WO2023176670A1 - Voltage sensing circuit, display driver, display device, and comparator - Google Patents

Voltage sensing circuit, display driver, display device, and comparator Download PDF

Info

Publication number
WO2023176670A1
WO2023176670A1 PCT/JP2023/008992 JP2023008992W WO2023176670A1 WO 2023176670 A1 WO2023176670 A1 WO 2023176670A1 JP 2023008992 W JP2023008992 W JP 2023008992W WO 2023176670 A1 WO2023176670 A1 WO 2023176670A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
circuit
differential
transistor
Prior art date
Application number
PCT/JP2023/008992
Other languages
French (fr)
Japanese (ja)
Inventor
弘 土
Original Assignee
ラピステクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ラピステクノロジー株式会社 filed Critical ラピステクノロジー株式会社
Publication of WO2023176670A1 publication Critical patent/WO2023176670A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding

Definitions

  • the present invention relates to a voltage detection circuit, a display driver including the voltage detection circuit, a display device, and a comparator.
  • main display devices active matrix drive type display devices that use liquid crystal or organic EL for the display panel are generally known as main display devices.
  • the display panel has a plurality of data lines each extending in the vertical direction of a two-dimensional screen and a plurality of gate lines each extending in the horizontal direction of the two-dimensional screen on an insulating transparent substrate such as glass or plastic. are arranged in an intersecting manner. Further, a pixel portion connected to the data line and the gate line is formed at each intersection of the plurality of data lines and the plurality of gate lines.
  • Each pixel section is equipped with a TFT (thin film transistor) switch and a pixel electrode, and when the TFT switch is turned on by a gate signal supplied to the gate line, the gradation data signal supplied to the data line is sent to the pixel electrode via the TFT. Supplied.
  • a display panel of a liquid crystal display device has a structure in which a liquid crystal device is sealed between a semiconductor substrate on which a thin film semiconductor circuit is formed and a counter substrate on which a counter electrode is formed over the entire surface.
  • a liquid crystal display device performs gradation display by controlling the transmittance of a backlight provided on the back surface of a display panel using a voltage applied to the liquid crystal.
  • Color display is achieved by assigning three primary colors of RGB to each pixel and synthesizing the three primary colors using a combination of an LED backlight and a color filter or color conversion layer.
  • the display panel of an organic EL display device is composed of a semiconductor substrate on which a thin film semiconductor circuit and an organic EL element are formed in each pixel section, and in each pixel section, a grayscale data signal supplied to a pixel electrode is converted into a current.
  • a pixel circuit for supplying the organic EL element to the organic EL element is formed.
  • gradation display is performed by controlling the emission intensity of the organic EL element by a current supplied to the organic EL element of each pixel portion.
  • Color display is realized by emitting light from an organic EL element in three primary colors of RGB assigned to each pixel, or by color synthesis of the three primary colors by combining the light emission from a monochromatic organic EL element and a color filter.
  • such a display device includes a gate driver that supplies a horizontal scanning signal to the gate line to sequentially turn on the TFT switch for each pixel row, and an analog voltage that corresponds to the brightness level of each pixel.
  • a data driver is included that supplies a grayscale signal having a value to a data line in data pulses for one horizontal scanning period.
  • FIG. 1 is a block diagram schematically showing the configuration of an active matrix display device.
  • the display device shown in FIG. 1 has gate lines GL1 to GLr wired horizontally on an insulating substrate, data lines DL1 to DLm wired vertically, and a matrix at the intersection of each gate line and data line.
  • a display panel 150 including a pixel section 154 arranged in a pixel section 154, a gate driver 110 that drives each gate line, a data driver 120 that drives each data line, and a controller 130 that adjusts the output timing of the gate driver 110 and the data driver 120. Consists of. Note that the description of the TFT switch, pixel electrode, display device, etc. included in the pixel portion 154 is omitted.
  • the gate driver 110 is supplied with the signal group GS from the controller 130, and outputs a scanning signal to be supplied to each gate line based on the signal group GS.
  • the data driver 120 is supplied with a signal group VDS, which is a collection of CLK, control signals, video data signals, etc., from the controller 130, and outputs gradation signals to be supplied to each data line based on the signal group VDS.
  • VDS is a collection of CLK, control signals, video data signals, etc.
  • the gate driver 110 it has become common for the gate driver 110 to have a thin film transistor circuit configuration that is integrally formed with a pixel portion and wiring in the display panel 150.
  • the data driver 120 is usually formed of a silicon LSI, and is mounted on the end of the display panel 150 using COG (Chip On Glass) or COF (Chip On Film).
  • COG Chip On Glass
  • COF Chip On Film
  • in-vehicle display panels are required to have a function that quickly detects abnormalities in the display panel in order to avoid display sticking, that is, freezing of images.
  • a switching circuit between a normal operation mode and a test mode is provided for each output.
  • the switching circuit includes a determination circuit that compares the signal voltage supplied to the data line with a preset reference voltage in the test mode, and determines whether it is normal or abnormal based on the comparison result.
  • the determination circuit shown in FIG. 4 of Patent Document 1 has two reference voltages (1/4 ⁇ VCC, 3/4 ⁇ VCC) with respect to the output power supply voltage VCC, and an output voltage monitor line. It includes two comparators (COMP1, COMP2) that compare the signal voltages supplied via the two comparators.
  • the determination circuit synchronizes the results of comparing the signal voltage and two reference voltages by two comparators with the reference clock CK by the serial I/O 74 as a determination signal indicating whether the signal voltage is normal or abnormal. Output. That is, this determination circuit uses two reference voltages to determine whether the signal voltage is normal or abnormal, depending on which voltage level range the signal voltage is in with respect to the two reference voltages.
  • At least two comparators (COMP1, COMP2) and the input section of the serial I/O 74 process a relatively high signal voltage that can drive a display panel, so Consists of voltage circuit. Further, in accordance with this, a high voltage circuit is also required for a circuit that generates a reference clock that synchronizes the outputs of the two comparators.
  • the high voltage circuit occupies a large area, resulting in an increase in cost due to an increase in chip size.
  • the automotive semiconductor device (including a data driver for display) described in Patent Document 1 requires a large number of abnormality detection circuits that detect whether there are abnormalities in various signals. Therefore, if a large number of detection circuits for detecting an abnormality in a high voltage signal are each composed of a high voltage circuit, the chip size of the semiconductor device will increase, resulting in an increase in cost.
  • a common comparator used in the determination circuit has a problem in that highly accurate voltage detection is difficult due to variations in threshold voltage of transistors forming the circuit.
  • the present invention provides a voltage detection circuit that detects whether the voltage of a detection target has changed from a reference state with high speed response and high accuracy while suppressing the scale of the device, a display driver including the voltage detection circuit, and a display device. , and a comparator.
  • the voltage detection circuit is a voltage detection circuit that detects that the detection voltage of a detection target has changed from a reference state having a voltage value within a predetermined voltage range including a reference voltage, a differential stage that outputs a differential current pair corresponding to a difference between the detection voltage and the first and second voltages; and a coupling circuit that outputs first and second signals from the first and second coupling points based on first to fourth currents generated by performing current mirror conversion on the second voltage, respectively;
  • the coupling circuit has one of a source type (current source type) and a sink type (current sink type) based on the first voltage.
  • the other of the differential current pair is converted into the second and fourth currents that are the other of a source type and a sink type based on the second voltage, and A voltage generated at the first connection point where the second current is coupled is generated as the first signal, and the second current is coupled with the third current and the fourth current.
  • a voltage generated at the first connection point where the second current is coupled is generated as the first signal, and the second current is coupled with the third current and the fourth current.
  • the current is set to be larger than the current.
  • the display driver generates a gradation signal corresponding to the brightness level of each pixel based on a video data signal and applies it to each of the first to kth (k is an integer of 2 or more) data lines of the display panel.
  • a display driver that supplies first to kth gradation signals, and a display mode for displaying an image on the display panel, and whether or not the gradation signals supplied to the first to kth data lines are normal.
  • a setting section configured to set a voltage value of a gray scale signal corresponding to a predetermined brightness level as a reference voltage; a selection unit that selects one of the grayscale signals and obtains the voltage value of the selected one of the grayscale signals as a detection voltage; and a reference in which the detection voltage has a voltage value within a predetermined voltage range that includes the reference voltage.
  • a voltage detection circuit that detects whether the voltage has changed from a state, and the voltage detection circuit includes a differential stage that outputs a differential current pair corresponding to a difference between the reference voltage and the detection voltage; first to fourth circuits having first and second voltages and first and second coupling points, and generating current mirror transforms of the differential current pair with respect to the first and second voltages, respectively; a coupling circuit that outputs first and second signals from the first and second coupling points based on the current of the current, and a coupling circuit that outputs first and second signals from the first and second coupling points; a determination circuit that outputs a determination signal indicating the determination result, and the coupling circuit connects one of the differential current pairs to a source type (current source) based on the first voltage converting the first and third currents into one of a type) and a sink type (current sink type), and converting the other of the differential current pair into the other of a source type and a sink type based on the second voltage.
  • a source type current source
  • the second and fourth currents into the second and fourth currents, and generating a voltage generated at the first coupling point where the first current and the second current are coupled as the first signal; , a voltage generated at the second coupling point where the third current and the fourth current are coupled is generated as the second signal;
  • the current is set to be larger than the second current, and the fourth current is set to be larger than the third current.
  • a display device includes a display panel having first to k-th (k is an integer of 2 or more) data lines, each of which has a plurality of pixel portions formed therein, and a display panel that has a display panel having first to k-th (k is an integer of 2 or more) data lines, each of which has a plurality of pixel portions formed therein; a display driver that generates gradation signals corresponding to levels and supplies the first to k-th gradation signals to each of the first to k-th (k is an integer of 2 or more) data lines of the display panel; , the display driver has a display mode for displaying an image on the display panel, and a detection mode for detecting whether or not the gradation signals supplied to the first to k-th data lines are normal.
  • a setting unit configured to set a voltage value of a grayscale signal corresponding to a predetermined luminance level as a reference voltage; and a setting unit configured to select one of the first to kth grayscale signals in the detection mode.
  • a selection unit that acquires the voltage value of the selected grayscale signal as a detection voltage; and a selection unit that controls the selection unit to periodically select one of the first to kth grayscale signals one by one.
  • a control unit and a voltage detection circuit that detects that the detection voltage has changed from a reference state having a voltage value within a predetermined voltage range that includes the reference voltage, and the voltage detection circuit includes and a differential stage that outputs a differential current pair corresponding to the difference between the detection voltage and the detection voltage, and a differential stage that outputs a differential current pair corresponding to the difference between the first and second voltages and the first and second coupling points, and a coupling circuit that outputs first and second signals from the first and second coupling points based on first to fourth currents generated by performing current mirror conversion on the first and second voltages, respectively; , a determination circuit that determines whether or not the detected voltage has fluctuated from the reference state based on the first and second signals and outputs a determination signal indicating the determination result, and the coupling circuit includes: , converting one of the differential current pair into the first and third currents of one of a source type (current source type) and sink type (current sink type) based on the first voltage; converting the other of the
  • the voltage generated at the first coupling point where the third current and the fourth current are coupled is generated as the first signal, and the voltage produced at the second coupling point where the third current and the fourth current are coupled is generated as the first signal. generated as the second signal, and in the coupling circuit, the first current is larger than the second current and the fourth current is larger than the third current in the reference state. It is set.
  • a comparator is a comparator that receives an input voltage and a reference voltage and outputs a comparison result indicating whether the input voltage is greater than the reference voltage, It has a differential stage that outputs a differential current pair corresponding to the difference, a first voltage and a second voltage, and an output terminal, and current mirrors the differential current pair with respect to the first and second voltages, respectively.
  • a circuit unit that outputs the comparison result signal from the output terminal based on the first and second currents that are converted and generated;
  • the first current is one of a source type (current source type) and a sink type (current sink type) based on the voltage of A voltage generated at the output terminal where the first current and the second current are combined is generated as the comparison result signal.
  • a differential current pair corresponding to the difference between a high voltage detection voltage to be detected and a reference voltage is generated, and this differential current pair is converted into a source current and a sink current based on a low voltage, respectively. Then, both currents are combined at the output end, and based on the voltage generated at the output end, it is determined whether the detection voltage of the high voltage to be detected has changed from the reference state based on the reference voltage.
  • FIG. 1 is a block diagram schematically showing the configuration of an active matrix display device.
  • FIG. 2 is a circuit diagram showing the configuration of a voltage detection circuit 50 according to a first embodiment.
  • 5 is a diagram showing an aspect of a detection result by a voltage detection circuit 50.
  • FIG. 3 is a circuit diagram showing an example of an internal configuration of a differential stage 10.
  • FIG. 3 is a circuit diagram showing another example of the internal configuration of the differential stage 10.
  • FIG. 3 is a circuit diagram showing the configuration of a coupling circuit 30A as another example of the coupling circuit 30.
  • FIG. 3 is a circuit diagram showing the configuration of a coupling circuit 30B as another example of the coupling circuit 30.
  • FIG. 5 is a circuit diagram showing a configuration of a voltage detection circuit 50_1 including a coupling circuit 30C as another example of the voltage detection circuit 50.
  • FIG. It is a figure which shows the aspect of the 1st detection result (O1, O2, JD1) by voltage detection circuit 50_1. It is a figure which shows the aspect of the 2nd detection result (O3, O4, JD2) by voltage detection circuit 50_1.
  • FIG. 2 is a block diagram showing the configuration of a display device 200 according to a second embodiment of the present invention. 2 is a block diagram showing the internal configuration of a data driver 120_1 included in the display device 200.
  • FIG. FIG. 7 is a circuit diagram showing the configuration of a comparator 51 according to a third embodiment of the present invention.
  • FIG. 2A is a circuit diagram showing an example of the configuration of the voltage detection circuit 50 according to the first embodiment of the present invention.
  • the voltage detection circuit 50 is a voltage detection circuit that detects whether or not the detection voltage has changed from a preset reference state of the detection voltage to be detected by comparing it with a reference voltage. It is a circuit.
  • the voltage detection circuit 50 includes a differential stage 10, a coupling circuit 30, and a determination circuit 40.
  • the differential stage 10 outputs a differential current pair (Is1, Is2) corresponding to the difference between the reference voltage (Vref) and the high voltage detection voltage (Vdet) to be detected.
  • the coupling circuit 30 converts the differential current pair (Is1, Is2) into a first system current pair (I1, I2) and a second system current pair (I3, I4).
  • currents I1 and I3 are source type currents, that is, current source type currents, based on the logic power supply voltage VDD
  • currents I2 and I4 are sink type currents, that is, current sinking type currents, based on the ground voltage VSS. It is.
  • the coupling circuit 30 couples the source type and sink type current pairs of the first system current pair (I1, I2) and the second system current pair (I3, I4), and connects each connection point (n5, n6) outputs low voltage first and second logic signals O1 and O2.
  • the first current (I1) of the source type in the current pair (I1, I2) of the first system is set to be larger than the second current (I2) of the sink type. It is configured.
  • the fourth current (I4) of the sink type in the current pair (I3, I4) of the second system is made larger than the third current (I3) of the source type in the reference state. It is configured.
  • the determination circuit 40 determines whether the detection voltage (Vdet) is in a reference state (a predetermined voltage including the reference voltage Vref) based on the first and second logic signals O1 and O2 output from the coupling circuit 30. (within the range). That is, as shown in FIG. 2B, the determination circuit 40 is normal when the first and second logic signals O1 and O2 have different logical values (the detection voltage Vdet is the reference state), and abnormal when they have the same logical value. (The detected voltage Vdet deviates from the reference state).
  • a reference state a predetermined voltage including the reference voltage Vref
  • the determination circuit 40 receives the 2-bit logic signals O1 and O2 and converts them into a 1-bit logic signal JD indicating normality (one of H or L) or abnormality (the other of H or L). Note that since it is possible to determine normality or abnormality even with the 2-bit logic signals O1 and O2, the voltage detection circuit of the present invention may have a configuration that does not include the determination circuit 40.
  • the differential stage 10 when a high voltage signal is to be detected, the differential stage 10 is formed of a high voltage element corresponding to a high voltage range (AVSS to AVDD), and the coupling circuit 30 and the determination circuit Reference numeral 40 is formed of a low voltage element corresponding to a low voltage range (VSS to VDD) based on a logic power supply.
  • the voltage detection circuit 50 detects whether the detected voltage Vdet is maintained at a reference state in which the voltage value is included within a predetermined voltage range that includes the reference voltage Vref (normal) or not (abnormal). That is, when the reference state is defined as when the detection voltage Vdet is substantially the same as the reference voltage Vref, a state in which the detection voltage Vdet deviates from the reference voltage Vref by a predetermined value or more is detected as abnormal.
  • the reference state is when the reference voltage Vref and the detection voltage Vdet are equal. Further, in the embodiments of the present invention, the configuration of a voltage detection circuit that performs a detection operation on a high voltage signal higher than the logic power supply voltage will be described.
  • the differential stage 10 has an AVDD power supply terminal receiving a high potential analog power supply voltage AVDD and an AVSS power supply terminal receiving an analog ground voltage AVSS.
  • This is a high voltage circuit made up of voltage elements.
  • the coupling circuit 30 is a low-voltage circuit composed of a low-voltage voltage element that operates between a VDD power supply terminal receiving a low-potential logic power supply voltage VDD and a VSS power supply terminal receiving a logic ground voltage VSS.
  • the differential stage 10 is composed of, for example, an operational amplifier, receives a reference voltage Vref for a high voltage signal and a detection voltage Vdet to be detected, and generates a differential signal according to the difference voltage between the reference voltage Vref and the detection voltage Vdet. Generate output currents Is1 and Is2. Differential stage 10 supplies differential output current Is1 to coupling circuit 30 via node n1, and supplies differential output current Is2 to coupling circuit 30 via node n2.
  • the coupling circuit 30 has N-channel MOS type transistors 21, 22, 33-35 and P-channel MOS type transistors 23-25.
  • the transistor 21 has its drain and gate connected to the node n1, and its source connected to the VSS power supply terminal.
  • the transistor 22 has its own gate connected to the gate of the transistor 21, and its own source connected to the VSS power supply terminal. Further, the transistor 22 has its own drain connected to the drain and gate of the transistor 23. The source of transistor 23 is connected to the VDD power supply terminal.
  • the transistors 24 and 25 have their respective sources connected to the VDD power supply terminal, and their respective gates connected to the gate of the transistor 23 via the node n3.
  • the transistor 33 has its drain and gate connected to the node n2, and its source connected to the VSS power supply terminal.
  • the transistors 34 and 35 have their respective sources connected to the VSS power supply terminal, and their respective gates connected to the gate of the transistor 33 via the node n2.
  • the transistor 34 has its own drain connected to the drain of the transistor 24 via the node n5.
  • the transistor 35 has its own drain connected to the drain of the transistor 24 via the node n5.
  • a signal having the voltage generated at the node n5 is supplied from the above-described node n5 to the determination circuit 40 as the above-described logic signal O1. Furthermore, a signal having the voltage generated at the node n6 is supplied from the above-described node n6 to the determination circuit 40 as the above-described logic signal O2.
  • the differential output current Is1 supplied from the differential stage 10 becomes a folded current with respect to the logic ground voltage VSS by the current mirror (21, 22) composed of N-channel transistors.
  • the folded current is folded back against the logic power supply voltage VDD by current mirrors (23, 24) and (23, 25) composed of P-channel transistors, and the two source type currents I1 and I3 are generated.
  • the differential output current Is2 of the differential stage 10 is folded back to the logic ground voltage VSS by current mirrors (33, 34) and (33, 35) composed of N-channel transistors, and is sent to two sink systems. Type currents I2 and I4 are generated.
  • one of the differential output currents Is1 and Is2 is generated by folding back an odd number of current mirror sections, and the other is generated by folding back an even number of current mirror sections. generated.
  • the source type current I1 and the sink type current I2 are defined as a first system current pair
  • the source type current I3 and sink type current I4 are defined as a second system current pair.
  • the source type current I1 of the current pair of the first system is sent to the node n5, and the sink type current I2 is extracted from the node n5, so that both currents (I1, I2) are combined at the node n5.
  • the logic signal O1 having the voltage generated at the node n5 is output.
  • the source type current I3 of the current pair of the second system is sent to the node n6, and the sink type current I4 is extracted from the node n6, so that both currents (I3, I4) are combined at the node n6.
  • a logic signal O2 having the voltage generated at the node n6 is output.
  • Each of the logic signals O1 and O2 is a source type current obtained by current-mirror-converting one and the other of the differential output currents Is1 and Is2, in which one increases and the other decreases, respectively, with respect to the power supply voltage VDD and the ground voltage VSS. Since it is generated by the combination of the current and the sink type current, the state quickly changes to the logic power supply voltage VDD or logic ground voltage VSS representing the detection result (logical value), resulting in a high-speed response.
  • the current driving capability (current amount) of the transistors 24, 25, 34, and 35 that generate the currents I1 to I4, respectively, is determined when the potential relationship between the reference voltage Vref and the detection voltage Vdet is in the reference state.
  • I1>I2 and I3 ⁇ I4 It is set so that In the reference state, the voltage at the junction of the sink type current and the source type current is pulled towards the one with the larger current drive capability (current amount), and becomes stable at the logic power supply voltage VDD or the logic ground voltage VSS. Furthermore, the current that actually flows is the smaller of the combined sink type and source type currents.
  • the current difference between the currents I1 and I2 and the current difference between the currents I3 and I4 in the reference state are determined by taking into account the tolerance range of the detection voltage Vdet, which is considered to be the reference state, and manufacturing variations in the transistors that constitute the voltage detection circuit. is set.
  • the voltage at the first output terminal (node n5) of the coupling circuit 30 is H: high level (VDD)
  • the voltage at the second output terminal (node n6) becomes L: low level (VSS).
  • dV1 indicates the lower limit width allowable as the amount of deviation toward the low voltage side with respect to the reference voltage Vref
  • dV2 indicates the upper limit width allowable as the amount of deviation toward the high voltage side.
  • the coupling circuit 30 outputs a high level (H) logic signal O1 and a low level (L) logic signal O2, as shown in FIG. 2B.
  • the coupling circuit 30 when the detection voltage Vdet is lower than the allowable lower limit voltage preset with respect to the reference voltage Vref (Vdet ⁇ Vref-dV1), the coupling circuit 30 outputs the low level (L) logic signal O1 and the low level (L) logic signal O1. L) logic signal O2 is output. Further, when the detection voltage Vdet is higher than the allowable upper limit voltage preset with respect to the reference voltage Vref (Vdet>Vref+dV2), the coupling circuit 30 outputs the high level (H) logic signal O1 and the high level (H) logic signal O1. ) outputs the logic signal O2.
  • the determination circuit 40 receives the logic signals O1 and O2 output from the coupling circuit 30, determines whether the detection voltage Vdet has fluctuated from the reference state based on the logic signals O1 and O2, and outputs the determination signal JD. .
  • the determination circuit 40 determines that when the logic signals O1 and O2 are at low level (L) and high level (H), respectively, they are equivalent to the reference state, that is, are normal. Further, when the logic signals O1 and O2 are both at low level (L), the determination circuit 40 detects that the detection voltage Vdet is lower than the reference state and determines that there is an abnormality. Further, when the logic signals O1 and O2 are both at high level (H), the determination circuit 40 detects that the detection voltage Vdet is higher than the reference state and determines that there is an abnormality.
  • the voltage detection circuit 50 includes a control switch that receives a control signal instructing activation and deactivation, and activates (operating state) or deactivates (stops state) itself according to the control signal. It's okay.
  • the control switch include a first switch pair that blocks the differential output currents Is1 and Is2 output from the differential stage 10 from being supplied to the coupling circuit 30 in the off state, and a first switch pair that blocks the coupling circuit 30 from being supplied to the coupling circuit 30 in the on state.
  • a second switch pair is used that fixes the first and second output terminals (nodes n5, n6) of the device to the same logical value as the reference state (the potential of the VDD power supply terminal or the VSS power supply terminal).
  • the first switch pair when the control signal indicates activation, the first switch pair is set to the on state and the second switch pair is set to the off state, and when the control signal indicates deactivation, the first switch pair is set to the on state and the second switch pair is set to the off state.
  • the second switch pair is set to the off state, and the second switch pair is set to the on state.
  • the ratio of the current amounts of the currents I1 to I4 in the reference state can be set, for example, by the channel width ratio of the input side transistor and the output side transistor of the current mirror, which determines the current mirror ratio of the current mirror.
  • the amount of currents I3 and I4 in the reference state is I3 ⁇ I4 becomes.
  • the current amounts of the currents I1 and I2 in the reference state are set, for example, when the detection voltage Vdet is the allowable lower limit voltage (Vref - dV1) set in advance with respect to the reference voltage Vref.
  • the detection voltage Vdet is within the range from the allowable upper limit voltage to the allowable lower limit voltage including the reference voltage Vref, it can be determined as a reference state, and if it is outside the range from the allowable upper limit voltage to the allowable lower limit voltage, it is determined to be an abnormal state. It can be judged. That is, by setting the ratio of the current amounts of the above-described currents I1 to I4 in the reference state, an arbitrary allowable range can be provided for the determination of the reference state of the detection voltage Vdet. As a result, it is possible to realize a voltage detection circuit that has a sufficient margin against manufacturing variations in transistors constituting the voltage detection circuit and characteristic fluctuations due to environmental temperature.
  • the voltage detection circuit 50 generates two current pairs by converting one and the other of the differential output currents Is1 and Is2 of the differential stage 10 into source type and sink type current pairs, respectively. Then, the source type and sink type currents are combined for each system, and two systems of logic signals O1 and O2 are taken out from the connection point.
  • the differential stage 10 When a voltage difference occurs between the reference voltage Vref and the detection voltage Vdet, the differential stage 10 increases the amount of one of the differential output currents Is1 and Is2 and decreases the amount of the other. Therefore, the voltages at the first and second coupling points (nodes n5, n6) of the coupling circuit 30 quickly change to the logic power supply voltage VDD or the logic ground voltage VSS. That is, the logical signals O1 and O2 taken out from the coupling circuit 30 can quickly determine the logic of the detection result.
  • the voltage detection circuit 50 shown in FIG. 2A realizes an analog/digital conversion circuit that converts the state of the detection voltage Vdet with respect to the reference voltage Vref into a 2-bit digital signal (O1, O2).
  • the detection voltage Vdet is within a normal voltage range without using two reference voltages indicating the allowable lower limit voltage and the allowable upper limit voltage, respectively, as shown in FIG. 4 of Patent Document 1. Since it is possible to determine whether or not there is a signal, the circuit configuration can be simplified.
  • the differential stage 10 may be configured with a high voltage (high breakdown voltage) transistor for the detection voltage of high voltage (AVDD to AVSS).
  • the other configurations of the coupling circuit 30 and the determination circuit 40 can be configured with low voltage (low breakdown voltage) transistors that operate at low voltage (VDD to VSS), so the voltage detection circuit can be configured with a small circuit area and This can be achieved with low power consumption.
  • the potential relationship of the power supply voltage is AVDD>VDD>VSS ⁇ AVSS...
  • An example of the configuration is shown.
  • the conductivity types of the transistors in the coupling circuit 30 in FIG. 2A may be exchanged.
  • FIG. 3 is a circuit diagram showing a specific example of the differential stage 10 shown in FIG. 2A. Note that the coupling circuit 30 and the determination circuit 40 are the same as those shown in FIG. 2A, and their explanation will be omitted.
  • the differential stage 10 includes a P-channel differential pair (11, 12) that differentially inputs the reference voltage Vref and the detection voltage Vdet, and supplies current to the tail of the differential pair. It is composed of a current source transistor 13.
  • the P-channel type differential pair (11, 12) is a P-channel type differential pair whose gate is supplied with the reference voltage Vref and whose drain is connected to the input end (node n1) of the current mirror (21, 22). and a P-channel transistor 12 whose gate is supplied with the detection voltage Vdet and whose drain is connected to the input terminal (node n2) of the current mirrors (33, 34) and (33, 35). .
  • Differential output currents Is1 and Is2 are output from each drain of transistors 11 and 12, respectively.
  • the sources of transistors 11 and 12 are commonly connected and form the tail of a P-channel differential pair (11, 12).
  • the current source transistor 13 is composed of a P-channel transistor whose gate is supplied with a bias voltage BIASP, whose source is connected to the AVDD power supply terminal, and whose drain is connected to the tail of the P-channel differential pair (11, 12). Ru.
  • the threshold voltage of the P-channel differential pair (11, 12) from the analog power supply voltage AVDD is
  • clamp circuit or clamp element that maintains the voltage of each node n1 and n2 connecting between the differential stage 10 and the coupling circuit 30 within the low voltage range [VDD to VSS] based on the logic power supply voltage VDD is used as a differential It may be provided between the P-channel type differential pair (11, 12) of the stage 10 and the transistors 21 and 33 of the coupling circuit 30.
  • FIG. 4 is a circuit diagram showing another specific example of the differential stage 10 shown in FIG. 2A. Note that the coupling circuit 30 and the determination circuit 40 are the same as those shown in FIG. 2A, and their explanation will be omitted.
  • the differential stage 10 includes an N-channel differential pair (11a, 12a) that differentially inputs a reference voltage Vref and a detection voltage Vdet, and a current that supplies current to the tail of the differential pair. It is composed of a source transistor 13a, a P-channel type current mirror (14, 15), and a P-channel type current mirror (16, 17).
