WO2023189446A1 - Heat source machine system, pre-trained model generation method, and pre-trained model - Google Patents

Heat source machine system, pre-trained model generation method, and pre-trained model Download PDF

Info

Publication number
WO2023189446A1
WO2023189446A1 PCT/JP2023/009456 JP2023009456W WO2023189446A1 WO 2023189446 A1 WO2023189446 A1 WO 2023189446A1 JP 2023009456 W JP2023009456 W JP 2023009456W WO 2023189446 A1 WO2023189446 A1 WO 2023189446A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
heat
operating
equipment
source device
Prior art date
Application number
PCT/JP2023/009456
Other languages
French (fr)
Japanese (ja)
Inventor
知行 内村
慎也 石原
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Publication of WO2023189446A1 publication Critical patent/WO2023189446A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/62Tobacco smoke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide

Definitions

  • the present disclosure relates to a heat source system, a method for generating a learned model, and a learned model, and particularly relates to a heat source system, a method for generating a learned model, and a learned model that control equipment using a machine-learned model.
  • a heat source system In order to supply cold water or hot water to an air conditioner to cool or heat the air, a heat source system is generally constructed by appropriately combining a heat source device and its auxiliary equipment.
  • the heat source device system adjusts the output of the devices that make up the heat source device system and the operating status of the number of devices in operation, depending on the load of the air conditioner.
  • devices that can be useful for controlling the equipment that makes up the heat source equipment system there are devices that have a reproduction system that calls and reproduces actual operation data, and a system that can perform simulations using past heat load data and facility environment data ( For example, see Japanese Patent Application Publication No. 2011-163727).
  • the present disclosure relates to providing a heat source equipment system, a method for generating a trained model, and a trained model that can be operated in an appropriate operating state in response to changes in operating conditions.
  • a heat source device system includes a heat source device that cools or heats a heat medium to be supplied to heat demand equipment, a heat source auxiliary machine that operates in conjunction with the operation of the heat source device, and the heat source device. and a control device that adjusts the operating state of the heat source auxiliary device, the control device having a learned control model, the heat source auxiliary device controlling the heat source to flow the heat medium passing through the heat source device.
  • a medium pump and a heat source fluid supply device that supplies a heat source fluid that directly or indirectly exchanges heat with the heat medium in the heat source device to the heat source device, and the operating state is the operating status of the heat source device.
  • Machine learning processing using teacher data is performed so that when operating conditions are input, the operating conditions in which a predetermined index has a value that meets the conditions are output, and the operating conditions are based on the heat demand.
  • the predetermined index includes at least one of the heat demand of the equipment or a physical quantity correlated thereto, and the outside air temperature or a physical quantity correlated thereto, and the predetermined index includes the power consumption of the heat source equipment and the heat source auxiliary equipment, the heat source
  • the control device includes at least one of the operating costs of the equipment and the heat source auxiliary equipment, and the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment, and the control device is configured to be in the operating state outputted by the control model.
  • the heat source equipment and the heat source auxiliary equipment are controlled.
  • control model can output an appropriate operating state in response to changes in operating conditions, so the heat source system can be operated with good response.
  • the predetermined index may include power consumption of the heat source device and the heat source auxiliary device;
  • the control model includes a plurality of operating costs of the heat source equipment and the heat source auxiliary equipment, and carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment, and the control model includes a first one of the plurality of predetermined indicators. Selecting a plurality of operating states in which a predetermined index has a value that satisfies a condition, and from among the plurality of selected operating states, a second predetermined index different from the first predetermined index satisfies the condition.
  • the operating state may be configured to output the operating state as a value.
  • the heat source device system can be operated in an appropriate operating state that is comprehensively determined based on a plurality of predetermined indicators.
  • the heat source device, the heat medium pump, and the heat source fluid supply At least one of the devices is composed of a plurality of devices, and the operating state includes the number of operating devices of the heat source device, the heat medium pump, and the heat source fluid supply device, and
  • the control model includes a first control model that outputs the number of operating vehicles as an integer value among the operating states, and an integer value of the number of operating vehicles output by the first control model as one of the operating conditions. and a second control model to be input.
  • the control device using the output of the control model for some of the operating states of the processing heat amount, the flow rate of the heat medium discharged by the heat medium pump, and the flow rate of the heat source fluid supplied by the heat source fluid supply device,
  • the remaining operating states may be determined by simulation or rule-based.
  • the operating conditions are It may also include the pressure loss coefficient of the equipment.
  • the heat source system can be operated in an appropriate operating state even when the flow rate of the heat medium changes.
  • the operating conditions are and the cost per unit power consumption of the heat source auxiliary equipment, and the carbon dioxide emissions per unit power consumption of the heat source equipment and the heat source auxiliary equipment.
  • the control model is based on the predetermined control model.
  • the index may be one or more of the power consumption of the heat source equipment and the heat source auxiliary equipment, the operating cost of the heat source equipment and the heat source auxiliary equipment, and the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment.
  • the control device may have a plurality of control models, and the control device may use an appropriate control model among the plurality of control models according to the predetermined index desired by the user.
  • a method for generating a trained model includes a heat source device that cools or heats a heat medium supplied to heat demand equipment, and a heat source auxiliary device that operates in conjunction with the operation of the heat source device.
  • a method for generating a learned model used for controlling a heat source device system comprising: By calculating a plurality of driving conditions while changing them through simulation, and defining the driving condition when the predetermined index meets the condition as a relationship with the driving condition, and performing this for a plurality of driving conditions, a step of generating training data by obtaining a plurality of sets of relationships between the driving state and the driving condition when the predetermined index meets the condition; and performing machine learning processing using the training data.
  • the heat source auxiliary equipment includes a heat medium pump that flows the heat medium passing through the heat source equipment, and the heat source a heat source fluid supply device that supplies a heat source fluid that directly or indirectly exchanges heat with the heat medium in the equipment to the heat source equipment, and the operating condition is the amount of heat demanded by the heat demand equipment or correlated thereto.
  • the operating state includes at least one of a physical quantity and an outside temperature or a physical quantity correlated thereto, and the operating state includes the operating state of the heat source device, the flow rate of the heat medium discharged by the heat medium pump, and the heat source fluid.
  • the predetermined index includes at least one of the flow rate of the heat source fluid supplied by the supply device, and the predetermined index includes the power consumption of the heat source equipment and the heat source auxiliary equipment, the operating cost of the heat source equipment and the heat source auxiliary equipment, and at least one of the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment.
  • the heat source device, the heat medium pump, and the heat source fluid At least one of the supply devices is composed of a plurality of units, and the operating state includes the number of operating units of the heat source device, the heat medium pump, and the heat source fluid supply device, which are composed of a plurality of units,
  • the step of generating the trained model includes the step of generating a first trained model that includes an integer value of the number of operating vehicles in the operating state of the output, and using the integer value of the number of operating vehicles as one of the operating conditions.
  • the method may include a step of generating a second trained model to be input.
  • the first trained model and the second trained The trained model uses a neural network, the first trained model and the second trained model have a common intermediate layer, and the driving state is the output of the first trained model.
  • the items include the driving state item that is the output of the second trained model, and the step of generating the trained model includes first applying machine learning processing to the first learning model to generate the first learning model.
  • a trained model is generated, and then a machine learning process is performed on the model in which the initial value of the weighting coefficient of the intermediate layer of the second learning model is set to the weighting coefficient of the intermediate layer of the first trained model.
  • the second trained model may be generated by performing the following steps.
  • the method for generating a trained model according to any one of the eighth to tenth aspects of the present disclosure in the method for generating a trained model according to any one of the eighth to tenth aspects of the present disclosure, the In the step of generating data, at least one of the operating conditions and the operating state for performing the simulation may be determined at random.
  • the teacher In the step of generating data, data of the predetermined index already exists when the operating condition is in a wider range than the operating condition assumed under the operating condition in a wider range than the assumed operating condition.
  • the predetermined index at the assumed operating state under the assumed operating condition may be extracted from the already existing data and used as the teacher data.
  • the teacher data can be created using existing data, and the time required to create the teacher data can be shortened.
  • the step of generating the teacher data is not extracted.
  • the teaching data may be generated by performing a simulation after changing the values of items that do not match the assumed operating conditions and operating states in the data to values that match the operating conditions and operating states. good.
  • the driving The conditions include a pressure loss coefficient of the heat demand equipment
  • the step of generating the teacher data includes calculating a pressure loss in the heat demand equipment based on the pressure loss coefficient and the flow rate of the heat medium in the simulation. After that, the predetermined index may be determined.
  • the trained model according to the fifteenth aspect of the present disclosure includes a heat source device that cools or heats a heat medium to be supplied to heat demand equipment, and a heat source auxiliary machine that operates in conjunction with the operation of the heat source device.
  • a trained model installed in a computer used to control a heat source device system comprising an input layer into which operating conditions of the heat source device system are input, and an output layer into which operating conditions of the heat source device system are output.
  • a heat medium pump that flows the heat medium passing through the device; and a heat source fluid supply device that supplies the heat source fluid to the heat source device, which directly or indirectly exchanges heat with the heat medium in the heat source device;
  • the operating conditions include at least one of the heat demand of the heat demand equipment or a physical quantity correlated thereto, and the outside air temperature or a physical quantity correlated thereto, and the operating state includes the operating status of the heat source equipment;
  • the predetermined index includes at least one of the flow rate of the heat medium discharged by the heat medium pump and the flow rate of the heat source fluid supplied by the heat source fluid supply device, and the predetermined index
  • the operating conditions are input to the input layer, including at least one of the power consumption of the machine, the operating cost of the heat source equipment and the heat source auxiliary equipment, and the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment.
  • the model becomes a trained model that can operate the heat source equipment system in an appropriate operating state and with good response in response to changes in operating conditions.
  • a heat source device system includes a control device having a trained model according to the fifteenth aspect of the present disclosure, the heat source device, and the heat source auxiliary device, The control device may control the heat source device and the heat source auxiliary device so as to be in the operating state outputted by the learned model.
  • the heat source device system can be operated in an appropriate operating state with good response in response to changes in operating conditions.
  • the heat source device system can be operated in an appropriate operating state with good response in response to changes in operating conditions.
  • FIG. 1 is a schematic diagram of a heat source device system according to an embodiment. It is a flow chart which shows the procedure of creating training data used for machine learning processing of a control model provided in a heat source equipment system concerning one embodiment.
  • FIG. 3 is a diagram illustrating operating conditions assumed when creating training data. It is a figure which illustrates the driving state assumed when creating training data. 12 is a flowchart illustrating a procedure for creating teacher data by reusing some existing data.
  • FIG. 2 is a schematic configuration diagram of a first control model.
  • FIG. 3 is a schematic configuration diagram of a second control model.
  • FIG. 2 is a block diagram showing a calculation procedure of a control device of a heat source device system according to an embodiment.
  • FIG. 1 is a block diagram illustrating the hardware configuration of an exemplary computer.
  • FIG. 1 is a schematic diagram of the heat source device system 1.
  • the heat source device system 1 includes three heat source devices 11, 12, and 13, three cold/hot water pumps 21, 22, and 23, three cooling towers 31, 32, and 33, and three cooling water pumps 41. , 42, 43, and a control device 70 as main components.
  • the heat source device system 1 is a system that supplies cold and hot water CH cooled or heated by each of the heat source devices 11, 12, and 13 to the heat demand equipment 99 according to a request.
  • Examples of the heat demand equipment 99 include air conditioning equipment such as an air handling unit and a fan coil unit.
  • the cold/hot water CH is a medium that conveys cold heat or hot heat to the heat demand equipment 99, and corresponds to a heat medium.
  • Cold/hot water CH is a general term for cold water, which is a medium for cold heat, and hot water, which is a medium for heat.
  • hot water which is a medium for heat.
  • the three heat source devices 11, 12, and 13 are devices that cool or heat the cold/hot water CH, and correspond to heat source devices.
  • they may be referred to as the first heat source device 11, the second heat source device 12, and the third heat source device 13, respectively.
  • Each heat source device 11, 12, 13 can use various types of devices, but in this embodiment, both the first heat source device 11 and the second heat source device 12 are variable speed centrifugal chillers having the same characteristics. The explanation will be given assuming that the third heat source device 13 is a fixed speed centrifugal refrigerator.
  • Each of the heat source devices 11, 12, and 13 is a device that can cool or heat the cold/hot water CH using input electric power.
  • the amount of heat that each heat source device 11, 12, and 13 removes from the cold/hot water CH or gives to the cold/hot water CH is referred to as "processed heat amount.”
  • the first heat source device 11 and the second heat source device 12 are capable of adjusting the amount of heat to be processed through capacity control.
  • the third heat source device 13 is operated by switching between an operating state and a stopped state, and the processing heat amount is either rated or zero.
  • the number of operating heat source devices 11, 12, and 13 and the operating capacity of the first heat source device 11 and the second heat source device 12 are referred to as "operating status.”
  • the amount of heat processed by each of the heat source devices 11, 12, and 13 is determined depending on the operating status.
  • Each heat source device 11, 12, 13 is capable of detecting a temperature difference and a pressure difference between cold and hot water CH flowing in and out.
  • each of the heat source devices 11, 12, and 13 gives the heat taken from the cold/hot water CH to the cooling water CD in order to cool the cold/hot water CH, and deprives the cooling water CD of the heat for heating the cold/hot water CH.
  • Cooling water CD is a fluid that indirectly exchanges heat with cold/hot water CH in each heat source device 11, 12, 13 via a refrigerant (not shown), and corresponds to a heat source fluid.
  • the three cold/hot water pumps 21, 22, and 23 are devices that operate in conjunction with the operation of the respective heat source devices 11, 12, and 13, and are a form of heat source auxiliary equipment, and also pump cold and hot water CH. It is a device that causes fluid to flow and corresponds to a heat medium pump. Hereinafter, in order to distinguish the three cold/hot water pumps, they may be referred to as the first cold/hot water pump 21, the second cold/hot water pump 22, and the third cold/hot water pump 23, respectively.
  • Each of the cold and hot water pumps 21, 22, and 23 is a device that can flow cold and hot water CH using input electric power.
  • each cold/hot water pump 21, 22, 23 has an inverter and is configured to be able to steplessly change the flow rate of the cold/hot water CH to be discharged.
  • the three cooling towers 31, 32, and 33 are devices that operate in conjunction with the operation of each heat source device 11, 12, and 13, and are a form of heat source auxiliary equipment, and each coolant CD is It is a device that supplies heat source devices 11, 12, and 13, and corresponds to a heat source fluid supply device.
  • a first cooling tower 31, a second cooling tower 32, and a third cooling tower 33 respectively.
  • Each of the cooling towers 31, 32, and 33 is a device that can perform heat exchange between the cooling water CD and the atmosphere (typically, outside air) using input electric power.
  • each cooling tower 31, 32, 33 is operated/stopped in accordance with the operation/stop of each heat source device 11, 12, 13, but the rotation speed of the fan is adjusted steplessly or stepwise. It may be configured such that it can be adjusted.
  • the three cooling water pumps 41, 42, and 43 are devices that operate in conjunction with the operation of each heat source device 11, 12, and 13, and are a form of heat source auxiliary equipment, and also pump cooling water CD. It is a device that supplies each of the heat source devices 11, 12, and 13, and is one form of a heat source fluid supply device. Hereinafter, in order to distinguish the three cooling water pumps, they may be referred to as a first cooling water pump 41, a second cooling water pump 42, and a third cooling water pump 43, respectively.
  • Each of the cooling water pumps 41, 42, and 43 is a device that can flow the cooling water CD using input electric power.
  • each of the cooling water pumps 41, 42, and 43 includes an inverter and is configured to be able to steplessly change the flow rate of the cooling water CD to be discharged.
  • the first heat source device 11 is connected to the outgoing header 19 via the first cold/hot water outgoing pipe 15 , and is also connected to the return header 29 via the first cold/hot water return pipe 25 .
  • the first cold/hot water pump 21 is provided in the first cold/hot water return pipe 25 .
  • the first heat source device 11 is connected to the first cooling tower 31 via a first cooling water outgoing pipe 35 and a first cooling water return pipe 45.
  • the first cooling water pump 41 is provided in the first cooling water outgoing pipe 35 .
  • the second heat source device 12 is connected to the outgoing header 19 via the second cold/hot water outgoing pipe 16 , and is also connected to the return header 29 via the second cold/hot water return pipe 26 .
  • the second cold/hot water pump 22 is provided in the second cold/hot water return pipe 26 .
  • the second heat source device 12 is connected to the second cooling tower 32 via a second cooling water outgoing pipe 36 and a second cooling water return pipe 46.
  • the second cooling water pump 42 is provided in the second cooling water outgoing pipe 36.
  • the third heat source device 13 is connected to the outgoing header 19 via the third cold/hot water outgoing pipe 17 , and is also connected to the return header 29 via the third cold/hot water return pipe 27 .
  • the third cold/hot water pump 23 is provided in the third cold/hot water return pipe 27 .
  • the third heat source device 13 is connected to the third cooling tower 33 via a third cooling water outgoing pipe 37 and a third cooling water return pipe 47.
  • the third cooling water pump 43 is provided in the third cooling water outgoing pipe 37.
  • the forward header 19 is a member that collects cold and hot water CH that has been cooled or heated by each of the heat source devices 11, 12, and 13.
  • the outgoing header 19 is connected to the heat demand equipment 99 via the supply pipe 91, and is configured to be able to guide the cold and hot water CH collected in the outgoing header 19 to the heat demand equipment 99.
  • the heat demand equipment 99 and the return header 29 are connected via a recovery pipe 92.
  • the return header 29 is configured to allow cold and hot water CH whose heat has been utilized in the heat demand equipment 99 to flow in through the recovery pipe 92 .
  • the cold/hot water CH that has flowed into the return header 29 is distributed to each heat source device 11, 12, 13 according to the operating status of each heat source device 11, 12, 13. In this way, the return header 29 is a member that distributes the cold/hot water CH after the cold or hot heat has been utilized to each of the heat source devices 11, 12, and 13.
  • the control device 70 is a device that controls the operation of the heat source device system 1.
  • the control device 70 is connected to each heat source device 11, 12, 13 by a communication line (wired or wireless).
  • the control device 70 is configured to be able to receive operation information data from each of the heat source devices 11, 12, and 13. Examples of receivable operation data include temperature and pressure at the outlet and temperature and pressure at the inlet of cold and hot water CH, temperature and pressure at the outlet and temperature and pressure at the inlet of cooling water CD, and all or part of power consumption, etc. can be mentioned.
  • the flow rate can be calculated from the pressure difference between the inflow and outflow of the fluid, but the flow rate may also be directly detected.
  • control device 70 is configured to be able to adjust the operating status of each heat source device 11, 12, 13 by transmitting a control signal to each heat source device 11, 12, 13. Further, the control device 70 is configured to be able to control the operation of the heat source auxiliary machines via the heat source machines 11, 12, 13 and the auxiliary machine power panel 75.
  • the auxiliary machine power panel 75 is a device that controls the operation of the heat source auxiliary machine.
  • the auxiliary machine power panel 75 is connected to each heat source auxiliary machine by a signal line (wired or wireless). The auxiliary power panel 75 starts, stops, and discharges water by adjusting the power supplied to each cold/hot water pump 21 , 22 , 23 based on the control signal received from each heat source device 11 , 12 , 13 .
  • the auxiliary power panel 75 controls the start and stop of each cooling tower 31 , 32 , 33 by adjusting the power supplied to each cooling tower 31 , 32 , 33 based on the control signal received from each heat source device 11 , 12 , 13 . It is configured so that it can be In addition, the auxiliary power panel 75 adjusts the power supplied to each of the cooling water pumps 41, 42, and 43 based on the control signals received from each of the heat source devices 11, 12, and 13. It is configured such that the flow rate of the cooling water CD to be discharged can be controlled.
  • the control device 70 is further configured to receive a temperature information signal via a communication line (wired or wireless) from an outside air thermometer 61 that detects the outside air temperature, so as to be able to grasp the outside air temperature. .
  • the outside air thermometer 61 is arrange
  • the control device 70 is configured to be able to grasp the amount of heat demanded in the heat demand equipment 99 by receiving information on the amount of heat demanded in the heat demand equipment 99 as a signal via a communication line (wired or wireless). ing.
  • the control device 70 has a control model 80.
  • the control model 80 is a model that is subjected to machine learning processing on a computer, into which operating conditions are input in order to output operating states.
  • the operating state is the operating state of the heat source equipment and heat source auxiliary equipment that can be controlled by the heat source equipment system 1.
  • the operating state the discharge flow rate of cold and hot water CH from each cold and hot water pump 21, 22, 23 (flow rate 0 is a stopped state), starting and stopping of each cooling tower 31, 32, 33, and each cooling water pump Examples include the discharge flow rate of the cooling water CD at 41, 42, and 43 (a flow rate of 0 is a stopped state).
  • the operating conditions are conditions that affect the operating state, and are basically conditions that cannot be controlled by the heat source device system 1.
  • the operating conditions include, for example, the amount of heat demanded by the heat demand equipment 99, the outside air temperature, the target temperature of the cold/hot water CH flowing out from the outgoing header 19 toward the heat demand equipment 99, the pressure loss coefficient on the heat demand equipment 99 side, etc. .
  • the operating conditions include the unit price of resources (for example, electricity, water, fuel, etc.) consumed during the operation of the heat source equipment system 1, the carbon dioxide emissions per unit consumption of these consumed resources, etc.
  • the total unit price of various consumption resources used to power the equipment constituting the heat source device system 1 corresponds to the cost per unit consumption power.
  • the total amount of carbon dioxide emissions per unit consumption of various consumption resources used to power the equipment constituting the heat source device system 1 corresponds to the amount of carbon dioxide emissions per unit consumption power.
  • the pressure loss on the heat demand equipment 99 side changes depending on the total flow rate of cold and hot water CH, which changes depending on the number of operating air conditioners that make up the heat demand equipment 99. Proportional to the square of the flow rate.
  • this proportionality constant (coefficient) is referred to as a "pressure loss coefficient”
  • the pressure loss on the heat demand equipment 99 side is calculated by multiplying the pressure loss coefficient by the square of the total flow rate of cold and hot water CH. be able to.
  • the motive power of each cold/hot water pump 21, 22, 23 can be calculated.
  • control device 70 has the control model 80 based on the following background.
  • FIG. 2 is a flowchart showing the procedure for creating teacher data.
  • the heat source devices 11, 12, and 13 may be collectively referred to as heat source devices.
  • each cold/hot water pump 21, 22, 23, each cooling tower 31, 32, 33, and each cooling water pump 41, 42, 43 may be collectively referred to as a heat source auxiliary machine.
  • simulation is used to create teacher data.
  • the simulation in this embodiment is typically performed at a location different from the installation location of the heat source device system 1.
  • the simulation in this embodiment is used to estimate a predetermined index under a given operating condition and an assumed operating state.
  • the predetermined index is a standard that the user of the heat source device system 1 pays attention to when operating the heat source device system 1.
  • Examples of the predetermined index include power consumption, operating cost, carbon dioxide emissions, etc. of the heat source equipment and heat source auxiliary equipment when the heat source equipment system 1 is operated.
  • the simulation calculation of the heat source device system 1 generally requires recursive calculation, and the calculation requires a certain amount of time.
  • the computing devices installed in conventional heat source equipment systems, which use simulation results to directly control equipment have difficulty adopting high-performance computing devices due to issues such as installation space, power consumption, noise environment, and cost. It tends to be longer.
  • fixed conditions are elements that do not change, such as the energy consumption characteristics and pressure loss coefficient (different from the pressure loss coefficient on the heat demand equipment 99 side) of each heat source equipment and heat source auxiliary equipment. It is unique.
  • the fixed conditions can generally be prepared based on characteristic data of each device and various formulas for the fluid (for example, a relational formula between flow rate and pressure drop).
  • operating conditions are assumed (S2). Operating conditions can be assumed within the range of expected applications.
  • the expected range of application (assumed operating conditions) is intended to exclude, for example, conditions such as an outside temperature of 70° C., which is unlikely to occur in reality.
  • the assumed operating conditions as shown in operating condition "1" in FIG. Examples include a pressure loss coefficient of 200 kPa/1000 LPM on the demand equipment 99 side.
  • specific examples of the assumed operating conditions may include electricity charges of 15 yen/kWh and water charges of 150 yen/m3.
  • the carbon dioxide emission coefficient for electricity and the carbon dioxide emission coefficient for water supply may be included.
  • the operating state is assumed (S3).
  • Operating conditions can also be assumed to the extent that the application is envisaged.
  • the expected range of application is intended to exclude, for example, a situation where the number of heat source devices is three and an unrealizable operation of five heat source devices.
  • As a specific example of the assumed operating state as shown in operating state "1" in FIG. An example of this is to set the flow rate of cold/hot water CH to 100%.
  • all three cooling towers 31, 32, and 33 are operated, and the flow rate of cooling water CD in the three cooling water pumps 41, 42, and 43 is set to 100%. I'm assuming.
  • a predetermined index under the assumed operating condition and the assumed operating condition is calculated by simulation (S4). Calculation of this predetermined index can be performed, for example, in the following manner.
  • the total flow rate of cold and hot water CH can be determined from the number of operating heat source devices 11, 12, and 13 under assumed operating conditions and the flow rate of cold and hot water CH of each cold and hot water pump 21, 22, and 23. .
  • the return temperature of the cold/hot water CH (the temperature of the cold/hot water CH entering the heat source device) can be determined from the total flow rate of the cold/hot water CH, the target temperature of the cold/hot water CH under the assumed operating conditions, and the required heat amount.
  • the load heat amount of each heat source device 11, 12, 13 can be calculated from the temperature difference between the input and output of cold/hot water CH to each heat source device 11, 12, 13 and the flow rate of cold/hot water CH.
  • each heat source device 11, 12, 13 the amount of heat to be processed is determined. Then, the temperature of the cooling water CD entering each heat source device 11, 12, 13 is determined from the amount of heat to be processed, the flow rate of the cooling water CD in each cooling water pump 41, 42, 43, and the outside air temperature. The efficiency of each heat source device 11, 12, 13 is determined from the inlet temperature of the cooling water CD, the flow rate of the cooling water CD, and the conditions on the cold/hot water CH side.
  • iterative calculations convergence calculations
  • the efficiency of each heat source device 11, 12, 13 is determined, and thereby the power consumption of each heat source device 11, 12, 13, the amount of supplementary water, etc. can be determined.
  • the power consumption of each cold/hot water pump 21, 22, 23 can be determined as follows. First, the pressure loss on the heat demand equipment 99 side is determined from the flow rate of cold/hot water CH and the pressure loss coefficient on the heat demand equipment 99 side, and then the pressure of each heat source equipment 11, 12, 13 defined as a fixed condition is determined. The pressure loss of each heat source device 11, 12, and 13 is determined from the loss data. By adding up both pressure losses, the required head (pressure) of each cold/hot water pump 21, 22, 23 can be determined, and from this and the flow rate of cold/hot water CH, the power consumption of each cold/hot water pump 21, 22, 23 can be calculated. It can be estimated.
  • the power consumption of the entire heat source device system 1 can be determined. Furthermore, the amount of water consumed can be calculated from the amount of evaporated water obtained by dividing the amount of heat processed in each of the heat source devices 11, 12, and 13 by the latent heat of vaporization of water, and the target concentration ratio. Note that, as is generally done, the water consumption amount may be determined by multiplying the flow rate of the cooling water CD by a certain coefficient (about 5%). In this way, if you can calculate power consumption, water consumption, etc., you can calculate the operating cost by multiplying it by the cost per unit quantity and adding it up, and you can calculate the carbon dioxide emissions by multiplying it by the carbon dioxide emission coefficient and adding it up. You can ask for it.
  • the predetermined index has been calculated only in one driving state under this operating condition, so the number of predetermined indexes calculated is not sufficient.
  • an unused operating state as shown in operating state "2" in FIG.
  • An example of this is to change the flow rate of cold/hot water CH in 21 and the second cold/hot water pump 22 to 50%.
  • the operating state "2" in FIG. One example of this is to set the flow rate of the cooling water CD in the pump 42 to 50%.
  • the third heat source device 13 and the third cooling tower 33 are stopped for operating state "1".
  • the third cold/hot water pump 23 and the third cooling water pump 43 may be stopped (flow rate is 0).
  • the flow rates of the cold/hot water CH and the cooling water CD flowing through the first heat source device 11 and the second heat source device 12, which are variable speed centrifugal refrigerators, are the same for both heat source devices 11 and 12, respectively.
  • the reason for this is to reduce the calculation load, since considering the symmetry, it is extremely unlikely that energy can be saved by operating both heat source devices 11 and 12 under different conditions.
  • each of the heat source devices 11, 12, 13 and each cooling tower 31, 32, 33 has a choice of operating or stopping, so the combinations thereof are limited.
  • the flow rate of the cold/hot water CH of each of the cold/hot water pumps 21, 22, 23 and the flow rate of the cooling water CD of each of the cooling water pumps 41, 42, 43 can be changed steplessly, so there may be a large number of combinations. .
  • the number of combinations can be suppressed by setting the range of change other than when stopped (0%) between 50% and 100% in 10% increments or 5% increments.
  • the simulation may not be performed.
  • the demand heat amount, the supply temperature of cold and hot water CH (the temperature of cold and hot water CH leaving the heat source equipment), and the return temperature of cold and hot water CH derived from the flow rate of cold and hot water CH (the exit temperature of the heat demand equipment 99) are based on the specifications. This can also be excluded if the temperature exceeds .
  • the case where the temperature of the cooling water CD is equal to or higher than a certain level and variable flow rate control of the flow rate of the cooling water CD is unnecessary can also be excluded.
  • the process returns to the step of calculating a predetermined index (S4) and the procedure described above is followed. Then, a plurality of predetermined indexes are calculated, and in the step (S5) of determining whether or not the number of predetermined indexes calculated under the relevant operating conditions is sufficient, if the number is sufficient, the predetermined number under the relevant operating conditions is determined.
  • An operating state in which the index has a value that meets the conditions is identified (S7).
  • the value for which the predetermined index meets the conditions is a value that is worth selecting rationally and is typically an optimal value.
  • the predetermined index is the operating cost
  • the optimal value of the predetermined index For example, if the predetermined index is operating cost, you may simply select the minimum one, and the heat source Other aspects such as a small number of operating equipment and cooling towers may also be considered.
  • a weighted average may be applied to a plurality of values within an appropriate range of a predetermined index, and the driving state at the value of the predetermined index may be adopted.
  • the average of the driving states corresponding to a plurality of values for example, the top three
  • the predetermined index for example, the top three
  • the required number of sets corresponds to the number of teacher data required to generate the control model 80, and is generally about several hundred to several thousand sets, depending on the configuration of the model.
  • an unused operating condition is assumed (S9).
  • An unused operating condition is an operating condition that has not been used to identify a combination of an operating condition and an operating state for which a predetermined index satisfies the condition. In this embodiment, several hundred to several thousand operating conditions are ultimately assumed in order to ultimately identify several hundred to several thousand pairs of operating conditions and operating conditions. becomes.
  • the computer that performs the simulation randomly determines the operating conditions (creates them using random numbers). That is, each operating condition is set using random numbers within a variable range. This is repeated every time the step (S9) of assuming unused operating conditions is performed.
  • each item (parameter) is evenly distributed even though the number of operating conditions is smaller than when specified by combination (round robin). Therefore, when setting operating conditions using random numbers, training data that can create a highly accurate control model 80 even with less data (data creation time) than when specifying by combination (brute force) is used. Obtainable. Furthermore, when new operating conditions are assumed in order to add training data after the fact, data may be created again using random numbers as many times as necessary.
  • the process After assuming an unused operating condition in the manner described above, the process returns to the step of assuming an operating state (S3), and the above-described procedure is followed thereafter. Then, in the step (S8) of determining whether or not a plurality of combinations of operating conditions and operating states for which a predetermined index satisfies the conditions is identified, and the number of the combinations satisfies the required number (S8), if the number of combinations is satisfied; , finish creating the training data.
  • Teacher data can be created in this way, but if there is data used in another system and that data can be used, it is possible to save labor in creating teacher data by doing the following, for example. I can do it.
  • the outline is that the difference between the training data that has been created for the existing heat source equipment system and the training data that is to be created for the new heat source equipment system 1 is that there are some differences in the range of operating conditions. In some cases, the remaining common parts may be reused. A specific example will be described below.
  • FIG. 5 is a flowchart illustrating a procedure for creating teacher data by reusing some existing data.
  • the newly created training data (hereinafter referred to as "new data”) is based on operating conditions and conditions in which the maximum number of operating heat source units is 3, the heat demand is 200 to 6000 kW, and predetermined indicators meet the conditions. It is assumed that there are 9000 pairs with the state (hereinafter referred to as "set data").
  • set data Assume that the existing teacher data (hereinafter referred to as "existing data”) has a maximum operating number of heat source devices of 5, a heat demand of 200 to 10,000 kW, and 9,000 data sets.
  • S11 those whose heat demand matches the content of the new data are extracted (S11).
  • the existing data data in which the maximum number of operating heat source devices is 5 and the heat demand is 200 to 6000 kW is extracted, and in this example, the number of data is 6000.
  • the existing data extracted based on the heat demand is sorted based on the number of operating heat source devices (S12).
  • the required amount of heat is 200 to 6000 kW, but these can be divided into those with three or less heat source machines in operation and those with more than three heat source machines in operation. In this example, it is assumed that there are 5000 cases in which the number of operating heat source devices is 3 or less, and 1000 cases in which the number of operating heat source devices is 3 or less.
  • training data explained above can be created automatically using a general-purpose computer by creating a program.
  • control model 80 is created by subjecting the computer to machine learning processing using the teacher data.
  • the operating conditions are input and the operating states are determined.
  • machine learning processing is performed on the computer to create a control model 80.
  • the control model 80 can use any appropriate one among a wide variety of proposed methods in terms of type and machine learning method, but in this embodiment, it will be described as one using a neural network.
  • Neural networks generally have perceptrons (operators) in an input layer, a middle layer, and an output layer, and the output of the perceptron in the previous stage is multiplied by a weighting coefficient by the perceptron in the subsequent stage, and the result is a new output through an activation function. The calculation is performed by doing this.
  • the control model 80 is a model that derives a large number of numerical values from a large number of numerical inputs.
  • the output layer of the neural network is generally expressed as a probability value, it will be output as a real number (decimal number). Then, among the operating states that are output, the number of operating vehicles that should originally be an integer is also output as a real number (decimal) instead of an integer.
  • control model 80 is a first control model that outputs the number of operating vehicles as an integer value among the operating states to be output, and an integer value of the number of operating vehicles output by the first control model as an operating condition.
  • the second control model is input as one of the control models.
  • FIG. 6 is a schematic configuration diagram of the first control model (hereinafter referred to as “first control model 81").
  • FIG. 7 is a schematic configuration diagram of the second control model (hereinafter referred to as “second control model 82").
  • the first control model 81 includes an input layer, an intermediate layer, and an output layer. Operating conditions are input to the input layer, and operating conditions are output from the output layer. It is configured as follows.
  • the first control model 81 includes, as the operating conditions input to the input layer, each item illustrated in FIG. Contains the water supply carbon dioxide emission factor. Note that the electric power carbon dioxide emission coefficient is the amount of carbon dioxide emitted per unit power consumption, and the water supply carbon dioxide emission coefficient is the amount of carbon dioxide emitted per unit amount of water consumption.
  • the first control model 81 includes the number of operating fixed-speed centrifugal chillers and the number of variable-speed centrifugal chillers in operation, as well as the number of operating units of these various chillers, as the operating states output to the output layer. It includes the flow rate of each cold/hot water CH and the flow rate of cooling water CD.
  • the third heat source device 13 in FIG. 1 corresponds to the fixed speed centrifugal chiller
  • the first heat source device 11 and the second heat source device 12 correspond to the variable speed centrifugal chiller. Therefore, the number of fixed-speed centrifugal chillers in operation is 0 or 1, and the number of variable-speed centrifugal chillers in operation is 0, 1, or 2, all of which are integer values.
  • the number of operating cooling towers 31, 32, and 33 matches the number of operating heat source devices 11, 12, and 13, the cooling towers are not shown in FIG. In other words, the number of operating heat source devices 11, 12, 13 and the number of operating cooling towers 31, 32, 33 are the same integer value.
  • the fixed-speed centrifugal chiller operating cold/hot water flow rate of the output layer shown in FIG. value continuously value.
  • the variable speed centrifugal chiller operation cold/hot water flow rate is the total flow rate of the first cold/hot water pump 21 and the second cold/hot water pump 22.
  • the fixed speed centrifugal chiller operation cooling water flow rate is the flow rate of the third cooling water pump 43
  • the variable speed centrifugal chiller operation cooling water flow rate is the total flow rate of the first cooling water pump 41 and the second cooling water pump 42.
  • the range of the flow rate of each of these pumps is 0% or any value (continuous value) from 50 to 100%.
  • the output layer of the first control model 81 only needs to be able to output only the number of operating units, which does not fit in with the output being a decimal value, so flow rates, etc. other than the number of operating units are output. It may not be included in the output to the layer.
  • the number of operating heat source units and the flow rate of cold and hot water (in other words, the load for each heat source unit), so it is better to add the flow rate of cold and hot water, etc. to the output, so that the middle layer can handle this.
  • a perceptron that is closely related to the above occurs, and learning progresses efficiently.
  • model learning means adjusting the weighting coefficients of the perceptron in the intermediate layer so that the input data and output data of the teacher data match.
  • the procedure is to first separate the training data into "learning” and "verification”, use the training data to adjust the weighting coefficients using a method called backpropagation, and then use the verification data to adjust the weighting coefficients.
  • the accuracy is checked, and if it is insufficient, the weighting coefficients are adjusted again. If the required accuracy is not obtained even after repeated learning, as mentioned above, it is possible to generate new training data by randomly assuming driving conditions and perform additional learning using the new training data. can.
  • the second control model 82 also includes an input layer, an intermediate layer, and an output layer, in which operating conditions are input to the input layer, and operating conditions are output from the output layer. It is configured as follows.
  • the second control model 82 includes, as operating conditions input to the input layer, each item input to the input layer of the first control model 81 (see FIG. 6), as well as information output to the output layer of the first control model 81. This includes the number of operating heat source units (and associated cooling towers). The value of the number of operating heat source devices, etc. input to the input layer of the second control model 82 is It becomes an integer value with the decimal number rounded up.
  • the operating state output to the output layer of the second control model 82 does not include the number of fixed-speed centrifugal chillers in operation and the number of variable-speed centrifugal chillers in operation; These are the flow rate of cold/hot water CH and the flow rate of cooling water CD of each centrifugal chiller.
  • These values output to the output layer of the second control model 82 are also output to the output layer of the first control model 81 in this embodiment; may differ from the corresponding value. This is because, as described above, the second control model 82 limits the value of the number of operating heat source devices, etc., input to the input layer, to an integer value.
  • the second control model 82 is a cold/hot water CH that more closely matches the conditions of the predetermined index in a realistic state than when the number of operating units of each heat source device, etc. is output as a real number (including decimal numbers). This means that the operating status such as the flow rate of the cooling water CD and the flow rate of the cooling water CD can be output.
  • the middle layer of both models 81 and 82 has the same configuration, and the content of the output of the first control model 81 is
  • the coefficients of the intermediate layer may be used as initial values of the coefficients of the intermediate layer of the second control model 82. This is a type of so-called "transfer learning", and the only difference between the first control model 81 and the second control model 82 is whether or not there is the number of operating vehicles in the input, so the middle layer has similar coefficients in principle. will have.
  • the learning time when generating the second control model 82 can be significantly shortened.
  • the first control model 81 and the second control model 82 are conceptually distinct, and may be physically configured separately or integrally.
  • control model 80 (including the case where it is divided into a first control model 81 and a second control model 82) is created for each predetermined index that is desired to be optimized. For example, a model that minimizes operating costs, a model that minimizes carbon dioxide emissions, etc. may be created. In this way, the control model 80 can be switched and used depending on the situation, and the heat source system 1 can be operated more appropriately.
  • the control model 80 configured (generated) as described above (including the case where it is divided into the first control model 81 and the second control model 82) is installed in the control device 70 of the heat source device system 1. .
  • the control device 70 equipped with the control model 80 is configured to control the operations of the heat source devices and heat source auxiliary devices that constitute the heat source device system 1 so as to achieve the operating state outputted by the control model 80.
  • the operation of the heat source device system 1 including the control of the control device 70 will be explained.
  • FIG. 8 is a block diagram showing the calculation procedure of the control device 70 of the heat source device system 1.
  • the necessary heat source devices 11, 12, and 13 are in operation, and in conjunction with this, each of the cold and hot water pumps 21, 22, and 23, and each of the cooling towers 31, 32, and 33 are operated.
  • the necessary cooling water pumps 41, 42, and 43 are operated.
  • each of the heat source machines 11, 12, 13 and their associated heat source auxiliary machines are all in operation.
  • each cold/hot water pump 21 , 22 , 23 By the operation of each cold/hot water pump 21 , 22 , 23 , cold/hot water CH flows from the return header 29 to each heat source device 11 , 12 , 13 via each cold/hot water return pipe 25 , 26 , 27 .
  • the cold and hot water CH flowing into each of the heat source devices 11, 12, and 13 is cooled (during cooling) or heated (during heating), and typically the temperature is adjusted to increase the difference from the ambient environment temperature.
  • the cold and hot water CH whose temperature has been adjusted in each of the heat source devices 11, 12, and 13 is conveyed to the outgoing header 19 via each of the cold and hot water outgoing pipes 15, 16, and 17.
  • the cold and hot water CH that has flowed into the outgoing header 19 flows through the supply pipe 91 and is supplied to the heat demand equipment 99 by a secondary pump (not shown), and then flows through the recovery pipe 92 and flows into the return header 29. Flow.
  • the cold/hot water CH supplied to the heat demand equipment 99 is used for heat load processing, so that the temperature changes in a direction in which the difference from the ambient environment temperature becomes smaller.
  • each cooling water pump 41, 42, 43 causes cooling water CD to flow from each cooling tower 31, 32, 33 to each heat source device 11, 12, 13 via each cooling water outgoing pipe 35, 36, 37. Inflow.
  • the cooling water CD flowing into each heat source device 11, 12, 13 exchanges heat with the refrigerant in each heat source device 11, 12, 13, and then passes through each cooling water return pipe 45, 46, 47 to each cooling tower 31. , 32, 33.
  • the control device 70 controls starting and stopping of each of the heat source devices 11, 12, and 13.
  • the auxiliary equipment power panel 75 starts and stops each cooling tower 31, 32, 33, each cold/hot water pump 21, 22, 23, and each cooling water pump 41. , 42 and 43 are controlled.
  • the control device 70 performs control in the following manner so that the operating state is appropriate (typically, optimal).
  • the control device 70 receives temperature information from the outside air thermometer 61. Further, the control device 70 receives temperature and pressure information from each heat source device 11, 12, and 13, and measures the amount of heat demanded of the heat demand equipment 99, the flow rate of cold/hot water CH, and the pressure loss of the heat demand equipment 99. . Then, the control device 70 calculates the pressure loss coefficient of the heat demand equipment 99 from the pressure loss of the heat demand equipment 99 and the flow rate of cold/hot water CH. Further, the control device 70 receives information regarding the target temperature of the cold/hot water CH from the heat demand equipment 99. On the other hand, the electric power unit price, water rate, electric power carbon dioxide emission coefficient, and water supply carbon dioxide emission coefficient are input and held in the control device 70 as set values. As described above, these setting values generally do not change in a short period of time, so it is often sufficient to correct them when they change. The control device 70 inputs these specified values into the control model 80 as operating conditions.
  • the control model 80 When the operating conditions are input, the control model 80 performs processing based on a learned algorithm and outputs an appropriate operating state.
  • learning a mathematical model using a neural network in particular requires very high computing power, such as a computational element such as a GPU, but inference using a trained model (forward propagation calculation) (Calculation) does not require such high computing power. Therefore, in inference using a trained model, even if a dedicated calculation element or the like is used, sufficient calculations can be performed using a calculation device that is relatively inexpensive and consumes little power.
  • the control model 80 that performs inference based on a learned algorithm has a smaller computational load than a simulation performed when creating teacher data, and is suitable for installation in the field. .
  • the control model 80 When the control model 80 receives the operating conditions, it first inputs the operating conditions into the first control model 81 (see FIG. 6).
  • the first control model 81 to which the operating conditions are input performs processing based on a learned algorithm, converts the output into an integer, and determines the number of operating heat source devices 11, 12, and 13.
  • the flow rate of cold/hot water CH and the flow rate of cooling water CD output by the first control model 81 are not intended to be used directly for controlling the heat source device system 1 .
  • the control model 80 After obtaining the output of the first control model 81, the control model 80 applies the operating conditions input to the first control model 81 and the operating conditions output from the first control model 81 to the second control model 82 (see FIG. 7). Input the integer value of the number of operating heat source devices 11, 12, and 13.
  • the second control model 82 into which the integer value of the number of operating units and the operating conditions are input performs processing based on a learned algorithm, and outputs the flow rate of cold/hot water CH and the flow rate of cooling water CD.
  • the output of the integer value can be directly applied to actual control.
  • the integer value of the number of operating vehicles is included in the input of the second control model 82, the accuracy of the output of the second control model 82 can be improved.
  • the control device 70 controls the operation of each heat source device 11 , 12 , 13 so that the number of operating units output by the first control model 81 is achieved. Further, the control device 70 controls each cold/hot water pump 21, 22, 23, each cooling water pump 41, 42, The discharge flow rate of 43 is controlled.
  • the predetermined indexes set by the user such as power consumption, operating cost, and carbon dioxide emissions, are set to meet the conditions. (e.g. to a minimum). Control of each device based on calculations using such a control model 80 and its output is performed by, for example, changing the number of units in stages or gradually changing the flow rate command value in order to avoid sudden changes in operating conditions. It may be changed.
  • the calculation in the control model 80 and the adjustment of the number of operating units and the flow rate based on the output thereof be performed at predetermined intervals.
  • the predetermined interval can be determined as appropriate depending on the situation, taking into consideration the calculation time (or calculation load) in the control model 80 and the accuracy of control of the heat source device system 1. Examples of predetermined intervals include 3 minutes, 5 minutes, 10 minutes, 15 minutes, 30 minutes, etc. However, if, for example, the amount of heat demanded changes by more than the preset value or if other operating conditions change significantly, the calculation using the control model 80 may be performed at a timing other than the preset predetermined interval. Control calculations for each device may be performed based on the output.
  • control device 70 may be equipped with a plurality of control models 80 according to the type of predetermined index, and may be appropriately switched to an appropriate control model 80 according to user settings and instructions.
  • the control model 80 may be set as a predetermined index that meets the conditions, such as one with the minimum power consumption, one with the minimum operating cost, and one with the minimum carbon dioxide emissions, and the control models 80 may be switched depending on the situation. It may also be a thing.
  • the predetermined index when generating one control model 80 is not limited to one type, and for example, the control model 80 with the lowest carbon dioxide emission within the range of 5% from the lowest operating cost.
  • the control device 70 may have the following. In this case, the operating cost corresponds to the first predetermined index (the index with the highest priority), and the amount of carbon dioxide emissions corresponds to the second predetermined index (the index with the second highest priority).
  • the control device 70 determines some of the operating states based on the output of the control model 80. It may also be controlled by In this case, the remaining operating states may be controlled based on the simulation results performed by the control device 70 or based on a rule base predefined in the control device 70. For example, the number of operating heat source devices 11, 12, 13 and the flow rate of cold/hot water CH in each cold/hot water pump 21, 22, 23 are controlled based on the output of the control model 80, and each cooling water pump 41, 42, 43 is The flow rate of the cooling water CD may be controlled based on a rule.
  • the component devices are controlled based on the output of the control model 80, so that the appropriate operating state is maintained according to changes in operating conditions. It allows for responsive driving. Furthermore, since it includes a first control model 81 that outputs the number of operating vehicles as an integer value and a second control model 82 that inputs the integer value, it is possible to maintain an appropriate operating state in accordance with actual operation. can. Further, when the operating conditions include the pressure loss coefficient on the heat demand equipment 99 side, appropriate operation can be performed even when the flow rate of cold/hot water CH supplied to the heat demand equipment 99 changes.
  • the first heat source device 11 and the second heat source device 12 are variable speed centrifugal refrigerators
  • the third heat source device 13 is a fixed speed centrifugal refrigerator.
  • various heat source devices other than the centrifugal refrigerator such as an absorption refrigerator, a cold/hot water generator, a heat pump, etc., can be used as the heat source device depending on the purpose.
  • the first heat source device 11 and the second heat source device 12 are both the same type of equipment with the same characteristics, but they may be the same type of equipment with different characteristics, or they may be different types of equipment. There may be.
  • heat source devices 11, 12, and 13 are provided as heat source devices, but the total number of heat source devices is not limited to three, and can be more than three depending on the purpose. It may be less. For example, more than three devices of different types may be provided, or a plurality of types (for example, two or three devices) of the same type may be provided.
  • each of the heat source devices 11, 12, and 13 is configured to be able to detect the temperature difference and pressure difference between the inflowing and outflowing cold and hot water CH.
  • a meter for detecting temperature and pressure may be provided in the nearby piping.
  • the cooling towers 31, 32, and 33 are provided as the heat source fluid supply device, and the heat source fluid is the cooling water CD.
  • the heat source fluid supply device may be an air-cooled heat pump chiller, and the heat source fluid may be air.
  • the air-cooled heat pump chiller will serve as both the heat source device and the heat source fluid supply device.
  • the heat source device and the heat source fluid supply device are typically physically integrated (housed in one housing). ) will be configured.
  • control device 70 indirectly controls the heat source auxiliary device via the auxiliary device power panel 75, but the control device 70 may directly control the heat source auxiliary device.
  • fixed conditions are prepared before assuming operating conditions, but the items listed as examples of fixed conditions may be treated as operating conditions.
  • the step (S1) of preparing fixed conditions in the flowchart shown in FIG. 2 is omitted.
  • the items included in the operating conditions input to the input layer are the amount of heat demanded, the outside air temperature, the target temperature of cold and hot water CH, the pressure loss coefficient on the heat demand equipment 99 side, the unit price of consumed resources, and the unit carbon dioxide.
  • the input items may be increased or decreased as appropriate.
  • a heat source device for example, an absorption refrigerator
  • the fuel unit price may be included in the input items.
  • the pressure loss coefficient and others on the heat demand equipment 99 side may be excluded from the input items.
  • a physical quantity correlated to the demanded heat amount may be inputted as the operating condition.
  • the return temperature of the cold/hot water CH the temperature of the cold/hot water CH flowing into each heat source device 11, 12, 13
  • a physical quantity correlated to the outside air temperature may be input as the operating condition.
  • Examples of physical quantities correlated with the outside air temperature include the inlet temperature of the cooling water CD (the temperature of the cooling water CD flowing into each heat source device 11, 12, and 13), the temperature of the lower water tanks of the cooling towers 31, 32, and 33, etc. Can be mentioned.
  • the integer value output by the first control model 81 is used to control the heat source device system 1 for the number of operating heat source devices 11, 12, and 13.
  • each cold/hot water pump 21, 22, 23 and/or each cooling water pump 41, 42, 43 is configured to control the number of units, and output as an integer value is required as the operating state of these pumps, these The output of the first control model 81 may be used as the operating state.
  • the first control The model 81 may be omitted and the output of the second control model 82 may be used for control.
  • each of the arithmetic device (computer) that creates the teacher data, the control device 70, and the control model 80 (first control model 81 and second control model 82) described above is as follows.
  • a computer can be used.
  • FIG. 9 is a block diagram of an exemplary computer 100.
  • Computer 100 may be used to provide computational functionality associated with the algorithms, methods, functions, processes, and procedures described in this disclosure.
  • Computer 100 may be a server, desktop computer, embedded computer, laptop/notebook computer, smartphone, tablet computer device, or one or more processors therein (including physical instances, virtual instances, or both). ) may include any computing device.
  • Computer 100 can include input devices, such as a keypad, keyboard, and touch screen, that can accept information entered by a user.
  • Computer 100 may also include output devices that convey information associated with the operation of computer 100. This information may include digital data, visual data, audio information, or a combination of these information. This information can be displayed on a graphical user interface (GUI).
  • GUI graphical user interface
  • Computer 100 may serve as a client, network component, server, database, persistence, or component of a computer system to perform the processes, procedures, etc. described in this disclosure.
  • Exemplary computer 100 is communicatively coupled to network 120.
  • one or more components of computer 100 are configured to operate within an environment including a cloud computing-based environment, a local environment, a global environment, and a combination of environments. be able to.
  • Computer 100 can receive requests via network 120, for example, from a client application running on another computer.
  • Computer 100 may be configured to respond to incoming requests by processing the incoming requests using software applications.
  • the computer 100 typically includes a processor 102, a first memory 104, a second memory 106, and an interface 108 as components.
  • the processor 102 processes various types of information in the computer 100.
  • Processor 102 may execute instructions (programs) and manipulate data to perform operations of computer 100, including operations using any of the algorithms, methods, functions, processes, and procedures described in this disclosure. can.
  • Processor 102 may be a single processor or two or more processors.
  • Processor 102 may include a central processing unit (CPU), graphics processing unit (GPU), microprocessor, controller card, circuit board, or other electrical circuitry.
  • the first memory 104 temporarily or permanently stores programs and/or data used for information processing in the computer 100.
  • First memory 104 may store any data consistent with this disclosure.
  • the first memory 104 may be a single memory, or may be two or more memories.
  • the first memory 104 may include volatile memory such as RAM and cache, and nonvolatile memory such as ROM.
  • the second memory 106 typically holds data used by the computer 100, but may also hold data used outside the computer 100.
  • the second memory 106 may hold programs, including an operating system, that are executable on the computer 100 or other equipment.
  • the second memory 106 may be a single memory or two or more memories.
  • the second memory 106 may include a hard disk drive (HDD), a solid state drive (SSD), a flash memory, and the like.
  • Interface 108 is used by computer 100 to communicate with other systems connected to network 120 (whether shown or not) in a distributed environment.
  • Interface 108 may include logic encoded in software or hardware operable to communicate with network 120.
  • Interface 108 may include software that supports one or more communication protocols associated with communication. In this manner, network 120 or interface hardware may be operable to send and receive signals in and out of computer 100.
  • the interface 108 uses, for example, a wired communication standard such as Ethernet (registered trademark), and/or a wireless communication standard such as 4G, 5G, or Wi-Fi (registered trademark). be able to.
  • Interface 108 may be a single interface or may have two or more interfaces.
  • Each component of the computer 100 can communicate using a system bus.
  • any or all components of computer 100 (including hardware or software components) communicate (interface) with each other or with interface 108 (or a combination of the two) over a system bus. be able to.
  • Power source 110 typically includes a power plug that receives power from a utility or other power source.
  • Power source 110 may include a replaceable or non-replaceable battery, and the battery may be rechargeable by receiving power from a utility or other power source.
  • the processor 102 reads programs stored in the first memory 104 and/or the second memory 106 and executes calculations to execute processes and procedures according to the purpose.
  • the processor 102 reads out programs and/or data stored in the first memory 104 and/or the second memory 106 and creates the control model 80 (the 1 control model 81 and second control model 82)).
  • the processor 102 reads out programs and/or data stored in the first memory 104 and/or the second memory 106, and controls the heat source device system 1 by the control device 70. Operation instructions (control) are given.
  • the processor 102 executes programs and/or data stored in the first memory 104 and/or the second memory 106. It reads out and outputs the appropriate operating state of the heat source device system 1.
  • the programs and/or data used for information processing in the computer 100 are stored in a non-transitory computer-readable medium. It may be stored.
  • the non-transitory computer-readable medium stores computer-readable instructions and/or data utilized to perform a computer-implemented method.
  • Computer-readable media include magneto-optical disks and optical memory devices, as well as digital video discs (DVD), CD-ROM, DVD+/-R, DVD-RAM, DVD-ROM, HD-DVD, and BLURAY®. etc. can be included.
  • Computer readable media can also include magnetic devices such as tapes, cartridges, cassettes, and removable disks.
  • Each computer program is a set of computer program instructions encoded on a tangible, non-transitory computer-readable medium for execution by, or to control the operation of, an information processing device, including computer 100. It can include one or more modules. Furthermore, the program and/or data may be downloaded from an external device via a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This heat source machine system comprises: a heat source device for cooling or heating a heat medium to be supplied to a heat-demanding facility; a heat source auxiliary machine; and a control device for adjusting operating states of the heat source device and the heat source auxiliary machine. The control device has a pre-trained control model. The control model is trained with training data-based machine learning processing such that when an operating condition is input, operating states which enable predetermined indices to have values corresponding to the condition are output. The control device controls the heat source device and the heat source auxiliary machine so as to achieve the operating states output by the control model. In the case of this pre-trained model generation method, the training data is generated by means of simulation, and the pre-trained model is generated by implementing machine learning processing by using the training data.

