WO2023175849A1 - Substrate treatment device, substrate support, semiconductor device production method, substrate treatment method, and program - Google Patents

Substrate treatment device, substrate support, semiconductor device production method, substrate treatment method, and program Download PDF

Info

Publication number
WO2023175849A1
WO2023175849A1 PCT/JP2022/012358 JP2022012358W WO2023175849A1 WO 2023175849 A1 WO2023175849 A1 WO 2023175849A1 JP 2022012358 W JP2022012358 W JP 2022012358W WO 2023175849 A1 WO2023175849 A1 WO 2023175849A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
support
gas
wafer
processing apparatus
Prior art date
Application number
PCT/JP2022/012358
Other languages
French (fr)
Japanese (ja)
Inventor
優作 岡嶋
雄二 竹林
裕也 宮西
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2022/012358 priority Critical patent/WO2023175849A1/en
Priority to TW111144937A priority patent/TW202339087A/en
Publication of WO2023175849A1 publication Critical patent/WO2023175849A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present disclosure relates to a substrate processing apparatus, a substrate support, a semiconductor device manufacturing method, a substrate processing method, and a program.
  • a substrate processing apparatus used in the manufacturing process of semiconductor devices there is, for example, a so-called vertical apparatus in which a load lock chamber (lower chamber) is installed below a process tube (reaction tube).
  • a substrate processing apparatus moves a boat (substrate support) supporting a substrate up and down between a process tube and a load lock chamber, and performs predetermined processing on the substrate while the boat is housed in the process tube.
  • a boat substrate support
  • An object of the present disclosure is to provide a technique that can improve the efficiency of substrate processing.
  • a first support part having a plurality of first pillars that supports a plurality of substrates at intervals in the vertical direction, and a through hole disposed in a central part between the plurality of substrates supported by the first support part.
  • a second support part having a plurality of second supports supporting a plurality of plates having a substrate support; a processing chamber that accommodates the substrate support; a gas supply unit that supplies gas to the processing chamber;
  • FIG. 2 is a schematic configuration diagram of a substrate processing apparatus suitably used in one embodiment of the present disclosure, and is a longitudinal cross-sectional view of a processing furnace portion showing a state in which a substrate support carrying a wafer is carried into a processing chamber.
  • FIG. 2 is a schematic configuration diagram of a substrate processing apparatus suitably used in one aspect of the present disclosure, and is a longitudinal cross-sectional view of a processing furnace portion showing a state in which a substrate support carrying a wafer is carried into a transfer chamber.
  • FIG. 3 is a plan view of a partition plate in a substrate support of a substrate processing apparatus that is preferably used in one embodiment of the present disclosure. 4 is a plan view showing the relationship between the partition plate and the wafer shown in FIG. 3.
  • FIG. 3 is a plan view of a partition plate in a substrate support of a substrate processing apparatus that is preferably used in one embodiment of the present disclosure. 4 is a plan view showing the relationship between the partition plate and the wafer shown in FIG. 3.
  • FIG. 2 is a perspective view showing a main part configuration of a substrate support in a substrate processing apparatus suitably used in one embodiment of the present disclosure.
  • 6 is a plan view showing the relationship between the substrate holding part and the partition plate in the substrate support shown in FIG. 5.
  • FIG. 6 is a cross-sectional view showing a state in which a wafer is placed on the substrate support part of the substrate support shown in FIG. 5.
  • FIG. FIG. 6 is a cross-sectional view showing a state in which a wafer is placed on the partition plate support portion of the substrate support shown in FIG. 5;
  • FIG. 2 is a schematic configuration diagram of a controller included in a substrate processing apparatus suitably used in one aspect of the present disclosure, and is a block diagram showing a control system of the controller.
  • FIG. 3 is a flowchart showing the procedure of a film forming process performed in a substrate processing apparatus preferably used in one embodiment of the present disclosure.
  • FIGS. 1 to 10 One aspect of the present disclosure will be described below with reference to FIGS. 1 to 10. Note that the drawings used in the following explanation are all schematic, and the dimensional relationship of each element, the ratio of each element, etc. shown in the drawings do not necessarily match the reality. Moreover, the dimensional relationship of each element, the ratio of each element, etc. do not necessarily match between a plurality of drawings.
  • the substrate processing apparatus is used in the manufacturing process of semiconductor devices, and is a vertical type that processes a plurality of substrates (for example, five) at a time. It is configured as a substrate processing apparatus.
  • substrates to be processed include semiconductor wafer substrates (hereinafter simply referred to as "wafers") on which semiconductor integrated circuit devices (semiconductor devices) are fabricated.
  • the substrate processing apparatus includes a vertical processing furnace 1.
  • the vertical processing furnace 1 includes a heater 10 as a heating section (heating mechanism, heating system).
  • the heater 10 has a cylindrical shape, and is installed perpendicularly to the installation floor of the substrate processing apparatus by being supported by a heater base (not shown) serving as a holding plate.
  • the heater 10 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
  • a reaction tube 20 constituting a reaction container (processing container) is arranged inside the heater 10 and concentrically with the heater 10 .
  • the reaction tube 20 has a double tube configuration including an inner tube 21 and an outer tube 22 concentrically surrounding the inner tube 21.
  • Inner tube 21 and outer tube 22 are each made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC).
  • the inner tube 21 is formed into a cylindrical shape with open upper and lower ends.
  • the outer tube 22 has a cylindrical shape with a closed upper end and an open lower end. The upper end of the inner tube 21 extends to the vicinity of the ceiling of the outer tube 22.
  • a processing chamber 23 in which processing is performed on the wafer 200 is formed in the hollow part of the inner tube 21 .
  • the processing chamber 23 is configured to be able to accommodate the wafers 200 arranged in the processing chamber 23 from one end (lower side) to the other end (upper side).
  • the area in the processing chamber 23 where a plurality of wafers 200 are arranged is also referred to as a substrate arrangement area (wafer arrangement area).
  • the direction in which the wafers 200 are arranged in the processing chamber 23 is also referred to as the substrate arrangement direction (wafer arrangement direction).
  • a lower chamber (load lock chamber) 30 is provided below the outer tube 22 (reaction tube 20).
  • the lower chamber 30 is made of a metal material such as stainless steel (SUS), has an inner diameter that is approximately the same as the inner diameter of the inner tube 21, and has a cylindrical shape with an open top end and a closed bottom end (open bottomed cylindrical shape). It is formed.
  • the lower chamber 30 is arranged to communicate with the inner tube 21.
  • a flange 31 is provided at the upper end of the lower chamber 30.
  • the flange 31 is made of a metal material such as SUS.
  • the upper end of the flange 31 is engaged with the lower end of the inner tube 21 and the outer tube 22, respectively, and is configured to support the inner tube 21 and the outer tube 22, that is, the reaction tube 20.
  • the inner tube 21 and the outer tube 22 are installed vertically like the heater 10.
  • a transfer chamber (load lock chamber) 33 that functions as a transfer space for transferring the wafer 200 is formed in the cylindrical hollow portion (closed space) of the
  • a nozzle 24 serving as a gas supply section is provided in the processing chamber 23 so as to penetrate through the inner tube 21 and the outer tube 22.
  • the nozzle 24 is made of a heat-resistant material such as quartz or SiC, and is configured as an L-shaped long nozzle.
  • a gas supply pipe 51 is connected to the nozzle 24 .
  • Two gas supply pipes 52 and 54 are connected to the gas supply pipe 51, and are configured to be able to supply a plurality of types of gas, here two types, into the processing chamber 23.
  • the gas supply pipes 51, 52, and 54 and the gas supply pipes 53, 55, and 56 described later are each made of a metal material such as SUS.
  • the gas supply pipe 52 is provided with a mass flow controller (MFC) 52a that is a flow rate controller (flow rate control unit) and a valve 52b that is an on-off valve in order from the upstream side of the gas flow.
  • MFC mass flow controller
  • a gas supply pipe 53 is connected to the gas supply pipe 52 downstream of the valve 52b.
  • the gas supply pipe 53 is provided with an MFC 53a and a valve 53b in this order from the upstream side of the gas flow.
  • the gas supply pipe 54 is provided with an MFC 54a and a valve 54b in this order from the upstream side of the gas flow.
  • a gas supply pipe 55 is connected to the gas supply pipe 54 downstream of the valve 54b.
  • the gas supply pipe 55 is provided with an MFC 55a and a valve 55b in this order from the upstream side of the gas flow.
  • a gas supply pipe 56 is connected to the lower side wall of the lower chamber 30.
  • the gas supply pipe 56 is provided with an MFC 56a and a valve 56b in this order from the upstream side of the gas flow.
  • the nozzle 24 connected to the tip of the gas supply pipe 51 extends from the lower region to the upper region of the processing chamber 23 along the inner wall of the inner pipe 21 into the space between the inner wall of the inner pipe 21 and the wafer 200.
