WO2023191051A1 - Resin product with information code - Google Patents

Resin product with information code Download PDF

Info

Publication number
WO2023191051A1
WO2023191051A1 PCT/JP2023/013561 JP2023013561W WO2023191051A1 WO 2023191051 A1 WO2023191051 A1 WO 2023191051A1 JP 2023013561 W JP2023013561 W JP 2023013561W WO 2023191051 A1 WO2023191051 A1 WO 2023191051A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
code
resin product
unevenness
processed
Prior art date
Application number
PCT/JP2023/013561
Other languages
French (fr)
Japanese (ja)
Inventor
真悟 花岡
宏樹 村田
英秋 佐藤
Original Assignee
大塚テクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚テクノ株式会社 filed Critical 大塚テクノ株式会社
Publication of WO2023191051A1 publication Critical patent/WO2023191051A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code

Definitions

  • the present disclosure relates to a resin product on which an information code is displayed.
  • Patent Document 1 discloses a technique for printing a design on the main body of a PET bottle container by laser printing.
  • the design is an identification mark for recycling, such as "PET” or "Plastic", which is required to be displayed under the Law for Promotion of Effective Utilization of Resources.
  • PET an identification mark for recycling
  • Patent Document 1 in a PET bottle container on which such an identification mark is laser printed, there is no need to use an ink component for printing, so that recyclability is improved.
  • Patent Document 2 discloses a PET bottle in which necessary information such as a name is directly engraved and printed on the bottle. Stamp printing can be performed, for example, by thermal processing or molding. This eliminates the need to separately attach a label to the PET bottle, providing a PET bottle with high recyclability.
  • Patent Documents 1 and 2 it is possible to display designs, characters, etc. on the PET bottle body without using external labels or ink components.
  • the patterns, characters, etc. illustrated in Patent Documents 1 and 2 are for human viewing.
  • PET bottles distributed in the general market are provided with an information code that is optically read by a machine, but Patent Documents 1 and 2 do not take this into account.
  • a PET bottle that does not require an external label or ink component and has an optically readable information code displayed on it has not been provided to date. This applies not only to PET bottles but also to highly transparent resin products.
  • the present disclosure aims to provide a transparent resin product on which an optically readable information code is displayed.
  • the resin product according to the first aspect of the present disclosure includes a wall portion.
  • the wall portion has a code region including a plurality of processed regions in which unevenness is formed and a transparent unprocessed region adjacent to the processed region and in which the unevenness is not formed.
  • the light reflectance of the processed area is higher than the light reflectance of the non-processed area, and the code area displays an optically readable information code.
  • the wall portion of the resin product itself displays an optically readable information code due to the processed areas having mutually different light reflectances and the transparent non-processed areas. That is, in order to display the information code, it is not necessary to attach ink components to the wall or to include additives that cause discoloration due to heat processing in the resin raw material.
  • the resin product according to the first aspect can also be applied to cases where the use of the above-mentioned ink components and additives is restricted, such as containers for foods, beverages, and medicines.
  • the resin product according to the first aspect there is no need to separately attach a label or sticker with an information code written thereon, and the process and resources for manufacturing these can be saved. Furthermore, the resin constituting the resin product can be easily recycled.
  • a resin product according to a second aspect of the present disclosure is a resin product according to the first aspect, wherein the information code is a barcode, the processing area corresponds to a space, and the non-processing area is a barcode. corresponds to
  • the resin product according to the third aspect of the present disclosure is the resin product according to the first aspect or the second aspect, and the maximum reflectance R max of the processed area and the non-resin product measured using a code verification machine.
  • the difference from the minimum reflectance R min of the processing area is 20% or more.
  • a resin product according to a fourth aspect of the present disclosure is a resin product according to any one of the first to third aspects, and the unevenness includes regularly arranged concave portions and convex portions.
  • a height difference between at least one pair of adjacent concave portions and the convex portions is 5 ⁇ m or more and 50 ⁇ m or less.
  • a resin product according to a fifth aspect of the present disclosure is a resin product according to the fourth aspect, wherein the unevenness has a height difference within a length range of 200 ⁇ m along the arrangement direction of the concave portion and the convex portion. It includes four or more pairs of adjacent concave portions and convex portions each having a diameter of 5 ⁇ m or more and 50 ⁇ m or less.
  • a resin product according to a sixth aspect of the present disclosure is a resin product according to any one of the first to fifth aspects, and the unevenness includes irregularly arranged concave portions and convex portions.
  • a resin product according to a seventh aspect of the present disclosure is a resin product according to the sixth aspect, and the surface roughness of the processed area is 1.5 ⁇ m or more.
  • a resin product according to an eighth aspect of the present disclosure is a resin product according to any one of the first to seventh aspects, and is a container made of polyethylene terephthalate.
  • a method for manufacturing a resin product with an information code includes the following (1) and (2).
  • (1) Prepare a resin product with a transparent wall.
  • (2) Forming a code region on the wall portion including a plurality of processing regions in which unevenness is formed and a transparent non-processing region adjacent to the processing region and in which the unevenness is not formed.
  • forming the code area means forming the unevenness so that the light reflectance of the processed area is higher than the light reflectance of the non-processed area, thereby making it optically readable.
  • the purpose is to form a code area for displaying an information code.
  • a method of manufacturing a resin product with an information cord according to a tenth aspect of the present disclosure is a method of manufacturing a resin product with an information cord according to the ninth aspect, wherein (2) forming the code region includes The method includes forming the plurality of processing areas by irradiating the laser beam with a laser beam and forming the unevenness by laser marks.
  • a method of manufacturing a resin product with an information code according to an eleventh aspect of the present disclosure is a method of manufacturing a resin product with an information code according to the tenth aspect, in which forming the plurality of processing areas includes using the laser beam. , including pulse-by-pulse irradiation along a predetermined scan line.
  • a method for manufacturing a resin product with an information code according to a twelfth aspect of the present disclosure is a method for manufacturing a resin product with an information code according to the tenth aspect, in which the laser light has a wavelength in the ultraviolet region.
  • a method for manufacturing a resin product with an information code according to a thirteenth aspect of the present disclosure is a method for manufacturing a resin product with an information code according to the twelfth aspect, wherein forming the plurality of processing areas includes The method includes irradiating the wall portion with a laser beam that has passed through a photomask on which a pattern is formed, and the pattern has a shielding area that blocks the laser beam and a transmitting area that transmits the laser beam.
  • a method of manufacturing a resin product with an information code according to a fourteenth aspect of the present disclosure is a method of manufacturing a resin product with an information code according to the ninth aspect, in which (2) forming the code region includes the following ( 3) Contains (4). (3) Covering the surface of the wall portion except for portions that are to become the plurality of processing areas with a mask. (4) Colliding particles against the wall portion covered with the mask to form the unevenness due to impact marks of the particles in areas not covered with the mask.
  • a method for manufacturing a resin product with an information code includes the following. ⁇ Prepare transparent resin material. - A mold for molding the resin material to produce a resin product having a wall portion, the mold having a plurality of first regions in which unevenness is formed, and adjacent to the first region and in which the unevenness is formed. preparing a mold including a cavity surface formed with a second region where the cavity surface is not stained; - Molding the transparent resin material using the mold. - A code area is formed from the mold, including a plurality of processed areas to which the unevenness of the plurality of first areas is transferred, and a non-processed area adjacent to the processed area and in which the unevenness is not formed. Take out a resin product with a wall section. Note that the light reflectance of the processed area is higher than the light reflectance of the non-processed area, and the code area displays an optically readable information code.
  • an optically readable information code is displayed by the processed area and the transparent non-processed area formed on the wall of the resin product.
  • FIG. 1 is an overall view of a resin product according to an embodiment.
  • FIG. 3 is a diagram illustrating a code region evaluation method.
  • 2 is a flowchart showing steps of a method for forming a processing area using laser light.
  • FIG. 2 is a schematic diagram showing the configuration of a laser beam irradiation device.
  • 5 is a flowchart showing steps of a method for forming a processing area by shot blasting.
  • FIG. 1 is an overall view of a resin product according to an embodiment.
  • FIG. 3 is a diagram illustrating a code region evaluation method.
  • FIG. 3 is a diagram illustrating a method of forming a processing area by shot blasting. 7 is a flowchart showing the steps of another method for forming a processing area using a laser beam.
  • FIG. 3 is a schematic diagram showing the configuration of another laser beam irradiation device.
  • 5 is a flowchart showing steps of a method for forming a processing area by molding.
  • FIG. 3 is a diagram illustrating a method of forming a processing area by molding.
  • FIG. 7 is a diagram showing a pattern of a photomask according to Example 9.
  • FIG. 7 is a diagram showing a pattern of a photomask according to Example 10.
  • FIG. 7 is a diagram showing a pattern of a photomask according to Example 11.
  • a micrograph of a processing area according to Example 9. A micrograph of a processing area according to Example 10.
  • a micrograph of a processing area according to Example 11 A waveform obtained by reading a code region according to Example 9 using a code verifier. A waveform obtained by reading a code region according to Example 10 using a code verifier. A waveform obtained by reading a code region according to Example 11 using a code verifier.
  • FIG. 1 is an overall view of a resin product 1 according to an embodiment of the present disclosure.
  • the resin product 1 is a container made of polyethylene terephthalate (PET), and is colorless and transparent except for processing areas 40 and 40a, which will be described later.
  • PET polyethylene terephthalate
  • the resin product 1 is typically configured as a plastic bottle for accommodating contents such as beverages and seasonings. Although the following description will be made with reference to the vertical direction in FIG. 1, the direction in which the resin product 1 is used is not limited to this.
  • the resin product 1 includes a wall portion 2.
  • the wall part 2 constitutes an integrally formed bottom part 20, side wall part 21 and mouth part 22, thereby defining a space for accommodating the contents.
  • the bottom part 20 is configured so that the PET bottle can stand on its own by being placed facing downward on a flat surface.
  • the side wall portion 21 is a cylindrical portion that rises from the bottom surface portion 20, and is continuous with the substantially cylindrical mouth portion 22 at the top. Mouth 22 defines an opening for removal of contents.
  • a thread is integrally formed on the outer surface of the mouth portion 22, so that a cap formed separately from the resin product 1 can be attached thereto.
  • FIG. 2 is an image illustrating the code area 4.
  • the code region 4 is a virtual region that circumscribes a plurality of processed regions 40 formed on the outer surface 3 of the wall portion 2 and a plurality of non-processed regions 41 adjacent thereto.
  • the processing areas 40 are white rectangular areas each having a longitudinal direction and a lateral direction, and in this embodiment, the processing areas 40 are arranged so that the longitudinal direction runs along the vertical direction of the resin product 1.
  • the processed area 40 is made up of finely formed unevenness, and the unevenness reflects light diffusely, so that the processed area 40 has a higher light reflectance than the non-processed area 41.
  • only the representative ones among the plurality of processed areas 40 and non-processed areas 41 are labeled with reference numerals.
  • the plurality of unprocessed regions 41 are unprocessed regions (in which no unevenness is formed) left between the plurality of processing regions 40, and are formed by the code region 4 into a plurality of regions having a longitudinal direction and a transverse direction. As a rectangular area, it is virtually distinguished from the surrounding parts of the code area 4. Although the unprocessed area 41 appears blacker than the processed area 40 in FIG. 2, it is actually colorless and transparent, hardly reflects light, and has a lower light reflectance than the processed area 40. Due to the contrast in reflectance between the processed area 40 and the non-processed area 41, an information code C that can be optically read by a device such as a code reader can be displayed.
  • the direction in which the plurality of processed regions 40 and the plurality of non-processed regions 41 are arranged will be referred to as the horizontal direction of the code region 4, and the direction perpendicular to the horizontal direction will be referred to as the vertical direction of the code region 4.
  • the information code C is a one-dimensional code in this embodiment, although it is not limited thereto. More specifically, the information code C is a barcode ( (see FIG. 13A).
  • the plurality of processed areas 40 have a reflectance corresponding to the white part of the information code C
  • the plurality of non-processed areas 41 have a reflectance corresponding to the black part of the information code C. That is, among the plurality of processing areas 40, those located at both ends of the code area 4 in the lateral direction correspond to the quiet zones, and the other areas correspond to the spaces of the information code C, respectively. Further, the plurality of non-processing areas 41 correspond to the bars of information code C, respectively.
  • the widths of the plurality of processed areas 40 and the plurality of non-processed areas 41 in the lateral direction may be different depending on the space included in the information code C and the specified width of the bar.
  • the specified widths of the spaces and bars may have two or more levels, three or more levels, or four or more levels, depending on the standard that the information code C follows.
  • the wall portion 2 may further include a processing area 40a apart from the code area 4.
  • the processing area 40a is an area where elements other than the quiet zone, bar, and space of the information code C, such as characters and figures, are displayed using unevenness similar to the processing area 40.
  • a plurality of processing areas 40a representing numbers corresponding to the information code C are formed below the code area 4. This number can be read by the human eye.
  • Reflectance of code area> The quality provided for the code area 4 to be optically read as the information code C will be described below.
  • a type of code reader for reading the information code C for example, a laser beam (including light reflected by a galvanometer mirror, etc.) is irradiated along the horizontal direction of the code area 4, and a plurality of processed areas 40 and non-processed areas are used.
  • One example is one in which reflected light sequentially reflected from 41 is detected by a light receiving element. The reflected light is detected as an analog waveform by the light receiving element, but by A/D converting this into a digital waveform, it can be converted into mechanically readable data.
  • the information of the information code C is decoded in the code reader.
  • the quality for reading by a code reader is determined by using a code verifier 5 having an aperture size according to the type of information code C and the size of the code area 4, for example, according to ANSI X3.182 (hereinafter simply "ANSI (sometimes referred to as ")".
  • the code verifier 5 irradiates the code with a laser beam of a predetermined wavelength and outputs the reflectance from the code in the reading direction of the code in an analog waveform (Scan Reflectance Profile: SRP).
  • the STRATIX Laser Xaminer Elite Series (manufactured by STRATIX, irradiation wavelength 650 nm) is used as the code verification device 5, and the quality of the information code displayed by the code area 4 is evaluated based on the SRP that will be output from now on. .
  • FIG. 3 is a diagram illustrating a method for evaluating the code region 4 according to the present embodiment.
  • the cord area 4 cut out from the wall 2 is fixed to the installation stand 6. More specifically, the code area 4 is fixed to the edge of the installation base 6 so that the vertical center of the code area 4, which is the reading point by the code verification device 5, protrudes outside the installation base 6, and the code area 4 is read. Make sure the entire area is well away from the floor or other objects. This eliminates the influence of the background on reading.
  • the code verifier 5 is arranged on the installation stand 6 so that it can read the vicinity of the longitudinal center of the code area 4 at a scanning angle of 45 degrees. In the above state, the code area 4 is read by the code verifier 5 and the SRP is output. Note that reading by the code verifier 5 may be performed multiple times while shifting the reading location in the vertical direction.
  • Evaluation indicators according to ANSI include minimum reflectance, symbol contrast SC, minimum edge contrast EC min , modulation MOD, defect, and decodability V. Each indicator will be explained below.
  • the minimum reflectance is an index for evaluating whether a sufficient margin is secured between the reflectance of the processed area 40 and the reflectance of the non-processed area 41.
  • the maximum reflectance of the processed area 40 corresponding to the space specified from the above SRP is assumed to be R max
  • the minimum reflectance of the non-processed area 41 is assumed to be R min .
  • R max and R min satisfy the following formula (1), a sufficient margin is secured between the reflectance of the processed area 40 and the reflectance of the non-processed area 41, and the quality as an information code is sufficient.
  • the minimum edge contrast EC min is an index for evaluating whether the contrast between the processed area 40 corresponding to the space and the non-processed area 41 adjacent thereto is sufficient, and the quality as an information code is sufficient. In order to be evaluated as (grade A), it needs to be 15% or more.
  • the edge contrast EC can be calculated according to the following equation (3), where R S is the reflectance of the processed area 40 corresponding to the space, and R b is the reflectance of the non-processed area 41.
  • the defect is an index for evaluating defects such as voids in bars and spots in spaces, and in the code region 4, corresponds to missing irregularities in the processing region 40. In order to be evaluated as having sufficient quality as an information code, the defect must be 0.30 or less. Note that the smaller the defect value, the better, and ANSI defines graded grades according to the defect value.
  • the defect can be calculated according to the following equation (5), where ERN max is the maximum variation in reflectance within one processed region 40 or non-processed region 41. ERN max /SC (5)
  • the decodability V is an index for evaluating whether the width in the width direction of the processed area 40 or the width in the width direction of the non-processed area 41 corresponding to the space can be distinguished according to prescribed steps. In order to be evaluated as having sufficient quality as an information code, the decodability V needs to be 0.25 or more. Note that the larger the value of V, the better, and ANSI defines graded grades according to the value of V.
  • FIG. 4A shows an example of a processed region 40 in which unevenness is formed by laser marks for each pulse, and the unevenness is formed by regularly arranged concave portions 400 and convex portions 401.
  • FIG. 4B is an example of a processed region 40 in which unevenness is formed by shot blasting, and unlike FIG. 4A, irregular unevenness is formed due to collision marks of particles.
  • FIG. 4C is an example of a processing area 40 in which unevenness is formed by one shot of laser marks. Similar to FIG.
  • the unevenness is formed by regularly arranged concave portions 400c and convex portions 401c. is more minute. Note that in the drawings, only typical ones among the plurality of recesses 400, 400c and the plurality of projections 401, 401c are labeled with reference numerals. Each will be explained below.
  • the recesses 400 shown in the micrograph of FIG. 4A are marks where the PET is depressed inward due to thermal deformation, and one recess 400 corresponds to one laser mark of one pulse.
  • the convex portion 401 is a portion that is relatively outwardly convex so as to surround the concave portion 400, and is formed as the concave portion 400 is formed. By having such unevenness continuous vertically and horizontally, the processing area 40 as a whole can reflect light diffusely.
  • the vertical and horizontal dimensions of the recesses 400 measured from a photomicrograph are approximately 20 ⁇ m to 30 ⁇ m, and the interval (pitch) between adjacent recesses 400 is approximately 20 ⁇ m to 30 ⁇ m.