Description

熱源機システム、学習済みモデルの生成方法及び学習済みモデルHeat source system, learned model generation method, and learned model
 本開示は熱源機システム、学習済みモデルの生成方法及び学習済みモデルに関し、特に機械学習されたモデルを用いて機器を制御する熱源機システム、学習済みモデルの生成方法及び学習済みモデルに関する。 The present disclosure relates to a heat source system, a method for generating a learned model, and a learned model, and particularly relates to a heat source system, a method for generating a learned model, and a learned model that control equipment using a machine-learned model.
 空調機において空気を冷却又は加熱するための冷水又は温水を空調機に供給するため、一般に、熱源装置及びその補機等を適宜組み合わせた熱源機システムが構築される。熱源機システムは、空調機の負荷に応じて、熱源機システムを構成する機器の出力や運転台数の運転状態を調節している。熱源機システムを構成する機器の制御に役立ち得る装置として、実運転データを呼び出して再現させる再現システムと、過去の熱負荷データ及び設備環境データを利用しながらシミュレーションできるシステムとを有するものがある(例えば、特開2011-163727号公報参照)。 In order to supply cold water or hot water to an air conditioner to cool or heat the air, a heat source system is generally constructed by appropriately combining a heat source device and its auxiliary equipment. The heat source device system adjusts the output of the devices that make up the heat source device system and the operating status of the number of devices in operation, depending on the load of the air conditioner. As devices that can be useful for controlling the equipment that makes up the heat source equipment system, there are devices that have a reproduction system that calls and reproduces actual operation data, and a system that can perform simulations using past heat load data and facility environment data ( For example, see Japanese Patent Application Publication No. 2011-163727).
 熱源機システムを構成する機器を応答よく制御するために、適切な運転状態を求める演算時間を短くすることが好ましい。 In order to control the equipment that makes up the heat source equipment system with good response, it is preferable to shorten the calculation time to find the appropriate operating state.
 本開示は上述の課題に鑑み、運転条件の変化に応じて適切な運転状態で応答よく運転させる熱源機システム、学習済みモデルの生成方法及び学習済みモデルを提供することに関する。 In view of the above-mentioned problems, the present disclosure relates to providing a heat source equipment system, a method for generating a trained model, and a trained model that can be operated in an appropriate operating state in response to changes in operating conditions.
 本開示の第1の態様に係る熱源機システムは、熱需要設備に供給する熱媒体を冷却又は加熱する熱源機器と、前記熱源機器の運転に付随して稼働する熱源補機と、前記熱源機器及び前記熱源補機の運転状態を調節する制御装置であって、学習済みの制御モデルを有する制御装置と、を備え、前記熱源補機は、前記熱源機器を通過する前記熱媒体を流動させる熱媒体ポンプと、前記熱源機器において前記熱媒体と直接又は間接的に熱交換を行う熱源流体を前記熱源機器に供給する熱源流体供給装置と、を含み、前記運転状態は、前記熱源機器の稼働状況、前記熱媒体ポンプが吐出する前記熱媒体の流量、及び前記熱源流体供給装置が供給する前記熱源流体の流量、のうちの少なくとも1つを含み、前記制御モデルは、前記運転状態に影響を及ぼす運転条件が入力された際に、所定の指標が条件に適う値となる前記運転状態を出力するように、教師データを用いた機械学習処理が施されており、前記運転条件は、前記熱需要設備の需要熱量又はこれに相関する物理量、及び外気温度又はこれに相関する物理量、のうちの少なくとも1つを含み、前記所定の指標は、前記熱源機器及び前記熱源補機の消費動力、前記熱源機器及び前記熱源補機の運転コスト、並びに前記熱源機器及び前記熱源補機の二酸化炭素排出量、のうちの少なくとも1つを含み、前記制御装置は、前記制御モデルが出力した運転状態となるように、前記熱源機器及び前記熱源補機を制御する。 A heat source device system according to a first aspect of the present disclosure includes a heat source device that cools or heats a heat medium to be supplied to heat demand equipment, a heat source auxiliary machine that operates in conjunction with the operation of the heat source device, and the heat source device. and a control device that adjusts the operating state of the heat source auxiliary device, the control device having a learned control model, the heat source auxiliary device controlling the heat source to flow the heat medium passing through the heat source device. a medium pump; and a heat source fluid supply device that supplies a heat source fluid that directly or indirectly exchanges heat with the heat medium in the heat source device to the heat source device, and the operating state is the operating status of the heat source device. , a flow rate of the heat medium discharged by the heat medium pump, and a flow rate of the heat source fluid supplied by the heat source fluid supply device, and the control model influences the operating state. Machine learning processing using teacher data is performed so that when operating conditions are input, the operating conditions in which a predetermined index has a value that meets the conditions are output, and the operating conditions are based on the heat demand. The predetermined index includes at least one of the heat demand of the equipment or a physical quantity correlated thereto, and the outside air temperature or a physical quantity correlated thereto, and the predetermined index includes the power consumption of the heat source equipment and the heat source auxiliary equipment, the heat source The control device includes at least one of the operating costs of the equipment and the heat source auxiliary equipment, and the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment, and the control device is configured to be in the operating state outputted by the control model. The heat source equipment and the heat source auxiliary equipment are controlled.
 このように構成すると、制御モデルが運転条件の変化に応じて適切な運転状態を出力できるので、熱源機システムを応答よく運転させることができる。 With this configuration, the control model can output an appropriate operating state in response to changes in operating conditions, so the heat source system can be operated with good response.
 また、本開示の第2の態様に係る熱源機システムとして、上記本開示の第1の態様に係る熱源機システムにおいて、前記所定の指標が、前記熱源機器及び前記熱源補機の消費動力、前記熱源機器及び前記熱源補機の運転コスト、並びに前記熱源機器及び前記熱源補機の二酸化炭素排出量、のうちの複数を含み、前記制御モデルは、複数の前記所定の指標のうちの第1の所定の指標が条件に適う値となる複数の前記運転状態を選定し、選定した複数の前記運転状態の中から前記第1の所定の指標とは別の第2の所定の指標が条件に適う値となる前記運転状態を出力するように構成されていてもよい。 Further, as a heat source device system according to a second aspect of the present disclosure, in the heat source device system according to the first aspect of the present disclosure, the predetermined index may include power consumption of the heat source device and the heat source auxiliary device; The control model includes a plurality of operating costs of the heat source equipment and the heat source auxiliary equipment, and carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment, and the control model includes a first one of the plurality of predetermined indicators. Selecting a plurality of operating states in which a predetermined index has a value that satisfies a condition, and from among the plurality of selected operating states, a second predetermined index different from the first predetermined index satisfies the condition. The operating state may be configured to output the operating state as a value.
 このように構成すると、複数の所定の指標を総合的に判断した適切な運転状態で熱源機システムを運転させることができる。 With this configuration, the heat source device system can be operated in an appropriate operating state that is comprehensively determined based on a plurality of predetermined indicators.
 また、本開示の第3の態様に係る熱源機システムとして、上記本開示の第1の態様又は第2の態様に係る熱源機システムにおいて、前記熱源機器、前記熱媒体ポンプ、及び前記熱源流体供給装置の少なくとも1つは複数台で構成されており、前記運転状態は、前記熱源機器、前記熱媒体ポンプ、及び前記熱源流体供給装置のうちの複数台で構成されるものの運転台数を含み、前記制御モデルは、出力する前記運転状態のうち前記運転台数を整数値で出力する第1の制御モデルと、前記第1の制御モデルが出力した前記運転台数の整数値を前記運転条件の1つとして入力する第2の制御モデルと、を含んでいてもよい。 Further, as a heat source device system according to a third aspect of the present disclosure, in the heat source device system according to the first aspect or second aspect of the present disclosure, the heat source device, the heat medium pump, and the heat source fluid supply At least one of the devices is composed of a plurality of devices, and the operating state includes the number of operating devices of the heat source device, the heat medium pump, and the heat source fluid supply device, and The control model includes a first control model that outputs the number of operating vehicles as an integer value among the operating states, and an integer value of the number of operating vehicles output by the first control model as one of the operating conditions. and a second control model to be input.
 このように構成すると、運転台数についての制御モデルの出力が、実現不可能な小数となることを回避することができ、実際の運転に則した適切な運転状態で熱源機システムを運転させることができる。 With this configuration, it is possible to avoid the output of the control model regarding the number of operating units from becoming an unrealizable decimal number, and it is possible to operate the heat source equipment system in an appropriate operating state in accordance with actual operation. can.
 また、本開示の第4の態様に係る熱源機システムとして、上記本開示の第1の態様乃至第3の態様のいずれか1つの態様に係る熱源機システムにおいて、前記制御装置は、前記熱源機器の処理熱量、前記熱媒体ポンプが吐出する前記熱媒体の流量、及び前記熱源流体供給装置が供給する前記熱源流体の流量、のうち、一部の前記運転状態に前記制御モデルの出力を用い、残りの前記運転状態をシミュレーション又はルールベースによって決定してもよい。 Moreover, in the heat source device system according to any one of the first to third aspects of the present disclosure, as a heat source device system according to a fourth aspect of the present disclosure, the control device using the output of the control model for some of the operating states of the processing heat amount, the flow rate of the heat medium discharged by the heat medium pump, and the flow rate of the heat source fluid supplied by the heat source fluid supply device, The remaining operating states may be determined by simulation or rule-based.
 このように構成すると、制御モデルを用いることで運転状態の一部を出力する時間を短縮しつつ、シミュレーション又はルールベースを用いることで運転状態の残りをより精度よく出力することができる。 With this configuration, the time required to output a part of the operating state can be shortened by using the control model, while the rest of the operating state can be output with higher accuracy by using simulation or a rule base.
 また、本開示の第5の態様に係る熱源機システムとして、上記本開示の第1の態様乃至第4の態様のいずれか1つの態様に係る熱源機システムにおいて、前記運転条件は、前記熱需要設備の圧力損失係数を含んでいてもよい。 Further, in the heat source device system according to a fifth aspect of the present disclosure, in the heat source device system according to any one of the first to fourth aspects of the present disclosure, the operating conditions are It may also include the pressure loss coefficient of the equipment.
 このように構成すると、熱媒体の流量が変化した場合でも適切な運転状態で熱源機システムを運転させることができる。 With this configuration, the heat source system can be operated in an appropriate operating state even when the flow rate of the heat medium changes.
 また、本開示の第6の態様に係る熱源機システムとして、上記本開示の第1の態様乃至第5の態様のいずれか1つの態様に係る熱源機システムにおいて、前記運転条件は、前記熱源機器及び前記熱源補機の単位消費動力当たりのコスト、並びに前記熱源機器及び前記熱源補機の単位消費動力当たりの二酸化炭素排出量、のうちの少なくとも1つを含んでいてもよい。 Further, in the heat source device system according to a sixth aspect of the present disclosure, in the heat source device system according to any one of the first to fifth aspects of the present disclosure, the operating conditions are and the cost per unit power consumption of the heat source auxiliary equipment, and the carbon dioxide emissions per unit power consumption of the heat source equipment and the heat source auxiliary equipment.
 このように構成すると、単位消費動力当たりのコストや二酸化炭素排出量が変化した場合でも制御モデルを作成し直さなくて済む。 With this configuration, there is no need to recreate the control model even if the cost per unit power consumption or the amount of carbon dioxide emissions changes.
 また、本開示の第7の態様に係る熱源機システムとして、上記本開示の第1の態様乃至第6の態様のいずれか1つの態様に係る熱源機システムにおいて、前記制御モデルは、前記所定の指標を、前記熱源機器及び前記熱源補機の消費動力、前記熱源機器及び前記熱源補機の運転コスト、並びに前記熱源機器及び前記熱源補機の二酸化炭素排出量、のうちの1つ又は複数とした制御モデルを複数有し、前記制御装置は、複数の前記制御モデルのうち、ユーザーが求める前記所定の指標に応じて適切な前記制御モデルを利用してもよい。 Further, in the heat source device system according to any one of the first to sixth aspects of the present disclosure as a heat source device system according to a seventh aspect of the present disclosure, the control model is based on the predetermined control model. The index may be one or more of the power consumption of the heat source equipment and the heat source auxiliary equipment, the operating cost of the heat source equipment and the heat source auxiliary equipment, and the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment. The control device may have a plurality of control models, and the control device may use an appropriate control model among the plurality of control models according to the predetermined index desired by the user.
 このように構成すると、ユーザーによって所定の指標が変更された場合であっても熱源機システムの適切な運転状態を維持することができる。 With this configuration, even if the predetermined index is changed by the user, the appropriate operating state of the heat source device system can be maintained.
 また、本開示の第8の態様に係る学習済みモデルの生成方法は、熱需要設備に供給する熱媒体を冷却又は加熱する熱源機器と、前記熱源機器の運転に付随して稼働する熱源補機と、を備える熱源機システムの制御に用いられる学習済みモデルを生成する方法であって、想定される運転条件の下で、前記熱源機システムの想定される運転状態のときの所定の指標を、シミュレーションにより、前記運転状態を変えながら複数求めたうえで、前記所定の指標が条件に適うときの前記運転状態を当該運転条件との関係として規定し、これを複数の運転条件について行うことで、前記所定の指標が条件に適うときの前記運転状態と当該運転条件との関係の組みを複数得ることで教師データを生成する工程と、前記教師データを用いて機械学習処理を施すことにより、前記運転条件を入力、前記運転状態を出力、とする学習済みモデルを生成する工程と、を備え、前記熱源補機は、前記熱源機器を通過する前記熱媒体を流動させる熱媒体ポンプと、前記熱源機器において前記熱媒体と直接又は間接的に熱交換を行う熱源流体を前記熱源機器に供給する熱源流体供給装置と、を含み、前記運転条件は、前記熱需要設備の需要熱量又はこれに相関する物理量、及び外気温度又はこれに相関する物理量、のうちの少なくとも1つを含み、前記運転状態は、前記熱源機器の稼働状況、前記熱媒体ポンプが吐出する前記熱媒体の流量、及び前記熱源流体供給装置が供給する前記熱源流体の流量、のうちの少なくとも1つを含み、前記所定の指標は、前記熱源機器及び前記熱源補機の消費動力、前記熱源機器及び前記熱源補機の運転コスト、並びに前記熱源機器及び前記熱源補機の二酸化炭素排出量、のうちの少なくとも1つを含む。 Further, a method for generating a trained model according to an eighth aspect of the present disclosure includes a heat source device that cools or heats a heat medium supplied to heat demand equipment, and a heat source auxiliary device that operates in conjunction with the operation of the heat source device. A method for generating a learned model used for controlling a heat source device system comprising: By calculating a plurality of driving conditions while changing them through simulation, and defining the driving condition when the predetermined index meets the condition as a relationship with the driving condition, and performing this for a plurality of driving conditions, a step of generating training data by obtaining a plurality of sets of relationships between the driving state and the driving condition when the predetermined index meets the condition; and performing machine learning processing using the training data. a step of generating a trained model in which operating conditions are input and the operating state is output, the heat source auxiliary equipment includes a heat medium pump that flows the heat medium passing through the heat source equipment, and the heat source a heat source fluid supply device that supplies a heat source fluid that directly or indirectly exchanges heat with the heat medium in the equipment to the heat source equipment, and the operating condition is the amount of heat demanded by the heat demand equipment or correlated thereto. The operating state includes at least one of a physical quantity and an outside temperature or a physical quantity correlated thereto, and the operating state includes the operating state of the heat source device, the flow rate of the heat medium discharged by the heat medium pump, and the heat source fluid. The predetermined index includes at least one of the flow rate of the heat source fluid supplied by the supply device, and the predetermined index includes the power consumption of the heat source equipment and the heat source auxiliary equipment, the operating cost of the heat source equipment and the heat source auxiliary equipment, and at least one of the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment.
 このように構成すると、熱源機システムを、運転条件の変化に応じて適切な運転状態で応答よく運転させることが可能な学習済みモデルを得ることができる。 With this configuration, it is possible to obtain a trained model that allows the heat source device system to operate in an appropriate operating state with good response in response to changes in operating conditions.
 また、本開示の第9の態様に係る学習済みモデルの生成方法として、上記本開示の第8の態様に係る学習済みモデルの生成方法において、前記熱源機器、前記熱媒体ポンプ、及び前記熱源流体供給装置の少なくとも1つは複数台で構成されており、前記運転状態は、前記熱源機器、前記熱媒体ポンプ、及び前記熱源流体供給装置のうちの複数台で構成されるものの運転台数を含み、前記学習済みモデルを生成する工程は、出力の前記運転状態に前記運転台数の整数値を含む第1の学習済みモデルを生成する工程と、前記運転台数の整数値を前記運転条件の1つとして入力する第2の学習済みモデルを生成する工程と、を含んでいてもよい。 Further, as a method for generating a trained model according to a ninth aspect of the present disclosure, in the method for generating a trained model according to the eighth aspect of the present disclosure, the heat source device, the heat medium pump, and the heat source fluid At least one of the supply devices is composed of a plurality of units, and the operating state includes the number of operating units of the heat source device, the heat medium pump, and the heat source fluid supply device, which are composed of a plurality of units, The step of generating the trained model includes the step of generating a first trained model that includes an integer value of the number of operating vehicles in the operating state of the output, and using the integer value of the number of operating vehicles as one of the operating conditions. The method may include a step of generating a second trained model to be input.
 このように構成すると、運転台数についての制御モデルの出力が、実現不可能な小数となることを回避することができる。 With this configuration, it is possible to avoid the output of the control model regarding the number of operating vehicles from becoming an unrealizable decimal number.
 また、本開示の第10の態様に係る学習済みモデルの生成方法として、上記本開示の第9の態様に係る学習済みモデルの生成方法において、前記第1の学習済みモデル及び前記第2の学習済みモデルがニューラルネットワークを用いていると共に、前記第1の学習済みモデル及び前記第2の学習済みモデルが共通の中間層を有し、前記第1の学習済みモデルの出力となる前記運転状態の項目が、前記第2の学習済みモデルの出力となる前記運転状態の項目を含み、前記学習済みモデルを生成する工程は、最初に第1の学習モデルに機械学習処理を施して前記第1の学習済みモデルを生成し、次に第2の学習モデルの前記中間層の重み係数の初期値を前記第1の学習済みモデルの前記中間層の重み係数に設定したものに対して機械学習処理を施して前記第2の学習済みモデルを生成してもよい。 Further, as a trained model generation method according to a tenth aspect of the present disclosure, in the trained model generation method according to the ninth aspect of the present disclosure, the first trained model and the second trained The trained model uses a neural network, the first trained model and the second trained model have a common intermediate layer, and the driving state is the output of the first trained model. The items include the driving state item that is the output of the second trained model, and the step of generating the trained model includes first applying machine learning processing to the first learning model to generate the first learning model. A trained model is generated, and then a machine learning process is performed on the model in which the initial value of the weighting coefficient of the intermediate layer of the second learning model is set to the weighting coefficient of the intermediate layer of the first trained model. The second trained model may be generated by performing the following steps.
 このように構成すると、第2の学習済みモデルを生成する際の学習時間を短縮することが可能になる。 With this configuration, it is possible to shorten the learning time when generating the second trained model.
 また、本開示の第11の態様に係る学習済みモデルの生成方法として、上記本開示の第8の態様乃至第10の態様のいずれか1つの態様に係る学習済みモデルの生成方法において、前記教師データを生成する工程は、シミュレーションを行う際の前記運転条件及び前記運転状態の少なくとも一方の決定を、ランダムに行ってもよい。 Further, as a method for generating a trained model according to an eleventh aspect of the present disclosure, in the method for generating a trained model according to any one of the eighth to tenth aspects of the present disclosure, the In the step of generating data, at least one of the operating conditions and the operating state for performing the simulation may be determined at random.
 このように構成すると、取り扱うデータの量が必要以上に増加することを抑制することができると共に、教師データの追加作成を比較的簡便に行うことができる。 With this configuration, it is possible to prevent the amount of data to be handled from increasing more than necessary, and additional creation of teacher data can be performed relatively easily.
 また、本開示の第12の態様に係る学習済みモデルの生成方法として、上記本開示の第8の態様乃至第11の態様のいずれか1つの態様に係る学習済みモデルの生成方法において、前記教師データを生成する工程は、想定される前記運転条件よりも広い範囲の前記運転条件の下で想定される前記運転状態よりも広い範囲の前記運転状態のときの前記所定の指標のデータが既に存在する場合に、当該既に存在するデータから想定される前記運転条件の下で想定される前記運転状態のときの前記所定の指標を抽出して前記教師データとしてもよい。 Further, as a method for generating a trained model according to a twelfth aspect of the present disclosure, in the method for generating a trained model according to any one of the eighth to eleventh aspects of the present disclosure, the teacher In the step of generating data, data of the predetermined index already exists when the operating condition is in a wider range than the operating condition assumed under the operating condition in a wider range than the assumed operating condition. In this case, the predetermined index at the assumed operating state under the assumed operating condition may be extracted from the already existing data and used as the teacher data.
 このように構成すると、既存のデータを利用して教師データを作成することができ、教師データの作成時間を短縮することができる。 With this configuration, the teacher data can be created using existing data, and the time required to create the teacher data can be shortened.
 また、本開示の第13の態様に係る学習済みモデルの生成方法として、上記本開示の第12の態様に係る学習済みモデルの生成方法において、前記教師データを生成する工程は、抽出しなかったデータ中の前記運転条件及び前記運転状態のうちの想定される前記運転条件及び前記運転状態に適合しない項目の値を適合する値に変更したうえでシミュレーションを行って前記教師データを生成してもよい。 Further, as a method for generating a trained model according to a thirteenth aspect of the present disclosure, in the method for generating a trained model according to the twelfth aspect of the present disclosure, the step of generating the teacher data is not extracted. The teaching data may be generated by performing a simulation after changing the values of items that do not match the assumed operating conditions and operating states in the data to values that match the operating conditions and operating states. good.
 このように構成すると、不足する教師データを効率よく補充することができる。 With this configuration, missing teacher data can be efficiently replenished.
 また、本開示の第14の態様に係る学習済みモデルの生成方法として、上記本開示の第8の態様乃至第13の態様のいずれか1つの態様に係る学習済みモデルの生成方法において、前記運転条件は、前記熱需要設備の圧力損失係数を含み、前記教師データを生成する工程は、前記シミュレーションにおいて、前記圧力損失係数と前記熱媒体の流量とに基づいて前記熱需要設備における圧力損失を算出したうえで前記所定の指標を求めてもよい。 Further, as a method for generating a trained model according to a fourteenth aspect of the present disclosure, in the method for generating a trained model according to any one of the eighth to thirteenth aspects of the present disclosure, the driving The conditions include a pressure loss coefficient of the heat demand equipment, and the step of generating the teacher data includes calculating a pressure loss in the heat demand equipment based on the pressure loss coefficient and the flow rate of the heat medium in the simulation. After that, the predetermined index may be determined.
 このように構成すると、熱媒体の流量が変化した場合でも適切な運転状態を出力することができる学習済みモデルを生成することができる。 With this configuration, it is possible to generate a trained model that can output an appropriate operating state even when the flow rate of the heat medium changes.
 また、本開示の第15の態様に係る学習済みモデルは、熱需要設備に供給する熱媒体を冷却又は加熱する熱源機器と、前記熱源機器の運転に付随して稼働する熱源補機と、を備える熱源機システムの制御に用いられるコンピュータに搭載される学習済みモデルであって、前記熱源機システムの運転条件が入力される入力層と、前記熱源機システムの運転状態が出力される出力層と、前記運転条件を入力、所定の指標が条件に適う値となる前記運転状態を出力、とする教師データを用いてパラメータが学習された中間層と、を備え、前記熱源補機は、前記熱源機器を通過する前記熱媒体を流動させる熱媒体ポンプと、前記熱源機器において前記熱媒体と直接又は間接的に熱交換を行う熱源流体を前記熱源機器に供給する熱源流体供給装置と、を含み、前記運転条件は、前記熱需要設備の需要熱量又はこれに相関する物理量、及び外気温度又はこれに相関する物理量、のうちの少なくとも1つを含み、前記運転状態は、前記熱源機器の稼働状況、前記熱媒体ポンプが吐出する前記熱媒体の流量、及び前記熱源流体供給装置が供給する前記熱源流体の流量、のうちの少なくとも1つを含み、前記所定の指標は、前記熱源機器及び前記熱源補機の消費動力、前記熱源機器及び前記熱源補機の運転コスト、並びに前記熱源機器及び前記熱源補機の二酸化炭素排出量、のうちの少なくとも1つを含み、前記運転条件を前記入力層に入力し、前記中間層にて演算し、前記運転状態を前記出力層から出力するようにコンピュータを機能させる。 Further, the trained model according to the fifteenth aspect of the present disclosure includes a heat source device that cools or heats a heat medium to be supplied to heat demand equipment, and a heat source auxiliary machine that operates in conjunction with the operation of the heat source device. A trained model installed in a computer used to control a heat source device system, comprising an input layer into which operating conditions of the heat source device system are input, and an output layer into which operating conditions of the heat source device system are output. , an intermediate layer in which parameters are learned using teacher data that inputs the operating condition and outputs the operating condition in which a predetermined index has a value that meets the condition; A heat medium pump that flows the heat medium passing through the device; and a heat source fluid supply device that supplies the heat source fluid to the heat source device, which directly or indirectly exchanges heat with the heat medium in the heat source device; The operating conditions include at least one of the heat demand of the heat demand equipment or a physical quantity correlated thereto, and the outside air temperature or a physical quantity correlated thereto, and the operating state includes the operating status of the heat source equipment; The predetermined index includes at least one of the flow rate of the heat medium discharged by the heat medium pump and the flow rate of the heat source fluid supplied by the heat source fluid supply device, and the predetermined index The operating conditions are input to the input layer, including at least one of the power consumption of the machine, the operating cost of the heat source equipment and the heat source auxiliary equipment, and the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment. Then, the computer is operated to perform calculations in the intermediate layer and output the operating state from the output layer.
 このように構成すると、熱源機システムを、運転条件の変化に応じて適切な運転状態で応答よく運転させることが可能な学習済みモデルとなる。 With this configuration, the model becomes a trained model that can operate the heat source equipment system in an appropriate operating state and with good response in response to changes in operating conditions.
 また、本開示の第16の態様に係る熱源機システムとして、上記本開示の第15の態様に係る学習済みモデルを有する制御装置と、前記熱源機器と、前記熱源補機と、を備え、前記制御装置は、前記学習済みモデルが出力した運転状態となるように、前記熱源機器及び前記熱源補機を制御してもよい。 Further, a heat source device system according to a sixteenth aspect of the present disclosure includes a control device having a trained model according to the fifteenth aspect of the present disclosure, the heat source device, and the heat source auxiliary device, The control device may control the heat source device and the heat source auxiliary device so as to be in the operating state outputted by the learned model.
 このように構成すると、熱源機システムを、運転条件の変化に応じて適切な運転状態で応答よく運転させることができる。 With this configuration, the heat source device system can be operated in an appropriate operating state with good response in response to changes in operating conditions.
 本開示によれば、熱源機システムを、運転条件の変化に応じて適切な運転状態で応答よく運転させることができる。 According to the present disclosure, the heat source device system can be operated in an appropriate operating state with good response in response to changes in operating conditions.
一実施の形態に係る熱源機システムの模式的系統図である。FIG. 1 is a schematic diagram of a heat source device system according to an embodiment. 一実施の形態に係る熱源機システムが備える制御モデルの機械学習処理に用いられる教師データを作成する手順を示すフローチャートである。It is a flow chart which shows the procedure of creating training data used for machine learning processing of a control model provided in a heat source equipment system concerning one embodiment. 教師データを作成する際に仮定する運転条件を例示する図である。FIG. 3 is a diagram illustrating operating conditions assumed when creating training data. 教師データを作成する際に仮定する運転状態を例示する図である。It is a figure which illustrates the driving state assumed when creating training data. 一部の既存データを流用して教師データを作成する手順を説明するフローチャートである。12 is a flowchart illustrating a procedure for creating teacher data by reusing some existing data. 第1の制御モデルの概略構成図である。FIG. 2 is a schematic configuration diagram of a first control model. 第2の制御モデルの概略構成図である。FIG. 3 is a schematic configuration diagram of a second control model. 一実施の形態に係る熱源機システムの制御装置の演算手順を示すブロック図である。FIG. 2 is a block diagram showing a calculation procedure of a control device of a heat source device system according to an embodiment. 例示のコンピュータのハードウェア構成を示すブロック図である。FIG. 1 is a block diagram illustrating the hardware configuration of an exemplary computer.