  • the wafers 200 are arranged so that the wafers 200 are arranged in the same direction (rising upward in the direction in which the wafers 200 are arranged). That is, the nozzle 24 is provided along the wafer arrangement region in a region horizontally surrounding the wafer arrangement region on the side of the wafer arrangement region where the wafers 200 are arranged.
  • a gas supply hole 24a for supplying gas is provided on the side surface of the nozzle 24.
  • the gas supply hole 24a opens toward the center of the reaction tube 20, and can supply gas toward the wafer 200.
  • a plurality of gas supply holes 24a are provided from the bottom to the top of the reaction tube 20 (nozzle 24) at a position facing a wafer 200 supported by a substrate support to be described later.
  • a raw material gas that is a first processing gas (first film forming gas) is supplied into the processing chamber 23 via the MFC 52a, the valve 52b, the gas supply pipe 51, and the nozzle 24. It is now possible to do so.
  • the raw material gas refers to a raw material in a gaseous state, such as a gas obtained by vaporizing a raw material that is in a liquid state at room temperature and normal pressure, and a raw material that is in a gaseous state at room temperature and normal pressure.
  • reaction gas which is a second processing gas (second film forming gas)
  • second processing gas second film forming gas
  • Inert gas can be supplied from the gas supply pipes 53 and 55 into the processing chamber 23 via the MFCs 53a and 55a, the valves 53b and 55b, the gas supply pipes 51, 52 and 54, and the nozzle 24, respectively. It has become.
  • the inert gas acts as a purge gas, diluent gas, or carrier gas.
  • the inert gas acts as a purge gas.
  • a first processing gas supply system is mainly composed of the gas supply pipe 52, MFC 52a, and valve 52b.
  • the gas supply pipe 51 and the nozzle 24 may be included in the first processing gas supply system.
  • a second processing gas supply system (second processing gas supply section) is mainly composed of the gas supply pipe 54, MFC 54a, and valve 54b.
  • the gas supply pipe 51 and the nozzle 24 may be included in the second processing gas supply system.
  • a first inert gas supply system (first inert gas supply section) is mainly constituted by the gas supply pipes 53, 55, MFCs 53a, 55a, and valves 53b, 55b.
  • the gas supply pipes 51, 52, 54 and nozzle 24 may be included in the first inert gas supply system.
  • a second inert gas supply system (second inert gas supply section) is mainly composed of the gas supply pipe 56, MFC 56a, and valve 56b.
  • the pumping part 26 is arranged below the heater 10 provided so as to surround the outer tube 22.
  • the pumping section 26 communicates with the exhaust passage 25, which is an annular space between the inner tube 21 and the outer tube 22, and is configured to temporarily retain the gas flowing through the exhaust passage 25. ing.
  • An opening 27 is provided below the inner tube 21 to discharge gas from the inside of the inner tube 21 and the transfer chamber 33 to the pumping section 26 .
  • a plurality of openings 27 are provided along the circumferential direction of the inner tube 21 at positions facing the pumping part 26 and as close to the lower chamber 30 as possible.
  • An exhaust pipe 61 is connected to the pumping section 26 to exhaust gas remaining in the pumping section 26.
  • the exhaust pipe 61 is connected to a pressure sensor 62 as a pressure detector (pressure detection unit) that detects the pressure inside the processing chamber 23 and an APC (Auto Pressure Controller) valve 63 as a pressure regulator (pressure adjustment unit).
  • a vacuum pump 64 as a vacuum evacuation device is connected.
  • the APC valve 63 can perform evacuation and stop of evacuation in the processing chamber 23 by opening and closing the valve while the vacuum pump 64 is in operation. Furthermore, with the vacuum pump 64 in operation, By adjusting the valve opening based on pressure information detected by the pressure sensor 62, the pressure inside the processing chamber 23 can be adjusted.
  • the exhaust pipe 61, the APC valve 63, and the pressure sensor 62 mainly constitute an exhaust system, that is, an exhaust line.
  • the exhaust flow path 25, the pumping section 26, and the vacuum pump 64 may be included in the exhaust system.
  • a substrate loading/unloading port 32 is provided above the side wall of the lower chamber 30.
  • the wafer 200 is moved in and out of the transfer chamber 33 via the substrate loading/unloading port 32 by a transfer robot (not shown).
  • the wafer 200 is loaded onto a substrate support, which will be described later, and the wafer 200 is unloaded from the substrate support.
  • the substrate support is configured to support a plurality of wafers 200 (for example, 5 wafers) in a horizontal position and with their centers aligned with each other in a vertically aligned manner in multiple stages, that is, at intervals. It is configured to be arranged.
  • the substrate support includes at least a substrate support part (first support part) 41 that supports the wafer 200 and a partition plate support part (second support part) 46 that supports a partition plate (plate) 46d.
  • the substrate support is made of a heat-resistant material such as quartz or SiC.
  • a heat insulating section 42 is provided in which heat insulating plates made of a heat-resistant material such as quartz or SiC are supported in multiple stages in a horizontal position.
  • the heat insulating plate may be covered with a cover made of a heat resistant material such as quartz or SiC.
  • the heat insulating portion 42 may be configured by a heat insulating tube made of a heat resistant material such as quartz or SiC.
  • the board support part 41 has a plurality of pillars (first pillars) 41c supported by a base 41a, and board holding members (support parts) attached to the plurality of pillars 41c at equal pitches.
  • 41d supports a plurality of wafers 200 at predetermined intervals in the vertical direction.
  • the substrate support portion 41 is configured by a base portion 41a, a support column 41c, and a substrate holding member 41d having an integrated structure or separate structures.
  • the partition plate support section 46 has a plurality of partition plates 46d fixed at a predetermined pitch to a column (second column) 46c supported between a base 46a and a top plate 46b.
  • the partition plate support portion 46 is configured by a base 46a, a top plate 46b, a support column 46c, and a partition plate 46d, which may be integrally or separately constructed.
  • the plurality of wafers 200 supported by substrate holding members 41d attached to pillars 41c are separated by partition plates 46d fixed (supported) at predetermined intervals in the vertical direction to pillars 46c supported by partition plate supports 46. It's partitioned off.
  • the partition plate 46d is placed either above or below the wafer 200, or both.
  • the predetermined interval between the plurality of wafers 200 placed on the substrate support part 41 is the same as the vertical interval of the partition plate 46d fixed to the partition plate support part 46.
  • the intervals between the partition plates 46 installed in multiple stages are set according to the surface area of the wafer 200. For example, when the surface area of the wafer 200 after processing is 50 to 200 times (for example, 100 times) that of the unprocessed wafer 200, the interval between each partition plate 46d is 10 to 60 mm (for example, about 20 mm). is set to By doing so, it becomes possible to supply the gas to the center of the wafer, contributing to the uniformity of the film.
  • the partition plate (ring plate) 46d has a ring shape with a through hole (hole) 46e in the center.
  • the diameter of the through hole 46e (inner diameter of the partition plate 46d) is set to about 1/6 to 3/4 of the diameter of the wafer 200. This allows processing without affecting the gas flow.
  • the diameter (outer diameter) of the partition plate 46d is larger than the diameter of the wafer 200, as shown in FIG.
  • the diameter of the partition plate 46d is set to 1.03 to 1.30 times the diameter of the wafer 200. For example, when the diameter of the wafer is 300 mm, the diameter of the partition plate 46d is 310 to 400 mm.
  • the partition plate support part 46 and the substrate support part 41 are configured to be independent from each other, and one or both of the partition plate support section 46 and the substrate support section 41 can be driven in the vertical direction (variable configuration).
  • the wafer 200 placed on the substrate holding member 41d is placed on the partition plate 46d, or the wafer 200 placed on the partition plate 46d is placed on the substrate holding member 41d. It is possible to do this. Furthermore, since the wafer 200 can be moved to an arbitrary height, the film formation distribution can be adjusted.
  • Shape cutout portions 46f are formed at a plurality of locations. That is, in addition to the notch 46f formed in the partition plate 46d shown in FIG. It further includes a notch as a second recess configured to avoid this (that is, to accommodate the substrate holding member 41d).
  • a notch 46f is formed in each of the top plate 46b and the partition plate 46d that constitute the partition plate support portion 46.
  • a gap is formed between the partition plate 46d and the support column 41c.
  • the dimensions of each part of the notch 46f formed in the partition plate 46d are 2 to 4 mm larger than the dimensions when the support 41c and the substrate holding member 41d are projected from directly above. If it is narrower than 2 mm, there is a possibility that the partition plate 46d will come into contact with the support column 41c or the substrate holding member 41d. On the other hand, if it is larger than 4 mm, the amount of gas flowing upward or downward from the gap between the partition plate 46d and the support 41c or the substrate holding member 41d will increase, and the gas flow will be disturbed. There is a risk that the control of gas flow on the surface of the wafer 200 being held may be disrupted.
  • the cross section of the gas flow path between the partition plate 46d and the support 41c can be reduced. Thereby, the inflow and outflow of gas in the space above and below the partition plate 46d can be suppressed, and the flow of gas on the surface of the wafer 200 held by the partition plate 46d can be controlled with high precision.