  • the processing area 40 consists of at least one pair of adjacent recesses 400 and projections 401 with a height difference of 5 ⁇ m or more and 50 ⁇ m or less in a length range of 200 ⁇ m along the arrangement direction of the recesses 400 and projections 401. It is preferable to include four or more pairs of such recessed portions 400 and convex portions 401.
  • the arrangement direction is a direction in which a portion of the convex portions 402 surrounding mutually adjacent concave portions 400 continues, and is the direction of the arrow shown in FIG. 4A.
  • the height difference between the adjacent concave part 400 and convex part 401 is specified based on the height profile of a height measurement tool using a laser scan of a 3D measurement laser microscope (manufactured by OLYMPUS, LEXT OLS5000, objective lens 50 times). This is the difference between the average height of one concave portion 400 and the average height of adjacent convex portions 401.
  • the height difference is greater than or equal to the above lower limit, the light reflectance can be increased.
  • the height difference is less than or equal to the above upper limit, the strength required for the wall portion 2 can be maintained.
  • the processing region 40 includes many pairs of concave portions 400 and convex portions 401 with height differences within the above range. Note that pairs including overlapping concave portions 400 or convex portions 401 are counted as different items. The laser beam conditions for forming such a processing area 40 will be described later.
  • the thickness is preferably 1.5 ⁇ m or more, more preferably 2.0 ⁇ m or more, and even more preferably 3.0 ⁇ m or more.
  • the surface roughness Ra refers to the surface roughness measured by an Ra measurement tool of a 3D measurement laser microscope (manufactured by OLYMPUS, LEXT OLS5000, objective lens 50 times). The shot blasting conditions for forming the processed region 40 having such surface roughness will be described later.
  • the recesses 400c and protrusions 401c shown in the micrograph of FIG. 4C are similar to the recesses 400 and protrusions 401 shown in the micrograph of FIG. 4A in that they are formed by laser marks.
  • the concave portion 400c and the convex portion 401c are different from the concave portion 400 and the convex portion 401 in FIG. 4A in the wavelength of the laser beam used for formation and in the formation method.
  • a method for forming the concave portion 400c and the convex portion 401c will be described later.
  • the recess 400c is a mark where the PET is depressed inward due to thermal deformation.
  • the convex portion 401c is a relatively outwardly convex portion so as to surround the concave portion 400c.
  • the vertical and horizontal dimensions of the recess 400c measured from the photomicrograph are approximately 4.5 ⁇ m to 7 ⁇ m, depending on the shape of the recess 400c.
  • the minimum width of the convex portion 401c measured from a photomicrograph is approximately 0.3 ⁇ m to 1 ⁇ m, although it depends on the shape of the convex portion 401c.
  • the average height difference between a pair of adjacent concave portions 400c and convex portions 401c measured based on the height profile of the height measurement tool using the laser scan is approximately 3.5 ⁇ m to 5.5 ⁇ m.
  • the average value is the average value of the height differences between three different pairs of adjacent concave portions 400c and convex portions 401c randomly extracted from the processing area 40.
  • FIG. 5 is a flowchart showing the steps of a method for manufacturing a resin product 1 in which a processing area 40 is formed by continuous irradiation with laser light.
  • FIG. 6 is a schematic diagram showing an example of the laser light irradiation device 7 used in this method.
  • the laser beam irradiation device 7 shown in FIG. 6 a known device such as a gas laser, solid laser, liquid laser, or semiconductor laser can be used. As shown in FIG.
  • the laser beam irradiation device 7 includes a table 70 on which a target product to be laser irradiated is placed and an xy stage 71, and the table 70 can be moved in a plane direction by the xy stage 71. .
  • the laser beam irradiation device 7 further includes a galvano scanner 74 to which a laser oscillator 72, a beam expander 73, and an F ⁇ lens 75 are connected.
  • the laser beam irradiation device 7 adjusts the spread angle of the laser beam generated by the laser oscillator 72 with a beam expander 73, and further controls the irradiation position of the laser beam with a galvano scanner 74, so as to leave a laser mark on the surface of the target product.
  • step S1 the resin product 10 on which the code region 4 is to be formed is prepared.
  • the resin product 10 only needs to have a wall portion 2a for forming the code region 4, and in this embodiment, it is a colorless and transparent PET bottle.
  • step S2 the resin product 10 is set in the laser light irradiation device 7. More specifically, the resin product 10 is fixed on the table 70, and positioned using the xy stage 71 so that the laser beam is irradiated onto the portion of the wall portion 2a where the code region 4 is to be formed.
  • step S3 the resin product 10 is irradiated with laser light by the laser light irradiation device 7, and unevenness by laser marks is continuously formed one by one on the wall portion 2a of the resin product 10.
  • the laser light irradiation device is set in advance to continuously irradiate laser light for each pulse along a predetermined scanning line. Normally, to form one processing area 40, continuous irradiation of laser light along a plurality of scanning lines is performed. Therefore, when continuous irradiation is performed along a predetermined number of scanning lines corresponding to the quiet zone and space of information code C, a processing area 40 corresponding to the quiet zone and space is formed.
  • the conditions of the laser beam are not limited to these, for example, the spot diameter is 30 ⁇ m, the frequency is 100 kHz, and the average output is 4 W.
  • the scanning speed of the laser beam is 2000 mm/s to 3000 mm/s, and when the scanning speed is 2000 mm/s, the line pitch is preferably 25 ⁇ m to 30 ⁇ m, and when the scan speed is 3000 mm/s, the line pitch is preferably 25 ⁇ m to 30 ⁇ m.
  • the line pitch is preferably 20 ⁇ m to 25 ⁇ m.
  • step S3 when all the processing areas 40 corresponding to the quiet zones and spaces of the information code C are formed, the resin product 1 in which the code area 4 is formed on the wall portion 2 is obtained.
  • FIG. 7 is a flowchart showing steps of a method for manufacturing a resin product 1 in which a processing area 40 is formed by shot blasting.
  • FIG. 8 is a diagram illustrating a method of shot blasting. As shown in FIG. 8, in shot blasting, a metal mask 11 with openings formed in positions corresponding to the quiet zone and space of the information code C is prepared in advance.
  • step S11 the resin product 10 on which the code region 4 is to be formed is prepared.
  • the resin product 10 only needs to have a wall portion 2a for forming the code region 4, and in this embodiment, it is a colorless and transparent PET bottle.
  • step S12 the surface of the wall portion 2a of the resin product 10 is covered with the metal mask 11 described above. That is, in step S12, the surface of the wall portion 2a of the resin product 10 excluding the portions that are to become the plurality of processing areas 40 is covered with the metal mask 11.
  • step S13 shot blasting is performed on the wall portion 2a of the resin product 10 covered with the metal mask 11.
  • the surface of the wall portion 2a of the resin product 10 exposed through the opening of the metal mask 11, that is, the area not covered by the metal mask 11, is formed with unevenness due to collision traces of particles, and the information code C quiet Processing areas 40 corresponding to zones and spaces are formed. No particle collision marks are formed in the portion covered by the metal mask 11, which becomes an unprocessed region 41.
  • step S14 when the metal mask 11 is removed from the resin product 10, the resin product 1 in which the code region 4 is formed on the wall portion 2 is obtained.
  • Particles used in shot blasting are not limited to these, but particles with a size of 30 ⁇ m to 50 ⁇ m made of natural ore with a Vickers hardness of 3000 Hv can be used. Further, the blasting time can be set to 2 seconds, for example.
  • the pistol pressure which is the air pressure at which the particles are blown, is preferably 0.8 Bar or more, more preferably 1 Bar or more, and even more preferably 3 Bar or more.
  • FIG. 9 is a flowchart showing the steps of a method for manufacturing a resin product 1 in which a processing area 40 is formed by wide-area irradiation with laser light.
  • FIG. 10 is a schematic diagram showing an example of the laser light irradiation device 8 used in this method.
  • a laser beam irradiation device 8 irradiates a UV laser having a wavelength in the ultraviolet region.
  • the wavelength of the UV laser is not particularly limited, and is, for example, 355 nm, 308 nm, or 266 nm.
  • the laser light irradiation device 8 may be either a gas UV laser device or a solid UV laser device. As shown in FIG. 10, the laser beam irradiation device 8 includes a table 80 on which a target product to be laser irradiated is placed. The laser beam irradiation device 8 further includes a laser oscillator 82, a projection lens 83, a mirror 84, and a condenser lens 85. A photomask 81 is placed between the projection lens 83 and the mirror 84.
  • the photomask 81 is a photomask on which a fine pattern representing the information code C is formed.
  • the photomask 81 according to this embodiment includes a synthetic quartz substrate and a chromium film laminated on one side of the substrate. As shown in FIG. 10, the chromium film forms a grid-like shielding region 810.
  • a plurality of rectangular regions of the synthetic quartz on which the chromium film is not formed form transmission regions 811 through which laser light is transmitted. In the drawing, only representative ones among the plurality of transparent regions 811 are labeled.
  • the laser beam transmitted through the transmission region 811 forms the recess 400c, and along with this, the recess 401c is also formed.
  • the laser beam irradiation device 8 adjusts the spread angle of the laser beam generated by the laser oscillator 82 using the projection lens 83.
  • the adjusted laser light becomes a predetermined beam shape by passing through the photomask 81.
  • the laser beam is further changed in its traveling direction by a mirror 84 and enters a condenser lens 85 .
  • the laser beam that has passed through the condensing lens 85 is focused on the surface of the target product of the photomask 81. This creates laser marks on the surface of the target product.
  • the resin product 10 on which the code region 4 is to be formed is prepared.
  • the resin product 10 only needs to have a wall portion 2a for forming the code region 4, and in this embodiment, it is a colorless and transparent PET bottle.
  • step S22 the photomask 81 is placed between the projection lens 83 and mirror 84 of the laser beam irradiation device 8.
  • step S23 the resin product 10 is set in the laser light irradiation device 8. More specifically, the resin product 10 is fixed on the table 80, and the resin product 10 is positioned so that the laser beam is irradiated onto the portion of the wall portion 2a where the code region 4 is to be formed.
  • step S24 the resin product 10 is irradiated with laser light by the laser light irradiation device 8 to form unevenness by laser marks on the wall portion 2a of the resin product 10.
  • the beam shape of the laser light is shaped by the photomask 81, the plurality of recesses 400c are formed by one pulse of laser light.
  • the energy density of the laser beam is, for example, 500 mJ/cm 2 , although it is not limited thereto.
  • step S24 when all the processing areas 40 corresponding to the quiet zones and spaces of the information code C are formed, the resin product 1 in which the code area 4 is formed on the wall portion 2 is obtained.
  • the information code C is displayed by physically processing the wall portion 2 of the resin product 1 without requiring labels, stickers, or other accessories that are configured separately. can do. Thereby, the consumption of resources for displaying the information code C can be suppressed, and distribution management of the resin products 1 (including those containing contents) is also facilitated.
  • the code area 4 is formed in a shorter time than the method of continuously irradiating laser light along the scanning line. can do.
  • the duration of UV laser light irradiation is 20 nanoseconds per shot.
  • the processed region 40 was formed by laser irradiation or shot blasting.
  • the method for forming the processing area 40 is not limited to this, and for example, when molding the resin product 1 using a mold, a wall portion with unevenness formed therein can be integrally formed as the processing area 40.
  • FIG. 11 is a flowchart showing the steps of a method for molding the resin product 1 using a mold
  • FIG. 12 is an example of the mold 12 used in this method.
  • the mold 12 has two molds that can be opened and closed, and when these molds are closed, a cavity having a shape corresponding to the wall portion 2 of the resin product 1 is formed.
  • the plurality of first regions 120 have a shape in which the quiet zone and space of the information code C are inverted as a whole. Note that in the drawings, only representative ones among the plurality of first regions 120 are labeled with reference numerals.
  • step S31 the resin material 13 (see FIG. 12) of the resin product 1 is prepared.
  • the resin material 13 is transparent and colorless PET.
  • step S32 the resin material 13 is molded using the mold 12.
  • the method for molding the resin material 13 is not particularly limited, and any known method can be used.
  • the unevenness of the first region 120 is transferred to the outer surface of the wall portion, and a plurality of processed regions 40 are formed. Therefore, it is preferable that the irregularities in the first region 120 have a density, size, and surface roughness close to those caused by laser marks caused by the laser beam irradiation or particle marks caused by the shot blasting process.
  • step S33 the mold 12 is opened and the molded resin product 1 is taken out.
  • a wall is formed with a code region 4 including a plurality of processing regions 40 to which the unevenness of the plurality of first regions 120 has been transferred, and a non-processing region 41 adjacent to the processing region and in which no unevenness is formed.
  • a resin product 1 comprising a portion 2 is obtained.
  • the resin product 1 was colorless and transparent.
  • the resin product 1 may be translucent or opaque, or may be colored.
  • the resin product 1 was made of PET.
  • the material of the resin product 1 is not particularly limited, and may be made of other resins.
  • the resin constituting the resin product 1 is not particularly limited as long as it can be processed by laser irradiation, blasting, or molding as described above.
  • the information code C was a one-dimensional barcode.
  • the information code C may be a one-dimensional code other than a barcode, or may be a two-dimensional code.
  • the part where the code region 4 is formed and the direction of the code region 4 with respect to the resin product 1 are not particularly limited, and can be selected as appropriate.
  • Step S22 of the method shown in FIG. 9 may be performed before step S21 or after step S23.
  • the pattern of the photomask is not limited to that of the above embodiment.
  • a pattern may be formed in which predetermined figures are two-dimensionally arranged along a first direction and a direction orthogonal to the first direction.
  • Example 1 The outer surface of a colorless and transparent PET bottle is irradiated with laser light (semiconductor laser light) using a device as shown in Figure 6 to form a processing area containing fine irregularities, thereby creating an area similar to the existing one shown in Figure 13A.
  • a resin product was produced in which a code area representing a barcode was formed.
  • Existing barcodes were displayed on known resin films (labels) of PET bottles using known printing methods.
  • FIG. 13B shows the SRP when the barcode shown in FIG. 13A is read by the above code verification machine (STRATIX Laser Xaminer Elite Series).
  • the laser light irradiation conditions were set to five as shown in Table 1 below, and the resin products corresponding to each condition were used as the resin products of Examples 1 to 4 and Reference Example 1, respectively.
  • a code area is cut out from the wall of the resin product according to Examples 1 to 4 and Reference Example 1, and read by the above code verification machine according to the method shown in FIG. 3. Based on the output SRP, the above ANSI evaluation index is determined. were calculated respectively. As a result, for all code regions, the indicators other than symbol contrast SC were grade A or B as defined by ANSI. Therefore, Table 2 below shows the results of symbol contrast SC. As shown in Table 2, in Examples 1 to 4 except Reference Example 1, the SC was 20% or more.
  • FIG. 14A For reference, a micrograph (magnification: 1000) of the processing area according to Example 1 is shown in FIG. 14A
  • SRP is shown in FIG. 14B
  • a micrograph (magnification: 1000) of the processing area according to Reference Example 1 is shown in FIG. is shown in FIG. 15B.
  • Example 1 the unevenness caused by laser marks was formed continuously and densely, whereas in Reference Example 1, the unevenness caused by laser marks was sparse compared to Example 1. Ta.
  • the SRP of Example 1 is close to the SRP shown in FIG. 13B and has a higher reflectance in the processed area, whereas the SRP of Reference Example 1 is more reflective than the SRP of Example 1. rate has become lower.
  • the height profile of the processing area according to Example 1 and the height profile of the processing area according to Example 2 obtained by the 3D measurement laser microscope are shown in FIGS. 16A and 16B, respectively. These height profiles are height profiles at a length of 200 ⁇ m along the direction in which the laser marks are arranged in the processing area.
  • the processing area according to Example 1 included five pairs of adjacent concave portions and convex portions with height differences of approximately 10 ⁇ m to 14 ⁇ m.
  • the processing area according to Example 2 included five pairs of adjacent concave portions and convex portions with a height difference of about 18 ⁇ m to 22 ⁇ m.
  • Shot blasting is applied to the outer surface of a colorless and transparent PET bottle using a metal mask as shown in FIG. 8 to form a processed area including fine irregularities, and a code area representing the barcode shown in FIG. 13A is formed.
  • a resin product was produced using the following methods. The shot blasting conditions were set to five conditions as shown in Table 3 below, and the resin products corresponding to each condition were used as the resin products of Examples 5 to 8 and Reference Example 2, respectively. Particles with a size of 30 ⁇ m to 50 ⁇ m made of natural ore with a Vickers hardness of 3000 Hv were used as particles for shot blasting.
  • a code area is cut out from the wall of the resin product according to Examples 5 to 8 and Reference Example 2, and read by the code verification machine according to the method shown in FIG. 3. Based on the output SRP, the evaluation index according to the ANSI is determined. were calculated respectively. As a result, for the code regions according to Examples 5 to 8, the indicators other than symbol contrast SC were grade A or B as defined by ANSI. Therefore, Table 4 below shows the results of symbol contrast SC. Table 4 also shows the surface roughness Ra ( ⁇ m) measured by the 3D measurement laser microscope. As shown in Table 4, in Examples 5 to 8, the SC was 20% or more. Although Reference Example 2 met the SC criteria, it did not meet the ANSI criteria for other evaluation indicators.
  • the SRP of the code region according to Example 5 is shown in FIG. 17, the micrograph (magnification 100) of the processed region according to Reference Example 2 is shown in FIG. 18A, and the SRP is shown in FIG. 18B. Note that the micrograph (magnification: 100) of the processed area according to Example 5 is the micrograph shown in FIG. 4B.
  • Example 5 relatively coarse unevenness was formed due to particle collision marks, whereas in Reference Example 2, compared to Example 5, unevenness due to particle collision was finer. It had become.
  • the SRP of Example 5 is close to the SRP shown in FIG. 13B and has a higher reflectance in the processed area, whereas the SRP of Reference Example 2 is more reflective than the SRP of Example 5. rate has become lower. This is because the pistol pressure of the shot blasting conditions according to Reference Example 2 is low, and the surface roughness Ra is smaller in the processing area according to Reference Example 2 than in the processing areas according to other Examples 5 to 8. it is conceivable that.
  • FIG. 19A to 19C were used, and the resin products corresponding to each photomask were the resin products of Examples 9 to 11, respectively.
  • FIG. 19A shows a pattern in which two types of squares having different sizes are arranged along a first direction and a second direction perpendicular to the first direction.
  • FIG. 19B shows a pattern in which regular hexagons are arranged along a first direction and a second direction perpendicular to the first direction.
  • FIG. 19C shows a pattern in which squares are arranged along a first direction and a second direction perpendicular to the first direction.
  • the white areas are transparent areas and the black areas are shielded areas.
  • a code area was cut out from the wall of the resin product according to Examples 9 to 11, and read by the above code verification machine according to the method shown in FIG. 3. Based on the output SRP, the above ANSI evaluation index was calculated. .
  • the indicators other than symbol contrast SC were grade A or B as defined by ANSI. Therefore, Table 5 below shows the results of symbol contrast SC.
  • the SC of the resin products according to Examples 9 to 11 was all 20% or more.
  • the ANSI overall grade of the resin products according to Examples 9 to 11 was all D, demonstrating that they could be read by a scanner.
  • micrographs magnification: 3000 of processed areas according to Examples 9 to 11 are shown in FIGS. 20A to 20C, respectively.
  • the shapes of the recesses and projections formed on the wall of the resin product differ depending on the pattern of the photomask.
  • select a part where the machined surface is confirmed to be stable and calculate the average value of lengths A to F measured from the boundaries of the bright and dark regions of the photograph as the recess dimension and length G.
  • the average value of ⁇ L is taken as the minimum width of the convex portion, each value is as shown in Table 6 below.
  • the average value of the difference in height between the concave portion and the convex portion measured at three different locations was selected as shown in Table 6 below.
  • the height difference was measured based on the profile (length: 258.303 ⁇ m) of the 3D measurement laser microscope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Laser Beam Processing (AREA)