 この出願は、日本国で2022年3月31日に出願された特願2022-60393号に基づいており、その内容は本出願の内容として、その一部を形成する。
 また、本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明及び特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。
 出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
This application is based on Japanese Patent Application No. 2022-60393 filed in Japan on March 31, 2022, and the contents thereof form a part of the contents of this application.
In addition, the present invention may be more fully understood from the detailed description that follows. Further scope of applicability of the invention will become apparent from the detailed description below. However, the detailed description and specific examples are preferred embodiments of the invention and are presented for illustrative purposes only. From this detailed description, various changes and modifications will be apparent to those skilled in the art within the spirit and scope of the invention.
Applicant does not intend to offer any of the described embodiments to the public, and the applicant does not intend to offer any of the described embodiments to the public, and any disclosed modifications or alternatives that may not literally fall within the scope of the claims are considered equivalents. be part of the invention under discussion.
 以下、図面を参照して実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described with reference to the drawings. In each figure, members that are the same or correspond to each other are designated by the same or similar reference numerals, and redundant explanations will be omitted.
<熱源機システムの構成例>
 まず図1を参照して、一実施の形態に係る熱源機システム1を説明する。図1は、熱源機システム1の模式的系統図である。熱源機システム1は、3台の熱源機11、12、13と、3台の冷温水ポンプ21、22、23と、3台の冷却塔31、32、33と、3台の冷却水ポンプ41、42、43と、制御装置70と、を主要な構成として備えている。熱源機システム1は、各熱源機11、12、13で冷却又は加熱した冷温水CHを、熱需要設備99に対して、要求に応じて供給するシステムである。熱需要設備99の例として、エアハンドリングユニットやファンコイルユニット等の空調機器が挙げられる。冷温水CHは、熱需要設備99に冷熱又は温熱を搬送する媒体であり、熱媒体に相当する。冷温水CHは、冷熱の媒体である冷水及び温熱の媒体である温水の総称であり、典型的には、熱需要設備99で冷房が行われるときは冷水となり、熱需要設備99で暖房が行われるときは温水となるものである。
<Example of configuration of heat source system>
First, with reference to FIG. 1, a heat source device system 1 according to an embodiment will be described. FIG. 1 is a schematic diagram of the heat source device system 1. As shown in FIG. The heat source device system 1 includes three heat source devices 11, 12, and 13, three cold/hot water pumps 21, 22, and 23, three cooling towers 31, 32, and 33, and three cooling water pumps 41. , 42, 43, and a control device 70 as main components. The heat source device system 1 is a system that supplies cold and hot water CH cooled or heated by each of the heat source devices 11, 12, and 13 to the heat demand equipment 99 according to a request. Examples of the heat demand equipment 99 include air conditioning equipment such as an air handling unit and a fan coil unit. The cold/hot water CH is a medium that conveys cold heat or hot heat to the heat demand equipment 99, and corresponds to a heat medium. Cold/hot water CH is a general term for cold water, which is a medium for cold heat, and hot water, which is a medium for heat. Typically, when the heat demand equipment 99 performs cooling, it becomes cold water, and when the heat demand equipment 99 performs heating, it becomes cold water. When the water is drained, the water becomes warm.
 3台の熱源機11、12、13は、冷温水CHを冷却又は加熱する機器であり、熱源機器に相当する。以下、3台の熱源機を区別するために、それぞれ、第1熱源機11、第2熱源機12、第3熱源機13、と呼称することがある。各熱源機11、12、13は、種々の種類の機器を用いることができるが、本実施の形態では、第1熱源機11及び第2熱源機12が共に同じ特性を有する可変速ターボ冷凍機であり、第3熱源機13が固定速ターボ冷凍機であるとして説明する。各熱源機11、12、13は、入力された電力を利用して、冷温水CHを冷却又は加熱することができる装置になっている。各熱源機11、12、13が冷温水CHから奪う熱量又は冷温水CHに与える熱量を「処理熱量」ということとする。第1熱源機11及び第2熱源機12は、容量制御によって処理熱量を調節することができるようになっている。第3熱源機13は、運転状態と停止状態とを切り替えて運転するものであり、処理熱量は定格か0のどちらかになる。各熱源機11、12、13の運転台数並びに第1熱源機11及び第2熱源機12の運転容量を「稼働状況」ということとする。各熱源機11、12、13は、稼働状況によって処理熱量が決まる。各熱源機11、12、13は、流入及び流出する冷温水CHの温度差及び圧力差を検出することができるようになっている。また、各熱源機11、12、13は、冷温水CHを冷却するために冷温水CHから奪った熱を冷却水CDに与え、冷温水CHを加熱するための熱を冷却水CDから奪うように構成されている。冷却水CDは、各熱源機11、12、13において、冷温水CHとの間で冷媒(不図示)を介して間接的に熱交換を行う流体であり、熱源流体に相当する。 The three heat source devices 11, 12, and 13 are devices that cool or heat the cold/hot water CH, and correspond to heat source devices. Hereinafter, in order to distinguish the three heat source devices, they may be referred to as the first heat source device 11, the second heat source device 12, and the third heat source device 13, respectively. Each heat source device 11, 12, 13 can use various types of devices, but in this embodiment, both the first heat source device 11 and the second heat source device 12 are variable speed centrifugal chillers having the same characteristics. The explanation will be given assuming that the third heat source device 13 is a fixed speed centrifugal refrigerator. Each of the heat source devices 11, 12, and 13 is a device that can cool or heat the cold/hot water CH using input electric power. The amount of heat that each heat source device 11, 12, and 13 removes from the cold/hot water CH or gives to the cold/hot water CH is referred to as "processed heat amount." The first heat source device 11 and the second heat source device 12 are capable of adjusting the amount of heat to be processed through capacity control. The third heat source device 13 is operated by switching between an operating state and a stopped state, and the processing heat amount is either rated or zero. The number of operating heat source devices 11, 12, and 13 and the operating capacity of the first heat source device 11 and the second heat source device 12 are referred to as "operating status." The amount of heat processed by each of the heat source devices 11, 12, and 13 is determined depending on the operating status. Each heat source device 11, 12, 13 is capable of detecting a temperature difference and a pressure difference between cold and hot water CH flowing in and out. In addition, each of the heat source devices 11, 12, and 13 gives the heat taken from the cold/hot water CH to the cooling water CD in order to cool the cold/hot water CH, and deprives the cooling water CD of the heat for heating the cold/hot water CH. It is composed of Cooling water CD is a fluid that indirectly exchanges heat with cold/hot water CH in each heat source device 11, 12, 13 via a refrigerant (not shown), and corresponds to a heat source fluid.
 3台の冷温水ポンプ21、22、23は、各熱源機11、12、13が作動することに付随して作動する機器であって熱源補機の一形態であり、かつ、冷温水CHを流動させる機器であって熱媒体ポンプに相当する。以下、3台の冷温水ポンプを区別するために、それぞれ、第1冷温水ポンプ21、第2冷温水ポンプ22、第3冷温水ポンプ23、と呼称することがある。各冷温水ポンプ21、22、23は、入力された電力を利用して、冷温水CHを流動させることができる装置になっている。各冷温水ポンプ21、22、23は、本実施の形態では、インバータを有していて、吐出する冷温水CHの流量を無段階に変化させることができるように構成されている。 The three cold/hot water pumps 21, 22, and 23 are devices that operate in conjunction with the operation of the respective heat source devices 11, 12, and 13, and are a form of heat source auxiliary equipment, and also pump cold and hot water CH. It is a device that causes fluid to flow and corresponds to a heat medium pump. Hereinafter, in order to distinguish the three cold/hot water pumps, they may be referred to as the first cold/hot water pump 21, the second cold/hot water pump 22, and the third cold/hot water pump 23, respectively. Each of the cold and hot water pumps 21, 22, and 23 is a device that can flow cold and hot water CH using input electric power. In this embodiment, each cold/hot water pump 21, 22, 23 has an inverter and is configured to be able to steplessly change the flow rate of the cold/hot water CH to be discharged.
 3台の冷却塔31、32、33は、各熱源機11、12、13が作動することに付随して作動する機器であって熱源補機の一形態であり、かつ、冷却水CDを各熱源機11、12、13に供給する機器であって熱源流体供給装置に相当する。以下、3台の冷却塔を区別するために、それぞれ、第1冷却塔31、第2冷却塔32、第3冷却塔33、と呼称することがある。各冷却塔31、32、33は、入力された電力を利用して、冷却水CDと大気(典型的には外気)との間で熱交換を行わせることができる装置になっている。各冷却塔31、32、33は、本実施の形態では、各熱源機11、12、13の運転/停止に合わせて運転/停止が行われるが、ファンの回転速度を無段階に又は段階的に調節できるように構成されていてもよい。 The three cooling towers 31, 32, and 33 are devices that operate in conjunction with the operation of each heat source device 11, 12, and 13, and are a form of heat source auxiliary equipment, and each coolant CD is It is a device that supplies heat source devices 11, 12, and 13, and corresponds to a heat source fluid supply device. Hereinafter, in order to distinguish the three cooling towers, they may be referred to as a first cooling tower 31, a second cooling tower 32, and a third cooling tower 33, respectively. Each of the cooling towers 31, 32, and 33 is a device that can perform heat exchange between the cooling water CD and the atmosphere (typically, outside air) using input electric power. In this embodiment, each cooling tower 31, 32, 33 is operated/stopped in accordance with the operation/stop of each heat source device 11, 12, 13, but the rotation speed of the fan is adjusted steplessly or stepwise. It may be configured such that it can be adjusted.
 3台の冷却水ポンプ41、42、43は、各熱源機11、12、13が作動することに付随して作動する機器であって熱源補機の一形態であり、かつ、冷却水CDを各熱源機11、12、13に供給する機器であって熱源流体供給装置の一形態である。以下、3台の冷却水ポンプを区別するために、それぞれ、第1冷却水ポンプ41、第2冷却水ポンプ42、第3冷却水ポンプ43、と呼称することがある。各冷却水ポンプ41、42、43は、入力された電力を利用して、冷却水CDを流動させることができる装置になっている。各冷却水ポンプ41、42、43は、本実施の形態では、インバータを有していて、吐出する冷却水CDの流量を無段階に変化させることができるように構成されている。 The three cooling water pumps 41, 42, and 43 are devices that operate in conjunction with the operation of each heat source device 11, 12, and 13, and are a form of heat source auxiliary equipment, and also pump cooling water CD. It is a device that supplies each of the heat source devices 11, 12, and 13, and is one form of a heat source fluid supply device. Hereinafter, in order to distinguish the three cooling water pumps, they may be referred to as a first cooling water pump 41, a second cooling water pump 42, and a third cooling water pump 43, respectively. Each of the cooling water pumps 41, 42, and 43 is a device that can flow the cooling water CD using input electric power. In this embodiment, each of the cooling water pumps 41, 42, and 43 includes an inverter and is configured to be able to steplessly change the flow rate of the cooling water CD to be discharged.
 第1熱源機11は、第1冷温水往管15を介して往ヘッダ19と接続されていると共に、第1冷温水還管25を介して還ヘッダ29と接続されている。第1冷温水ポンプ21は第1冷温水還管25に設けられている。また、第1熱源機11は、第1冷却水往管35及び第1冷却水還管45を介して第1冷却塔31と接続されている。第1冷却水ポンプ41は第1冷却水往管35に設けられている。第2熱源機12は、第2冷温水往管16を介して往ヘッダ19と接続されていると共に、第2冷温水還管26を介して還ヘッダ29と接続されている。第2冷温水ポンプ22は第2冷温水還管26に設けられている。また、第2熱源機12は、第2冷却水往管36及び第2冷却水還管46を介して第2冷却塔32と接続されている。第2冷却水ポンプ42は第2冷却水往管36に設けられている。第3熱源機13は、第3冷温水往管17を介して往ヘッダ19と接続されていると共に、第3冷温水還管27を介して還ヘッダ29と接続されている。第3冷温水ポンプ23は第3冷温水還管27に設けられている。また、第3熱源機13は、第3冷却水往管37及び第3冷却水還管47を介して第3冷却塔33と接続されている。第3冷却水ポンプ43は第3冷却水往管37に設けられている。 The first heat source device 11 is connected to the outgoing header 19 via the first cold/hot water outgoing pipe 15 , and is also connected to the return header 29 via the first cold/hot water return pipe 25 . The first cold/hot water pump 21 is provided in the first cold/hot water return pipe 25 . Further, the first heat source device 11 is connected to the first cooling tower 31 via a first cooling water outgoing pipe 35 and a first cooling water return pipe 45. The first cooling water pump 41 is provided in the first cooling water outgoing pipe 35 . The second heat source device 12 is connected to the outgoing header 19 via the second cold/hot water outgoing pipe 16 , and is also connected to the return header 29 via the second cold/hot water return pipe 26 . The second cold/hot water pump 22 is provided in the second cold/hot water return pipe 26 . Further, the second heat source device 12 is connected to the second cooling tower 32 via a second cooling water outgoing pipe 36 and a second cooling water return pipe 46. The second cooling water pump 42 is provided in the second cooling water outgoing pipe 36. The third heat source device 13 is connected to the outgoing header 19 via the third cold/hot water outgoing pipe 17 , and is also connected to the return header 29 via the third cold/hot water return pipe 27 . The third cold/hot water pump 23 is provided in the third cold/hot water return pipe 27 . Further, the third heat source device 13 is connected to the third cooling tower 33 via a third cooling water outgoing pipe 37 and a third cooling water return pipe 47. The third cooling water pump 43 is provided in the third cooling water outgoing pipe 37.
 往ヘッダ19は、各熱源機11、12、13で冷却又は加熱された冷温水CHを収集する部材である。往ヘッダ19は、供給管91を介して熱需要設備99に接続されており、往ヘッダ19に収集された冷温水CHを熱需要設備99に導くことができるようになっている。熱需要設備99と還ヘッダ29とは、回収管92を介して接続されている。還ヘッダ29は、熱需要設備99で熱が利用された冷温水CHを、回収管92を介して流入させることができるようになっている。還ヘッダ29に流入した冷温水CHは、各熱源機11、12、13の稼働状況に応じて、各熱源機11、12、13に分配されるようになっている。このように、還ヘッダ29は、冷熱又は温熱が利用された後の冷温水CHを、各熱源機11、12、13に分配する部材である。 The forward header 19 is a member that collects cold and hot water CH that has been cooled or heated by each of the heat source devices 11, 12, and 13. The outgoing header 19 is connected to the heat demand equipment 99 via the supply pipe 91, and is configured to be able to guide the cold and hot water CH collected in the outgoing header 19 to the heat demand equipment 99. The heat demand equipment 99 and the return header 29 are connected via a recovery pipe 92. The return header 29 is configured to allow cold and hot water CH whose heat has been utilized in the heat demand equipment 99 to flow in through the recovery pipe 92 . The cold/hot water CH that has flowed into the return header 29 is distributed to each heat source device 11, 12, 13 according to the operating status of each heat source device 11, 12, 13. In this way, the return header 29 is a member that distributes the cold/hot water CH after the cold or hot heat has been utilized to each of the heat source devices 11, 12, and 13.
 制御装置70は、熱源機システム1の動作を司る装置である。制御装置70は、各熱源機11、12、13と通信線(有線又は無線)で結ばれている。制御装置70は、各熱源機11、12、13から運転情報のデータを受信することができるように構成されている。受信可能な運転データの例として、冷温水CHの出口の温度及び圧力並びに入口の温度及び圧力、冷却水CDの出口の温度及び圧力並びに入口の温度及び圧力、並びに消費電力等の全部又は一部が挙げられる。なお、本実施の形態では、流体の出入圧力差から流量を演算可能であるが、流量を直接検出することとしてもよい。また、制御装置70は、各熱源機11、12、13に制御信号を送信して、各熱源機11、12、13の稼働状況を調節することができるように構成されている。また、制御装置70は、各熱源機11、12、13及び補機動力盤75を介して、熱源補機の動作を制御することができるように構成されている。補機動力盤75は、熱源補機の動作を制御する装置である。補機動力盤75は、各熱源補機と信号線(有線又は無線)で結ばれている。補機動力盤75は、各熱源機11、12、13から受信した制御信号に基づいて、各冷温水ポンプ21、22、23に対し、供給する動力を調節することで、発停及び吐出する冷温水CHの流量を制御することができるように構成されている。また、補機動力盤75は、各熱源機11、12、13から受信した制御信号に基づいて、各冷却塔31、32、33に対し、供給する動力を調節することで、発停を制御することができるように構成されている。また、補機動力盤75は、各熱源機11、12、13から受信した制御信号に基づいて、各冷却水ポンプ41、42、43に対し、供給する動力を調節することで、発停及び吐出する冷却水CDの流量を制御することができるように構成されている。 The control device 70 is a device that controls the operation of the heat source device system 1. The control device 70 is connected to each heat source device 11, 12, 13 by a communication line (wired or wireless). The control device 70 is configured to be able to receive operation information data from each of the heat source devices 11, 12, and 13. Examples of receivable operation data include temperature and pressure at the outlet and temperature and pressure at the inlet of cold and hot water CH, temperature and pressure at the outlet and temperature and pressure at the inlet of cooling water CD, and all or part of power consumption, etc. can be mentioned. Note that in this embodiment, the flow rate can be calculated from the pressure difference between the inflow and outflow of the fluid, but the flow rate may also be directly detected. Further, the control device 70 is configured to be able to adjust the operating status of each heat source device 11, 12, 13 by transmitting a control signal to each heat source device 11, 12, 13. Further, the control device 70 is configured to be able to control the operation of the heat source auxiliary machines via the heat source machines 11, 12, 13 and the auxiliary machine power panel 75. The auxiliary machine power panel 75 is a device that controls the operation of the heat source auxiliary machine. The auxiliary machine power panel 75 is connected to each heat source auxiliary machine by a signal line (wired or wireless). The auxiliary power panel 75 starts, stops, and discharges water by adjusting the power supplied to each cold/hot water pump 21 , 22 , 23 based on the control signal received from each heat source device 11 , 12 , 13 . It is configured to be able to control the flow rate of cold and hot water CH. In addition, the auxiliary power panel 75 controls the start and stop of each cooling tower 31 , 32 , 33 by adjusting the power supplied to each cooling tower 31 , 32 , 33 based on the control signal received from each heat source device 11 , 12 , 13 . It is configured so that it can be In addition, the auxiliary power panel 75 adjusts the power supplied to each of the cooling water pumps 41, 42, and 43 based on the control signals received from each of the heat source devices 11, 12, and 13. It is configured such that the flow rate of the cooling water CD to be discharged can be controlled.
 制御装置70は、さらに、外気温度を検出する外気温度計61から通信線(有線又は無線)を介して温度情報の信号を受信して、外気温度を把握することができるように構成されている。なお、外気温度計61は、各冷却塔31、32、33の周囲の外気の温度を検出するように配置されていることが好ましい。また、制御装置70は、熱需要設備99における需要熱量の情報を通信線(有線又は無線)を介して信号として受け取ることで、熱需要設備99における需要熱量を把握することができるように構成されている。また、制御装置70は、制御モデル80を有している。制御モデル80は、運転状態を出力するために、運転条件を入力する、コンピュータに機械学習処理が施されたモデルである。ここで、運転状態とは、熱源機システム1で制御することが可能な、熱源機器及び熱源補機の運転の状態であり、具体例として、まず、各熱源機11、12、13の発停の状態(換言すれば運転台数)及び処理熱量(換言すれば出力)が挙げられる。また、運転状態の他の例として、各冷温水ポンプ21、22、23における冷温水CHの吐出流量(流量0は停止状態)、各冷却塔31、32、33の発停、各冷却水ポンプ41、42、43における冷却水CDの吐出流量(流量0は停止状態)が挙げられる。他方、運転条件とは、運転状態に影響する条件であり、基本的には熱源機システム1では制御することができない条件である。運転条件として、例えば、熱需要設備99の需要熱量、外気温度、往ヘッダ19から熱需要設備99に向けて流出する冷温水CHの目標温度、熱需要設備99側の圧力損失係数等が挙げられる。また、運転条件として、熱源機システム1の作動の際に消費される資源(例えば、電気、水道、燃料等)の単価、この消費資源の単位消費量当たりの二酸化炭素排出量等が含まれる場合もある。熱源機システム1を構成する機器の動力に用いられる各種消費資源の単価の合計は、単位消費動力当たりのコストに相当する。また、熱源機システム1を構成する機器の動力に用いられる各種消費資源の単位消費量当たりの二酸化炭素排出量の合計は、単位消費動力当たりの二酸化炭素排出量に相当する。 The control device 70 is further configured to receive a temperature information signal via a communication line (wired or wireless) from an outside air thermometer 61 that detects the outside air temperature, so as to be able to grasp the outside air temperature. . In addition, it is preferable that the outside air thermometer 61 is arrange|positioned so that the temperature of the outside air around each cooling tower 31,32,33 may be detected. Further, the control device 70 is configured to be able to grasp the amount of heat demanded in the heat demand equipment 99 by receiving information on the amount of heat demanded in the heat demand equipment 99 as a signal via a communication line (wired or wireless). ing. Further, the control device 70 has a control model 80. The control model 80 is a model that is subjected to machine learning processing on a computer, into which operating conditions are input in order to output operating states. Here, the operating state is the operating state of the heat source equipment and heat source auxiliary equipment that can be controlled by the heat source equipment system 1. As a specific example, first, starting and stopping each heat source equipment 11, 12, 13 (in other words, the number of units in operation) and the amount of heat processed (in other words, the output). In addition, as other examples of the operating state, the discharge flow rate of cold and hot water CH from each cold and hot water pump 21, 22, 23 (flow rate 0 is a stopped state), starting and stopping of each cooling tower 31, 32, 33, and each cooling water pump Examples include the discharge flow rate of the cooling water CD at 41, 42, and 43 (a flow rate of 0 is a stopped state). On the other hand, the operating conditions are conditions that affect the operating state, and are basically conditions that cannot be controlled by the heat source device system 1. The operating conditions include, for example, the amount of heat demanded by the heat demand equipment 99, the outside air temperature, the target temperature of the cold/hot water CH flowing out from the outgoing header 19 toward the heat demand equipment 99, the pressure loss coefficient on the heat demand equipment 99 side, etc. . In addition, when the operating conditions include the unit price of resources (for example, electricity, water, fuel, etc.) consumed during the operation of the heat source equipment system 1, the carbon dioxide emissions per unit consumption of these consumed resources, etc. There is also. The total unit price of various consumption resources used to power the equipment constituting the heat source device system 1 corresponds to the cost per unit consumption power. Further, the total amount of carbon dioxide emissions per unit consumption of various consumption resources used to power the equipment constituting the heat source device system 1 corresponds to the amount of carbon dioxide emissions per unit consumption power.
 なお、運転条件に熱需要設備99側の圧力損失係数を含めることで、次のような利点がある。まず、前提として、熱需要設備99側の圧力損失は、熱需要設備99を構成する空調機器の運転台数に応じて変化する冷温水CHの総流量によって変化するが、これは冷温水CHの総流量の二乗に比例する。本実施の形態では、この比例定数(係数)を「圧力損失係数」とし、これにより、熱需要設備99側の圧力損失を、圧力損失係数に冷温水CHの総流量の二乗を乗じることで求めることができる。そして、求めた熱需要設備99側の圧力損失に基づいて、各冷温水ポンプ21、22、23の動力を算出することができる。このため、運転状態が変わって熱需要設備99側の冷温水CHの流量が変わっても、各冷温水ポンプ21、22、23の動力を正しく推定することができる。制御装置70が制御モデル80を有している理由として、以下の背景がある。 Note that including the pressure loss coefficient on the heat demand equipment 99 side in the operating conditions has the following advantages. First, as a premise, the pressure loss on the heat demand equipment 99 side changes depending on the total flow rate of cold and hot water CH, which changes depending on the number of operating air conditioners that make up the heat demand equipment 99. Proportional to the square of the flow rate. In this embodiment, this proportionality constant (coefficient) is referred to as a "pressure loss coefficient", and the pressure loss on the heat demand equipment 99 side is calculated by multiplying the pressure loss coefficient by the square of the total flow rate of cold and hot water CH. be able to. Then, based on the determined pressure loss on the heat demand equipment 99 side, the motive power of each cold/hot water pump 21, 22, 23 can be calculated. Therefore, even if the operating state changes and the flow rate of cold/hot water CH on the heat demand equipment 99 side changes, the motive power of each cold/hot water pump 21, 22, 23 can be estimated correctly. The reason why the control device 70 has the control model 80 is based on the following background.
 従来のシステム制御の常套手段として、現に熱源機が運転している運転条件に対して様々な運転状態を仮定してシミュレーションを行ない、最適な運転状態を割り出して運転するものがある。しかし、制御できるパラメータが増えるに従い、演算の負荷が大きくなり、あらゆる運転状態を仮定して最適な運転状態を割り出すことはだんだんと難しくなっている。このため、実務的には、可変とするパラメータを絞ったり、様々な仮定を置いて演算量を減らしたり、あるいは演算周期を長くしたりといったことで対応している。このような制限された制御では、真に最適な運転状態で運転することは難しい。そこで、本実施の形態に係る熱源機システム1では、後述する機械学習処理を施した制御モデル80を利用して、極力最適な運転状態とすることとしている。制御モデル80を生成する手順を概観すると、まず教師データを作成し、作成した教師データを用いてコンピュータに機械学習処理を施す、ということになる。 As a common method of conventional system control, there is a method in which simulations are performed assuming various operating conditions for the operating conditions under which the heat source equipment is currently operating, and the optimum operating condition is determined and operated. However, as the number of controllable parameters increases, the computational load increases, making it increasingly difficult to determine the optimal operating state assuming all possible operating states. In practice, this is dealt with by narrowing down the number of variable parameters, reducing the amount of calculation by making various assumptions, or lengthening the calculation cycle. With such limited control, it is difficult to operate under truly optimal operating conditions. Therefore, in the heat source device system 1 according to the present embodiment, a control model 80 subjected to machine learning processing, which will be described later, is used to achieve the optimum operating state as much as possible. An overview of the procedure for generating the control model 80 is to first create training data, and then use the created training data to perform machine learning processing on a computer.
<教師データの作成>
 図2は、教師データを作成する手順を示すフローチャートである。以下の説明において熱源機システム1の構成に言及しているときは、適宜図1を参照することとする。また、各熱源機11、12、13を総称して熱源機器ということがある。また、各冷温水ポンプ21、22、23、各冷却塔31、32、33、及び各冷却水ポンプ41、42、43を総称して熱源補機ということがある。本実施の形態では、教師データを作成するためにシミュレーションを用いることとしている。本実施の形態におけるシミュレーションは、典型的には、熱源機システム1の設置場所とは異なる場所で行われる。本実施の形態におけるシミュレーションは、与えられた運転条件と仮定した運転状態における所定の指標を見積もるために用いられる。ここで、所定の指標は、熱源機システム1のユーザーが熱源機システム1の運転において着目する基準である。所定の指標の例として、熱源機システム1を運転したときの熱源機器及び熱源補機の、消費動力、運転コスト、二酸化炭素排出量、等が挙げられる。なお、熱源機システム1のシミュレーション演算は、一般に再帰計算が必要であり、演算には一定の時間を要する。シミュレーションの結果を直接機器の制御に用いる従来の熱源機システムに搭載される演算装置は、設置スペース、消費電力、ノイズ環境、コスト等の問題から高性能の演算装置は採用しづらく、演算時間が長くなる傾向にある。しかし、図2に示す教師データの作成におけるシミュレーションに用いられる演算装置は、熱源機システム1が構築される現場に設置する必要がないことから高性能の演算装置を採用することができる。また、シミュレーション演算に十分な時間を取れるので、幅広い運転状態を仮定して最適な運転状態を探ることができるという利点もある。
<Creating teaching data>
FIG. 2 is a flowchart showing the procedure for creating teacher data. In the following description, when referring to the configuration of the heat source device system 1, reference will be made to FIG. 1 as appropriate. Further, the heat source devices 11, 12, and 13 may be collectively referred to as heat source devices. Moreover, each cold/hot water pump 21, 22, 23, each cooling tower 31, 32, 33, and each cooling water pump 41, 42, 43 may be collectively referred to as a heat source auxiliary machine. In this embodiment, simulation is used to create teacher data. The simulation in this embodiment is typically performed at a location different from the installation location of the heat source device system 1. The simulation in this embodiment is used to estimate a predetermined index under a given operating condition and an assumed operating state. Here, the predetermined index is a standard that the user of the heat source device system 1 pays attention to when operating the heat source device system 1. Examples of the predetermined index include power consumption, operating cost, carbon dioxide emissions, etc. of the heat source equipment and heat source auxiliary equipment when the heat source equipment system 1 is operated. Note that the simulation calculation of the heat source device system 1 generally requires recursive calculation, and the calculation requires a certain amount of time. The computing devices installed in conventional heat source equipment systems, which use simulation results to directly control equipment, have difficulty adopting high-performance computing devices due to issues such as installation space, power consumption, noise environment, and cost. It tends to be longer. However, since the calculation device used for the simulation in creating the teacher data shown in FIG. 2 does not need to be installed at the site where the heat source device system 1 is constructed, a high-performance calculation device can be employed. Furthermore, since sufficient time is available for simulation calculations, there is an advantage that the optimum operating state can be found by assuming a wide range of operating states.
