antibody’s activity in binding to the Nectin-4 on a cell surface. Therefore, in some embodiments, the peptide linker may have a length that is at least 2 amino acids, or at least 5, 7, 8, 9, 10, 12, 15, 17, 20, 22, or 25 amino acids. In some embodiments, the length is not longer than 15, 20, 25, 30, 35, 40, 45 or 50 amino acids.
  • Example linkers include multiple glycine (G) and serine (S) .
  • the linker includes at least 50%, 60%, 70%or 80%glycine.
  • Example linker sequences include GS(GGGGS) (SEQ ID NO: 21) , GS (GGGGS) 3 (SEQ ID NO: 22) , and GS (GGGGS) 6 (SEQ ID NO: 23) , without limitation.
  • the present disclosure provides a bispecific antibody having specificity to an immune cell (e.g., targeting CD3) and Nectin-4.
  • the bispecific antibody includes a conventional antibody specific to the human CD3 complex.
  • the bispecific antibody includes multiple (e.g., 2 and 4) VHH targeting Nectin-4.
  • a bispecific antibody comprising a first portion and a second portion, wherein the first portion comprises two pairs of VH and VL each capable of binding a human CD3 complex, the second portion comprises four single-domain antibody (VHH) fragments as disclosed herein, wherein each VHH fragment is fused, through a peptide linker, to the N-terminus of each of the VH and VL of the first portion.
  • VHH single-domain antibody
  • the bispecific antibody further includes constant domains, such as CH1 and CL, and CH2 and/or CH3.
  • the constant regions are from human IgG1, IgG2, IgG3 or IgG4 sequences.
  • antibodies as disclosed herein may be modified such that they vary in amino acid sequence from the naturally occurring binding polypeptide from which they were derived.
  • a polypeptide or amino acid sequence derived from a designated protein may be similar, e.g., have a certain percent identity to the starting sequence, e.g., it may be 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%identical to the starting sequence.
  • the antibody comprises an amino acid sequence or one or more moieties not normally associated with an antibody. Exemplary modifications are described in more detail below.
  • an antibody of the disclosure may comprise a flexible linker sequence, or may be modified to add a functional moiety (e.g., PEG, a drug, a toxin, or a label) .
  • Antibodies, variants, or derivatives thereof of the disclosure include derivatives that are modified, i.e., by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from binding to the epitope.
  • the antibodies can be modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the antibodies may contain one or more non-classical amino acids.
  • the antibodies may be conjugated to therapeutic agents, prodrugs, peptides, proteins, enzymes, viruses, lipids, biological response modifiers, pharmaceutical agents, or PEG.
  • the antibodies may be conjugated or fused to a therapeutic agent, which may include detectable labels such as radioactive labels, an immunomodulator, a hormone, an enzyme, an oligonucleotide, a photoactive therapeutic or diagnostic agent, a cytotoxic agent, which may be a drug or a toxin, an ultrasound enhancing agent, a non-radioactive label, a combination thereof and other such agents known in the art.
  • a therapeutic agent which may include detectable labels such as radioactive labels, an immunomodulator, a hormone, an enzyme, an oligonucleotide, a photoactive therapeutic or diagnostic agent, a cytotoxic agent, which may be a drug or a toxin, an ultrasound enhancing agent, a non-radioactive label, a combination thereof and other such agents known in the art.
  • the antibodies can be detectably labeled by coupling it to a chemiluminescent compound.
  • the presence of the chemiluminescent-tagged antigen-binding polypeptide is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction.
  • particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.
  • the antibodies can also be detectably labeled using fluorescence emitting metals such as 152 Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA) .
  • DTPA diethylenetriaminepentacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • the present disclosure also provides isolated polynucleotides or nucleic acid molecules encoding the antibodies, variants or derivatives thereof of the disclosure.
  • the polynucleotides of the present disclosure may encode the entire heavy and light chain variable regions of the antigen-binding polypeptides, variants or derivatives thereof on the same polynucleotide molecule or on separate polynucleotide molecules. Additionally, the polynucleotides of the present disclosure may encode portions of the heavy and light chain variable regions of the antigen-binding polypeptides, variants or derivatives thereof on the same polynucleotide molecule or on separate polynucleotide molecules.
  • both the variable and constant regions of the antigen-binding polypeptides of the present disclosure are fully human.
  • Fully human antibodies can be made using techniques described in the art and as described herein. For example, fully human antibodies against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Exemplary techniques that can be used to make such antibodies are described in U.S. patents: 6,150,584; 6,458,592; 6,420,140 which are incorporated by reference in their entireties.
  • the prepared antibodies will not elicit a deleterious immune response in the animal to be treated, e.g., in a human.
  • antigen-binding polypeptides, variants, or derivatives thereof of the disclosure are modified to reduce their immunogenicity using art-recognized techniques.
  • antibodies can be humanized, primatized, deimmunized, or chimeric antibodies can be made. These types of antibodies are derived from a non-human antibody, typically a murine or primate antibody, that retains or substantially retains the antigen-binding properties of the parent antibody, but which is less immunogenic in humans.
  • CDRs complementarity determining regions
  • De-immunization can also be used to decrease the immunogenicity of an antibody.
  • the term “de-immunization” includes alteration of an antibody to modify T-cell epitopes (see, e.g., International Application Publication Nos.: WO/9852976 A1 and WO/0034317 A2) .
  • variable heavy chain and variable light chain sequences from the starting antibody are analyzed and a human T-cell epitope “map” from each V region showing the location of epitopes in relation to complementarity-determining regions (CDRs) and other key residues within the sequence is created.
  • CDRs complementarity-determining regions
  • T-cell epitopes from the T-cell epitope map are analyzed in order to identify alternative amino acid substitutions with a low risk of altering activity of the final antibody.
  • a range of alternative variable heavy and variable light sequences are designed comprising combinations of amino acid substitutions and these sequences are subsequently incorporated into a range of binding polypeptides.
  • 12 and 24 variant antibodies are generated and tested for binding and/or function.
  • Complete heavy and light chain genes comprising modified variable and human constant regions are then cloned into expression vectors and the subsequent plasmids introduced into cell lines for the production of whole antibody.
  • the antibodies are then compared in appropriate biochemical and biological assays, and the optimal variant is identified.
  • binding specificity of antigen-binding polypeptides of the present disclosure can be determined by in vitro assays such as immunoprecipitation, radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA) .
  • in vitro assays such as immunoprecipitation, radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA) .
  • the antibodies, variants or derivatives of the present disclosure may be used in certain treatment and diagnostic methods.
  • the present disclosure is further directed to antibody-based therapies which involve administering the antibodies of the disclosure to a patient such as an animal, a mammal, and a human for treating one or more of the disorders or conditions described herein.
  • Therapeutic compounds of the disclosure include, but are not limited to, antibodies of the disclosure (including variants and derivatives thereof as described herein) and nucleic acids or polynucleotides encoding antibodies of the disclosure (including variants and derivatives thereof as described herein) .
  • the antibodies of the disclosure can also be used to treat or inhibit cancer.
  • Nectin-4 is overexpressed in tumor cells.
  • at least one of the cancer cells (e.g., stromal cells) in the patient expresses, over-express, or is induced to express the tumor antigen. Induction of a gene expression, for instance, can be done by administration of a tumor vaccine or radiotherapy.
  • Tumors that can be suitably treated include those of bladder cancer, non-small cell lung cancer, renal cancer, breast cancer, urethral cancer, colorectal cancer, head and neck cancer, squamous cell cancer, Merkel cell carcinoma, gastrointestinal cancer, stomach cancer, esophageal cancer, ovarian cancer, renal cancer, and small cell lung cancer. Accordingly, the presently disclosed antibodies can be used for treating any one or more such cancers.
  • Additional diseases or conditions associated with increased cell survival include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia) ) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia) ) , polycythemia vera, lymphomas (e.g., Hodgkin’s disease and non-Hodgkin’s disease) , multiple myeloma, Waldenstrom’s macroglobulinemia, heavy chain disease, and solid tumors including, but not limited to, sar
  • a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the particular antibodies, variant or derivative thereof used, the patient’s age, body weight, general health, sex, and diet, and the time of administration, rate of excretion, drug combination, and the severity of the particular disease being treated. Judgment of such factors by medical caregivers is within the ordinary skill in the art.
  • the amount will also depend on the individual patient to be treated, the route of administration, the type of formulation, the characteristics of the compound used, the severity of the disease, and the desired effect. The amount used can be determined by pharmacological and pharmacokinetic principles well known in the art.
  • Methods of administration of the antibodies, variants or include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes.
  • the antigen-binding polypeptides or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc. ) and may be administered together with other biologically active agents.
  • compositions containing the antigen-binding polypeptides of the disclosure may be administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, drops or transdermal patch) , bucally, or as an oral or nasal spray.
  • parenteral refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intra-articular injection and infusion.
  • Administration can be systemic or local.
  • Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
  • the antibodies polypeptides or compositions of the disclosure may be desirable to administer locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction, with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.
  • care must be taken to use materials to which the protein does not absorb.
  • compositions comprise an effective amount of an antibody, and an acceptable carrier.
  • the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
  • a “pharmaceutically acceptable carrier” will generally be a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
  • carrier refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered.
  • Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
  • Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
  • the composition if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents such as acetates, citrates or phosphates.
  • Antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; and agents for the adjustment of tonicity such as sodium chloride or dextrose are also envisioned.
  • These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.
  • the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
  • Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc.
  • compositions will contain a therapeutically effective amount of the antigen-binding polypeptide, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient.
  • suitable amount of carrier so as to provide the form for proper administration to the patient.
  • the formulation should suit the mode of administration.
  • the parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings.
  • compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.
  • the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection.
  • the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
  • composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.
  • an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
  • the compounds of the disclosure can be formulated as neutral or salt forms.
  • Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
  • This example shows how anti-human-Nectin-4 single domain antibodies were generated using immunization of alpaca followed by phage library construction and selection.
  • Recombinant human Nectin-4/hFc fusion proteins were used as the immunogen to raise anti-human Nectin-4 antibodies.
  • Alpaca PBMCs were collected, and an antibody cDNA library was generated by RNA isolation and PCR amplification and cloning into a phage display vector. The libraries were then subjected for one round of liquid phase selection and one round of solid phase selection.
  • the binders were amplified from antigen positive phages by PCR and sequenced.
  • the expressed proteins were confirmed with SDS-PAGE (FIG. 1) . Sequences of the unique antibodies and their CDR regions are provided in the table below.
  • the antibodies were subjected to an ELISA-based binding assay.
  • the same concentration (0.5 ⁇ g/mL) of human Nectin-4 was coated on 96 well enzyme plate.
  • 2 ⁇ g/mL of each antibody and different concentration (0.2 ⁇ g/mL and 1 ⁇ g/mL) of Goat anti-human Nectin-4 antibody (as control) were added after blocking.
  • Goat anti-human IgG Fc cross adsorbed antibody or Rabbit anti-goat IgG antibody
  • HRP can react with substrate 3, 3’, 5, 5’-tetramethylbenzidine (TMB) to produce colored products.
  • the binding affinity of the CMB7 with human Nectin-4 can be calculated by reading the OD 450 value of the reaction solution, because the absorbance of the reaction solution is positively correlated with the content of the antibody combined with antigen. Therefore, ELISA was used to detect the binding affinity of CMB7 to human Nectin-4.
  • TMB Substrate Solution
  • the ELISA testing results are shown in FIG. 2 and Table 3. As shown, all of the antibodies exhibited potent binding affinity to the human Nectin-4 protein.
  • This exampled measured the kinetic binding affinity of the antibodies (fused to human Fc, VHH-Fc) to human Nectin-4.
  • the kinetic binding affinity of the antibodies to human Nectin-4 was detected by Biolayer interferometry.
  • the HFC (Anti-HIgG FC) Probes (Probelife) was pre-wetted in Kinetics Buffer (Probelife) for 5 mins at 30°C in Crimson 96 MAX 96-well reaction plate (ET Healthcare, 06-0098) . Probes were then dipped into wells containing the antibody at 4 ⁇ g/mL in Kinetics Buffer in the Greiner black microplate.
  • the analyte (Human Nectin-4) with different concentration gradient dilution (starting from 200 nM, with step-wise 2-fold dilutions, a total of 5 concentration gradients) were used a 5-min association step then followed by a 16-min dissociation step in Kinetics Buffer.
  • the data were analyzed by subtracting reference sample and fit to a 1: 1 K binding model for Structured Data Method of affinity constants using Data Analysis Software 1.7.2.0609 (Gator) .
  • the final slope should preferably not be higher than 0.02 nm/min.
  • the probes dissociate in K buffer for 16 mins, and the antigen dissociate from the probes in the column 8/9/10/11/12 at the Greiner 96-well polypropylene microplate.
  • the probes Run Regeneration procedure (The probes are regenerated for 5 s in R Buffer in the column 11 Crimson 96 MAX 96-well reaction plate, followed by neutralization for 5s in Q Buffer in the column 12 Crimson 96 MAX 96-well reaction plate, this process is repeated 3 times) .
  • This example tested the binding affinity of the antibodies to cynomolgus Nectin-4.
  • the binding affinity of the antibodies to cynomolgus Nectin-4 were detected by ELISA.
  • the same concentration (0.5 ⁇ g/mL) of cynomolgus Nectin-4 was coated on 96 well enzyme plate.
  • the antibodies with different concentration gradient dilution starting from 2 ⁇ g/mL, with step-wise 3-fold dilutions, a total of 7 concentration gradients) were added after blocking. After washing off the excess samples, Goat anti-human IgG Fc cross adsorbed antibody coupled with horseradish peroxidase (HRP) was added. HRP can react with substrate 3, 3’, 5, 5’-tetramethylbenzidine (TMB) to produce colored products.
  • HRP horseradish peroxidase
  • the binding affinity of the CMB7 with cynomolgus Nectin-4 can be calculated by reading the OD 450 value of the reaction solution, because the absorbance of the reaction solution is positively correlated with the content of the antibody combined with antigen. Therefore, ELISA was used to detect the binding affinity of CMB7 to cynomolgus Nectin-4.
  • TMB Substrate Solution
  • FIG. 3 shows that all of the tested antibodies cross-reacted to cynomolgus Nectin-4, and most of them exhibited potent binding affinity. This suggests that cynomolgus can be a suitable preclinical model for testing these antibodies.
  • This example detected binding affinity of the antibodies to human breast cancer cells expressing Nectin-4, by Fluorescence Activating Cell Sorter (FACS) .
  • FACS Fluorescence Activating Cell Sorter
  • the FACS results show that, at each test concentration, each antibody bound to the human breast cancer cell line MCF-7.
  • VHH single domain antibody
  • VHH 35 The single domain antibody (VHH 35” ) was used to construct bispecific antibodies that also target the human CD3. Two different formats of bispecific antibodies were used, as illustrated in FIG. 4.
  • FIG. 4A illustrates a format (Format A) in which a single VHH and a single VH/VL pair from an anti-CD3 antibody are fused to a Fc fragment.
  • Format A is asymmetric, therefore, and has a 1: 1 valent against CD3 and Nectin-4.
  • each of 4 VHH is fused to the N-terminus of a variant domain of a full anti-CD3 antibody.
  • This format is therefore is symmetric, and has a 2: 4 valent against CD3 and Nectin-4.
  • the bispecific configurations and each chain’s structure are shown in Tables 5-6.
  • This example tested the bispecific antibodies’ ability to activate T cells in presence of Nectin-4-expressing MCF-7 cells or T-47D cells.
  • FIG. 5 shows the T cell activation results for all bispecific antibodies.
  • Format A BJ182/12L1/BJ183-35
  • BJ192-35/BJ196-35 also exhibited low activities. This is likely because the linker (GS (GGGGS) 1 (SEQ ID NO: 21) ) is too short.
  • BJ193-35/BJ197-35 linker being GS (GGGGS) 3 (SEQ ID NO: 22)
  • BJ194-35/BJ198-35 linker being GS (GGGGS) 6 (SEQ ID NO: 23)
  • GS GGGGS
  • the aim of this study was to detect the cytotoxicity of anti-Nectin-4 to MCF-7 and T-47D cells.
  • MCF-7 and T-47D cells were the target cells and primary human T cells were the Effector cell.
  • Primary human T cells were isolated from human PBMC cells and were frozen in liquid nitrogen.
  • Target cell and Effector cells were added in the ratio of 1: 2 (MCF-7 /T-47D cells were 3x10 4 and primary human T cells were 6x10 4 ) in each well of the 96 well plate with 100 nM of anti-Nectin-4. The images were scanned after 40 hours of co-incubation.
  • Digestion was terminated with growth medium, gently blow the cells to remove them completely. Centrifuge 300 g for 5 min. Remove the supernatant and add 1 ml medium to blow away. Transfer the vial contents to a 100 mm dish containing 10 mL of growth medium. Place the culture at 37 °C in 5%CO 2 .
  • T cells (about 6*10 4 cells per well) at 6*10 5 /mL in test medium.
  • the antibody should be diluted to 100 nM as the sample concentration.
  • test medium 2 times Wash the target cells with test medium 2 times. Add 80 ⁇ L test medium to each well. Add 20 ⁇ L antibody solution to the plate. Add 100 ⁇ L T cell suspension (about 6*10 ⁇ 4 cells per well) to the plate.
  • FIG. 6 MCF-7 cells
  • FIG. 7 shows the T cell killing results for all bispecific antibodies. Larger and dark particles indicate target cell death. Consistent with the T cell activation results in Example 7, treatment with any antibody of Format A did not result in T cell killing, and treatment with most of the Format B bispecific antibodies caused cell death of the target cells (MCF-7 or T-47D cells) , demonstrating the efficacy of these antibodies.