  • At least two height positions of the wafer 200 can be set.
  • the first is the height at which the wafer 200 is transported, as shown in FIG.
  • the second factor is the height during processing, as shown in FIG.
  • the height during transportation is the height at which the substrate is placed on the substrate holding member 41d.
  • the height during the process is the height at which it is directly placed (placed) on the partition plate 46d.
  • the plurality of partition plates 46d are arranged below the substrate holding member 41d of the substrate supporting unit 41 (substrate holding member 41d and the substrate holding member 41d).
  • the substrate holding member 41d moves below the partition plate 46d and supports the wafer 200 by making the partition plate 46d support the outer periphery of the wafer 200. It is supposed to be done.
  • the partition plate 46d has a ring shape, spatial separation is possible by contacting (directly mounting) the wafer 200 on the partition plate 46d to close the through hole 46e.
  • the processing temperature is 400 to 800° C., and since the partition plate 46d continues processing, the temperature is high.
  • the temperature of the wafer 200 is lower than the temperature of the partition plate 46d. Therefore, in order to prevent the wafer 200 from warping due to sudden changes in heat, after the temperature of the wafer 200 reaches -100 to 0°C, which is the processing temperature, the height position of the wafer 200 is changed and the wafer 200 is placed directly on the partition plate 46d.
  • the timing for carrying out the operation of placing the substrate or directly placing it on the partition plate 46d is after the substrate support is placed at a position where the process can be started.
  • At least one protrusion of 0.1 to 3 mm, specifically three, is provided on the partition plate 46d.
  • the distance between the back surface of the wafer 200 and the partition plate 46d may be 0.1 to 3 mm by providing support at three points.
  • the heat insulating part 42 installed at the lower part of the partition plate support part 46 has a cutout part 46f provided in the partition plate 46d and a cutout part 46f in order to prevent interference with a part (pillar 41c) of the board support part 41 that moves up and down. A similar recess is provided.
  • the partition plate 46d may not have the notch portion 46f.
  • the thickness of the partition plate 46d is increased, it is also possible to use a counterbore instead of providing a notch.
  • the substrate support is supported by rods 43.
  • the rod 43 penetrates the bottom of the lower chamber 30 while maintaining the airtight state of the transfer chamber 33, and is further connected to a lifting/rotating mechanism (boat elevator) 44 below and outside the lower chamber 30.
  • the elevating/rotating mechanism 44 is configured to vertically move the wafer 200 supported by the substrate support between the processing chamber 23 and the transfer chamber 33 by elevating the substrate support. That is, the elevating/rotating mechanism 44 is configured as a transport device (transport mechanism) that transports the substrate support, that is, the wafer 200, between the processing chamber 23 and the transfer chamber 33. For example, when the lifting/rotating mechanism 44 performs an upward movement, the substrate support rises to the position in the processing chamber 23 (wafer processing position) shown in FIG.
  • the substrate support is lowered to a position within the transfer chamber 33 (wafer transfer position) shown in FIG. Further, the lifting/rotating mechanism 44 is configured to rotate the wafer 200 by rotating the substrate support.
  • the elevating/rotating mechanism 44 includes a mechanism for driving the substrate support section 41 in the vertical direction with respect to the partition plate support section 46 .
  • a lid 47 that closes the lower part of the reaction tube 20 may be provided near the upper end of the rod 43 and below the heat insulating section 42. By providing the lid 47 to close the lower part of the reaction tube 20, it becomes possible to suppress the source gas and reaction gas present in the reaction tube 20 from diffusing into the transfer chamber 33. Further, the pressure inside the reaction tube 20 can be easily controlled, and the uniformity of processing on the wafers 200 can be improved.
  • a temperature sensor 11 as a temperature detector is installed inside the inner tube 21. By adjusting the power supply to the heater 10 based on the temperature information detected by the temperature sensor 11, the temperature in the processing chamber 23 becomes a desired temperature distribution.
  • the temperature sensor 11 is L-shaped like the nozzle 24, and is provided along the inner wall of the inner tube 21.
  • a controller 70 which is a control unit (control means), is configured as a computer equipped with a CPU (Central Processing Unit) 71, a RAM (Random Access Memory) 72, a storage device 73, and an I/O port 74. has been done.
  • the RAM 72, storage device 73, and I/O port 74 are configured to be able to exchange data with the CPU 71 via an internal bus 75.
  • the controller 70 is connected to an input/output device 82 configured as, for example, a touch panel, and an external storage device 81.
  • the storage device 73 is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe in which procedures, conditions, etc. of a semiconductor device manufacturing method, which will be described later, are described are readably stored.
  • the process recipe is a combination of processes (each step) in a method for manufacturing a semiconductor device, which will be described later, to be executed by the controller 70 to obtain a predetermined result, and functions as a program.
  • process recipes, control programs, etc. will be collectively referred to as simply programs.
  • a process recipe is also simply referred to as a recipe.
  • the RAM 72 is configured as a memory area (work area) in which programs, data, etc. read by the CPU 71 are temporarily held.
  • the I/O port 74 is connected to the above-mentioned MFCs 52a to 56a, valves 52b to 56b, pressure sensor 62, APC valve 63, vacuum pump 64, heater 10, temperature sensor 11, lifting/rotating mechanism 44, and the like.
  • the CPU 71 is configured to read and execute a control program from the storage device 73 and read recipes from the storage device 73 in response to input of operation commands from the input/output device 82 and the like.
  • the CPU 71 adjusts the flow rate of various gases by the MFCs 52a to 56a, opens and closes the valves 52b to 56b, opens and closes the APC valve 63, and adjusts the pressure by the APC valve 63 based on the pressure sensor 62 in accordance with the contents of the read recipe. It is configured to control the operation, starting and stopping of the vacuum pump 64, temperature adjustment operation of the heater 10 based on the temperature sensor 11, lifting/lowering operation of the substrate support by the lifting/rotating mechanism 44, rotation and rotation speed adjusting operation, etc. There is.
  • the controller 70 can be configured by installing the above-mentioned program stored in the external storage device 81 into a computer.
  • the external storage device 81 includes, for example, a magnetic tape, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as an MO, and a semiconductor memory such as a USB memory.
  • the storage device 73 and the external storage device 81 are configured as computer-readable recording media. Hereinafter, these will be collectively referred to as simply recording media.
  • the term "recording medium" may include only the storage device 73, only the external storage device 81, or both.
  • the program may be provided to the computer using communication means such as the Internet or a dedicated line, without using the external storage device 81.
  • Substrate Processing Step An example of a substrate processing sequence, that is, a film formation sequence, in which a thin film is formed on the wafer 200 as a substrate using the above-described substrate processing apparatus will be described. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by a controller 70.
  • a film forming process in which a film is formed on the wafer 200 by alternately supplying a source gas and a reaction gas will be described with reference to FIG.
  • the film forming process film forming sequence shown in FIG. supplying source gas to the wafer 200; supplying a reactive gas to the wafer 200; A step of forming a film on the wafer 200 is performed by performing a cycle of non-simultaneously a predetermined number of times.
  • the word “wafer” may mean the wafer itself, or it may mean a stack of a wafer and a predetermined layer or film formed on its surface.
  • wafer surface it may mean the surface of the wafer itself, or the surface of a predetermined layer formed on the wafer.
  • the expression “forming a predetermined layer on a wafer” refers to forming a predetermined layer directly on the surface of the wafer itself, or a layer formed on the wafer, etc. Sometimes it means forming a predetermined layer on top of.
  • substrate when the word “substrate” is used, it has the same meaning as when the word "wafer” is used.
  • a plurality of (for example, five) wafers 200 are loaded (wafer charging) into the substrate support part 41 of the substrate support. Specifically, in the transfer chamber 33, with the mounting position of the wafer 200 on the substrate support 41 facing the substrate loading/unloading port 32, the substrate supporting portion 41 is moved to a predetermined position through the substrate loading/unloading port 32. The wafer 200 is placed on. Once one wafer 200 is loaded onto the substrate support 41, another wafer 200 is loaded onto another wafer placement position on the substrate support 41 while moving the vertical position of the substrate support using the lifting/rotating mechanism 44. do. Repeat this action multiple times. Specifically, the wafer 200 is loaded while lowering the substrate support.
  • partition plates 46d are arranged in multiple stages along the wafers 200 at positions between adjacent wafers 200 and at positions below the wafer 200 placed at the bottom.
  • the partition plate support portion 46 is arranged in advance so as to be in the arranged state. At this time, the wafer 200 loaded on the substrate support section 41 is heated by the partition plate support section 46 .
  • the inside of the processing chamber 23 is evacuated (decompressed) by the vacuum pump 64 so that the inside of the processing chamber 23, that is, the space in which the wafer 200 exists, reaches a desired pressure (degree of vacuum).
  • the pressure inside the processing chamber 23 is measured by the pressure sensor 62, and the APC valve 63 is feedback-controlled (pressure adjustment) based on the measured pressure information.