 図2に示すように、教師データを作成するのに際し、まず、固定条件を用意する(S1)。固定条件とは、熱源機器及び熱源補機それぞれの消費エネルギ特性や圧力損失係数(熱需要設備99側の圧力損失係数とは異なる)等の変動しない要素であり、当該熱源機器及び熱源補機に固有のものである。固定条件は、概ね、各機器の特性資料や流体の諸式(例えば、流量と圧損の関係式など)により用意することができる。固定条件を用意したら、運転条件を仮定する(S2)。運転条件は、適用が想定される範囲において仮定することができる。適用が想定される範囲(想定される運転条件)とは、例えば、現実に起こりそうにない外気温度70℃のような条件は除外されることを意図している。仮定する運転条件の具体例として、図3中の運転条件「1」に示すように、熱需要設備99の需要熱量6000kW、外気温度25℃、吐出される冷温水CHの目標温度7℃、熱需要設備99側の圧力損失係数200kPa/1000LPM、等が挙げられる。加えて、仮定する運転条件の具体例として、電気料金15円/kWh、水道料金150円/m3を含んでもよい。また、図示は省略するが、電力二酸化炭素排出係数や水道二酸化炭素排出係数を含んでもよい。 As shown in FIG. 2, when creating teacher data, first, fixed conditions are prepared (S1). Fixed conditions are elements that do not change, such as the energy consumption characteristics and pressure loss coefficient (different from the pressure loss coefficient on the heat demand equipment 99 side) of each heat source equipment and heat source auxiliary equipment. It is unique. The fixed conditions can generally be prepared based on characteristic data of each device and various formulas for the fluid (for example, a relational formula between flow rate and pressure drop). Once the fixed conditions are prepared, operating conditions are assumed (S2). Operating conditions can be assumed within the range of expected applications. The expected range of application (assumed operating conditions) is intended to exclude, for example, conditions such as an outside temperature of 70° C., which is unlikely to occur in reality. As a specific example of the assumed operating conditions, as shown in operating condition "1" in FIG. Examples include a pressure loss coefficient of 200 kPa/1000 LPM on the demand equipment 99 side. In addition, specific examples of the assumed operating conditions may include electricity charges of 15 yen/kWh and water charges of 150 yen/m3. Further, although not shown, the carbon dioxide emission coefficient for electricity and the carbon dioxide emission coefficient for water supply may be included.
 運転条件を仮定したら、運転状態を仮定する(S3)。運転状態も、適用が想定される範囲において仮定することができる。適用が想定される範囲(想定される運転状態)とは、例えば、熱源機の台数が3台のところ、実現不可能な5台運転のような状態は除外されることを意図している。仮定する運転状態の具体例として、図4中の運転状態「1」に示すように、3台の熱源機11、12、13のすべてを運転し、3台の冷温水ポンプ21、22、23における冷温水CHの流量を100%とすることが挙げられる。運転状態「1」では、加えて、3台の冷却塔31、32、33のすべてを運転し、3台の冷却水ポンプ41、42、43における冷却水CDの流量を100%とすることを仮定している。運転状態を仮定したら、仮定した運転条件及び仮定した運転状態の状況下での所定の指標を、シミュレーションにより算出する(S4)。この所定の指標の算出は、例えば以下の要領で行うことができる。 Once the operating conditions are assumed, the operating state is assumed (S3). Operating conditions can also be assumed to the extent that the application is envisaged. The expected range of application (assumed operating state) is intended to exclude, for example, a situation where the number of heat source devices is three and an unrealizable operation of five heat source devices. As a specific example of the assumed operating state, as shown in operating state "1" in FIG. An example of this is to set the flow rate of cold/hot water CH to 100%. In the operating state "1", in addition, all three cooling towers 31, 32, and 33 are operated, and the flow rate of cooling water CD in the three cooling water pumps 41, 42, and 43 is set to 100%. I'm assuming. After assuming the operating condition, a predetermined index under the assumed operating condition and the assumed operating condition is calculated by simulation (S4). Calculation of this predetermined index can be performed, for example, in the following manner.
 まず、仮定した運転条件での各熱源機11、12、13の運転台数と、各冷温水ポンプ21、22、23の冷温水CHの流量とから、冷温水CHの総流量を求めることができる。そして、冷温水CHの総流量と、仮定した運転条件における冷温水CHの目標温度及び需要熱量から、冷温水CHの戻り温度(熱源機器に入る冷温水CHの温度)を求めることができる。次に、各熱源機11、12、13に対する冷温水CHの出入りの温度差と冷温水CHの流量とから、各熱源機11、12、13の負荷熱量を算出することができる。その後、各熱源機11、12、13の効率(COP)を仮定して、処理熱量を求める。そして、処理熱量、各冷却水ポンプ41、42、43における冷却水CDの流量、及び外気温度から、各熱源機11、12、13に入る冷却水CDの温度が求まる。冷却水CDの入口温度及び冷却水CDの流量、並びに冷温水CHの側の条件から、各熱源機11、12、13の効率が求まる。ここで、各熱源機11、12、13について、算出された効率と先に仮定された効率とが一致するように、反復計算(収束計算)を行う。これにより、各熱源機11、12、13の効率が求まり、それにより各熱源機11、12、13の消費電力、及び補給水量等を求めることができる。 First, the total flow rate of cold and hot water CH can be determined from the number of operating heat source devices 11, 12, and 13 under assumed operating conditions and the flow rate of cold and hot water CH of each cold and hot water pump 21, 22, and 23. . Then, the return temperature of the cold/hot water CH (the temperature of the cold/hot water CH entering the heat source device) can be determined from the total flow rate of the cold/hot water CH, the target temperature of the cold/hot water CH under the assumed operating conditions, and the required heat amount. Next, the load heat amount of each heat source device 11, 12, 13 can be calculated from the temperature difference between the input and output of cold/hot water CH to each heat source device 11, 12, 13 and the flow rate of cold/hot water CH. Then, assuming the efficiency (COP) of each heat source device 11, 12, 13, the amount of heat to be processed is determined. Then, the temperature of the cooling water CD entering each heat source device 11, 12, 13 is determined from the amount of heat to be processed, the flow rate of the cooling water CD in each cooling water pump 41, 42, 43, and the outside air temperature. The efficiency of each heat source device 11, 12, 13 is determined from the inlet temperature of the cooling water CD, the flow rate of the cooling water CD, and the conditions on the cold/hot water CH side. Here, iterative calculations (convergence calculations) are performed for each of the heat source devices 11, 12, and 13 so that the calculated efficiency matches the previously assumed efficiency. Thereby, the efficiency of each heat source device 11, 12, 13 is determined, and thereby the power consumption of each heat source device 11, 12, 13, the amount of supplementary water, etc. can be determined.
 なお、熱源補機の動力に関し、例えば各冷温水ポンプ21、22、23の消費電力は、次のようにして求めることができる。まず、冷温水CHの流量と熱需要設備99の側の圧力損失係数とから熱需要設備99の側の圧力損失が求まり、さらに、固定条件として定義される各熱源機11、12、13の圧力損失データから各熱源機11、12、13の圧力損失が求められる。両方の圧力損失を合算することで各冷温水ポンプ21、22、23の必要ヘッド(圧力)が求まり、これと冷温水CHの流量とから、各冷温水ポンプ21、22、23の消費動力を推定することができる。これと同様に他の熱源補機の消費電力も推定してこれらを合算することで、熱源機システム1全体の消費電力を求めることができる。また、水道消費量については、各熱源機11、12、13における処理熱量を水の蒸発潜熱で除して求められる蒸発水量と、目標とする濃縮倍率とから計算することができる。なお、一般に行われているように冷却水CDの流量に一定の係数(5%程度)を掛けて水道消費量を求めてもよい。このようにして、消費電力や水道消費量等が演算できれば、これに単位数量当たりのコストを掛け合わせて合算すれば運転コストが、二酸化炭素排出係数を掛け合わせて合算すれば二酸化炭素排出量を求めることができる。 Regarding the power of the heat source auxiliary equipment, for example, the power consumption of each cold/hot water pump 21, 22, 23 can be determined as follows. First, the pressure loss on the heat demand equipment 99 side is determined from the flow rate of cold/hot water CH and the pressure loss coefficient on the heat demand equipment 99 side, and then the pressure of each heat source equipment 11, 12, 13 defined as a fixed condition is determined. The pressure loss of each heat source device 11, 12, and 13 is determined from the loss data. By adding up both pressure losses, the required head (pressure) of each cold/hot water pump 21, 22, 23 can be determined, and from this and the flow rate of cold/hot water CH, the power consumption of each cold/hot water pump 21, 22, 23 can be calculated. It can be estimated. Similarly, by estimating the power consumption of other heat source auxiliary machines and adding these together, the power consumption of the entire heat source device system 1 can be determined. Furthermore, the amount of water consumed can be calculated from the amount of evaporated water obtained by dividing the amount of heat processed in each of the heat source devices 11, 12, and 13 by the latent heat of vaporization of water, and the target concentration ratio. Note that, as is generally done, the water consumption amount may be determined by multiplying the flow rate of the cooling water CD by a certain coefficient (about 5%). In this way, if you can calculate power consumption, water consumption, etc., you can calculate the operating cost by multiplying it by the cost per unit quantity and adding it up, and you can calculate the carbon dioxide emissions by multiplying it by the carbon dioxide emission coefficient and adding it up. You can ask for it.
 上述の要領で、仮定した運転条件及び仮定した運転状態における所定の指標を算出したら、当該運転条件での所定の指標を算出した数が充足しているか否かを判断する(S5)。ここで、所定の指標を算出した数が充足しているか、というのは、当該運転条件の下ではどのような運転状態とすべきなのかを複数の所定の指標を比較検討して決定すべきところ、好ましい運転状態を決定するのに足りる所定の指標が存在するかを問うている。これは、すなわち、当該運転条件の下で、運転状態を変えて所定の指標を算出する上述のシミュレーションを複数回行うことを意味している。ここまでの教師データを作成する手順の説明では、この運転条件において1つの運転状態でしか所定の指標を算出していないので、所定の指標を算出した数は充足していないこととなる。当該運転条件での所定の指標を算出した数が充足しているか否かを判断する工程(S5)において、充足していない場合、この運転条件の下で未使用の運転状態を仮定する(S6)。 After calculating the predetermined index under the assumed operating condition and the assumed operating state in the manner described above, it is determined whether the calculated number of predetermined indexes under the operating condition is sufficient (S5). Here, whether the calculated number of predetermined indicators is sufficient is to be determined by comparing and examining multiple predetermined indicators to determine what kind of operating state should be achieved under the relevant operating conditions. However, the question is whether a predetermined index exists that is sufficient to determine a preferable operating state. This means that under the relevant operating conditions, the above-mentioned simulation in which the predetermined index is calculated by changing the operating state is performed multiple times. In the explanation of the procedure for creating teacher data up to this point, the predetermined index has been calculated only in one driving state under this operating condition, so the number of predetermined indexes calculated is not sufficient. In the step (S5) of determining whether the calculated number of predetermined indexes under the operating condition is sufficient, if the number is not satisfied, an unused operating state is assumed under this operating condition (S6 ).
 未使用の運転状態の例として、図4中の運転状態「2」に示すように、各熱源機11、12、13及び第3冷温水ポンプ23の運転状態を変えず、第1冷温水ポンプ21及び第2冷温水ポンプ22における冷温水CHの流量を50%に変えることが挙げられる。加えて、図4中の運転状態「2」に示すように、各冷却塔31、32、33及び第3冷却水ポンプ43の運転状態を変えず、第1冷却水ポンプ41及び第2冷却水ポンプ42における冷却水CDの流量を50%とすることが挙げられる。あるいは、別の未使用の運転状態の例として、図4中の運転状態「3」に示すように、運転状態「1」に対して、第3熱源機13及び第3冷却塔33を停止すると共に、第3冷温水ポンプ23及び第3冷却水ポンプ43を停止(流量0)することが挙げられる。なお、可変速ターボ冷凍機とした第1熱源機11及び第2熱源機12のそれぞれを流れる冷温水CH及び冷却水CDの流量は、両熱源機11、12とも同じとすることが好ましい。その理由は、対称性を考えると両熱源機11、12を異なる条件で運転させることで省エネルギ化を図れる可能性が極めて小さいことなどから、演算負荷を抑えるためである。 As an example of an unused operating state, as shown in operating state "2" in FIG. An example of this is to change the flow rate of cold/hot water CH in 21 and the second cold/hot water pump 22 to 50%. In addition, as shown in the operating state "2" in FIG. One example of this is to set the flow rate of the cooling water CD in the pump 42 to 50%. Alternatively, as another example of an unused operating state, as shown in operating state "3" in FIG. 4, the third heat source device 13 and the third cooling tower 33 are stopped for operating state "1". At the same time, the third cold/hot water pump 23 and the third cooling water pump 43 may be stopped (flow rate is 0). In addition, it is preferable that the flow rates of the cold/hot water CH and the cooling water CD flowing through the first heat source device 11 and the second heat source device 12, which are variable speed centrifugal refrigerators, are the same for both heat source devices 11 and 12, respectively. The reason for this is to reduce the calculation load, since considering the symmetry, it is extremely unlikely that energy can be saved by operating both heat source devices 11 and 12 under different conditions.
 このように、当該運転条件において運転状態を変えていくのに際し、ある運転状態の見落としを回避するために、各運転状態の適用を組み合わせ(総当たり)で行うことが好ましい。このとき、各熱源機11、12、13及び各冷却塔31、32、33は、本実施の形態では、運転又は停止の二者択一のため組み合わせは限られる。他方、各冷温水ポンプ21、22、23の冷温水CHの流量及び各冷却水ポンプ41、42、43の冷却水CDの流量は、無段階で変化させることができるので組み合わせが極めて多くなり得る。この場合、例えば、各流量について、停止時(0%)以外の変化幅を、50%~100%の間で10%刻み又は5%刻み等として組み合わせの数を抑制することができる。ただし、シミュレーションを行う前に、明らかに不適切な運転状態はシミュレーションを行う前、あるいは途中で除外するとよい。例えば、運転中の熱源機器の最大出力を合計しても当該運転条件の需要熱量を満たさなければ、シミュレーションを行わなくてよい。また、需要熱量、冷温水CHの供給温度(熱源機器を出る冷温水CHの温度)、及び冷温水CHの流量から導かれる冷温水CHの戻り温度(熱需要設備99の出口温度)が、仕様の温度を超えてしまう場合も除外できる場合となる。また、冷却水CDの温度が一定以上で冷却水CDの流量の変流量制御が不要な場合等も、除外できる場合となる。 In this way, when changing the operating states under the relevant operating conditions, it is preferable to apply each operating state in combination (brute force) in order to avoid overlooking a certain operating state. At this time, in this embodiment, each of the heat source devices 11, 12, 13 and each cooling tower 31, 32, 33 has a choice of operating or stopping, so the combinations thereof are limited. On the other hand, the flow rate of the cold/hot water CH of each of the cold/hot water pumps 21, 22, 23 and the flow rate of the cooling water CD of each of the cooling water pumps 41, 42, 43 can be changed steplessly, so there may be a large number of combinations. . In this case, for example, for each flow rate, the number of combinations can be suppressed by setting the range of change other than when stopped (0%) between 50% and 100% in 10% increments or 5% increments. However, before performing the simulation, obviously inappropriate driving conditions should be excluded before or during the simulation. For example, if the total maximum output of the heat source devices in operation does not satisfy the heat demand for the operating conditions, the simulation may not be performed. In addition, the demand heat amount, the supply temperature of cold and hot water CH (the temperature of cold and hot water CH leaving the heat source equipment), and the return temperature of cold and hot water CH derived from the flow rate of cold and hot water CH (the exit temperature of the heat demand equipment 99) are based on the specifications. This can also be excluded if the temperature exceeds . In addition, the case where the temperature of the cooling water CD is equal to or higher than a certain level and variable flow rate control of the flow rate of the cooling water CD is unnecessary can also be excluded.
 上述の要領で未使用の運転状態を仮定したら、所定の指標を算出する工程(S4)に戻り、上述の手順に従う。そして、所定の指標が複数算出され、当該運転条件での所定の指標を算出した数が充足しているか否かを判断する工程(S5)において、充足している場合、当該運転条件において所定の指標が条件に適う値となる運転状態を特定する(S7)。ここで、所定の指標が条件に適う値とは、合理的に考えて選択する価値がある値であり、典型的には最適な値である。例えば、所定の指標が運転コストの場合は小さいほど好ましく、二酸化炭素排出量の場合は少ないほど好ましく、省エネ度の場合は高いほど好ましい。最適な所定の指標の値の判断の仕方は、いくつか考えられる。例えば、所定の指標が運転コストの場合、単純に最小のものを選んでもよく、最小のものから1~2%程度の範囲に入る(差異が誤差程度と考えられる)運転状態の中で、熱源機器及び冷却塔の運転台数が少ないなどの別の観点を加味してもよい。あるいは、所定の指標の適切な範囲の中の複数の値に加重平均をかけて、その所定の指標の値での運転状態を採用してもよい。あるいは、所定の指標の適切な範囲の中の複数の値(例えば上位3つ)に対応する運転状態の平均を運転状態として採用してもよい。 Once the unused operating state is assumed in the manner described above, the process returns to the step of calculating a predetermined index (S4) and the procedure described above is followed. Then, a plurality of predetermined indexes are calculated, and in the step (S5) of determining whether or not the number of predetermined indexes calculated under the relevant operating conditions is sufficient, if the number is sufficient, the predetermined number under the relevant operating conditions is determined. An operating state in which the index has a value that meets the conditions is identified (S7). Here, the value for which the predetermined index meets the conditions is a value that is worth selecting rationally and is typically an optimal value. For example, when the predetermined index is the operating cost, the smaller the index is, the more preferable it is, when the predetermined index is the amount of carbon dioxide emissions, the lower the index is, and the higher the energy saving index is. There are several possible ways to determine the optimal value of the predetermined index. For example, if the predetermined index is operating cost, you may simply select the minimum one, and the heat source Other aspects such as a small number of operating equipment and cooling towers may also be considered. Alternatively, a weighted average may be applied to a plurality of values within an appropriate range of a predetermined index, and the driving state at the value of the predetermined index may be adopted. Alternatively, the average of the driving states corresponding to a plurality of values (for example, the top three) within an appropriate range of the predetermined index may be adopted as the driving state.
 所定の指標が条件に適う運転条件と運転状態との組みを特定したら、当該組みの数が必要数を充足しているか否かを判断する(S8)。ここで、当該組みの必要数は、制御モデル80の生成に必要な教師データの数に相当し、モデルの構成によるが、一般に数百組~数千組程度とするとよい。当該組みの数が必要数を充足しているか否かを判断する工程(S8)において、充足していない場合、未使用の運転条件を仮定する(S9)。未使用の運転条件は、これまでに所定の指標が条件に適う運転条件と運転状態との組みの特定に用いられていない運転条件である。本実施の形態では、最終的に数百組~数千組程度の運転条件と運転状態との組みを特定するのに向けて、最終的に数百~数千程度の運転条件を仮定することとなる。 Once a set of operating conditions and operating states that meet the conditions of a predetermined index is identified, it is determined whether the number of sets satisfies the required number (S8). Here, the required number of sets corresponds to the number of teacher data required to generate the control model 80, and is generally about several hundred to several thousand sets, depending on the configuration of the model. In the step of determining whether the number of sets satisfies the required number (S8), if the number is not sufficient, an unused operating condition is assumed (S9). An unused operating condition is an operating condition that has not been used to identify a combination of an operating condition and an operating state for which a predetermined index satisfies the condition. In this embodiment, several hundred to several thousand operating conditions are ultimately assumed in order to ultimately identify several hundred to several thousand pairs of operating conditions and operating conditions. becomes.
 このように比較的多くの運転条件を仮定する際に、すべての運転条件を仮定できればよいが、運転条件の項目が増えるのに従い、運転条件の数は掛け算で増大するため、膨大となる。また、運転条件はアナログ値であるために切り分けるステップにより生成される運転条件の数が決まってしまうため、一度生成した教師データで十分な機械学習ができなかった場合に、再度機械学習させる運転条件を作成するのが面倒である。そこで、本実施の形態では、シミュレーションを行うコンピュータが、運転条件をランダムに決定(乱数で作成)することとしている。すなわち、各運転条件を、変動し得る範囲で乱数により設定する。これを、未使用の運転条件を仮定する工程(S9)を行うたびに繰り返す。このようにすると、運転条件の数としては組み合わせ(総当たり)で特定する場合より少なくなっても、各項目(パラメータ)は満遍なく分布する。このため、運転条件を乱数により設定する場合は、組み合わせ(総当たり)で特定する場合よりデータ(データ作成時間)が少なくても、精度の高い制御モデル80を作成することが可能な教師データを得ることができる。また、教師データを事後的に追加するために新たに運転条件を仮定する際に、必要な数だけ再度乱数でデータを作成すればよい。 When assuming a relatively large number of operating conditions in this way, it is sufficient to be able to assume all operating conditions, but as the number of operating conditions increases, the number of operating conditions increases by multiplication, so the number becomes enormous. In addition, since the operating conditions are analog values, the number of operating conditions to be generated is determined by the separation step, so if sufficient machine learning cannot be performed with the training data once generated, the operating conditions to be machine learned again. It is troublesome to create. Therefore, in this embodiment, the computer that performs the simulation randomly determines the operating conditions (creates them using random numbers). That is, each operating condition is set using random numbers within a variable range. This is repeated every time the step (S9) of assuming unused operating conditions is performed. In this way, each item (parameter) is evenly distributed even though the number of operating conditions is smaller than when specified by combination (round robin). Therefore, when setting operating conditions using random numbers, training data that can create a highly accurate control model 80 even with less data (data creation time) than when specifying by combination (brute force) is used. Obtainable. Furthermore, when new operating conditions are assumed in order to add training data after the fact, data may be created again using random numbers as many times as necessary.
 上述の要領で、未使用の運転条件を仮定したら、運転状態を仮定する工程(S3)に戻り、以降、上述の手順に従う。そして、所定の指標が条件に適う運転条件と運転状態との組みが複数特定され、当該組みの数が必要数を充足しているか否かを判断する工程(S8)において、充足している場合、教師データの作成を終了する。 After assuming an unused operating condition in the manner described above, the process returns to the step of assuming an operating state (S3), and the above-described procedure is followed thereafter. Then, in the step (S8) of determining whether or not a plurality of combinations of operating conditions and operating states for which a predetermined index satisfies the conditions is identified, and the number of the combinations satisfies the required number (S8), if the number of combinations is satisfied; , finish creating the training data.
 このようにして教師データを作成することができるが、他のシステムで利用したデータが存在し、そのデータが利用可能な場合は、例えば以下のようにして、教師データの作成を省力化することができる。その概要は、既存の熱源機システムのために作成済みの教師データと、新たな熱源機システム1のために作成しようとしている教師データとの相違点が、運転条件の範囲の一部の相違である場合に、残りの共通部分を流用することである。以下、具体例を挙げて説明する。 Teacher data can be created in this way, but if there is data used in another system and that data can be used, it is possible to save labor in creating teacher data by doing the following, for example. I can do it. The outline is that the difference between the training data that has been created for the existing heat source equipment system and the training data that is to be created for the new heat source equipment system 1 is that there are some differences in the range of operating conditions. In some cases, the remaining common parts may be reused. A specific example will be described below.
 図5は、一部の既存データを流用して教師データを作成する手順を説明するフローチャートである。この具体例では、新規に作成する教師データ(以下「新規データ」という。)が、熱源機の最大運転台数が3台、需要熱量が200~6000kW、所定の指標が条件に適う運転条件と運転状態との組み(以下「組データ」という。)が9000件であるとする。そして、既存の教師データ(以下「既存データ」という。)は、熱源機の最大運転台数が5台、需要熱量が200~10000kW、組データが9000件であったとする。まず、既存データから、新規データの内容に照らして、需要熱量が適合するものを抽出する(S11)。これにより、既存データから、熱源機の最大運転台数が5台で、需要熱量が200~6000kWのデータが抽出され、この例ではこのデータの数が6000件であったことにする。次に、需要熱量で抽出した既存データを、熱源機の運転台数で振り分ける(S12)。これにより、需要熱量は共に200~6000kWであるが、このうち、熱源機の運転台数が3台以下のものと、熱源機の運転台数が3台超のものとに分けられる。この例では、熱源機の運転台数が3台以下のものが5000件あり、熱源機の運転台数が3台超のものが1000件あったことにする。このうち、熱源機の運転台数が3台超のものは、熱源機の台数が3台である新規データには適合しないので、このままでは新規データとして利用できない。しかし、この例では、これを無条件に除外するのではなく、運転条件は引き継ぎ、運転状態を新規データに適合する値に変えたうえで、シミュレーションを行って組データを作成する(S13)。これにより、既存データを参考にして、熱源機の最大運転台数が3台で、需要熱量が200~6000kWのデータが1000件作成される。次に、既存データから抽出した5000件のデータと、既存データを参考にして作成された1000件のデータとを合計する(S14)。これにより、熱源機の最大運転台数が3台で、需要熱量が200~6000kWの、6000件のデータを得ることができる。この時点で、求める新規データには、3000件が不足している。そこで、熱源機の最大運転台数が3台で、需要熱量が200~6000kWの新たな組データを、新規に3000件作成する(S15)。この新たな3000件のデータを作成する際は、前述のように、運転条件をランダムに設定するとよい。最後に、この新たに作成した3000件のデータを、既存データに基づいて得られた6000件のデータに追加する(S16)。これにより、熱源機の最大運転台数が3台、需要熱量が200~6000kWの、組データが9000件得られる。これを新たな熱源機システム1の制御モデル80に適用するための教師データとして用いればよい。このようにして、新規データの作成負担を軽減することができる。 FIG. 5 is a flowchart illustrating a procedure for creating teacher data by reusing some existing data. In this specific example, the newly created training data (hereinafter referred to as "new data") is based on operating conditions and conditions in which the maximum number of operating heat source units is 3, the heat demand is 200 to 6000 kW, and predetermined indicators meet the conditions. It is assumed that there are 9000 pairs with the state (hereinafter referred to as "set data"). Assume that the existing teacher data (hereinafter referred to as "existing data") has a maximum operating number of heat source devices of 5, a heat demand of 200 to 10,000 kW, and 9,000 data sets. First, from the existing data, those whose heat demand matches the content of the new data are extracted (S11). As a result, from the existing data, data in which the maximum number of operating heat source devices is 5 and the heat demand is 200 to 6000 kW is extracted, and in this example, the number of data is 6000. Next, the existing data extracted based on the heat demand is sorted based on the number of operating heat source devices (S12). As a result, the required amount of heat is 200 to 6000 kW, but these can be divided into those with three or less heat source machines in operation and those with more than three heat source machines in operation. In this example, it is assumed that there are 5000 cases in which the number of operating heat source devices is 3 or less, and 1000 cases in which the number of operating heat source devices is 3 or less. Among these, those in which the number of operating heat source devices is more than three do not match the new data in which the number of heat source devices is three, and therefore cannot be used as new data as is. However, in this example, rather than excluding this condition unconditionally, the operating conditions are inherited, the operating conditions are changed to values that match the new data, and a simulation is performed to create set data (S13). As a result, 1,000 pieces of data are created using existing data as a reference, with a maximum number of operating heat source units of 3 and a heat demand of 200 to 6,000 kW. Next, the 5000 pieces of data extracted from the existing data and the 1000 pieces of data created with reference to the existing data are totaled (S14). As a result, it is possible to obtain data for 6,000 cases where the maximum number of operating heat source devices is 3 and the required heat amount is 200 to 6,000 kW. At this point, there is a shortage of 3,000 new data items. Therefore, 3000 new sets of data are created in which the maximum number of operating heat source devices is 3 and the heat demand is 200 to 6000 kW (S15). When creating these 3000 new pieces of data, it is preferable to randomly set the operating conditions as described above. Finally, the newly created 3000 pieces of data are added to the 6000 pieces of data obtained based on the existing data (S16). As a result, 9000 sets of data are obtained, with the maximum number of operating heat source devices being 3 and the heat demand being 200 to 6000 kW. This may be used as teacher data for applying to the control model 80 of the new heat source device system 1. In this way, the burden of creating new data can be reduced.
 なお、これまで説明した教師データの作成は、汎用的な計算機で、プログラムを作成して自動的に行うことができるのは言うまでもない。 It goes without saying that the training data explained above can be created automatically using a general-purpose computer by creating a program.
<制御モデル(学習済みモデル)の生成>