Abstract

Provided are single domain antibodies to the human Nectin-4 protein that have excellent binding affinity. These antibodies are particularly suitable for inclusion in a bispecific antibody, such as one that also targets an antigen on an immune cell.

Description

ANTI-NECTIN-4 ANTIBODIES AND BISPECIFIC ANTIBODIES BACKGROUND
The Nectin family is the Ca2+-independent immunoglobulin-like molecules consisting of four members, Nectin-1, -2, -3, and -4. The Nectin proteins play a role in cell-cell adhesion. They bind afadin, an actin filament (F-actin) -binding protein, through their cytoplasmic tails and associate with the actin cytoskeleton, and regulate many other cellular activities such as movement, differentiation, polarization, and the entry of viruses, in cooperation with other cell adhesion molecules and cell surface membrane receptors.
Nectin-4, also known as poliovirus receptor-related protein 4 (PVRL4) , is a single pass type I transmembrane protein of about 52 kDa in size. The extracellular domain of Nectin-4 has three Ig-like subdomains designated as V, C1 and C2.
Nectins 1, 2 and 3 are widely expressed in adult tissues, but Nectin-4 is expressed specifically in the embryo and placenta. However, it has been shown that Nectin-4 can be expressed in various cancer cells, making it a suitable target for cancer therapy.
SUMMARY
The present disclosure, in various embodiments, provides single-domain antibodies having binding specificity to the human Nectin-4 protein. These antibodies can cross-react to cynomolgus Nectin-4. With the excellent binding affinity and the small size, these antibodies can suitably be used to generate bispecific antibodies, such as those that also target an immune cell.
In accordance with one embodiment of the present disclosure, therefore, provided is a single-domain antibody or antigen-binding fragment thereof having specificity to a human Nectin-4 protein, comprising a CDR1, a CDR2 and a CDR3, wherein the CDR1, CDR2 and CDR3, respectively, comprise the CDR1, CDR2 and CDR3 sequences of any one of antibodies CMB7-1, CMB7-2, CMB7-3, CMB7-4, or CMB7-5. These example antibodies have amino acid sequences as set forth in SEQ ID NOs: 1-5.
In some embodiments, the CDR1, CDR2 and CDR3, respectively, comprise the amino acid sequences of SEQ ID NOs: 6-8, SEQ ID NOs: 9-11, SEQ ID NOs: 12-14, SEQ ID NOs: 15-17, or SEQ ID NOs: 18-20.
In some embodiments, the single-domain antibody comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-5.
Also provided is a bispecific antibody comprising the single-domain antibody or antigen-binding fragment thereof disclosed herein and a second antibody or antigen-binding fragment having specificity to an antigen different from Nectin-4. In some embodiments, the antigen is human CD3.
In some embodiments, the bispecific antibody comprises four of the single-domain antibodies, each fused to a heavy chain variable region (VH) or a light chain variable region (VL) of a full Fab antibody having specificity to the human CD3. In some embodiments, each single-chain domain antibody is fused to the VH or VL through a peptide linker.
In some embodiments, the peptide linker has a length that is longer than 7 amino acids. In some embodiments, the peptide linker has a length that is shorter than 50 amino acids.
Also provided are polynucleotides encoding for any of the antibodies or fragments.
Methods are also provided, for using the disclosed antibodies or fragment for treating diseases such as cancer.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows SDS-PAGE images confirming the expression of the antibodies.
FIG. 2 shows the results of the ELISA-based antibody affinity testing.
FIG. 3 shows that all anti-human Nectin-4 VHH antibodies cross-reacted to cynomolgus Nectin-4.
FIG. 4 illustrates two formats (Format A and Format B) of tested bispecific antibodies.
FIG. 5 shows the results of T cell activation assays in the presence of Nectin-4-expressing cells.
FIG. 6-7 show the results of T cell killing of target Nectin-4-expressing cells (FIG. 6: MCF-7 cells; FIG. 7: T-47D cells) .
DETAILED DESCRIPTION
Definitions
It is to be noted that the term “a” or “an” entity refers to one or more of that entity; for example, “an antibody, ” is understood to represent one or more antibodies. As such, the terms “a” (or “an” ) , “one or more, ” and “at least one” can be used interchangeably herein.
As used herein, the term “polypeptide” is intended to encompass a singular “polypeptide” as well as plural “polypeptides, ” and refers to a molecule composed of monomers (amino acids) linearly linked by amide bonds (also known as peptide bonds) . The term “polypeptide” refers to any chain or chains of two or more amino acids, and does not refer to a specific length of the product. Thus, peptides, dipeptides, tripeptides, oligopeptides, “protein, ” “amino acid chain, ” or any other term used to refer to a chain or chains of two or more amino acids, are included within the definition of “polypeptide, ” and the term “polypeptide” may be used instead of, or interchangeably with any of these terms. The term “polypeptide” is also intended to refer to the products of post-expression modifications of the polypeptide, including without limitation glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, or modification by non-naturally occurring amino acids. A polypeptide may be derived from a natural biological source or produced by recombinant technology, but is not necessarily translated from a designated nucleic acid sequence. It may be generated in any manner, including by chemical synthesis.
The term “isolated” as used herein with respect to cells, nucleic acids, such as DNA or RNA, refers to molecules separated from other DNAs or RNAs, respectively, that are present in the natural source of the macromolecule. The term “isolated” as used herein also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other  chemicals when chemically synthesized. Moreover, an “isolated nucleic acid” is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state. The term “isolated” is also used herein to refer to cells or polypeptides which are isolated from other cellular proteins or tissues. Isolated polypeptides is meant to encompass both purified and recombinant polypeptides.
As used herein, the term “recombinant” as it pertains to polypeptides or polynucleotides intends a form of the polypeptide or polynucleotide that does not exist naturally, a non-limiting example of which can be created by combining polynucleotides or polypeptides that would not normally occur together.
“Homology” or “identity” or “similarity” refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An “unrelated” or “non-homologous” sequence shares less than 40%identity, though preferably less than 25%identity, with one of the sequences of the present disclosure.
A polynucleotide or polynucleotide region (or a polypeptide or polypeptide region) has a certain percentage (for example, 60 %, 65 %, 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 98 %or 99 %) of “sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Ausubel et al. eds. (2007) Current Protocols in Molecular Biology. Preferably, default parameters are used for alignment. One alignment program is BLAST, using default parameters. In particular, programs are BLASTN and BLASTP, using the following default parameters: Genetic code = standard; filter = none; strand = both; cutoff =60; expect = 10; Matrix = BLOSUM62; Descriptions = 50 sequences; sort by = HIGH SCORE; Databases = non-redundant, GenBank + EMBL + DDBJ + PDB + GenBank CDS translations +SwissProtein + SPupdate + PIR. Biologically equivalent polynucleotides are those having the  above-noted specified percent homology and encoding a polypeptide having the same or similar biological activity.
The term “an equivalent nucleic acid or polynucleotide” refers to a nucleic acid having a nucleotide sequence having a certain degree of homology, or sequence identity, with the nucleotide sequence of the nucleic acid or complement thereof. A homolog of a double stranded nucleic acid is intended to include nucleic acids having a nucleotide sequence which has a certain degree of homology with or with the complement thereof. In one aspect, homologs of nucleic acids are capable of hybridizing to the nucleic acid or complement thereof. Likewise, “an equivalent polypeptide” refers to a polypeptide having a certain degree of homology, or sequence identity, with the amino acid sequence of a reference polypeptide. In some aspects, the sequence identity is at least about 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%. In some aspects, the equivalent polypeptide or polynucleotide has one, two, three, four or five addition, deletion, substitution and their combinations thereof as compared to the reference polypeptide or polynucleotide. In some aspects, the equivalent sequence retains the activity (e.g., epitope-binding) or structure (e.g., salt-bridge) of the reference sequence.
Hybridization reactions can be performed under conditions of different “stringency” . In general, a low stringency hybridization reaction is carried out at about 40 ℃ in about 10 x SSC or a solution of equivalent ionic strength/temperature. A moderate stringency hybridization is typically performed at about 50 ℃ in about 6 x SSC, and a high stringency hybridization reaction is generally performed at about 60 ℃ in about 1 x SSC. Hybridization reactions can also be performed under “physiological conditions” which is well known to one of skill in the art. A non-limiting example of a physiological condition is the temperature, ionic strength, pH and concentration of Mg2+ normally found in a cell.
A polynucleotide is composed of a specific sequence of four nucleotide bases: adenine (A) ; cytosine (C) ; guanine (G) ; thymine (T) ; and uracil (U) for thymine when the polynucleotide is RNA. Thus, the term “polynucleotide sequence” is the alphabetical representation of a polynucleotide molecule. This alphabetical representation can be input into databases in a computer having a central processing unit and used for bioinformatics applications such as functional genomics and homology searching. The term “polymorphism” refers to the coexistence of more than one form of a gene or portion thereof. A portion of a gene of which  there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a “polymorphic region of a gene” . A polymorphic region can be a single nucleotide, the identity of which differs in different alleles.
The terms “polynucleotide” and “oligonucleotide” are used interchangeably and refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides or analogs thereof. Polynucleotides can have any three-dimensional structure and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: a gene or gene fragment (for example, a probe, primer, EST or SAGE tag) , exons, introns, messenger RNA (mRNA) , transfer RNA, ribosomal RNA, ribozymes, cDNA, dsRNA, siRNA, miRNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers. A polynucleotide can comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure can be imparted before or after assembly of the polynucleotide. The sequence of nucleotides can be interrupted by non-nucleotide components. A polynucleotide can be further modified after polymerization, such as by conjugation with a labeling component. The term also refers to both double-and single-stranded molecules. Unless otherwise specified or required, any embodiment of this disclosure that is a polynucleotide encompasses both the double-stranded form and each of two complementary single-stranded forms known or predicted to make up the double-stranded form.