  • the wafer 200 in the processing chamber 23 is heated by the heater 10 to a desired processing temperature.
  • the energization of the heater 10 is feedback-controlled based on the temperature information detected by the temperature sensor 11 so that the inside of the processing chamber 23 has a desired temperature distribution (temperature adjustment).
  • the substrate support section 41 is lowered and the wafer 200 is placed on the partition plate 46d. Further, rotation of the wafer 200 by the lifting/rotating mechanism 44 is started. The operation of the vacuum pump 64 and the heating and rotation of the wafer 200 are all continued at least until the processing on the wafer 200 is completed.
  • the valve 52b is opened and the raw material gas is allowed to flow into the gas supply pipe 52.
  • the flow rate of the source gas is adjusted by the MFC 52a, and the raw material gas is supplied into the processing chamber 23 via the gas supply pipe 51 and the nozzle 24.
  • the raw material gas supplied into the processing chamber 23 rises within the processing chamber 23, flows out from the upper end opening of the inner pipe 21 into the exhaust flow path 25, flows down the exhaust flow path 25, passes through the pumping section 26, and flows into the exhaust pipe. It is exhausted from 61.
  • source gas is supplied to the wafer 200.
  • the valves 53b and 55b are opened to flow inert gas into the processing chamber 23 through the gas supply pipes 51, 53, 55 and the nozzle 24.
  • the supply of inert gas may be omitted.
  • the processing conditions in this step are: Raw material gas supply flow rate: 0.01 to 2 slm, preferably 0.1 to 1 slm Inert gas supply flow rate (for each gas supply pipe): 0 to 10slm Each gas supply time: 0.1 to 120 seconds, preferably 0.1 to 60 seconds Processing temperature: 250 to 900°C, preferably 400 to 700°C Processing pressure: 1 to 2666 Pa, preferably 67 to 1333 Pa is exemplified.
  • a layer of, for example, less than one atomic layer to several atomic layers is formed as a first layer on the outermost surface of the wafer 200.
  • a thick Cl-containing Si-containing layer is formed.
  • the Si-containing layer containing Cl is formed by chemical adsorption or physical adsorption of the source gas on the surface of the wafer 200, chemical adsorption of a substance (SixCly) that is partially decomposed of the source gas, deposition of Si due to thermal decomposition of the source gas, etc. formed by.
  • the Si-containing layer containing Cl may be an adsorption layer (physical adsorption layer or chemical adsorption layer) of source gas or SixCly, or may be a deposited layer of Si containing Cl.
  • the Si-containing layer containing Cl is also simply referred to as the Si-containing layer.
  • an inert gas (purge gas) is supplied into the transfer chamber 33 (purging the transfer chamber 33).
  • the valve 56b is opened to allow inert gas to flow into the gas supply pipe 56.
  • the flow rate of the inert gas is adjusted by the MFC 56a, and the inert gas is supplied into the transfer chamber 33.
  • the N 2 gas supplied to the transfer chamber 33 rises within the transfer chamber 33 and is discharged to the pumping section 26 through the opening 27 .
  • the N 2 gas discharged to the pumping section 26 is exhausted from the exhaust pipe 61 together with the raw material gas etc. discharged from the inside of the processing chamber 23 to the pumping section 26 .
  • the gas pressure in the transfer chamber 33 becomes higher than the gas pressure in the processing chamber 23 (gas pressure in the processing chamber 23 ⁇ gas pressure in the transfer chamber 33). pressure), and the flow rate of gas supplied into the transfer chamber 33 becomes larger than the total flow rate of gas supplied into the processing chamber 23 (total flow rate of gas supplied into the processing chamber 23 ⁇ transfer chamber 33).
  • the valve 52b is closed and the supply of source gas into the processing chamber 23 is stopped. Gas and the like remaining in the processing chamber 23 are then removed from the processing chamber 23 (purge). At this time, the valves 53b and 55b are opened to supply inert gas into the processing chamber 23 through the gas supply pipe 51 and the nozzle 24. The inert gas acts as a purge gas, thereby purging the inside of the processing chamber 23.
  • the first gas includes monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, and dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas.
  • MCS monochlorosilane
  • HCDS hexachlorodisilane
  • DCS dichlorosilane
  • trichlorosilane SiHCl 3 , abbreviation: TCS
  • tetrachlorosilane SiCl 4
  • STC tetrachlorosilane
  • OCTS octachlorotrisilane
  • other chlorosilane-based gases can be used.
  • rare gases such as Ar gas, He gas, N 2 gas, Ne gas, and Xe gas can be used. This point also applies to each step described below.
  • reaction gas supply step S143
  • a reactive gas is supplied to the wafer 200 in the processing chamber 23, that is, the first layer formed on the wafer 200.
  • the valve 54b is opened to allow the reaction gas to flow into the gas supply pipe 54.
  • the flow rate of the reaction gas is adjusted by the MFC 54a, and the reaction gas is supplied into the processing chamber 23 through the gas supply pipe 51 and the nozzle 24.
  • the reaction gas supplied into the processing chamber 23 rises within the processing chamber 23, flows out from the upper end opening of the inner pipe 21 into the exhaust flow path 25, flows down the exhaust flow path 25, passes through the pumping section 26, and flows into the exhaust pipe. It is exhausted from 61.
  • a reactive gas is supplied to the wafer 200.
  • the valves 53b and 55b are closed to prevent the inert gas from being supplied into the processing chamber 23 together with the reaction gas.
  • the second gas is supplied into the processing chamber 23 and exhausted from the exhaust pipe 61 without being diluted with an inert gas.
  • the reaction gas supplied into the processing chamber 23 and exhausted from the exhaust pipe 61 without being diluted with an inert gas.
  • inert gas is supplied into the transfer chamber 33 using the same process procedure as that for purging the transfer chamber 33 in the raw material gas supply step (S141) described above.
  • the processing conditions in this step are: Reaction gas supply flow rate: 0.1-10slm Processing pressure: 1 to 4000 Pa, preferably 1 to 3000 Pa is exemplified. Other processing conditions are the same as those in the raw material gas supply step (S141).
  • the first layer formed on the wafer 200 is oxidized (modified).
  • a layer containing Si and O that is, a SiO layer is formed as a second layer on the wafer 200.
  • impurities such as Cl contained in the first layer constitute a gaseous substance containing at least Cl in the process of the reforming reaction of the first layer with the reaction gas, and Expelled from within.
  • the second layer becomes a layer containing less impurities such as Cl than the first layer.
  • the valve 54b is closed and the supply of the reaction gas into the processing chamber 23 is stopped. Then, the gas remaining in the processing chamber 23 is removed from the processing chamber 23 by the same processing procedure as the purge in the above-described raw material gas supply step (S141).
  • Reactive gases include nitrous oxide (N 2 O) gas, nitric oxide (NO) gas, nitrogen dioxide (NO 2 ) gas, oxygen (O 2 ) gas, ozone (O 3 ) gas, and water vapor (H 2 O).
  • An O-containing gas such as carbon monoxide (CO) gas, carbon dioxide (CO 2 ) gas, etc. can be used.
  • a predetermined number of times (n times, n is an integer of 1 or more),
  • n is an integer of 1 or more)
  • the above-described cycle is repeated multiple times. That is, the thickness of the SiO layer formed per cycle is made thinner than the desired film thickness, and the film thickness of the film formed by stacking the SiO layers is set to the desired film thickness (for example, 0.1 to 2 nm).
  • the processed wafer 200 is unloaded (taken out) from the substrate support part 41 and carried out to the outside of the lower chamber 30 through the substrate loading/unloading port 32. do. Note that the processed wafer 200 is taken out from the lower part of the substrate support section 41. In other words, boat unloading (S180) and wafer discharge (S190) are partially performed in parallel.
  • the partition plate 46d is configured in a ring shape with a through hole 46e provided in the center.
  • the volume can be reduced compared to a disk-shaped partition plate, and the heat capacity becomes smaller, so it is possible to increase the rate of temperature rise and fall.
  • the distance between the partition plate 46d and the wafer 200 is variable. That is, the partition plate support part 46 that supports the ring-shaped partition plate 46d and the substrate support part 41 that supports the wafer 200 are each configured independently, and one or both of the substrate support part 41 and the partition plate support part 46 can be moved up and down. let This makes it possible to place the wafer 200 directly on the partition plate 46d, making it possible to separate the film-forming processing space for each wafer 200.
  • reaction tube has an inner tube and an outer tube
  • present disclosure is not limited thereto, and the reaction tube may have a configuration without an inner tube and only an outer tube. Good too.
  • the reaction tube may be configured horizontally, and a chamber (lower chamber) may be disposed next to the reaction tube.
  • a chamber lower chamber
  • a chamber may be provided at the upper part of the reaction tube.
  • the chamber forming the substrate transfer chamber is not limited to the above-mentioned lower chamber as long as it is arranged so as to be continuous with the reaction tube.
  • nitrogen (N)-containing gas such as ammonia (NH 3 ) gas, triethylamine ((C 2 H 5 ) 3 N, abbreviation: TEA) gas, etc.