  • the N-channel type differential pair (11a, 12a) is an N-channel type differential pair whose gate is supplied with the reference voltage Vref and whose drain is connected to the input end (node n7) of the current mirror (14, 15). and an N-channel transistor 12a whose gate is supplied with the detection voltage Vdet and whose drain is connected to the input end (node n8) of the current mirror (16, 17).
  • the current mirror (14, 15) includes P-channel transistors 14 and 15 whose gates and sources are connected to each other.
  • the drain and gate of transistor 14 are connected to node n7, and the source is connected to the AVDD power supply terminal.
  • the drain of the transistor 15 is connected to the node n1, and the source is connected to the AVDD power supply terminal.
  • the current mirror (16, 17) includes P-channel transistors 16 and 17 whose gates and sources are connected to each other.
  • the drain and gate of transistor 16 are connected to node n8, and the source is connected to the AVDD power supply terminal.
  • the drain of the transistor 17 is connected to the node n2, and the source is connected to the AVDD power supply terminal.
  • the differential output current Is1 is output from the drain of the transistor 11a, and is supplied to the node n1 via the P-channel type current mirror (14, 15). Further, the differential output current Is2 is output from the drain of the transistor 12a, and is supplied to the node n2 via the P-channel type current mirror (16, 17).
  • the sources of the transistors 11a and 12a are commonly connected and form the tail of an N-channel differential pair (11a, 12a).
  • the current source transistor 13a is an N-channel transistor whose gate is supplied with the bias voltage BIASN, whose source is connected to the AVSS power supply terminal, and whose drain is connected to the tail of the N-channel differential pair (11a, 12a). Ru.
  • the voltage range [(AVSS+Vtn) to AVDD excluding the range of the threshold voltage Vtn of the N-channel differential pair (11a, 12a) from the analog power supply voltage AVSS ] can be detected as the detection voltage Vdet.
  • FIG. 5 is a circuit diagram showing the configuration of a coupling circuit 30A as a modification of the coupling circuit 30 shown in FIG. 2A.
  • the coupling circuit 30A in FIG. 5 has a configuration that allows adjustment of the detection sensitivity, that is, adjustment of the upper and lower limit voltages of the allowable voltage range for determination using the detection voltage Vdet as a reference state.
  • the coupling circuit 30A includes a circuit made up of transistors 21 to 23 and 33, similar to the coupling circuit 30 shown in FIG. 2A, and the description of these transistors 21 to 23 and 33 is omitted in FIG. There is.
  • a circuit 24A is used in place of the transistor 24 shown in FIG. 2A, and a circuit 35A is used in place of the transistor 35 shown in FIG. 2A. It is the same as shown in 2A.
  • a voltage that generates source type currents I1 and I3 is supplied to node n3, and a voltage that generates sink type currents I2 and I4 is supplied to node n2.
  • the setting of the current amount of currents I1 to I4 is as follows in the standard state. I1>I2 and I3 ⁇ I4 It is set so that
  • the coupling circuit 30A includes a P-channel transistor 25 in which a source-type current I3 in a reference state is set to a fixed value, and an N-channel transistor 34 in which a sink-type current I2 is set to a fixed value. Furthermore, the coupling circuit 30A includes circuits 24A and 35A that can variably adjust the amounts of the source type current I1 and the sink type current I4 in the reference state.
  • the circuit 24A has a configuration in which a plurality of sets of P-channel transistors and switches connected in series are provided in parallel between the VDD power supply terminal and the node n5. That is, the logic power supply voltage VDD is supplied to each source of each of the plurality of parallel P-channel type transistors 24a_1, 24a_2, . . . , and each gate is commonly connected to the node n3. As a result, each of the transistors 24a_1, 24a_2, . . . generates a mirror current according to the voltage of the node n3. Each of the plurality of parallel switches 26a_1, 26a_2, . . . is controlled to be turned on or off by an external current amount control signal CNTA.
  • the combined current of at least one transistor connected to the switch turned on by the current amount control signal CNTA becomes the current amount of the current I1. That is, by controlling each of the plurality of switches 26a_1, 26a_2, . . . , it is possible to optimally and variably adjust the amount of current I1 relative to current I2. Thereby, the allowable lower limit voltage for determining the detection voltage Vdet as the reference state can be adjusted.
  • the circuit 35A has a configuration in which a plurality of sets of N-channel transistors and switches connected in series are provided in parallel between the VSS power supply terminal and the node n6. That is, the logic ground voltage VSS is supplied to each source of each of the plurality of parallel N-channel type transistors 35a_1, 35a_2, . . . , and each gate is commonly connected to the node n2. As a result, each of the transistors 35a_1, 35a_2, . . . generates a mirror current according to the voltage of the node n2. Each of the plurality of parallel switches 36a_1, 36a_2, . . . is controlled to be turned on or off by a current amount control signal CNTA.
  • the combined current of at least one transistor connected to the switch turned on by the current amount control signal CNTA becomes the current amount of the current I4. That is, by controlling each of the plurality of switches 36a_1, 36a_2, . . . , it is possible to optimally and variably adjust the amount of current I4 relative to current I3. Thereby, it is possible to adjust the allowable upper limit voltage for determining the detection voltage Vdet as the reference state.
  • FIG. 6 is a circuit diagram showing a coupling circuit 30B as yet another modification of the coupling circuit 30 shown in FIG. 2A.
  • the coupling circuit 30B in FIG. 6 is also configured to be able to adjust the upper and lower limit voltages of the allowable voltage range that is determined using the detection voltage Vdet as a reference state.
  • the coupling circuit 30B shown in FIG. 6 As well, like the coupling circuit 30A, changes from the coupling circuit 30 shown in FIG. 2A are excerpted and shown. That is, like the coupling circuit 30 shown in FIG. 2A, the coupling circuit 30B includes a circuit made up of transistors 21 to 23 and 33, and the illustrations of these transistors 21 to 23 and 33 are omitted in FIG. There is.
  • a circuit 24B is used instead of the transistor 24 shown in FIG. 2A, and a circuit 35B is used instead of the transistor 35 shown in FIG. 2A. It is the same as shown in 2A.
  • a voltage that generates source type currents I1 and I3 is supplied to node n3, and a voltage that generates sink type currents I2 and I4 is supplied to node n2.
  • the amount of currents I1 to I4 is as follows in the standard state: I1>I2 and I3 ⁇ I4 It is set so that
  • the coupling circuit 30B includes a transistor 25 in which a source type current I3 is set to a fixed value in a reference state, a transistor 34 in which a sink type current I2 is set to a fixed value, a source type current I1 and a sink type current in the reference state. It includes circuits 24B and 35B that can variably adjust the amount of current I4.
  • the transistor 25 and the transistor 34 have the same configuration as the transistor 25 and the transistor 34 of the coupling circuit 30 shown in FIG. 2A.
  • the circuits 24B and 35B will be explained below.
  • the circuit 24B has a configuration in which a P-channel transistor 24b_1 and a variable current source 24b_2 are provided in parallel between the VDD power supply terminal and the node n6.
  • the transistor 24b_1 has a source supplied with the logic power supply voltage VDD, a gate connected to the node n3, generates a mirror current according to the voltage of the node n3, and sends it out from the drain.
  • the current amount of the variable current source 24b_2 is controlled by an external current amount control signal CNTB.
  • the combined current of the transistor 24b_1 and the variable current source 24b_2 is set as the amount of current I1. That is, by controlling the current amount of the variable current source 24b_2, it is possible to optimally set the current amount of the current I1 relative to the current I2. Thereby, the allowable lower limit voltage for determining the detection voltage Vdet as the reference state can be adjusted.
  • the circuit 35B has a configuration in which an N-channel transistor 35b_1 and a variable current source 35b_2 are provided in parallel between the VSS power supply terminal and the node n6.
  • the transistor 35b_1 has a source supplied with the logic ground voltage VSS, a gate connected to the node n2, generates a mirror current according to the voltage of the node n2, and outputs it from the source.
  • the current value of the variable current source 35b_2 is controlled by an external current amount control signal CNTB.
  • the combined current of the transistor 35b_1 and the variable current source 35b_2 is set as the current amount of the current I4. That is, by controlling the current of the variable current source 35b_2, it is possible to optimally set the amount of current I4 relative to current I3. Thereby, it is possible to adjust the allowable upper limit voltage for determining the detection voltage Vdet as the reference state.
  • the settings of the current amount of current I1 and current I2, and current I3 and current I4 are determined by the size of the transistor that generates current I1 and current I4, and the parallel arrangement of transistors. Although an example in which adjustment is performed by the number of stages has been shown, such an adjustment function may be provided in the generation circuit of the current I2 or the current I3.
  • the determination circuit 40 receives the 2-bit logic signals O1 and O2 output from the coupling circuit 30 and outputs a 1-bit determination signal JD.
  • the determination circuit 40 can be realized, for example, by an exclusive OR circuit (referred to as an EXOR circuit).
  • the EXOR circuit receives the detection voltage Vdet and the reference voltage Vref at two input terminals.
  • the EXOR circuit has a logic value H indicating normality (detection voltage Vdet is in the reference state) when logic signals O1 and O2 are different, and a logic value H indicating abnormality (detection voltage Vdet deviates from the reference state) when they are the same.
  • a determination signal JD indicating the value L is output.
  • the determination circuit 40 configured with an EXOR circuit expresses the presence or absence of a variation in the detection voltage Vdet from the reference state using binary values, but cannot determine the direction of variation in the detection voltage Vdet. Therefore, if it is desired to also obtain the fluctuation direction (increase direction, decrease direction) of the detection voltage Vdet as a determination result, the logic signals O1 and O2 output from the coupling circuit 30 may be directly output as 2-bit signals. Alternatively, in addition to the determination signal JD of the determination circuit 40, two logic signals O1 and O2 may be output.
  • FIG. 7 is a circuit diagram showing the configuration of a voltage detection circuit 50_1 as another example of the configuration of the voltage detection circuit 50. Note that the voltage detection circuit 50_1 shown in FIG. 7 employs a coupling circuit 30C in place of the coupling circuit 30 shown in FIG. 2A, and the other configuration is the same as that shown in FIG. 2A except that a determination circuit 40a is newly added. is the same as
  • the transistors 21 to 25 and 33 to 35 are the same as those shown in the coupling circuit 30 shown in FIG. 2A.
  • the coupling circuit 30C a circuit consisting of transistors 24, 25, 34, and 35, which is also included in the coupling circuit 30 in FIG.
  • a second converter CV2 and a determination circuit 40a are added.
  • the second conversion unit CV2 includes P-channel MOS type transistors 24a and 25a and N-channel MOS type transistors 34a and 35a.
  • the transistors 24a and 25a have their respective sources connected to the VDD power supply terminal, and their respective gates connected to the gate of the transistor 23 via the node n3.
  • the transistors 34a and 35a have their respective sources connected to the VSS power supply terminal, and their respective gates connected to the gate of the transistor 33 via the node n2.
  • the drain of the transistor 34a is connected to the drain of the transistor 24a via the node n5a.
  • the transistor 35a has its own drain connected to the drain of the transistor 25a via a node n6a.
  • a signal having the voltage generated at the node n5a described above is supplied to the determination circuit 40a as the logic signal O3. Furthermore, a signal having the voltage generated at the node n6a is supplied from the above-described node n6a to the determination circuit 40a as the logic signal O4.
  • the differential output current Is1 supplied from the differential stage 10 becomes a folded current with respect to the logic ground voltage VSS by the current mirror (21, 22).
  • the folded current is folded back to the logic power supply voltage VDD by current mirrors (23, 24) and (23, 25), and the two source type currents I1, I3 is generated.
  • the differential output current Is2 supplied from the differential stage 10 is folded back to the logic ground voltage VSS by current mirrors (33, 34) and (33, 35), Two sink type currents I2 and I4 are generated.
  • the source type current I1 is sent to the node n5, and the sink type current I2 is extracted from the node n5, so that both currents (I1, I2) are combined at the node n5, A logic signal O1 having the voltage generated at the node n5 is output.
  • the source type current I3 is sent to the node n6, and the sink type current I4 is extracted from the node n6, so that both currents (I3, I4) are combined at the node n6, A logic signal O2 having the voltage generated at the node n6 is output.
  • the current drive capability (current amount) of each of the transistors 24, 25, 34, and 35 of the first conversion unit CV1 that generates the currents I1 to I4, respectively, is based on the first criterion based on the potential relationship between the reference voltage Vref and the detection voltage Vdet.
  • the detection voltage Vdet falls within the following first range centered around the reference voltage Vref: Vref-dV1 ⁇ Vdet ⁇ Vref+dV2 dV1: First allowable lower limit width dV2: First allowable upper limit width If included, the voltage at the first output terminal (node n5) of the coupling circuit 30C is H: high level (VDD), second output terminal The voltage at (node n6) becomes L: low level (VSS).
  • the first output terminal (node n5) and the second output terminal (node Both voltages of n6) become L: low level (VSS).
  • the detection voltage Vdet is higher in potential than the first allowable upper limit voltage preset with respect to the reference voltage Vref (Vdet>Vref+dV2), the first output terminal (node n5) and the second output terminal (node n6) Both voltages become H: high level (VDD).
  • the first conversion unit CV1 outputs a logic signal O1 indicating a high level and a logic signal O2 indicating a low level, as shown in FIG. 8A.
  • the detection voltage Vdet is Vdet ⁇ Vref-dV1
  • the first conversion unit CV1 outputs logic signals O1 and O2, both of which are at a low level, as shown in FIG. 8A.
  • the detection voltage Vdet is Vdet>Vref+dV2
  • the first conversion unit CV1 outputs logic signals O1 and O2, both of which are at a high level, as shown in FIG. 8A.
  • the determination circuit 40 determines whether the detected voltage Vdet is within a first range (Vref-dV1 ⁇ Vdet ⁇ Vref+dV2), as shown in FIG. 8A, based on the logic signals O1 and O2 output from the first conversion unit CV1. A determination signal JD1 indicating the determination result is output.
  • the first conversion unit CV1 and the determination circuit 40 determine whether the voltage value of the detection voltage Vdet is within a predetermined first range centered on the reference voltage Vref, as shown in FIG. 8A.
  • a determination signal JD1 is generated indicating whether it is outside the first range.
  • the folded current corresponding to the differential output current Is1 folded back by the current mirror (21, 22) is converted to the logic power supply voltage by the current mirror (23, 24a) and (23, 25a). It is turned back to VDD, and two source type currents I1a and I3 are generated. Further, in the second conversion unit CV2, the differential output current Is2 supplied from the differential stage 10 is reflected back to the logic ground voltage VSS by the current mirrors (33, 34a) and (33, 35a), Two sink type currents I2 and I4a are generated.
  • the source type current I1a is sent to the node n5a, and the sink type current I2 is extracted from the node n5a, so that both currents (I1a, I2) are combined at the node n5a, A logic signal O3 having the voltage generated at the node n5a is output.
  • the source type current I3 is sent to the node n6a, and the sink type current I4a is extracted from the node n6a, so that both currents (I3, I4a) are combined at the node n6a, A logic signal O2 having the voltage generated at the node n6a is output.
  • the current drive capability (current amount) of the transistors 24a, 25a, 34a, and 35a of the second conversion unit CV2 that generate the currents I1a, I2, I3, and I4a, respectively, is determined by the potential relationship between the reference voltage Vref and the detection voltage Vdet.
  • I3 ⁇ I4 ⁇ I4a It is set so that
  • the channel width of the transistor 25a of the second conversion unit CV2 is made the same as the channel width Wp of the transistor 25 of the first conversion unit CV1, and the channel width of the transistor 34a of the second conversion unit CV2 is made the same as the channel width Wp of the transistor 25 of the first conversion unit CV1.
  • channel width Wn is set to a channel width Wp++ wider than the channel width Wp+ of the transistor 24 of the first conversion unit CV1
  • the channel width of the transistor 35a of the second conversion unit CV2 is set to be wider than the channel width Wp+ of the transistor 24 of the first conversion unit CV1.
  • the channel width Wn++ is wider than the channel width Wn+ of the transistor 35 of CV1.
  • the detection voltage Vdet falls within the following second range centered around the reference voltage Vref: Vref-dV3 ⁇ Vdet ⁇ Vref+dV4 dV3 (dV3>dV1): second permissible lower limit width dV4 (dV4>dV2): second permissible upper limit width
  • H The voltage at the high level (VDD) and the fourth output terminal (node n6a) is L: low level (VSS).
  • the third output terminal (node n5a) and the fourth output terminal (node The voltages of n6a) are both L: low level (VSS).
  • the detection voltage Vdet is higher in potential than the second allowable upper limit voltage preset with respect to the reference voltage Vref (Vdet>Vref+dV4), the third output terminal (node n5a) and the fourth output terminal (node n6a) Both voltages become H: high level (VDD).
  • the second conversion unit CV2 outputs a logic signal O1 indicating a high level and a logic signal O2 indicating a low level, as shown in FIG. 8B.
  • the detection voltage Vdet is Vdet ⁇ Vref-dV3
  • the second conversion unit CV2 outputs logic signals O1 and O2, both of which are at a low level, as shown in FIG. 8B.
  • the detection voltage Vdet is Vdet>Vref+dV4
  • the second conversion unit CV2 outputs logic signals O1 and O2, both of which are at high level, as shown in FIG. 8B.
  • the determination circuit 40a determines whether the detected voltage Vdet is within a second range (Vref-dV3 ⁇ Vdet ⁇ Vref+dV4), as shown in FIG. 8B, based on the logic signals O3 and O4 output from the second conversion unit CV2. A determination signal JD2 indicating the determination result is output.
  • the voltage value of the detection voltage Vdet is within the second range, which is wider than the first range, centered on the reference voltage Vref, as shown in FIG. 8B.
  • a determination signal JD2 is generated indicating whether the second range is included in the second range or outside the second range.
  • the voltage detection circuit 50_1 detects the first range along with the determination result (JD1) indicating whether the voltage value of the detection voltage Vdet is included within the first range centered on the reference voltage Vref. It is possible to obtain a determination result (JD2) indicating whether or not the second range is included in the second range, which is wider than the first range.
  • the source type current I1 (I1a) in the reference state is made larger than the sink type current I2, and the sink type current I4 (I4a) is made larger than the source type current I3.
  • the source type current I1 (I1a) may be made smaller than the sink type current I2, and the sink type current I4 (I4a) may be made smaller than the source type current I3.
  • the voltage detection circuit includes at least the following differential stage and coupling circuit, and may further include a determination circuit.
  • the differential stage (10, 11 to 17, 11a to 13a) outputs a differential current pair (Is1, Is2) corresponding to the difference between the reference voltage (Vref) and the detection voltage (Vdet) to be detected.
  • the coupling circuit (30, 30A to 30C) has first and second voltages (VDD, VSS) and first and second coupling points (n5, n6), and has a differential current pair (Is1, Is2). Based on the first to fourth currents (I1 or I1a, I2, I3, I4 or I4a) generated by performing current mirror conversion on the first and second voltages (VDD, VSS), The first and second signals (O1 or O3, O2 or O4) are output from the second connection point (n5 or n5a, n6 or n6a).
  • the coupling circuit also connects one of the differential current pair (Is1) to the first and third currents (I1 or I1a, I3) of a source type (current source type) based on the first voltage (VDD). converting the other of the differential current pair (Is2) into second and fourth currents (I2, I4 or I4a) of sink type based on the second voltage (VSS); The voltage generated at the first coupling point (n5 or n5a) where (I1 or I1a) and the second current (I2) are coupled is generated as the first signal (O1 or O3), and the third The voltage generated at the second coupling point (n6 or n6a) where the current (I3) and the fourth current (I4 or I4a) are coupled is generated as a second signal (O2 or O4). Furthermore, the coupling circuit is such that the first current (I1 or I1a) is larger than the second current (I2) and the fourth current (I4 or I4a) is larger than the third current (I3) in the reference state
  • the determination circuit (40, 40a) determines whether the detection voltage (Vdet) is fluctuating from the reference state (first range or second range) based on the first and second signals (O1 or O3, O2 or O4).
  • a judgment signal (JD, JD1, JD2) indicating the judgment result is output.
  • FIG. 9 is a block diagram showing the configuration of a display device 200 as a second embodiment of the present invention.
  • the display device 200 includes gate lines GL1 to GLr (r is an integer of 2 or more) wired horizontally on an insulating substrate, and data lines DL1 to DLk (k is an integer greater than or equal to 2), the display panel 150 includes a display panel 150 having pixel portions 154 arranged in a matrix at the intersections of each gate line and a data line, and a controller 130.
  • a gate driver 110 that drives each gate line and a data driver 120_1 that drives each data line are connected to the display panel 150, and the controller 130 controls the output timing of these gate drivers 110 and data driver 120_1. adjust.
  • the gate driver 110 is supplied with the signal group GS from the controller 130, and outputs a scanning signal to be supplied to each gate line based on the signal group GS.
  • the gate driver 110 generally has a thin film transistor circuit configuration that is integrally formed with a pixel portion and wiring in the display panel 150.
  • the data driver 120_1 is supplied with a video data signal VDS including a clock signal, various control signals, video data signals, etc. from the controller 130, and based on the video data signal VDS, gradation voltages are supplied to the data lines DL1 to DLk. Output a signal.
  • VDS video data signal
  • VDS including a clock signal, various control signals, video data signals, etc.
  • the data driver 120_1 is usually formed of a silicon LSI, and is mounted at the end of the display panel 150 using COG (Chip On Glass) or COF (Chip On Film).
  • COG Chip On Glass
  • COF Chip On Film
  • the data driver 120_1 is composed of a plurality of individual ICs
  • a video data signal VDS containing various control signals related to the data lines each of which is responsible for driving is supplied from the controller 130 to each data driver IC.
  • the controller 130 may be built into the data driver 120_1. In that case, a group of signals supplied to the controller 130 from the outside is directly sent to the data driver 120_1. Supplied.
  • FIG. 10 is a block diagram showing an example of the internal configuration of the data driver 120_1.
  • the data driver 120_1 includes output units 80_1 to 80_k that drive loads (data line loads) 90_1 to 90_k, each including a plurality of pixel units 154, via data lines DL1 to DLk.
  • the data driver 120_1 includes at least the following voltage detection circuit 50, selection switch group 54, reference voltage setting section 55, grayscale voltage generation section 70, and control section 60.
  • the voltage detection circuit 50 detects whether there is an abnormality in the output voltage of each of the output units 80_1 to 80_k.
  • the selection switch group 54 selects one from the output voltage group output from the output units 80_1 to 80_k and supplies the selected output voltage to the voltage detection circuit 50 as the detection voltage Vdet.
  • the reference voltage setting section 55 sets a reference voltage Vref and supplies it to the voltage detection circuit 50.
  • the control unit 60 generates pixel data PD1 to PDk representing the brightness level of each pixel every horizontal scanning period based on the digital data signal (including video data and control signal) VDS supplied from the outside, and are supplied to the corresponding output units 80_1 to 80_k. Further, the control section 60 supplies a control signal ctla for controlling the voltage detection circuit 50, a control signal ctlb for controlling the selection switch group 54, and a control signal ctlc for controlling the reference voltage setting section 55, respectively.
  • Each of the output units 80_1 to 80_k receives the pixel data PD assigned to each output unit by the control unit 60, and includes a level shifter (LS) that converts the pixel data from a low voltage at the logic power supply level to a high voltage for driving the load. , converting the grayscale voltage group generated by the grayscale voltage generation unit 70 into a corresponding grayscale voltage signal based on the pixel data signal converted from the grayscale voltage group generated by the grayscale voltage generation unit 70 to a high voltage. It includes a digital-to-analog conversion circuit (DAC), an AMP that amplifies and outputs the gray-scale voltage signal, and an output SW that controls supply or cutoff of the gray-scale voltage signal output from the AMP to the load.
  • DAC digital-to-analog conversion circuit
  • the first to kth gradation voltage signals output from the output units 80_1 to 80_k are supplied to loads 90_1 to 90_k via output pads P1 to Pk.
  • the selection switch group 54 is composed of switches 54_1 to 54_k that select one of the k grayscale voltage signals output from each output section and supply it to the voltage detection circuit 50 as a detection voltage Vdet. . Selection control and deactivation control (turning off all switches 54_1 to 54_k) of the selection switch group 54 are controlled by a control signal ctla from a control unit 60.
  • the voltage detection circuit 50 is the voltage detection circuit shown in FIG. 2A, FIG. 3, FIG. 4, etc., including the differential stage 10, the coupling circuit 30, and the determination circuit 40.
  • the detection operation of the voltage detection circuit 50 is controlled by a control signal ctlb from the control section 60.
  • the reference voltage setting section 55 inputs a gradation voltage to be used as a reference voltage for voltage detection from the gradation voltage group generated by the gradation voltage generation section 70, and sets the gradation voltage specified by the control signal ctlc from the control section 60.
  • the adjusted voltage is supplied to the voltage detection circuit 50 as a reference voltage Vref.
  • the control unit 60 outputs grayscale voltage signals corresponding to the video data to the data lines DL1 to DLk, and selects a display mode in which video is displayed on the display panel 150, and a display mode in which the grayscale voltage signals are output to the data lines DL1 to DLk according to the video data, and the grayscale voltage signals supplied to the first to kth data lines. Controls the detection mode for detecting whether the modulation signal is normal or not. In the display mode, each output SW of the output units 80_1 to 80_k is turned on, and grayscale voltage signals are supplied from each amplifier AMP to the data lines DL1 to DLk. Note that in the display mode, the voltage detection circuit 50 and selection switch group 54 are inactivated.
  • the detection mode is generally set to a period that does not overlap with the display mode.
  • the operation of the voltage detection circuit 50 and the control unit 60 to detect a voltage abnormality of the gradation signal output from each of the output units 80_1 to 80_k will be described.
  • the control unit 60 first supplies the voltage detection circuit 50 with a control signal ctlb instructing execution of the detection operation, and outputs a grayscale voltage having the same voltage value as the reference voltage Vref. Pixel data PD1 to PDk are designated to output signals.
  • the control unit 60 controls the selection switch group 54 to sequentially select the k grayscale voltage signals output from the output units 80_1 to 80_k one by one. As a result, one gradation voltage signal selected by the selection switch group 54 is supplied to the voltage detection circuit 50 as the detection voltage Vdet, and the voltage detection circuit 50 detects that the detection voltage Vdet is in the reference state (same as the reference voltage Vref). (or a voltage value in the vicinity thereof) is determined.
  • a determination signal JD indicating the determination result is fed back to the control section 60.
  • the control unit 60 receives the determination signal JD and has an abnormality avoidance processing function such as activating means for notifying an abnormality or stopping the data driver 120_1 when an abnormality is determined.
  • the gradation voltage signal taken out as the detection voltage Vdet from each output section is preferably the voltage at the connection point between the output terminal of the amplifier AMP and the output SW.
  • the output SW by turning on the output SW and performing a detection operation, it is possible to detect an abnormality on the load side (such as a short circuit between loads). Further, by performing the detection operation with the output SW turned off, it is possible to detect an abnormality in the data driver 120_1. Furthermore, by performing these processes together, even if there is no abnormality in the wiring connecting the data driver 120_1 and the loads 90_1 to 90_k, it is possible to determine which one is abnormal.
  • the voltage abnormality detection operation as described above be performed when the display device 200 is powered on or during a blanking period from one screen display operation to the next one screen display operation.
  • the output units 80_1 to 80_k may be divided into a plurality of output groups, and the output groups targeted for detection operation may be sequentially switched for each blanking period.
  • the data driver 120_1 shown in FIG. 10 only has one shared voltage detection circuit 50 for multiple output units (80_1 to 80_k) that drive multiple loads (90_1 to 90_k). Accordingly, voltage abnormality detection can be performed for a plurality of grayscale voltage signals output from each output section.
  • the voltage detection circuit 50 for detecting high voltage signals, only the differential stage 10 is composed of high voltage elements, and the coupling circuit 30 and the judgment circuit 40 are composed of low voltage elements, thereby realizing space saving. It becomes possible to do so. Further, since the voltage detection circuit 50 can determine whether the voltage to be detected is normal or abnormal in one detection operation, it can be realized with a simple circuit configuration that does not require a complicated control circuit.
  • FIG. 10 illustrates the operation of detecting a voltage abnormality in the gradation voltage signal output from each output section of the data driver included in the display device
  • the device that is the target of voltage abnormality detection is based on the data of the display device.
  • the selection switch group 54 and the voltage detection circuit 50 may be provided in an electronic device that handles a plurality of control voltages, setting voltages, etc. other than voltages for driving loads such as gradation voltage signals for display. .
  • Particularly for detection voltages in a high voltage range by employing the voltage detection circuit of the present invention, it is possible to save area.
  • FIG. 11 is a circuit diagram showing the configuration of a comparator 51 according to a third embodiment of the present invention.
  • the comparator 51 compares a high voltage reference voltage Vref and a high voltage detection voltage Vdet, and outputs a comparison result indicating whether the detection voltage Vdet is larger (or smaller) than the reference voltage Vref to the low voltage.
  • a comparison result signal O1 expressed by the level of the logic power supply voltage is output.
  • the configuration of the comparator 51 shown in FIG. 11 is obtained by omitting the transistors 25 and 35 from the voltage detection circuit 50 shown in FIG. 2A, and the other circuit configurations are the same as that shown in FIG. 2A. However, in the comparator 51, the current driving capabilities of the transistor 24 and the transistor 34 are the same.
  • the comparator 51 includes the following differential stage 10 and coupling circuit 30D.
  • the differential stage 10 generates a differential current pair (Is1, Is2) corresponding to the difference between the reference voltage Vref and the detection voltage Vdet.
  • the differential stage 10 is a high-voltage circuit that receives a high-potential analog power supply voltage AVDD and an analog ground voltage AVSS, and is configured of high-voltage elements that operate at a voltage between the AVDD and AVSS.
  • the coupling circuit 30D includes N-channel MOS transistors 21, 22, 33, and 34 and P-channel MOS transistors 23 and 24.
  • the transistor 21 has its drain and gate connected to the node n1, and its source connected to the VSS power supply terminal.
  • the transistor 22 has its own gate connected to the gate of the transistor 21, and its own source connected to the VSS power supply terminal. Further, the transistor 22 has its own drain connected to the drain and gate of the transistor 23. The source of transistor 23 is connected to the VDD power supply terminal.
  • the transistor 24 has its source connected to the VDD power supply terminal, and its gate connected to the gate of the transistor 23 via the node n3.
  • the transistor 33 has its drain and gate connected to the node n2, and its source connected to the VSS power supply terminal.
  • the transistor 34 has its source connected to the VSS power supply terminal, and its gate connected to the gate of the transistor 33 via the node n2.
  • the transistor 34 has its own drain connected to the drain of the transistor 24 via the node n5. A signal having the voltage generated at the node n5 is outputted from the node n5 as the above-mentioned comparison result signal O1.
  • the coupling circuit 30D when the detection voltage Vdet is at a lower potential than the reference voltage Vref (Vdet ⁇ Vref), the coupling circuit 30D outputs a logic signal O1 at a low level (VSS). On the other hand, when the detection voltage Vdet is higher in potential than the reference voltage Vref (Vdet>Vref), the coupling circuit 30D outputs the comparison result signal O1 at a high level (VDD).
  • one and the other of the differential output currents Is1 and Is2 of the differential stage 10 are converted into a source type current pair and a sink type current pair, the current pairs are combined, and the connecting point A comparison result signal O1 representing the comparison result is generated from the comparison result signal O1.
  • the voltage at the output end (node n5) of the coupling circuit 30D quickly changes to the logic power supply voltage VDD or the logic ground voltage VSS.
  • the comparison result signal O1 output from the coupling circuit 30D is quickly determined to a level representing the result of the comparison with the reference voltage Vref in response to the input of the detection voltage Vdet.
  • only the differential stage 10 is formed of high voltage elements, especially when comparing a high voltage signal with a reference voltage and outputting the comparison result as a low voltage signal at a logic level. Since it is only necessary to do so, it is possible to save area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