The term “encode” as it is applied to polynucleotides refers to a polynucleotide which is said to “encode” a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA for the polypeptide and/or a fragment thereof. The antisense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.
As used herein, an “antibody” or “antigen-binding polypeptide” refers to a polypeptide or a polypeptide complex that specifically recognizes and binds to an antigen. An antibody can be a whole antibody and any antigen binding fragment or a single chain thereof. Thus the term “antibody” includes any protein or peptide containing molecule that comprises at least a portion of an immunoglobulin molecule having biological activity of binding to the antigen. Examples of such include, but are not limited to a complementarity determining region (CDR) of a heavy  or light chain or a ligand binding portion thereof, a heavy chain or light chain variable region, a heavy chain or light chain constant region, a framework (FR) region, or any portion thereof, or at least one portion of a binding protein.
The terms “antibody fragment” or “antigen-binding fragment” , as used herein, is a portion of an antibody such as F (ab’) 2, F (ab) 2, Fab’, Fab, Fv, scFv and the like. Regardless of structure, an antibody fragment binds with the same antigen that is recognized by the intact antibody. The term “antibody fragment” includes aptamers, spiegelmers, and diabodies. The term “antibody fragment” also includes any synthetic or genetically engineered protein that acts like an antibody by binding to a specific antigen to form a complex.
A “single-chain variable fragment” or “scFv” refers to a fusion protein of the variable regions of the heavy (VH) and light chains (VL) of immunoglobulins. In some aspects, the regions are connected with a short linker peptide of ten to about 25 amino acids. The linker can be rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL, or vice versa. This protein retains the specificity of the original immunoglobulin, despite removal of the constant regions and the introduction of the linker. ScFv molecules are known in the art and are described, e.g., in US patent 5,892,019.
The term antibody encompasses various broad classes of polypeptides that can be distinguished biochemically. Those skilled in the art will appreciate that heavy chains are classified as gamma, mu, alpha, delta, or epsilon (γ, μ, α, δ, ε) with some subclasses among them (e.g., γ l-γ4) . It is the nature of this chain that determines the “class” of the antibody as IgG, IgM, IgA IgG, or IgE, respectively. The immunoglobulin subclasses (isotypes) e.g., IgG1, IgG2, IgG3, IgG4, IgG5, etc. are well characterized and are known to confer functional specialization. Modified versions of each of these classes and isotypes are readily discernable to the skilled artisan in view of the instant disclosure and, accordingly, are within the scope of the instant disclosure. All immunoglobulin classes are clearly within the scope of the present disclosure, the following discussion will generally be directed to the IgG class of immunoglobulin molecules. With regard to IgG, a standard immunoglobulin molecule comprises two identical light chain polypeptides of molecular weight approximately 23,000 Daltons, and two identical heavy chain polypeptides of molecular weight 53,000-70,000. The  four chains are typically joined by disulfide bonds in a “Y” configuration wherein the light chains bracket the heavy chains starting at the mouth of the “Y” and continuing through the variable region.
By “specifically binds” or “has specificity to, ” it is generally meant that an antibody binds to an epitope via its antigen-binding domain, and that the binding entails some complementarity between the antigen-binding domain and the epitope. According to this definition, an antibody is said to “specifically bind” to an epitope when it binds to that epitope, via its antigen-binding domain more readily than it would bind to a random, unrelated epitope. The term “specificity” is used herein to qualify the relative affinity by which a certain antibody binds to a certain epitope. For example, antibody “A” may be deemed to have a higher specificity for a given epitope than antibody “B, ” or antibody “A” may be said to bind to epitope “C” with a higher specificity than it has for related epitope “D. ”
As used herein, the terms “treat” or “treatment” refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the progression of cancer. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total) , whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.
By “subject” or “individual” or “animal” or “patient” or “mammal, ” is meant any subject, particularly a mammalian subject, for whom diagnosis, prognosis, or therapy is desired. Mammalian subjects include humans, domestic animals, farm animals, and zoo, sport, or pet animals such as dogs, cats, guinea pigs, rabbits, rats, mice, horses, cattle, cows, and so on.
As used herein, phrases such as “to a patient in need of treatment” or “a subject in need of treatment” includes subjects, such as mammalian subjects, that would benefit from administration of an antibody or composition of the present disclosure used, e.g., for detection, for a diagnostic procedure and/or for treatment.
Single Domain Anti-Nectin-4 Antibodies
The Nectin proteins play an important role in cell-cell adhesion. Nectin-4 is a single pass type I transmembrane protein of about 52 kDa in size. Unlike Nectins 1, 2 and 3 which are widely expressed in adult tissues, Nectin-4 is expressed specifically in the embryo and placenta. However, Nectin-4 can also be expressed in various cancer cells, making it a suitable target for cancer therapy.
The present disclosure provides anti-Nectin-4 antibodies in the single domain antibody format. A single-domain antibody (sdAb) , also known as a nanobody, is an antibody fragment consisting of a single monomeric variable antibody domain. The earliest single-domain antibodies were engineered from heavy-chain antibodies found in camelids which are also referred to as VHH fragments. Like a VH of a conventional antibody, each VHH includes three CDRs, CDR1, CDR2 and CDR3. A VHH can further include constant domains such as CH2 and CH3.
As shown in FIG. 2, all of the identified VHH antibodies, from CMB7-1 through CMB7-5, exhibited strong binding to the human Nectin-4 protein. All of these antibodies, meanwhile, also have strong affinity the counterpart cynomolgus protein (FIG. 3) , allowing them to be tested in cynomolgus monkeys as a preclinical model.
One of these antibodies, CMB7-1 (VHH 35) , was tested in two different formats (FIG. 4) of bispecific antibodies, which also target the human CD3 complex. The results in FIG. 5-7 demonstrate that bispecific antibodies of Format B exhibited excellent T cell activation and T cell killing activities. Thus, these VHH antibodies can be suitably used for treating diseases such as cancer.
In one embodiment, provided is an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of CDR1, CDR2, and CDR3 of antibody CMB7-1, CMB7-2, CMB7-3, CMB7-4, or CMB7-5. The sequences of these antibodies are provided in Table 1, as SEQ ID NOs: 1-5.
In one embodiment, provided is an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of SEQ ID NOs: 6-8. In one embodiment, provided is an antibody or antigen-binding fragment that includes a  CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of SEQ ID NOs: 9-11. In one embodiment, provided is an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of SEQ ID NOs: 12-14. In one embodiment, provided is an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of SEQ ID NOs: 15-17. In one embodiment, provided is an antibody or antigen-binding fragment that includes a CDR1, a CDR2, and a CDR3, respectively having the amino acid sequences of SEQ ID NOs: 18-20.
In one embodiment, provided is an antibody or antigen-binding fragment that includes the amino acid sequence of any one of SEQ ID NOs: 1-5, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NOs: 1-5. In some embodiments, the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NOs: 1-24 retains the CDR sequences of the corresponding reference antibody.
In one embodiment, provided is an antibody or antigen-binding fragment that includes the amino acid sequence of SEQ ID NO: 1, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 1. In some embodiments, the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 1 retains the CDR sequences of the corresponding reference antibody, such as SEQ ID NO: 6, 7 and 8.
In one embodiment, provided is an antibody or antigen-binding fragment that includes the amino acid sequence of SEQ ID NO: 2, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 2. In some embodiments, the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 2 retains the CDR sequences of the corresponding reference antibody, such as SEQ ID NO: 9, 10 and 11.
In one embodiment, provided is an antibody or antigen-binding fragment that includes the amino acid sequence of SEQ ID NO: 3, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 3. In some embodiments, the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 3  retains the CDR sequences of the corresponding reference antibody, such as SEQ ID NO: 12, 13 and 14.
In one embodiment, provided is an antibody or antigen-binding fragment that includes the amino acid sequence of SEQ ID NO: 4, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 4. In some embodiments, the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 4 retains the CDR sequences of the corresponding reference antibody, such as SEQ ID NO: 15, 16 and 17.
In one embodiment, provided is an antibody or antigen-binding fragment that includes the amino acid sequence of SEQ ID NO: 5, or an amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 5. In some embodiments, the amino acid sequence having at least 85%, 90%, 95%, 98%, or 99%sequence to any one of SEQ ID NO: 5 retains the CDR sequences of the corresponding reference antibody, such as SEQ ID NO: 18, 19 and 20.
In one embodiment, provided is an antibody or antigen-binding fragment that includes the amino acid sequence of any one of SEQ ID NO: 1-5, optionally with 1, 2, 3, 4, or 5 amino acid additions, deletions and/or substitutions. In some embodiments, the substitutions are conservative substitutions. In some embodiments, the additions, deletions and/or substitutions are within the framework regions.
In some embodiments, the antibody or fragment further includes constant domains, such as CH2 and/or CH3. In some embodiments, the CH2 and/or CH3 are from human IgG1, IgG2, IgG3 or IgG4 sequences.
In some embodiments, the substitutions are conservative substitutions. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine) , acidic side chains (e.g., aspartic acid, glutamic acid) , uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine) , nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan) , beta-branched side  chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine) . Thus, a nonessential amino acid residue in an immunoglobulin polypeptide is preferably replaced with another amino acid residue from the same side chain family. In another embodiment, a string of amino acids can be replaced with a structurally similar string that differs in order and/or composition of side chain family members.
Non-limiting examples of conservative amino acid substitutions are provided in the table below, where a similarity score of 0 or higher indicates conservative substitution between the two amino acids.
Table A. Amino Acid Similarity Matrix
Table B. Conservative Amino Acid Substitutions