  • N-containing gas such as ammonia (NH 3 ) gas, triethylamine ((C 2 H 5 ) 3 N, abbreviation: TEA) gas, etc.
  • a gas containing N and carbon (C) a gas containing C such as propylene (C 3 H 6 ) gas, a gas containing boron (B) such as trichloroborane (BCl 3 ) gas, etc.
  • BCl 3 trichloroborane
  • SiOC film oxycarbide film
  • SiOCN film silicon oxycarbonitride film
  • SiBN film silicon boronitride film
  • SiBCN film silicon borocarbonitride film
  • the raw material and the reactant may be simultaneously supplied to the substrate to form the various films described above on the substrate.
  • a single raw material may be supplied to the substrate, and a silicon film (Si film) may be formed on the substrate.
  • Si film silicon film
  • the present disclosure also describes the use of metals including titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W), etc. It can also be applied when forming a system thin film. Even in these cases, effects similar to those of the above embodiments can be obtained. That is, the present disclosure can be applied to the case of forming a film containing a predetermined element such as a semimetal element (semiconductor element) or a metal element.
  • a predetermined element such as a semimetal element (semiconductor element) or a metal element.
  • the present disclosure can be applied to film formation processes other than the thin films exemplified in the above embodiments, in addition to the thin film formation exemplified in the above embodiments.
  • the specific content of substrate processing does not matter; it includes not only film formation processing, but also heat processing (annealing processing), plasma processing, diffusion processing, oxidation processing, nitriding processing, lithography processing, carrier activation after ion implantation, and flattening. It can also be applied to other substrate processing such as reflow processing for conversion.
  • the recipes used for each process be prepared individually according to the process content and stored in the storage device 73 via the telecommunications line or the external storage device 81. Then, when starting each process, it is preferable that the CPU 71 appropriately selects an appropriate recipe from among the plurality of recipes stored in the storage device 73 according to the content of the process. This makes it possible to form films of various film types, composition ratios, film qualities, and film thicknesses with good reproducibility using one substrate processing apparatus. Furthermore, the burden on the operator can be reduced, and each process can be started quickly while avoiding operational errors.
  • the above-mentioned recipe is not limited to the case where it is newly created, but may be prepared by, for example, changing an existing recipe that has already been installed in the substrate processing apparatus.
  • the changed recipe may be installed in the substrate processing apparatus via a telecommunications line or a recording medium on which the recipe is recorded.
  • an existing recipe already installed in the substrate processing apparatus may be directly changed by operating the input/output device 82 provided in the existing substrate processing apparatus.
  • a film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at once.
  • the present disclosure is not limited to the above-described embodiments, and can be suitably applied, for example, to a case where a film is formed using a single-wafer type substrate processing apparatus that processes one or several substrates at a time.
  • an example was described in which a film is formed using a substrate processing apparatus having a hot wall type processing furnace.
  • the present disclosure is not limited to the above-described embodiments, and can be suitably applied to a case where a film is formed using a substrate processing apparatus having a cold wall type processing furnace.
  • substrate processing is performed by heating with a resistance heating type heater.
  • heating during substrate processing may be performed by irradiating ultraviolet rays or the like.
  • ultraviolet irradiation for example, a deuterium lamp, helium lamp, carbon arc lamp, BRV light source, excimer lamp, mercury lamp, etc. can be used as a heating means in place of the heater 10. Further, these heating means may be used in combination with a heater.
  • the above embodiments can be used in appropriate combinations.
  • the processing procedure and processing conditions at this time can be, for example, the same as the processing procedure and processing conditions of the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention comprises: a substrate support that comprises a first support part having a plurality of first columns for supporting a plurality of substrates so as to be spaced apart in the vertical direction, and a second support part having a plurality of second columns for supporting a plurality of plates that are positioned between the plurality of substrates supported by the first support and have a through hole in the center section thereof; a treatment chamber that accommodates the substrate support; and a gas supply unit that supplies gas to the treatment chamber.

Description

基板処理装置、基板支持具、半導体装置の製造方法、基板処理方法およびプログラムSubstrate processing equipment, substrate support, semiconductor device manufacturing method, substrate processing method and program
 本開示は、基板処理装置、基板支持具、半導体装置の製造方法、基板処理方法およびプログラムに関する。 The present disclosure relates to a substrate processing apparatus, a substrate support, a semiconductor device manufacturing method, a substrate processing method, and a program.
 半導体装置の製造工程で用いられる基板処理装置として、例えば、プロセスチューブ(反応管)の下方にロードロックチャンバ(下部チャンバ)が設置された、いわゆる縦型装置がある。かかる基板処理装置は、基板を支持したボート(基板支持具)をプロセスチューブとロードロックチャンバとの間で昇降させるとともに、ボートがプロセスチューブに収容された状態で基板に対して所定の処理を行うように構成されている(例えば、特許文献1参照)。 As a substrate processing apparatus used in the manufacturing process of semiconductor devices, there is, for example, a so-called vertical apparatus in which a load lock chamber (lower chamber) is installed below a process tube (reaction tube). Such a substrate processing apparatus moves a boat (substrate support) supporting a substrate up and down between a process tube and a load lock chamber, and performs predetermined processing on the substrate while the boat is housed in the process tube. (For example, see Patent Document 1).
特開2002-368062号公報Japanese Patent Application Publication No. 2002-368062
 本開示は、基板処理の効率を向上させることが可能な技術を提供することにある。 An object of the present disclosure is to provide a technique that can improve the efficiency of substrate processing.
 本開示の一態様によれば、
 複数の基板を上下方向に間隔をあけて支持する複数の第1支柱を有する第1支持部と、前記第1支持部に支持された前記複数の基板の間に配置され、中央部に貫通孔を有する複数の板を支持する複数の第2支柱を有する第2支持部と、を備える基板支持具と、
 前記基板支持具を収容する処理室と、
 前記処理室にガスを供給するガス供給部と、
 を備える技術が提供される。
According to one aspect of the present disclosure,
A first support part having a plurality of first pillars that supports a plurality of substrates at intervals in the vertical direction, and a through hole disposed in a central part between the plurality of substrates supported by the first support part. a second support part having a plurality of second supports supporting a plurality of plates having a substrate support;
a processing chamber that accommodates the substrate support;
a gas supply unit that supplies gas to the processing chamber;
A technique is provided that includes the following.
 本開示によれば、基板処理の効率を向上させることが可能となる。 According to the present disclosure, it is possible to improve the efficiency of substrate processing.
本開示の一態様で好適に用いられる基板処理装置の概略構成図であり、ウエハを搭載した基板支持具を処理室に搬入した状態を示す処理炉部分を縦断面図である。FIG. 2 is a schematic configuration diagram of a substrate processing apparatus suitably used in one embodiment of the present disclosure, and is a longitudinal cross-sectional view of a processing furnace portion showing a state in which a substrate support carrying a wafer is carried into a processing chamber. 本開示の一態様で好適に用いられる基板処理装置の概略構成図であり、ウエハを搭載した基板支持具を移載室に搬入した状態を示す処理炉部分を縦断面図である。FIG. 2 is a schematic configuration diagram of a substrate processing apparatus suitably used in one aspect of the present disclosure, and is a longitudinal cross-sectional view of a processing furnace portion showing a state in which a substrate support carrying a wafer is carried into a transfer chamber. 本開示の一態様で好適に用いられる基板処理装置の基板支持具における仕切板の平面図である。FIG. 3 is a plan view of a partition plate in a substrate support of a substrate processing apparatus that is preferably used in one embodiment of the present disclosure. 図3に示す仕切板とウエハとの関係を示す平面図である。4 is a plan view showing the relationship between the partition plate and the wafer shown in FIG. 3. FIG. 本開示の一態様で好適に用いられる基板処理装置における基板支持具の要部構成を示す斜視図である。FIG. 2 is a perspective view showing a main part configuration of a substrate support in a substrate processing apparatus suitably used in one embodiment of the present disclosure. 図5に示す基板支持具における基板保持部と仕切板との関係を示す平面図である。6 is a plan view showing the relationship between the substrate holding part and the partition plate in the substrate support shown in FIG. 5. FIG. 図5に示す基板支持具の基板支持部にウエハが載置された状態を示す断面図である。6 is a cross-sectional view showing a state in which a wafer is placed on the substrate support part of the substrate support shown in FIG. 5. FIG. 図5に示す基板支持具の仕切板支持部にウエハが載置された状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which a wafer is placed on the partition plate support portion of the substrate support shown in FIG. 5; 本開示の一態様で好適に用いられる基板処理装置が有するコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。FIG. 2 is a schematic configuration diagram of a controller included in a substrate processing apparatus suitably used in one aspect of the present disclosure, and is a block diagram showing a control system of the controller. 本開示の一態様で好適に用いられる基板処理装置で行われる成膜工程の手順を示すフロー図である。FIG. 3 is a flowchart showing the procedure of a film forming process performed in a substrate processing apparatus preferably used in one embodiment of the present disclosure.