Abstract

The present invention provides a resin product comprising a wall. The wall has a code area including a plurality of machined areas where protrusions and recesses are formed, and a transparent unmachined area, adjacent to the machined areas, where the protrusions and recesses are not formed. The reflectance of light in the machined areas is higher than the reflectance of light in the unmachined area, and the code area shows an optically readable information code.

Description

情報コード付き樹脂製品Resin products with information code
 本開示は、情報コードが表示された樹脂製品に関する。 The present disclosure relates to a resin product on which an information code is displayed.
 特許文献1は、PETボトル容器の本体に、レーザー印字により図柄を印字する技術を開示する。図柄は、例えば資源有効利用促進法により表示が義務付けられる「PET」や「プラ」といった、リサイクルのための識別表示マークである。特許文献1によれば、係る識別マークがレーザー印字されたPETボトル容器では、印字のためにインク成分を用いる必要がないので、リサイクル性が向上する。 Patent Document 1 discloses a technique for printing a design on the main body of a PET bottle container by laser printing. The design is an identification mark for recycling, such as "PET" or "Plastic", which is required to be displayed under the Law for Promotion of Effective Utilization of Resources. According to Patent Document 1, in a PET bottle container on which such an identification mark is laser printed, there is no need to use an ink component for printing, so that recyclability is improved.
 また、特許文献2は、名称等の必要事項が、ボトルに直接刻印印字されたペットボトルを開示する。刻印印字は、例えば熱加工や金型成型により行うことができる。これにより、ペットボトルにラベルを別途取り付ける必要がなくなり、リサイクル性の高いペットボトルが提供される。 Further, Patent Document 2 discloses a PET bottle in which necessary information such as a name is directly engraved and printed on the bottle. Stamp printing can be performed, for example, by thermal processing or molding. This eliminates the need to separately attach a label to the PET bottle, providing a PET bottle with high recyclability.
特開2021-017248号公報JP2021-017248A 特開2011-011819号公報Japanese Patent Application Publication No. 2011-011819
 特許文献1及び2に開示の技術によれば、外付けのラベルやインク成分を使用せず、ペットボトル本体に図柄や文字等を表示することができる。ただし、特許文献1及び2で例示される図柄や文字等は、人が視認するためのものである。一般の市場で流通するペットボトルには、これらの情報以外にも、機械が光学的に読み取るための情報コードが付されるが、特許文献1及び2ではこのことが考慮されていない。このように、外付けのラベルやインク成分を必要とせず、それ自体に光学的に読み取り可能な情報コードが表示されたペットボトルは、これまで提供されていなかった。このことは、ペットボトルに限らず、透明性の高い樹脂製品に当てはまる。 According to the techniques disclosed in Patent Documents 1 and 2, it is possible to display designs, characters, etc. on the PET bottle body without using external labels or ink components. However, the patterns, characters, etc. illustrated in Patent Documents 1 and 2 are for human viewing. In addition to this information, PET bottles distributed in the general market are provided with an information code that is optically read by a machine, but Patent Documents 1 and 2 do not take this into account. In this way, a PET bottle that does not require an external label or ink component and has an optically readable information code displayed on it has not been provided to date. This applies not only to PET bottles but also to highly transparent resin products.
 本開示は、光学的に読み取り可能な情報コードが表示された、透明な樹脂製品を提供することを目的とする。 The present disclosure aims to provide a transparent resin product on which an optically readable information code is displayed.
 本開示の第1観点に係る樹脂製品は、壁部を備える。前記壁部は、凹凸が形成された複数の加工領域と、前記加工領域に隣接するとともに、前記凹凸が形成されていない、透明な非加工領域とを含むコード領域を有する。前記加工領域の光の反射率は、前記非加工領域の光の反射率よりも高く、前記コード領域は、光学的に読み取り可能な情報コードを表示する。 The resin product according to the first aspect of the present disclosure includes a wall portion. The wall portion has a code region including a plurality of processed regions in which unevenness is formed and a transparent unprocessed region adjacent to the processed region and in which the unevenness is not formed. The light reflectance of the processed area is higher than the light reflectance of the non-processed area, and the code area displays an optically readable information code.
 第1観点に係る樹脂製品によれば、光反射率が互いに異なる加工領域と、透明な非加工領域とにより、樹脂製品の壁部自体が、光学的に読み取り可能な情報コードを表示する。すなわち、情報コードを表示させるために、インク成分を壁部に付着させたり、熱加工により変色を起こす添加物を樹脂原料に含めたりする必要がない。第1観点に係る樹脂製品は、例えば食品、飲料及び薬品の容器等、上記インク成分や添加剤の使用が制限されるような場合にも適用することができる。 According to the resin product according to the first aspect, the wall portion of the resin product itself displays an optically readable information code due to the processed areas having mutually different light reflectances and the transparent non-processed areas. That is, in order to display the information code, it is not necessary to attach ink components to the wall or to include additives that cause discoloration due to heat processing in the resin raw material. The resin product according to the first aspect can also be applied to cases where the use of the above-mentioned ink components and additives is restricted, such as containers for foods, beverages, and medicines.
 また、第1観点に係る樹脂製品によれば、情報コードを記載したラベルやシールを別途添付する必要がなく、これらを製造するための工程及び資源を節約することができる。さらに、樹脂製品を構成する樹脂のリサイクルが容易である。 Furthermore, according to the resin product according to the first aspect, there is no need to separately attach a label or sticker with an information code written thereon, and the process and resources for manufacturing these can be saved. Furthermore, the resin constituting the resin product can be easily recycled.
 本開示の第2観点に係る樹脂製品は、第1観点に係る樹脂製品であって、前記情報コードは、バーコードであり、前記加工領域は、スペースに対応し、前記非加工領域は、バーに対応する。 A resin product according to a second aspect of the present disclosure is a resin product according to the first aspect, wherein the information code is a barcode, the processing area corresponds to a space, and the non-processing area is a barcode. corresponds to
 本開示の第3観点に係る樹脂製品は、第1観点または第2観点に係る樹脂製品であって、コード検証機を用いて測定される、前記加工領域の最大反射率Rmaxと、前記非加工領域の最小反射率Rminとの差が、20%以上である。 The resin product according to the third aspect of the present disclosure is the resin product according to the first aspect or the second aspect, and the maximum reflectance R max of the processed area and the non-resin product measured using a code verification machine. The difference from the minimum reflectance R min of the processing area is 20% or more.
 本開示の第4観点に係る樹脂製品は、第1観点から第3観点のいずれかに係る樹脂製品であって、前記凹凸は、規則的に配列された凹部と凸部とを含む。前記凹部と前記凸部との配列方向に沿った長さ200μmの範囲において、少なくとも1対の隣接する前記凹部と前記凸部との高低差が5μm以上、50μm以下となる。 A resin product according to a fourth aspect of the present disclosure is a resin product according to any one of the first to third aspects, and the unevenness includes regularly arranged concave portions and convex portions. In a length range of 200 μm along the arrangement direction of the concave portions and the convex portions, a height difference between at least one pair of adjacent concave portions and the convex portions is 5 μm or more and 50 μm or less.
 本開示の第5観点に係る樹脂製品は、第4観点に係る樹脂製品であって、前記凹凸は、前記凹部と前記凸部との配列方向に沿った長さ200μmの範囲において、高低差が5μm以上、50μm以下となる隣接する凹部と凸部との対を4対以上含む。 A resin product according to a fifth aspect of the present disclosure is a resin product according to the fourth aspect, wherein the unevenness has a height difference within a length range of 200 μm along the arrangement direction of the concave portion and the convex portion. It includes four or more pairs of adjacent concave portions and convex portions each having a diameter of 5 μm or more and 50 μm or less.
 本開示の第6観点に係る樹脂製品は、第1観点から第5観点のいずれかに係る樹脂製品であって、前記凹凸は、不規則に配列された凹部と凸部とを含む。 A resin product according to a sixth aspect of the present disclosure is a resin product according to any one of the first to fifth aspects, and the unevenness includes irregularly arranged concave portions and convex portions.
 本開示の第7観点に係る樹脂製品は、第6観点に係る樹脂製品であって、前記加工領域の面粗さは、1.5μm以上である。 A resin product according to a seventh aspect of the present disclosure is a resin product according to the sixth aspect, and the surface roughness of the processed area is 1.5 μm or more.
 本開示の第8観点に係る樹脂製品は、第1観点から第7観点のいずれかに係る樹脂製品であって、ポリエチレンテレフタレート製の容器である。 A resin product according to an eighth aspect of the present disclosure is a resin product according to any one of the first to seventh aspects, and is a container made of polyethylene terephthalate.
 本開示の第9観点に係る情報コード付き樹脂製品の製造方法は、以下の(1)(2)を含む。
(1)透明な壁部を備える樹脂製品を準備すること。
(2)前記壁部に、凹凸が形成された複数の加工領域と、前記加工領域に隣接するとともに、前記凹凸が形成されていない、透明な非加工領域とを含むコード領域を形成すること。
 なお、前記コード領域を形成することは、前記加工領域の光の反射率が、前記非加工領域の光の反射率よりも高くなるように前記凹凸を形成し、これにより光学的に読み取り可能な情報コードを表示するコード領域を形成することである。
A method for manufacturing a resin product with an information code according to a ninth aspect of the present disclosure includes the following (1) and (2).
(1) Prepare a resin product with a transparent wall.
(2) Forming a code region on the wall portion including a plurality of processing regions in which unevenness is formed and a transparent non-processing region adjacent to the processing region and in which the unevenness is not formed.
Note that forming the code area means forming the unevenness so that the light reflectance of the processed area is higher than the light reflectance of the non-processed area, thereby making it optically readable. The purpose is to form a code area for displaying an information code.
 本開示の第10観点に係る情報コード付き樹脂製品の製造方法は、第9観点に係る情報コード付き樹脂製品の製造方法であって、(2)前記コード領域を形成することは、前記壁部にレーザー光を照射し、レーザー痕による前記凹凸を形成することにより、前記複数の加工領域を形成することを含む。 A method of manufacturing a resin product with an information cord according to a tenth aspect of the present disclosure is a method of manufacturing a resin product with an information cord according to the ninth aspect, wherein (2) forming the code region includes The method includes forming the plurality of processing areas by irradiating the laser beam with a laser beam and forming the unevenness by laser marks.
 本開示の第11観点に係る情報コード付き樹脂製品の製造方法は、第10観点に係る情報コード付き樹脂製品の製造方法であって、前記複数の加工領域を形成することは、前記レーザー光を、所定の走査線に沿ってパルスごとに照射することを含む。 A method of manufacturing a resin product with an information code according to an eleventh aspect of the present disclosure is a method of manufacturing a resin product with an information code according to the tenth aspect, in which forming the plurality of processing areas includes using the laser beam. , including pulse-by-pulse irradiation along a predetermined scan line.
 本開示の第12観点に係る情報コード付き樹脂製品の製造方法は、第10観点に係る情報コード付き樹脂製品の製造方法であって、前記レーザー光は、紫外線領域の波長を有する。 A method for manufacturing a resin product with an information code according to a twelfth aspect of the present disclosure is a method for manufacturing a resin product with an information code according to the tenth aspect, in which the laser light has a wavelength in the ultraviolet region.
 本開示の第13観点に係る情報コード付き樹脂製品の製造方法は、第12観点に係る情報コード付き樹脂製品の製造方法であって、前記複数の加工領域を形成することは、前記情報コードを表すパターンが形成されたフォトマスクを通過したレーザー光を前記壁部に照射することを含み、前記パターンは、前記レーザー光を遮蔽する遮蔽領域と、前記レーザー光を透過させる透過領域とを有する。 A method for manufacturing a resin product with an information code according to a thirteenth aspect of the present disclosure is a method for manufacturing a resin product with an information code according to the twelfth aspect, wherein forming the plurality of processing areas includes The method includes irradiating the wall portion with a laser beam that has passed through a photomask on which a pattern is formed, and the pattern has a shielding area that blocks the laser beam and a transmitting area that transmits the laser beam.
 本開示の第14観点に係る情報コード付き樹脂製品の製造方法は、第9観点に係る情報コード付き樹脂製品の製造方法であって、(2)前記コード領域を形成することは、以下の(3)(4)を含む。
(3)前記複数の加工領域となるべき箇所を除く前記壁部の表面をマスクで覆うこと。
(4)前記マスクで覆われた状態の前記壁部に粒子を衝突させて、前記マスクで覆われていない箇所に前記粒子の衝突痕による前記凹凸を形成すること。
A method of manufacturing a resin product with an information code according to a fourteenth aspect of the present disclosure is a method of manufacturing a resin product with an information code according to the ninth aspect, in which (2) forming the code region includes the following ( 3) Contains (4).
(3) Covering the surface of the wall portion except for portions that are to become the plurality of processing areas with a mask.
(4) Colliding particles against the wall portion covered with the mask to form the unevenness due to impact marks of the particles in areas not covered with the mask.
 本開示の第15観点に係る情報コード付き樹脂製品の製造方法は、以下のことを含む。
・透明な樹脂材料を準備すること。
・前記樹脂材料を成形し、壁部を備える樹脂製品を作製するための金型であって、凹凸が形成された複数の第1領域と、前記第1領域に隣接するとともに、前記凹凸が形成されていない第2領域とが形成されたキャビティ表面を含む金型を準備すること。
・前記金型を用いて、前記透明な樹脂材料を成形すること。
・前記金型から、前記複数の第1領域の凹凸が転写された複数の加工領域と、前記加工領域に隣接するとともに、前記凹凸が形成されていない非加工領域とを含むコード領域が形成された壁部を備える樹脂製品を取り出すこと。
 なお、前記加工領域の光の反射率は、前記非加工領域の光の反射率よりも高く、前記コード領域は、光学的に読み取り可能な情報コードを表示する。
A method for manufacturing a resin product with an information code according to a fifteenth aspect of the present disclosure includes the following.
・Prepare transparent resin material.
- A mold for molding the resin material to produce a resin product having a wall portion, the mold having a plurality of first regions in which unevenness is formed, and adjacent to the first region and in which the unevenness is formed. preparing a mold including a cavity surface formed with a second region where the cavity surface is not stained;
- Molding the transparent resin material using the mold.
- A code area is formed from the mold, including a plurality of processed areas to which the unevenness of the plurality of first areas is transferred, and a non-processed area adjacent to the processed area and in which the unevenness is not formed. Take out a resin product with a wall section.
Note that the light reflectance of the processed area is higher than the light reflectance of the non-processed area, and the code area displays an optically readable information code.
 本開示によれば、樹脂製品の壁部に形成された加工領域と、透明な非加工領域とにより、光学的に読み取り可能な情報コードが表示される。これにより、インク成分を壁部に付着させることなく、それ自体に情報コードが表示された樹脂製品を提供することができる。 According to the present disclosure, an optically readable information code is displayed by the processed area and the transparent non-processed area formed on the wall of the resin product. Thereby, it is possible to provide a resin product on which an information code is displayed without causing ink components to adhere to the wall.
一実施形態に係る樹脂製品の全体図。FIG. 1 is an overall view of a resin product according to an embodiment. 一実施形態に係るコード領域の一例を表す画像。An image representing an example of a code region according to an embodiment. コード領域の評価方法を説明する図。FIG. 3 is a diagram illustrating a code region evaluation method. レーザー光照射により形成した加工領域の顕微鏡写真。A micrograph of a processed area formed by laser light irradiation. ショットブラスト加工により形成した加工領域の顕微鏡写真。A microscopic photograph of the processed area formed by shot blasting. レーザー光照射により形成した別の加工領域の顕微鏡写真。Micrograph of another processed area formed by laser light irradiation. レーザー光による加工領域の形成方法の工程を示すフローチャート。2 is a flowchart showing steps of a method for forming a processing area using laser light. レーザー光照射装置の構成を示す模式図。FIG. 2 is a schematic diagram showing the configuration of a laser beam irradiation device. ショットブラスト加工による加工領域の形成方法の工程を示すフローチャート。5 is a flowchart showing steps of a method for forming a processing area by shot blasting. ショットブラスト加工による加工領域の形成方法を説明する図。FIG. 3 is a diagram illustrating a method of forming a processing area by shot blasting. レーザー光による加工領域の別の形成方法の工程を示すフローチャート。7 is a flowchart showing the steps of another method for forming a processing area using a laser beam. 別のレーザー光照射装置の構成を示す模式図。FIG. 3 is a schematic diagram showing the configuration of another laser beam irradiation device. 金型成形による加工領域の形成方法の工程を示すフローチャート。5 is a flowchart showing steps of a method for forming a processing area by molding. 金型成形による加工領域の形成方法を説明する図。FIG. 3 is a diagram illustrating a method of forming a processing area by molding. 比較のための既存のバーコードの写真。Photo of existing barcode for comparison. 既存のバーコードをコード検証機により読み取った波形。Waveform obtained by reading an existing barcode using a code verification machine. 実施例1に係る加工領域の顕微鏡写真。1 is a micrograph of a processing area according to Example 1. 実施例1に係るコード領域をコード検証機により読み取った波形。A waveform obtained by reading a code region according to Example 1 using a code verifier. 参考例1に係る加工領域の顕微鏡写真。A micrograph of a processed area according to Reference Example 1. 参考例1に係るコード領域をコード検証機により読み取った波形。A waveform obtained by reading the code area according to Reference Example 1 using a code verification machine. 実施例1に係る加工領域の高さプロファイル。The height profile of the processing area according to Example 1. 実施例2に係る加工領域の高さプロファイル。The height profile of the processing area according to Example 2. 実施例5に係るコード領域をコード検証機により読み取った波形。A waveform obtained by reading a code region according to Example 5 using a code verifier. 参考例2に係る加工領域の顕微鏡写真。A micrograph of a processed area according to Reference Example 2. 参考例2に係るコード領域をコード検証機により読み取った波形。A waveform obtained by reading a code region according to Reference Example 2 using a code verification machine. 実施例9に係るフォトマスクのパターンを示す図。FIG. 7 is a diagram showing a pattern of a photomask according to Example 9. 実施例10に係るフォトマスクのパターンを示す図。FIG. 7 is a diagram showing a pattern of a photomask according to Example 10. 実施例11に係るフォトマスクのパターンを示す図。FIG. 7 is a diagram showing a pattern of a photomask according to Example 11. 実施例9に係る加工領域の顕微鏡写真。A micrograph of a processing area according to Example 9. 実施例10に係る加工領域の顕微鏡写真。A micrograph of a processing area according to Example 10. 実施例11に係る加工領域の顕微鏡写真。A micrograph of a processing area according to Example 11. 実施例9に係るコード領域をコード検証機により読み取った波形。A waveform obtained by reading a code region according to Example 9 using a code verifier. 実施例10に係るコード領域をコード検証機により読み取った波形。A waveform obtained by reading a code region according to Example 10 using a code verifier. 実施例11に係るコード領域をコード検証機により読み取った波形。A waveform obtained by reading a code region according to Example 11 using a code verifier.
 以下、図面を参照しつつ、本開示の一実施形態に係る樹脂製品について説明する。 Hereinafter, a resin product according to an embodiment of the present disclosure will be described with reference to the drawings.
 <1.樹脂製品の全体構成>
 図1は、本開示の一実施形態に係る樹脂製品1の全体図である。樹脂製品1は、これに限定されないが、本実施形態では、ポリエチレンテレフタレート(PET)製の容器であり、後述する加工領域40,40aを除いて無色透明である。樹脂製品1は、典型的には、飲料や調味料等の内容物を収容するためのペットボトルとして構成される。以下では、図1の上下方向を基準として説明するが、樹脂製品1の使用時の方向は、これに限定されない。
<1. Overall composition of resin products>
FIG. 1 is an overall view of a resin product 1 according to an embodiment of the present disclosure. Although not limited thereto, in this embodiment, the resin product 1 is a container made of polyethylene terephthalate (PET), and is colorless and transparent except for processing areas 40 and 40a, which will be described later. The resin product 1 is typically configured as a plastic bottle for accommodating contents such as beverages and seasonings. Although the following description will be made with reference to the vertical direction in FIG. 1, the direction in which the resin product 1 is used is not limited to this.