 教師データを作成したら、その教師データを用いてコンピュータに機械学習処理を施して、制御モデル80を作成する。本実施の形態では、教師データとして多数(数百組~数千組程度)作成した、所定の指標が条件に適う運転条件と運転状態との組みのそれぞれについて、運転条件を入力、運転状態を出力としてコンピュータに機械学習処理を施し、制御モデル80を作成する。制御モデル80は、種類や機械学習の方法について、提唱されている多種多様な方法のうち適切なものを用いることができるが、本実施の形態ではニューラルネットワークを用いたものであるとして説明する。ニューラルネットワークは、一般に、入力層、中間層、出力層のパーセプトロン(演算子)を設け、前段のパーセプトロンの出力に、後段のパーセプトロンが重み係数を掛けて合算し、活性化関数を通して新たな出力とすることで演算が行われる。制御モデル80は、多数の数値入力から多数の数値を導出するモデルになっている。ここで、ニューラルネットワークの出力層は、確率値で表されるのが一般的であるため、実数(小数)として出力されることとなる。すると、出力される運転状態のうち、本来整数であるべき運転台数も、整数ではなく実数(小数)として出力されることとなる。したがって、実際の運転状態を定めるには、四捨五入や切り上げといった整数化の処理が必要になるが、そうすると運転台数が制御モデル80の出力とは異なってしまうことになるため、その状態が最適であるとは言い切れなくなってしまう。そこで、本実施の形態では、制御モデル80を、出力する運転状態のうち運転台数を整数値で出力する第1の制御モデルと、第1の制御モデルが出力した運転台数の整数値を運転条件の1つとして入力する第2の制御モデルとに分けることとしている。
<Generation of control model (trained model)>
Once the teacher data is created, the control model 80 is created by subjecting the computer to machine learning processing using the teacher data. In this embodiment, for each set of operating conditions and operating states that meet the conditions of a predetermined index, which have been created in large numbers (about several hundred to several thousand sets) as training data, the operating conditions are input and the operating states are determined. As an output, machine learning processing is performed on the computer to create a control model 80. The control model 80 can use any appropriate one among a wide variety of proposed methods in terms of type and machine learning method, but in this embodiment, it will be described as one using a neural network. Neural networks generally have perceptrons (operators) in an input layer, a middle layer, and an output layer, and the output of the perceptron in the previous stage is multiplied by a weighting coefficient by the perceptron in the subsequent stage, and the result is a new output through an activation function. The calculation is performed by doing this. The control model 80 is a model that derives a large number of numerical values from a large number of numerical inputs. Here, since the output layer of the neural network is generally expressed as a probability value, it will be output as a real number (decimal number). Then, among the operating states that are output, the number of operating vehicles that should originally be an integer is also output as a real number (decimal) instead of an integer. Therefore, in order to determine the actual operating state, it is necessary to perform integer processing such as rounding or rounding up, but this will result in the number of operating units being different from the output of the control model 80, so this state is optimal. It becomes impossible to say. Therefore, in the present embodiment, the control model 80 is a first control model that outputs the number of operating vehicles as an integer value among the operating states to be output, and an integer value of the number of operating vehicles output by the first control model as an operating condition. The second control model is input as one of the control models.
 図6は第1の制御モデル(以下「第1制御モデル81」という。)の概略構成図である。図7は第2の制御モデル(以下「第2制御モデル82」という。)の概略構成図である。図6に示すように、第1制御モデル81は、入力層と、中間層と、出力層とを備えており、入力層には運転条件が入力され、出力層からは運転状態が出力されるように構成されている。第1制御モデル81は、入力層に入力される運転条件として、図3に例示した各項目(需要熱量、外気温度、冷温水CHの目標温度、など)に加え、電力二酸化炭素排出係数と、水道二酸化炭素排出係数と、を含んでいる。なお、電力二酸化炭素排出係数は、単位消費動力当たりの二酸化炭素排出量であり、水道二酸化炭素排出係数は、単位消費水量当たりの二酸化炭素排出量である。入力層に入力される運転条件に消費資源の単価や単位消費量当たりの二酸化炭素排出量を含めることで、次のような利点がある。前提として、これらは、変動するとしても一般に数か月から数年の単位で変動するもので、数分から長くても数時間で変動する需要熱量や外気温度などとは異なる。そのため、従来のシミュレーションを用いた制御では、これらを固定条件として扱い、変動した場合に変更することが合理的であった。しかし、仮に、本実施の形態においてこれらを固定条件として扱うと、変動した場合に制御モデル80を作り直す(再度機械学習処理を施す)こととなる。そこで、本実施の形態では、これらを運転条件として、変動した場合であっても制御モデル80を作り直さなくて済むようにしている。このことは、近年検討されているような電力の変動価格制が導入された場合や、電力調達の多様化などによりエネルギ原価が日ごと変化するようなユーザーにとっても大きなメリットがある。 FIG. 6 is a schematic configuration diagram of the first control model (hereinafter referred to as "first control model 81"). FIG. 7 is a schematic configuration diagram of the second control model (hereinafter referred to as "second control model 82"). As shown in FIG. 6, the first control model 81 includes an input layer, an intermediate layer, and an output layer. Operating conditions are input to the input layer, and operating conditions are output from the output layer. It is configured as follows. The first control model 81 includes, as the operating conditions input to the input layer, each item illustrated in FIG. Contains the water supply carbon dioxide emission factor. Note that the electric power carbon dioxide emission coefficient is the amount of carbon dioxide emitted per unit power consumption, and the water supply carbon dioxide emission coefficient is the amount of carbon dioxide emitted per unit amount of water consumption. By including the unit price of consumed resources and the amount of carbon dioxide emissions per unit consumption in the operating conditions input to the input layer, there are the following advantages. The premise is that these variables generally fluctuate over a period of several months to several years, and are different from heat demand and outside air temperature, which fluctuate over several minutes to several hours at the most. Therefore, in conventional control using simulation, it is reasonable to treat these as fixed conditions and change them when they change. However, if these are treated as fixed conditions in this embodiment, the control model 80 will have to be recreated (the machine learning process will be performed again) if they change. Therefore, in this embodiment, these operating conditions are used so that the control model 80 does not need to be recreated even if the operating conditions change. This will also be of great benefit to users whose energy costs change on a daily basis due to the introduction of a variable pricing system for electricity, which has been under consideration in recent years, or due to diversification of electricity procurement.
 また、図6に示すように、第1制御モデル81は、出力層に出力される運転状態として、固定速ターボ冷凍機の運転台数及び可変速ターボ冷凍機の運転台数に加え、これら各種冷凍機それぞれの冷温水CHの流量及び冷却水CDの流量を含んでいる。なお、前述のように、固定速ターボ冷凍機は図1中の第3熱源機13が対応し、可変速ターボ冷凍機は第1熱源機11及び第2熱源機12が対応する。したがって、固定速ターボ冷凍機の運転台数は0台又は1台となり、可変速ターボ冷凍機の運転台数は0台又は1台又は2台となり、いずれも整数値となる。また、各冷却塔31、32、33の運転台数は各熱源機11、12、13の運転台数と整合するため、図6では冷却塔の表示を省略している。つまり、各熱源機11、12、13の運転台数と各冷却塔31、32、33の運転台数とは、同じ整数値となる。また、図6に示す出力層の固定速ターボ冷凍機運転冷温水流量は、第3冷温水ポンプ23の流量であり、本実施の形態では、0%又は50~100%のうちのいずれかの値(連続値)となる。同様に、可変速ターボ冷凍機運転冷温水流量は第1冷温水ポンプ21及び第2冷温水ポンプ22の総流量である。また、固定速ターボ冷凍機運転冷却水流量は第3冷却水ポンプ43の流量であり、可変速ターボ冷凍機運転冷却水流量は第1冷却水ポンプ41及び第2冷却水ポンプ42の総流量である。これら各ポンプの流量のレンジは、本実施の形態では、0%又は50~100%のうちのいずれかの値(連続値)である。 In addition, as shown in FIG. 6, the first control model 81 includes the number of operating fixed-speed centrifugal chillers and the number of variable-speed centrifugal chillers in operation, as well as the number of operating units of these various chillers, as the operating states output to the output layer. It includes the flow rate of each cold/hot water CH and the flow rate of cooling water CD. As described above, the third heat source device 13 in FIG. 1 corresponds to the fixed speed centrifugal chiller, and the first heat source device 11 and the second heat source device 12 correspond to the variable speed centrifugal chiller. Therefore, the number of fixed-speed centrifugal chillers in operation is 0 or 1, and the number of variable-speed centrifugal chillers in operation is 0, 1, or 2, all of which are integer values. Further, since the number of operating cooling towers 31, 32, and 33 matches the number of operating heat source devices 11, 12, and 13, the cooling towers are not shown in FIG. In other words, the number of operating heat source devices 11, 12, 13 and the number of operating cooling towers 31, 32, 33 are the same integer value. Further, the fixed-speed centrifugal chiller operating cold/hot water flow rate of the output layer shown in FIG. value (continuous value). Similarly, the variable speed centrifugal chiller operation cold/hot water flow rate is the total flow rate of the first cold/hot water pump 21 and the second cold/hot water pump 22. Further, the fixed speed centrifugal chiller operation cooling water flow rate is the flow rate of the third cooling water pump 43, and the variable speed centrifugal chiller operation cooling water flow rate is the total flow rate of the first cooling water pump 41 and the second cooling water pump 42. be. In this embodiment, the range of the flow rate of each of these pumps is 0% or any value (continuous value) from 50 to 100%.
 ここで、第1制御モデル81の出力層は、上述の趣旨に照らせば、本来、出力を小数値とすることに馴染まない運転台数のみを出力できればよいので、運転台数以外の流量等は、出力層への出力に含まれなくてもよい。しかし、実際には各熱源機の運転台数と冷温水流量(すなわち熱源機ごとの負荷)とは密接な関係があるので、冷温水流量等を出力に加えておいた方が、中間層にこれと関連の深いパーセプトロンが生じ、学習が効率よく進む場合がある。これらは、複数の制御モデルに同じ学習用教師データを与えて学習させ、その学習結果等から最適なモデルを判断すればよい。なお、ここで出力に流量などを加えて学習させた場合、後述するように第2制御モデル82の学習時間を短縮できる場合がある。ニューラルネットワークの場合、モデルの学習とは、教師データの入力データと出力データとが一致するように、中間層のパーセプトロンの重み係数を調整することを意味する。その手順としては、まず教師データを「学習用」と「検証用」とに分離し、学習用のデータを用いて、逆伝播と呼ばれる手法で重み係数を調整し、検証用のデータを用いてその精度を確認し、不十分であれば再度重み係数を調整する、というのが一般的である。なお、学習を繰り返しても必要な精度が得られない場合、前述したように、運転条件をランダムに仮定して教師データを新たに生成し、新たな教師データを用いて追加学習を行うことができる。 Here, in light of the above-mentioned purpose, the output layer of the first control model 81 only needs to be able to output only the number of operating units, which does not fit in with the output being a decimal value, so flow rates, etc. other than the number of operating units are output. It may not be included in the output to the layer. However, in reality, there is a close relationship between the number of operating heat source units and the flow rate of cold and hot water (in other words, the load for each heat source unit), so it is better to add the flow rate of cold and hot water, etc. to the output, so that the middle layer can handle this. In some cases, a perceptron that is closely related to the above occurs, and learning progresses efficiently. For these, the same training teacher data may be given to a plurality of control models to learn them, and the optimal model may be determined from the learning results. Note that if the flow rate or the like is added to the output for learning, the learning time of the second control model 82 may be shortened as described later. In the case of a neural network, model learning means adjusting the weighting coefficients of the perceptron in the intermediate layer so that the input data and output data of the teacher data match. The procedure is to first separate the training data into "learning" and "verification", use the training data to adjust the weighting coefficients using a method called backpropagation, and then use the verification data to adjust the weighting coefficients. Generally, the accuracy is checked, and if it is insufficient, the weighting coefficients are adjusted again. If the required accuracy is not obtained even after repeated learning, as mentioned above, it is possible to generate new training data by randomly assuming driving conditions and perform additional learning using the new training data. can.
 図7に示すように、第2制御モデル82も、入力層と、中間層と、出力層とを備えており、入力層には運転条件が入力され、出力層からは運転状態が出力されるように構成されている。第2制御モデル82は、入力層に入力される運転条件として、第1制御モデル81の入力層に入力される各項目(図6参照)に加え、第1制御モデル81の出力層に出力された各熱源機(及び連動する各冷却塔)の運転台数を含んでいる。この第2制御モデル82の入力層に入力される各熱源機等の運転台数の値は、第1制御モデル81の出力層に出力された各熱源機等の運転台数が小数の場合は、その小数を切り上げた整数値となる。他方、第2制御モデル82の出力層に出力される運転状態は、固定速ターボ冷凍機の運転台数及び可変速ターボ冷凍機の運転台数は含まれておらず、固定速ターボ冷凍機及び可変速ターボ冷凍機それぞれの冷温水CHの流量及び冷却水CDの流量となる。第2制御モデル82の出力層に出力されるこれらの値は、本実施の形態では、第1制御モデル81の出力層にも出力されているが、第1制御モデル81の出力層に出力された対応する値と異なる場合がある。その理由は、上述のように、第2制御モデル82は、入力層に入力される各熱源機等の運転台数の値を整数値に制限しているためである。このため、第2制御モデル82は、各熱源機等の運転台数を実数(小数を含む)で出力した場合に比べて、現実に即した状態でより所定の指標が条件に適う、冷温水CHの流量及び冷却水CDの流量等の運転状態を出力することができることとなる。 As shown in FIG. 7, the second control model 82 also includes an input layer, an intermediate layer, and an output layer, in which operating conditions are input to the input layer, and operating conditions are output from the output layer. It is configured as follows. The second control model 82 includes, as operating conditions input to the input layer, each item input to the input layer of the first control model 81 (see FIG. 6), as well as information output to the output layer of the first control model 81. This includes the number of operating heat source units (and associated cooling towers). The value of the number of operating heat source devices, etc. input to the input layer of the second control model 82 is It becomes an integer value with the decimal number rounded up. On the other hand, the operating state output to the output layer of the second control model 82 does not include the number of fixed-speed centrifugal chillers in operation and the number of variable-speed centrifugal chillers in operation; These are the flow rate of cold/hot water CH and the flow rate of cooling water CD of each centrifugal chiller. These values output to the output layer of the second control model 82 are also output to the output layer of the first control model 81 in this embodiment; may differ from the corresponding value. This is because, as described above, the second control model 82 limits the value of the number of operating heat source devices, etc., input to the input layer, to an integer value. For this reason, the second control model 82 is a cold/hot water CH that more closely matches the conditions of the predetermined index in a realistic state than when the number of operating units of each heat source device, etc. is output as a real number (including decimal numbers). This means that the operating status such as the flow rate of the cooling water CD and the flow rate of the cooling water CD can be output.
 前述のように、第1制御モデル81の出力に第2制御モデル82の出力の内容を含めた場合は、両モデル81、82の中間層を同じ構成としたうえで、第1制御モデル81の中間層の係数を、第2制御モデル82の中間層の係数の初期値として使用するとよい。これは、いわゆる「転移学習」の一種で、第1制御モデル81と第2制御モデル82との差異は入力に運転台数があるか否かだけになるので、中間層は原理的に似通った係数を持つことになる。したがって、上述のように、両モデル81、82の中間層を同じ構成とし、第1制御モデル81の中間層の係数を第2制御モデル82の中間層の係数の初期値として使用することで、第2制御モデル82を生成する際の学習時間を大幅に短縮できる場合がある。なお、第1制御モデル81及び第2制御モデル82は、概念上区別したものであり、物理的には別体に構成されていても渾然一体に構成されていてもよい。 As mentioned above, when the output of the first control model 81 includes the content of the output of the second control model 82, the middle layer of both models 81 and 82 has the same configuration, and the content of the output of the first control model 81 is The coefficients of the intermediate layer may be used as initial values of the coefficients of the intermediate layer of the second control model 82. This is a type of so-called "transfer learning", and the only difference between the first control model 81 and the second control model 82 is whether or not there is the number of operating vehicles in the input, so the middle layer has similar coefficients in principle. will have. Therefore, as described above, by making the intermediate layers of both models 81 and 82 the same configuration and using the coefficients of the intermediate layer of the first control model 81 as the initial values of the coefficients of the intermediate layer of the second control model 82, In some cases, the learning time when generating the second control model 82 can be significantly shortened. Note that the first control model 81 and the second control model 82 are conceptually distinct, and may be physically configured separately or integrally.
 制御モデル80(第1制御モデル81と第2制御モデル82とに分かれている場合を含む)は、最適化したい所定の指標ごとに作成することが好ましい。例えば、運転コストを最小化するモデル、二酸化炭素排出量を最小化するモデル、等をそれぞれ作成するとよい。このようにすると、状況に応じて制御モデル80を切り替えて使用することが可能になり、より適切な熱源機システム1の運転が可能になる。 It is preferable that the control model 80 (including the case where it is divided into a first control model 81 and a second control model 82) is created for each predetermined index that is desired to be optimized. For example, a model that minimizes operating costs, a model that minimizes carbon dioxide emissions, etc. may be created. In this way, the control model 80 can be switched and used depending on the situation, and the heat source system 1 can be operated more appropriately.
 上述のように構成された(生成された)制御モデル80(第1制御モデル81と第2制御モデル82とに分かれている場合を含む)は、熱源機システム1の制御装置70に搭載される。制御モデル80が搭載された制御装置70は、制御モデル80が出力した運転状態となるように、熱源機システム1を構成する熱源機器や熱源補機の動作を制御するように構成されている。以下に、制御装置70の制御を含めた、熱源機システム1の作用を説明する。 The control model 80 configured (generated) as described above (including the case where it is divided into the first control model 81 and the second control model 82) is installed in the control device 70 of the heat source device system 1. . The control device 70 equipped with the control model 80 is configured to control the operations of the heat source devices and heat source auxiliary devices that constitute the heat source device system 1 so as to achieve the operating state outputted by the control model 80. Below, the operation of the heat source device system 1 including the control of the control device 70 will be explained.
<熱源機システムの作用>
 図8は、熱源機システム1の制御装置70の演算手順を示すブロック図である。以下、図1及び図8を主に参照し、図2~図7を適宜参照して、熱源機システム1の作用を説明する。熱源機システム1の運転中は、各熱源機11、12、13のうちの必要なものが稼働し、これに連動して各冷温水ポンプ21、22、23、各冷却塔31、32、33、各冷却水ポンプ41、42、43のうちの必要なものが作動する。差し当たり、状況の複雑化を回避するために、各熱源機11、12、13及びこれらに付随する熱源補機のすべてが作動するものとして説明する。
<Operation of the heat source system>
FIG. 8 is a block diagram showing the calculation procedure of the control device 70 of the heat source device system 1. Hereinafter, the operation of the heat source device system 1 will be described with reference mainly to FIGS. 1 and 8, and with appropriate reference to FIGS. 2 to 7. While the heat source device system 1 is in operation, the necessary heat source devices 11, 12, and 13 are in operation, and in conjunction with this, each of the cold and hot water pumps 21, 22, and 23, and each of the cooling towers 31, 32, and 33 are operated. , the necessary cooling water pumps 41, 42, and 43 are operated. For the time being, in order to avoid complicating the situation, the description will be made assuming that each of the heat source machines 11, 12, 13 and their associated heat source auxiliary machines are all in operation.
 各冷温水ポンプ21、22、23の作動により、還ヘッダ29から各冷温水還管25、26、27を介して冷温水CHが各熱源機11、12、13に流入する。各熱源機11、12、13に流入した冷温水CHは、冷却(冷房時)又は加熱(暖房時)され、典型的には周囲環境温度との差が大きくなる方向に温度が調節される。各熱源機11、12、13で温度が調節された冷温水CHは、各冷温水往管15、16、17を介して往ヘッダ19へ搬送される。往ヘッダ19に流入した冷温水CHは、二次ポンプ(不図示)によって、供給管91を流れて熱需要設備99に供給され、その後回収管92を流れて還ヘッダ29に流入するように、流動する。熱需要設備99に供給された冷温水CHは、熱負荷処理に利用されることで周囲環境温度との差が小さくなる方向に温度が変化する。 By the operation of each cold/hot water pump 21 , 22 , 23 , cold/hot water CH flows from the return header 29 to each heat source device 11 , 12 , 13 via each cold/hot water return pipe 25 , 26 , 27 . The cold and hot water CH flowing into each of the heat source devices 11, 12, and 13 is cooled (during cooling) or heated (during heating), and typically the temperature is adjusted to increase the difference from the ambient environment temperature. The cold and hot water CH whose temperature has been adjusted in each of the heat source devices 11, 12, and 13 is conveyed to the outgoing header 19 via each of the cold and hot water outgoing pipes 15, 16, and 17. The cold and hot water CH that has flowed into the outgoing header 19 flows through the supply pipe 91 and is supplied to the heat demand equipment 99 by a secondary pump (not shown), and then flows through the recovery pipe 92 and flows into the return header 29. Flow. The cold/hot water CH supplied to the heat demand equipment 99 is used for heat load processing, so that the temperature changes in a direction in which the difference from the ambient environment temperature becomes smaller.
 他方、各冷却水ポンプ41、42、43の作動により、各冷却塔31、32、33から各冷却水往管35、36、37を介して冷却水CDが各熱源機11、12、13に流入する。各熱源機11、12、13に流入した冷却水CDは、各熱源機11、12、13内の冷媒と熱交換した後、各冷却水還管45、46、47を介して各冷却塔31、32、33に戻る。熱源機システム1を構成する各機器の動作は、前述のように、制御装置70が、各熱源機11、12、13の発停を制御している。そして、各熱源機11、12、13の動作に基づいて、補機動力盤75が、各冷却塔31、32、33の発停並びに各冷温水ポンプ21、22、23及び各冷却水ポンプ41、42、43の吐出流量を制御している。熱源機システム1がこのように運転している際、制御装置70は、運転状態が適切になるように(典型的には最適になるように)、以下の要領で制御する。 On the other hand, the operation of each cooling water pump 41, 42, 43 causes cooling water CD to flow from each cooling tower 31, 32, 33 to each heat source device 11, 12, 13 via each cooling water outgoing pipe 35, 36, 37. Inflow. The cooling water CD flowing into each heat source device 11, 12, 13 exchanges heat with the refrigerant in each heat source device 11, 12, 13, and then passes through each cooling water return pipe 45, 46, 47 to each cooling tower 31. , 32, 33. Regarding the operation of each device constituting the heat source device system 1, as described above, the control device 70 controls starting and stopping of each of the heat source devices 11, 12, and 13. Based on the operation of each heat source device 11, 12, 13, the auxiliary equipment power panel 75 starts and stops each cooling tower 31, 32, 33, each cold/hot water pump 21, 22, 23, and each cooling water pump 41. , 42 and 43 are controlled. When the heat source device system 1 is operating in this manner, the control device 70 performs control in the following manner so that the operating state is appropriate (typically, optimal).
 制御装置70は、外気温度計61から温度情報を受け取る。また、制御装置70は、各熱源機11、12、13から温度及び圧力の情報を受け取って、熱需要設備99の需要熱量、冷温水CHの流量、及び熱需要設備99の圧力損失を計測する。そして、制御装置70は、熱需要設備99の圧力損失と冷温水CHの流量とから、熱需要設備99の圧力損失係数を算出する。また、制御装置70は、熱需要設備99から冷温水CHの目標温度に関する情報を受け取る。他方、制御装置70には、設定値として、電力単価、水道料金、電力二酸化炭素排出係数、及び水道二酸化炭素排出係数が入力されて保持されている。これらの設定値は、前述のように、一般に、短期間で変化するものではないため、変化したときに修正すれば足りることが多い。制御装置70は、特定したこれらの値を運転条件として制御モデル80に入力する。 The control device 70 receives temperature information from the outside air thermometer 61. Further, the control device 70 receives temperature and pressure information from each heat source device 11, 12, and 13, and measures the amount of heat demanded of the heat demand equipment 99, the flow rate of cold/hot water CH, and the pressure loss of the heat demand equipment 99. . Then, the control device 70 calculates the pressure loss coefficient of the heat demand equipment 99 from the pressure loss of the heat demand equipment 99 and the flow rate of cold/hot water CH. Further, the control device 70 receives information regarding the target temperature of the cold/hot water CH from the heat demand equipment 99. On the other hand, the electric power unit price, water rate, electric power carbon dioxide emission coefficient, and water supply carbon dioxide emission coefficient are input and held in the control device 70 as set values. As described above, these setting values generally do not change in a short period of time, so it is often sufficient to correct them when they change. The control device 70 inputs these specified values into the control model 80 as operating conditions.
 制御モデル80は、運転条件が入力されると、学習済みのアルゴリズムに基づいて処理を行い、適切な運転状態を出力する。一般に、特にニューラルネットワークを用いた数理モデルの学習(逆伝播計算)には、いわゆるGPUのような計算素子など、非常に高い計算能力が要求されるが、学習済みモデルを用いた推論(順伝播計算)では、そこまで高い計算能力は要求されない。したがって、学習済みモデルを用いた推論では、専用の計算素子などを使用する場合であっても、比較的安価で消費電力等も小さな計算装置で十分に演算することができる。これを本実施の形態に照らせば、学習済みのアルゴリズムに基づいて推論を行う制御モデル80は、教師データ作成時にシミュレーションを行うのに比べて計算負荷が小さく、現場への設置にも適している。 When the operating conditions are input, the control model 80 performs processing based on a learned algorithm and outputs an appropriate operating state. In general, learning a mathematical model using a neural network (backpropagation calculation) in particular requires very high computing power, such as a computational element such as a GPU, but inference using a trained model (forward propagation calculation) (Calculation) does not require such high computing power. Therefore, in inference using a trained model, even if a dedicated calculation element or the like is used, sufficient calculations can be performed using a calculation device that is relatively inexpensive and consumes little power. In light of this embodiment, the control model 80 that performs inference based on a learned algorithm has a smaller computational load than a simulation performed when creating teacher data, and is suitable for installation in the field. .
 制御モデル80は、運転条件が入力されると、まず、第1制御モデル81(図6参照)にその運転条件を入力する。運転条件が入力された第1制御モデル81は、学習済みのアルゴリズムに基づいて処理を行い、出力を整数化して、各熱源機11、12、13の運転台数を決定する。なお、このとき、出力の精度を向上させるために、前述のように、冷温水CHの流量及び冷却水CDの流量も併せて出力するとよい。ただし、第1制御モデル81が出力した冷温水CHの流量及び冷却水CDの流量は、熱源機システム1の制御に直接用いられることが想定されたものではない。制御モデル80は、第1制御モデル81の出力を得たら、第2制御モデル82(図7参照)に対し、第1制御モデル81に入力した運転条件と、第1制御モデル81から出力された各熱源機11、12、13の運転台数の整数値と、を入力する。運転台数の整数値及び運転条件が入力された第2制御モデル82は、学習済みのアルゴリズムに基づいて処理を行い、冷温水CHの流量及び冷却水CDの流量を出力する。本実施の形態では、第1制御モデル81において運転台数を整数値で出力しているので、当該整数値の出力をそのまま実際の制御に当て嵌めることができる。また、運転台数の整数値を第2制御モデル82の入力に含めているので、第2制御モデル82の出力の精度を向上させることができる。 When the control model 80 receives the operating conditions, it first inputs the operating conditions into the first control model 81 (see FIG. 6). The first control model 81 to which the operating conditions are input performs processing based on a learned algorithm, converts the output into an integer, and determines the number of operating heat source devices 11, 12, and 13. In addition, at this time, in order to improve the accuracy of the output, it is preferable to output the flow rate of the cold/hot water CH and the flow rate of the cooling water CD as well, as described above. However, the flow rate of cold/hot water CH and the flow rate of cooling water CD output by the first control model 81 are not intended to be used directly for controlling the heat source device system 1 . After obtaining the output of the first control model 81, the control model 80 applies the operating conditions input to the first control model 81 and the operating conditions output from the first control model 81 to the second control model 82 (see FIG. 7). Input the integer value of the number of operating heat source devices 11, 12, and 13. The second control model 82 into which the integer value of the number of operating units and the operating conditions are input performs processing based on a learned algorithm, and outputs the flow rate of cold/hot water CH and the flow rate of cooling water CD. In this embodiment, since the number of operating vehicles is output as an integer value in the first control model 81, the output of the integer value can be directly applied to actual control. Furthermore, since the integer value of the number of operating vehicles is included in the input of the second control model 82, the accuracy of the output of the second control model 82 can be improved.