In the present invention, first, a differential current pair corresponding to a difference between a reference voltage and a sensed voltage is generated. Next, the differential current pair is converted into a first current based on a first voltage and a second current based on a second voltage, and voltage, which is generated at a first output end by extracting the second current from the first output end while supplying the first current to the first output end, is outputted as a first signal. The differential current pair is further converted into a third current based on the first voltage and a fourth current based on the second voltage, and voltage, which is generated at a second output end by extracting the fourth current from the second output end while supplying the third current to the second output end, is outputted as a second signal. Then, whether the sensed voltage has changed from a reference state or not is determined on the basis of the first and second signals. Note that, in the reference state, the first current is set to be higher than the second current, and the third current is set to be lower than the fourth current.

Description

電圧検知回路、表示ドライバ、表示装置及び比較器Voltage detection circuit, display driver, display device and comparator
 本発明は、電圧検知回路、当該電圧検知回路を含む表示ドライバ、表示装置、並びに比較器に関する。 The present invention relates to a voltage detection circuit, a display driver including the voltage detection circuit, a display device, and a comparator.
 現在、主要な表示装置として、表示パネルに液晶や有機ELを用いたアクティブマトリクス駆動方式の表示装置が一般的に知られている。 Currently, active matrix drive type display devices that use liquid crystal or organic EL for the display panel are generally known as main display devices.
 表示パネルには、ガラスやプラスチックなどの絶縁性透明基板上に、2次元画面の垂直方向に夫々伸張する複数のデータ線と、2次元画面の水平方向に夫々伸張する複数のゲート線と、が交叉して配置されている。更に、複数のデータ線と、複数のゲート線との各交叉部には、データ線及びゲート線に接続されている画素部が形成されている。各画素部はTFT(薄膜トランジスタ)スイッチと画素電極を備え、ゲート線に供給されるゲート信号によりTFTスイッチがオンの時に、データ線に供給されている階調データ信号がTFTを介して画素電極に供給される。 The display panel has a plurality of data lines each extending in the vertical direction of a two-dimensional screen and a plurality of gate lines each extending in the horizontal direction of the two-dimensional screen on an insulating transparent substrate such as glass or plastic. are arranged in an intersecting manner. Further, a pixel portion connected to the data line and the gate line is formed at each intersection of the plurality of data lines and the plurality of gate lines. Each pixel section is equipped with a TFT (thin film transistor) switch and a pixel electrode, and when the TFT switch is turned on by a gate signal supplied to the gate line, the gradation data signal supplied to the data line is sent to the pixel electrode via the TFT. Supplied.
 液晶表示装置の表示パネルは、薄膜半導体回路が形成された半導体基板と、面全体に対向電極を形成した対向基板との間に液晶デバイスを封入した構成からなる。液晶表示装置は、表示パネルの背面に設けられたバックライトの透過率を液晶印加電圧で制御することで階調表示が行われる。カラー表示は、LEDバックライトと、カラーフィルター又は色変換層の組合せにより、画素毎にRGBの3原色を画素毎に割り当て、3原色の色合成により実現される。 A display panel of a liquid crystal display device has a structure in which a liquid crystal device is sealed between a semiconductor substrate on which a thin film semiconductor circuit is formed and a counter substrate on which a counter electrode is formed over the entire surface. A liquid crystal display device performs gradation display by controlling the transmittance of a backlight provided on the back surface of a display panel using a voltage applied to the liquid crystal. Color display is achieved by assigning three primary colors of RGB to each pixel and synthesizing the three primary colors using a combination of an LED backlight and a color filter or color conversion layer.
 一方、有機EL表示装置の表示パネルは、薄膜半導体回路及び画素部毎に有機EL素子が形成された半導体基板で構成され、各画素部では、画素電極に供給された階調データ信号を電流変換して有機EL素子に供給する画素回路が形成される。有機EL表示装置は、各画素部の有機EL素子に供給された電流により有機EL素子の発光強度が制御されることで階調表示が行われる。カラー表示は、画素毎に割り当てられたRGBの3原色の有機EL素子の発光、あるいは単色の有機EL素子の発光とカラーフィルターの組合せによる3原色の色合成により実現される。 On the other hand, the display panel of an organic EL display device is composed of a semiconductor substrate on which a thin film semiconductor circuit and an organic EL element are formed in each pixel section, and in each pixel section, a grayscale data signal supplied to a pixel electrode is converted into a current. A pixel circuit for supplying the organic EL element to the organic EL element is formed. In an organic EL display device, gradation display is performed by controlling the emission intensity of the organic EL element by a current supplied to the organic EL element of each pixel portion. Color display is realized by emitting light from an organic EL element in three primary colors of RGB assigned to each pixel, or by color synthesis of the three primary colors by combining the light emission from a monochromatic organic EL element and a color filter.
 このような表示装置には、上記した表示パネルと共に、各画素行単位でTFTスイッチを順次オンに制御する水平走査信号をゲート線に供給するゲートドライバと、各画素の輝度レベルに対応したアナログ電圧値を有する階調信号を1水平走査期間単位のデータパルスでデータ線に供給するデータドライバが含まれている。 In addition to the display panel described above, such a display device includes a gate driver that supplies a horizontal scanning signal to the gate line to sequentially turn on the TFT switch for each pixel row, and an analog voltage that corresponds to the brightness level of each pixel. A data driver is included that supplies a grayscale signal having a value to a data line in data pulses for one horizontal scanning period.
 図1は、アクティブマトリクス型の表示装置の構成を模式的に示すブロック図である。 FIG. 1 is a block diagram schematically showing the configuration of an active matrix display device.
 図1に示す表示装置は、絶縁性基板上に水平方向に配線されたゲート線GL1~GLr、垂直方向に配線されたデータ線DL1~DLm、各ゲート線とデータ線との交差部にマトリックス上に配置された画素部154を備えた表示パネル150と、各ゲート線を駆動するゲートドライバ110、各データ線を駆動するデータドライバ120、ゲートドライバ110とデータドライバ120の出力タイミングを調整するコントローラ130で構成される。尚、画素部154に含まれるTFTスイッチ、画素電極、表示デバイス等は記載を省略している。 The display device shown in FIG. 1 has gate lines GL1 to GLr wired horizontally on an insulating substrate, data lines DL1 to DLm wired vertically, and a matrix at the intersection of each gate line and data line. a display panel 150 including a pixel section 154 arranged in a pixel section 154, a gate driver 110 that drives each gate line, a data driver 120 that drives each data line, and a controller 130 that adjusts the output timing of the gate driver 110 and the data driver 120. Consists of. Note that the description of the TFT switch, pixel electrode, display device, etc. included in the pixel portion 154 is omitted.
 ゲートドライバ110は、コントローラ130から信号群GSが供給され、信号群GSに基づき、各ゲート線へ供給する走査信号を出力する。 The gate driver 110 is supplied with the signal group GS from the controller 130, and outputs a scanning signal to be supplied to each gate line based on the signal group GS.
 データドライバ120は、コントローラ130からCLK、制御信号及び映像データ信号等をまとめた信号群VDSが供給され、信号群VDSに基づき、各データ線へ供給する階調信号を出力する。 The data driver 120 is supplied with a signal group VDS, which is a collection of CLK, control signals, video data signals, etc., from the controller 130, and outputs gradation signals to be supplied to each data line based on the signal group VDS.
 ところで、近年、ゲートドライバ110は表示パネル150に画素部や配線と一体形成される薄膜トランジスタ回路構成が一般的になっている。また、データドライバ120は、通常シリコンLSIで形成され、表示パネル150の端部にCOG(Chip On Glass)やCOF(Chip On Film)で実装される。データドライバ120が複数の個別ICで構成される場合、各々が駆動を担うデータ線に対応した信号群VDSが、コントローラ130から各データドライバICへ供給される。尚、データドライバ120が単一または少数のICの場合には、コントローラ130がデータドライバ120に内蔵される場合もあり、その場合は、外部からコントローラ130へ供給される信号群が直接データドライバ120へ供給される。 Incidentally, in recent years, it has become common for the gate driver 110 to have a thin film transistor circuit configuration that is integrally formed with a pixel portion and wiring in the display panel 150. Further, the data driver 120 is usually formed of a silicon LSI, and is mounted on the end of the display panel 150 using COG (Chip On Glass) or COF (Chip On Film). When the data driver 120 is composed of a plurality of individual ICs, a signal group VDS corresponding to the data line that each IC is responsible for driving is supplied from the controller 130 to each data driver IC. Note that when the data driver 120 is a single IC or a small number of ICs, the controller 130 may be built into the data driver 120. In that case, the signal group supplied to the controller 130 from the outside is directly transmitted to the data driver 120. supplied to
 また、近年、表示パネルは高解像度化が進み、画素ピッチの縮小に伴い配線幅や配線間隔の縮小も図られている。これにより表示パネルの故障リスクも高くなる。 Furthermore, in recent years, display panels have become increasingly high-resolution, and as pixel pitches have been reduced, wiring widths and wiring spacing have also been reduced. This also increases the risk of failure of the display panel.
 そのため、ゲートドライバ、データドライバ及びコントローラの実装後の表示パネルに対して、異常や故障を検知する機能の搭載要求が高まっている。特に、車載向け表示パネルでは、表示固着、つまり映像のフリーズを避けるため、表示パネルの異常を速やかに検知する機能が要求されている。 Therefore, there is an increasing demand for a display panel equipped with a gate driver, data driver, and controller to be equipped with a function to detect abnormalities and failures. In particular, in-vehicle display panels are required to have a function that quickly detects abnormalities in the display panel in order to avoid display sticking, that is, freezing of images.
 そこで、外部に検査装置を必要とすることなく、表示パネルの欠陥や不良状態を検出、判定する回路をデータドライバに内蔵した構成が提案されている(例えば特許文献1の図1、図4参照)。 Therefore, a configuration has been proposed in which a data driver has a built-in circuit that detects and determines defects and defective states of the display panel without requiring an external inspection device (see, for example, FIGS. 1 and 4 of Patent Document 1). ).
 当該特許文献1では、出力毎に通常動作モードと検査モードの切替回路を備える。当該切替回路は、検査モード時において、データ線に供給された信号電圧と予め設定した基準電圧とを比較し、その比較結果に基づき正常か異常かを判定する判定回路を有する。 In Patent Document 1, a switching circuit between a normal operation mode and a test mode is provided for each output. The switching circuit includes a determination circuit that compares the signal voltage supplied to the data line with a preset reference voltage in the test mode, and determines whether it is normal or abnormal based on the comparison result.
 具体的には、上記特許文献1の図4に示す判定回路は、出力電源電圧VCCに対して2つの基準電圧(1/4・VCC、3/4・VCC)の各々と、出力電圧モニタ線を介して供給される信号電圧とを比較する2つのコンパレータ(COMP1、COMP2)を含む。当該判定回路は、2つのコンパレータで信号電圧と2つの基準電圧とをそれぞれ比較した結果をシリアルI/O74によって基準クロックCKに同期化した信号を、信号電圧が正常か異常かを示す判定信号として出力する。つまり、この判定回路は、2つの基準電圧を用いて、信号電圧が2つの基準電圧に対してどの電圧レベル範囲にあるかにより、信号電圧が正常か異常かを判定する。 Specifically, the determination circuit shown in FIG. 4 of Patent Document 1 has two reference voltages (1/4·VCC, 3/4·VCC) with respect to the output power supply voltage VCC, and an output voltage monitor line. It includes two comparators (COMP1, COMP2) that compare the signal voltages supplied via the two comparators. The determination circuit synchronizes the results of comparing the signal voltage and two reference voltages by two comparators with the reference clock CK by the serial I/O 74 as a determination signal indicating whether the signal voltage is normal or abnormal. Output. That is, this determination circuit uses two reference voltages to determine whether the signal voltage is normal or abnormal, depending on which voltage level range the signal voltage is in with respect to the two reference voltages.
特開2000-275610号公報Japanese Patent Application Publication No. 2000-275610
 特許文献1に記載の判定回路は、少なくとも2つのコンパレータ(COMP1、COMP2)及びシリアルI/O74の入力部は、表示パネルを駆動し得る比較的高電圧の信号電圧を処理対象としているため、高電圧回路で構成される。また、それに伴い、2つのコンパレータの出力を同期化する基準クロックを生成する回路も高電圧回路が必要となる。 In the determination circuit described in Patent Document 1, at least two comparators (COMP1, COMP2) and the input section of the serial I/O 74 process a relatively high signal voltage that can drive a display panel, so Consists of voltage circuit. Further, in accordance with this, a high voltage circuit is also required for a circuit that generates a reference clock that synchronizes the outputs of the two comparators.
 よって、判定回路を実現するにあたり、高電圧回路が占める面積が大きくなってしまい、チップサイズの増加によるコスト高を招くという問題があった。 Therefore, in realizing the determination circuit, the high voltage circuit occupies a large area, resulting in an increase in cost due to an increase in chip size.
 特に、特許文献1に記載の車載向けの半導体装置(表示用のデータドライバも含む)では、様々な信号に異常がないかを検知する異常検知回路が多数必要とされる。よって、高電圧信号の異常を検知する多数の検知回路がそれぞれ高電圧回路で構成されると半導体装置のチップサイズが増加し、コスト増加となる。 In particular, the automotive semiconductor device (including a data driver for display) described in Patent Document 1 requires a large number of abnormality detection circuits that detect whether there are abnormalities in various signals. Therefore, if a large number of detection circuits for detecting an abnormality in a high voltage signal are each composed of a high voltage circuit, the chip size of the semiconductor device will increase, resulting in an increase in cost.
 更に、当該判定回路で用いるコンパレータとして一般的なコンパレータは、回路を構成するトランジスタの閾値電圧ばらつき等により、高精度な電圧検知が難しいという問題がある。 Furthermore, a common comparator used in the determination circuit has a problem in that highly accurate voltage detection is difficult due to variations in threshold voltage of transistors forming the circuit.
 そこで、本発明は、装置規模を抑え、且つ高速応答及び高精度にて検知対象の電圧が基準状態から変動したか否かを検知する電圧検知回路、当該電圧検知回路を含む表示ドライバ、表示装置、並びに比較器を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, the present invention provides a voltage detection circuit that detects whether the voltage of a detection target has changed from a reference state with high speed response and high accuracy while suppressing the scale of the device, a display driver including the voltage detection circuit, and a display device. , and a comparator.
 本発明に係る電圧検知回路は、検知対象の検知電圧が、基準電圧を含む所定の電圧範囲内の電圧値を有する基準状態から変動したことを検知する電圧検知回路であって、前記基準電圧と前記検知電圧との差分に対応した差動電流対を出力する差動段と、第1及び第2の電圧と第1及び第2の結合点を有し、前記差動電流対を前記第1及び第2の電圧に対してそれぞれ電流ミラー変換して生成する第1~第4の電流に基づき、前記第1及び第2の結合点より第1及び第2の信号を出力する結合回路と、を有し、前記結合回路は、前記差動電流対の一方を、前記第1の電圧に基づくソースタイプ(電流吐き出し型)及びシンクタイプ(電流吸い込み型)の一方をなす前記第1及び前記第3の電流に変換し、前記差動電流対の他方を、前記第2の電圧に基づくソースタイプ及びシンクタイプの他方をなす前記第2及び第4の電流に変換し、前記第1の電流と前記第2の電流とが結合される前記第1の結合点に生じた電圧を前記第1の信号として生成すると共に、前記第3の電流と前記第4の電流とが結合される前記第2の結合点に生じた電圧を前記第2の信号として生成し、前記結合回路では、前記基準状態において前記第1の電流が前記第2の電流よりも大きく且つ前記第4の電流が前記第3の電流よりも大きくなるように設定されている。 The voltage detection circuit according to the present invention is a voltage detection circuit that detects that the detection voltage of a detection target has changed from a reference state having a voltage value within a predetermined voltage range including a reference voltage, a differential stage that outputs a differential current pair corresponding to a difference between the detection voltage and the first and second voltages; and a coupling circuit that outputs first and second signals from the first and second coupling points based on first to fourth currents generated by performing current mirror conversion on the second voltage, respectively; The coupling circuit has one of a source type (current source type) and a sink type (current sink type) based on the first voltage. 3, and the other of the differential current pair is converted into the second and fourth currents that are the other of a source type and a sink type based on the second voltage, and A voltage generated at the first connection point where the second current is coupled is generated as the first signal, and the second current is coupled with the third current and the fourth current. generates a voltage generated at a coupling point of the coupling circuit as the second signal, and in the coupling circuit, in the reference state, the first current is larger than the second current and the fourth current is larger than the third current. The current is set to be larger than the current.
 本発明に係る表示ドライバは、映像データ信号に基づき各画素の輝度レベルに対応した階調信号を生成して表示パネルの第1~第k(kは2以上の整数)のデータ線のそれぞれに第1~第kの階調信号を供給する表示ドライバであって、前記表示パネルに映像表示を行う表示モードと、前記第1~第kのデータ線に供給する前記階調信号が正常か否かを検知する検知モードと、を有し、所定の輝度レベルに対応した階調信号の電圧値を基準電圧に設定する設定部と、前記検知モードにおいて、前記第1~第kの階調信号のうちの1つを選択し、選択した1つの前記階調信号の電圧値を検知電圧として取得する選択部と、前記検知電圧が前記基準電圧を含む所定の電圧範囲内の電圧値を有する基準状態から変動しているか否かを検知する電圧検知回路と、を含み、前記電圧検知回路は、前記基準電圧と前記検知電圧との差分に対応した差動電流対を出力する差動段と、第1及び第2の電圧と第1及び第2の結合点を有し、前記差動電流対を前記第1及び第2の電圧に対してそれぞれ電流ミラー変換して生成する第1~第4の電流に基づき、前記第1及び第2の結合点より第1及び第2の信号を出力する結合回路と、前記第1及び第2の信号に基づき、前記検知電圧が前記基準状態から変動しているか否かを判定し判定結果を示す判定信号を出力する判定回路と、を有し、前記結合回路は、前記差動電流対の一方を、前記第1の電圧に基づくソースタイプ(電流吐き出し型)及びシンクタイプ(電流吸い込み型)の一方をなす前記第1及び前記第3の電流に変換し、前記差動電流対の他方を、前記第2の電圧に基づくソースタイプ及びシンクタイプの他方をなす前記第2及び第4の電流に変換し、前記第1の電流と前記第2の電流とが結合される前記第1の結合点に生じた電圧を前記第1の信号として生成すると共に、前記第3の電流と前記第4の電流とが結合される前記第2の結合点に生じた電圧を前記第2の信号として生成し、前記結合回路では、前記基準状態において前記第1の電流が前記第2の電流よりも大きく且つ前記第4の電流が前記第3の電流よりも大きくなるように設定されている。 The display driver according to the present invention generates a gradation signal corresponding to the brightness level of each pixel based on a video data signal and applies it to each of the first to kth (k is an integer of 2 or more) data lines of the display panel. A display driver that supplies first to kth gradation signals, and a display mode for displaying an image on the display panel, and whether or not the gradation signals supplied to the first to kth data lines are normal. and a setting section configured to set a voltage value of a gray scale signal corresponding to a predetermined brightness level as a reference voltage; a selection unit that selects one of the grayscale signals and obtains the voltage value of the selected one of the grayscale signals as a detection voltage; and a reference in which the detection voltage has a voltage value within a predetermined voltage range that includes the reference voltage. a voltage detection circuit that detects whether the voltage has changed from a state, and the voltage detection circuit includes a differential stage that outputs a differential current pair corresponding to a difference between the reference voltage and the detection voltage; first to fourth circuits having first and second voltages and first and second coupling points, and generating current mirror transforms of the differential current pair with respect to the first and second voltages, respectively; a coupling circuit that outputs first and second signals from the first and second coupling points based on the current of the current, and a coupling circuit that outputs first and second signals from the first and second coupling points; a determination circuit that outputs a determination signal indicating the determination result, and the coupling circuit connects one of the differential current pairs to a source type (current source) based on the first voltage converting the first and third currents into one of a type) and a sink type (current sink type), and converting the other of the differential current pair into the other of a source type and a sink type based on the second voltage. converting the second and fourth currents into the second and fourth currents, and generating a voltage generated at the first coupling point where the first current and the second current are coupled as the first signal; , a voltage generated at the second coupling point where the third current and the fourth current are coupled is generated as the second signal; The current is set to be larger than the second current, and the fourth current is set to be larger than the third current.
 本発明に係る表示装置は、夫々に複数の画素部が形成されている第1~第k(kは2以上の整数)のデータ線を有する表示パネルと、映像データ信号に基づき各画素の輝度レベルに対応した階調信号を生成して前記表示パネルの前記第1~第k(kは2以上の整数)のデータ線のそれぞれに第1~第kの階調信号を供給する表示ドライバと、を有し、前記表示ドライバは、前記表示パネルに映像表示を行う表示モードと、前記第1~第kのデータ線に供給する前記階調信号が正常か否かを検知する検知モードと、を有し、所定の輝度レベルに対応した階調信号の電圧値を基準電圧に設定する設定部と、前記検知モードにおいて、前記第1~第kの階調信号のうちの1つを選択し、選択した1つの前記階調信号の電圧値を検知電圧として取得する選択部と、前記第1~第kの階調信号を周期的に1つずつ順に選択させるように前記選択部を制御する制御部と、前記検知電圧が、前記基準電圧を含む所定の電圧範囲内の電圧値を有する基準状態から変動したことを検知する電圧検知回路と、を含み、前記電圧検知回路は、前記基準電圧と前記検知電圧との差分に対応した差動電流対を出力する差動段と、第1及び第2の電圧と第1及び第2の結合点を有し、前記差動電流対を前記第1及び第2の電圧に対してそれぞれ電流ミラー変換して生成する第1~第4の電流に基づき、前記第1及び第2の結合点より第1及び第2の信号を出力する結合回路と、前記第1及び第2の信号に基づき、前記検知電圧が前記基準状態から変動しているか否かを判定し判定結果を示す判定信号を出力する判定回路と、を有し、前記結合回路は、前記差動電流対の一方を、前記第1の電圧に基づくソースタイプ(電流吐き出し型)及びシンクタイプ(電流吸い込み型)の一方をなす前記第1及び前記第3の電流に変換し、前記差動電流対の他方を、前記第2の電圧に基づくソースタイプ及びシンクタイプの他方をなす前記第2及び第4の電流に変換し、前記第1の電流と前記第2の電流とが結合される前記第1の結合点に生じた電圧を前記第1の信号として生成すると共に、前記第3の電流と前記第4の電流とが結合される前記第2の結合点に生じた電圧を前記第2の信号として生成し、前記結合回路では、前記基準状態において前記第1の電流が前記第2の電流よりも大きく且つ前記第4の電流が前記第3の電流よりも大きくなるように設定されている。 A display device according to the present invention includes a display panel having first to k-th (k is an integer of 2 or more) data lines, each of which has a plurality of pixel portions formed therein, and a display panel that has a display panel having first to k-th (k is an integer of 2 or more) data lines, each of which has a plurality of pixel portions formed therein; a display driver that generates gradation signals corresponding to levels and supplies the first to k-th gradation signals to each of the first to k-th (k is an integer of 2 or more) data lines of the display panel; , the display driver has a display mode for displaying an image on the display panel, and a detection mode for detecting whether or not the gradation signals supplied to the first to k-th data lines are normal. a setting unit configured to set a voltage value of a grayscale signal corresponding to a predetermined luminance level as a reference voltage; and a setting unit configured to select one of the first to kth grayscale signals in the detection mode. , a selection unit that acquires the voltage value of the selected grayscale signal as a detection voltage; and a selection unit that controls the selection unit to periodically select one of the first to kth grayscale signals one by one. a control unit; and a voltage detection circuit that detects that the detection voltage has changed from a reference state having a voltage value within a predetermined voltage range that includes the reference voltage, and the voltage detection circuit includes and a differential stage that outputs a differential current pair corresponding to the difference between the detection voltage and the detection voltage, and a differential stage that outputs a differential current pair corresponding to the difference between the first and second voltages and the first and second coupling points, and a coupling circuit that outputs first and second signals from the first and second coupling points based on first to fourth currents generated by performing current mirror conversion on the first and second voltages, respectively; , a determination circuit that determines whether or not the detected voltage has fluctuated from the reference state based on the first and second signals and outputs a determination signal indicating the determination result, and the coupling circuit includes: , converting one of the differential current pair into the first and third currents of one of a source type (current source type) and sink type (current sink type) based on the first voltage; converting the other of the differential current pair into the second and fourth currents that are the other of a source type and a sink type based on the second voltage, and the first current and the second current are combined. The voltage generated at the first coupling point where the third current and the fourth current are coupled is generated as the first signal, and the voltage produced at the second coupling point where the third current and the fourth current are coupled is generated as the first signal. generated as the second signal, and in the coupling circuit, the first current is larger than the second current and the fourth current is larger than the third current in the reference state. It is set.