 樹脂製品1は、壁部2を備える。壁部2は、一体的に形成された底面部20、側壁部21及び口部22を構成し、これにより、内容物を収容するための空間を画定する。底面部20は、下向きにして平面上に置かれることで、ペットボトルが自立するように構成される。側壁部21は、底面部20から立ち上がる筒状の部位であり、上方において、略円筒状の口部22に連続する。口部22は、内容物を取り出すための開口を画定する。また、口部22の外側面には、ネジ山が一体的に形成されており、樹脂製品1とは別体として形成されるキャップが取り付けられるようになっている。 The resin product 1 includes a wall portion 2. The wall part 2 constitutes an integrally formed bottom part 20, side wall part 21 and mouth part 22, thereby defining a space for accommodating the contents. The bottom part 20 is configured so that the PET bottle can stand on its own by being placed facing downward on a flat surface. The side wall portion 21 is a cylindrical portion that rises from the bottom surface portion 20, and is continuous with the substantially cylindrical mouth portion 22 at the top. Mouth 22 defines an opening for removal of contents. Furthermore, a thread is integrally formed on the outer surface of the mouth portion 22, so that a cap formed separately from the resin product 1 can be attached thereto.
 <2.コード領域>
 図2は、コード領域4を例示する画像である。コード領域4は、壁部2の外側面3に形成された複数の加工領域40と、これらに隣接する複数の非加工領域41とに外接する、仮想的な領域である。加工領域40は、それぞれ長手方向と短手方向とを有する白い矩形領域であり、本実施形態では、その長手方向が、樹脂製品1の上下方向に沿うように配置されている。後述するように、加工領域40は、微細な凹凸が緻密に形成されてできており、この凹凸により光を乱反射するため、非加工領域41と比較して光の反射率が高い。なお、図面では、複数の加工領域40及び非加工領域41のうち、それぞれ代表的なものにのみ符号を付している。
<2. Code area>
FIG. 2 is an image illustrating the code area 4. As shown in FIG. The code region 4 is a virtual region that circumscribes a plurality of processed regions 40 formed on the outer surface 3 of the wall portion 2 and a plurality of non-processed regions 41 adjacent thereto. The processing areas 40 are white rectangular areas each having a longitudinal direction and a lateral direction, and in this embodiment, the processing areas 40 are arranged so that the longitudinal direction runs along the vertical direction of the resin product 1. As will be described later, the processed area 40 is made up of finely formed unevenness, and the unevenness reflects light diffusely, so that the processed area 40 has a higher light reflectance than the non-processed area 41. In addition, in the drawing, only the representative ones among the plurality of processed areas 40 and non-processed areas 41 are labeled with reference numerals.
 複数の非加工領域41は、複数の加工領域40の間に残された未加工の(凹凸が形成されていない)領域であり、コード領域4によって、長手方向と短手方向とを有する複数の矩形領域として、コード領域4の周囲の部分から仮想的に区別される。非加工領域41は、図2では加工領域40よりも黒く見えるが、実際には無色透明であり、光を反射しにくく、加工領域40と比較して光の反射率が低い。係る加工領域40と非加工領域41との反射率のコントラストにより、コードリーダ等の機器により、光学的に読み取りが可能な情報コードCを表示することができる。以下、複数の加工領域40及び複数の非加工領域41が配列される方向をコード領域4の横方向と称し、横方向に直交する方向をコード領域4の縦方向と称する。 The plurality of unprocessed regions 41 are unprocessed regions (in which no unevenness is formed) left between the plurality of processing regions 40, and are formed by the code region 4 into a plurality of regions having a longitudinal direction and a transverse direction. As a rectangular area, it is virtually distinguished from the surrounding parts of the code area 4. Although the unprocessed area 41 appears blacker than the processed area 40 in FIG. 2, it is actually colorless and transparent, hardly reflects light, and has a lower light reflectance than the processed area 40. Due to the contrast in reflectance between the processed area 40 and the non-processed area 41, an information code C that can be optically read by a device such as a code reader can be displayed. Hereinafter, the direction in which the plurality of processed regions 40 and the plurality of non-processed regions 41 are arranged will be referred to as the horizontal direction of the code region 4, and the direction perpendicular to the horizontal direction will be referred to as the vertical direction of the code region 4.
 情報コードCは、これに限定されないが、本実施形態では1次元コードである。より具体的には、情報コードCは、両端に配置されたクワイエットゾーン(白色)と、交互に配列された複数の矩形のバー(黒色)と、複数のスペース(白色)とを有するバーコード(図13A参照)である。複数の加工領域40は、情報コードCの白色部分に対応する反射率を有し、複数の非加工領域41は、情報コードCの黒色部分に対応する反射率を有する。すなわち、複数の加工領域40のうち、コード領域4の横方向の両端に位置するものがクワイエットゾーンにそれぞれ対応し、その他のものが情報コードCのスペースにそれぞれ対応する。また、複数の非加工領域41は、情報コードCのバーにそれぞれ対応する。 The information code C is a one-dimensional code in this embodiment, although it is not limited thereto. More specifically, the information code C is a barcode ( (see FIG. 13A). The plurality of processed areas 40 have a reflectance corresponding to the white part of the information code C, and the plurality of non-processed areas 41 have a reflectance corresponding to the black part of the information code C. That is, among the plurality of processing areas 40, those located at both ends of the code area 4 in the lateral direction correspond to the quiet zones, and the other areas correspond to the spaces of the information code C, respectively. Further, the plurality of non-processing areas 41 correspond to the bars of information code C, respectively.
 複数の加工領域40及び複数の非加工領域41の短手方向の幅は、情報コードCが有するスペース及びバーの規定の幅に応じて、それぞれ異なっていてもよい。スペース及びバーの規定の幅は、情報コードCが従う規格に対応して、2段階以上あってもよく、3段階以上あってもよく、4段階以上あってもよい。 The widths of the plurality of processed areas 40 and the plurality of non-processed areas 41 in the lateral direction may be different depending on the space included in the information code C and the specified width of the bar. The specified widths of the spaces and bars may have two or more levels, three or more levels, or four or more levels, depending on the standard that the information code C follows.
 壁部2は、コード領域4とは別に、加工領域40aをさらに有してもよい。加工領域40aは、加工領域40と同様の凹凸により、文字や図形といった、情報コードCのクワイエットゾーン、バー及びスペース以外の要素を表示する領域である。図2の例では、コード領域4の下に、情報コードCに対応する数字を表す複数の加工領域40aが形成されている。この数字は、人の目で読み取ることができる。 The wall portion 2 may further include a processing area 40a apart from the code area 4. The processing area 40a is an area where elements other than the quiet zone, bar, and space of the information code C, such as characters and figures, are displayed using unevenness similar to the processing area 40. In the example of FIG. 2, a plurality of processing areas 40a representing numbers corresponding to the information code C are formed below the code area 4. This number can be read by the human eye.
 <3.コード領域の反射率>
 以下、コード領域4が情報コードCとして光学的に読み取られるために備える品質について説明する。情報コードCを読み取るためのコードリーダの種類としては、例えば、コード領域4の横方向に沿ってレーザー光(ガルバノミラー等による反射光を含む)を照射し、複数の加工領域40及び非加工領域41から順次反射される反射光を、受光素子により検知するものが挙げられる。反射光は、受光素子においてアナログ波形として検知されるが、これをA/D変換し、デジタル波形とすることで、機械的に読み取り可能なデータとすることができる。これにより、コードリーダにおいて情報コードCの情報がデコードされる。
<3. Reflectance of code area>
The quality provided for the code area 4 to be optically read as the information code C will be described below. As a type of code reader for reading the information code C, for example, a laser beam (including light reflected by a galvanometer mirror, etc.) is irradiated along the horizontal direction of the code area 4, and a plurality of processed areas 40 and non-processed areas are used. One example is one in which reflected light sequentially reflected from 41 is detected by a light receiving element. The reflected light is detected as an analog waveform by the light receiving element, but by A/D converting this into a digital waveform, it can be converted into mechanically readable data. As a result, the information of the information code C is decoded in the code reader.
 コードリーダによる読み取りを行うための品質は、例えば情報コードCの種類、及びコード領域4の大きさに応じたアパーチャーサイズを有するコード検証機5を用いて、ANSI X3.182(以下、単に「ANSI」と称することがある)に準拠して評価することができる。コード検証機5は、コードに所定の波長のレーザー光を照射し、コードの読み取り方向に対する当該コードからの反射率を、アナログ波形(Scan Reflectance Profile:SRP)で出力する。本実施形態では、コード検証機5としてSTRATIX Laser Xaminer Elite Series(STRATIX社製、照射光波長650nm)を用い、これから出力されるSRPに基づいて、コード領域4が表示する情報コードの品質評価を行う。 The quality for reading by a code reader is determined by using a code verifier 5 having an aperture size according to the type of information code C and the size of the code area 4, for example, according to ANSI X3.182 (hereinafter simply "ANSI (sometimes referred to as ")". The code verifier 5 irradiates the code with a laser beam of a predetermined wavelength and outputs the reflectance from the code in the reading direction of the code in an analog waveform (Scan Reflectance Profile: SRP). In this embodiment, the STRATIX Laser Xaminer Elite Series (manufactured by STRATIX, irradiation wavelength 650 nm) is used as the code verification device 5, and the quality of the information code displayed by the code area 4 is evaluated based on the SRP that will be output from now on. .
 図3は、本実施形態に係るコード領域4の評価方法を説明する図である。図3に示すように、壁部2から切り出したコード領域4を設置台6に固定する。より具体的には、コード検証機5による読み取り箇所となる、コード領域4縦方向の中央付近が、設置台6の外側にはみ出るように設置台6の端に固定して、コード領域4の読み取り箇所全体が、床その他の物体から十分に離れるようにする。これにより、背景による読み取りへの影響が除去される。また、コード検証機5を、コード領域4の縦方向中央付近を45度のスキャン角度で読み取りできるように、設置台6上に配置する。以上の状態で、コード検証機5によるコード領域4の読み取りを行い、SRPを出力する。なお、コード検証機5による読み取りは、読み取り箇所を縦方向にずらしながら、複数回行ってもよい。 FIG. 3 is a diagram illustrating a method for evaluating the code region 4 according to the present embodiment. As shown in FIG. 3, the cord area 4 cut out from the wall 2 is fixed to the installation stand 6. More specifically, the code area 4 is fixed to the edge of the installation base 6 so that the vertical center of the code area 4, which is the reading point by the code verification device 5, protrudes outside the installation base 6, and the code area 4 is read. Make sure the entire area is well away from the floor or other objects. This eliminates the influence of the background on reading. Further, the code verifier 5 is arranged on the installation stand 6 so that it can read the vicinity of the longitudinal center of the code area 4 at a scanning angle of 45 degrees. In the above state, the code area 4 is read by the code verifier 5 and the SRP is output. Note that reading by the code verifier 5 may be performed multiple times while shifting the reading location in the vertical direction.
 ANSIによる評価指標としては、最小反射率、シンボルコントラストSC、最小エッジコントラストECmin、モジュレーションMOD、ディフェクト、デコーダビリティVが挙げられる。以下、それぞれの指標について説明する。 Evaluation indicators according to ANSI include minimum reflectance, symbol contrast SC, minimum edge contrast EC min , modulation MOD, defect, and decodability V. Each indicator will be explained below.
 [最小反射率]
 最小反射率は、加工領域40との反射率と、非加工領域41の反射率との間に十分な余裕が確保されているか否かを評価する指標である。上記SRPから特定される、スペースに対応する加工領域40の最大反射率をRmax、非加工領域41の最小反射率をRminとする。Rmax及びRminが以下の式(1)を満たす場合、加工領域40との反射率と、非加工領域41の反射率との間に十分な余裕が確保され、情報コードとしての品質が十分であると評価する(グレードA)ことができる。
min≦0.5Rmax   (1)
[Minimum reflectance]
The minimum reflectance is an index for evaluating whether a sufficient margin is secured between the reflectance of the processed area 40 and the reflectance of the non-processed area 41. The maximum reflectance of the processed area 40 corresponding to the space specified from the above SRP is assumed to be R max , and the minimum reflectance of the non-processed area 41 is assumed to be R min . When R max and R min satisfy the following formula (1), a sufficient margin is secured between the reflectance of the processed area 40 and the reflectance of the non-processed area 41, and the quality as an information code is sufficient. (Grade A).
Rmin0.5Rmax (1)
 [シンボルコントラスト]
 シンボルコントラストSCは、加工領域40と非加工領域41とのコントラストが十分であるか否かを評価する指標であり、情報コードとしての品質が十分であると評価されるためには、20%以上である必要がある。なお、SCの値は大きいほど好ましく、ANSIでは、SCの値に応じて段階的なグレードが定められている。SCは、上記Rmax及びRminに基づき、以下の式(2)に従って算出することができる。
SC=Rmax-Rmin   (2)
[Symbol contrast]
The symbol contrast SC is an index for evaluating whether the contrast between the processed area 40 and the non-processed area 41 is sufficient, and in order to be evaluated as having sufficient quality as an information code, it must be 20% or more. It must be. Note that the larger the SC value, the better, and ANSI defines graded grades according to the SC value. SC can be calculated based on the above R max and R min according to the following equation (2).
SC= Rmax - Rmin (2)
 [最小エッジコントラスト]
 最小エッジコントラストECminは、スペースに対応する加工領域40と、これに隣接する非加工領域41との間のコントラストが十分であるか否かを評価する指標であり、情報コードとしての品質が十分であると評価される(グレードA)ためには、15%以上である必要がある。エッジコントラストECは、スペースに対応する加工領域40の反射率をRS、非加工領域41の反射率をRbとすると、以下の式(3)に従って算出することができる。ECminは、式(3)に従って算出されたECの最小値である。
EC=RS-Rb   (3)
[Minimum Edge Contrast]
The minimum edge contrast EC min is an index for evaluating whether the contrast between the processed area 40 corresponding to the space and the non-processed area 41 adjacent thereto is sufficient, and the quality as an information code is sufficient. In order to be evaluated as (grade A), it needs to be 15% or more. The edge contrast EC can be calculated according to the following equation (3), where R S is the reflectance of the processed area 40 corresponding to the space, and R b is the reflectance of the non-processed area 41. EC min is the minimum value of EC calculated according to equation (3).
EC=R S -R b (3)
 [モジュレーション]
 モジュレーションMODは、以下の式(4)に従って算出することができる。情報コードとしての品質が十分であると評価されるためには、MODが40%以上である必要がある。なお、MODの値は大きいほど好ましく、ANSIでは、MODの値に応じて段階的なグレードが定められている。
MOD=ECmin/SC   (4)
[Modulation]
Modulation MOD can be calculated according to equation (4) below. In order to be evaluated as having sufficient quality as an information code, the MOD needs to be 40% or more. Note that the higher the MOD value, the better, and ANSI defines graded grades according to the MOD value.
MOD= ECmin /SC (4)
 [ディフェクト]
 ディフェクトは、バーのボイドやスペースのスポット等の欠陥を評価する指標であり、コード領域4においては、加工領域40の凹凸の抜け等に相当する。情報コードとしての品質が十分であると評価されるためには、ディフェクトが0.30以下である必要がある。なお、ディフェクトの値は小さいほど好ましく、ANSIでは、ディフェクトの値に応じて段階的なグレードが定められている。ディフェクトは、1つの加工領域40または非加工領域41内の反射率のばらつきのうち、最大のものをERNmaxとすると、以下の式(5)に従って算出することができる。
ERNmax/SC   (5)
[Defect]
The defect is an index for evaluating defects such as voids in bars and spots in spaces, and in the code region 4, corresponds to missing irregularities in the processing region 40. In order to be evaluated as having sufficient quality as an information code, the defect must be 0.30 or less. Note that the smaller the defect value, the better, and ANSI defines graded grades according to the defect value. The defect can be calculated according to the following equation (5), where ERN max is the maximum variation in reflectance within one processed region 40 or non-processed region 41.
ERN max /SC (5)
 [デコーダビリティ]
 デコーダビリティVは、スペースに対応する加工領域40の短手方向の幅、あるいは非加工領域41の短手方向の幅が、規定の段階に沿って区別可能か否かを評価する指標である。情報コードとしての品質が十分であると評価されるためには、デコーダビリティVが0.25以上である必要がある。なお、Vの値は大きいほど好ましく、ANSIでは、Vの値に応じて段階的なグレードが定められている。
[Decodability]
The decodability V is an index for evaluating whether the width in the width direction of the processed area 40 or the width in the width direction of the non-processed area 41 corresponding to the space can be distinguished according to prescribed steps. In order to be evaluated as having sufficient quality as an information code, the decodability V needs to be 0.25 or more. Note that the larger the value of V, the better, and ANSI defines graded grades according to the value of V.
 上記指標により、十分な品質を備えると評価される情報コードが表示されたペットボトルは、これまで提供されてこなかった。発明者は、鋭意検討の結果、微細な凹凸を壁部2に形成することにより、加工領域40全体としてのPETの透明性を失わせ、上記指標により十分な品質を備えると評価される情報コードが表示された樹脂製品1を開発するに至った。以下、本実施形態に係る加工領域40について説明する。 Up to now, no PET bottle has been provided with an information code that indicates that it is of sufficient quality based on the above-mentioned indicators. As a result of intensive studies, the inventor has determined that by forming fine irregularities on the wall portion 2, the transparency of the PET as a whole of the processing area 40 is lost, and an information code that is evaluated as having sufficient quality according to the above index is created. We have developed resin product 1 that displays the following. The processing area 40 according to this embodiment will be explained below.
 <4.加工領域>
 図4A、図4B及び図4Cは、本実施形態に係る加工領域40の顕微鏡写真(それぞれ倍率1000、100、3000)の一例である。図4Aは、凹凸を1パルスごとのレーザー痕により形成した加工領域40の一例であり、規則的に配列された凹部400と凸部401とにより凹凸が形成されている。図4Bは、凹凸をショットブラスト加工により形成した加工領域40の一例であり、図4Aとは異なり、粒子の衝突痕による不規則な凹凸が形成されている。図4Cは、凹凸を1ショットのレーザー痕により形成した加工領域40の一例であり、図4Aと同様、規則的に配列された凹部400cと凸部401cとにより凹凸が形成されているが、凹凸がより微細である。なお、図面では、複数の凹部400,400c及び凸部401,401cのうち、それぞれ代表的なものにのみ符号を付している。以下、それぞれについて説明する。
<4. Processing area>
4A, FIG. 4B, and FIG. 4C are examples of micrographs (magnifications of 1000, 100, and 3000, respectively) of the processing area 40 according to this embodiment. FIG. 4A shows an example of a processed region 40 in which unevenness is formed by laser marks for each pulse, and the unevenness is formed by regularly arranged concave portions 400 and convex portions 401. FIG. 4B is an example of a processed region 40 in which unevenness is formed by shot blasting, and unlike FIG. 4A, irregular unevenness is formed due to collision marks of particles. FIG. 4C is an example of a processing area 40 in which unevenness is formed by one shot of laser marks. Similar to FIG. 4A, the unevenness is formed by regularly arranged concave portions 400c and convex portions 401c. is more minute. Note that in the drawings, only typical ones among the plurality of recesses 400, 400c and the plurality of projections 401, 401c are labeled with reference numerals. Each will be explained below.
 図4Aの顕微鏡写真に示す凹部400は、PETが熱変形により内側に向かって窪んだ痕であり、1つの凹部400が、1パルスのレーザー痕に対応する。凸部401は、凹部400を取り囲むように、相対的に外側に凸となった部分であり、凹部400の形成に伴って形成される。このような凹凸が縦横に連続することにより、加工領域40は全体として光を乱反射することができる。顕微鏡写真から計測される凹部400の縦横の寸法は20μm~30μm程度であり、隣接する凹部400と凹部400との間隔(ピッチ)は、20μm~30μm程度である。 The recesses 400 shown in the micrograph of FIG. 4A are marks where the PET is depressed inward due to thermal deformation, and one recess 400 corresponds to one laser mark of one pulse. The convex portion 401 is a portion that is relatively outwardly convex so as to surround the concave portion 400, and is formed as the concave portion 400 is formed. By having such unevenness continuous vertically and horizontally, the processing area 40 as a whole can reflect light diffusely. The vertical and horizontal dimensions of the recesses 400 measured from a photomicrograph are approximately 20 μm to 30 μm, and the interval (pitch) between adjacent recesses 400 is approximately 20 μm to 30 μm.
 加工領域40は、凹部400と凸部401との配列方向に沿った長さ200μmの範囲において、高低差が5μm以上、50μm以下となる少なくとも1対の隣接する凹部400と凸部401との対を含むことが好ましく、このような凹部400と凸部401の対を、4対以上含むことがより好ましい。配列方向とは、互いに隣接する凹部400を囲む凸部402の一部が連続する方向であり、図4Aに示す矢印の方向である。隣接する凹部400と凸部401との高低差は、3D測定レーザー顕微鏡(OLYMPUS社製、LEXT OLS5000、対物レンズ50倍)のレーザースキャンによる高さ測定ツールの高さプロファイルに基づいて特定される、1つの凹部400の平均高さと、これに隣接する凸部401の平均高さとの差である。係る高低差が上記下限以上であることにより、光の反射率を高めることができる。また、係る高低差が上記上限以下であることにより、壁部2として必要な強度を維持することができる。 The processing area 40 consists of at least one pair of adjacent recesses 400 and projections 401 with a height difference of 5 μm or more and 50 μm or less in a length range of 200 μm along the arrangement direction of the recesses 400 and projections 401. It is preferable to include four or more pairs of such recessed portions 400 and convex portions 401. The arrangement direction is a direction in which a portion of the convex portions 402 surrounding mutually adjacent concave portions 400 continues, and is the direction of the arrow shown in FIG. 4A. The height difference between the adjacent concave part 400 and convex part 401 is specified based on the height profile of a height measurement tool using a laser scan of a 3D measurement laser microscope (manufactured by OLYMPUS, LEXT OLS5000, objective lens 50 times). This is the difference between the average height of one concave portion 400 and the average height of adjacent convex portions 401. When the height difference is greater than or equal to the above lower limit, the light reflectance can be increased. In addition, since the height difference is less than or equal to the above upper limit, the strength required for the wall portion 2 can be maintained.