In some embodiments, the antibody or fragment is of class IgG1, IgG2, IgG3 or IgG4. In some embodiments, the antibody or fragment is antibody-dependent cellular cytotoxicity (ADCC) -competent. In some embodiments, the antibody or fragment is not ADCC-competent.
Bispecific Antibodies
As explained above, these newly identified anti-Nectin-4 VHH antibodies are suitable for inclusion in a bispecific antibody. Two formats, Formats A and B, were tested, but Format A did not exhibit sufficient binding to Nectin-4 expressed on cell surfaces. Format B, which is quadruple-valent with respect to Nectin-4, has strong binding to the cells. Further, when incubated with T cells (targeted by binding to CD3) and Nectin-4-expressing tumor cells, these bispecific antibodies exhibited strong T cell activation, and T cell mediated killing of the tumor cells.
In accordance with one embodiment of the present disclosure, therefore, provided is a bispecific antibody that includes any of the VHH antibody of the present disclosure and a second antibody or antigen-binding fragment that binds another antigen. In some embodiments, the second antigen is a protein expressed on an immune cell.
Proteins on immune cells that can be targeted include, without limitation, CD3, CD47, PD1, PD-L1, 4-1BB, OX40, SIRPA, CD16, CD28, CTLA4, and CD27. In some embodiments, the immune cell surface protein is CD3.
As shown in the data, a 4: 2 VHH: Fab format (Format B) has excellent therapeutic activity as compared to the other format tested. The 4: 2 format is illustrated in FIG. 4B, which includes an antibody (e.g., anti-CD3) in the conventional Fab format, and four VHH unit specific to Nectin-4. Each VHH is fused to the N-terminus of a variable region of the Fab, through a peptide linker, such as GS (GGGGS) (SEQ ID NO: 21) , GS (GGGGS) 3 (SEQ ID NO: 22) , and GS (GGGGS) 6 (SEQ ID NO: 23) .
For certain VHH, an interesting discovery is that the length of the peptide linker has significant effect on the bispecific antibody’s activity in binding to the Nectin-4 on a cell surface. Therefore, in some embodiments, the peptide linker may have a length that is at least 2 amino acids, or at least 5, 7, 8, 9, 10, 12, 15, 17, 20, 22, or 25 amino acids. In some embodiments, the length is not longer than 15, 20, 25, 30, 35, 40, 45 or 50 amino acids.
Example linkers include multiple glycine (G) and serine (S) . In some embodiments, the linker includes at least 50%, 60%, 70%or 80%glycine. Example linker sequences include GS(GGGGS) (SEQ ID NO: 21) , GS (GGGGS) 3 (SEQ ID NO: 22) , and GS (GGGGS) 6 (SEQ ID NO: 23) , without limitation.
Accordingly, in one embodiment, the present disclosure provides a bispecific antibody having specificity to an immune cell (e.g., targeting CD3) and Nectin-4. In some embodiments, the bispecific antibody includes a conventional antibody specific to the human CD3 complex. In some embodiments, the bispecific antibody includes multiple (e.g., 2 and 4) VHH targeting Nectin-4.
Accordingly, in one embodiment, provided is a bispecific antibody comprising a first portion and a second portion, wherein the first portion comprises two pairs of VH and VL each capable of binding a human CD3 complex, the second portion comprises four single-domain antibody (VHH) fragments as disclosed herein, wherein each VHH fragment is fused, through a peptide linker, to the N-terminus of each of the VH and VL of the first portion.
In some embodiments, the bispecific antibody further includes constant domains, such as CH1 and CL, and CH2 and/or CH3. In some embodiments, the constant regions are from human IgG1, IgG2, IgG3 or IgG4 sequences.
It will also be understood by one of ordinary skill in the art that antibodies as disclosed herein may be modified such that they vary in amino acid sequence from the naturally occurring binding polypeptide from which they were derived. For example, a polypeptide or amino acid sequence derived from a designated protein may be similar, e.g., have a certain percent identity to the starting sequence, e.g., it may be 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%identical to the starting sequence.
In certain embodiments, the antibody comprises an amino acid sequence or one or more moieties not normally associated with an antibody. Exemplary modifications are described in more detail below. For example, an antibody of the disclosure may comprise a flexible linker sequence, or may be modified to add a functional moiety (e.g., PEG, a drug, a toxin, or a label) .
Antibodies, variants, or derivatives thereof of the disclosure include derivatives that are modified, i.e., by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from binding to the epitope. For example, but not by way of limitation, the antibodies can be modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the antibodies may contain one or more non-classical amino acids.
In some embodiments, the antibodies may be conjugated to therapeutic agents, prodrugs, peptides, proteins, enzymes, viruses, lipids, biological response modifiers, pharmaceutical agents, or PEG.
The antibodies may be conjugated or fused to a therapeutic agent, which may include detectable labels such as radioactive labels, an immunomodulator, a hormone, an enzyme, an oligonucleotide, a photoactive therapeutic or diagnostic agent, a cytotoxic agent, which may be a drug or a toxin, an ultrasound enhancing agent, a non-radioactive label, a combination thereof and other such agents known in the art.
The antibodies can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antigen-binding polypeptide is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.
The antibodies can also be detectably labeled using fluorescence emitting metals such as 152Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA) . Techniques for conjugating various moieties to an antibody are well known, see, e.g., Arnon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy” , in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds. ) , pp. 243-56 (Alan R. Liss, Inc. (1985) ; Hellstrom et al., “Antibodies For Drug Delivery” , in Controlled Drug Delivery (2nd Ed. ) , Robinson et al., (eds. ) , Marcel Dekker, Inc., pp. 623-53 (1987) ; Thorpe, “Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review” , in Monoclonal Antibodies ‘84: Biological And Clinical Applications, Pinchera et al. (eds. ) , pp. 475-506 (1985) ; “Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy” , in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds. ) , Academic Press pp. 303-16 (1985) , and Thorpe et al., “The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates” , Immunol. Rev. (52: 119-58 (1982) ) .
Polynucleotides Encoding the Antibodies and Methods of Preparing the Antibodies
The present disclosure also provides isolated polynucleotides or nucleic acid molecules encoding the antibodies, variants or derivatives thereof of the disclosure. The polynucleotides of the present disclosure may encode the entire heavy and light chain variable regions of the antigen-binding polypeptides, variants or derivatives thereof on the same polynucleotide molecule or on separate polynucleotide molecules. Additionally, the polynucleotides of the present disclosure may encode portions of the heavy and light chain variable regions of the antigen-binding polypeptides, variants or derivatives thereof on the same polynucleotide molecule or on separate polynucleotide molecules.
Methods of making antibodies are well known in the art and described herein. In certain embodiments, both the variable and constant regions of the antigen-binding polypeptides of the present disclosure are fully human. Fully human antibodies can be made using techniques described in the art and as described herein. For example, fully human antibodies against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Exemplary techniques that can be used to make such antibodies are described in U.S. patents: 6,150,584; 6,458,592; 6,420,140 which are incorporated by reference in their entireties.
In certain embodiments, the prepared antibodies will not elicit a deleterious immune response in the animal to be treated, e.g., in a human. In one embodiment, antigen-binding polypeptides, variants, or derivatives thereof of the disclosure are modified to reduce their immunogenicity using art-recognized techniques. For example, antibodies can be humanized, primatized, deimmunized, or chimeric antibodies can be made. These types of antibodies are derived from a non-human antibody, typically a murine or primate antibody, that retains or substantially retains the antigen-binding properties of the parent antibody, but which is less immunogenic in humans. This may be achieved by various methods, including (a) grafting the entire non-human variable domains onto human constant regions to generate chimeric antibodies; (b) grafting at least a part of one or more of the non-human complementarity determining regions (CDRs) into a human framework and constant regions with or without retention of critical framework residues; or (c) transplanting the entire non-human variable domains, but “cloaking” them with a human-like section by replacement of surface residues. Such methods are disclosed in Morrison et al., Proc. Natl. Acad. Sci. USA 57: 6851-6855 (1984) ; Morrison et al., Adv. Immunol. 44: 65-92 (1988) ; Verhoeyen et al., Science 239: 1534-1536 (1988) ; Padlan, Molec. Immun. 25: 489-498 (1991) ; Padlan, Molec. Immun. 31: 169-217 (1994) , and U.S. Pat. Nos.: 5,585,089, 5,693,761, 5,693,762, and 6,190,370, all of which are hereby incorporated by reference in their entirety.
De-immunization can also be used to decrease the immunogenicity of an antibody. As used herein, the term “de-immunization” includes alteration of an antibody to modify T-cell epitopes (see, e.g., International Application Publication Nos.: WO/9852976 A1 and WO/0034317 A2) . For example, variable heavy chain and variable light chain sequences from  the starting antibody are analyzed and a human T-cell epitope “map” from each V region showing the location of epitopes in relation to complementarity-determining regions (CDRs) and other key residues within the sequence is created. Individual T-cell epitopes from the T-cell epitope map are analyzed in order to identify alternative amino acid substitutions with a low risk of altering activity of the final antibody. A range of alternative variable heavy and variable light sequences are designed comprising combinations of amino acid substitutions and these sequences are subsequently incorporated into a range of binding polypeptides. Typically, between 12 and 24 variant antibodies are generated and tested for binding and/or function. Complete heavy and light chain genes comprising modified variable and human constant regions are then cloned into expression vectors and the subsequent plasmids introduced into cell lines for the production of whole antibody. The antibodies are then compared in appropriate biochemical and biological assays, and the optimal variant is identified.
The binding specificity of antigen-binding polypeptides of the present disclosure can be determined by in vitro assays such as immunoprecipitation, radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA) .
Cancer Treatment
As described herein, the antibodies, variants or derivatives of the present disclosure may be used in certain treatment and diagnostic methods.
The present disclosure is further directed to antibody-based therapies which involve administering the antibodies of the disclosure to a patient such as an animal, a mammal, and a human for treating one or more of the disorders or conditions described herein. Therapeutic compounds of the disclosure include, but are not limited to, antibodies of the disclosure (including variants and derivatives thereof as described herein) and nucleic acids or polynucleotides encoding antibodies of the disclosure (including variants and derivatives thereof as described herein) .
The antibodies of the disclosure can also be used to treat or inhibit cancer. In some embodiments, Nectin-4 is overexpressed in tumor cells. Accordingly, in some embodiments, provided are methods for treating a cancer in a patient in need thereof. The method, in one embodiment, entails administering to the patient an effective amount of an antibody of the  present disclosure. In some embodiments, at least one of the cancer cells (e.g., stromal cells) in the patient expresses, over-express, or is induced to express the tumor antigen. Induction of a gene expression, for instance, can be done by administration of a tumor vaccine or radiotherapy.
Tumors that can be suitably treated include those of bladder cancer, non-small cell lung cancer, renal cancer, breast cancer, urethral cancer, colorectal cancer, head and neck cancer, squamous cell cancer, Merkel cell carcinoma, gastrointestinal cancer, stomach cancer, esophageal cancer, ovarian cancer, renal cancer, and small cell lung cancer. Accordingly, the presently disclosed antibodies can be used for treating any one or more such cancers.
Additional diseases or conditions associated with increased cell survival, that may be treated, prevented, diagnosed and/or prognosed with the antibodies or variants, or derivatives thereof of the disclosure include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia) ) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia) ) , polycythemia vera, lymphomas (e.g., Hodgkin’s disease and non-Hodgkin’s disease) , multiple myeloma, Waldenstrom’s macroglobulinemia, heavy chain disease, and solid tumors including, but not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing’s tumor, leiomyosarcoma, rhabdomyo sarcoma, colon carcinoma, pancreatic cancer, breast cancer, thyroid cancer, endometrial cancer, melanoma, prostate cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm’s tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma and retinoblastoma.
A specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the particular antibodies, variant or derivative thereof used, the patient’s age, body weight, general health, sex, and diet, and the time of administration, rate of excretion, drug combination, and the severity of the particular disease being treated. Judgment of such factors by medical caregivers is within the ordinary skill in the art. The amount will also depend on the individual patient to be treated, the route of administration, the type of formulation, the characteristics of the compound used, the severity of the disease, and the desired effect. The amount used can be determined by pharmacological and pharmacokinetic principles well known in the art.
Methods of administration of the antibodies, variants or include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The antigen-binding polypeptides or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc. ) and may be administered together with other biologically active agents. Thus, pharmaceutical compositions containing the antigen-binding polypeptides of the disclosure may be administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, drops or transdermal patch) , bucally, or as an oral or nasal spray.
The term “parenteral” as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intra-articular injection and infusion.
Administration can be systemic or local. In addition, it may be desirable to introduce the antibodies of the disclosure into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
It may be desirable to administer the antibodies polypeptides or compositions of the disclosure locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction, with  a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the disclosure, care must be taken to use materials to which the protein does not absorb.
Compositions
The present disclosure also provides pharmaceutical compositions. Such compositions comprise an effective amount of an antibody, and an acceptable carrier.
In a specific embodiment, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. Further, a “pharmaceutically acceptable carrier” will generally be a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents such as acetates, citrates or phosphates. Antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; and agents for the adjustment of tonicity such as sodium chloride or dextrose are also envisioned. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as  pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in Remington’s Pharmaceutical Sciences by E.W. Martin, incorporated herein by reference. Such compositions will contain a therapeutically effective amount of the antigen-binding polypeptide, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration. The parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
In an embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
The compounds of the disclosure can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
EXAMPLES
Example 1. Generation of single domain antibodies against human Nectin-4
This example shows how anti-human-Nectin-4 single domain antibodies were generated using immunization of alpaca followed by phage library construction and selection.
Recombinant human Nectin-4/hFc fusion proteins were used as the immunogen to raise anti-human Nectin-4 antibodies. Alpaca PBMCs were collected, and an antibody cDNA library was generated by RNA isolation and PCR amplification and cloning into a phage display vector. The libraries were then subjected for one round of liquid phase selection and one round of solid phase selection.
The binders were amplified from antigen positive phages by PCR and sequenced. The expressed proteins were confirmed with SDS-PAGE (FIG. 1) . Sequences of the unique antibodies and their CDR regions are provided in the table below.
Table 1. Antibody Sequences
Table 2. CDR Sequences