 本発明に係る比較器は、入力電圧及び基準電圧を受け、前記入力電圧が前記基準電圧より大きいか否かを示す比較結果を出力する比較器であって、前記基準電圧と前記入力電圧との差分に対応した差動電流対を出力する差動段と、第1及び第2の電圧と出力端を有し、前記差動電流対を前記第1及び第2の電圧に対してそれぞれ電流ミラー変換して生成する第1及び第2の電流に基づき、前記出力端より前記比較結果信号を出力する回路部と、を有し、前記回路部は、前記差動電流対の一方を、前記第1の電圧に基づくソースタイプ(電流吐き出し型)及びシンクタイプ(電流吸い込み型)の一方をなす前記第1の電流に変換し、前記差動電流対の他方を、前記第2の電圧に基づくソースタイプ及びシンクタイプの他方をなす前記第2の電流に変換し、前記第1の電流と前記第2の電流とが結合される前記出力端に生じた電圧を前記比較結果信号として生成する。 A comparator according to the present invention is a comparator that receives an input voltage and a reference voltage and outputs a comparison result indicating whether the input voltage is greater than the reference voltage, It has a differential stage that outputs a differential current pair corresponding to the difference, a first voltage and a second voltage, and an output terminal, and current mirrors the differential current pair with respect to the first and second voltages, respectively. a circuit unit that outputs the comparison result signal from the output terminal based on the first and second currents that are converted and generated; The first current is one of a source type (current source type) and a sink type (current sink type) based on the voltage of A voltage generated at the output terminal where the first current and the second current are combined is generated as the comparison result signal.
 本発明では、検知対象とする高電圧の検知電圧と基準電圧との差分に対応した差分電流対を生成し、この差動電流対を低電圧に基づくソース電流及びシンク電流に夫々変換する。そして、両電流を出力端で結合し、この出力端に生じた電圧に基づき、検知対象となる高電圧の検知電圧が、基準電圧に基づく基準状態から変動したか否かを判定する。 In the present invention, a differential current pair corresponding to the difference between a high voltage detection voltage to be detected and a reference voltage is generated, and this differential current pair is converted into a source current and a sink current based on a low voltage, respectively. Then, both currents are combined at the output end, and based on the voltage generated at the output end, it is determined whether the detection voltage of the high voltage to be detected has changed from the reference state based on the reference voltage.
 これにより、高感度及び高精度にて、入力された検知電圧に応じてその検知結果を高速に出力することが可能となる。 This makes it possible to output detection results at high speed with high sensitivity and precision in accordance with the input detection voltage.
アクティブマトリクス型の表示装置の構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing the configuration of an active matrix display device. 第1の実施例による電圧検知回路50の構成を示す回路図である。FIG. 2 is a circuit diagram showing the configuration of a voltage detection circuit 50 according to a first embodiment. 電圧検知回路50による検出結果の態様を示す図である。5 is a diagram showing an aspect of a detection result by a voltage detection circuit 50. FIG. 差動段10の内部構成の一例を示す回路図である。3 is a circuit diagram showing an example of an internal configuration of a differential stage 10. FIG. 差動段10の内部構成の他の一例を示す回路図である。3 is a circuit diagram showing another example of the internal configuration of the differential stage 10. FIG. 結合回路30の他の一例としての結合回路30Aの構成を示す回路図である。3 is a circuit diagram showing the configuration of a coupling circuit 30A as another example of the coupling circuit 30. FIG. 結合回路30の他の一例としての結合回路30Bの構成を示す回路図である。3 is a circuit diagram showing the configuration of a coupling circuit 30B as another example of the coupling circuit 30. FIG. 電圧検知回路50の他の一例として、結合回路30Cを含む電圧検知回路50_1の構成を示す回路図である。5 is a circuit diagram showing a configuration of a voltage detection circuit 50_1 including a coupling circuit 30C as another example of the voltage detection circuit 50. FIG. 電圧検知回路50_1による第1の検出結果(O1、O2、JD1)の態様を示す図である。It is a figure which shows the aspect of the 1st detection result (O1, O2, JD1) by voltage detection circuit 50_1. 電圧検知回路50_1による第2の検出結果(O3、O4、JD2)の態様を示す図である。It is a figure which shows the aspect of the 2nd detection result (O3, O4, JD2) by voltage detection circuit 50_1. 本発明に係る第2の実施例による表示装置200の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a display device 200 according to a second embodiment of the present invention. 表示装置200に含まれるデータドライバ120_1の内部構成を示すブロック図である。2 is a block diagram showing the internal configuration of a data driver 120_1 included in the display device 200. FIG. 本発明に係る第3の実施例による比較器51の構成を示す回路図である。FIG. 7 is a circuit diagram showing the configuration of a comparator 51 according to a third embodiment of the present invention.
 図2Aは、本発明の第1の実施例による電圧検知回路50の構成の一例を示す回路図である。尚、電圧検知回路50は、基準電圧との比較により、検知対象となる検知電圧における予め設定された基準状態に対して、当該検知電圧がその基準状態から変動したか否かを検知する電圧検知回路である。 FIG. 2A is a circuit diagram showing an example of the configuration of the voltage detection circuit 50 according to the first embodiment of the present invention. Note that the voltage detection circuit 50 is a voltage detection circuit that detects whether or not the detection voltage has changed from a preset reference state of the detection voltage to be detected by comparing it with a reference voltage. It is a circuit.
 図2Aに示すように、電圧検知回路50は、差動段10、結合回路30及び判定回路40を有する。 As shown in FIG. 2A, the voltage detection circuit 50 includes a differential stage 10, a coupling circuit 30, and a determination circuit 40.
 差動段10は、基準電圧(Vref)と、検知対象となる高電圧の検知電圧(Vdet)との差分に対応した差動電流対(Is1、Is2)を出力する。 The differential stage 10 outputs a differential current pair (Is1, Is2) corresponding to the difference between the reference voltage (Vref) and the high voltage detection voltage (Vdet) to be detected.
 結合回路30は、差動電流対(Is1、Is2)を、第1系統の電流対(I1、I2)と、第2系統の電流対(I3、I4)に変換する。図2Aにおいて、電流I1、I3はロジック電源電圧VDDに基づくソースタイプの電流、つまり電流吐き出し型の電流であり、電流I2、I4は接地電圧VSSに基づくシンクタイプの電流、つまり電流吸い込み型の電流である。そして、結合回路30は、第1系統の電流対(I1、I2)及び第2系統の電流対(I3、I4)それぞれのソースタイプ及びシンクタイプの電流対を結合し、各結合点(n5、n6)から、低電圧の第1及び第2の論理信号O1及びO2を出力する。 The coupling circuit 30 converts the differential current pair (Is1, Is2) into a first system current pair (I1, I2) and a second system current pair (I3, I4). In FIG. 2A, currents I1 and I3 are source type currents, that is, current source type currents, based on the logic power supply voltage VDD, and currents I2 and I4 are sink type currents, that is, current sinking type currents, based on the ground voltage VSS. It is. Then, the coupling circuit 30 couples the source type and sink type current pairs of the first system current pair (I1, I2) and the second system current pair (I3, I4), and connects each connection point (n5, n6) outputs low voltage first and second logic signals O1 and O2.
 なお、結合回路30では、基準状態時に、第1系統の電流対(I1、I2)におけるソースタイプの第1の電流(I1)が、シンクタイプの第2の電流(I2)より大きくなるように構成されている。更に、結合回路30では、当該基準状態時に、第2系統の電流対(I3、I4)におけるシンクタイプの第4の電流(I4)がソースタイプの第3の電流(I3)より大きくなるように構成されている。 In addition, in the coupling circuit 30, in the reference state, the first current (I1) of the source type in the current pair (I1, I2) of the first system is set to be larger than the second current (I2) of the sink type. It is configured. Further, in the coupling circuit 30, the fourth current (I4) of the sink type in the current pair (I3, I4) of the second system is made larger than the third current (I3) of the source type in the reference state. It is configured.
 判定回路40は、図2Bに示すように、結合回路30から出力される第1及び第2の論理信号O1及びO2に基づき、検知電圧(Vdet)が基準状態(基準電圧Vrefを含む所定の電圧範囲内)から変動しているか否かを判定する。すなわち、図2Bに示すように、判定回路40は、第1及び第2の論理信号O1及びO2が互いに異なる論理値のときは正常(検知電圧Vdetが基準状態)、同一論理値のときは異常(検知電圧Vdetが基準状態から逸脱している)と判定する。すなわち判定回路40は、2ビットの論理信号O1、O2を受け、正常(H、Lの一方)又は異常(H、Lの他方)を示す1ビットの論理信号JDに変換する。なお、2ビットの論理信号O1、O2のままでも正常、異常の判定は可能であるので、本発明の電圧検知回路は、判定回路40を含まない構成であってもよい。 As shown in FIG. 2B, the determination circuit 40 determines whether the detection voltage (Vdet) is in a reference state (a predetermined voltage including the reference voltage Vref) based on the first and second logic signals O1 and O2 output from the coupling circuit 30. (within the range). That is, as shown in FIG. 2B, the determination circuit 40 is normal when the first and second logic signals O1 and O2 have different logical values (the detection voltage Vdet is the reference state), and abnormal when they have the same logical value. (The detected voltage Vdet deviates from the reference state). That is, the determination circuit 40 receives the 2-bit logic signals O1 and O2 and converts them into a 1-bit logic signal JD indicating normality (one of H or L) or abnormality (the other of H or L). Note that since it is possible to determine normality or abnormality even with the 2-bit logic signals O1 and O2, the voltage detection circuit of the present invention may have a configuration that does not include the determination circuit 40.
 ここで、電圧検知回路50は、高電圧信号を検知対象とする場合には、差動段10が高電圧範囲(AVSS~AVDD)に対応した高電圧素子で形成され、結合回路30及び判定回路40はロジック電源に基づく低電圧範囲(VSS~VDD)に対応した低電圧素子で形成される。 Here, in the voltage detection circuit 50, when a high voltage signal is to be detected, the differential stage 10 is formed of a high voltage element corresponding to a high voltage range (AVSS to AVDD), and the coupling circuit 30 and the determination circuit Reference numeral 40 is formed of a low voltage element corresponding to a low voltage range (VSS to VDD) based on a logic power supply.
 以下に、図2A、図2Bに示す電圧検知回路50について詳細に説明する。 Below, the voltage detection circuit 50 shown in FIGS. 2A and 2B will be described in detail.
 尚、電圧検知回路50は、検知電圧Vdetが基準電圧Vrefを含む所定の電圧範囲内にその電圧値が含まれる基準状態に維持されている(正常)のか否か(異常)を検知する。つまり、検知電圧Vdetが基準電圧Vrefと略同一となるときを基準状態とした場合に、検知電圧Vdetが基準電圧Vrefに対して所定値以上ずれた状態を異常と検知する。なお説明の便宜上、これ以降の各実施例の説明は、基準電圧Vrefと検知電圧Vdetとが等しいときを基準状態として説明を行う。また本発明の実施例では、ロジック電源電圧よりも高い高電圧信号を対象として検知動作を行う電圧検知回路の構成で説明する。 Note that the voltage detection circuit 50 detects whether the detected voltage Vdet is maintained at a reference state in which the voltage value is included within a predetermined voltage range that includes the reference voltage Vref (normal) or not (abnormal). That is, when the reference state is defined as when the detection voltage Vdet is substantially the same as the reference voltage Vref, a state in which the detection voltage Vdet deviates from the reference voltage Vref by a predetermined value or more is detected as abnormal. For convenience of explanation, the following descriptions of each embodiment will be made assuming that the reference state is when the reference voltage Vref and the detection voltage Vdet are equal. Further, in the embodiments of the present invention, the configuration of a voltage detection circuit that performs a detection operation on a high voltage signal higher than the logic power supply voltage will be described.
 図2Aに示すように、差動段10は、高電位のアナログ電源電圧AVDDを受けるAVDD電源端子と、アナログ接地電圧AVSSを受けるAVSS電源端子とを有する、AVDD及びAVSS間の電圧で動作する高電圧素子で構成される高電圧回路である。結合回路30は、低電位のロジック電源電圧VDDを受けるVDD電源端子と、ロジック接地電圧VSSを受けるVSS電源端子との間で動作する低耐圧の電圧素子で構成される低電圧回路である。 As shown in FIG. 2A, the differential stage 10 has an AVDD power supply terminal receiving a high potential analog power supply voltage AVDD and an AVSS power supply terminal receiving an analog ground voltage AVSS. This is a high voltage circuit made up of voltage elements. The coupling circuit 30 is a low-voltage circuit composed of a low-voltage voltage element that operates between a VDD power supply terminal receiving a low-potential logic power supply voltage VDD and a VSS power supply terminal receiving a logic ground voltage VSS.
 なお、各実施例では、アナログ電源電圧AVDD、アナログ接地電圧AVSS、ロジック電源電圧VDD、ロジック接地電圧VSSの関係は、AVDD>VDD>VSS≧AVSSの例で説明する。 In each embodiment, the relationship among the analog power supply voltage AVDD, the analog ground voltage AVSS, the logic power supply voltage VDD, and the logic ground voltage VSS will be explained using an example of AVDD>VDD>VSS≧AVSS.
 図2Aにおいて、差動段10は、例えばオペアンプからなり、高電圧信号に対する基準電圧Vref及び検知対象となる検知電圧Vdetを受け、これら基準電圧Vrefと検知電圧Vdetとの差電圧に応じた差動出力電流Is1、Is2を生成する。差動段10は、差動出力電流Is1をノードn1を介して結合回路30に供給すると共に、差動出力電流Is2をノードn2を介して結合回路30に供給する。 In FIG. 2A, the differential stage 10 is composed of, for example, an operational amplifier, receives a reference voltage Vref for a high voltage signal and a detection voltage Vdet to be detected, and generates a differential signal according to the difference voltage between the reference voltage Vref and the detection voltage Vdet. Generate output currents Is1 and Is2. Differential stage 10 supplies differential output current Is1 to coupling circuit 30 via node n1, and supplies differential output current Is2 to coupling circuit 30 via node n2.
 結合回路30は、NチャネルMOS型のトランジスタ21、22、33~35、及びPチャネルMOS型のトランジスタ23~25を有する。 The coupling circuit 30 has N-channel MOS type transistors 21, 22, 33-35 and P-channel MOS type transistors 23-25.
 トランジスタ21は、自身のドレイン及びゲートがノードn1に接続されており、ソースがVSS電源端子に接続されている。トランジスタ22は、自身のゲートがトランジスタ21のゲートに接続されており、自身のソースがVSS電源端子に接続されている。更に、当該トランジスタ22は、自身のドレインがトランジスタ23のドレイン及びゲートに接続されている。トランジスタ23のソースはVDD電源端子に接続されている。トランジスタ24及び25は、夫々のソースがVDD電源端子に接続されており、夫々のゲートがノードn3を介してトランジスタ23のゲートに接続されている。 The transistor 21 has its drain and gate connected to the node n1, and its source connected to the VSS power supply terminal. The transistor 22 has its own gate connected to the gate of the transistor 21, and its own source connected to the VSS power supply terminal. Further, the transistor 22 has its own drain connected to the drain and gate of the transistor 23. The source of transistor 23 is connected to the VDD power supply terminal. The transistors 24 and 25 have their respective sources connected to the VDD power supply terminal, and their respective gates connected to the gate of the transistor 23 via the node n3.
 トランジスタ33は、自身のドレイン及びゲートがノードn2に接続されており、ソースがVSS電源端子に接続されている。 The transistor 33 has its drain and gate connected to the node n2, and its source connected to the VSS power supply terminal.
 トランジスタ34及び35は、夫々のソースがVSS電源端子に接続されており、夫々のゲートがノードn2を介してトランジスタ33のゲートに接続されている。トランジスタ34は、自身のドレインがノードn5を介してトランジスタ24のドレインに接続されている。トランジスタ35は、自身のドレインがノードn5を介してトランジスタ24のドレインに接続されている。 The transistors 34 and 35 have their respective sources connected to the VSS power supply terminal, and their respective gates connected to the gate of the transistor 33 via the node n2. The transistor 34 has its own drain connected to the drain of the transistor 24 via the node n5. The transistor 35 has its own drain connected to the drain of the transistor 24 via the node n5.
 ここで、上記したノードn5から、当該ノードn5に生じた電圧を有する信号が上記した論理信号O1として判定回路40に供給される。更に、上記したノードn6から、当該ノードn6に生じた電圧を有する信号が上記した論理信号O2として判定回路40に供給される。 Here, a signal having the voltage generated at the node n5 is supplied from the above-described node n5 to the determination circuit 40 as the above-described logic signal O1. Furthermore, a signal having the voltage generated at the node n6 is supplied from the above-described node n6 to the determination circuit 40 as the above-described logic signal O2.
 かかる構成により、差動段10から供給された差動出力電流Is1は、Nチャネル型のトランジスタで構成されるカレントミラー(21、22)により、ロジック接地電圧VSSに対する折り返し電流となる。当該折返し電流は、Pチャネル型のトランジスタで構成されるカレントミラー(23、24)及び(23、25)により、ロジック電源電圧VDDに対して折り返され、2系統のソースタイプの電流I1、I3が生成される。また差動段10の差動出力電流Is2は、Nチャネル型トランジスタで構成されるカレントミラー(33、34)及び(33、35)により、ロジック接地電圧VSSに対して折り返され、2系統のシンクタイプの電流I2及びI4が生成される。 With this configuration, the differential output current Is1 supplied from the differential stage 10 becomes a folded current with respect to the logic ground voltage VSS by the current mirror (21, 22) composed of N-channel transistors. The folded current is folded back against the logic power supply voltage VDD by current mirrors (23, 24) and (23, 25) composed of P-channel transistors, and the two source type currents I1 and I3 are generated. In addition, the differential output current Is2 of the differential stage 10 is folded back to the logic ground voltage VSS by current mirrors (33, 34) and (33, 35) composed of N-channel transistors, and is sent to two sink systems. Type currents I2 and I4 are generated.
 尚、一般的には、ソースタイプとシンクタイプの電流対は、差動出力電流Is1及びIs2の一方が、奇数個のカレントミラー部の折り返しにより生成され、他方が偶数個のカレントミラーの折り返しにより生成される。 Generally speaking, in a source type and sink type current pair, one of the differential output currents Is1 and Is2 is generated by folding back an odd number of current mirror sections, and the other is generated by folding back an even number of current mirror sections. generated.
 ここで、ソースタイプの電流I1及びシンクタイプの電流I2を第1系統の電流対とし、ソースタイプの電流I3とシンクタイプの電流I4を第2系統の電流対とする。この際、第1系統の電流対のうちのソースタイプの電流I1がノードn5に送出されつつ、シンクタイプの電流I2がノードn5から引き抜かれることで両電流(I1、I2)がノードn5で結合され、当該ノードn5に生じた電圧を有する論理信号O1が出力される。 Here, the source type current I1 and the sink type current I2 are defined as a first system current pair, and the source type current I3 and sink type current I4 are defined as a second system current pair. At this time, the source type current I1 of the current pair of the first system is sent to the node n5, and the sink type current I2 is extracted from the node n5, so that both currents (I1, I2) are combined at the node n5. The logic signal O1 having the voltage generated at the node n5 is output.
 また、第2系統の電流対のうちのソースタイプの電流I3がノードn6に送出されつつ、シンクタイプの電流I4がノードn6から引き抜かれることで両電流(I3、I4)がノードn6で結合され、当該ノードn6に生じた電圧を有する論理信号O2が出力される。 In addition, the source type current I3 of the current pair of the second system is sent to the node n6, and the sink type current I4 is extracted from the node n6, so that both currents (I3, I4) are combined at the node n6. , a logic signal O2 having the voltage generated at the node n6 is output.
 論理信号O1及びO2の各々は、一方が増加すれば他方が減少する差動出力電流Is1、Is2の一方と他方のそれぞれを電源電圧VDD及び接地電圧VSSに対して電流ミラー変換したソースタイプの電流とシンクタイプの電流との結合により生成するため、検知結果(論理値)を表すロジック電源電圧VDD又はロジック接地電圧VSSの状態に速やかに変化するので、高速応答が為される。 Each of the logic signals O1 and O2 is a source type current obtained by current-mirror-converting one and the other of the differential output currents Is1 and Is2, in which one increases and the other decreases, respectively, with respect to the power supply voltage VDD and the ground voltage VSS. Since it is generated by the combination of the current and the sink type current, the state quickly changes to the logic power supply voltage VDD or logic ground voltage VSS representing the detection result (logical value), resulting in a high-speed response.
 ところで、結合回路30では、電流I1~I4を夫々生成するトランジスタ24、25、34及び35の各電流駆動能力(電流量)は、基準電圧Vrefと検知電圧Vdetの電位関係が基準状態のときに、
       I1>I2、且つ、I3<I4
 となるように設定される。基準状態において、シンクタイプの電流とソースタイプの電流との結合点の電圧は電流駆動能力(電流量)の大きい方に引っ張られ、ロジック電源電圧VDD又はロジック接地電圧VSSの状態で安定となる。また実際に流れる電流は、結合されたシンクタイプとソースタイプの電流の小さい方の電流となる。
By the way, in the coupling circuit 30, the current driving capability (current amount) of the transistors 24, 25, 34, and 35 that generate the currents I1 to I4, respectively, is determined when the potential relationship between the reference voltage Vref and the detection voltage Vdet is in the reference state. ,
I1>I2 and I3<I4
It is set so that In the reference state, the voltage at the junction of the sink type current and the source type current is pulled towards the one with the larger current drive capability (current amount), and becomes stable at the logic power supply voltage VDD or the logic ground voltage VSS. Furthermore, the current that actually flows is the smaller of the combined sink type and source type currents.
 尚、基準状態における電流I1及びI2の電流差、並びに電流I3及びI4の電流差は、基準状態とみなす検知電圧Vdetの許容誤差範囲や、電圧検知回路を構成するトランジスタの製造ばらつき等を考慮して設定される。 Note that the current difference between the currents I1 and I2 and the current difference between the currents I3 and I4 in the reference state are determined by taking into account the tolerance range of the detection voltage Vdet, which is considered to be the reference state, and manufacturing variations in the transistors that constitute the voltage detection circuit. is set.
 これにより、検知電圧Vdetが基準電圧Vrefとほぼ等しい基準状態(Vref-dV1≦Vdet≦Vref+dV2)では、結合回路30の第1出力端(ノードn5)の電圧はH:ハイレベル(VDD)、第2出力端(ノードn6)の電圧はL:ローレベル(VSS)となる。尚、dV1は、基準電圧Vrefに対する低電圧側へのずれ量として許容可能な下限幅を示し、dV2は高電圧側へのずれ量として許容可能な上限幅を示す。 As a result, in a reference state where the detection voltage Vdet is approximately equal to the reference voltage Vref (Vref-dV1≦Vdet≦Vref+dV2), the voltage at the first output terminal (node n5) of the coupling circuit 30 is H: high level (VDD), The voltage at the second output terminal (node n6) becomes L: low level (VSS). Note that dV1 indicates the lower limit width allowable as the amount of deviation toward the low voltage side with respect to the reference voltage Vref, and dV2 indicates the upper limit width allowable as the amount of deviation toward the high voltage side.
 よって、この際、結合回路30は、図2Bに示すように、ハイレベル(H)の論理信号O1及びローレベル(L)の論理信号O2を出力する。 Therefore, at this time, the coupling circuit 30 outputs a high level (H) logic signal O1 and a low level (L) logic signal O2, as shown in FIG. 2B.
 一方、検知電圧Vdetが基準電圧Vrefに対して予め設定した許容下限電圧より低電位(Vdet<Vref-dV1)のときは、結合回路30は、ローレベル(L)の論理信号O1及びローレベル(L)の論理信号O2を出力する。また、検知電圧Vdetが基準電圧Vrefに対して予め設定した許容上限電圧より高電位(Vdet>Vref+dV2)のときは、結合回路30は、ハイレベル(H)の論理信号O1、及びハイレベル(H)の論理信号O2を出力する。 On the other hand, when the detection voltage Vdet is lower than the allowable lower limit voltage preset with respect to the reference voltage Vref (Vdet<Vref-dV1), the coupling circuit 30 outputs the low level (L) logic signal O1 and the low level (L) logic signal O1. L) logic signal O2 is output. Further, when the detection voltage Vdet is higher than the allowable upper limit voltage preset with respect to the reference voltage Vref (Vdet>Vref+dV2), the coupling circuit 30 outputs the high level (H) logic signal O1 and the high level (H) logic signal O1. ) outputs the logic signal O2.
 判定回路40は、結合回路30から出力された論理信号O1及びO2を受け、論理信号O1及びO2に基づき、検知電圧Vdetが基準状態から変動しているかどうかを判定し、判定信号JDを出力する。 The determination circuit 40 receives the logic signals O1 and O2 output from the coupling circuit 30, determines whether the detection voltage Vdet has fluctuated from the reference state based on the logic signals O1 and O2, and outputs the determination signal JD. .
 すなわち、図2Bに示すように、判定回路40は、論理信号O1及びO2が夫々ローレベル(L)及びハイレベル(H)のとき基準状態と同等、つまり正常と判定する。また、判定回路40は、論理信号O1及びO2が共にローレベル(L)のときは、検知電圧Vdetが基準状態より低下していることを検知して異常と判定する。また、判定回路40は、論理信号O1及びO2が共にハイレベル(H)のとき、検知電圧Vdetが基準状態より上昇していることを検知して異常と判定する。 That is, as shown in FIG. 2B, the determination circuit 40 determines that when the logic signals O1 and O2 are at low level (L) and high level (H), respectively, they are equivalent to the reference state, that is, are normal. Further, when the logic signals O1 and O2 are both at low level (L), the determination circuit 40 detects that the detection voltage Vdet is lower than the reference state and determines that there is an abnormality. Further, when the logic signals O1 and O2 are both at high level (H), the determination circuit 40 detects that the detection voltage Vdet is higher than the reference state and determines that there is an abnormality.