<本開示の一態様>
 以下、本開示の一態様について、図1~図10を参照しながら説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
<One aspect of the present disclosure>
One aspect of the present disclosure will be described below with reference to FIGS. 1 to 10. Note that the drawings used in the following explanation are all schematic, and the dimensional relationship of each element, the ratio of each element, etc. shown in the drawings do not necessarily match the reality. Moreover, the dimensional relationship of each element, the ratio of each element, etc. do not necessarily match between a plurality of drawings.
(1)基板処理装置の構成
 本実施形態に係る基板処理装置は、半導体装置の製造工程で用いられるもので、処理対象となる基板を複数枚(例えば5枚)ずつ纏めて処理を行う縦型基板処理装置として構成されている。処理対象となる基板としては、例えば、半導体集積回路装置(半導体デバイス)が作り込まれる半導体ウエハ基板(以下、単に「ウエハ」という。)が挙げられる。
(1) Configuration of Substrate Processing Apparatus The substrate processing apparatus according to this embodiment is used in the manufacturing process of semiconductor devices, and is a vertical type that processes a plurality of substrates (for example, five) at a time. It is configured as a substrate processing apparatus. Examples of substrates to be processed include semiconductor wafer substrates (hereinafter simply referred to as "wafers") on which semiconductor integrated circuit devices (semiconductor devices) are fabricated.
 図1に示すように、本実施形態に係る基板処理装置は、縦型処理炉1を備えている。縦型処理炉1は、加熱部(加熱機構、加熱系)としてのヒータ10を有する。ヒータ10は、円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより基板処理装置の設置床に対して垂直に据え付けられている。ヒータ10は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。 As shown in FIG. 1, the substrate processing apparatus according to this embodiment includes a vertical processing furnace 1. The vertical processing furnace 1 includes a heater 10 as a heating section (heating mechanism, heating system). The heater 10 has a cylindrical shape, and is installed perpendicularly to the installation floor of the substrate processing apparatus by being supported by a heater base (not shown) serving as a holding plate. The heater 10 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
 ヒータ10の内側には、ヒータ10と同心円状に反応容器(処理容器)を構成する反応管20が配設されている。反応管20は、内管(インナーチューブ)21と、内管21を同心円状に取り囲む外管(アウターチューブ)22と、を備えた二重管構成を有している。内管21および外管22は、それぞれ、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成されている。内管21は、上端および下端が開口した円筒形状に形成されている。外管22は、上端が閉塞し下端が開口した円筒形状に形成されている。内管21の上端部は、外管22の天井部の近傍まで延びている。 A reaction tube 20 constituting a reaction container (processing container) is arranged inside the heater 10 and concentrically with the heater 10 . The reaction tube 20 has a double tube configuration including an inner tube 21 and an outer tube 22 concentrically surrounding the inner tube 21. Inner tube 21 and outer tube 22 are each made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC). The inner tube 21 is formed into a cylindrical shape with open upper and lower ends. The outer tube 22 has a cylindrical shape with a closed upper end and an open lower end. The upper end of the inner tube 21 extends to the vicinity of the ceiling of the outer tube 22.
 内管21の筒中空部には、ウエハ200に対する処理が行われる処理室23が形成される。処理室23は、ウエハ200を処理室23内の一端側(下方側)から他端側(上方側)へ向けて配列させた状態で収容可能に構成されている。処理室23内において複数枚のウエハ200が配列される領域を、基板配列領域(ウエハ配列領域)とも称する。また、処理室23内においてウエハ200が配列される方向を、基板配列方向(ウエハ配列方向)とも称する。 A processing chamber 23 in which processing is performed on the wafer 200 is formed in the hollow part of the inner tube 21 . The processing chamber 23 is configured to be able to accommodate the wafers 200 arranged in the processing chamber 23 from one end (lower side) to the other end (upper side). The area in the processing chamber 23 where a plurality of wafers 200 are arranged is also referred to as a substrate arrangement area (wafer arrangement area). Further, the direction in which the wafers 200 are arranged in the processing chamber 23 is also referred to as the substrate arrangement direction (wafer arrangement direction).
 外管22(反応管20)の下方には、下部チャンバ(ロードロックチャンバ)30が配設されている。下部チャンバ30は、例えばステンレス(SUS)等の金属材料により構成され、内径が内管21の内径と略同じであり、上端が開口し下端が閉塞した円筒形状(無蓋有底の円筒形状)に形成されている。下部チャンバ30は、内管21と連通するように配設されている。下部チャンバ30の上端部には、フランジ31が設けられている。フランジ31は、例えばSUS等の金属材料により構成されている。フランジ31の上端部は、内管21および外管22の下端部にそれぞれ係合しており、内管21および外管22、すなわち反応管20を支持するように構成されている。内管21および外管22は、ヒータ10と同様に垂直に据え付けられている。下部チャンバ30の筒中空部(閉塞空間)には、ウエハ200を移載するための搬送空間として機能する移載室(ロードロック室)33が形成されている。 A lower chamber (load lock chamber) 30 is provided below the outer tube 22 (reaction tube 20). The lower chamber 30 is made of a metal material such as stainless steel (SUS), has an inner diameter that is approximately the same as the inner diameter of the inner tube 21, and has a cylindrical shape with an open top end and a closed bottom end (open bottomed cylindrical shape). It is formed. The lower chamber 30 is arranged to communicate with the inner tube 21. A flange 31 is provided at the upper end of the lower chamber 30. The flange 31 is made of a metal material such as SUS. The upper end of the flange 31 is engaged with the lower end of the inner tube 21 and the outer tube 22, respectively, and is configured to support the inner tube 21 and the outer tube 22, that is, the reaction tube 20. The inner tube 21 and the outer tube 22 are installed vertically like the heater 10. A transfer chamber (load lock chamber) 33 that functions as a transfer space for transferring the wafer 200 is formed in the cylindrical hollow portion (closed space) of the lower chamber 30 .
 処理室23内には、ガス供給部としてのノズル24が、内管21および外管22を貫通するように設けられている。ノズル24は、例えば石英またはSiC等の耐熱性材料により構成され、L字型のロングノズルとして構成されている。ノズル24には、ガス供給管51が接続されている。ガス供給管51には、2本のガス供給管52,54が接続されており、処理室23内へ複数種類、ここでは2種類のガスを供給することができるように構成されている。ガス供給管51,52,54および後述するガス供給管53,55,56は、それぞれが、例えばSUS等の金属材料により構成されている。 A nozzle 24 serving as a gas supply section is provided in the processing chamber 23 so as to penetrate through the inner tube 21 and the outer tube 22. The nozzle 24 is made of a heat-resistant material such as quartz or SiC, and is configured as an L-shaped long nozzle. A gas supply pipe 51 is connected to the nozzle 24 . Two gas supply pipes 52 and 54 are connected to the gas supply pipe 51, and are configured to be able to supply a plurality of types of gas, here two types, into the processing chamber 23. The gas supply pipes 51, 52, and 54 and the gas supply pipes 53, 55, and 56 described later are each made of a metal material such as SUS.
 ガス供給管52には、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)52aおよび開閉弁であるバルブ52bが設けられている。ガス供給管52のバルブ52bよりも下流側には、ガス供給管53が接続されている。ガス供給管53には、ガス流の上流側から順に、MFC53aおよびバルブ53bが設けられている。 The gas supply pipe 52 is provided with a mass flow controller (MFC) 52a that is a flow rate controller (flow rate control unit) and a valve 52b that is an on-off valve in order from the upstream side of the gas flow. A gas supply pipe 53 is connected to the gas supply pipe 52 downstream of the valve 52b. The gas supply pipe 53 is provided with an MFC 53a and a valve 53b in this order from the upstream side of the gas flow.
 ガス供給管54には、ガス流の上流側から順に、MFC54aおよびバルブ54bが設けられている。ガス供給管54のバルブ54bよりも下流側には、ガス供給管55が接続されている。ガス供給管55には、ガス流の上流側から順に、MFC55aおよびバルブ55bが設けられている。 The gas supply pipe 54 is provided with an MFC 54a and a valve 54b in this order from the upstream side of the gas flow. A gas supply pipe 55 is connected to the gas supply pipe 54 downstream of the valve 54b. The gas supply pipe 55 is provided with an MFC 55a and a valve 55b in this order from the upstream side of the gas flow.
 下部チャンバ30の側壁下方には、ガス供給管56が接続されている。ガス供給管56には、ガス流の上流側から順に、MFC56aおよびバルブ56bが設けられている。 A gas supply pipe 56 is connected to the lower side wall of the lower chamber 30. The gas supply pipe 56 is provided with an MFC 56a and a valve 56b in this order from the upstream side of the gas flow.