Example 2. ELISA Binding Testing
In the example, the antibodies were subjected to an ELISA-based binding assay. The same concentration (0.5 μg/mL) of human Nectin-4 was coated on 96 well enzyme plate. 2 μg/mL of each antibody and different concentration (0.2 μg/mL and 1 μg/mL) of Goat anti-human Nectin-4 antibody (as control) were added after blocking. After washing off the excess samples, Goat anti-human IgG Fc cross adsorbed antibody (or Rabbit anti-goat IgG antibody) coupled with horseradish peroxidase (HRP) was added. HRP can react with substrate 3, 3’, 5, 5’-tetramethylbenzidine (TMB) to produce colored products. The binding affinity of the CMB7 with human Nectin-4 can be calculated by reading the OD450 value of the reaction solution, because the absorbance of the reaction solution is positively correlated with the content of the antibody combined with antigen. Therefore, ELISA was used to detect the binding affinity of CMB7 to human Nectin-4.
Assay Procedure:
Coating Antigen Preparation
Dilute the coating antigen (Human Nectin-4) to the working concentration (0.5 μg/mL) in PBS. Immediately coat the 96-well microplate with 100 μL per well of the diluted coating antigen. Seal the microplate and incubate overnight at 4℃.
Blocking
Aspirate wells and wash 5 times with 300 μL/well Wash Buffer by microplate washer. Allowing time for soaking (~1 minute) during each wash step increases the effectiveness of the washes. Then dehydrate the microplate by microplate dehydrator to remove any residual buffer. Block wells with 200 μL of Blocking Buffer. Incubate in the 37 ℃ water bath for 1 hours.
Sample Preparation
Repeat the wash/dehydrate. Dilute the samples to the working concentration (2 μg/mL) in Assay Buffer. Add 100 μL/well of prediluted samples to the appropriate wells. Seal the microplate and incubate in the 37 ℃ water bath for 1 hour.
Secondary Antibody Incubation
Repeat the wash/dehydrate. Dilute the secondary antibody 1: 2000 in Assay Buffer. Add 100 μL/well of diluted Secondary Antibody (1: 2000) to each well. Incubate plate in the dark in the 37 ℃ water bath for 1 hour.
Signal Detection
Repeat the wash/dehydrate. Add 100 μL/well of Substrate Solution (TMB) to each well. Incubate plate in the dark at room temperature for 3 minutes. Add 50 μL/well of Stop Solution. Read plate at 450 nm and analyze data.
Results:
The ELISA testing results are shown in FIG. 2 and Table 3. As shown, all of the antibodies exhibited potent binding affinity to the human Nectin-4 protein.
Table 3. ELISA Affinity Testing Results
Example 3. Kinetic Binding Testing
This exampled measured the kinetic binding affinity of the antibodies (fused to human Fc, VHH-Fc) to human Nectin-4.
The kinetic binding affinity of the antibodies to human Nectin-4 was detected by Biolayer interferometry. The HFC (Anti-HIgG FC) Probes (Probelife) was pre-wetted in Kinetics Buffer (Probelife) for 5 mins at 30℃ in Crimson 96 MAX 96-well reaction plate (ET Healthcare, 06-0098) . Probes were then dipped into wells containing the antibody at 4 μg/mL in Kinetics Buffer in the Greiner black microplate. The analyte (Human Nectin-4) with different concentration gradient dilution (starting from 200 nM, with step-wise 2-fold dilutions, a total of 5 concentration gradients) were used a 5-min association step then followed by a 16-min dissociation step in Kinetics Buffer. The data were analyzed by subtracting reference sample and fit to a 1: 1 K binding model for Structured Data Method of affinity constants using Data Analysis Software 1.7.2.0609 (Gator) .
Assay Procedure:
Equilibration of Probes
Set the plate temperature at 30 ℃, set the acquisition rate as standard kinetics (5.0 HZ) , Add 260 μL per well pre-wet buffer (K buffer) in column 1 at Crimson 96 MAX 96-well reaction plate, place the probe in the buffer, and pre-wet the probes for 5 min, 1000 rpm.
Baseline 1
Baseline the 6 probes in 200 μL/well K buffer for 2 mins at 1000 rpm in the column 1 at the Greiner 96-well polypropylene microplate. As balanced as possible, the final slope should preferably not be higher than 0.02 nm/min.
Loading Antibody onto Probe
Dilute the Antibody with K Buffer to the working concentration (4 μg/mL, 200 μL/well) and then load onto probes for 5 mins at 1000 rpm in the column 2/3/4/5/6 at the Greiner 96-well polypropylene microplate.
Baseline 2
Baseline the probes in 200 μL/well K buffer for 2 mins at 1000 rpm in the column 8/9/10/11/12 at the Greiner 96-well polypropylene microplate. To remove unbound mAb from the biosensor, minimize non-specific binding or reduce drift from buffer effects.
Association
Dilute the Antigen (Human Nectin-4) with K Buffer to the 6 concentrations (200, 100, 50, 25, 12.5, 0 nM, 200 μL/well) and then add the series of antigen to the wells from row A to row F in the column 7 at the Greiner 96-well polypropylene microplate. The antibody on the probe associate with different concentration gradient antigens for 5 mins at 1000 rpm in the column 7.
Dissociation
The probes dissociate in K buffer for 16 mins, and the antigen dissociate from the probes in the column 8/9/10/11/12 at the Greiner 96-well polypropylene microplate.
Regeneration
The probes Run Regeneration procedure (The probes are regenerated for 5 s in R Buffer in the column 11 Crimson 96 MAX 96-well reaction plate, followed by neutralization for 5s in Q Buffer in the column 12 Crimson 96 MAX 96-well reaction plate, this process is repeated 3 times) .
Results:
The testing results are summarized in Table 4 below. As shown, all of the antibodies had potent affinity to the human Nectin-14 protein.
Table 4. Affinity Measurement of Anti-Nectin 4 VHH-Fc
Example 4. Cross-Reaction to Cynomolgus Nectin-4
This example tested the binding affinity of the antibodies to cynomolgus Nectin-4.
The binding affinity of the antibodies to cynomolgus Nectin-4 were detected by ELISA. The same concentration (0.5 μg/mL) of cynomolgus Nectin-4 was coated on 96 well enzyme plate. The antibodies with different concentration gradient dilution (starting from 2 μg/mL, with step-wise 3-fold dilutions, a total of 7 concentration gradients) were added after blocking. After washing off the excess samples, Goat anti-human IgG Fc cross adsorbed antibody coupled with horseradish peroxidase (HRP) was added. HRP can react with substrate 3, 3’, 5, 5’-tetramethylbenzidine (TMB) to produce colored products. The binding affinity of the CMB7 with cynomolgus Nectin-4 can be calculated by reading the OD450 value of the reaction solution, because the absorbance of the reaction solution is positively correlated with the content of the antibody combined with antigen. Therefore, ELISA was used to detect the binding affinity of CMB7 to cynomolgus Nectin-4.
Assay Procedures:
Coating Antigen Preparation
Dilute the coating antigen (Cynomolgus Nectin-4) to the working concentration (0.5 μg/mL) in PBS. Immediately coat the 96-well microplate with 100 μL per well of the diluted coating antigen. Seal the microplate and incubate overnight at 4℃.
Blocking
Aspirate wells and wash 5 times with 300 μL/well Wash Buffer by microplate washer. Allowing time for soaking (~1 minute) during each wash step increases the effectiveness of the washes. Then dehydrate the microplate by microplate dehydrator to remove any residual buffer. Block wells with 200 μL of Blocking Buffer. Incubate in the 37℃ water bath for 1 hours.
Sample Preparation
Repeat the wash/dehydrate. Dilute the samples to the working concentration (2 μg/mL) in Assay Buffer and perform 3-fold serial dilutions to make the curve for a total 7 points. Add 100 μL/well of prediluted samples to the appropriate wells. Seal the microplate and incubate in the 37℃ water bath for 1 hour.
Secondary Antibody Incubation.
Repeat the wash/dehydrate. Dilute the secondary antibody 1: 2000 in Assay Buffer. Add 100 μL/well of diluted Secondary Antibody (1: 2000) to each well. Incubate plate in the dark in the 37℃ water bath for 1 hour.
Signal Detection
Repeat the wash/dehydrate. Add 100 μL/well of Substrate Solution (TMB) to each well. Incubate plate in the dark at room temperature for 3 minutes. Add 50 μL/well of Stop Solution. Read plate at 450 nm and analyze data.
Results:
The testing results are presented in FIG. 3, which shows that all of the tested antibodies cross-reacted to cynomolgus Nectin-4, and most of them exhibited potent binding affinity. This suggests that cynomolgus can be a suitable preclinical model for testing these antibodies.
Example 5. Flow Cytometry Analysis of Binding to Human Breast Cancer Cells
This example detected binding affinity of the antibodies to human breast cancer cells expressing Nectin-4, by Fluorescence Activating Cell Sorter (FACS) .
Assay Procedure:
Cell Preparation
1. After the cells reach 80%confluence, collecting the cells from the 100 mm dish.
2. Wash with 2 mL PBS. Add 1 mL 0.25%Trypsin-EDTA and incubate at 37 ℃ till the cells de-associate from the plate. Add 5 mL warm medium. Collect and transfer the cells to 15 mL conical tubes.
4. Collect and transfer the cells to 15 mL conical tubes.
5. Centrifuge at room temperature 300 g for 5 min.
Cell Plating
Wash with 5 mL PBS-0.2%BSA, centrifuge at 300 g, 4 ℃ for 5 min. Repeat twice. Discard the supernatant, and re-suspend in 2 mL PBS-0.2%BSA. Count the cells and add 1×105-2×105 cells (100 μL) into each well.
Primary Antibody Incubation
Add Protein (10 μg/mL or 5 nM) into each well and incubate at 4 ℃ for 1 hr.
Wash
Add 200 μL ice cold PBS-0.2%BSA to each well, centrifuge at 300 g, 4 ℃ for 5 min. Repeat 3 times. Add 100 μL PBS-0.2%BSA to re-suspend cells.
Secondary Antibody Incubation
Add Alexa Fluor 488 goat anti-human IgG (H+L) (1: 500 dilution) in ice cold PBS-0.2%BSA in each well and incubate at 4 ℃ for 1 hr.
Wash
Add 200 μL ice cold PBS-0.2%BSA to each well, centrifuge at 300 g, 4 ℃ for 5 min. Repeat 3 times. Add 200 μL PBS-0.2%BSA to re-suspend cells.
Apply to Flow Cytometry
Results:
The FACS results show that, at each test concentration, each antibody bound to the human breast cancer cell line MCF-7.
Example 6. Preparation of Anti-Nectin-4/Anti-CD3 Bispecific Antibodies
The single domain antibody (VHH) CMB7-1 ( “VHH 35” ) was used to construct bispecific antibodies that also target the human CD3. Two different formats of bispecific antibodies were used, as illustrated in FIG. 4.
FIG. 4A illustrates a format (Format A) in which a single VHH and a single VH/VL pair from an anti-CD3 antibody are fused to a Fc fragment. Format A is asymmetric, therefore, and has a 1: 1 valent against CD3 and Nectin-4.
In format of FIG. 4B (Format B) , each of 4 VHH is fused to the N-terminus of a variant domain of a full anti-CD3 antibody. This format is therefore is symmetric, and has a 2: 4 valent against CD3 and Nectin-4. The bispecific configurations and each chain’s structure are shown in Tables 5-6.
Table 5. Bispecific Antibodies and Structures of Related Chains