 尚、電圧検知回路50としては、活性化及び非活性化を指示する制御信号を受け、当該制御信号に応じて自身を活性化(動作状態)又は非活性化(停止状態)する制御スイッチを備えてもよい。制御スイッチとしては、オフ状態時に、差動段10から出力された差動出力電流Is1、Is2が結合回路30に供給されるのを遮断する第1のスイッチペアや、オン状態時に、結合回路30の第1及び第2出力端(ノードn5、n6)を基準状態と同じ論理値(VDD電源端子又はVSS電源端子の電位)に固定する第2のスイッチペアを用いる。つまり、上記制御信号が活性化を示す場合には、第1のスイッチペアがオン状態、第2のスイッチペアがオフ状態に設定され、当該制御信号が非活性化を示す場合には、第1のスイッチペアがオフ状態、第2のスイッチペアがオン状態に設定される。 Note that the voltage detection circuit 50 includes a control switch that receives a control signal instructing activation and deactivation, and activates (operating state) or deactivates (stops state) itself according to the control signal. It's okay. Examples of the control switch include a first switch pair that blocks the differential output currents Is1 and Is2 output from the differential stage 10 from being supplied to the coupling circuit 30 in the off state, and a first switch pair that blocks the coupling circuit 30 from being supplied to the coupling circuit 30 in the on state. A second switch pair is used that fixes the first and second output terminals (nodes n5, n6) of the device to the same logical value as the reference state (the potential of the VDD power supply terminal or the VSS power supply terminal). That is, when the control signal indicates activation, the first switch pair is set to the on state and the second switch pair is set to the off state, and when the control signal indicates deactivation, the first switch pair is set to the on state and the second switch pair is set to the off state. The second switch pair is set to the off state, and the second switch pair is set to the on state.
 これにより、所定の検知動作期間のみ電圧検知回路50を活性化することで、電圧検知回路50の電流消費を最小限に抑えることができる。 Thereby, current consumption of the voltage detection circuit 50 can be minimized by activating the voltage detection circuit 50 only during a predetermined detection operation period.
 次に、結合回路30における、基準状態での電流I1~I4に対する電流駆動能力(電流量)の設定について説明する。 Next, the setting of the current driving capacity (current amount) for the currents I1 to I4 in the reference state in the coupling circuit 30 will be explained.
 基準状態における電流I1~I4の電流量の比は、例えばカラントミラーの電流ミラー比を決めるカレントミラーの入力側トランジスタと出力側トランジスタのチャネル幅比で設定できる。 The ratio of the current amounts of the currents I1 to I4 in the reference state can be set, for example, by the channel width ratio of the input side transistor and the output side transistor of the current mirror, which determines the current mirror ratio of the current mirror.
 ここで、差動段10は、検知電圧Vdetが基準電圧Vrefと同等の基準状態のときには、差動出力電流Is1及びIs2は、
       Is1=Is2
 となり、
 検知電圧Vdetが基準電圧Vrefより高電圧のときには、
       Is1>Is2
 となり、
 検知電圧Vdetが基準電圧Vrefより低電圧のときには、
       Is1<Is2
 となる。
Here, in the differential stage 10, when the detection voltage Vdet is in a reference state equivalent to the reference voltage Vref, the differential output currents Is1 and Is2 are as follows.
Is1=Is2
Then,
When the detection voltage Vdet is higher than the reference voltage Vref,
Is1>Is2
Then,
When the detection voltage Vdet is lower than the reference voltage Vref,
Is1<Is2
becomes.
 ここで、Nチャネル型カレントミラー(21、22)、(33、34)の電流ミラー比を1、すなわち入力側トランジスタと出力側トランジスタのチャネル幅Wの比を同一のチャネル幅(W=Wn)に設定する。更に、Pチャネル型カレントミラー(23、25)の電流ミラー比を1、すなわち入力側トランジスタと出力側トランジスタのチャネル幅Wの比を同一(W=Wp)に設定する。なお便宜上、結合回路30における同一導電型トランジスタ同士のチャネル長は同一とした場合で説明する。 Here, the current mirror ratio of the N-channel current mirrors (21, 22) and (33, 34) is 1, that is, the ratio of the channel width W of the input side transistor and the output side transistor is the same channel width (W = Wn). Set to . Furthermore, the current mirror ratio of the P-channel type current mirrors (23, 25) is set to 1, that is, the ratio of the channel widths W of the input side transistor and the output side transistor is set to be the same (W=Wp). For convenience, the description will be made assuming that the channel lengths of the transistors of the same conductivity type in the coupling circuit 30 are the same.
 一方、Pチャネル型カレントミラー(23、24)の電流ミラー比は1より大、すなわち入力側のトランジスタ23のチャネル幅(W=Wp)よりも、出力側のトランジスタ24のチャネル幅を大きなチャネル幅(W=Wp+)に設定する。 On the other hand, the current mirror ratio of the P-channel current mirror (23, 24) is greater than 1, that is, the channel width of the transistor 24 on the output side is larger than the channel width of the transistor 23 on the input side (W=Wp). (W=Wp+).
 これにより、基準状態時における電流I1、I2の電流量は、
       I1>I2
 となる。
As a result, the amounts of currents I1 and I2 in the standard state are:
I1>I2
becomes.
 またNチャネル型カレントミラー(33、35)の電流ミラー比も1より大、すなわち入力側のトランジスタ33のチャネル幅(W=Wn)よりも出力側のトランジスタ35のチャネル幅比を大きなチャネル幅(W=Wn+)に設定する。これにより、基準状態の電流I3、I4の電流量は、
       I3<I4
 となる。
The current mirror ratio of the N-channel current mirror (33, 35) is also larger than 1, that is, the channel width ratio of the output side transistor 35 is larger than the channel width of the input side transistor 33 (W=Wn). W=Wn+). As a result, the amount of currents I3 and I4 in the reference state is
I3<I4
becomes.
 なお、基準状態時の電流I1、I2の電流量の設定は、例えば検知電圧Vdetが、基準電圧Vrefに対して予め設定した許容下限電圧(Vref-dV1)のときに、電流I1、I2の電流量が、
       I1=I2
 となるように設定する。
Note that the current amounts of the currents I1 and I2 in the reference state are set, for example, when the detection voltage Vdet is the allowable lower limit voltage (Vref - dV1) set in advance with respect to the reference voltage Vref. The amount is
I1=I2
Set it so that
 同様に、基準状態の電流I3、I4の電流量の設定は、検知電圧Vdetが、基準電圧Vrefに対して予め設定した許容上限電圧(Vref+dV2)のときに、電流I3、I4の電流量が、
       I3=I4
 となるように設定する。
Similarly, the current amounts of the currents I3 and I4 in the reference state are set such that when the detection voltage Vdet is the allowable upper limit voltage (Vref+dV2) set in advance with respect to the reference voltage Vref, the current amounts of the currents I3 and I4 are set as follows.
I3=I4
Set it so that
 この場合、検知電圧Vdetが基準電圧Vrefを含む許容上限電圧から許容下限電圧の範囲内であれば基準状態として判定させることができ、許容上限電圧から許容下限電圧の範囲外であれば異常状態として判定させることができる。すなわち、基準状態における上記した電流I1~I4の電流量の比の設定により、検知電圧Vdetの基準状態の判定に対し任意の許容範囲をもたせることができる。これにより、電圧検知回路を構成するトランジスタの製造ばらつきや、環境温度による特性変動に対しても十分マージンのある電圧検知回路を実現できる。 In this case, if the detection voltage Vdet is within the range from the allowable upper limit voltage to the allowable lower limit voltage including the reference voltage Vref, it can be determined as a reference state, and if it is outside the range from the allowable upper limit voltage to the allowable lower limit voltage, it is determined to be an abnormal state. It can be judged. That is, by setting the ratio of the current amounts of the above-described currents I1 to I4 in the reference state, an arbitrary allowable range can be provided for the determination of the reference state of the detection voltage Vdet. As a result, it is possible to realize a voltage detection circuit that has a sufficient margin against manufacturing variations in transistors constituting the voltage detection circuit and characteristic fluctuations due to environmental temperature.
 次に、図2Aに示す電圧検知回路50による効果について説明する。 Next, the effects of the voltage detection circuit 50 shown in FIG. 2A will be explained.
 電圧検知回路50では、差動段10の差動出力電流Is1、Is2の一方と他方をそれぞれソースタイプとシンクタイプの電流対に変換して2系統の電流対を生成する。そして、各系統毎にソースタイプとシンクタイプの電流同士を結合させ、その結合点から2系統の論理信号O1及びO2を取り出す。 The voltage detection circuit 50 generates two current pairs by converting one and the other of the differential output currents Is1 and Is2 of the differential stage 10 into source type and sink type current pairs, respectively. Then, the source type and sink type currents are combined for each system, and two systems of logic signals O1 and O2 are taken out from the connection point.
 差動段10は、基準電圧Vrefと検知電圧Vdetの電圧差が生じると、差動出力電流Is1、Is2の一方の電流量を増加し、他方の電流量を減少させる。このため結合回路30の第1及び第2の結合点(ノードn5、n6)の電圧は、ロジック電源電圧VDD又はロジック接地電圧VSSに速やかに変化する。すなわち、結合回路30から取り出される論理信号O1及びO2は、速やかに検知結果の論理確定が可能である。 When a voltage difference occurs between the reference voltage Vref and the detection voltage Vdet, the differential stage 10 increases the amount of one of the differential output currents Is1 and Is2 and decreases the amount of the other. Therefore, the voltages at the first and second coupling points (nodes n5, n6) of the coupling circuit 30 quickly change to the logic power supply voltage VDD or the logic ground voltage VSS. That is, the logical signals O1 and O2 taken out from the coupling circuit 30 can quickly determine the logic of the detection result.
 したがって、図2Aに示す電圧検知回路50によれば、トランジスタの製造ばらつき等の影響が小さく、且つ高感度及び高精度にて、入力された検知電圧Vdetに対して、その検知結果(O1、O2)の論理値を速やかに確定することが可能となる。また、図2Aに示す電圧検知回路50は、基準電圧Vrefに対する検知電圧Vdetの状態を、2ビットのデジタル信号(O1、O2)に変換するアナログ/デジタル変換回路を実現している。 Therefore, according to the voltage detection circuit 50 shown in FIG. 2A, the influence of manufacturing variations of transistors, etc. is small, and the detection results (O1, O2 ) can be quickly determined. Further, the voltage detection circuit 50 shown in FIG. 2A realizes an analog/digital conversion circuit that converts the state of the detection voltage Vdet with respect to the reference voltage Vref into a 2-bit digital signal (O1, O2).
 また、当該電圧検知回路50によれば、特許文献1の図4に示すような許容下限電圧及び許容上限電圧を夫々示す2つの基準電圧を用いずに、検知電圧Vdetが正常な電圧範囲内にあるか否かの判定を確定できるため、回路構成が簡素化できる。 Further, according to the voltage detection circuit 50, the detection voltage Vdet is within a normal voltage range without using two reference voltages indicating the allowable lower limit voltage and the allowable upper limit voltage, respectively, as shown in FIG. 4 of Patent Document 1. Since it is possible to determine whether or not there is a signal, the circuit configuration can be simplified.
 更に、図2Aに示す電圧検知回路50では、高電圧(AVDD~AVSS)の検知電圧に対して、差動段10のみ高電圧(高耐圧)トランジスタで構成すれば良い。つまり、その他の構成である結合回路30及び判定回路40は、低電圧(VDD~VSS)で動作する低電圧(低耐圧)トランジスタで構成することができるので、電圧検知回路を少ない回路面積で且つ低消費電力で実現可能となる。 Further, in the voltage detection circuit 50 shown in FIG. 2A, only the differential stage 10 may be configured with a high voltage (high breakdown voltage) transistor for the detection voltage of high voltage (AVDD to AVSS). In other words, the other configurations of the coupling circuit 30 and the determination circuit 40 can be configured with low voltage (low breakdown voltage) transistors that operate at low voltage (VDD to VSS), so the voltage detection circuit can be configured with a small circuit area and This can be achieved with low power consumption.
 尚、図2Aは、電源電圧の電位関係が
AVDD>VDD>VSS≧AVSS   … (1)
 の構成例を示している。例えば、電位関係を逆転し、
AVSS≧VSS>VDD>AVDD   … (2)
 とするときに、図2Aの結合回路30のトランジスタの導電型を入れ替えた構成としてもよい。図2Aを含む各実施例では、上記(1)の電位関係の構成で説明する。
In addition, in FIG. 2A, the potential relationship of the power supply voltage is AVDD>VDD>VSS≧AVSS... (1)
An example of the configuration is shown. For example, by reversing the potential relationship,
AVSS≧VSS>VDD>AVDD… (2)
In this case, the conductivity types of the transistors in the coupling circuit 30 in FIG. 2A may be exchanged. Each of the embodiments including FIG. 2A will be described using the potential relationship configuration in (1) above.
 図3は、図2Aに示す差動段10の具体例を示す回路図である。尚、結合回路30及び判定回路40は図2Aと同様であり説明は省略する。 FIG. 3 is a circuit diagram showing a specific example of the differential stage 10 shown in FIG. 2A. Note that the coupling circuit 30 and the determination circuit 40 are the same as those shown in FIG. 2A, and their explanation will be omitted.
 図3に示す一例では、差動段10は、基準電圧Vrefと検知電圧Vdetを差動入力するPチャネル型の差動対(11、12)と、当該差動対のテイルに電流を供給する電流源トランジスタ13で構成される。 In the example shown in FIG. 3, the differential stage 10 includes a P-channel differential pair (11, 12) that differentially inputs the reference voltage Vref and the detection voltage Vdet, and supplies current to the tail of the differential pair. It is composed of a current source transistor 13.
 具体的には、Pチャネル型差動対(11、12)は、ゲートに基準電圧Vrefが供給され、ドレインがカレントミラー(21、22)の入力端(ノードn1)に接続されたPチャネル型のトランジスタ11と、ゲートに検知電圧Vdetが供給され、ドレインがカレントミラー(33、34)、(33、35)の入力端(ノードn2)に接続されたPチャネル型のトランジスタ12で構成される。 Specifically, the P-channel type differential pair (11, 12) is a P-channel type differential pair whose gate is supplied with the reference voltage Vref and whose drain is connected to the input end (node n1) of the current mirror (21, 22). and a P-channel transistor 12 whose gate is supplied with the detection voltage Vdet and whose drain is connected to the input terminal (node n2) of the current mirrors (33, 34) and (33, 35). .
 差動出力電流Is1、Is2はトランジスタ11、12の各ドレインからそれぞれ出力される。トランジスタ11、12のソース同士は共通接続されており、Pチャネル型差動対(11、12)のテイルをなす。 Differential output currents Is1 and Is2 are output from each drain of transistors 11 and 12, respectively. The sources of transistors 11 and 12 are commonly connected and form the tail of a P-channel differential pair (11, 12).
 電流源トランジスタ13は、ゲートにバイアス電圧BIASPが供給され、ソースがAVDD電源端子に接続され、ドレインがPチャネル型差動対(11、12)のテイルに接続されたPチャネル型トランジスタで構成される。 The current source transistor 13 is composed of a P-channel transistor whose gate is supplied with a bias voltage BIASP, whose source is connected to the AVDD power supply terminal, and whose drain is connected to the tail of the P-channel differential pair (11, 12). Ru.
 図3に示す構成によれば、3個の高耐圧のトランジスタ(11~13)だけの簡単な構成で、アナログ電源電圧AVDDからPチャネル型差動対(11、12)の閾値電圧|Vtp|の範囲を除く、電圧範囲[AVSS~(AVDD-|Vtp|)]の検知電圧Vdetを検知対象とすることが可能となる。 According to the configuration shown in FIG. 3, the threshold voltage of the P-channel differential pair (11, 12) from the analog power supply voltage AVDD is |Vtp| It becomes possible to detect the detection voltage Vdet in the voltage range [AVSS to (AVDD-|Vtp|)] excluding the range of .
 尚、差動段10及び結合回路30間を接続するノードn1及びn2各々の電圧を、ロジック電源電圧VDDに基づく低電圧範囲[VDD~VSS]内に維持させるクランプ回路又はクランプ素子を、差動段10のPチャネル型差動対(11、12)と、結合回路30のトランジスタ21及び33との間に設けても良い。 Note that the clamp circuit or clamp element that maintains the voltage of each node n1 and n2 connecting between the differential stage 10 and the coupling circuit 30 within the low voltage range [VDD to VSS] based on the logic power supply voltage VDD is used as a differential It may be provided between the P-channel type differential pair (11, 12) of the stage 10 and the transistors 21 and 33 of the coupling circuit 30.
 図4は、図2Aに示す差動段10の他の具体例を示す回路図である。尚、結合回路30及び判定回路40は図2Aと同様であり説明は省略する。 FIG. 4 is a circuit diagram showing another specific example of the differential stage 10 shown in FIG. 2A. Note that the coupling circuit 30 and the determination circuit 40 are the same as those shown in FIG. 2A, and their explanation will be omitted.
 図4に示す一例では、差動段10は、基準電圧Vrefと検知電圧Vdetを差動入力するNチャネル型差動対(11a、12a)と、当該差動対のテイルに電流を供給する電流源トランジスタ13aと、Pチャネル型カレントミラー(14、15)及びPチャネル型カレントミラー(16,17)とで構成される。 In the example shown in FIG. 4, the differential stage 10 includes an N-channel differential pair (11a, 12a) that differentially inputs a reference voltage Vref and a detection voltage Vdet, and a current that supplies current to the tail of the differential pair. It is composed of a source transistor 13a, a P-channel type current mirror (14, 15), and a P-channel type current mirror (16, 17).
 具体的には、Nチャネル型差動対(11a、12a)は、ゲートに基準電圧Vrefが供給され、ドレインがカレントミラー(14、15)の入力端(ノードn7)に接続されたNチャネル型のトランジスタ11aと、ゲートに検知電圧Vdetが供給され、ドレインがカレントミラー(16、17)の入力端(ノードn8)に接続されたNチャネル型のトランジスタ12aで構成される。 Specifically, the N-channel type differential pair (11a, 12a) is an N-channel type differential pair whose gate is supplied with the reference voltage Vref and whose drain is connected to the input end (node n7) of the current mirror (14, 15). and an N-channel transistor 12a whose gate is supplied with the detection voltage Vdet and whose drain is connected to the input end (node n8) of the current mirror (16, 17).
 カレントミラー(14、15)は、互いにゲート及びソース同士が接続されているPチャネル型のトランジスタ14及び15を含む。トランジスタ14のドレイン及びゲートはノードn7に接続されており、ソースがAVDD電源端子に接続されている。トランジスタ15のドレインはノードn1に接続されており、ソースがAVDD電源端子に接続されている。カレントミラー(16、17)は、互いにゲート及びソース同士が接続されているPチャネル型のトランジスタ16及び17を含む。トランジスタ16のドレイン及びゲートはノードn8に接続されており、ソースがAVDD電源端子に接続されている。トランジスタ17のドレインはノードn2に接続されており、ソースがAVDD電源端子に接続されている。 The current mirror (14, 15) includes P- channel transistors 14 and 15 whose gates and sources are connected to each other. The drain and gate of transistor 14 are connected to node n7, and the source is connected to the AVDD power supply terminal. The drain of the transistor 15 is connected to the node n1, and the source is connected to the AVDD power supply terminal. The current mirror (16, 17) includes P- channel transistors 16 and 17 whose gates and sources are connected to each other. The drain and gate of transistor 16 are connected to node n8, and the source is connected to the AVDD power supply terminal. The drain of the transistor 17 is connected to the node n2, and the source is connected to the AVDD power supply terminal.
 ここで、差動出力電流Is1は、トランジスタ11aのドレインから出力され、Pチャネル型カレントミラー(14、15)を介してノードn1へ供給される。また差動出力電流Is2はトランジスタ12aのドレインから出力され、Pチャネル型カレントミラー(16、17)を介してノードn2へ供給される。トランジスタ11a、12aのソース同士は共通接続されており、Nチャネル型差動対(11a、12a)のテイルをなす。 Here, the differential output current Is1 is output from the drain of the transistor 11a, and is supplied to the node n1 via the P-channel type current mirror (14, 15). Further, the differential output current Is2 is output from the drain of the transistor 12a, and is supplied to the node n2 via the P-channel type current mirror (16, 17). The sources of the transistors 11a and 12a are commonly connected and form the tail of an N-channel differential pair (11a, 12a).
 電流源トランジスタ13aは、ゲートにバイアス電圧BIASNが供給され、ソースがAVSS電源端子に接続され、ドレインがNチャネル型差動対(11a、12a)のテイルに接続されたNチャネル型トランジスタで構成される。 The current source transistor 13a is an N-channel transistor whose gate is supplied with the bias voltage BIASN, whose source is connected to the AVSS power supply terminal, and whose drain is connected to the tail of the N-channel differential pair (11a, 12a). Ru.
 差動段10として図4に示す構成を採用した場合には、アナログ電源電圧AVSSからNチャネル型差動対(11a、12a)の閾値電圧Vtnの範囲を除く、電圧範囲[(AVSS+Vtn)~AVDD]の検知電圧Vdetを検知対象とすることが可能となる。 When the configuration shown in FIG. 4 is adopted as the differential stage 10, the voltage range [(AVSS+Vtn) to AVDD excluding the range of the threshold voltage Vtn of the N-channel differential pair (11a, 12a) from the analog power supply voltage AVSS ] can be detected as the detection voltage Vdet.
 図5は、図2Aに示す結合回路30の変更例としての結合回路30Aの構成を示す回路図である。図5の結合回路30Aは検知感度の調整、すなわち検知電圧Vdetを基準状態として判定する許容電圧範囲の上限電圧及び下限電圧の調整が可能な構成である。 FIG. 5 is a circuit diagram showing the configuration of a coupling circuit 30A as a modification of the coupling circuit 30 shown in FIG. 2A. The coupling circuit 30A in FIG. 5 has a configuration that allows adjustment of the detection sensitivity, that is, adjustment of the upper and lower limit voltages of the allowable voltage range for determination using the detection voltage Vdet as a reference state.
 尚、図5に示す結合回路30Aでは、説明の便宜上、図2Aに示す結合回路30から変更箇所を抜粋して示している。つまり、結合回路30Aには、図2Aに示す結合回路30と同様にトランジスタ21~23及び33からなる回路が含まれており、図5では、これらトランジスタ21~23及び33の記載を省略している。 Incidentally, in the coupling circuit 30A shown in FIG. 5, for convenience of explanation, changed portions are extracted from the coupling circuit 30 shown in FIG. 2A. In other words, the coupling circuit 30A includes a circuit made up of transistors 21 to 23 and 33, similar to the coupling circuit 30 shown in FIG. 2A, and the description of these transistors 21 to 23 and 33 is omitted in FIG. There is.
 図5に示す結合回路30Aでは、図2Aに示すトランジスタ24に代えて回路24Aを採用すると共に、図2Aに示すトランジスタ35に代えて回路35Aを採用しており、トランジスタ25及び34については、図2Aに示すものと同一である。 In the coupling circuit 30A shown in FIG. 5, a circuit 24A is used in place of the transistor 24 shown in FIG. 2A, and a circuit 35A is used in place of the transistor 35 shown in FIG. 2A. It is the same as shown in 2A.
 図5において、ノードn3にはソースタイプの電流I1、I3を生成する電圧が供給され、ノードn2にはシンクタイプの電流I2、I4を生成する電圧が供給されている。また電流I1~I4の電流量の設定は、基準状態において、
       I1>I2、且つ、I3<I4
 となるように設定される。
In FIG. 5, a voltage that generates source type currents I1 and I3 is supplied to node n3, and a voltage that generates sink type currents I2 and I4 is supplied to node n2. In addition, the setting of the current amount of currents I1 to I4 is as follows in the standard state.
I1>I2 and I3<I4
It is set so that
 結合回路30Aは、基準状態におけるソースタイプの電流I3が固定値に設定されたPチャネル型のトランジスタ25、シンクタイプの電流I2が固定値に設定されたNチャネル型のトランジスタ34を有する。更に、結合回路30Aは、基準状態におけるソースタイプの電流I1、シンクタイプの電流I4の電流量を可変に調整できる回路24A及び35Aを備えている。 The coupling circuit 30A includes a P-channel transistor 25 in which a source-type current I3 in a reference state is set to a fixed value, and an N-channel transistor 34 in which a sink-type current I2 is set to a fixed value. Furthermore, the coupling circuit 30A includes circuits 24A and 35A that can variably adjust the amounts of the source type current I1 and the sink type current I4 in the reference state.
 以下に、回路24A及び35Aについて説明する。 The circuits 24A and 35A will be explained below.
 回路24Aは、VDD電源端子とノードn5との間に、直列接続されたPチャネル型のトランジスタとスイッチの組を、並列に複数個設けた構成を有する。つまり、並列形態の複数のPチャネル型のトランジスタ24a_1、24a_2、・・・、の各々は、各ソースにロジック電源電圧VDDが供給され、各ゲートがノードn3に共通接続されている。これにより、トランジスタ24a_1、24a_2、・・・、の各々が、ノードn3の電圧に応じたミラー電流をそれぞれ生成する。並列形態の複数のスイッチ26a_1、26a_2、・・・、の各々は、外部からの電流量制御信号CNTAによってオン、オフが制御される。 The circuit 24A has a configuration in which a plurality of sets of P-channel transistors and switches connected in series are provided in parallel between the VDD power supply terminal and the node n5. That is, the logic power supply voltage VDD is supplied to each source of each of the plurality of parallel P-channel type transistors 24a_1, 24a_2, . . . , and each gate is commonly connected to the node n3. As a result, each of the transistors 24a_1, 24a_2, . . . generates a mirror current according to the voltage of the node n3. Each of the plurality of parallel switches 26a_1, 26a_2, . . . is controlled to be turned on or off by an external current amount control signal CNTA.
 よって、回路24Aでは、電流量制御信号CNTAによりオンに制御されたスイッチに接続されている少なくとも1つのトランジスタによる合成電流が電流I1の電流量となる。すなわち、複数のスイッチ26a_1、26a_2、・・・、各々の制御により、電流I2に対する電流I1の電流量を最適に可変調整することができる。これにより、検知電圧Vdetを基準状態として判定する許容下限電圧を調整することができる。 Therefore, in the circuit 24A, the combined current of at least one transistor connected to the switch turned on by the current amount control signal CNTA becomes the current amount of the current I1. That is, by controlling each of the plurality of switches 26a_1, 26a_2, . . . , it is possible to optimally and variably adjust the amount of current I1 relative to current I2. Thereby, the allowable lower limit voltage for determining the detection voltage Vdet as the reference state can be adjusted.
 回路35Aは、VSS電源端子とノードn6との間に、直列接続されたNチャネル型のトランジスタとスイッチの組を、並列に複数個設けた構成を有する。つまり、並列形態の複数のNチャネル型のトランジスタ35a_1、35a_2、・・・、の各々は、各ソースにロジック接地電圧VSSが供給され、各ゲートがノードn2に共通接続されている。これにより、トランジスタ35a_1、35a_2、・・・、の各々が、ノードn2の電圧に応じたミラー電流をそれぞれ生成する。並列形態の複数のスイッチ36a_1、36a_2、・・・、の各々は、電流量制御信号CNTAによってオン、オフが制御される。    The circuit 35A has a configuration in which a plurality of sets of N-channel transistors and switches connected in series are provided in parallel between the VSS power supply terminal and the node n6. That is, the logic ground voltage VSS is supplied to each source of each of the plurality of parallel N-channel type transistors 35a_1, 35a_2, . . . , and each gate is commonly connected to the node n2. As a result, each of the transistors 35a_1, 35a_2, . . . generates a mirror current according to the voltage of the node n2. Each of the plurality of parallel switches 36a_1, 36a_2, . . . is controlled to be turned on or off by a current amount control signal CNTA.   
 