 制御装置70は、第1制御モデル81で出力された運転台数になるように各熱源機11、12、13の運転を制御する。また、制御装置70は、第2制御モデル82で出力された冷温水CHの流量及び冷却水CDの流量となるように、各冷温水ポンプ21、22、23及び各冷却水ポンプ41、42、43の吐出流量を制御する。制御モデル80の出力にしたがって熱源機システム1を構成する各機器を制御することにより、消費動力、運転コスト、二酸化炭素排出量等の所定の指標のうちユーザーが設定したものが条件に適うように(例えば最小になるように等)運転することができる。このような制御モデル80を用いた演算及びその出力に基づく各機器の制御は、運転状態が急変することを避けるために、例えば台数の変化を段階的に行ったり、流量の指令値を徐々に変化させたりしてもよい。また、制御モデル80における演算及びこの出力に基づく運転台数や流量の調節は、所定の間隔で行うこととするとよい。所定の間隔は、制御モデル80における演算時間(又は演算負荷)と、熱源機システム1の制御の精度とを勘案し、状況に応じて適宜決定することができる。所定の間隔の例として、3分、5分、10分、15分、30分等が挙げられる。ただし、例えば、需要熱量が設定された以上の変化をした場合や、その他の運転条件が大きく変化した場合などは、あらかじめ設定した所定の間隔以外のタイミングで、制御モデル80を用いた演算及びその出力に基づく各機器の制御演算を行ってもよい。 The control device 70 controls the operation of each heat source device 11 , 12 , 13 so that the number of operating units output by the first control model 81 is achieved. Further, the control device 70 controls each cold/hot water pump 21, 22, 23, each cooling water pump 41, 42, The discharge flow rate of 43 is controlled. By controlling each device constituting the heat source device system 1 according to the output of the control model 80, the predetermined indexes set by the user, such as power consumption, operating cost, and carbon dioxide emissions, are set to meet the conditions. (e.g. to a minimum). Control of each device based on calculations using such a control model 80 and its output is performed by, for example, changing the number of units in stages or gradually changing the flow rate command value in order to avoid sudden changes in operating conditions. It may be changed. Further, it is preferable that the calculation in the control model 80 and the adjustment of the number of operating units and the flow rate based on the output thereof be performed at predetermined intervals. The predetermined interval can be determined as appropriate depending on the situation, taking into consideration the calculation time (or calculation load) in the control model 80 and the accuracy of control of the heat source device system 1. Examples of predetermined intervals include 3 minutes, 5 minutes, 10 minutes, 15 minutes, 30 minutes, etc. However, if, for example, the amount of heat demanded changes by more than the preset value or if other operating conditions change significantly, the calculation using the control model 80 may be performed at a timing other than the preset predetermined interval. Control calculations for each device may be performed based on the output.
 なお、制御装置70は、所定の指標の種類に応じた複数の制御モデル80を搭載し、ユーザーの設定や指示により適切な制御モデル80に適宜切り替えることとしてもよい。例えば、制御モデル80を、条件に適う所定の指標として、消費動力が最小のものと、運転コストが最小のものと、二酸化炭素排出量が最小のものと、の複数設け、状況に応じて切り替えることとしてもよい。また、1つの制御モデル80を生成する際の所定の指標は1種類に限定されず、例えば、運転コストが最小のものから5%の範囲の中で二酸化炭素排出量が最小のものの制御モデル80を、制御装置70が有していてもよい。この場合、運転コストが第1の所定の指標(優先度が最も高い指標)に相当し、二酸化炭素排出量が第2の所定の指標(優先度が2番目に高い指標)に相当する。 Note that the control device 70 may be equipped with a plurality of control models 80 according to the type of predetermined index, and may be appropriately switched to an appropriate control model 80 according to user settings and instructions. For example, the control model 80 may be set as a predetermined index that meets the conditions, such as one with the minimum power consumption, one with the minimum operating cost, and one with the minimum carbon dioxide emissions, and the control models 80 may be switched depending on the situation. It may also be a thing. Further, the predetermined index when generating one control model 80 is not limited to one type, and for example, the control model 80 with the lowest carbon dioxide emission within the range of 5% from the lowest operating cost. The control device 70 may have the following. In this case, the operating cost corresponds to the first predetermined index (the index with the highest priority), and the amount of carbon dioxide emissions corresponds to the second predetermined index (the index with the second highest priority).
 また、制御装置70は、熱源機システム1を構成する機器を制御するための運転状態のすべてを制御モデル80の出力に求めることに代えて、一部の運転状態を制御モデル80の出力に基づいて制御することとしてもよい。この場合、残りの運転状態は、制御装置70で行われたシミュレーション結果に基づいて、又は制御装置70にあらかじめ規定されたルールベースにより、制御することとしてもよい。例えば、各熱源機11、12、13の運転台数及び各冷温水ポンプ21、22、23における冷温水CHの流量を制御モデル80の出力に基づいて制御し、各冷却水ポンプ41、42、43における冷却水CDの流量をルールベースにより制御することとしてもよい。 Furthermore, instead of determining all of the operating states for controlling the devices constituting the heat source device system 1 based on the output of the control model 80, the control device 70 determines some of the operating states based on the output of the control model 80. It may also be controlled by In this case, the remaining operating states may be controlled based on the simulation results performed by the control device 70 or based on a rule base predefined in the control device 70. For example, the number of operating heat source devices 11, 12, 13 and the flow rate of cold/hot water CH in each cold/hot water pump 21, 22, 23 are controlled based on the output of the control model 80, and each cooling water pump 41, 42, 43 is The flow rate of the cooling water CD may be controlled based on a rule.
 以上で説明したように、本実施の形態に係る熱源機システム1によれば、制御モデル80の出力に基づいて構成機器を制御しているので、運転条件の変化に応じた適切な運転状態で応答よい運転を行うことができる。また、運転台数を整数値で出力する第1制御モデル81と当該整数値を入力に含める第2制御モデル82とを備えているので、実際の運転に則した適切な運転状態を維持することができる。また、運転条件に熱需要設備99の側の圧力損失係数を含んでいる場合は、熱需要設備99に供給される冷温水CHの流量が変化した場合でも、適切な運転を行うことができる。 As explained above, according to the heat source device system 1 according to the present embodiment, the component devices are controlled based on the output of the control model 80, so that the appropriate operating state is maintained according to changes in operating conditions. It allows for responsive driving. Furthermore, since it includes a first control model 81 that outputs the number of operating vehicles as an integer value and a second control model 82 that inputs the integer value, it is possible to maintain an appropriate operating state in accordance with actual operation. can. Further, when the operating conditions include the pressure loss coefficient on the heat demand equipment 99 side, appropriate operation can be performed even when the flow rate of cold/hot water CH supplied to the heat demand equipment 99 changes.
<その他>
 以上の説明では、熱源機器として、第1熱源機11及び第2熱源機12が可変速ターボ冷凍機であり、第3熱源機13が固定速ターボ冷凍機であるとした。しかしながら、熱源機器は、ターボ冷凍機以外の、吸収冷凍機、冷温水発生機、ヒートポンプ等、用途に応じて種々の熱源機器を用いることができる。また、以上の説明では、第1熱源機11及び第2熱源機12が共に同じ特性を有する同種の機器であるとしたが、異なる特性を有する同種の機器であってもよく、異種の機器であってもよい。また、以上の説明では、熱源機器として3台の熱源機11、12、13を備えることとしたが、熱源機器の合計台数は3台に限らず、用途に応じて3台よりも多くても少なくてもよい。例えば、異種の機器について3台を超えて備えることとしてもよく、同種の機器を複数台(例えば2台又は3台等)ずつ複数種類備えることとしてもよい。
<Others>
In the above description, as heat source devices, the first heat source device 11 and the second heat source device 12 are variable speed centrifugal refrigerators, and the third heat source device 13 is a fixed speed centrifugal refrigerator. However, various heat source devices other than the centrifugal refrigerator, such as an absorption refrigerator, a cold/hot water generator, a heat pump, etc., can be used as the heat source device depending on the purpose. Furthermore, in the above explanation, the first heat source device 11 and the second heat source device 12 are both the same type of equipment with the same characteristics, but they may be the same type of equipment with different characteristics, or they may be different types of equipment. There may be. In addition, in the above explanation, three heat source devices 11, 12, and 13 are provided as heat source devices, but the total number of heat source devices is not limited to three, and can be more than three depending on the purpose. It may be less. For example, more than three devices of different types may be provided, or a plurality of types (for example, two or three devices) of the same type may be provided.
 以上の説明では、各熱源機11、12、13が、流入及び流出する冷温水CHの温度差及び圧力差を検出することができるようになっていることとした。しかしながら、各熱源機11、12、13が温度及び圧力を検出する計器を備える代わりに、近傍の配管に温度及び圧力を検出する計器を設けることとしてもよい。 In the above description, each of the heat source devices 11, 12, and 13 is configured to be able to detect the temperature difference and pressure difference between the inflowing and outflowing cold and hot water CH. However, instead of each heat source device 11, 12, 13 being equipped with a meter for detecting temperature and pressure, a meter for detecting temperature and pressure may be provided in the nearby piping.
 以上の説明では、熱源流体供給装置として冷却塔31、32、33を備え、熱源流体が冷却水CDであるとした。しかしながら、熱源流体供給装置が空冷のヒートポンプチラーであり、熱源流体が空気であってもよい。この場合、空冷のヒートポンプチラーが熱源機器と熱源流体供給装置とを兼ねることとなり、換言すれば熱源機器と熱源流体供給装置とが典型的には物理的に一体に(1つの筐体に収容されて)構成されることとなる。 In the above description, the cooling towers 31, 32, and 33 are provided as the heat source fluid supply device, and the heat source fluid is the cooling water CD. However, the heat source fluid supply device may be an air-cooled heat pump chiller, and the heat source fluid may be air. In this case, the air-cooled heat pump chiller will serve as both the heat source device and the heat source fluid supply device. In other words, the heat source device and the heat source fluid supply device are typically physically integrated (housed in one housing). ) will be configured.
 以上の説明では、制御装置70が補機動力盤75を介して間接的に熱源補機を制御することとしたが、制御装置70が熱源補機を直接制御することとしてもよい。 In the above description, the control device 70 indirectly controls the heat source auxiliary device via the auxiliary device power panel 75, but the control device 70 may directly control the heat source auxiliary device.
 以上の説明では、教師データを作成する際に、仮定した運転条件に対して変化させる運転状態を組み合わせ(総当たり)で行うことが好ましいとしたが、変化させる運転状態をランダムに設定することとしてもよい。しかしながら、前述したように、特定の運転状態の見落としを回避するために、変化させる運転状態を組み合わせ(総当たり)で設定することが好ましい。 In the above explanation, when creating the training data, it is preferable to combine (brute force) the driving states to be changed based on the assumed driving conditions, but it is preferable to set the driving states to be changed at random. Good too. However, as described above, in order to avoid overlooking a specific operating state, it is preferable to set the operating states to be changed in combination (brute force).
 以上の説明では、運転条件を仮定する前に固定条件を用意することとしたが、固定条件として例示列挙した項目を運転条件として扱うこととしてもよい。この場合、図2に示すフローチャート中の固定条件を用意する工程(S1)が省略されることとなる。 In the above explanation, fixed conditions are prepared before assuming operating conditions, but the items listed as examples of fixed conditions may be treated as operating conditions. In this case, the step (S1) of preparing fixed conditions in the flowchart shown in FIG. 2 is omitted.
 以上の説明では、入力層に入力される運転条件に含まれる項目が、需要熱量、外気温度、冷温水CHの目標温度、熱需要設備99側の圧力損失係数、消費資源単価、及び単位二酸化炭素排出量であるとしたが、入力項目は適宜増減してもよい。例えば、油やガス等の燃料を燃焼させて熱源を得る熱源機器(例えば吸収冷凍機)を備える場合は、燃料単価を入力項目に含めることとしてもよい。反対に、熱需要設備99側の圧力損失係数やその他を入力項目から除外してもよい。しかしながら、熱需要設備99側の圧力損失係数を入力項目に含めると、熱需要設備99側の冷温水CHの流量が変わっても、各冷温水ポンプ21、22、23の動力を正しく推定することができるという利点がある。また、運転条件として入力される需要熱量は、これ自身の値に代えて、需要熱量に相関する物理量を運転条件として入力してもよい。需要熱量に相関する物理量として、例えば、冷温水CHの戻り温度(各熱源機11、12、13に流入する冷温水CHの温度)等が挙げられる。また、運転条件として入力される外気温度は、これ自身の値に代えて、外気温度に相関する物理量を運転条件として入力してもよい。外気温度に相関する物理量として、例えば、冷却水CDの入口温度(各熱源機11、12、13に流入する冷却水CDの温度)や、冷却塔31、32、33の下部水槽の温度等が挙げられる。 In the above explanation, the items included in the operating conditions input to the input layer are the amount of heat demanded, the outside air temperature, the target temperature of cold and hot water CH, the pressure loss coefficient on the heat demand equipment 99 side, the unit price of consumed resources, and the unit carbon dioxide. Although it is assumed to be the amount of emissions, the input items may be increased or decreased as appropriate. For example, when a heat source device (for example, an absorption refrigerator) that obtains a heat source by burning fuel such as oil or gas is provided, the fuel unit price may be included in the input items. On the contrary, the pressure loss coefficient and others on the heat demand equipment 99 side may be excluded from the input items. However, if the pressure loss coefficient on the heat demand equipment 99 side is included in the input items, even if the flow rate of cold/hot water CH on the heat demand equipment 99 side changes, the power of each cold/hot water pump 21, 22, 23 cannot be estimated correctly. It has the advantage of being able to Moreover, instead of the required heat amount inputted as the operating condition, a physical quantity correlated to the demanded heat amount may be inputted as the operating condition. As a physical quantity correlated with the amount of heat demanded, for example, the return temperature of the cold/hot water CH (the temperature of the cold/hot water CH flowing into each heat source device 11, 12, 13), etc. can be mentioned. Further, instead of the outside air temperature input as the operating condition, a physical quantity correlated to the outside air temperature may be input as the operating condition. Examples of physical quantities correlated with the outside air temperature include the inlet temperature of the cooling water CD (the temperature of the cooling water CD flowing into each heat source device 11, 12, and 13), the temperature of the lower water tanks of the cooling towers 31, 32, and 33, etc. Can be mentioned.
 以上の説明では、第1制御モデル81が出力した整数値を熱源機システム1の制御に利用するものが、各熱源機11、12、13の運転台数であるとした。しかしながら、各冷温水ポンプ21、22、23及び/又は各冷却水ポンプ41、42、43が台数制御を行うように構成され、これらの運転状態として整数値での出力が求められる場合は、これらの運転状態として第1制御モデル81の出力を利用してもよい。他方、各熱源機11、12、13が出力を無段階で調節可能(例えば、最大出力の50%~100%で運転可能)で容量制御を行うように構成されている場合は、第1制御モデル81を省略して第2制御モデル82の出力を制御に利用することとしてもよい。 In the above description, it is assumed that the integer value output by the first control model 81 is used to control the heat source device system 1 for the number of operating heat source devices 11, 12, and 13. However, if each cold/hot water pump 21, 22, 23 and/or each cooling water pump 41, 42, 43 is configured to control the number of units, and output as an integer value is required as the operating state of these pumps, these The output of the first control model 81 may be used as the operating state. On the other hand, if each of the heat source devices 11, 12, and 13 is configured to perform capacity control with the output adjustable (for example, can be operated at 50% to 100% of the maximum output), the first control The model 81 may be omitted and the output of the second control model 82 may be used for control.
 以上で説明した、教師データを作成する演算装置(コンピュータ)、制御装置70、及び制御モデル80(第1制御モデル81及び第2制御モデル82)のそれぞれのハードウェア構成として、例えば以下のようなコンピュータを用いることができる。 For example, the hardware configuration of each of the arithmetic device (computer) that creates the teacher data, the control device 70, and the control model 80 (first control model 81 and second control model 82) described above is as follows. A computer can be used.
 図9は、例示のコンピュータ100のブロック図である。コンピュータ100は、本開示に記載された、アルゴリズム、方法、機能、処理、及び手順に関連付けられた計算機能を提供するために使用され得る。 FIG. 9 is a block diagram of an exemplary computer 100. Computer 100 may be used to provide computational functionality associated with the algorithms, methods, functions, processes, and procedures described in this disclosure.
 コンピュータ100は、サーバ、デスクトップコンピュータ、組み込み型コンピュータ、ラップトップ/ノートブックコンピュータ、スマートフォン、タブレットコンピュータデバイス、又はこれらの内部にある1つ又は複数のプロセッサ(物理インスタンス、仮想インスタンス、又はこの両方を含む)といった任意の演算装置を包含し得る。コンピュータ100は、ユーザーが入力する情報を受け付けることができる、キーパッド、キーボード、及びタッチスクリーンなどの入力装置を含むことができる。また、コンピュータ100は、コンピュータ100の操作に関連付けられた情報を伝達する出力デバイスを含むことができる。この情報は、デジタルデータ、ビジュアルデータ、オーディオ情報、又はこれらの情報の組み合わせを含むことができる。これらの情報は、グラフィカルユーザインタフェース(GUI)で表示することができる。 Computer 100 may be a server, desktop computer, embedded computer, laptop/notebook computer, smartphone, tablet computer device, or one or more processors therein (including physical instances, virtual instances, or both). ) may include any computing device. Computer 100 can include input devices, such as a keypad, keyboard, and touch screen, that can accept information entered by a user. Computer 100 may also include output devices that convey information associated with the operation of computer 100. This information may include digital data, visual data, audio information, or a combination of these information. This information can be displayed on a graphical user interface (GUI).
 コンピュータ100は、本開示で説明される処理及び/又は手順等を実行するために、クライアント、ネットワークコンポーネント、サーバ、データベース、パーシスタンス、又はコンピュータシステムのコンポーネントとして役割を果たし得る。例示のコンピュータ100は、ネットワーク120に通信可能に結合されている。実施によっては、コンピュータ100の1つ又は複数の構成要素(コンポーネント)は、クラウドコンピューティングベースの環境、ローカル環境、グローバル環境、及び複数の環境の組み合わせ、を含む環境内において動作するように構成することができる。コンピュータ100は、ネットワーク120を介して、例えば別のコンピュータ上で実行されているクライアントアプリケーションからリクエストを受けることができる。コンピュータ100は、ソフトウェアアプリケーションを用いて受信リクエストを処理することによって、受信リクエストに応答できるように構成されていてもよい。 Computer 100 may serve as a client, network component, server, database, persistence, or component of a computer system to perform the processes, procedures, etc. described in this disclosure. Exemplary computer 100 is communicatively coupled to network 120. In some implementations, one or more components of computer 100 are configured to operate within an environment including a cloud computing-based environment, a local environment, a global environment, and a combination of environments. be able to. Computer 100 can receive requests via network 120, for example, from a client application running on another computer. Computer 100 may be configured to respond to incoming requests by processing the incoming requests using software applications.
 コンピュータ100は、典型的には、構成要素として、プロセッサ102と、第1メモリ104と、第2メモリ106と、インターフェース108とを含んでいる。 The computer 100 typically includes a processor 102, a first memory 104, a second memory 106, and an interface 108 as components.
 プロセッサ102は、コンピュータ100における各種の情報を処理する。プロセッサ102は、命令(プログラム)を実行し、データを操作して、本開示において説明された任意のアルゴリズム、方法、機能、処理、及び手順を用いる動作を含むコンピュータ100の動作を実行することができる。プロセッサ102は、単一のプロセッサであってもよく、2つ以上のプロセッサであってもよい。プロセッサ102は、中央処理装置(CPU)、グラフィック処理装置(GPU)、マイクロプロセッサ、コントローラカード、回路基板、又は他の電気回路を含んでいてもよい。 The processor 102 processes various types of information in the computer 100. Processor 102 may execute instructions (programs) and manipulate data to perform operations of computer 100, including operations using any of the algorithms, methods, functions, processes, and procedures described in this disclosure. can. Processor 102 may be a single processor or two or more processors. Processor 102 may include a central processing unit (CPU), graphics processing unit (GPU), microprocessor, controller card, circuit board, or other electrical circuitry.
 第1メモリ104は、コンピュータ100における情報処理に用いられるプログラム及び/又はデータを、一時的に又は永続的に記憶する。第1メモリ104は、本開示に整合する任意のデータを格納することができる。第1メモリ104は、単一のメモリであってもよく、2つ以上のメモリであってもよい。第1メモリ104は、RAMやキャッシュ等の揮発性メモリ、及びROM等の不揮発性メモリを含んでいてもよい。 The first memory 104 temporarily or permanently stores programs and/or data used for information processing in the computer 100. First memory 104 may store any data consistent with this disclosure. The first memory 104 may be a single memory, or may be two or more memories. The first memory 104 may include volatile memory such as RAM and cache, and nonvolatile memory such as ROM.
 第2メモリ106は、典型的にはコンピュータ100で用いられるデータを保持するが、コンピュータ100以外で用いられるデータを保持してもよい。第2メモリ106は、コンピュータ100又は他の機器で実行可能な、オペレーティングシステムを含むプログラムを保持していてもよい。第2メモリ106は、単一のメモリであってもよく、2つ以上のメモリであってもよい。第2メモリ106は、ハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)、及び/又はフラッシュメモリ等を含んでいてもよい。 The second memory 106 typically holds data used by the computer 100, but may also hold data used outside the computer 100. The second memory 106 may hold programs, including an operating system, that are executable on the computer 100 or other equipment. The second memory 106 may be a single memory or two or more memories. The second memory 106 may include a hard disk drive (HDD), a solid state drive (SSD), a flash memory, and the like.
 インターフェース108は、分散環境においてネットワーク120(図示されているか否かにかかわらず)に接続された他のシステムと通信するために、コンピュータ100によって使用される。インターフェース108は、ネットワーク120と通信するように作動可能なソフトウェア又はハードウェアにおいてエンコードされたロジックを含むことができる。インターフェース108は、通信に関連付けられた1つ又は複数の通信プロトコルをサポートするソフトウェアを含むことができる。このように、ネットワーク120又はインターフェースのハードウェアは、コンピュータ100の内外において信号を送受信するように動作可能であり得る。インターフェース108は、他の機器と通信する際、例えば、イーサネット(登録商標)等の有線通信の規格、及び/又は、4G、5G、若しくはWi-Fi(登録商標)等の無線通信の規格を用いることができる。インターフェース108は、単一のインターフェースであってもよく、2以上のインターフェースを有していてもよい。 Interface 108 is used by computer 100 to communicate with other systems connected to network 120 (whether shown or not) in a distributed environment. Interface 108 may include logic encoded in software or hardware operable to communicate with network 120. Interface 108 may include software that supports one or more communication protocols associated with communication. In this manner, network 120 or interface hardware may be operable to send and receive signals in and out of computer 100. When communicating with other devices, the interface 108 uses, for example, a wired communication standard such as Ethernet (registered trademark), and/or a wireless communication standard such as 4G, 5G, or Wi-Fi (registered trademark). be able to. Interface 108 may be a single interface or may have two or more interfaces.
 コンピュータ100の各構成要素は、システムバスを用いて通信することができる。実施の形態によっては、コンピュータ100のいずれか又はすべての構成要素(ハードウェアコンポーネント又はソフトウェアコンポーネントを含む)は、互いに又はインターフェース108(又は両者の組み合わせ)と、システムバス上で通信(インターフェース接続)することができる。 Each component of the computer 100 can communicate using a system bus. In some embodiments, any or all components of computer 100 (including hardware or software components) communicate (interface) with each other or with interface 108 (or a combination of the two) over a system bus. be able to.
 また、コンピュータ100は、電源110を有している。電源110は、典型的には、商用電源又はその他の電源からの電力を取り込む電源プラグを含んでいる。電源110は、交換可能又は交換不可能なバッテリを含んでいてもよく、バッテリは商用電源又はその他の電源からの電力を受けて充電できるものであってもよい。 Additionally, the computer 100 has a power supply 110. Power source 110 typically includes a power plug that receives power from a utility or other power source. Power source 110 may include a replaceable or non-replaceable battery, and the battery may be rechargeable by receiving power from a utility or other power source.
 コンピュータ100では、プロセッサ102が、第1メモリ104及び/又は第2メモリ106に格納されているプログラムを読み出し、演算を実行することで、目的に応じた処理や手順を実行する。コンピュータ100が、教師データを作成する演算装置に用いられる場合、プロセッサ102が、第1メモリ104及び/又は第2メモリ106に格納されているプログラム及び/又はデータを読み出して、制御モデル80(第1制御モデル81及び第2制御モデル82)構築のための教師データを作成する。コンピュータ100が、制御装置70に用いられる場合、プロセッサ102が、第1メモリ104及び/又は第2メモリ106に格納されているプログラム及び/又はデータを読み出して、制御装置70による熱源機システム1の操作の指示(制御)が行われる。コンピュータ100が制御モデル80(第1制御モデル81及び第2制御モデル82)に用いられる場合、プロセッサ102が、第1メモリ104及び/又は第2メモリ106に格納されているプログラム及び/又はデータを読み出して、熱源機システム1の適切な運転状態を出力する。 In the computer 100, the processor 102 reads programs stored in the first memory 104 and/or the second memory 106 and executes calculations to execute processes and procedures according to the purpose. When the computer 100 is used as an arithmetic device that creates teacher data, the processor 102 reads out programs and/or data stored in the first memory 104 and/or the second memory 106 and creates the control model 80 (the 1 control model 81 and second control model 82)). When the computer 100 is used as the control device 70, the processor 102 reads out programs and/or data stored in the first memory 104 and/or the second memory 106, and controls the heat source device system 1 by the control device 70. Operation instructions (control) are given. When the computer 100 is used for the control models 80 (the first control model 81 and the second control model 82), the processor 102 executes programs and/or data stored in the first memory 104 and/or the second memory 106. It reads out and outputs the appropriate operating state of the heat source device system 1.
 以上のコンピュータ100の説明において、第1メモリ104及び又は第2メモリ106に記憶されているとした、コンピュータ100における情報処理に用いられるプログラム及び/又はデータは、非一時的なコンピュータ読取可能媒体に記憶されていてもよい。非一時的なコンピュータ読取可能媒体は、コンピュータにより実施される方法を実行するコンピュータにより読取可能な命令及び/又は利用されるデータを格納する。コンピュータ読取可能媒体は、光磁気ディスク及び光学メモリデバイス、並びに、デジタルビデオディスク(DVD)、CD-ROM、DVD+/-R、DVD-RAM、DVD-ROM、HD-DVD、及びBLURAY(登録商標)などを含むことができる。コンピュータ読取可能な媒体は、また、テープ、カートリッジ、カセット、及びリムーバブルディスクなどの磁気デバイスを含むことができる。各コンピュータプログラムは、コンピュータ100を含む情報処理装置が実行するために、又は情報処理装置の動作を制御するために、有形の非一時的なコンピュータ読取可能媒体上にエンコードされたコンピュータプログラム命令の1つ又は複数のモジュールを含むことができる。また、プログラム及び/又はデータは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 In the above description of the computer 100, the programs and/or data used for information processing in the computer 100, which are stored in the first memory 104 and/or the second memory 106, are stored in a non-transitory computer-readable medium. It may be stored. The non-transitory computer-readable medium stores computer-readable instructions and/or data utilized to perform a computer-implemented method. Computer-readable media include magneto-optical disks and optical memory devices, as well as digital video discs (DVD), CD-ROM, DVD+/-R, DVD-RAM, DVD-ROM, HD-DVD, and BLURAY®. etc. can be included. Computer readable media can also include magnetic devices such as tapes, cartridges, cassettes, and removable disks. Each computer program is a set of computer program instructions encoded on a tangible, non-transitory computer-readable medium for execution by, or to control the operation of, an information processing device, including computer 100. It can include one or more modules. Furthermore, the program and/or data may be downloaded from an external device via a network.
 本明細書中で引用する刊行物、特許出願及び特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ限度で、ここで参照して組み込む。 All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference in their entirety. To the same extent, they are incorporated herein by reference.
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞及び同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数及び複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」及び「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限らない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例又は例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、請求項に記載されていない要素を、本発明の実施に不可欠であるものとして示すものとは解釈されないものとする。 The use of nouns and similar referents used in connection with the description of the invention (particularly in connection with the following claims) shall be used herein unless otherwise indicated or clearly contradicted by the context. , shall be construed as extending both in the singular and in the plural. The words "comprising," "having," "including," and "including" are to be interpreted as open-ended terms (ie, meaning "including, but not limited to"), unless otherwise specified. The recitation of numerical ranges herein is intended solely to serve as shorthand for individually referring to each value falling within the range, unless otherwise indicated herein. and each value is incorporated herein as if individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or clearly contradicted by context. Any examples or exemplary language (e.g., "etc.") used herein, unless specifically stated otherwise, are intended merely to better explain the invention and are intended to place no limitations on the scope of the invention. isn't it. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読めば、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを予期しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。したがって本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の修正及び均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組合せも本発明に包含される。 Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Modifications of these preferred embodiments will be apparent to those skilled in the art upon reading the above description. The inventors anticipate that those skilled in the art will apply such modifications as appropriate, and the inventors contemplate that the invention may be practiced otherwise than as specifically described herein. . Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Furthermore, any combination of the above-described elements in all variations is encompassed by the present invention, unless otherwise indicated herein or clearly contradicted by context.