cDNA sequences encoding these bispecific antibodies were synthesized, and were used to produce the antibodies.
Example 7. T Cell Activation of the Bispecific Antibodies
This example tested the bispecific antibodies’ ability to activate T cells in presence of Nectin-4-expressing MCF-7 cells or T-47D cells.
FIG. 5 shows the T cell activation results for all bispecific antibodies. Format A (BJ182/12L1/BJ183-35) , which included only one VHH, did not exhibit observable T cell activation activities. Interestingly, BJ192-35/BJ196-35 also exhibited low activities. This is likely because the linker (GS (GGGGS) 1 (SEQ ID NO: 21) ) is too short. By contrast, BJ193-35/BJ197-35 (linker being GS (GGGGS) 3 (SEQ ID NO: 22) ) and BJ194-35/BJ198-35 (linker being GS (GGGGS) 6 (SEQ ID NO: 23) ) exhibited dose-dependent strong activities.
Example 8. Cytotoxic Activity of the Bispecific Antibodies
The aim of this study was to detect the cytotoxicity of anti-Nectin-4 to MCF-7 and T-47D cells.
The cytotoxicity of anti-Nectin-4 to MCF-7 and T-47D cells were detected by image-based T cell killing assay. In this study, MCF-7 and T-47D cells were the target cells and primary human T cells were the Effector cell. Primary human T cells were isolated from human PBMC cells and were frozen in liquid nitrogen. Target cell and Effector cells were added in the ratio of 1: 2 (MCF-7 /T-47D cells were 3x104 and primary human T cells were 6x104) in each well of the 96 well plate with 100 nM of anti-Nectin-4. The images were scanned after 40 hours of co-incubation.
Assay Procedures:
Cell Culture
T Cells
Thaw the vial of T cell by gentle agitation in a 37℃ water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water. Thawing must be rapid. Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70%ethanol. Note: All steps from this point should be carried out under strict aseptic conditions. Transfer cells in a larger vial containing 15 ml of pre-warmed growth medium. Centrifuge vial at 400 g for 5 minutes. Remove supernatant containing the cryoprotective agent and resuspend cells with 1 mL of T cell growth medium. Transfer the vial contents to a T75 cell culture flask containing 15 mL of T cell growth medium. Place the cells at 37 ℃ in 5%CO2.
MCF-7/T-47D Cells
Thaw the vial of MCF-7/T-47D Cells by gentle agitation in a 37℃ water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water. Thawing must be rapid. Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70%ethanol. All steps from this point should be  carried out under strict aseptic conditions. Transfer cells in 100 mm Dish containing 10 mL of pre-warmed growth medium. When cells grow to 80-90%, remove the cellular supernatant, wash with PBS for 1-2 times, and digest with 1 mL 0.25%Trypsin-EDTA (1X) , Phenol Red. Digestion was terminated with growth medium, gently blow the cells to remove them completely. Centrifuge 300 g for 5 min. Remove the supernatant and add 1 ml medium to blow away. Transfer the vial contents to a 100 mm dish containing 10 mL of growth medium. Place the culture at 37 ℃ in 5%CO2.
Target Cell Spreading (Day 1)
Prepare target cells in test medium. Add 200 μL of cell suspension (about 3*10^4 cells per well) into the plate. Place the cells at 37 ℃ in 5%CO2 to make the cells adhere.
T Cell Preparation (Day 2)
Prepare enough T cells (about 6*104 cells per well) at 6*105/mL in test medium.
Antibody Diluted (Day 2)
Dilute the BJ-009 and 12H3-1/12L1 to the work concentration (start from 10 nM, 3-fold diluted, 6 points) in test medium. For the work concentration at 10 nM, the antibody should be diluted to 100 nM as the sample concentration.
Mix the target cells with antibody and T cell (Day 2)
Wash the target cells with test medium 2 times. Add 80 μL test medium to each well. Add 20 μL antibody solution to the plate. Add 100 μL T cell suspension (about 6*10^4 cells per well) to the plate.
Imaging
Set the live cell imager (BioTek, Cytation5) . Scan a picture after 40 hours of co-incubation.
Results:
FIG. 6 (MCF-7 cells) and FIG. 7 (with T-47D cells) shows the T cell killing results for all bispecific antibodies. Larger and dark particles indicate target cell death. Consistent with the T cell activation results in Example 7, treatment with any antibody of Format A did not result in T cell killing, and treatment with most of the Format B bispecific antibodies caused cell death of the target cells (MCF-7 or T-47D cells) , demonstrating the efficacy of these antibodies.
***
The present disclosure is not to be limited in scope by the specific embodiments described which are intended as single illustrations of individual aspects of the disclosure, and any compositions or methods which are functionally equivalent are within the scope of this disclosure. It will be apparent to those skilled in the art that various modifications and variations can be made in the methods and compositions of the present disclosure without departing from the spirit or scope of the disclosure. Thus, it is intended that the present disclosure cover the modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents.
All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Claims (14)