 よって、回路35Aでは、電流量制御信号CNTAによりオンに制御されたスイッチに接続されている少なくとも1つのトランジスタによる合成電流が電流I4の電流量となる。すなわち、複数のスイッチ36a_1、36a_2、・・・、各々の制御により、電流I3に対する電流I4の電流量を最適に可変調整することができる。これにより、検知電圧Vdetを基準状態として判定する許容上限電圧を調整することができる。

Therefore, in the circuit 35A, the combined current of at least one transistor connected to the switch turned on by the current amount control signal CNTA becomes the current amount of the current I4. That is, by controlling each of the plurality of switches 36a_1, 36a_2, . . . , it is possible to optimally and variably adjust the amount of current I4 relative to current I3. Thereby, it is possible to adjust the allowable upper limit voltage for determining the detection voltage Vdet as the reference state.
 図6は、図2Aに示す結合回路30の更に別の変更例としての結合回路30Bを示す回路図である。図6の結合回路30Bも検知電圧Vdetを基準状態として判定する許容電圧範囲の上限電圧及び下限電圧の調整が可能な構成である。 FIG. 6 is a circuit diagram showing a coupling circuit 30B as yet another modification of the coupling circuit 30 shown in FIG. 2A. The coupling circuit 30B in FIG. 6 is also configured to be able to adjust the upper and lower limit voltages of the allowable voltage range that is determined using the detection voltage Vdet as a reference state.
 尚、図6に示す結合回路30Bでも、結合回路30Aと同様に、図2Aに示す結合回路30からの変更箇所を抜粋して示している。つまり、結合回路30Bには、図2Aに示す結合回路30と同様にトランジスタ21~23及び33からなる回路が含まれており、図6では、これらトランジスタ21~23及び33の記載を省略している。 Incidentally, in the coupling circuit 30B shown in FIG. 6 as well, like the coupling circuit 30A, changes from the coupling circuit 30 shown in FIG. 2A are excerpted and shown. That is, like the coupling circuit 30 shown in FIG. 2A, the coupling circuit 30B includes a circuit made up of transistors 21 to 23 and 33, and the illustrations of these transistors 21 to 23 and 33 are omitted in FIG. There is.
 図6に示す結合回路30Bでは、図2Aに示すトランジスタ24に代えて回路24Bを採用すると共に、図2Aに示すトランジスタ35に代えて回路35Bを採用しており、トランジスタ25及び34については、図2Aに示すものと同一である。 In the coupling circuit 30B shown in FIG. 6, a circuit 24B is used instead of the transistor 24 shown in FIG. 2A, and a circuit 35B is used instead of the transistor 35 shown in FIG. 2A. It is the same as shown in 2A.
 図6において、ノードn3にはソースタイプの電流I1、I3を生成する電圧が供給され、ノードn2にはシンクタイプの電流I2、I4を生成する電圧が供給されている。また電流I1~I4の電流量は、基準状態において、
        I1>I2、且つ、I3<I4
 となるように設定される。
In FIG. 6, a voltage that generates source type currents I1 and I3 is supplied to node n3, and a voltage that generates sink type currents I2 and I4 is supplied to node n2. In addition, the amount of currents I1 to I4 is as follows in the standard state:
I1>I2 and I3<I4
It is set so that
 結合回路30Bは、基準状態におけるソースタイプの電流I3が固定値に設定されたトランジスタ25、シンクタイプの電流I2が固定値に設定されたトランジスタ34、基準状態におけるソースタイプの電流I1及びシンクタイプの電流I4の電流量を可変に調整できる回路24B、35Bを備えている。 The coupling circuit 30B includes a transistor 25 in which a source type current I3 is set to a fixed value in a reference state, a transistor 34 in which a sink type current I2 is set to a fixed value, a source type current I1 and a sink type current in the reference state. It includes circuits 24B and 35B that can variably adjust the amount of current I4.
 トランジスタ25及びトランジスタ34は、図2Aに示す結合回路30のトランジスタ25、及びトランジスタ34と同じ構成である。以下に回路24B、35Bについて説明する。 The transistor 25 and the transistor 34 have the same configuration as the transistor 25 and the transistor 34 of the coupling circuit 30 shown in FIG. 2A. The circuits 24B and 35B will be explained below.
 回路24Bは、VDD電源端子とノードn6間に、Pチャネル型のトランジスタ24b_1と可変電流源24b_2とが並列形態で設けられた構成を有する。トランジスタ24b_1は、ソースにロジック電源電圧VDDが供給され、ゲートがノードn3に接続されており、ノードn3の電圧に応じたミラー電流を生成しドレインから送出する。 The circuit 24B has a configuration in which a P-channel transistor 24b_1 and a variable current source 24b_2 are provided in parallel between the VDD power supply terminal and the node n6. The transistor 24b_1 has a source supplied with the logic power supply voltage VDD, a gate connected to the node n3, generates a mirror current according to the voltage of the node n3, and sends it out from the drain.
 可変電流源24b_2は外部からの電流量制御信号CNTBにより電流量が制御される。トランジスタ24b_1と可変電流源24b_2の合成電流が電流I1の電流量として設定される。すなわち、可変電流源24b_2の電流量制御により、電流I2に対する電流I1の電流量を最適に設定することができる。これにより、検知電圧Vdetを基準状態として判定する許容下限電圧を調整することができる。 The current amount of the variable current source 24b_2 is controlled by an external current amount control signal CNTB. The combined current of the transistor 24b_1 and the variable current source 24b_2 is set as the amount of current I1. That is, by controlling the current amount of the variable current source 24b_2, it is possible to optimally set the current amount of the current I1 relative to the current I2. Thereby, the allowable lower limit voltage for determining the detection voltage Vdet as the reference state can be adjusted.
 回路35Bは、VSS電源端子とノードn6間に、Nチャネル型のトランジスタ35b_1と可変電流源35b_2が並列形態で設けられた構成を有する。トランジスタ35b_1は、ソースにロジック接地電圧VSSが供給され、ゲートがノードn2に接続されており、ノードn2の電圧に応じたミラー電流を生成しソースから出力する。 The circuit 35B has a configuration in which an N-channel transistor 35b_1 and a variable current source 35b_2 are provided in parallel between the VSS power supply terminal and the node n6. The transistor 35b_1 has a source supplied with the logic ground voltage VSS, a gate connected to the node n2, generates a mirror current according to the voltage of the node n2, and outputs it from the source.
 可変電流源35b_2は外部からの電流量制御信号CNTBにより電流値が制御される。トランジスタ35b_1と可変電流源35b_2の合成電流が電流I4の電流量として設定される。すなわち、可変電流源35b_2の電流制御により、電流I3に対する電流I4の電流量を最適に設定することができる。これにより、検知電圧Vdetを基準状態として判定する許容上限電圧を調整することができる。 The current value of the variable current source 35b_2 is controlled by an external current amount control signal CNTB. The combined current of the transistor 35b_1 and the variable current source 35b_2 is set as the current amount of the current I4. That is, by controlling the current of the variable current source 35b_2, it is possible to optimally set the amount of current I4 relative to current I3. Thereby, it is possible to adjust the allowable upper limit voltage for determining the detection voltage Vdet as the reference state.
 なお、図2A、図5、図6では、電流I1と電流I2、並びに電流I3と電流I4のそれぞれの電流量の設定を、電流I1及び電流I4各々を生成するトランジスタのサイズや、トランジスタの並列段数で調整する例を示したが、かかる調整機能を電流I2や電流I3の生成回路に備えてもよい。 In addition, in FIGS. 2A, 5, and 6, the settings of the current amount of current I1 and current I2, and current I3 and current I4 are determined by the size of the transistor that generates current I1 and current I4, and the parallel arrangement of transistors. Although an example in which adjustment is performed by the number of stages has been shown, such an adjustment function may be provided in the generation circuit of the current I2 or the current I3.
 次に、判定回路40の具体例を説明する。判定回路40は、結合回路30から出力された2ビットの論理信号O1及びO2を受けて、1ビットの判定信号JDを出力する。判定回路40は、例えば排他的論理和回路(EXOR回路と称する)で実現することができる。 Next, a specific example of the determination circuit 40 will be explained. The determination circuit 40 receives the 2-bit logic signals O1 and O2 output from the coupling circuit 30 and outputs a 1-bit determination signal JD. The determination circuit 40 can be realized, for example, by an exclusive OR circuit (referred to as an EXOR circuit).
 すなわち、EXOR回路は、2つの入力端子で検知電圧Vdet及び基準電圧Vrefを受ける。これにより、EXOR回路は、論理信号O1及びO2が異なる場合に正常(検知電圧Vdetが基準状態)を示す論理値H、同一の場合には異常(検知電圧Vdetが基準状態から逸脱)を示す論理値Lを示す判定信号JDを出力する。 That is, the EXOR circuit receives the detection voltage Vdet and the reference voltage Vref at two input terminals. As a result, the EXOR circuit has a logic value H indicating normality (detection voltage Vdet is in the reference state) when logic signals O1 and O2 are different, and a logic value H indicating abnormality (detection voltage Vdet deviates from the reference state) when they are the same. A determination signal JD indicating the value L is output.
 なお、EXOR回路で構成される判定回路40は、検知電圧Vdetの基準状態からの変動の有無を2値にて表すが、検知電圧Vdetの変動方向は判別できない。そこで、検知電圧Vdetの変動方向(増加方向、低下方向)も判定結果として得たい場合には、結合回路30から出力される論理信号O1及びO2を2bit信号として直接出力してもよい。または、判定回路40の判定信号JDに加えて2つの論理信号O1及びO2を出力してもよい。 Note that the determination circuit 40 configured with an EXOR circuit expresses the presence or absence of a variation in the detection voltage Vdet from the reference state using binary values, but cannot determine the direction of variation in the detection voltage Vdet. Therefore, if it is desired to also obtain the fluctuation direction (increase direction, decrease direction) of the detection voltage Vdet as a determination result, the logic signals O1 and O2 output from the coupling circuit 30 may be directly output as 2-bit signals. Alternatively, in addition to the determination signal JD of the determination circuit 40, two logic signals O1 and O2 may be output.
 図7は、電圧検知回路50の構成の他の一例としての電圧検知回路50_1の構成を示す回路図である。尚、図7に示す電圧検知回路50_1では、図2Aに示す結合回路30に代えて結合回路30Cを採用すると共に、判定回路40aを新たに追加した点を除く他の構成は図2Aに示すものと同一である。 FIG. 7 is a circuit diagram showing the configuration of a voltage detection circuit 50_1 as another example of the configuration of the voltage detection circuit 50. Note that the voltage detection circuit 50_1 shown in FIG. 7 employs a coupling circuit 30C in place of the coupling circuit 30 shown in FIG. 2A, and the other configuration is the same as that shown in FIG. 2A except that a determination circuit 40a is newly added. is the same as
 また、結合回路30Cにおいて、トランジスタ21~25及び33~35については図2Aに示す結合回路30に示されるものと同一である。 Furthermore, in the coupling circuit 30C, the transistors 21 to 25 and 33 to 35 are the same as those shown in the coupling circuit 30 shown in FIG. 2A.
 ただし、結合回路30Cでは、図2Aの結合回路30に対して、当該結合回路30にも含まれているトランジスタ24、25、34及び35からなる回路を第1の変換部CV1とすると共に、新たに、第2の変換部CV2及び判定回路40aを追加したものである。 However, in the coupling circuit 30C, a circuit consisting of transistors 24, 25, 34, and 35, which is also included in the coupling circuit 30 in FIG. In addition, a second converter CV2 and a determination circuit 40a are added.
 第2の変換部CV2は、PチャネルMOS型のトランジスタ24a及び25a、NチャネルMOS型のトランジスタ34a及び35aを有する。トランジスタ24a及び25aは、夫々のソースがVDD電源端子に接続されており、夫々のゲートがノードn3を介してトランジスタ23のゲートに接続されている。トランジスタ34a及び35aは、夫々のソースがVSS電源端子に接続されており、夫々のゲートがノードn2を介してトランジスタ33のゲートに接続されている。トランジスタ34aは、自身のドレインがノードn5aを介してトランジスタ24aのドレインに接続されている。トランジスタ35aは、自身のドレインがノードn6aを介してトランジスタ25aのドレインに接続されている。 The second conversion unit CV2 includes P-channel MOS type transistors 24a and 25a and N-channel MOS type transistors 34a and 35a. The transistors 24a and 25a have their respective sources connected to the VDD power supply terminal, and their respective gates connected to the gate of the transistor 23 via the node n3. The transistors 34a and 35a have their respective sources connected to the VSS power supply terminal, and their respective gates connected to the gate of the transistor 33 via the node n2. The drain of the transistor 34a is connected to the drain of the transistor 24a via the node n5a. The transistor 35a has its own drain connected to the drain of the transistor 25a via a node n6a.
 ここで、上記したノードn5aから、当該ノードn5aに生じた電圧を有する信号が論理信号O3として判定回路40aに供給される。更に、上記したノードn6aから、当該ノードn6aに生じた電圧を有する信号が論理信号O4として判定回路40aに供給される。 Here, a signal having the voltage generated at the node n5a described above is supplied to the determination circuit 40a as the logic signal O3. Furthermore, a signal having the voltage generated at the node n6a is supplied from the above-described node n6a to the determination circuit 40a as the logic signal O4.
 かかる構成により、結合回路30Cでは、先ず、差動段10から供給された差動出力電流Is1は、カレントミラー(21、22)により、ロジック接地電圧VSSに対する折り返し電流となる。この際、第1変換部CV1において、当該折返し電流は、カレントミラー(23、24)及び(23、25)により、ロジック電源電圧VDDに対して折り返され、2系統のソースタイプの電流I1、I3が生成される。更に、当該第1変換部CV1において、差動段10から供給された差動出力電流Is2は、カレントミラー(33、34)及び(33、35)により、ロジック接地電圧VSSに対して折り返され、2系統のシンクタイプの電流I2及びI4が生成される。 With this configuration, in the coupling circuit 30C, first, the differential output current Is1 supplied from the differential stage 10 becomes a folded current with respect to the logic ground voltage VSS by the current mirror (21, 22). At this time, in the first conversion unit CV1, the folded current is folded back to the logic power supply voltage VDD by current mirrors (23, 24) and (23, 25), and the two source type currents I1, I3 is generated. Further, in the first converting unit CV1, the differential output current Is2 supplied from the differential stage 10 is folded back to the logic ground voltage VSS by current mirrors (33, 34) and (33, 35), Two sink type currents I2 and I4 are generated.
 この際、第1変換部CV1では、ソースタイプの電流I1がノードn5に送出されつつ、シンクタイプの電流I2がノードn5から引き抜かれることで両電流(I1、I2)がノードn5で結合され、当該ノードn5に生じた電圧を有する論理信号O1が出力される。更に、当該第1変換部CV1では、ソースタイプの電流I3がノードn6に送出されつつ、シンクタイプの電流I4がノードn6から引き抜かれることで両電流(I3、I4)がノードn6で結合され、当該ノードn6に生じた電圧を有する論理信号O2が出力される。 At this time, in the first conversion unit CV1, the source type current I1 is sent to the node n5, and the sink type current I2 is extracted from the node n5, so that both currents (I1, I2) are combined at the node n5, A logic signal O1 having the voltage generated at the node n5 is output. Further, in the first conversion unit CV1, the source type current I3 is sent to the node n6, and the sink type current I4 is extracted from the node n6, so that both currents (I3, I4) are combined at the node n6, A logic signal O2 having the voltage generated at the node n6 is output.
 尚、電流I1~I4を夫々生成する第1変換部CV1のトランジスタ24、25、34及び35の各電流駆動能力(電流量)は、基準電圧Vrefと検知電圧Vdetの電位関係が第1の基準状態のときに、
       I1>I2、且つ、I3<I4
 となるように設定される。
Note that the current drive capability (current amount) of each of the transistors 24, 25, 34, and 35 of the first conversion unit CV1 that generates the currents I1 to I4, respectively, is based on the first criterion based on the potential relationship between the reference voltage Vref and the detection voltage Vdet. When the condition is
I1>I2 and I3<I4
It is set so that
 これにより、検知電圧Vdetが基準電圧Vrefを中心とした以下の第1範囲、
       Vref-dV1≦Vdet≦Vref+dV2
               dV1:第1の許容下限幅
               dV2:第1の許容上限幅
 に含まれる場合には、結合回路30Cの第1出力端(ノードn5)の電圧はH:ハイレベル(VDD)、第2出力端(ノードn6)の電圧はL:ローレベル(VSS)となる。また、検知電圧Vdetが基準電圧Vrefに対して予め設定した第1の許容下限電圧より低電位(Vdet<Vref-dV1)のときは、第1出力端(ノードn5)及び第2出力端(ノードn6)の電圧は共にL:ローレベル(VSS)となる。また、検知電圧Vdetが基準電圧Vrefに対して予め設定した第1の許容上限電圧より高電位(Vdet>Vref+dV2)のときは、第1出力端(ノードn5)及び第2出力端(ノードn6)の電圧は共にH:ハイレベル(VDD)となる。
As a result, the detection voltage Vdet falls within the following first range centered around the reference voltage Vref:
Vref-dV1≦Vdet≦Vref+dV2
dV1: First allowable lower limit width dV2: First allowable upper limit width If included, the voltage at the first output terminal (node n5) of the coupling circuit 30C is H: high level (VDD), second output terminal The voltage at (node n6) becomes L: low level (VSS). Further, when the detection voltage Vdet is lower than the first allowable lower limit voltage preset with respect to the reference voltage Vref (Vdet<Vref-dV1), the first output terminal (node n5) and the second output terminal (node Both voltages of n6) become L: low level (VSS). Further, when the detection voltage Vdet is higher in potential than the first allowable upper limit voltage preset with respect to the reference voltage Vref (Vdet>Vref+dV2), the first output terminal (node n5) and the second output terminal (node n6) Both voltages become H: high level (VDD).
 これにより、検知電圧Vdetが       
       Vref-dV1≦Vdet≦Vref+dV2
 なる状態にある場合には、第1変換部CV1は、図8Aに示すように、ハイレベルを示す論理信号O1及びローレベルを示す論理信号O2を出力する。
As a result, the detection voltage Vdet becomes
Vref-dV1≦Vdet≦Vref+dV2
In this case, the first conversion unit CV1 outputs a logic signal O1 indicating a high level and a logic signal O2 indicating a low level, as shown in FIG. 8A.
 また、検知電圧Vdetが
       Vdet<Vref-dV1
 なる状態にある場合には、第1変換部CV1は、図8Aに示すように、共にローレベルを示す論理信号O1及びO2を出力する。
Also, the detection voltage Vdet is Vdet<Vref-dV1
In this case, the first conversion unit CV1 outputs logic signals O1 and O2, both of which are at a low level, as shown in FIG. 8A.
 また、検知電圧Vdetが
       Vdet>Vref+dV2
 なる状態にある場合には、第1変換部CV1は、図8Aに示すように、共にハイレベルを示す論理信号O1及びO2を出力する。
Also, the detection voltage Vdet is Vdet>Vref+dV2
In this case, the first conversion unit CV1 outputs logic signals O1 and O2, both of which are at a high level, as shown in FIG. 8A.
 判定回路40は、第1変換部CV1から出力された論理信号O1及びO2に基づき、検知電圧Vdetが図8Aに示すように、第1範囲(Vref-dV1≦Vdet≦Vref+dV2)内に含まれるか否かを判定し、その判定結果を示す判定信号JD1を出力する。 The determination circuit 40 determines whether the detected voltage Vdet is within a first range (Vref-dV1≦Vdet≦Vref+dV2), as shown in FIG. 8A, based on the logic signals O1 and O2 output from the first conversion unit CV1. A determination signal JD1 indicating the determination result is output.
 このように、第1変換部CV1及び判定回路40によれば、検知電圧Vdetの電圧値が、図8Aに示すように、基準電圧Vrefを中心とする所定の第1範囲内に含まれるか、或いは当該第1範囲外であるのかを示す判定信号JD1が生成される。 In this way, the first conversion unit CV1 and the determination circuit 40 determine whether the voltage value of the detection voltage Vdet is within a predetermined first range centered on the reference voltage Vref, as shown in FIG. 8A. Alternatively, a determination signal JD1 is generated indicating whether it is outside the first range.
 一方、第2変換部CV2では、カレントミラー(21、22)によって折り返された差動出力電流Is1に対応した折り返し電流は、カレントミラー(23、24a)及び(23、25a)により、ロジック電源電圧VDDに対して折り返され、2系統のソースタイプの電流I1a、I3が生成される。更に、当該第2変換部CV2において、差動段10から供給された差動出力電流Is2は、カレントミラー(33、34a)及び(33、35a)により、ロジック接地電圧VSSに対して折り返され、2系統のシンクタイプの電流I2及びI4aが生成される。 On the other hand, in the second conversion unit CV2, the folded current corresponding to the differential output current Is1 folded back by the current mirror (21, 22) is converted to the logic power supply voltage by the current mirror (23, 24a) and (23, 25a). It is turned back to VDD, and two source type currents I1a and I3 are generated. Further, in the second conversion unit CV2, the differential output current Is2 supplied from the differential stage 10 is reflected back to the logic ground voltage VSS by the current mirrors (33, 34a) and (33, 35a), Two sink type currents I2 and I4a are generated.
 この際、第2変換部CV2では、ソースタイプの電流I1aがノードn5aに送出されつつ、シンクタイプの電流I2がノードn5aから引き抜かれることで両電流(I1a、I2)がノードn5aで結合され、当該ノードn5aに生じた電圧を有する論理信号O3が出力される。更に、当該第2変換部CV2では、ソースタイプの電流I3がノードn6aに送出されつつ、シンクタイプの電流I4aがノードn6aから引き抜かれることで両電流(I3、I4a)がノードn6aで結合され、当該ノードn6aに生じた電圧を有する論理信号O2が出力される。 At this time, in the second conversion unit CV2, the source type current I1a is sent to the node n5a, and the sink type current I2 is extracted from the node n5a, so that both currents (I1a, I2) are combined at the node n5a, A logic signal O3 having the voltage generated at the node n5a is output. Further, in the second conversion unit CV2, the source type current I3 is sent to the node n6a, and the sink type current I4a is extracted from the node n6a, so that both currents (I3, I4a) are combined at the node n6a, A logic signal O2 having the voltage generated at the node n6a is output.
 尚、電流I1a、I2、I3、I4aを夫々生成する第2変換部CV2のトランジスタ24a、25a、34a及び35aの各電流駆動能力(電流量)は、基準電圧Vrefと検知電圧Vdetの電位関係が基準状態のときに、
       I1a>I1>I2、且つ、I3<I4<I4a
 となるように設定される。
Note that the current drive capability (current amount) of the transistors 24a, 25a, 34a, and 35a of the second conversion unit CV2 that generate the currents I1a, I2, I3, and I4a, respectively, is determined by the potential relationship between the reference voltage Vref and the detection voltage Vdet. In the reference state,
I1a>I1>I2, and I3<I4<I4a
It is set so that
 例えば、第2変換部CV2のトランジスタ25aのチャネル幅を第1変換部CV1のトランジスタ25のチャネル幅Wpと同一にし、第2変換部CV2のトランジスタ34aのチャネル幅を第1変換部CV1のトランジスタ34のチャネル幅Wnと同一にする。更に、第2変換部CV2のトランジスタ24aのチャネル幅を第1変換部CV1のトランジスタ24のチャネル幅Wp+よりも広いチャネル幅Wp++とし、第2変換部CV2のトランジスタ35aのチャネル幅を第1変換部CV1のトランジスタ35のチャネル幅Wn+よりも広いチャネル幅Wn++とする。 For example, the channel width of the transistor 25a of the second conversion unit CV2 is made the same as the channel width Wp of the transistor 25 of the first conversion unit CV1, and the channel width of the transistor 34a of the second conversion unit CV2 is made the same as the channel width Wp of the transistor 25 of the first conversion unit CV1. channel width Wn. Further, the channel width of the transistor 24a of the second conversion unit CV2 is set to a channel width Wp++ wider than the channel width Wp+ of the transistor 24 of the first conversion unit CV1, and the channel width of the transistor 35a of the second conversion unit CV2 is set to be wider than the channel width Wp+ of the transistor 24 of the first conversion unit CV1. The channel width Wn++ is wider than the channel width Wn+ of the transistor 35 of CV1.
 これにより、検知電圧Vdetが、基準電圧Vrefを中心とした以下の第2範囲、
       Vref-dV3≦Vdet≦Vref+dV4
             dV3(dV3>dV1):第2の許容下限幅
             dV4(dV4>dV2):第2の許容上限幅
 に含まれる場合には、結合回路30Cの第3出力端(ノードn5a)の電圧はH:ハイレベル(VDD)、第4出力端(ノードn6a)の電圧はL:ローレベル(VSS)となる。また、検知電圧Vdetが基準電圧Vrefに対して予め設定した第2の許容下限電圧より低電位(Vdet<Vref-dV3)のときは、第3出力端(ノードn5a)及び第4出力端(ノードn6a)の電圧は共にL:ローレベル(VSS)となる。また、検知電圧Vdetが基準電圧Vrefに対して予め設定した第2の許容上限電圧より高電位(Vdet>Vref+dV4)のときは、第3出力端(ノードn5a)及び第4出力端(ノードn6a)の電圧は共にH:ハイレベル(VDD)となる。
As a result, the detection voltage Vdet falls within the following second range centered around the reference voltage Vref:
Vref-dV3≦Vdet≦Vref+dV4
dV3 (dV3>dV1): second permissible lower limit width dV4 (dV4>dV2): second permissible upper limit width If the voltage at the third output terminal (node n5a) of the coupling circuit 30C is H: The voltage at the high level (VDD) and the fourth output terminal (node n6a) is L: low level (VSS). Further, when the detection voltage Vdet is lower than the second allowable lower limit voltage preset with respect to the reference voltage Vref (Vdet<Vref-dV3), the third output terminal (node n5a) and the fourth output terminal (node The voltages of n6a) are both L: low level (VSS). Further, when the detection voltage Vdet is higher in potential than the second allowable upper limit voltage preset with respect to the reference voltage Vref (Vdet>Vref+dV4), the third output terminal (node n5a) and the fourth output terminal (node n6a) Both voltages become H: high level (VDD).
 これにより、検知電圧Vdetが       
       Vref-dV3≦Vdet≦Vref+dV4
 なる状態にある場合には、第2変換部CV2は、図8Bに示すように、ハイレベルを示す論理信号O1及びローレベルを示す論理信号O2を出力する。
As a result, the detection voltage Vdet becomes
Vref-dV3≦Vdet≦Vref+dV4
In this case, the second conversion unit CV2 outputs a logic signal O1 indicating a high level and a logic signal O2 indicating a low level, as shown in FIG. 8B.
 また、検知電圧Vdetが
       Vdet<Vref-dV3
 なる状態にある場合には、第2変換部CV2は、図8Bに示すように、共にローレベルを示す論理信号O1及びO2を出力する。
Also, the detection voltage Vdet is Vdet<Vref-dV3
In this case, the second conversion unit CV2 outputs logic signals O1 and O2, both of which are at a low level, as shown in FIG. 8B.
 また、検知電圧Vdetが
       Vdet>Vref+dV4
 なる状態にある場合には、第2変換部CV2は、図8Bに示すように、共にハイレベルを示す論理信号O1及びO2を出力する。
Also, the detection voltage Vdet is Vdet>Vref+dV4
In this case, the second conversion unit CV2 outputs logic signals O1 and O2, both of which are at high level, as shown in FIG. 8B.
 判定回路40aは、第2変換部CV2から出力された論理信号O3及びO4に基づき、検知電圧Vdetが図8Bに示すように、第2範囲(Vref-dV3≦Vdet≦Vref+dV4)内に含まれるか否かを判定し、その判定結果を示す判定信号JD2を出力する。 The determination circuit 40a determines whether the detected voltage Vdet is within a second range (Vref-dV3≦Vdet≦Vref+dV4), as shown in FIG. 8B, based on the logic signals O3 and O4 output from the second conversion unit CV2. A determination signal JD2 indicating the determination result is output.
 このように、第2変換部CV2及び判定回路40aによれば、検知電圧Vdetの電圧値が、図8Bに示すように、基準電圧Vrefを中心とする、第1範囲よりも広い第2範囲内に含まれるか、或いは当該第2範囲外であるのかを示す判定信号JD2が生成される。 In this way, according to the second conversion unit CV2 and the determination circuit 40a, the voltage value of the detection voltage Vdet is within the second range, which is wider than the first range, centered on the reference voltage Vref, as shown in FIG. 8B. A determination signal JD2 is generated indicating whether the second range is included in the second range or outside the second range.
 すなわち、電圧検知回路50_1は、図8Bに示すように、検知電圧Vdetの電圧値が、基準電圧Vrefを中心とした第1範囲内に含まれるか否かを示す判定結果(JD1)と共に、第1範囲よりも広い第2範囲内に含まれるか否かを示す判定結果(JD2)を得ることができる。 That is, as shown in FIG. 8B, the voltage detection circuit 50_1 detects the first range along with the determination result (JD1) indicating whether the voltage value of the detection voltage Vdet is included within the first range centered on the reference voltage Vref. It is possible to obtain a determination result (JD2) indicating whether or not the second range is included in the second range, which is wider than the first range.
 尚、上記実施例では、基準状態時におけるソースタイプの電流I1(I1a)をシンクタイプの電流I2より大きくし、且つシンクタイプの電流I4(I4a)をソースタイプの電流I3より大きくしているが、ソースタイプの電流I1(I1a)をシンクタイプの電流I2より小さくし、且つシンクタイプの電流I4(I4a)をソースタイプの電流I3より小さくしても良い。 In the above embodiment, the source type current I1 (I1a) in the reference state is made larger than the sink type current I2, and the sink type current I4 (I4a) is made larger than the source type current I3. , the source type current I1 (I1a) may be made smaller than the sink type current I2, and the sink type current I4 (I4a) may be made smaller than the source type current I3.