 また、同一の加工領域40内における反射率のばらつきを低減させる観点からは、加工領域40は、高低差が上記範囲となる凹部400と凸部401との対を多く含むことが好ましい。なお、重複する凹部400または凸部401を含む対は、それぞれ別のものとしてカウントする。このような加工領域40を形成するためのレーザー光の条件については、後述する。 Furthermore, from the viewpoint of reducing variations in reflectance within the same processing region 40, it is preferable that the processing region 40 includes many pairs of concave portions 400 and convex portions 401 with height differences within the above range. Note that pairs including overlapping concave portions 400 or convex portions 401 are counted as different items. The laser beam conditions for forming such a processing area 40 will be described later.
 一方、ショットブラスト加工を用いて図4Bに示すような加工領域40の凹凸を形成する場合、加工領域40の面粗さRa(測定面積:約259μm×259μm)は、コード領域4の十分な品質を確保する観点から、1.5μm以上であることが好ましく、2.0μm以上であることがより好ましく、3.0μm以上であることがさらに好ましい。なお、面粗さRaは、3D測定レーザー顕微鏡(OLYMPUS社製、LEXT  OLS5000、対物レンズ50倍)のRa測定ツールにより計測される面粗さをいうものとする。このような面粗さを有する加工領域40を形成するためのショットブラスト加工の条件については、後述する。 On the other hand, when forming the unevenness of the processing area 40 as shown in FIG. From the viewpoint of ensuring this, the thickness is preferably 1.5 μm or more, more preferably 2.0 μm or more, and even more preferably 3.0 μm or more. Note that the surface roughness Ra refers to the surface roughness measured by an Ra measurement tool of a 3D measurement laser microscope (manufactured by OLYMPUS, LEXT OLS5000, objective lens 50 times). The shot blasting conditions for forming the processed region 40 having such surface roughness will be described later.
 図4Cの顕微鏡写真に示す凹部400c及び凸部401cは、レーザー痕により形成されている点では、図4Aの顕微鏡写真に示す凹部400及び凸部401と同様である。しかしながら、凹部400c及び凸部401cは、図4Aの凹部400及び凸部401とは、形成に用いるレーザー光の波長及び形成方法が異なる。凹部400c及び凸部401cの形成方法については、後述する。 The recesses 400c and protrusions 401c shown in the micrograph of FIG. 4C are similar to the recesses 400 and protrusions 401 shown in the micrograph of FIG. 4A in that they are formed by laser marks. However, the concave portion 400c and the convex portion 401c are different from the concave portion 400 and the convex portion 401 in FIG. 4A in the wavelength of the laser beam used for formation and in the formation method. A method for forming the concave portion 400c and the convex portion 401c will be described later.
 図4Aの例と同様、凹部400cは、PETが熱変形により内側に向かって窪んだ痕である。一方、凸部401cは、凹部400cを取り囲むように、相対的に外側に凸となった部分である。このような凹凸が縦横に連続することにより、加工領域40は全体として光を乱反射することができる。顕微鏡写真から計測される凹部400cの縦横の寸法は、凹部400cの形状にもよるが、4.5μm~7μm程度である。また、顕微鏡写真から計測される凸部401cの最小幅は、凸部401cの形状にもよるが、0.3μm~1μm程度である。 Similar to the example in FIG. 4A, the recess 400c is a mark where the PET is depressed inward due to thermal deformation. On the other hand, the convex portion 401c is a relatively outwardly convex portion so as to surround the concave portion 400c. By having such unevenness continuous vertically and horizontally, the processing area 40 as a whole can reflect light diffusely. The vertical and horizontal dimensions of the recess 400c measured from the photomicrograph are approximately 4.5 μm to 7 μm, depending on the shape of the recess 400c. Further, the minimum width of the convex portion 401c measured from a photomicrograph is approximately 0.3 μm to 1 μm, although it depends on the shape of the convex portion 401c.
 上記レーザースキャンによる高さ測定ツールの高さプロファイルに基づいて測定される1対の隣接する凹部400cと凸部401cとの高低差の平均値は、3.5μm~5.5μm程度である。上記平均値は、加工領域40から無作為に抽出した、異なる3対の隣接する凹部400cと凸部401cとの高低差の平均値である。 The average height difference between a pair of adjacent concave portions 400c and convex portions 401c measured based on the height profile of the height measurement tool using the laser scan is approximately 3.5 μm to 5.5 μm. The average value is the average value of the height differences between three different pairs of adjacent concave portions 400c and convex portions 401c randomly extracted from the processing area 40.
 <5.加工領域の形成方法>
 以下、上述した加工領域40の形成方法を含む、樹脂製品1の製造方法について説明する。
<5. Method of forming processing area>
Hereinafter, a method for manufacturing the resin product 1, including a method for forming the processing area 40 described above, will be described.
 [レーザー光の連続照射による形成方法]
 図5は、レーザー光の連続照射により加工領域40が形成された樹脂製品1を製造する方法の工程を示すフローチャートである。また、図6は、本方法で用いる、レーザー光照射装置7の一例を示す模式図である。図6に示すレーザー光照射装置7は、気体レーザー、固体レーザー、液体レーザー、及び半導体レーザー等、公知のものを使用することができる。図6に示すように、レーザー光照射装置7は、レーザー照射の対象となる対象製品を載置するテーブル70及びxyステージ71を備え、xyステージ71により平面方向にテーブル70を移動させることができる。また、レーザー光照射装置7は、レーザー発振器72、ビームエキスパンダー73、及びFθレンズ75が連結されたガルバノスキャナ74をさらに備える。レーザー光照射装置7は、レーザー発振器72により発生させたレーザー光の広がり角をビームエキスパンダー73により調整し、さらにガルバノスキャナ74でレーザー光の照射位置を制御しながら、対象製品の表面にレーザー痕を形成する。
[Formation method using continuous laser light irradiation]
FIG. 5 is a flowchart showing the steps of a method for manufacturing a resin product 1 in which a processing area 40 is formed by continuous irradiation with laser light. Moreover, FIG. 6 is a schematic diagram showing an example of the laser light irradiation device 7 used in this method. As the laser beam irradiation device 7 shown in FIG. 6, a known device such as a gas laser, solid laser, liquid laser, or semiconductor laser can be used. As shown in FIG. 6, the laser beam irradiation device 7 includes a table 70 on which a target product to be laser irradiated is placed and an xy stage 71, and the table 70 can be moved in a plane direction by the xy stage 71. . The laser beam irradiation device 7 further includes a galvano scanner 74 to which a laser oscillator 72, a beam expander 73, and an Fθ lens 75 are connected. The laser beam irradiation device 7 adjusts the spread angle of the laser beam generated by the laser oscillator 72 with a beam expander 73, and further controls the irradiation position of the laser beam with a galvano scanner 74, so as to leave a laser mark on the surface of the target product. Form.
 再び図5を参照して、ステップS1では、コード領域4を形成する対象となる樹脂製品10を準備する。樹脂製品10は、コード領域4を形成するための壁部2aを有するものであればよく、本実施形態では、無色透明のPETボトルである。 Referring again to FIG. 5, in step S1, the resin product 10 on which the code region 4 is to be formed is prepared. The resin product 10 only needs to have a wall portion 2a for forming the code region 4, and in this embodiment, it is a colorless and transparent PET bottle.
 ステップS2では、樹脂製品10をレーザー光照射装置7にセットする。より具体的には、樹脂製品10をテーブル70上に固定し、壁部2aのコード領域4を形成する箇所にレーザー光が照射されるように、xyステージ71により位置合わせする。 In step S2, the resin product 10 is set in the laser light irradiation device 7. More specifically, the resin product 10 is fixed on the table 70, and positioned using the xy stage 71 so that the laser beam is irradiated onto the portion of the wall portion 2a where the code region 4 is to be formed.
 ステップS3では、レーザー光照射装置7により樹脂製品10にレーザー光を照射し、樹脂製品10の壁部2aにレーザー痕による凹凸を1つずつ連続形成する。レーザー光照射装置は、所定の走査線に沿って、1パルスごとのレーザー光を連続照射するように予め設定される。通常、1つの加工領域40を形成するのに、複数の走査線に沿ったレーザー光の連続照射が行われる。従って、情報コードCのクワイエットゾーン及びスペースに対応する、規定の数の走査線に沿った連続照射が行われると、クワイエットゾーン及びスペースに対応する加工領域40が形成される。レーザー光の条件は、これに限定されないが、例えばスポット径30μm、周波数100kHz、平均出力4Wである。また、レーザー光のスキャン速度は2000mm/s~3000mm/sであり、スキャン速度が2000mm/sであるときのラインピッチは25μm~30μmであることが好ましく、スキャン速度が3000mm/sであるときのラインピッチは20μm~25μmであることが好ましい。 In step S3, the resin product 10 is irradiated with laser light by the laser light irradiation device 7, and unevenness by laser marks is continuously formed one by one on the wall portion 2a of the resin product 10. The laser light irradiation device is set in advance to continuously irradiate laser light for each pulse along a predetermined scanning line. Normally, to form one processing area 40, continuous irradiation of laser light along a plurality of scanning lines is performed. Therefore, when continuous irradiation is performed along a predetermined number of scanning lines corresponding to the quiet zone and space of information code C, a processing area 40 corresponding to the quiet zone and space is formed. Although the conditions of the laser beam are not limited to these, for example, the spot diameter is 30 μm, the frequency is 100 kHz, and the average output is 4 W. Further, the scanning speed of the laser beam is 2000 mm/s to 3000 mm/s, and when the scanning speed is 2000 mm/s, the line pitch is preferably 25 μm to 30 μm, and when the scan speed is 3000 mm/s, the line pitch is preferably 25 μm to 30 μm. The line pitch is preferably 20 μm to 25 μm.
 ステップS3で、情報コードCのクワイエットゾーン及びスペースに対応する全ての加工領域40が形成されると、壁部2にコード領域4が形成された樹脂製品1が得られる。 In step S3, when all the processing areas 40 corresponding to the quiet zones and spaces of the information code C are formed, the resin product 1 in which the code area 4 is formed on the wall portion 2 is obtained.
 [ショットブラスト加工による形成方法]
 図7は、ショットブラスト加工により加工領域40が形成された樹脂製品1を製造する方法の工程を示すフローチャートである。また、図8は、ショットブラスト加工の方法を説明する図である。図8に示すように、ショットブラスト加工では、情報コードCのクワイエットゾーン及びスペースに対応する位置に、開口が形成されたメタルマスク11が予め準備される。
[Formation method by shot blasting]
FIG. 7 is a flowchart showing steps of a method for manufacturing a resin product 1 in which a processing area 40 is formed by shot blasting. Further, FIG. 8 is a diagram illustrating a method of shot blasting. As shown in FIG. 8, in shot blasting, a metal mask 11 with openings formed in positions corresponding to the quiet zone and space of the information code C is prepared in advance.
 再び図7を参照して、ステップS11では、コード領域4を形成する対象となる樹脂製品10を準備する。樹脂製品10は、コード領域4を形成するための壁部2aを有するものであればよく、本実施形態では、無色透明のペットボトルである。 Referring again to FIG. 7, in step S11, the resin product 10 on which the code region 4 is to be formed is prepared. The resin product 10 only needs to have a wall portion 2a for forming the code region 4, and in this embodiment, it is a colorless and transparent PET bottle.
 ステップS12では、樹脂製品10の壁部2aの表面を、上述したメタルマスク11で覆う。すなわち、ステップS12では、複数の加工領域40となるべき箇所を除く樹脂製品10の壁部2aの表面が、メタルマスク11で覆われる。 In step S12, the surface of the wall portion 2a of the resin product 10 is covered with the metal mask 11 described above. That is, in step S12, the surface of the wall portion 2a of the resin product 10 excluding the portions that are to become the plurality of processing areas 40 is covered with the metal mask 11.
 ステップS13では、メタルマスク11で覆われた状態の樹脂製品10の壁部2aにショットブラスト加工を施す。これにより、メタルマスク11の開口から露出している樹脂製品10の壁部2aの表面、すなわちメタルマスク11で覆われていない箇所に、粒子の衝突痕による凹凸を形成し、情報コードCのクワイエットゾーン及びスペースに対応する加工領域40を形成する。メタルマスク11で覆われた部分には、粒子の衝突痕が形成されず、非加工領域41となる。 In step S13, shot blasting is performed on the wall portion 2a of the resin product 10 covered with the metal mask 11. As a result, the surface of the wall portion 2a of the resin product 10 exposed through the opening of the metal mask 11, that is, the area not covered by the metal mask 11, is formed with unevenness due to collision traces of particles, and the information code C quiet Processing areas 40 corresponding to zones and spaces are formed. No particle collision marks are formed in the portion covered by the metal mask 11, which becomes an unprocessed region 41.
 ステップS14で、樹脂製品10からメタルマスク11を取り外すと、壁部2にコード領域4が形成された樹脂製品1が得られる。 In step S14, when the metal mask 11 is removed from the resin product 10, the resin product 1 in which the code region 4 is formed on the wall portion 2 is obtained.
 ショットブラスト加工に用いる粒子としては、これに限定されないが、ビッカース硬度3000Hvの天然鉱石による、サイズ30μm~50μmの粒子を用いることができる。また、ブラスト時間は、例えば2秒とすることができる。粒子の吹付エアー圧力であるピストル圧は、0.8Bar以上であることが好ましく、1Bar以上であることがより好ましく、3Bar以上であることがさらに好ましい。 Particles used in shot blasting are not limited to these, but particles with a size of 30 μm to 50 μm made of natural ore with a Vickers hardness of 3000 Hv can be used. Further, the blasting time can be set to 2 seconds, for example. The pistol pressure, which is the air pressure at which the particles are blown, is preferably 0.8 Bar or more, more preferably 1 Bar or more, and even more preferably 3 Bar or more.
 [レーザー光の広域照射による形成方法]
 図9は、レーザー光の広域照射により加工領域40が形成された樹脂製品1を製造する方法の工程を示すフローチャートである。また、図10は、本方法で用いる、レーザー光照射装置8の一例を示す模式図である。本方法では、レーザー光照射装置8により、紫外線領域の波長を有するUVレーザーが照射される。UVレーザーの波長は、特に限定されないが、例えば355nm、308nm、または266nmである。
[Formation method using wide area irradiation of laser light]
FIG. 9 is a flowchart showing the steps of a method for manufacturing a resin product 1 in which a processing area 40 is formed by wide-area irradiation with laser light. Moreover, FIG. 10 is a schematic diagram showing an example of the laser light irradiation device 8 used in this method. In this method, a laser beam irradiation device 8 irradiates a UV laser having a wavelength in the ultraviolet region. The wavelength of the UV laser is not particularly limited, and is, for example, 355 nm, 308 nm, or 266 nm.
 レーザー光照射装置8は、気体UVレーザー装置または固体UVレーザー装置のいずれであってもよい。図10に示すように、レーザー光照射装置8は、レーザー照射の対象となる対象製品を載置するテーブル80を備える。また、レーザー光照射装置8は、レーザー発振器82、投影レンズ83、ミラー84及び集光レンズ85をさらに備える。投影レンズ83とミラー84との間には、フォトマスク81が配置される。 The laser light irradiation device 8 may be either a gas UV laser device or a solid UV laser device. As shown in FIG. 10, the laser beam irradiation device 8 includes a table 80 on which a target product to be laser irradiated is placed. The laser beam irradiation device 8 further includes a laser oscillator 82, a projection lens 83, a mirror 84, and a condenser lens 85. A photomask 81 is placed between the projection lens 83 and the mirror 84.
 フォトマスク81は、情報コードCを表す微細なパターンが形成されたフォトマスクである。本実施形態に係るフォトマスク81は、合成石英の基板と、基板の片面に積層されたクロム膜とを有する。図10に示すように、クロム膜は、格子状の遮蔽領域810を形成する。一方、合成石英のうち、クロム膜が形成されていない複数の矩形の領域が、レーザー光を透過させる透過領域811を形成する。図面では、複数の透過領域811のうち、代表的なものにのみ符号を付している。透過領域811を透過したレーザー光が、凹部400cを形成し、これに伴って401cも形成される。 The photomask 81 is a photomask on which a fine pattern representing the information code C is formed. The photomask 81 according to this embodiment includes a synthetic quartz substrate and a chromium film laminated on one side of the substrate. As shown in FIG. 10, the chromium film forms a grid-like shielding region 810. On the other hand, a plurality of rectangular regions of the synthetic quartz on which the chromium film is not formed form transmission regions 811 through which laser light is transmitted. In the drawing, only representative ones among the plurality of transparent regions 811 are labeled. The laser beam transmitted through the transmission region 811 forms the recess 400c, and along with this, the recess 401c is also formed.
 レーザー光照射装置8は、レーザー発振器82により発生させたレーザー光の広がり角を投影レンズ83により調整する。調整されたレーザー光は、フォトマスク81を透過することにより、所定のビーム形状となる。レーザー光は、さらにミラー84により進行方向を変えられ、集光レンズ85に入射する。集光レンズ85を通過したレーザー光は、フォトマスク81の対象製品の表面に集められる。これにより、対象製品の表面にレーザー痕を形成する。 The laser beam irradiation device 8 adjusts the spread angle of the laser beam generated by the laser oscillator 82 using the projection lens 83. The adjusted laser light becomes a predetermined beam shape by passing through the photomask 81. The laser beam is further changed in its traveling direction by a mirror 84 and enters a condenser lens 85 . The laser beam that has passed through the condensing lens 85 is focused on the surface of the target product of the photomask 81. This creates laser marks on the surface of the target product.
 再び図9を参照して、ステップS21では、コード領域4を形成する対象となる樹脂製品10を準備する。樹脂製品10は、コード領域4を形成するための壁部2aを有するものであればよく、本実施形態では、無色透明のPETボトルである。 Referring again to FIG. 9, in step S21, the resin product 10 on which the code region 4 is to be formed is prepared. The resin product 10 only needs to have a wall portion 2a for forming the code region 4, and in this embodiment, it is a colorless and transparent PET bottle.
 ステップS22では、レーザー光照射装置8の投影レンズ83とミラー84との間にフォトマスク81を配置する。 In step S22, the photomask 81 is placed between the projection lens 83 and mirror 84 of the laser beam irradiation device 8.
 ステップS23では、樹脂製品10をレーザー光照射装置8にセットする。より具体的には、樹脂製品10をテーブル80上に固定し、壁部2aのコード領域4を形成する箇所にレーザー光が照射されるように、樹脂製品10を位置合わせする。 In step S23, the resin product 10 is set in the laser light irradiation device 8. More specifically, the resin product 10 is fixed on the table 80, and the resin product 10 is positioned so that the laser beam is irradiated onto the portion of the wall portion 2a where the code region 4 is to be formed.
 ステップS24では、レーザー光照射装置8により樹脂製品10にレーザー光を照射し、樹脂製品10の壁部2aにレーザー痕による凹凸を形成する。本方法では、フォトマスク81によりレーザー光のビーム形状が形作られているため、複数の凹部400cが、1パルス分のレーザー光により形成される。レーザー光のエネルギー密度は、これに限定されないが、例えば500mJ/cm2である。 In step S24, the resin product 10 is irradiated with laser light by the laser light irradiation device 8 to form unevenness by laser marks on the wall portion 2a of the resin product 10. In this method, since the beam shape of the laser light is shaped by the photomask 81, the plurality of recesses 400c are formed by one pulse of laser light. The energy density of the laser beam is, for example, 500 mJ/cm 2 , although it is not limited thereto.
 ステップS24で、情報コードCのクワイエットゾーン及びスペースに対応する全ての加工領域40が形成されると、壁部2にコード領域4が形成された樹脂製品1が得られる。 In step S24, when all the processing areas 40 corresponding to the quiet zones and spaces of the information code C are formed, the resin product 1 in which the code area 4 is formed on the wall portion 2 is obtained.
 <6.特徴>
 (1)上記実施形態に係る樹脂製品1によれば、別体として構成されるラベル、シールその他の付属品を必要とせず、樹脂製品1の壁部2の物理的加工によって情報コードCを表示することができる。これにより、情報コードCを表示するための資源の消費を抑制することができ、樹脂製品1(内容物が収容されたものを含む)の流通管理も容易となる。
<6. Features>
(1) According to the resin product 1 according to the above embodiment, the information code C is displayed by physically processing the wall portion 2 of the resin product 1 without requiring labels, stickers, or other accessories that are configured separately. can do. Thereby, the consumption of resources for displaying the information code C can be suppressed, and distribution management of the resin products 1 (including those containing contents) is also facilitated.
 (2)上記実施形態に係る樹脂製品1によれば、レーザーマーキングのための添加物を原料に混入させる必要がなく、またインクを付着させてコードの読み取り性を向上させる必要がない。これにより、リサイクルが容易となり、また再生ペレットにおいて意図しない着色が発生することが回避される。 (2) According to the resin product 1 according to the above embodiment, there is no need to mix additives for laser marking into the raw material, and there is no need to attach ink to improve code readability. This facilitates recycling and prevents unintended coloring from occurring in the recycled pellets.
 (3)UVレーザー光とフォトマスク81とを用いて、レーザー光の広域照射を行う方法によれば、走査線に沿ってレーザー光を連続照射する方法よりも、短時間でコード領域4を形成することができる。例えば、UVレーザー光を照射する時間は、1ショットあたり20ナノ秒である。これに対し、レーザー光を連続照射して凹部400を1つずつ形成し、図13Aに示すようなバーコードを示すコード領域4を形成する時間は、約5秒である。レーザー光照射装置8の出力によっては、同じバーコードを示す同じ大きさのコード領域4を、1ショットで形成することが可能となる。 (3) According to the method of irradiating a wide area with laser light using UV laser light and the photomask 81, the code area 4 is formed in a shorter time than the method of continuously irradiating laser light along the scanning line. can do. For example, the duration of UV laser light irradiation is 20 nanoseconds per shot. On the other hand, it takes about 5 seconds to continuously irradiate the laser beam to form the recesses 400 one by one to form the code area 4 showing the barcode as shown in FIG. 13A. Depending on the output of the laser beam irradiation device 8, it is possible to form code regions 4 of the same size indicating the same barcode in one shot.