  1. A single-domain antibody or antigen-binding fragment thereof having specificity to a human Nectin-4 protein, comprising a CDR1, a CDR2 and a CDR3, wherein the CDR1, CDR2 and CDR3, respectively, comprise the CDR1, CDR2 and CDR3 sequences of a single-domain antibody represented by an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-5.
  2. The single-domain antibody or antigen-binding fragment thereof of claim 1, wherein the CDR1, CDR2 and CDR3, respectively, comprise the amino acid sequences of SEQ ID NOs: 6-8, SEQ ID NOs: 9-11, SEQ ID NOs: 12-14, SEQ ID NOs: 15-17, or SEQ ID NOs: 18-20.
  3. The single-domain antibody or antigen-binding fragment thereof of claim 1, which comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-5.
  4. The single-domain antibody or antigen-binding fragment thereof of claim 1, wherein the CDR1, CDR2 and CDR3, respectively, comprise the amino acid sequences of SEQ ID NOs: 6, 7 and 8.
  5. The single-domain antibody or antigen-binding fragment thereof of claim 4, which comprises an amino acid sequence of SEQ ID NO: 1.
  6. A bispecific antibody, comprising the single-domain antibody or antigen-binding fragment thereof of any one of claims 1-5 and a second antibody or antigen-binding fragment having specificity to an antigen different from Nectin-4.
  7. The bispecific antibody of claim 6, wherein the antigen is human CD3.
  8. The bispecific antibody of claim 7, comprising four of the single-domain antibodies, each fused to a heavy chain variable region (VH) or a light chain variable region (VL) of a full Fab antibody having specificity to the human CD3.
  9. The bispecific antibody of claim 8, wherein each single-chain domain antibody is fused to the VH or VL through a peptide linker.
  10. The bispecific antibody of claim 9, wherein the peptide linker has a length that is longer than 7 amino acids.
  11. The bispecific antibody of claim 9 or 10, wherein the peptide linker has a length that is shorter than 50 amino acids.
  12. One or more polynucleotides encoding the antibody or fragment of any one of claims 1-11.
  13. A cell comprising the one or more polynucleotides of claim 12.
  14. A method for treating cancer, comprising administering a cancer patient an effective amount of the antibody or fragment of any one of claims 1-11.
PCT/CN2023/087392 2022-04-11 2023-04-10 Anti-nectin-4 antibodies and bispecific antibodies WO2023198007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022086157 2022-04-11
CNPCT/CN2022/086157 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023198007A1 true WO2023198007A1 (en) 2023-10-19