 要するに、本発明に係る電圧検知回路としては、以下の差動段、結合回路を少なくとも含み、更に判定回路を含むものであっても良い。 In short, the voltage detection circuit according to the present invention includes at least the following differential stage and coupling circuit, and may further include a determination circuit.
 差動段(10、11~17、11a~13a)は、基準電圧(Vref)と検知対象となる検知電圧(Vdet)との差分に対応した差動電流対(Is1、Is2)を出力する。 The differential stage (10, 11 to 17, 11a to 13a) outputs a differential current pair (Is1, Is2) corresponding to the difference between the reference voltage (Vref) and the detection voltage (Vdet) to be detected.
 結合回路(30、30A~30C)は、第1及び第2の電圧(VDD、VSS)と第1及び第2の結合点(n5、n6)を有し、差動電流対(Is1、Is2)を第1及び第2の電圧(VDD、VSS)に対してそれぞれ電流ミラー変換して生成する第1~第4の電流(I1又はI1a、I2、I3、I4又はI4a)に基づき、第1及び第2の結合点(n5又はn5a、n6又はn6a)より第1及び第2の信号(O1又はO3、O2又はO4)を出力する。また、結合回路は、差動電流対の一方(Is1)を、第1の電圧(VDD)に基づくソースタイプ(電流吐き出し型)をなす第1及び前記第3の電流(I1又はI1a、I3)に変換し、差動電流対の他方(Is2)を、第2の電圧(VSS)に基づくシンクタイプをなす第2及び第4の電流(I2、I4又はI4a)に変換し、第1の電流(I1又はI1a)と第2の電流(I2)とが結合される第1の結合点(n5又はn5a)に生じた電圧を第1の信号(O1又はO3)として生成すると共に、第3の電流(I3)と第4の電流(I4又はI4a)と、が結合される第2の結合点(n6又はn6a)に生じた電圧を第2の信号(O2又はO4)として生成する。更に、結合回路は、基準状態において第1の電流(I1又はI1a)が第2の電流(I2)よりも大きく且つ第4の電流(I4又はI4a)が第3の電流(I3)よりも大きくなるように設定されている。 The coupling circuit (30, 30A to 30C) has first and second voltages (VDD, VSS) and first and second coupling points (n5, n6), and has a differential current pair (Is1, Is2). Based on the first to fourth currents (I1 or I1a, I2, I3, I4 or I4a) generated by performing current mirror conversion on the first and second voltages (VDD, VSS), The first and second signals (O1 or O3, O2 or O4) are output from the second connection point (n5 or n5a, n6 or n6a). The coupling circuit also connects one of the differential current pair (Is1) to the first and third currents (I1 or I1a, I3) of a source type (current source type) based on the first voltage (VDD). converting the other of the differential current pair (Is2) into second and fourth currents (I2, I4 or I4a) of sink type based on the second voltage (VSS); The voltage generated at the first coupling point (n5 or n5a) where (I1 or I1a) and the second current (I2) are coupled is generated as the first signal (O1 or O3), and the third The voltage generated at the second coupling point (n6 or n6a) where the current (I3) and the fourth current (I4 or I4a) are coupled is generated as a second signal (O2 or O4). Furthermore, the coupling circuit is such that the first current (I1 or I1a) is larger than the second current (I2) and the fourth current (I4 or I4a) is larger than the third current (I3) in the reference state. It is set to be.
 判定回路(40、40a)は、第1及び第2の信号(O1又はO3、O2又はO4)に基づき、検知電圧(Vdet)が基準状態(第1範囲又は第2範囲)から変動しているか否かを判定し判定結果を示す判定信号(JD、JD1、JD2)を出力する。 The determination circuit (40, 40a) determines whether the detection voltage (Vdet) is fluctuating from the reference state (first range or second range) based on the first and second signals (O1 or O3, O2 or O4). A judgment signal (JD, JD1, JD2) indicating the judgment result is output.
 図9は、本発明の第2の実施例としての表示装置200の構成を示すブロック図である。 FIG. 9 is a block diagram showing the configuration of a display device 200 as a second embodiment of the present invention.
 図9に示すように、表示装置200は、絶縁性基板上に水平方向に配線されたゲート線GL1~GLr(rは2以上の整数)、垂直方向に配線されたデータ線DL1~DLk(kは2以上の整数)、各ゲート線とデータ線との交差部にマトリックス上に配置された画素部154を備えた表示パネル150と、コントローラ130とを含む。なお、表示パネル150には、各ゲート線を駆動するゲートドライバ110、及び各データ線を駆動するデータドライバ120_1が接続されており、コントローラ130は、これらゲートドライバ110及びデータドライバ120_1の出力タイミングを調整する。 As shown in FIG. 9, the display device 200 includes gate lines GL1 to GLr (r is an integer of 2 or more) wired horizontally on an insulating substrate, and data lines DL1 to DLk (k is an integer greater than or equal to 2), the display panel 150 includes a display panel 150 having pixel portions 154 arranged in a matrix at the intersections of each gate line and a data line, and a controller 130. Note that a gate driver 110 that drives each gate line and a data driver 120_1 that drives each data line are connected to the display panel 150, and the controller 130 controls the output timing of these gate drivers 110 and data driver 120_1. adjust.
 ゲートドライバ110は、コントローラ130から信号群GSが供給され、信号群GSに基づき、各ゲート線へ供給する走査信号を出力する。尚、ゲートドライバ110は表示パネル150に画素部や配線と一体形成される薄膜トランジスタ回路構成が一般的になっている。 The gate driver 110 is supplied with the signal group GS from the controller 130, and outputs a scanning signal to be supplied to each gate line based on the signal group GS. Note that the gate driver 110 generally has a thin film transistor circuit configuration that is integrally formed with a pixel portion and wiring in the display panel 150.
 データドライバ120_1には、コントローラ130からクロック信号、各種の制御信号及び映像データ信号等を含む映像データ信号VDSが供給され、当該映像データ信号VDSに基づき、データ線DL1~DLkへ供給する階調電圧信号を出力する。 The data driver 120_1 is supplied with a video data signal VDS including a clock signal, various control signals, video data signals, etc. from the controller 130, and based on the video data signal VDS, gradation voltages are supplied to the data lines DL1 to DLk. Output a signal.
 尚、データドライバ120_1は、通常シリコンLSIで形成され、表示パネル150の端部にCOG(Chip On Glass)やCOF(Chip On Film)で実装される。データドライバ120_1が複数の個別ICで構成される場合、各々が駆動を担うデータ線に関与する各種制御信号を含む映像データ信号VDSが、コントローラ130から各データドライバICへ供給される。データドライバ120_1が単一または少数のICの場合には、コントローラ130がデータドライバ120_1に内蔵される場合もあり、その場合には、外部からコントローラ130へ供給される信号群が直接データドライバ120_1へ供給される。 Note that the data driver 120_1 is usually formed of a silicon LSI, and is mounted at the end of the display panel 150 using COG (Chip On Glass) or COF (Chip On Film). When the data driver 120_1 is composed of a plurality of individual ICs, a video data signal VDS containing various control signals related to the data lines each of which is responsible for driving is supplied from the controller 130 to each data driver IC. When the data driver 120_1 is a single IC or a small number of ICs, the controller 130 may be built into the data driver 120_1. In that case, a group of signals supplied to the controller 130 from the outside is directly sent to the data driver 120_1. Supplied.
 図10は、データドライバ120_1の内部構成の一例を示すブロック図である。 FIG. 10 is a block diagram showing an example of the internal configuration of the data driver 120_1.
 図10に示すように、データドライバ120_1は、夫々が複数の画素部154を含む負荷(データ線負荷)90_1~90_kをデータ線DL1~DLkを介して駆動する出力部80_1~80_kを含む。 As shown in FIG. 10, the data driver 120_1 includes output units 80_1 to 80_k that drive loads (data line loads) 90_1 to 90_k, each including a plurality of pixel units 154, via data lines DL1 to DLk.
 更に、データドライバ120_1は、少なくとも以下の電圧検知回路50、選択スイッチ群54、基準電圧設定部55、階調電圧生成部70及び制御部60を備えている。 Furthermore, the data driver 120_1 includes at least the following voltage detection circuit 50, selection switch group 54, reference voltage setting section 55, grayscale voltage generation section 70, and control section 60.
 電圧検知回路50は、出力部80_1~80_k各々の出力電圧の異常の有無を検知する。選択スイッチ群54は、出力部80_1~80_kから出力される出力電圧群のうちから1つを選択しその選択した出力電圧を検知電圧Vdetとして電圧検知回路50に供給する。基準電圧設定部55は、基準電圧Vrefを設定しこれを電圧検知回路50に供給する。制御部60は、外部から供給されたデジタルデータ信号(映像データ及び制御信号を含む)VDSに基づき、1水平走査期間毎に、各画素の輝度レベルを表す画素データPD1~PDkを生成し、夫々を対応する出力部80_1~80_kに供給する。更に、制御部60は、電圧検知回路50を制御する制御信号ctla、選択スイッチ群54を制御する制御信号ctlb、及び基準電圧設定部55を制御する制御信号ctlcを夫々に供給する。 The voltage detection circuit 50 detects whether there is an abnormality in the output voltage of each of the output units 80_1 to 80_k. The selection switch group 54 selects one from the output voltage group output from the output units 80_1 to 80_k and supplies the selected output voltage to the voltage detection circuit 50 as the detection voltage Vdet. The reference voltage setting section 55 sets a reference voltage Vref and supplies it to the voltage detection circuit 50. The control unit 60 generates pixel data PD1 to PDk representing the brightness level of each pixel every horizontal scanning period based on the digital data signal (including video data and control signal) VDS supplied from the outside, and are supplied to the corresponding output units 80_1 to 80_k. Further, the control section 60 supplies a control signal ctla for controlling the voltage detection circuit 50, a control signal ctlb for controlling the selection switch group 54, and a control signal ctlc for controlling the reference voltage setting section 55, respectively.
 出力部80_1~80_kの各々は、制御部60が出力部毎に割り当てた画素データPDを受け、当該画素データをロジック電源レベルの低電圧から負荷駆動用の高電圧に変換するレベルシフタ(LS)と、階調電圧生成部70で生成された階調電圧群から高電圧に変換された画素データ信号に基づき階調電圧生成部70で生成された階調電圧群から対応する階調電圧信号に変換するデジタルアナログ変換回路(DAC)と、当該階調電圧信号を増幅出力するAMPと、AMPから出力された階調電圧信号の負荷への供給又は遮断を制御する出力SWとを含む。 Each of the output units 80_1 to 80_k receives the pixel data PD assigned to each output unit by the control unit 60, and includes a level shifter (LS) that converts the pixel data from a low voltage at the logic power supply level to a high voltage for driving the load. , converting the grayscale voltage group generated by the grayscale voltage generation unit 70 into a corresponding grayscale voltage signal based on the pixel data signal converted from the grayscale voltage group generated by the grayscale voltage generation unit 70 to a high voltage. It includes a digital-to-analog conversion circuit (DAC), an AMP that amplifies and outputs the gray-scale voltage signal, and an output SW that controls supply or cutoff of the gray-scale voltage signal output from the AMP to the load.
 出力部80_1~80_kから出力される第1~第kの階調電圧信号は出力パッドP1~Pkを介して負荷90_1~90_kへ供給される。 The first to kth gradation voltage signals output from the output units 80_1 to 80_k are supplied to loads 90_1 to 90_k via output pads P1 to Pk.
 選択スイッチ群54は、各出力部から出力されるk個の階調電圧信号のうちから1つを選択し、これを検知電圧Vdetとして電圧検知回路50に供給するスイッチ54_1~54_kで構成される。選択スイッチ群54の選択制御、並びに非活性化制御(スイッチ54_1~54_kを全てオフ)は制御部60からの制御信号ctlaで制御される。 The selection switch group 54 is composed of switches 54_1 to 54_k that select one of the k grayscale voltage signals output from each output section and supply it to the voltage detection circuit 50 as a detection voltage Vdet. . Selection control and deactivation control (turning off all switches 54_1 to 54_k) of the selection switch group 54 are controlled by a control signal ctla from a control unit 60.
 電圧検知回路50は、差動段10、結合回路30、及び判定回路40を含む図2A、図3、図4等の電圧検知回路である。電圧検知回路50の検知動作は制御部60からの制御信号ctlbで制御される。 The voltage detection circuit 50 is the voltage detection circuit shown in FIG. 2A, FIG. 3, FIG. 4, etc., including the differential stage 10, the coupling circuit 30, and the determination circuit 40. The detection operation of the voltage detection circuit 50 is controlled by a control signal ctlb from the control section 60.
 基準電圧設定部55は、階調電圧生成部70で生成される階調電圧群から電圧検知用の基準電圧として用いる階調電圧を入力し、制御部60からの制御信号ctlcによって指定された階調電圧を基準電圧Vrefとして電圧検知回路50に供給する。 The reference voltage setting section 55 inputs a gradation voltage to be used as a reference voltage for voltage detection from the gradation voltage group generated by the gradation voltage generation section 70, and sets the gradation voltage specified by the control signal ctlc from the control section 60. The adjusted voltage is supplied to the voltage detection circuit 50 as a reference voltage Vref.
 制御部60は、映像データに応じた階調電圧信号をデータ線DL1~DLkへ出力し、表示パネル150に映像表示を行う表示モードと、前記第1~第kのデータ線に供給する前記階調信号が正常か否かを検知する検知モードを制御する。表示モードでは、出力部80_1~80_kの各出力SWをオンとし、各アンプAMPから階調電圧信号がデータ線DL1~DLkへ供給される。なお表示モードでは、電圧検知回路50及び選択スイッチ群54は非活性化される。一方、検知モードは、一般的に表示モードと重複しない期間に設定される。 以下に、検知モードにおいて、電圧検知回路50及び制御部60によって、出力部80_1~80_kの各々が出力する階調信号の電圧異常を検知する動作について説明する。 The control unit 60 outputs grayscale voltage signals corresponding to the video data to the data lines DL1 to DLk, and selects a display mode in which video is displayed on the display panel 150, and a display mode in which the grayscale voltage signals are output to the data lines DL1 to DLk according to the video data, and the grayscale voltage signals supplied to the first to kth data lines. Controls the detection mode for detecting whether the modulation signal is normal or not. In the display mode, each output SW of the output units 80_1 to 80_k is turned on, and grayscale voltage signals are supplied from each amplifier AMP to the data lines DL1 to DLk. Note that in the display mode, the voltage detection circuit 50 and selection switch group 54 are inactivated. On the other hand, the detection mode is generally set to a period that does not overlap with the display mode. Below, in the detection mode, the operation of the voltage detection circuit 50 and the control unit 60 to detect a voltage abnormality of the gradation signal output from each of the output units 80_1 to 80_k will be described.
 この際、制御部60は、先ず、検知動作の実行を指示する制御信号ctlbを電圧検知回路50に供給すると共に、出力部80_1~80_kの各々が基準電圧Vrefと同一電圧値を有する階調電圧信号を出力するように画素データPD1~PDkを指定する。次に、制御部60は、出力部80_1~80_kから出力されるk個の階調電圧信号を1つずつ順に選択させるように選択スイッチ群54を制御する。これにより、選択スイッチ群54で選択された1つの階調電圧信号が検知電圧Vdetとして電圧検知回路50に供給され、かかる電圧検知回路50により、当該検知電圧Vdetが基準状態(基準電圧Vrefと同一の電圧値又はその近傍の電圧値)にあるか否かが判定される。そして、その判定結果を示す判定信号JDが制御部60に帰還供給される。制御部60は、判定信号JDを受けて、異常判定のときには異常を通知する手段を起動させる、或いはデータドライバ120_1を停止するなどの異常回避処理機能を備えている。 At this time, the control unit 60 first supplies the voltage detection circuit 50 with a control signal ctlb instructing execution of the detection operation, and outputs a grayscale voltage having the same voltage value as the reference voltage Vref. Pixel data PD1 to PDk are designated to output signals. Next, the control unit 60 controls the selection switch group 54 to sequentially select the k grayscale voltage signals output from the output units 80_1 to 80_k one by one. As a result, one gradation voltage signal selected by the selection switch group 54 is supplied to the voltage detection circuit 50 as the detection voltage Vdet, and the voltage detection circuit 50 detects that the detection voltage Vdet is in the reference state (same as the reference voltage Vref). (or a voltage value in the vicinity thereof) is determined. Then, a determination signal JD indicating the determination result is fed back to the control section 60. The control unit 60 receives the determination signal JD and has an abnormality avoidance processing function such as activating means for notifying an abnormality or stopping the data driver 120_1 when an abnormality is determined.
 なお、各出力部から検知電圧Vdetとして取り出す階調電圧信号は、アンプAMPの出力端子と出力SWとの接続点での電圧が好ましい。その場合、出力SWをオンとして検知動作を行えば、負荷側の異常(負荷間ショートなど)を検知することができる。また、出力SWをオフとして検知動作を行えば、データドライバ120_1の異常を検知することができる。更に、これらの処理を共に行うことで、データドライバ120_1と負荷90_1~90_kとを接続する配線に異常が無くても、いずれに異常があるか切り分けることもできる。 Note that the gradation voltage signal taken out as the detection voltage Vdet from each output section is preferably the voltage at the connection point between the output terminal of the amplifier AMP and the output SW. In that case, by turning on the output SW and performing a detection operation, it is possible to detect an abnormality on the load side (such as a short circuit between loads). Further, by performing the detection operation with the output SW turned off, it is possible to detect an abnormality in the data driver 120_1. Furthermore, by performing these processes together, even if there is no abnormality in the wiring connecting the data driver 120_1 and the loads 90_1 to 90_k, it is possible to determine which one is abnormal.
 また、上記したような電圧異常検知動作は、表示装置200の電源起動時や、1画面表示動作から次の1画面表示動作までのブランキング期間内で行うのが好ましい。また出力部80_1~80_kを複数の出力群に分け、ブランキング期間毎に、検知動作の対象とする出力群を順に切り替えるようにしても良い。 Furthermore, it is preferable that the voltage abnormality detection operation as described above be performed when the display device 200 is powered on or during a blanking period from one screen display operation to the next one screen display operation. Alternatively, the output units 80_1 to 80_k may be divided into a plurality of output groups, and the output groups targeted for detection operation may be sequentially switched for each blanking period.
 以上、詳述したように、図10に示すデータドライバ120_1は、複数の負荷(90_1~90_k)を駆動する複数の出力部(80_1~80_k)に対して、共有の1つの電圧検知回路50だけで、各出力部から出力される複数の階調電圧信号に対する電圧異常検知を行うことができる。 As described above in detail, the data driver 120_1 shown in FIG. 10 only has one shared voltage detection circuit 50 for multiple output units (80_1 to 80_k) that drive multiple loads (90_1 to 90_k). Accordingly, voltage abnormality detection can be performed for a plurality of grayscale voltage signals output from each output section.
 また、電圧検知回路50は高電圧信号の検知に対して、差動段10のみ高電圧素子で構成し、結合回路30及び判定回路40は低電圧素子で構成されているので省面積化を実現することが可能となる。更に、電圧検知回路50は、検知対象の電圧に対して1回の検知動作で正常及び異常の判定を確定できるため、複雑な制御回路が不要な簡素な回路構成で実現できる。 In addition, in the voltage detection circuit 50, for detecting high voltage signals, only the differential stage 10 is composed of high voltage elements, and the coupling circuit 30 and the judgment circuit 40 are composed of low voltage elements, thereby realizing space saving. It becomes possible to do so. Further, since the voltage detection circuit 50 can determine whether the voltage to be detected is normal or abnormal in one detection operation, it can be realized with a simple circuit configuration that does not require a complicated control circuit.
 なお、図10では、表示装置に含まれるデータドライバの各出力部から出力される階調電圧信号の電圧異常を検知する動作を例示したが、電圧異常の検知対象となる機器は表示装置のデータドライバに限定されない。要するに、表示用の階調電圧信号のような負荷駆動用の電圧以外の例えば複数の制御電圧や設定電圧等を扱う電子機器に、選択スイッチ群54及び電圧検知回路50を設けても良いのである。特に検知電圧が高電圧範囲に及ぶ検知電圧に対しては、本発明の電圧検知回路を採用することで省面積化を図ることが可能となる。 Note that although FIG. 10 illustrates the operation of detecting a voltage abnormality in the gradation voltage signal output from each output section of the data driver included in the display device, the device that is the target of voltage abnormality detection is based on the data of the display device. Not limited to drivers. In short, the selection switch group 54 and the voltage detection circuit 50 may be provided in an electronic device that handles a plurality of control voltages, setting voltages, etc. other than voltages for driving loads such as gradation voltage signals for display. . Particularly for detection voltages in a high voltage range, by employing the voltage detection circuit of the present invention, it is possible to save area.
 図11は、本発明に係る第3の実施例による比較器51の構成を示す回路図である。 FIG. 11 is a circuit diagram showing the configuration of a comparator 51 according to a third embodiment of the present invention.
 比較器51は、高電圧の基準電圧Vrefと高電圧の検知電圧Vdetとを比較し、検知電圧Vdetが基準電圧Vrefよりも大(又は小)であるか否かを示す比較結果を、低電圧のロジック電源電圧のレベルで表す比較結果信号O1を出力する。 The comparator 51 compares a high voltage reference voltage Vref and a high voltage detection voltage Vdet, and outputs a comparison result indicating whether the detection voltage Vdet is larger (or smaller) than the reference voltage Vref to the low voltage. A comparison result signal O1 expressed by the level of the logic power supply voltage is output.
 尚、図11に示す比較器51の構成は、図2Aに示す電圧検知回路50から、トランジスタ25及び35を省いたものであり、他の回路構成は図2Aに示すものと同一である。ただし、比較器51では、トランジスタ24とトランジスタ34の電流駆動能力は同一である。 Note that the configuration of the comparator 51 shown in FIG. 11 is obtained by omitting the transistors 25 and 35 from the voltage detection circuit 50 shown in FIG. 2A, and the other circuit configurations are the same as that shown in FIG. 2A. However, in the comparator 51, the current driving capabilities of the transistor 24 and the transistor 34 are the same.
 比較器51は、以下の差動段10と結合回路30Dとを含む。 The comparator 51 includes the following differential stage 10 and coupling circuit 30D.
 差動段10は、基準電圧Vrefと検知電圧Vdetとの差分に対応した差動電流対(Is1、Is2)を生成する。差動段10は、高電位のアナログ電源電圧AVDD及びアナログ接地電圧AVSSを受け、当該AVDD及びAVSS間の電圧で動作する高電圧素子で構成される高電圧回路である。 The differential stage 10 generates a differential current pair (Is1, Is2) corresponding to the difference between the reference voltage Vref and the detection voltage Vdet. The differential stage 10 is a high-voltage circuit that receives a high-potential analog power supply voltage AVDD and an analog ground voltage AVSS, and is configured of high-voltage elements that operate at a voltage between the AVDD and AVSS.
 結合回路30Dは、NチャネルMOS型のトランジスタ21、22、33、34及びPチャネルMOS型のトランジスタ23及び24を有する。 The coupling circuit 30D includes N- channel MOS transistors 21, 22, 33, and 34 and P- channel MOS transistors 23 and 24.
 トランジスタ21は、自身のドレイン及びゲートがノードn1に接続されており、ソースがVSS電源端子に接続されている。トランジスタ22は、自身のゲートがトランジスタ21のゲートに接続されており、自身のソースがVSS電源端子に接続されている。更に、当該トランジスタ22は、自身のドレインがトランジスタ23のドレイン及びゲートに接続されている。トランジスタ23のソースはVDD電源端子に接続されている。トランジスタ24は、自身のソースがVDD電源端子に接続されており、ゲートがノードn3を介してトランジスタ23のゲートに接続されている。トランジスタ33は、自身のドレイン及びゲートがノードn2に接続されており、ソースがVSS電源端子に接続されている。トランジスタ34は、自身のソースがVSS電源端子に接続されており、ゲートがノードn2を介してトランジスタ33のゲートに接続されている。トランジスタ34は、自身のドレインがノードn5を介してトランジスタ24のドレインに接続されている。かかるノードn5から、当該ノードn5に生じた電圧を有する信号が上記した比較結果信号O1として出力される。 The transistor 21 has its drain and gate connected to the node n1, and its source connected to the VSS power supply terminal. The transistor 22 has its own gate connected to the gate of the transistor 21, and its own source connected to the VSS power supply terminal. Further, the transistor 22 has its own drain connected to the drain and gate of the transistor 23. The source of transistor 23 is connected to the VDD power supply terminal. The transistor 24 has its source connected to the VDD power supply terminal, and its gate connected to the gate of the transistor 23 via the node n3. The transistor 33 has its drain and gate connected to the node n2, and its source connected to the VSS power supply terminal. The transistor 34 has its source connected to the VSS power supply terminal, and its gate connected to the gate of the transistor 33 via the node n2. The transistor 34 has its own drain connected to the drain of the transistor 24 via the node n5. A signal having the voltage generated at the node n5 is outputted from the node n5 as the above-mentioned comparison result signal O1.
 かかる構成において、検知電圧Vdetが基準電圧Vrefに対して低電位(Vdet<Vref)のとき、結合回路30Dはローレベル(VSS)の論理信号O1が出力される。一方、検知電圧Vdetが基準電圧Vrefより高電位(Vdet>Vref)のとき、結合回路30Dはハイレベル(VDD)の比較結果信号O1を出力する。 In such a configuration, when the detection voltage Vdet is at a lower potential than the reference voltage Vref (Vdet<Vref), the coupling circuit 30D outputs a logic signal O1 at a low level (VSS). On the other hand, when the detection voltage Vdet is higher in potential than the reference voltage Vref (Vdet>Vref), the coupling circuit 30D outputs the comparison result signal O1 at a high level (VDD).
 ここで、図11に示す構成では、差動段10の差動出力電流Is1、Is2の一方と他方をそれぞれソースタイプとシンクタイプの電流対に変換し、電流対同士を結合させ、その結合点から、比較結果を表す比較結果信号O1を生成している。この際、基準電圧Vrefと検知電圧Vdetとの間で電圧差が生じると、差動出力電流Is1、Is2の一方の電流が増加し、他方の電流が減少する。よって、結合回路30Dの出力端(ノードn5)の電圧はロジック電源電圧VDD又はロジック接地電圧VSSに速やかに変化する。 Here, in the configuration shown in FIG. 11, one and the other of the differential output currents Is1 and Is2 of the differential stage 10 are converted into a source type current pair and a sink type current pair, the current pairs are combined, and the connecting point A comparison result signal O1 representing the comparison result is generated from the comparison result signal O1. At this time, when a voltage difference occurs between the reference voltage Vref and the detection voltage Vdet, one of the differential output currents Is1 and Is2 increases, and the other current decreases. Therefore, the voltage at the output end (node n5) of the coupling circuit 30D quickly changes to the logic power supply voltage VDD or the logic ground voltage VSS.
 すなわち、結合回路30Dから出力される比較結果信号O1は、検知電圧Vdetの入力に応じて、速やかに基準電圧Vrefとの大小比較結果を表すレベルに確定する。 That is, the comparison result signal O1 output from the coupling circuit 30D is quickly determined to a level representing the result of the comparison with the reference voltage Vref in response to the input of the detection voltage Vdet.
 更に、図11に示す構成によれば、特に高電圧信号を基準電圧と比較して、その比較結果を論理レベルの低電圧信号で出力する場合に、差動段10のみを高電圧素子で形成しておけば良いので、省面積化を図ることが可能となる。 Furthermore, according to the configuration shown in FIG. 11, only the differential stage 10 is formed of high voltage elements, especially when comparing a high voltage signal with a reference voltage and outputting the comparison result as a low voltage signal at a logic level. Since it is only necessary to do so, it is possible to save area.
10            差動段
30、30A~30C    結合回路
40、40a        判定回路
50、50_1       電圧検知回路
51            比較器
60            判定回路
120_1         データドライバ
200           表示装置
10 Differential stage 30, 30A to 30C Coupling circuit 40, 40a Judgment circuit 50, 50_1 Voltage detection circuit 51 Comparator 60 Judgment circuit 120_1 Data driver 200 Display device