 ガス供給管51の先端部に接続されるノズル24は、内管21の内壁とウエハ200との間における空間に、内管21の内壁に沿って、処理室23の下部領域から上部領域まで延在するように(ウエハ200の配列方向上方に向かって立ち上がるように)設けられている。すなわち、ノズル24は、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。ノズル24の側面には、ガスを供給するガス供給孔24aが設けられている。ガス供給孔24aは、反応管20の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔24aは、後述する基板支持具に支持されるウエハ200と対向する位置に、反応管20(ノズル24)の下部から上部にわたって複数設けられている。 The nozzle 24 connected to the tip of the gas supply pipe 51 extends from the lower region to the upper region of the processing chamber 23 along the inner wall of the inner pipe 21 into the space between the inner wall of the inner pipe 21 and the wafer 200. The wafers 200 are arranged so that the wafers 200 are arranged in the same direction (rising upward in the direction in which the wafers 200 are arranged). That is, the nozzle 24 is provided along the wafer arrangement region in a region horizontally surrounding the wafer arrangement region on the side of the wafer arrangement region where the wafers 200 are arranged. A gas supply hole 24a for supplying gas is provided on the side surface of the nozzle 24. The gas supply hole 24a opens toward the center of the reaction tube 20, and can supply gas toward the wafer 200. A plurality of gas supply holes 24a are provided from the bottom to the top of the reaction tube 20 (nozzle 24) at a position facing a wafer 200 supported by a substrate support to be described later.
 ガス供給管52からは、第1の処理ガス(第1の成膜ガス)である原料ガス(原料)を、MFC52a、バルブ52b、ガス供給管51、ノズル24を介して処理室23内へ供給することが可能となっている。原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。 From the gas supply pipe 52, a raw material gas (raw material) that is a first processing gas (first film forming gas) is supplied into the processing chamber 23 via the MFC 52a, the valve 52b, the gas supply pipe 51, and the nozzle 24. It is now possible to do so. The raw material gas refers to a raw material in a gaseous state, such as a gas obtained by vaporizing a raw material that is in a liquid state at room temperature and normal pressure, and a raw material that is in a gaseous state at room temperature and normal pressure.
 ガス供給管54からは、第2の処理ガス(第2の成膜ガス)である反応ガス(反応体)を、MFC54a、バルブ54b、ガス供給管51、ノズル24を介して処理室23内へ供給することが可能となっている。 From the gas supply pipe 54, a reaction gas (reactant), which is a second processing gas (second film forming gas), is introduced into the processing chamber 23 via the MFC 54a, the valve 54b, the gas supply pipe 51, and the nozzle 24. It is possible to supply.
 ガス供給管53,55からは、不活性ガスを、それぞれ、MFC53a,55a、バルブ53b,55b、ガス供給管51,52,54、ノズル24を介して処理室23内へ供給することが可能となっている。不活性ガスは、パージガス、希釈ガス、或いはキャリアガスとして作用する。 Inert gas can be supplied from the gas supply pipes 53 and 55 into the processing chamber 23 via the MFCs 53a and 55a, the valves 53b and 55b, the gas supply pipes 51, 52 and 54, and the nozzle 24, respectively. It has become. The inert gas acts as a purge gas, diluent gas, or carrier gas.
 ガス供給管56からは、不活性ガスガスを、MFC56a、バルブ56bを介して下部チャンバ30内へ供給することが可能となっている。不活性ガスはパージガスとして作用する。 From the gas supply pipe 56, it is possible to supply inert gas into the lower chamber 30 via the MFC 56a and the valve 56b. The inert gas acts as a purge gas.
 主に、ガス供給管52、MFC52a、バルブ52bにより、第1の処理ガス供給系(第1の処理ガス供給部)が構成される。ガス供給管51、ノズル24を第1の処理ガス供給系に含めて考えてもよい。主に、ガス供給管54、MFC54a、バルブ54bにより、第2の処理ガス供給系(第2の処理ガス供給部)が構成される。ガス供給管51、ノズル24を第2の処理ガス供給系に含めて考えてもよい。主に、ガス供給管53,55、MFC53a,55a、バルブ53b,55bにより第1の不活性ガス供給系(第1の不活性ガス供給部)が構成される。ガス供給管51,52,54、ノズル24を第1の不活性ガス供給系に含めて考えてもよい。主に、ガス供給管56、MFC56a、バルブ56bにより、第2の不活性ガス供給系(第2の不活性ガス供給部)が構成される。 A first processing gas supply system (first processing gas supply section) is mainly composed of the gas supply pipe 52, MFC 52a, and valve 52b. The gas supply pipe 51 and the nozzle 24 may be included in the first processing gas supply system. A second processing gas supply system (second processing gas supply section) is mainly composed of the gas supply pipe 54, MFC 54a, and valve 54b. The gas supply pipe 51 and the nozzle 24 may be included in the second processing gas supply system. A first inert gas supply system (first inert gas supply section) is mainly constituted by the gas supply pipes 53, 55, MFCs 53a, 55a, and valves 53b, 55b. The gas supply pipes 51, 52, 54 and nozzle 24 may be included in the first inert gas supply system. A second inert gas supply system (second inert gas supply section) is mainly composed of the gas supply pipe 56, MFC 56a, and valve 56b.
 外管22の下端部には、外管22の周りを取り囲むように、ガスの滞留空間である排気バッファとしてのポンピング部26が形成されている。ポンピング部26は、外管22を取り囲むように設けられるヒータ10よりも下方に配されている。ポンピング部26は、内管21と外管22との間の円環状の空間である排気流路25に連通しており、排気流路25を流れたガスを一時的に滞留させるように構成されている。 A pumping section 26 serving as an exhaust buffer, which is a gas retention space, is formed at the lower end of the outer tube 22 so as to surround the outer tube 22. The pumping part 26 is arranged below the heater 10 provided so as to surround the outer tube 22. The pumping section 26 communicates with the exhaust passage 25, which is an annular space between the inner tube 21 and the outer tube 22, and is configured to temporarily retain the gas flowing through the exhaust passage 25. ing.
 内管21の下方には、内管21の内側および移載室33からポンピング部26にガスを排出する開口27が設けられている。開口27は、ポンピング部26と対向する位置であって下部チャンバ30にできるだけ近い位置に、内管21の周方向に沿って複数設けられている。 An opening 27 is provided below the inner tube 21 to discharge gas from the inside of the inner tube 21 and the transfer chamber 33 to the pumping section 26 . A plurality of openings 27 are provided along the circumferential direction of the inner tube 21 at positions facing the pumping part 26 and as close to the lower chamber 30 as possible.
 ポンピング部26には、ポンピング部26に滞留するガスを排気する排気管61が接続されている。排気管61には、処理室23内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ62および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ63を介して、真空排気装置としての真空ポンプ64が接続されている。APCバルブ63は、真空ポンプ64を作動させた状態で弁を開閉することで、処理室23内の真空排気および真空排気停止を行うことができ、さらに、真空ポンプ64を作動させた状態で、圧力センサ62により検出された圧力情報に基づいて弁開度を調節することで、処理室23内の圧力を調整することができるように構成されている。主に、排気管61、APCバルブ63、圧力センサ62により、排気系すなわち排気ラインが構成される。排気流路25、ポンピング部26、真空ポンプ64を排気系に含めて考えてもよい。 An exhaust pipe 61 is connected to the pumping section 26 to exhaust gas remaining in the pumping section 26. The exhaust pipe 61 is connected to a pressure sensor 62 as a pressure detector (pressure detection unit) that detects the pressure inside the processing chamber 23 and an APC (Auto Pressure Controller) valve 63 as a pressure regulator (pressure adjustment unit). , a vacuum pump 64 as a vacuum evacuation device is connected. The APC valve 63 can perform evacuation and stop of evacuation in the processing chamber 23 by opening and closing the valve while the vacuum pump 64 is in operation. Furthermore, with the vacuum pump 64 in operation, By adjusting the valve opening based on pressure information detected by the pressure sensor 62, the pressure inside the processing chamber 23 can be adjusted. The exhaust pipe 61, the APC valve 63, and the pressure sensor 62 mainly constitute an exhaust system, that is, an exhaust line. The exhaust flow path 25, the pumping section 26, and the vacuum pump 64 may be included in the exhaust system.
 下部チャンバ30の側壁上方には、基板搬入搬出口32が設けられている。基板搬入搬出口32を介して、図示しない搬送ロボットにより、ウエハ200が移載室33の内外を移動する。移載室33内で後述する基板支持具へのウエハ200の装填、基板支持具からのウエハ200の脱装が行われる。 A substrate loading/unloading port 32 is provided above the side wall of the lower chamber 30. The wafer 200 is moved in and out of the transfer chamber 33 via the substrate loading/unloading port 32 by a transfer robot (not shown). In the transfer chamber 33, the wafer 200 is loaded onto a substrate support, which will be described later, and the wafer 200 is unloaded from the substrate support.