Claims (16)

  1.  熱需要設備に供給する熱媒体を冷却又は加熱する熱源機器と、
     前記熱源機器の運転に付随して稼働する熱源補機と、
     前記熱源機器及び前記熱源補機の運転状態を調節する制御装置であって、学習済みの制御モデルを有する制御装置と、を備え、
     前記熱源補機は、前記熱源機器を通過する前記熱媒体を流動させる熱媒体ポンプと、前記熱源機器において前記熱媒体と直接又は間接的に熱交換を行う熱源流体を前記熱源機器に供給する熱源流体供給装置と、を含み、
     前記運転状態は、前記熱源機器の稼働状況、前記熱媒体ポンプが吐出する前記熱媒体の流量、及び前記熱源流体供給装置が供給する前記熱源流体の流量、のうちの少なくとも1つを含み、
     前記制御モデルは、前記運転状態に影響を及ぼす運転条件が入力された際に、所定の指標が条件に適う値となる前記運転状態を出力するように、教師データを用いた機械学習処理が施されており、
     前記運転条件は、前記熱需要設備の需要熱量又はこれに相関する物理量、及び外気温度又はこれに相関する物理量、のうちの少なくとも1つを含み、
     前記所定の指標は、前記熱源機器及び前記熱源補機の消費動力、前記熱源機器及び前記熱源補機の運転コスト、並びに前記熱源機器及び前記熱源補機の二酸化炭素排出量、のうちの少なくとも1つを含み、
     前記制御装置は、前記制御モデルが出力した運転状態となるように、前記熱源機器及び前記熱源補機を制御する、
     熱源機システム。
    A heat source device that cools or heats a heat medium supplied to heat demand equipment;
    a heat source auxiliary machine that operates in conjunction with the operation of the heat source equipment;
    A control device that adjusts the operating state of the heat source equipment and the heat source auxiliary equipment, the control device having a learned control model,
    The heat source auxiliary equipment includes a heat medium pump that flows the heat medium passing through the heat source device, and a heat source that supplies the heat source fluid to the heat source device, which directly or indirectly exchanges heat with the heat medium in the heat source device. a fluid supply device;
    The operating state includes at least one of the operating status of the heat source device, the flow rate of the heat medium discharged by the heat medium pump, and the flow rate of the heat source fluid supplied by the heat source fluid supply device,
    The control model is subjected to machine learning processing using training data so that when operating conditions that affect the operating condition are input, the operating condition is outputted in which a predetermined index has a value that satisfies the condition. has been
    The operating conditions include at least one of the heat demand of the heat demand equipment or a physical quantity correlated thereto, and the outside temperature or a physical quantity correlated thereto,
    The predetermined index is at least one of the power consumption of the heat source equipment and the heat source auxiliary equipment, the operating cost of the heat source equipment and the heat source auxiliary equipment, and the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment. including one
    The control device controls the heat source equipment and the heat source auxiliary equipment so that they are in the operating state output by the control model.
    Heat source machine system.
  2.  前記所定の指標が、前記熱源機器及び前記熱源補機の消費動力、前記熱源機器及び前記熱源補機の運転コスト、並びに前記熱源機器及び前記熱源補機の二酸化炭素排出量、のうちの複数を含み、
     前記制御モデルは、複数の前記所定の指標のうちの第1の所定の指標が条件に適う値となる複数の前記運転状態を選定し、選定した複数の前記運転状態の中から前記第1の所定の指標とは別の第2の所定の指標が条件に適う値となる前記運転状態を出力するように構成されている、
     請求項1に記載の熱源機システム。
    The predetermined index may include a plurality of power consumption of the heat source equipment and the heat source auxiliary equipment, operating costs of the heat source equipment and the heat source auxiliary equipment, and carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment. including,
    The control model selects a plurality of operating states in which a first predetermined index among the plurality of predetermined indicators satisfies a condition, and selects the first predetermined index from among the plurality of selected operating states. configured to output the operating state in which a second predetermined index different from the predetermined index has a value that satisfies the condition;
    The heat source device system according to claim 1.
  3.  前記熱源機器、前記熱媒体ポンプ、及び前記熱源流体供給装置の少なくとも1つは複数台で構成されており、
     前記運転状態は、前記熱源機器、前記熱媒体ポンプ、及び前記熱源流体供給装置のうちの複数台で構成されるものの運転台数を含み、
     前記制御モデルは、出力する前記運転状態のうち前記運転台数を整数値で出力する第1の制御モデルと、前記第1の制御モデルが出力した前記運転台数の整数値を前記運転条件の1つとして入力する第2の制御モデルと、を含む、
     請求項1又は請求項2に記載の熱源機システム。
    At least one of the heat source device, the heat medium pump, and the heat source fluid supply device is composed of a plurality of units,
    The operating state includes the number of operating units of a plurality of the heat source equipment, the heat medium pump, and the heat source fluid supply device,
    The control model includes a first control model that outputs the number of operating vehicles as an integer value among the operating states, and an integer value of the number of operating vehicles output by the first control model as one of the operating conditions. a second control model input as;
    The heat source device system according to claim 1 or claim 2.
  4.  前記制御装置は、前記熱源機器の処理熱量、前記熱媒体ポンプが吐出する前記熱媒体の流量、及び前記熱源流体供給装置が供給する前記熱源流体の流量、のうち、一部の前記運転状態に前記制御モデルの出力を用い、残りの前記運転状態をシミュレーション又はルールベースによって決定する、
     請求項1乃至請求項3のいずれか1項に記載の熱源機システム。
    The control device is configured to control a part of the operating state of the amount of heat processed by the heat source device, the flow rate of the heat medium discharged by the heat medium pump, and the flow rate of the heat source fluid supplied by the heat source fluid supply device. using the output of the control model to determine the remaining operating state by simulation or rule-based;
    The heat source device system according to any one of claims 1 to 3.
  5.  前記運転条件は、前記熱需要設備の圧力損失係数を含む、
     請求項1乃至請求項4のいずれか1項に記載の熱源機システム。
    The operating conditions include a pressure loss coefficient of the heat demand equipment,
    The heat source device system according to any one of claims 1 to 4.
  6.  前記運転条件は、前記熱源機器及び前記熱源補機の単位消費動力当たりのコスト、並びに前記熱源機器及び前記熱源補機の単位消費動力当たりの二酸化炭素排出量、のうちの少なくとも1つを含む、
     請求項1乃至請求項5のいずれか1項に記載の熱源機システム。
    The operating conditions include at least one of the cost per unit power consumption of the heat source equipment and the heat source auxiliary equipment, and the amount of carbon dioxide emissions per unit power consumption of the heat source equipment and the heat source auxiliary equipment.
    The heat source device system according to any one of claims 1 to 5.
  7.  前記制御モデルは、前記所定の指標を、前記熱源機器及び前記熱源補機の消費動力、前記熱源機器及び前記熱源補機の運転コスト、並びに前記熱源機器及び前記熱源補機の二酸化炭素排出量、のうちの1つ又は複数とした制御モデルを複数有し、
     前記制御装置は、複数の前記制御モデルのうち、ユーザーが求める前記所定の指標に応じて適切な前記制御モデルを利用する、
    請求項1乃至請求項6のいずれか1項に記載の熱源機システム。
    The control model sets the predetermined index to the power consumption of the heat source equipment and the heat source auxiliary equipment, the operating cost of the heat source equipment and the heat source auxiliary equipment, and the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment, having a plurality of control models with one or more of the following;
    The control device utilizes an appropriate control model among the plurality of control models according to the predetermined index desired by the user.
    The heat source device system according to any one of claims 1 to 6.
  8.  熱需要設備に供給する熱媒体を冷却又は加熱する熱源機器と、前記熱源機器の運転に付随して稼働する熱源補機と、を備える熱源機システムの制御に用いられる学習済みモデルを生成する方法であって、
     想定される運転条件の下で、前記熱源機システムの想定される運転状態のときの所定の指標を、シミュレーションにより、前記運転状態を変えながら複数求めたうえで、前記所定の指標が条件に適うときの前記運転状態を当該運転条件との関係として規定し、これを複数の運転条件について行うことで、前記所定の指標が条件に適うときの前記運転状態と当該運転条件との関係の組みを複数得ることで教師データを生成する工程と、
     前記教師データを用いて機械学習処理を施すことにより、前記運転条件を入力、前記運転状態を出力、とする学習済みモデルを生成する工程と、を備え、
     前記熱源補機は、前記熱源機器を通過する前記熱媒体を流動させる熱媒体ポンプと、前記熱源機器において前記熱媒体と直接又は間接的に熱交換を行う熱源流体を前記熱源機器に供給する熱源流体供給装置と、を含み、
     前記運転条件は、前記熱需要設備の需要熱量又はこれに相関する物理量、及び外気温度又はこれに相関する物理量、のうちの少なくとも1つを含み、
     前記運転状態は、前記熱源機器の稼働状況、前記熱媒体ポンプが吐出する前記熱媒体の流量、及び前記熱源流体供給装置が供給する前記熱源流体の流量、のうちの少なくとも1つを含み、
     前記所定の指標は、前記熱源機器及び前記熱源補機の消費動力、前記熱源機器及び前記熱源補機の運転コスト、並びに前記熱源機器及び前記熱源補機の二酸化炭素排出量、のうちの少なくとも1つを含む、
     学習済みモデルの生成方法。
    A method for generating a trained model used for controlling a heat source equipment system comprising a heat source device that cools or heats a heat medium supplied to heat demand equipment, and a heat source auxiliary machine that operates in conjunction with the operation of the heat source equipment. And,
    Under assumed operating conditions, a plurality of predetermined indices for the assumed operating state of the heat source device system are determined by simulation while changing the operating state, and the predetermined index satisfies the conditions. By defining the operating state at the time as a relationship with the operating condition and performing this for multiple operating conditions, a set of relationships between the operating state and the operating condition when the predetermined index meets the condition can be determined. A step of generating training data by obtaining multiple pieces of data,
    A step of generating a trained model in which the operating conditions are input and the operating state is output, by performing machine learning processing using the teacher data,
    The heat source auxiliary equipment includes a heat medium pump that flows the heat medium passing through the heat source device, and a heat source that supplies the heat source fluid to the heat source device, which directly or indirectly exchanges heat with the heat medium in the heat source device. a fluid supply device;
    The operating conditions include at least one of the heat demand of the heat demand equipment or a physical quantity correlated thereto, and the outside temperature or a physical quantity correlated thereto,
    The operating state includes at least one of the operating status of the heat source device, the flow rate of the heat medium discharged by the heat medium pump, and the flow rate of the heat source fluid supplied by the heat source fluid supply device,
    The predetermined index is at least one of the power consumption of the heat source equipment and the heat source auxiliary equipment, the operating cost of the heat source equipment and the heat source auxiliary equipment, and the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment. including one
    How to generate a trained model.
  9.  前記熱源機器、前記熱媒体ポンプ、及び前記熱源流体供給装置の少なくとも1つは複数台で構成されており、
     前記運転状態は、前記熱源機器、前記熱媒体ポンプ、及び前記熱源流体供給装置のうちの複数台で構成されるものの運転台数を含み、
     前記学習済みモデルを生成する工程は、出力の前記運転状態に前記運転台数の整数値を含む第1の学習済みモデルを生成する工程と、前記運転台数の整数値を前記運転条件の1つとして入力する第2の学習済みモデルを生成する工程と、を含む、
     請求項8に記載の学習済みモデルの生成方法。
    At least one of the heat source device, the heat medium pump, and the heat source fluid supply device is composed of a plurality of units,
    The operating state includes the number of operating units of a plurality of the heat source equipment, the heat medium pump, and the heat source fluid supply device,
    The step of generating the trained model includes the step of generating a first trained model that includes an integer value of the number of operating vehicles in the operating state of the output, and using the integer value of the number of operating vehicles as one of the operating conditions. generating a second trained model to be input;
    The method for generating a trained model according to claim 8.
  10.  前記第1の学習済みモデル及び前記第2の学習済みモデルがニューラルネットワークを用いていると共に、前記第1の学習済みモデル及び前記第2の学習済みモデルが共通の中間層を有し、
     前記第1の学習済みモデルの出力となる前記運転状態の項目が、前記第2の学習済みモデルの出力となる前記運転状態の項目を含み、
     前記学習済みモデルを生成する工程は、最初に第1の学習モデルに機械学習処理を施して前記第1の学習済みモデルを生成し、次に第2の学習モデルの前記中間層の重み係数の初期値を前記第1の学習済みモデルの前記中間層の重み係数に設定したものに対して機械学習処理を施して前記第2の学習済みモデルを生成する、
     請求項9に記載の学習済みモデルの生成方法。
    The first trained model and the second trained model use a neural network, and the first trained model and the second trained model have a common intermediate layer,
    The driving state item that is the output of the first trained model includes the driving state item that is the output of the second trained model,
    The step of generating the trained model includes first performing machine learning processing on the first learning model to generate the first trained model, and then calculating the weight coefficients of the middle layer of the second learning model. generating the second trained model by performing machine learning processing on the weighting coefficient of the intermediate layer of the first trained model with an initial value set;
    The method for generating a trained model according to claim 9.
  11.  前記教師データを生成する工程は、シミュレーションを行う際の前記運転条件及び前記運転状態の少なくとも一方の決定を、ランダムに行う、
     請求項8乃至請求項10のいずれか1項に記載の学習済みモデルの生成方法。
    The step of generating the teacher data includes randomly determining at least one of the operating conditions and the operating state when performing the simulation.
    The method for generating a trained model according to any one of claims 8 to 10.
  12.  前記教師データを生成する工程は、想定される前記運転条件よりも広い範囲の前記運転条件の下で想定される前記運転状態よりも広い範囲の前記運転状態のときの前記所定の指標のデータが既に存在する場合に、当該既に存在するデータから想定される前記運転条件の下で想定される前記運転状態のときの前記所定の指標を抽出して前記教師データとする、
     請求項8乃至請求項11のいずれか1項に記載の学習済みモデルの生成方法。
    In the step of generating the teacher data, data of the predetermined index under the operating conditions in a wider range than the assumed operating conditions and in the operating conditions in a wider range than the assumed operating conditions is generated. If it already exists, extracting the predetermined index for the operating state assumed under the operating condition assumed from the already existing data and using it as the teacher data;
    The method for generating a trained model according to any one of claims 8 to 11.
  13.  前記教師データを生成する工程は、抽出しなかったデータ中の前記運転条件及び前記運転状態のうちの想定される前記運転条件及び前記運転状態に適合しない項目の値を適合する値に変更したうえでシミュレーションを行って前記教師データを生成する、
     請求項12に記載の学習済みモデルの生成方法。
    The step of generating the teacher data includes changing the values of items that are not compatible with the assumed driving conditions and driving states of the driving conditions and driving states in the data that have not been extracted to values that are compatible with the driving conditions and the driving states. generate the training data by performing a simulation with
    The method for generating a trained model according to claim 12.
  14.  前記運転条件は、前記熱需要設備の圧力損失係数を含み、
     前記教師データを生成する工程は、前記シミュレーションにおいて、前記圧力損失係数と前記熱媒体の流量とに基づいて前記熱需要設備における圧力損失を算出したうえで前記所定の指標を求める、
     請求項8乃至請求項13のいずれか1項に記載の学習済みモデルの生成方法。
    The operating conditions include a pressure loss coefficient of the heat demand equipment,
    The step of generating the teacher data includes calculating the pressure loss in the heat demand equipment based on the pressure loss coefficient and the flow rate of the heat medium in the simulation, and then determining the predetermined index.
    The method for generating a trained model according to any one of claims 8 to 13.
  15.  熱需要設備に供給する熱媒体を冷却又は加熱する熱源機器と、前記熱源機器の運転に付随して稼働する熱源補機と、を備える熱源機システムの制御に用いられるコンピュータに搭載される学習済みモデルであって、
     前記熱源機システムの運転条件が入力される入力層と、
     前記熱源機システムの運転状態が出力される出力層と、
     前記運転条件を入力、所定の指標が条件に適う値となる前記運転状態を出力、とする教師データを用いてパラメータが学習された中間層と、を備え、
     前記熱源補機は、前記熱源機器を通過する前記熱媒体を流動させる熱媒体ポンプと、前記熱源機器において前記熱媒体と直接又は間接的に熱交換を行う熱源流体を前記熱源機器に供給する熱源流体供給装置と、を含み、
     前記運転条件は、前記熱需要設備の需要熱量又はこれに相関する物理量、及び外気温度又はこれに相関する物理量、のうちの少なくとも1つを含み、
     前記運転状態は、前記熱源機器の稼働状況、前記熱媒体ポンプが吐出する前記熱媒体の流量、及び前記熱源流体供給装置が供給する前記熱源流体の流量、のうちの少なくとも1つを含み、
     前記所定の指標は、前記熱源機器及び前記熱源補機の消費動力、前記熱源機器及び前記熱源補機の運転コスト、並びに前記熱源機器及び前記熱源補機の二酸化炭素排出量、のうちの少なくとも1つを含み、
     前記運転条件を前記入力層に入力し、前記中間層にて演算し、前記運転状態を前記出力層から出力するようにコンピュータを機能させる、
     学習済みモデル。
    A trained computer installed in a computer used to control a heat source system that includes a heat source device that cools or heats a heat medium supplied to heat demand equipment, and a heat source auxiliary device that operates in conjunction with the operation of the heat source device. A model,
    an input layer into which operating conditions of the heat source device system are input;
    an output layer in which the operating state of the heat source device system is output;
    an intermediate layer in which parameters are learned using teacher data that inputs the driving conditions and outputs the driving conditions in which a predetermined index has a value that satisfies the conditions;
    The heat source auxiliary equipment includes a heat medium pump that flows the heat medium passing through the heat source device, and a heat source that supplies the heat source fluid to the heat source device, which directly or indirectly exchanges heat with the heat medium in the heat source device. a fluid supply device;
    The operating conditions include at least one of the heat demand of the heat demand equipment or a physical quantity correlated thereto, and the outside temperature or a physical quantity correlated thereto,
    The operating state includes at least one of the operating status of the heat source device, the flow rate of the heat medium discharged by the heat medium pump, and the flow rate of the heat source fluid supplied by the heat source fluid supply device,
    The predetermined index is at least one of the power consumption of the heat source equipment and the heat source auxiliary equipment, the operating cost of the heat source equipment and the heat source auxiliary equipment, and the carbon dioxide emissions of the heat source equipment and the heat source auxiliary equipment. including one
    inputting the operating conditions into the input layer, calculating the operating conditions in the intermediate layer, and causing the computer to function so as to output the operating conditions from the output layer;
    Trained model.
  16.  請求項15に記載の学習済みモデルを有する制御装置と、
     前記熱源機器と、
     前記熱源補機と、を備え、
     前記制御装置は、前記学習済みモデルが出力した運転状態となるように、前記熱源機器及び前記熱源補機を制御する、
     熱源機システム。
    A control device having the trained model according to claim 15;
    The heat source device;
    and the heat source auxiliary machine,
    The control device controls the heat source equipment and the heat source auxiliary equipment so as to be in the operating state outputted by the learned model.
    Heat source machine system.
PCT/JP2023/009456 2022-03-31 2023-03-10 Heat source machine system, pre-trained model generation method, and pre-trained model WO2023189446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022060393A JP2023151008A (en) 2022-03-31 2022-03-31 Heat source machine system, generation method of learned model, and learned model
JP2022-060393 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189446A1 true WO2023189446A1 (en) 2023-10-05