Claims (15)

  1.  検知対象の検知電圧が、基準電圧を含む所定の電圧範囲内の電圧値を有する基準状態から変動したことを検知する電圧検知回路であって、
     前記基準電圧と前記検知電圧との差分に対応した差動電流対を出力する差動段と、
     第1及び第2の電圧と第1及び第2の結合点を有し、前記差動電流対を前記第1及び第2の電圧に対してそれぞれ電流ミラー変換して生成する第1~第4の電流に基づき、前記第1及び第2の結合点より第1及び第2の信号を出力する結合回路と、を有し、
     前記結合回路は、前記差動電流対の一方を、前記第1の電圧に基づくソースタイプ及びシンクタイプの一方をなす前記第1及び前記第3の電流に変換し、前記差動電流対の他方を、前記第2の電圧に基づくソースタイプ及びシンクタイプの他方をなす前記第2及び第4の電流に変換し、前記第1の電流と前記第2の電流とが結合される前記第1の結合点に生じた電圧を前記第1の信号として生成すると共に、前記第3の電流と前記第4の電流とが結合される前記第2の結合点に生じた電圧を前記第2の信号として生成し、
     前記結合回路では、前記基準状態において前記第1の電流が前記第2の電流よりも大きく且つ前記第4の電流が前記第3の電流よりも大きくなるように設定されていることを特徴とする電圧検知回路。
    A voltage detection circuit that detects that a detection voltage of a detection target has changed from a reference state having a voltage value within a predetermined voltage range including a reference voltage,
    a differential stage that outputs a differential current pair corresponding to the difference between the reference voltage and the detection voltage;
    first to fourth circuits having first and second voltages and first and second coupling points, and generating current mirror transforms of the differential current pair with respect to the first and second voltages, respectively; a coupling circuit that outputs first and second signals from the first and second coupling points based on the current,
    The coupling circuit converts one of the differential current pair into the first and third currents of one of a source type and a sink type based on the first voltage, and converts the other of the differential current pair into the second and fourth currents of the other of a source type and a sink type based on the second voltage, and the first current and the second current are combined. A voltage generated at the coupling point is generated as the first signal, and a voltage generated at the second coupling point where the third current and the fourth current are coupled is generated as the second signal. generate,
    The coupling circuit is characterized in that the first current is set to be larger than the second current and the fourth current is set to be larger than the third current in the reference state. Voltage detection circuit.
  2.  前記結合回路から出力される前記第1及び第2の信号に基づき、前記検知電圧が前記基準状態から変動しているか否かを判定し判定結果を示す判定信号を出力する判定回路を有することを特徴とする請求項1に記載の電圧検知回路。 The method further includes a determination circuit that determines whether or not the detected voltage has fluctuated from the reference state based on the first and second signals output from the coupling circuit and outputs a determination signal indicating the determination result. The voltage detection circuit according to claim 1.
  3.  前記判定回路は、前記第1及び前記第2の信号が異なる論理値を有するときは前記検知電圧が前記基準状態にあると判定する一方、前記第1及び前記第2の信号が同一の論理値を有するときは前記検知電圧が前記基準状態から変動していると判定することを特徴とする請求項1又は2に記載の電圧検知回路。 The determination circuit determines that the detection voltage is in the reference state when the first and second signals have different logical values, while determining that the first and second signals have the same logical value. 3. The voltage detection circuit according to claim 1, wherein the voltage detection circuit determines that the detected voltage has fluctuated from the reference state when the detected voltage has the same value as the reference state.
  4.  前記結合回路は、前記第1の電圧と前記第2の電圧とからなる第1の電圧範囲で動作し、
    前記差動段は、前記第1の電圧及び前記第2の電圧の一方と第3の電圧とからなる第2の電圧範囲で動作し、
    前記第1の電圧範囲より前記第2の電圧範囲が大きく設定されていることを特徴とする請求項1~3のいずれか1に記載の電圧検知回路。
    The coupling circuit operates in a first voltage range consisting of the first voltage and the second voltage,
    The differential stage operates in a second voltage range consisting of one of the first voltage and the second voltage and a third voltage,
    The voltage detection circuit according to claim 1, wherein the second voltage range is set larger than the first voltage range.
  5.  前記差動段は、前記第1の電圧及び前記第2の電圧からなる低電圧の電源電圧より高い高電圧の電源電圧で動作する高電圧素子で形成されており、
     前記結合回路は、前記低電圧の電源電圧で動作する低電圧素子で形成されていることを特徴とする請求項1~3のいずれか1に記載の電圧検知回路。
    The differential stage is formed of a high voltage element that operates at a high power supply voltage higher than a low power supply voltage consisting of the first voltage and the second voltage,
    4. The voltage detection circuit according to claim 1, wherein the coupling circuit is formed of a low voltage element that operates with the low power supply voltage.
  6.  前記結合回路は、前記差動電流対の前記一方を前記第2の電圧及び第1の電圧に基づく2回の電流ミラー変換により前記第1の電流及び前記第3の電流を夫々生成し、前記差動電流対の前記他方を前記第2の電圧に基づく1回の電流ミラー変換により前記第2の電流及び前記第4の電流を夫々生成することを特徴とする請求項1~5のいずれか1に記載の電圧検知回路。 The coupling circuit generates the first current and the third current by performing current mirror conversion of the one of the differential current pair twice based on the second voltage and the first voltage, respectively, and generates the first current and the third current, respectively. Any one of claims 1 to 5, wherein the second current and the fourth current are respectively generated by one-time current mirror conversion of the other of the differential current pair based on the second voltage. 1. The voltage detection circuit according to 1.
  7.  前記結合回路は、
     前記第1の電圧を受け、前記差動電流対の前記一方に対応した電流を前記第1の電流として前記第1の結合点に出力する第1のトランジスタ回路と、
     前記第2の電圧を受け、前記差動電流対の前記他方に対応した電流を前記第2の電流として前記第1の結合点に出力する第2のトランジスタ回路と、
     前記第1の電圧を受け、前記差動電流対の前記一方に対応した電流を前記第3の電流として前記第2の結合点に出力する第3のトランジスタ回路と、
     前記第2の電圧を受け、前記差動電流対の前記他方に対応した電流を前記第4の電流として前記第2の結合点に出力する第4のトランジスタ回路と、を有し、
     前記第1のトランジスタ回路及び前記第2のトランジスタ回路のうちの少なくとも一方のトランジスタ回路は、活性、非活性が個別に制御され並列接続されている複数のトランジスタを含み、当該複数のトランジスタのうち活性に制御されたトランジスタの各々から出力された電流を合成した合成電流を前記第1の電流又は前記第2の電流として生成し、
     前記第3のトランジスタ回路及び前記第4のトランジスタ回路のうちの少なくとも一方のトランジスタ回路は、活性、非活性が個別に制御され並列接続されている複数のトランジスタを含み、当該複数のトランジスタのうち活性に制御されたトランジスタの各々から出力された電流を合成した合成電流を前記第3の電流又は前記第4の電流として生成することを特徴とする請求項1~6のいずれか1に記載の電圧検知回路。
    The coupling circuit is
    a first transistor circuit that receives the first voltage and outputs a current corresponding to the one of the differential current pair as the first current to the first coupling point;
    a second transistor circuit that receives the second voltage and outputs a current corresponding to the other of the differential current pair as the second current to the first coupling point;
    a third transistor circuit that receives the first voltage and outputs a current corresponding to the one of the differential current pair as the third current to the second coupling point;
    a fourth transistor circuit that receives the second voltage and outputs a current corresponding to the other of the differential current pair as the fourth current to the second connection point;
    At least one of the first transistor circuit and the second transistor circuit includes a plurality of transistors whose activation and inactivation are individually controlled and connected in parallel, and the active transistor circuit of the plurality of transistors is connected in parallel. generating a composite current as the first current or the second current by combining the currents output from each of the transistors controlled by the transistor;
    At least one of the third transistor circuit and the fourth transistor circuit includes a plurality of transistors whose activation and inactivation are individually controlled and connected in parallel, and the active transistor circuit of the plurality of transistors is connected in parallel. The voltage according to any one of claims 1 to 6, characterized in that the third current or the fourth current is a composite current obtained by combining the currents output from each of the transistors controlled to the voltage. Detection circuit.
  8.  前記結合回路は、
     前記第1の電圧を受け、前記差動電流対の前記一方に対応した電流を前記第1の電流として前記第1の結合点に出力する第1のトランジスタ回路と、
     前記第2の電圧を受け、前記差動電流対の前記他方に対応した電流を前記第2の電流として前記第1の結合点に出力する第2のトランジスタ回路と、
     前記第1の電圧を受け、前記差動電流対の前記一方に対応した電流を前記第3の電流として前記第2の結合点に出力する第3のトランジスタ回路と、
     前記第2の電圧を受け、前記差動電流対の前記他方に対応した電流を前記第4の電流として前記第2の結合点に出力する第4のトランジスタ回路と、を有し、
     前記第1のトランジスタ回路は、前記差動電流対の前記一方を電流ミラー変換した電流を出力する第1のトランジスタと、前記第1のトランジスタと並列に接続され電流値を可変に制御できる第1の電流源と、を含み、前記第1の電流源から出力された電流と前記第1のトランジスタから出力された電流とを合成した合成電流を前記第1の電流として生成し、
     前記第4のトランジスタ回路は、前記差動電流対の前記他方を電流ミラー変換した電流を出力する第2のトランジスタと、前記第2のトランジスタと並列に接続され電流値を可変に制御できる第2の電流源と、を含み、前記第2の電流源から出力された電流と前記第2のトランジスタから出力された電流を合成した合成電流を前記第4の電流として生成することを特徴とする請求項1~6のいずれか1に記載の電圧検知回路。
    The coupling circuit is
    a first transistor circuit that receives the first voltage and outputs a current corresponding to the one of the differential current pair as the first current to the first coupling point;
    a second transistor circuit that receives the second voltage and outputs a current corresponding to the other of the differential current pair as the second current to the first coupling point;
    a third transistor circuit that receives the first voltage and outputs a current corresponding to the one of the differential current pair as the third current to the second coupling point;
    a fourth transistor circuit that receives the second voltage and outputs a current corresponding to the other of the differential current pair as the fourth current to the second connection point;
    The first transistor circuit includes a first transistor that outputs a current obtained by current mirror-converting one of the differential current pairs, and a first transistor that is connected in parallel with the first transistor and whose current value can be variably controlled. a current source, generating a composite current as the first current by combining the current output from the first current source and the current output from the first transistor,
    The fourth transistor circuit includes a second transistor that outputs a current obtained by current mirror-converting the other of the differential current pair, and a second transistor that is connected in parallel with the second transistor and whose current value can be variably controlled. a current source, and a composite current obtained by combining the current output from the second current source and the current output from the second transistor is generated as the fourth current. The voltage detection circuit according to any one of Items 1 to 6.
  9.  映像データ信号に基づき各画素の輝度レベルに対応した階調信号を生成して表示パネルの第1~第k(kは2以上の整数)のデータ線のそれぞれに第1~第kの階調信号を供給する表示ドライバであって、
     前記表示パネルに映像表示を行う表示モードと、前記第1~第kのデータ線に供給する前記階調信号が正常か否かを検知する検知モードと、を有し、
     所定の輝度レベルに対応した階調信号の電圧値を基準電圧に設定する設定部と、
    前記検知モードにおいて、前記第1~第kの階調信号のうちの1つを選択し、選択した1つの前記階調信号の電圧値を検知電圧として取得する選択部と、 前記検知電圧が前記基準電圧を含む所定の電圧範囲内の電圧値を有する基準状態から変動しているか否かを検知する電圧検知回路と、を含み、
     前記電圧検知回路は、
     前記基準電圧と前記検知電圧との差分に対応した差動電流対を出力する差動段と、
     第1及び第2の電圧と第1及び第2の結合点を有し、前記差動電流対を前記第1及び第2の電圧に対してそれぞれ電流ミラー変換して生成する第1~第4の電流に基づき、前記第1及び第2の結合点より第1及び第2の信号を出力する結合回路と、
     前記第1及び第2の信号に基づき、前記検知電圧が前記基準状態から変動しているか否かを判定し判定結果を示す判定信号を出力する判定回路と、を有し、
     前記結合回路は、前記差動電流対の一方を、前記第1の電圧に基づくソースタイプ及びシンクタイプの一方をなす前記第1及び前記第3の電流に変換し、前記差動電流対の他方を、前記第2の電圧に基づくソースタイプ及びシンクタイプの他方をなす前記第2及び第4の電流に変換し、前記第1の電流と前記第2の電流とが結合される前記第1の結合点に生じた電圧を前記第1の信号として生成すると共に、前記第3の電流と前記第4の電流とが結合される前記第2の結合点に生じた電圧を前記第2の信号として生成し、
     前記結合回路では、前記基準状態において前記第1の電流が前記第2の電流よりも大きく且つ前記第4の電流が前記第3の電流よりも大きくなるように設定されていることを特徴とする表示ドライバ。
    A gradation signal corresponding to the luminance level of each pixel is generated based on the video data signal, and the 1st to kth gradations are applied to each of the 1st to kth (k is an integer of 2 or more) data lines of the display panel. A display driver that supplies a signal,
    a display mode for displaying an image on the display panel; and a detection mode for detecting whether or not the gradation signals supplied to the first to k-th data lines are normal;
    a setting unit that sets a voltage value of a grayscale signal corresponding to a predetermined brightness level as a reference voltage;
    In the detection mode, a selection unit that selects one of the first to kth grayscale signals and obtains a voltage value of the selected one of the grayscale signals as a detection voltage; a voltage detection circuit that detects whether or not there is a change from a reference state having a voltage value within a predetermined voltage range including the reference voltage;
    The voltage detection circuit is
    a differential stage that outputs a differential current pair corresponding to the difference between the reference voltage and the detection voltage;
    first to fourth circuits having first and second voltages and first and second coupling points, and generating current mirror transforms of the differential current pair with respect to the first and second voltages, respectively; a coupling circuit that outputs first and second signals from the first and second coupling points based on the current;
    a determination circuit that determines whether the detected voltage has fluctuated from the reference state based on the first and second signals and outputs a determination signal indicating the determination result;
    The coupling circuit converts one of the differential current pair into the first and third currents of one of a source type and a sink type based on the first voltage, and converts the other of the differential current pair into the second and fourth currents of the other of a source type and a sink type based on the second voltage, and the first current and the second current are combined. A voltage generated at the coupling point is generated as the first signal, and a voltage generated at the second coupling point where the third current and the fourth current are coupled is generated as the second signal. generate,
    The coupling circuit is characterized in that the first current is set to be larger than the second current and the fourth current is set to be larger than the third current in the reference state. display driver.
  10.  前記第1~第kの階調信号を所定のタイミングで1つずつ順に選択させるように前記選択部を制御する制御部を含むことを特徴とする請求項9に記載の表示ドライバ The display driver according to claim 9, further comprising a control unit that controls the selection unit to sequentially select the first to kth gradation signals one by one at a predetermined timing.
  11.  前記電圧検知回路は、前記第1~第kの階調信号が前記表示パネルの第1~第kのデータ線に供給されていない期間中にだけ動作することを特徴とする請求項9又は10に記載の表示ドライバ。 10. The voltage detection circuit operates only during a period when the first to kth grayscale signals are not being supplied to the first to kth data lines of the display panel. Display driver as described in .
  12.  夫々に複数の画素部が形成されている第1~第k(kは2以上の整数)のデータ線を有する表示パネルと、
     映像データ信号に基づき各画素の輝度レベルに対応した階調信号を生成して前記表示パネルの前記第1~第k(kは2以上の整数)のデータ線のそれぞれに第1~第kの階調信号を供給する表示ドライバと、を有し、
     前記表示ドライバは、
     前記表示パネルに映像表示を行う表示モードと、前記第1~第kのデータ線に供給する前記階調信号が正常か否かを検知する検知モードと、を有し、 所定の輝度レベルに対応した階調信号の電圧値を基準電圧に設定する設定部と、
    前記検知モードにおいて、前記第1~第kの階調信号のうちの1つを選択し、選択した1つの前記階調信号の電圧値を検知電圧として取得する選択部と、
     前記第1~第kの階調信号を周期的に1つずつ順に選択させるように前記選択部を制御する制御部と、
     前記検知電圧が、前記基準電圧を含む所定の電圧範囲内の電圧値を有する基準状態から変動しているか否かを検知する電圧検知回路と、を含み、
     前記電圧検知回路は、
     前記基準電圧と前記検知電圧との差分に対応した差動電流対を出力する差動段と、 
     第1及び第2の電圧と第1及び第2の結合点を有し、前記差動電流対を前記第1及び第2の電圧に対してそれぞれ電流ミラー変換して生成する第1~第4の電流に基づき、前記第1及び第2の結合点より第1及び第2の信号を出力する結合回路と、
     前記第1及び第2の信号に基づき、前記検知電圧が前記基準状態から変動しているか否かを判定し判定結果を示す判定信号を出力する判定回路と、を有し、
     前記結合回路は、前記差動電流対の一方を、前記第1の電圧に基づくソースタイプ及びシンクタイプの一方をなす前記第1及び前記第3の電流に変換し、前記差動電流対の他方を、前記第2の電圧に基づくソースタイプ及びシンクタイプの他方をなす前記第2及び第4の電流に変換し、前記第1の電流と前記第2の電流とが結合される前記第1の結合点に生じた電圧を前記第1の信号として生成すると共に、前記第3の電流と前記第4の電流とが結合される前記第2の結合点に生じた電圧を前記第2の信号として生成し、
     前記結合回路では、前記基準状態において前記第1の電流が前記第2の電流よりも大きく且つ前記第4の電流が前記第3の電流よりも大きくなるように設定されていることを特徴とする表示装置。
    a display panel having first to kth (k is an integer of 2 or more) data lines, each of which has a plurality of pixel portions formed therein;
    A gradation signal corresponding to the luminance level of each pixel is generated based on the video data signal, and the first to kth gradation signals are applied to each of the first to kth (k is an integer of 2 or more) data lines of the display panel. a display driver that supplies a grayscale signal;
    The display driver is
    It has a display mode for displaying an image on the display panel, and a detection mode for detecting whether or not the gradation signals supplied to the first to kth data lines are normal, and corresponds to a predetermined brightness level. a setting section that sets the voltage value of the grayscale signal obtained as a reference voltage;
    In the detection mode, a selection unit that selects one of the first to kth grayscale signals and obtains the voltage value of the selected one of the grayscale signals as a detection voltage;
    a control unit that controls the selection unit to periodically select the first to kth gradation signals one by one;
    a voltage detection circuit that detects whether or not the detection voltage varies from a reference state having a voltage value within a predetermined voltage range including the reference voltage;
    The voltage detection circuit is
    a differential stage that outputs a differential current pair corresponding to the difference between the reference voltage and the detection voltage;
    first to fourth circuits having first and second voltages and first and second coupling points, and generating current mirror transforms of the differential current pair with respect to the first and second voltages, respectively; a coupling circuit that outputs first and second signals from the first and second coupling points based on the current;
    a determination circuit that determines whether the detected voltage has fluctuated from the reference state based on the first and second signals and outputs a determination signal indicating the determination result;
    The coupling circuit converts one of the differential current pair into the first and third currents of one of a source type and a sink type based on the first voltage, and converts the other of the differential current pair into the second and fourth currents of the other of a source type and a sink type based on the second voltage, and the first current and the second current are combined. A voltage generated at the coupling point is generated as the first signal, and a voltage generated at the second coupling point where the third current and the fourth current are coupled is generated as the second signal. generate,
    The coupling circuit is characterized in that the first current is set to be larger than the second current and the fourth current is set to be larger than the third current in the reference state. Display device.
  13.  入力電圧及び基準電圧を受け、前記入力電圧が前記基準電圧より大きいか否かを示す比較結果を出力する比較器であって、
     前記基準電圧と前記入力電圧との差分に対応した差動電流対を出力する差動段と、
     第1及び第2の電圧と出力端を有し、前記差動電流対を前記第1及び第2の電圧に対してそれぞれ電流ミラー変換して生成する第1及び第2の電流に基づき、前記出力端より前記比較結果信号を出力する回路部と、を有し、
     前記回路部は、前記差動電流対の一方を、前記第1の電圧に基づくソースタイプ及びシンクタイプの一方をなす前記第1の電流に変換し、前記差動電流対の他方を、前記第2の電圧に基づくソースタイプ及びシンクタイプの他方をなす前記第2の電流に変換し、前記第1の電流と前記第2の電流とが結合される前記出力端に生じた電圧を前記比較結果信号として生成することを特徴とする比較器。
    A comparator that receives an input voltage and a reference voltage and outputs a comparison result indicating whether the input voltage is greater than the reference voltage,
    a differential stage that outputs a differential current pair corresponding to a difference between the reference voltage and the input voltage;
    has a first and second voltage and an output terminal, and is based on the first and second currents generated by performing current mirror conversion of the differential current pair with respect to the first and second voltages, respectively; a circuit unit that outputs the comparison result signal from an output end,
    The circuit unit converts one of the differential current pair into the first current of either a source type or a sink type based on the first voltage, and converts the other of the differential current pair into the first current that is of one of a source type and a sink type based on the first voltage. The voltage generated at the output terminal where the first current and the second current are combined is determined by the comparison result. A comparator characterized by generating a signal.
  14.  前記回路部は、前記第1の電圧と前記第2の電圧とからなる第1の電圧範囲で動作し、
    前記差動段は、前記第1の電圧及び前記第2の電圧の一方と第3の電圧とからなる第2の電圧範囲で動作し、
    前記第1の電圧範囲より前記第2の電圧範囲が大きく設定されていることを特徴とする請求項13に記載の比較器。
    The circuit section operates in a first voltage range consisting of the first voltage and the second voltage,
    The differential stage operates in a second voltage range consisting of one of the first voltage and the second voltage and a third voltage,
    14. The comparator according to claim 13, wherein the second voltage range is set larger than the first voltage range.
  15.  前記差動段は、前記第1の電圧及び前記第2の電圧からなる低電圧の電源電圧より高い高電圧の電源電圧で動作する高電圧素子で形成されており、
     前記結合回路は、前記低電圧の電源電圧で動作する低電圧素子で形成されていることを特徴とする請求項13又は14に記載の比較器。
    The differential stage is formed of a high voltage element that operates at a high power supply voltage higher than a low power supply voltage consisting of the first voltage and the second voltage,
    15. The comparator according to claim 13, wherein the coupling circuit is formed of a low voltage element that operates on the low power supply voltage.
PCT/JP2023/008992 2022-03-17 2023-03-09 Voltage sensing circuit, display driver, display device, and comparator WO2023176670A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-042263 2022-03-17
JP2022042263 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023176670A1 true WO2023176670A1 (en) 2023-09-21

Family

ID=88023262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008992 WO2023176670A1 (en) 2022-03-17 2023-03-09 Voltage sensing circuit, display driver, display device, and comparator

Country Status (1)

Country Link
WO (1) WO2023176670A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163644A (en) * 1997-11-26 1999-06-18 Fujitsu Ltd Output circuit using differential amplifier circuit
JP2010122509A (en) * 2008-11-20 2010-06-03 Oki Semiconductor Co Ltd Drive device for display panel
JP2017153017A (en) * 2016-02-26 2017-08-31 ラピスセミコンダクタ株式会社 Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163644A (en) * 1997-11-26 1999-06-18 Fujitsu Ltd Output circuit using differential amplifier circuit
JP2010122509A (en) * 2008-11-20 2010-06-03 Oki Semiconductor Co Ltd Drive device for display panel
JP2017153017A (en) * 2016-02-26 2017-08-31 ラピスセミコンダクタ株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP5137321B2 (en) Display device, LCD driver, and driving method
US9407257B2 (en) Reducing power consumption in a liquid crystal display
US9147361B2 (en) Output circuit, data driver and display device
US8487921B2 (en) Display panel driver and display apparatus using the same
US11302236B2 (en) Display device and method for driving the same
US10074336B2 (en) Voltage transmission circuit, voltage transmitting circuit and voltage receiving circuit
KR20160078634A (en) Rganic light emitting display panel, organic light emitting display device, and the method for the organic light emitting display device
US20090021508A1 (en) Light source module for display device and display device having the same
US11170720B2 (en) Display panel driving apparatus and driving method thereof
KR102435226B1 (en) Display device and driving method of the same
US8310507B2 (en) Display device drive circuit
US20100085344A1 (en) Operational amplifier circuit and display apparatus
US8558826B2 (en) Display device and driving circuit for display device
JP2011128219A (en) Display device and method for driving display device
JP2011112970A (en) Source driver and display device
CN113570993A (en) Data driver, display device including the same
WO2023176670A1 (en) Voltage sensing circuit, display driver, display device, and comparator
KR20150088598A (en) Data driver and display apparatus having the same and method of driving display panel using the same
US20110148945A1 (en) D/a converter circuit and its voltage supply control method
CN114694608B (en) Low power driving display device and driving method thereof
US20220319403A1 (en) Source driver and display device
US11955068B2 (en) Gamma standard voltage generating circuit, gamma driving voltage generating circuit and display device
JP2011112971A (en) Display device and method of driving the same
US11862058B2 (en) Load driving circuit, display driver, display apparatus and semiconductor device
JP2011112969A (en) Display device and drive method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770626

Country of ref document: EP

Kind code of ref document: A1