Family

ID=88328895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087392 WO2023198007A1 (en) 2022-04-11 2023-04-10 Anti-nectin-4 antibodies and bispecific antibodies

Country Status (1)

Country Link
WO (1) WO2023198007A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135159A2 (en) * 2018-01-04 2019-07-11 Shanghai Lumosa Therapeutics Co., Ltd. Single-domain antibody-cytosine deaminase fusion proteins
CN110392697A (en) * 2017-03-02 2019-10-29 国家医疗保健研究所 There is the antibody and application thereof of specificity to NECTIN-4
US20200231670A1 (en) * 2017-06-05 2020-07-23 Agensys, Inc. Nectin-4 binding proteins and methods of use thereof
US20210130459A1 (en) * 2018-05-09 2021-05-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Antibodies specific to human nectin4

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392697A (en) * 2017-03-02 2019-10-29 国家医疗保健研究所 There is the antibody and application thereof of specificity to NECTIN-4
US20210324104A1 (en) * 2017-03-02 2021-10-21 Inserm (Institute National De La Sante Et De La Recherche Medicale) Antibodies having specificity to nectin-4 and uses thereof
US20200231670A1 (en) * 2017-06-05 2020-07-23 Agensys, Inc. Nectin-4 binding proteins and methods of use thereof
WO2019135159A2 (en) * 2018-01-04 2019-07-11 Shanghai Lumosa Therapeutics Co., Ltd. Single-domain antibody-cytosine deaminase fusion proteins
US20210130459A1 (en) * 2018-05-09 2021-05-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Antibodies specific to human nectin4

Similar Documents

Publication Publication Date Title
KR102511268B1 (en) Antibodies to t cell immunoreceptor with ig and itim domains (tigit) and uses thereof
US11634490B2 (en) Blocking antibodies against CD47 and methods of use thereof
KR102536145B1 (en) Anti-pd-1 antibodies and uses thereof
TWI708788B (en) Bispecific antibody
WO2019144945A1 (en) Anti-pd-l1 antibody and il-7 fusions
CN115109160B (en) anti-EPCAM antibodies and bispecific antibodies
US11554177B2 (en) Antibody-drug conjugates targeting human Claudin 18.2
JP2023547530A (en) Anti-TIGIT antibodies and their uses
KR20220024211A (en) Anti-CD47 Antibodies and Their Uses
WO2021129697A1 (en) ANTI-SIRPα MONOCLONAL ANTIBODIES AND USES THEREOF
CN114702588B (en) anti-Nectin-4 antibodies and bispecific antibodies
CN114671953B (en) Single domain anti-Nectin-4 antibodies
CN115109164A (en) Bispecific antibodies targeting EPCAM and CD3
WO2023198007A1 (en) Anti-nectin-4 antibodies and bispecific antibodies
WO2023198008A1 (en) Compositions and methods for treating cancer
WO2023198011A1 (en) Single domain anti-nectin-4 antibodies
CN114702589B (en) Compositions and methods for treating cancer
WO2023222023A1 (en) Anti-epcam antibodies and bispecific antibodies
WO2023222024A1 (en) Bispecific antibodies targeting epcam and cd3
WO2023246879A1 (en) Anti-slc34a2 monoclonal antibodies and uses thereof
WO2021013269A1 (en) Bifunctional molecules with il-7 activity
WO2022127901A1 (en) BISPECIFIC ANTIBODIES TARGETING SIRPα AND PD-L1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787651

Country of ref document: EP

Kind code of ref document: A1