 <7.変形例>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。例えば、以下の変更が可能である。また、以下の変形例の要旨は、適宜組み合わせることができる。
<7. Modified example>
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit thereof. For example, the following changes are possible: Furthermore, the gist of the following modifications can be combined as appropriate.
 (1)上記実施形態では、加工領域40はレーザーの照射またはショットブラスト加工によって形成された。しかしながら、加工領域40を形成する方法はこれに限定されず、例えば金型により樹脂製品1を成形する際に、加工領域40として凹凸が形成された壁部を一体的に形成することができる。図11は、金型を用いて樹脂製品1を成形する方法の工程を示すフローチャートであり、図12は、本方法で用いる金型12の一例である。金型12は、これに限定されないが、開閉可能な2つの金型を有し、これらの金型を閉じると、樹脂製品1の壁部2に対応する形状のキャビティが形成される。金型12のキャビティ表面には、微細な凹凸が形成された複数の第1領域120と、第1領域120に隣接するとともに、凹凸が形成されていない第2領域121とが形成されている。複数の第1領域120は、全体として情報コードCのクワイエットゾーン及びスペースが反転された形状を有する。なお、図面では、複数の第1領域120のうち、代表的なものにのみ符号を付している。 (1) In the above embodiment, the processed region 40 was formed by laser irradiation or shot blasting. However, the method for forming the processing area 40 is not limited to this, and for example, when molding the resin product 1 using a mold, a wall portion with unevenness formed therein can be integrally formed as the processing area 40. FIG. 11 is a flowchart showing the steps of a method for molding the resin product 1 using a mold, and FIG. 12 is an example of the mold 12 used in this method. Although not limited thereto, the mold 12 has two molds that can be opened and closed, and when these molds are closed, a cavity having a shape corresponding to the wall portion 2 of the resin product 1 is formed. On the cavity surface of the mold 12, there are formed a plurality of first regions 120 in which fine irregularities are formed, and a second region 121 adjacent to the first regions 120 and in which no irregularities are formed. The plurality of first regions 120 have a shape in which the quiet zone and space of the information code C are inverted as a whole. Note that in the drawings, only representative ones among the plurality of first regions 120 are labeled with reference numerals.
 再び図11を参照して、ステップS31では、樹脂製品1の樹脂材料13(図12参照)を準備する。樹脂材料13は、本実施形態では、無色透明のPETである。 Referring again to FIG. 11, in step S31, the resin material 13 (see FIG. 12) of the resin product 1 is prepared. In this embodiment, the resin material 13 is transparent and colorless PET.
 ステップS32では、金型12を用いて樹脂材料13を成形する。樹脂材料13の成形方法は、特に限定されず、公知の方法を用いることができる。樹脂材料13が成形されると同時に、その壁部の外側面には第1領域120の凹凸が転写され、複数の加工領域40が形成される。このため、第1領域120の凹凸は、上記レーザー光の照射によるレーザー痕、あるいは上記ショットブラスト加工による粒子痕による凹凸に近い密度、サイズ、及び表面粗さを有することが好ましい。 In step S32, the resin material 13 is molded using the mold 12. The method for molding the resin material 13 is not particularly limited, and any known method can be used. At the same time as the resin material 13 is molded, the unevenness of the first region 120 is transferred to the outer surface of the wall portion, and a plurality of processed regions 40 are formed. Therefore, it is preferable that the irregularities in the first region 120 have a density, size, and surface roughness close to those caused by laser marks caused by the laser beam irradiation or particle marks caused by the shot blasting process.
 ステップS33では、金型12を開いて、成形された樹脂製品1を取り出す。これにより、複数の第1領域120の凹凸が転写された複数の加工領域40と、加工領域に隣接するとともに、凹凸が形成されていない非加工領域41とを含むコード領域4が形成された壁部2を備える樹脂製品1が得られる。 In step S33, the mold 12 is opened and the molded resin product 1 is taken out. As a result, a wall is formed with a code region 4 including a plurality of processing regions 40 to which the unevenness of the plurality of first regions 120 has been transferred, and a non-processing region 41 adjacent to the processing region and in which no unevenness is formed. A resin product 1 comprising a portion 2 is obtained.
 (2)上記実施形態では、樹脂製品1は無色透明であった。しかしながら、樹脂製品1は、半透明か不透明であってもよく、また、着色されていてもよい。 (2) In the above embodiment, the resin product 1 was colorless and transparent. However, the resin product 1 may be translucent or opaque, or may be colored.
 (3)上記実施形態では、樹脂製品1はPET製であった。しかしながら、樹脂製品1の材料は特に限定されず、その他の樹脂から構成されてもよい。上記のレーザー照射加工、ブラスト加工あるいは金型による加工が可能な樹脂であれば、樹脂製品1を構成する樹脂は特に限定されない。 (3) In the above embodiment, the resin product 1 was made of PET. However, the material of the resin product 1 is not particularly limited, and may be made of other resins. The resin constituting the resin product 1 is not particularly limited as long as it can be processed by laser irradiation, blasting, or molding as described above.
 (4)上記実施形態では、情報コードCは1次元のバーコードであった。しかしながら、情報コードCはバーコード以外の1次元コードであってもよいし、2次元コードであってもよい。また、樹脂製品1において、コード領域4が形成される部位や、樹脂製品1に対するコード領域4の向きは特に限定されず、適宜選択することができる。 (4) In the above embodiment, the information code C was a one-dimensional barcode. However, the information code C may be a one-dimensional code other than a barcode, or may be a two-dimensional code. Further, in the resin product 1, the part where the code region 4 is formed and the direction of the code region 4 with respect to the resin product 1 are not particularly limited, and can be selected as appropriate.
 (5)図9に示す方法のステップS22は、ステップS21の前や、ステップS23の後に行われてもよい。また、フォトマスクのパターンは、上記実施形態のものに限られない。例えば、以下の実施例で示すように、第1方向と、第1方向に直交する方向に沿って、所定の図形が2次元配列されたパターンとすることができる。 (5) Step S22 of the method shown in FIG. 9 may be performed before step S21 or after step S23. Further, the pattern of the photomask is not limited to that of the above embodiment. For example, as shown in the following embodiments, a pattern may be formed in which predetermined figures are two-dimensionally arranged along a first direction and a direction orthogonal to the first direction.
 以下、実施例について説明する。以下の実施例はあくまでも例示であり、本開示は以下の実施例に限定されない。 Examples will be described below. The following examples are merely illustrative, and the present disclosure is not limited to the following examples.
 <実験1>
 無色透明のペットボトルの外側面に、図6に示すような装置を用いてレーザー光(半導体レーザー光)を照射して、微細な凹凸を含む加工領域を形成し、図13Aに示すような既存のバーコードを表すコード領域が形成された樹脂製品を作製した。既存のバーコードは、公知のペットボトルの樹脂製フィルム(ラベル)に、公知の印刷方法により表示されたものであった。また、図13Bは、図13Aのバーコードを、上記のコード検証機(STRATIX Laser Xaminer Elite Series)により読み取ったときのSRPである。レーザー光の照射条件を以下の表1に示す5通りとし、各条件に対応する樹脂製品を、それぞれ実施例1~4及び参考例1に係る樹脂製品とした。
<Experiment 1>
The outer surface of a colorless and transparent PET bottle is irradiated with laser light (semiconductor laser light) using a device as shown in Figure 6 to form a processing area containing fine irregularities, thereby creating an area similar to the existing one shown in Figure 13A. A resin product was produced in which a code area representing a barcode was formed. Existing barcodes were displayed on known resin films (labels) of PET bottles using known printing methods. Moreover, FIG. 13B shows the SRP when the barcode shown in FIG. 13A is read by the above code verification machine (STRATIX Laser Xaminer Elite Series). The laser light irradiation conditions were set to five as shown in Table 1 below, and the resin products corresponding to each condition were used as the resin products of Examples 1 to 4 and Reference Example 1, respectively.
 実施例1~4及び参考例1に係る樹脂製品の壁部からコード領域を切り出し、図3に示す方法に従って上記コード検証機による読み取りを行い、出力されたSRPに基づいて、上記ANSIによる評価指標をそれぞれ算出した。その結果、全てのコード領域について、シンボルコントラストSC以外の指標が、ANSIに規定されるグレードAまたはBとなった。このため、以下の表2には、シンボルコントラストSCの結果を示す。表2に示すように、参考例1を除く実施例1~4においてSCが20%以上となった。
A code area is cut out from the wall of the resin product according to Examples 1 to 4 and Reference Example 1, and read by the above code verification machine according to the method shown in FIG. 3. Based on the output SRP, the above ANSI evaluation index is determined. were calculated respectively. As a result, for all code regions, the indicators other than symbol contrast SC were grade A or B as defined by ANSI. Therefore, Table 2 below shows the results of symbol contrast SC. As shown in Table 2, in Examples 1 to 4 except Reference Example 1, the SC was 20% or more.
 参考のため、実施例1に係る加工領域の顕微鏡写真(倍率1000)を図14Aに、SRPを図14Bに示し、参考例1に係る加工領域の顕微鏡写真(倍率1000)を図15Aに、SRPを図15Bに示す。これらの図から分かるように、実施例1ではレーザー痕による凹凸が連続して密に形成されていたのに対し、参考例1では実施例1と比較してレーザー痕による凹凸が疎になっていた。また、実施例1のSRPは、図13Bに示すSRPに近く、加工領域の反射率が高くなったのに対し、参考例1のSRPは、実施例1のSRPと比較して全体的に反射率が低くなった。 For reference, a micrograph (magnification: 1000) of the processing area according to Example 1 is shown in FIG. 14A, SRP is shown in FIG. 14B, and a micrograph (magnification: 1000) of the processing area according to Reference Example 1 is shown in FIG. is shown in FIG. 15B. As can be seen from these figures, in Example 1, the unevenness caused by laser marks was formed continuously and densely, whereas in Reference Example 1, the unevenness caused by laser marks was sparse compared to Example 1. Ta. In addition, the SRP of Example 1 is close to the SRP shown in FIG. 13B and has a higher reflectance in the processed area, whereas the SRP of Reference Example 1 is more reflective than the SRP of Example 1. rate has become lower.
 また、参考のため、上記3D測定レーザー顕微鏡により取得された実施例1に係る加工領域の高さプロファイルと、実施例2に係る加工領域の高さプロファイルとをそれぞれ図16A及び図16Bに示す。これらの高さプロファイルは、加工領域のレーザー痕の配列方向に沿った200μmの長さにおける高さプロファイルである。図16Aに示すように、実施例1に係る加工領域は、高低差が10μm~14μm程度の隣接する凹部と凸部とを5対含んでいた。また、図16Bに示すように、実施例2に係る加工領域は、高低差が18μm~22μm程度の隣接する凹部と凸部とを5対含んでいた。 For reference, the height profile of the processing area according to Example 1 and the height profile of the processing area according to Example 2 obtained by the 3D measurement laser microscope are shown in FIGS. 16A and 16B, respectively. These height profiles are height profiles at a length of 200 μm along the direction in which the laser marks are arranged in the processing area. As shown in FIG. 16A, the processing area according to Example 1 included five pairs of adjacent concave portions and convex portions with height differences of approximately 10 μm to 14 μm. Further, as shown in FIG. 16B, the processing area according to Example 2 included five pairs of adjacent concave portions and convex portions with a height difference of about 18 μm to 22 μm.
 実験1により、レーザー痕による凹凸を形成することにより、光学的に読み取り可能な情報コードが表示された樹脂製品が提供されることが確認された。 Through Experiment 1, it was confirmed that a resin product on which an optically readable information code was displayed could be provided by forming unevenness with laser marks.
 <実験2>
 無色透明のペットボトルの外側面に、図8に示すようなメタルマスクを用いてショットブラスト加工を施し、微細な凹凸を含む加工領域を形成し、図13Aのバーコードを表すコード領域が形成された樹脂製品を作製した。ショットブラスト加工の条件を以下の表3に示す5通りとし、各条件に対応する樹脂製品を、それぞれ実施例5~8及び参考例2に係る樹脂製品とした。ショットブラスト加工の粒子としては、ビッカース硬度3000Hvの天然鉱石による、サイズ30μm~50μmの粒子を用いた。
<Experiment 2>
Shot blasting is applied to the outer surface of a colorless and transparent PET bottle using a metal mask as shown in FIG. 8 to form a processed area including fine irregularities, and a code area representing the barcode shown in FIG. 13A is formed. A resin product was produced using the following methods. The shot blasting conditions were set to five conditions as shown in Table 3 below, and the resin products corresponding to each condition were used as the resin products of Examples 5 to 8 and Reference Example 2, respectively. Particles with a size of 30 μm to 50 μm made of natural ore with a Vickers hardness of 3000 Hv were used as particles for shot blasting.
 実施例5~8及び参考例2に係る樹脂製品の壁部からコード領域を切り出し、図3に示す方法に従って上記コード検証機による読み取りを行い、出力されたSRPに基づいて、上記ANSIによる評価指標をそれぞれ算出した。その結果、実施例5~8に係るコード領域について、シンボルコントラストSC以外の指標が、ANSIに規定されるグレードAまたはBとなった。このため、以下の表4には、シンボルコントラストSCの結果を示す。また、表4には、上記3D測定レーザー顕微鏡により測定された面粗さRa(μm)を示す。表4に示すように、実施例5~8においてSCが20%以上となった。参考例2は、SCの基準は満たしたものの、他の評価指標においてANSIによる基準を満たさなかった。
A code area is cut out from the wall of the resin product according to Examples 5 to 8 and Reference Example 2, and read by the code verification machine according to the method shown in FIG. 3. Based on the output SRP, the evaluation index according to the ANSI is determined. were calculated respectively. As a result, for the code regions according to Examples 5 to 8, the indicators other than symbol contrast SC were grade A or B as defined by ANSI. Therefore, Table 4 below shows the results of symbol contrast SC. Table 4 also shows the surface roughness Ra (μm) measured by the 3D measurement laser microscope. As shown in Table 4, in Examples 5 to 8, the SC was 20% or more. Although Reference Example 2 met the SC criteria, it did not meet the ANSI criteria for other evaluation indicators.
 参考のため、実施例5に係るコード領域のSRPを図17に示し、参考例2に係る加工領域の顕微鏡写真(倍率100)を図18Aに、SRPを図18Bに示す。なお、実施例5に係る加工領域の顕微鏡写真(倍率100)は、図4Bに示す顕微鏡写真である。これらの図から分かるように、実施例5では粒子の衝突痕により、比較的粗い凹凸が形成されていたのに対し、参考例2では実施例5と比較して粒子の衝突痕による凹凸が細かくなっていた。また、実施例5のSRPは、図13Bに示すSRPに近く、加工領域の反射率が高くなったのに対し、参考例2のSRPは、実施例5のSRPと比較して全体的に反射率が低くなった。これは、参考例2に係るショットブラスト条件のピストル圧が低く、参考例2に係る加工領域では、他の実施例5~8に係る加工領域と比較して、面粗さRaが小さくなったためと考えられる。 For reference, the SRP of the code region according to Example 5 is shown in FIG. 17, the micrograph (magnification 100) of the processed region according to Reference Example 2 is shown in FIG. 18A, and the SRP is shown in FIG. 18B. Note that the micrograph (magnification: 100) of the processed area according to Example 5 is the micrograph shown in FIG. 4B. As can be seen from these figures, in Example 5, relatively coarse unevenness was formed due to particle collision marks, whereas in Reference Example 2, compared to Example 5, unevenness due to particle collision was finer. It had become. In addition, the SRP of Example 5 is close to the SRP shown in FIG. 13B and has a higher reflectance in the processed area, whereas the SRP of Reference Example 2 is more reflective than the SRP of Example 5. rate has become lower. This is because the pistol pressure of the shot blasting conditions according to Reference Example 2 is low, and the surface roughness Ra is smaller in the processing area according to Reference Example 2 than in the processing areas according to other Examples 5 to 8. it is conceivable that.
 <実験3>
 無色透明のペットボトルの外側面に、図10に示すような装置を用いてUVレーザー光を照射して、微細な凹凸を含む加工領域を形成し、図13Aに示すような既存のバーコードを表すコード領域が形成された樹脂製品を作製した。UVレーザーの波長は308nmであり、エネルギー密度は500mJ/cm2であった。装置は、1ショットあたり2.5mm×1.0mmの範囲の加工が可能であり、UVレーザーを複数回照射することにより、コード領域を形成した。また、図19A~19Cに示す3通りのパターンの石英クロムフォトマスクを使用し、各フォトマスクに対応する樹脂製品を、それぞれ実施例9~11に係る樹脂製品とした。図19Aは、第1方向と、第1方向に直交する第2方向に沿って、大きさが異なる2種類の正方形が配置されたパターンを表す。図19Bは、第1方向と、第1方向に直交する第2方向に沿って、正六角形が配置されたパターンを表す。図19Cは、第1方向と、第1方向に直交する第2方向に沿って、正方形が配置されたパターンを表す。図19A~図19Cに示すパターンでは、白い領域が透過領域であり、黒い領域が遮蔽領域である。
<Experiment 3>
The outer surface of a colorless and transparent PET bottle is irradiated with UV laser light using a device such as that shown in Figure 10 to form a processing area that includes minute irregularities, and an existing barcode as shown in Figure 13A is created. A resin product in which a code region representing the expression was formed was fabricated. The wavelength of the UV laser was 308 nm, and the energy density was 500 mJ/cm 2 . The apparatus is capable of processing a range of 2.5 mm x 1.0 mm per shot, and the code area was formed by irradiating the UV laser multiple times. Furthermore, quartz chrome photomasks with three patterns shown in FIGS. 19A to 19C were used, and the resin products corresponding to each photomask were the resin products of Examples 9 to 11, respectively. FIG. 19A shows a pattern in which two types of squares having different sizes are arranged along a first direction and a second direction perpendicular to the first direction. FIG. 19B shows a pattern in which regular hexagons are arranged along a first direction and a second direction perpendicular to the first direction. FIG. 19C shows a pattern in which squares are arranged along a first direction and a second direction perpendicular to the first direction. In the patterns shown in FIGS. 19A to 19C, the white areas are transparent areas and the black areas are shielded areas.
 実施例9~11に係る樹脂製品の壁部からコード領域を切り出し、図3に示す方法に従って上記コード検証機による読み取りを行い、出力されたSRPに基づいて、上記ANSIによる評価指標をそれぞれ算出した。その結果、実施例9~11に係るコード領域について、シンボルコントラストSC以外の指標が、ANSIに規定されるグレードAまたはBとなった。このため、以下の表5には、シンボルコントラストSCの結果を示す。表5に示すように、実施例9~11に係る樹脂製品のSCは、いずれも20%以上であった。また、実施例9~11に係る樹脂製品のANSI総合グレードはいずれもDであり、スキャナによる読み取りが可能であることが実証された。 A code area was cut out from the wall of the resin product according to Examples 9 to 11, and read by the above code verification machine according to the method shown in FIG. 3. Based on the output SRP, the above ANSI evaluation index was calculated. . As a result, for the code regions according to Examples 9 to 11, the indicators other than symbol contrast SC were grade A or B as defined by ANSI. Therefore, Table 5 below shows the results of symbol contrast SC. As shown in Table 5, the SC of the resin products according to Examples 9 to 11 was all 20% or more. Further, the ANSI overall grade of the resin products according to Examples 9 to 11 was all D, demonstrating that they could be read by a scanner.
 参考のため、実施例9~11に係る加工領域の顕微鏡写真(倍率3000)を図20A~図20Cにそれぞれ示す。これらの顕微鏡写真から分かるように、フォトマスクのパターンに対応して、樹脂製品の壁部に形成される凹部及び凸部の形状が異なる。また、それぞれの顕微鏡写真において、加工面が安定していると確認される部位を選定し、写真の明暗領域の境界から計測される長さA~Fの平均値を凹部の寸法、長さG~Lの平均値を凸部の最小幅とすると、各値は以下の表6のようになった。また、加工が安定していると確認される部位を選定し、異なる3か所について計測される凹部と凸部との高低差の平均値は、それぞれ以下の表6のようになった。高低差は、上記3D測定レーザー顕微鏡のプロファイル(長さ258.303μm)に基づいて計測した。
For reference, micrographs (magnification: 3000) of processed areas according to Examples 9 to 11 are shown in FIGS. 20A to 20C, respectively. As can be seen from these micrographs, the shapes of the recesses and projections formed on the wall of the resin product differ depending on the pattern of the photomask. In addition, in each micrograph, select a part where the machined surface is confirmed to be stable, and calculate the average value of lengths A to F measured from the boundaries of the bright and dark regions of the photograph as the recess dimension and length G. When the average value of ~L is taken as the minimum width of the convex portion, each value is as shown in Table 6 below. In addition, the average value of the difference in height between the concave portion and the convex portion measured at three different locations was selected as shown in Table 6 below. The height difference was measured based on the profile (length: 258.303 μm) of the 3D measurement laser microscope.
 また、参考のため、実施例9~11に係るコード領域のSRPを図21A~21Cにそれぞれ示す。 Furthermore, for reference, the SRPs of the code regions according to Examples 9 to 11 are shown in FIGS. 21A to 21C, respectively.
 以上の実験1,2及び3より、レーザー光の照射によっても、ショットブラスト加工によっても、樹脂製品の壁部を物理的に加工することにより、光学的に読み取りが可能な情報コードを表示することが可能であることが確認された。 From the above experiments 1, 2, and 3, it is possible to display an optically readable information code by physically processing the wall of a resin product, either by laser light irradiation or shot blasting. was confirmed to be possible.
1 樹脂製品
2 壁部
3 外側面
4 コード領域
40 加工領域
41 非加工領域
C 情報コード
1 Resin product 2 Wall part 3 Outer surface 4 Code area 40 Processing area 41 Non-processing area C Information code