Family

ID=88200808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009456 WO2023189446A1 (en) 2022-03-31 2023-03-10 Heat source machine system, pre-trained model generation method, and pre-trained model

Country Status (2)

Country Link
JP (1) JP2023151008A (en)
WO (1) WO2023189446A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160103475A1 (en) * 2014-10-10 2016-04-14 Lg Electronics Inc. Central control apparatus for controlling facilities, facility control system including the same, and method of controlling facilities
JP2019086999A (en) * 2017-11-07 2019-06-06 株式会社日立製作所 Energy saving element extraction device
JP2020183817A (en) * 2019-04-26 2020-11-12 ダイキン工業株式会社 Device for controlling number of heat source machines, method for controlling number of heat source machines, and program for controlling number of heat source machines
JP6889343B1 (en) * 2021-01-29 2021-06-18 東京瓦斯株式会社 Heat source system
JP2021189552A (en) * 2020-05-26 2021-12-13 東京電力ホールディングス株式会社 Information processing device, information processing method, program, and generation method for learnt model

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160103475A1 (en) * 2014-10-10 2016-04-14 Lg Electronics Inc. Central control apparatus for controlling facilities, facility control system including the same, and method of controlling facilities
JP2019086999A (en) * 2017-11-07 2019-06-06 株式会社日立製作所 Energy saving element extraction device
JP2020183817A (en) * 2019-04-26 2020-11-12 ダイキン工業株式会社 Device for controlling number of heat source machines, method for controlling number of heat source machines, and program for controlling number of heat source machines
JP2021189552A (en) * 2020-05-26 2021-12-13 東京電力ホールディングス株式会社 Information processing device, information processing method, program, and generation method for learnt model
JP6889343B1 (en) * 2021-01-29 2021-06-18 東京瓦斯株式会社 Heat source system

Also Published As

Publication number Publication date
JP2023151008A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
US11973345B2 (en) Building energy system with predictive control of battery and green energy resources
US11243503B2 (en) Building management system with online configurable system identification
US20190032947A1 (en) Central plant control system with linear solver for computation reduction
US11092352B2 (en) Central plant control system with computation reduction based on stranded node analysis
EP3441690A1 (en) Central plant control system with time dependent deferred load
US10824125B2 (en) Central plant control system based on load prediction through mass storage model
CN111536671A (en) Air conditioning system operation control method and device, electronic equipment and storage medium
Shan et al. Development and validation of an effective and robust chiller sequence control strategy using data-driven models
US10884398B2 (en) Systems and methods for prediction model update scheduling for building equipment
Chang Optimal chiller loading by evolution strategy for saving energy
Gao et al. Optimal chiller loading by improved parallel particle swarm optimization algorithm for reducing energy consumption
KR102032811B1 (en) Appratus and method of reducing energy consumption using removed heat capacity of refrigerator
Wang et al. Online chiller loading strategy based on the near-optimal performance map for energy conservation
WO2023189446A1 (en) Heat source machine system, pre-trained model generation method, and pre-trained model
WO2023189447A1 (en) Heat source machine system, trained model generation method, and trained model
JP2006071127A (en) Cold/hot heat source machine output distribution control method for cold/hot water system
CN111854209A (en) Double-temperature-control cooling system, control method thereof and double-temperature-control cooling machine
Qiu et al. A chiller operation strategy based on multiple-objective optimization
Shan et al. Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests
Zhai et al. Operating points as communication bridge between energy evaluation with air temperature and velocity based on extreme learning machine (ELM) models
Teo et al. Energy management controls for chiller system: A review
CN113050450A (en) Parallel variable frequency pump distribution system simulation module compiling method
JP7445718B1 (en) heat source system
JP7440214B2 (en) Air conditioning system control device, control method, control program, and air conditioning system
CN112966707B (en) Automatic identification method and system for universal heating ventilation air conditioning equipment model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779469

Country of ref document: EP

Kind code of ref document: A1