Claims (15)

  1.  樹脂製品であって、
     壁部を備え、
     前記壁部は、凹凸が形成された複数の加工領域と、前記加工領域に隣接するとともに、前記凹凸が形成されていない、透明な非加工領域とを含むコード領域を有し、
     前記加工領域の光の反射率は、前記非加工領域の光の反射率よりも高く、前記コード領域は、光学的に読み取り可能な情報コードを表示する、
    樹脂製品。
    It is a resin product,
    Equipped with a wall section,
    The wall portion has a code area including a plurality of processed areas in which unevenness is formed, and a transparent non-processed area adjacent to the processed area and in which the unevenness is not formed,
    The processed area has a higher light reflectance than the non-processed area, and the code area displays an optically readable information code.
    resin products.
  2.  前記情報コードは、バーコードであり、
     前記加工領域は、スペースに対応し、前記非加工領域は、バーに対応する、
     請求項1に記載の樹脂製品。
    The information code is a barcode,
    The processed area corresponds to a space, and the non-processed area corresponds to a bar.
    The resin product according to claim 1.
  3.  コード検証機を用いて測定される、前記加工領域の最大反射率Rmaxと、前記非加工領域の最小反射率Rminとの差が、20%以上である、
    請求項1または2に記載の樹脂製品。
    The difference between the maximum reflectance R max of the processed area and the minimum reflectance R min of the non-processed area, measured using a code verification machine, is 20% or more.
    The resin product according to claim 1 or 2.
  4.  前記凹凸は、規則的に配列された凹部と凸部とを含み、
     前記凹部と前記凸部との配列方向に沿った長さ200μmの範囲において、少なくとも1対の隣接する前記凹部と前記凸部との高低差が5μm以上、50μm以下となる、
    請求項1または2に記載の樹脂製品。
    The unevenness includes regularly arranged concave portions and convex portions,
    In a length range of 200 μm along the arrangement direction of the concave portions and the convex portions, a height difference between at least one pair of adjacent concave portions and the convex portions is 5 μm or more and 50 μm or less,
    The resin product according to claim 1 or 2.
  5.  前記凹凸は、前記凹部と前記凸部との配列方向に沿った長さ200μmの範囲において、高低差が5μm以上、50μm以下となる隣接する凹部と凸部との対を4対以上含む、
    請求項4に記載の樹脂製品。
    The unevenness includes four or more pairs of adjacent recesses and protrusions with a height difference of 5 μm or more and 50 μm or less in a length range of 200 μm along the arrangement direction of the recesses and the protrusions.
    The resin product according to claim 4.
  6.  前記凹凸は、不規則に配列された凹部と凸部とを含む、
    請求項1または2に記載の樹脂製品。
    The unevenness includes irregularly arranged depressions and protrusions.
    The resin product according to claim 1 or 2.
  7.  前記加工領域の面粗さは、1.5μm以上である、
    請求項6に記載の樹脂製品。
    The surface roughness of the processing area is 1.5 μm or more,
    The resin product according to claim 6.
  8.  ポリエチレンテレフタレート製の容器である、
    請求項1または2に記載の樹脂製品。
    A container made of polyethylene terephthalate,
    The resin product according to claim 1 or 2.
  9.  透明な壁部を備える樹脂製品を準備することと、
     前記壁部に、凹凸が形成された複数の加工領域と、前記加工領域に隣接するとともに、前記凹凸が形成されていない、透明な非加工領域とを含むコード領域を形成することと
    を含み、
     前記コード領域を形成することは、前記加工領域の光の反射率が、前記非加工領域の光の反射率よりも高くなるように前記凹凸を形成し、これにより光学的に読み取り可能な情報コードを表示するコード領域を形成することである、
    情報コード付き樹脂製品の製造方法。
    preparing a resin product with a transparent wall;
    forming a code area on the wall portion including a plurality of processed areas in which unevenness is formed, and a transparent non-processed area adjacent to the processed area and in which the unevenness is not formed;
    Forming the code area means forming the unevenness so that the light reflectance of the processed area is higher than the light reflectance of the non-processed area, thereby creating an optically readable information code. is to form a code region that displays
    A method for manufacturing resin products with information codes.
  10.  前記コード領域を形成することは、前記壁部にレーザー光を照射し、レーザー痕による前記凹凸を形成することにより、前記複数の加工領域を形成することを含む、
    請求項9に記載の情報コード付き樹脂製品の製造方法。
    Forming the code area includes forming the plurality of processing areas by irradiating the wall with a laser beam and forming the unevenness by laser marks.
    A method for manufacturing a resin product with an information code according to claim 9.
  11.  前記複数の加工領域を形成することは、前記レーザー光を、所定の走査線に沿ってパルスごとに照射することを含む、
    請求項10に記載の情報コード付き樹脂製品の製造方法。
    Forming the plurality of processing areas includes irradiating the laser light pulse by pulse along a predetermined scanning line.
    The method for manufacturing a resin product with an information code according to claim 10.
  12.  前記レーザー光は、紫外線領域の波長を有する、
    請求項10に記載の情報コード付き樹脂製品の製造方法。
    The laser light has a wavelength in the ultraviolet region,
    The method for manufacturing a resin product with an information code according to claim 10.
  13.  前記複数の加工領域を形成することは、前記情報コードを表すパターンが形成されたフォトマスクを通過したレーザー光を前記壁部に照射することを含み、
     前記パターンは、前記レーザー光を遮蔽する遮蔽領域と、前記レーザー光を透過させる透過領域とを有する、
    請求項12に記載の情報コード付き樹脂製品の製造方法。
    Forming the plurality of processing areas includes irradiating the wall portion with laser light that has passed through a photomask on which a pattern representing the information code is formed,
    The pattern has a shielding area that blocks the laser beam and a transmitting area that transmits the laser beam.
    The method for manufacturing a resin product with an information code according to claim 12.
  14.  前記コード領域を形成することは、
     前記複数の加工領域となるべき箇所を除く前記壁部の表面をマスクで覆うことと、
     前記マスクで覆われた状態の前記壁部に粒子を衝突させて、前記マスクで覆われていない箇所に前記粒子の衝突痕による前記凹凸を形成することと
     を含む、
    請求項9に記載の情報コード付き樹脂製品の製造方法。
    Forming the code region includes:
    Covering the surface of the wall portion except for locations that should become the plurality of processing areas with a mask;
    colliding particles with the wall portion covered with the mask, and forming the unevenness due to collision marks of the particles in areas not covered with the mask;
    A method for manufacturing a resin product with an information code according to claim 9.
  15.  透明な樹脂材料を準備することと、
     前記樹脂材料を成形し、壁部を備える樹脂製品を作製するための金型であって、凹凸が形成された複数の第1領域と、前記第1領域に隣接するとともに、前記凹凸が形成されていない第2領域とが形成されたキャビティ表面を含む金型を準備することと、
     前記金型を用いて、前記透明な樹脂材料を成形することと、
     前記金型から、前記複数の第1領域の凹凸が転写された複数の加工領域と、前記加工領域に隣接するとともに、前記凹凸が形成されていない非加工領域とを含むコード領域が形成された壁部を備える樹脂製品を取り出すことと
    を含み、
     前記加工領域の光の反射率は、前記非加工領域の光の反射率よりも高く、前記コード領域は、光学的に読み取り可能な情報コードを表示する、
    情報コード付き樹脂製品の製造方法。
    preparing a transparent resin material;
    A mold for molding the resin material to produce a resin product having a wall portion, the mold having a plurality of first regions in which unevenness is formed, and adjacent to the first region and in which the unevenness is formed. providing a mold including a cavity surface formed with a second region that is not
    molding the transparent resin material using the mold;
    A code area is formed from the mold, including a plurality of processed areas to which the unevenness of the plurality of first areas is transferred, and a non-processed area adjacent to the processed area and in which the unevenness is not formed. and removing a resin product having a wall portion;
    The processed area has a higher light reflectance than the non-processed area, and the code area displays an optically readable information code.
    A method for manufacturing resin products with information codes.
PCT/JP2023/013561 2022-04-01 2023-03-31 Resin product with information code WO2023191051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022062095 2022-04-01
JP2022-062095 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023191051A1 true WO2023191051A1 (en) 2023-10-05

Family

ID=88202419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013561 WO2023191051A1 (en) 2022-04-01 2023-03-31 Resin product with information code

Country Status (1)

Country Link
WO (1) WO2023191051A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337491A (en) * 1986-08-01 1988-02-18 Sumitomo Rubber Ind Ltd Identification mark, its reading method and reader
JPH027247A (en) * 1988-06-24 1990-01-11 Toppan Printing Co Ltd Manufacture of optical card
JPH07223842A (en) * 1994-02-15 1995-08-22 Yushi Seihin Kk Glass product, method for forming bar code pattern on the same product and masking film for blast processing used therefor
JPH11167750A (en) * 1997-12-02 1999-06-22 Kao Corp Optical disk
JP2000317656A (en) * 1999-05-11 2000-11-21 Japan Nuclear Fuel Co Ltd<Jnf> Laser marking method on metal surface
JP2001060245A (en) * 1999-06-17 2001-03-06 Konica Corp Card reader
JP2009285661A (en) * 2008-05-27 2009-12-10 Key Tranding Co Ltd Manufacturing method of blow-molded product with fine uneven pattern, and blow-molded product with fine uneven pattern
US20110012035A1 (en) * 2009-07-15 2011-01-20 Texas Instruments Incorporated Method for Precision Symbolization Using Digital Micromirror Device Technology
JP2016224402A (en) * 2015-05-28 2016-12-28 大日本印刷株式会社 Shrinkable label
JP2022015739A (en) * 2020-07-09 2022-01-21 株式会社リコー Base material, storage container, and storage body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337491A (en) * 1986-08-01 1988-02-18 Sumitomo Rubber Ind Ltd Identification mark, its reading method and reader
JPH027247A (en) * 1988-06-24 1990-01-11 Toppan Printing Co Ltd Manufacture of optical card
JPH07223842A (en) * 1994-02-15 1995-08-22 Yushi Seihin Kk Glass product, method for forming bar code pattern on the same product and masking film for blast processing used therefor
JPH11167750A (en) * 1997-12-02 1999-06-22 Kao Corp Optical disk
JP2000317656A (en) * 1999-05-11 2000-11-21 Japan Nuclear Fuel Co Ltd<Jnf> Laser marking method on metal surface
JP2001060245A (en) * 1999-06-17 2001-03-06 Konica Corp Card reader
JP2009285661A (en) * 2008-05-27 2009-12-10 Key Tranding Co Ltd Manufacturing method of blow-molded product with fine uneven pattern, and blow-molded product with fine uneven pattern
US20110012035A1 (en) * 2009-07-15 2011-01-20 Texas Instruments Incorporated Method for Precision Symbolization Using Digital Micromirror Device Technology
JP2016224402A (en) * 2015-05-28 2016-12-28 大日本印刷株式会社 Shrinkable label
JP2022015739A (en) * 2020-07-09 2022-01-21 株式会社リコー Base material, storage container, and storage body

Similar Documents

Publication Publication Date Title
US6390368B1 (en) Coding systems
US5609778A (en) Process for high contrast marking on surfaces using lasers
US8236209B1 (en) Method of making an engraved scannable marking code
EP1513779B1 (en) A method and a device for depositing a wipe-proof and rub-proof marking onto transparent glass
US20220410608A1 (en) Substrate, container, product, production method, and production apparatus
EP3508350A1 (en) Information display medium and manufacturing method relating thereto
JP2004268258A (en) Data-carved laminated material, article having the same laminated thereto and method for observing data code
US20210221052A1 (en) Label design for additive manufacturing processes
Wlodarczyk et al. Holographic watermarks and steganographic markings for combating the counterfeiting practices of high-value metal products
JP5674091B2 (en) Laser printing method, laser printed matter and paper container
WO2023191051A1 (en) Resin product with information code
ES2953338T3 (en) Procedure for coding a packaging container and coded packaging container for consumer goods
JP2022015739A (en) Base material, storage container, and storage body
JP2022056333A (en) Container and storage body
JP2022058127A (en) Pattern formation device of substrate, pattern formation method, substrate and container
JP2007168209A (en) In-mold foaming resin product and its production method
JP2005177858A (en) Marking method
WO2022070756A1 (en) Container and containing body
US20230286709A1 (en) Container and container product
JP2023131094A (en) Container and receptacle
EP4083569A1 (en) Laser irradiation apparatus, laser irradiation method, container, and containment body
US11753219B2 (en) Cap of container, container and content containing body, method for producing cap of container and container cap producing apparatus, and method for producing content containing body and content containing body producing apparatus
JP2023018696A (en) Storage container, storage body, device for manufacturing storage device, and method for manufacturing storage container
JP2023086163A (en) Storage container, storage body, manufacturing method for storage container, and manufacturing apparatus for storage container
CN116729809A (en) Container and container body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781059

Country of ref document: EP

Kind code of ref document: A1