 基板支持具は、複数枚(例えば5枚)のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で、垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。基板支持具は、少なくとも、ウエハ200を支持する基板支持部(第1支持部)41および仕切板(板、プレート)46dを支持する仕切板支持部(第2支持部)46で構成される。基板支持具は、例えば石英やSiC等の耐熱性材料によって構成される。基板支持具の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板が水平姿勢で多段に支持された断熱部42が配設されている。断熱板は例えば石英やSiC等の耐熱性材料により構成されるカバーで覆ってもよい。断熱部42は、例えば石英やSiC等の耐熱性材料により構成される断熱筒によって構成されていてもよい。 The substrate support is configured to support a plurality of wafers 200 (for example, 5 wafers) in a horizontal position and with their centers aligned with each other in a vertically aligned manner in multiple stages, that is, at intervals. It is configured to be arranged. The substrate support includes at least a substrate support part (first support part) 41 that supports the wafer 200 and a partition plate support part (second support part) 46 that supports a partition plate (plate) 46d. The substrate support is made of a heat-resistant material such as quartz or SiC. At the bottom of the substrate support, a heat insulating section 42 is provided in which heat insulating plates made of a heat-resistant material such as quartz or SiC are supported in multiple stages in a horizontal position. The heat insulating plate may be covered with a cover made of a heat resistant material such as quartz or SiC. The heat insulating portion 42 may be configured by a heat insulating tube made of a heat resistant material such as quartz or SiC.
 基板支持部41は、図2に示すように、基部41aに複数の支柱(第1支柱)41cが支持されており、この複数の支柱41cに等ピッチで取り付けられた基板保持部材(支持部)41dにより複数のウエハ200が上下方向に所定の間隔で支持される構成を有している。基板支持部41は、基部41aと支柱41cと基板保持部材41dとが一体構造または別構造により構成される。 As shown in FIG. 2, the board support part 41 has a plurality of pillars (first pillars) 41c supported by a base 41a, and board holding members (support parts) attached to the plurality of pillars 41c at equal pitches. 41d supports a plurality of wafers 200 at predetermined intervals in the vertical direction. The substrate support portion 41 is configured by a base portion 41a, a support column 41c, and a substrate holding member 41d having an integrated structure or separate structures.
 仕切板支持部46は、図2に示すように、基部46aと天板46bとの間に支持された支柱(第2支柱)46cに複数枚の仕切板46dが所定のピッチで固定されている。仕切板支持部46は基部46aと天板46bと支柱46cと仕切板46dとが一体構造または別構造により構成される。 As shown in FIG. 2, the partition plate support section 46 has a plurality of partition plates 46d fixed at a predetermined pitch to a column (second column) 46c supported between a base 46a and a top plate 46b. . The partition plate support portion 46 is configured by a base 46a, a top plate 46b, a support column 46c, and a partition plate 46d, which may be integrally or separately constructed.
 支柱41cに取り付けた基板保持部材41dにより支持された複数のウエハ200の間は、仕切板支持部46に支持された支柱46cに上下方向に所定の間隔で固定(支持)された仕切板46dによって仕切られている。ここで、仕切板46dは、ウエハ200の上方と下方のいずれか又は両方に配置される。 The plurality of wafers 200 supported by substrate holding members 41d attached to pillars 41c are separated by partition plates 46d fixed (supported) at predetermined intervals in the vertical direction to pillars 46c supported by partition plate supports 46. It's partitioned off. Here, the partition plate 46d is placed either above or below the wafer 200, or both.
 基板支持部41に載置されている複数のウエハ200の所定の間隔は、仕切板支持部46に固定された仕切板46dの上下の間隔と同じである。多段に設置された仕切板46の間隔は、ウエハ200表面積によって設定する。例えば、処理をしていないウエハ200に対して、処理後のウエハ200の表面積が50~200倍(例えば100倍)となる場合、各仕切板46dの間隔は10~60mm(例えば、約20mm)に設定される。このようにすることで、ガスをウエハの中央まで供給することが可能となり、膜の均一性に寄与することができる。 The predetermined interval between the plurality of wafers 200 placed on the substrate support part 41 is the same as the vertical interval of the partition plate 46d fixed to the partition plate support part 46. The intervals between the partition plates 46 installed in multiple stages are set according to the surface area of the wafer 200. For example, when the surface area of the wafer 200 after processing is 50 to 200 times (for example, 100 times) that of the unprocessed wafer 200, the interval between each partition plate 46d is 10 to 60 mm (for example, about 20 mm). is set to By doing so, it becomes possible to supply the gas to the center of the wafer, contributing to the uniformity of the film.
 仕切板(リング板、リングプレート)46dは、図3に示すように、中央部に貫通孔(孔、穴)46eを有するリング形状で構成されている。貫通孔46eの径(仕切板46dの内径)はウエハ200の径に対して1/6~3/4程度に設定される。これにより、ガスの流れに影響を与えることなく処理が可能となる。仕切板46dの直径(外径)は、図4に示すように、ウエハ200の直径よりも大きく形成されている。仕切板46dの直径は、ウエハ200の直径の1.03~1.30倍に設定される。例えば、ウエハの直径が300mmである場合、仕切板46dの直径は310~400mmである。 As shown in FIG. 3, the partition plate (ring plate) 46d has a ring shape with a through hole (hole) 46e in the center. The diameter of the through hole 46e (inner diameter of the partition plate 46d) is set to about 1/6 to 3/4 of the diameter of the wafer 200. This allows processing without affecting the gas flow. The diameter (outer diameter) of the partition plate 46d is larger than the diameter of the wafer 200, as shown in FIG. The diameter of the partition plate 46d is set to 1.03 to 1.30 times the diameter of the wafer 200. For example, when the diameter of the wafer is 300 mm, the diameter of the partition plate 46d is 310 to 400 mm.
 本実施形態においては、仕切板支持部46の仕切板46dとウエハ200(基板支持部41の基板保持部材41d)の間隔が可変な構造とするために、仕切板支持部46と基板支持部41とがそれぞれ独立した構成とし、仕切板支持部46と基板支持部41との一方もしくは両方を上下方向に駆動可能な構成(可変構成)とする。これにより、基板保持部材41dの上に載置されたウエハ200を仕切板46dの上に載置したり、仕切板46dの上に載置されたウエハ200を基板保持部材41dの上に載置したりすることが可能である。また、ウエハ200を任意の高さに移動させることができるので、成膜分布を調整することができる。 In this embodiment, in order to have a structure in which the distance between the partition plate 46d of the partition plate support part 46 and the wafer 200 (substrate holding member 41d of the substrate support part 41) is variable, the partition plate support part 46 and the substrate support part 41 The partition plate support section 46 and the substrate support section 41 are configured to be independent from each other, and one or both of the partition plate support section 46 and the substrate support section 41 can be driven in the vertical direction (variable configuration). As a result, the wafer 200 placed on the substrate holding member 41d is placed on the partition plate 46d, or the wafer 200 placed on the partition plate 46d is placed on the substrate holding member 41d. It is possible to do this. Furthermore, since the wafer 200 can be moved to an arbitrary height, the film formation distribution can be adjusted.
 相対的に上下方向に移動する仕切板支持部46と基板支持部41とにおいて、仕切板支持部46の仕切板46dと基板支持部41の支柱41c及び基板保持部材41dとが干渉することを防止しなければならない。 In the partition plate support part 46 and the board support part 41 that move relative to each other in the vertical direction, interference between the partition plate 46d of the partition plate support part 46, the pillar 41c of the board support part 41, and the board holding member 41d is prevented. Must.
 基板支持部41の支柱41c及び基板保持部材41dと干渉しないようにするために、図3に示すように、仕切板46dには、支柱41cと基板保持部材41dとを真上から投影したような形状の切欠き部46fが、複数の個所に形成されている。すなわち、図3に示す仕切板46dに形成された切欠き部46fは、支柱41cとの干渉を回避するよう構成された第1の凹部としての切欠きに加えて、基板保持部材41dとの干渉を回避するように(すなわち、基板保持部材41dを収容可能なように)構成された第2の凹部としての切欠きをさらに含んでいる。 In order to avoid interference with the support columns 41c and the substrate holding members 41d of the substrate support section 41, as shown in FIG. Shape cutout portions 46f are formed at a plurality of locations. That is, in addition to the notch 46f formed in the partition plate 46d shown in FIG. It further includes a notch as a second recess configured to avoid this (that is, to accommodate the substrate holding member 41d).
 図5に示すように、仕切板支持部46を構成する天板46bと仕切板46dには、それぞれ切欠き部46fが形成されている。これにより、基板支持部41が一体構造で構成されている場合でも、基板支持部41に対して、仕切板支持部46を上下方向から設置することが可能である。 As shown in FIG. 5, a notch 46f is formed in each of the top plate 46b and the partition plate 46d that constitute the partition plate support portion 46. Thereby, even when the board support part 41 is configured as an integral structure, it is possible to install the partition plate support part 46 from above and below with respect to the board support part 41.
 図6に示すように、仕切板46dと支柱41cとの間には、間隙が形成される。仕切板46dに形成されている切欠き部46fの各部の寸法は、支柱41cと基板保持部材41dとを真上から投影した場合の寸法に対して、2乃至4mm大きな寸法とする。2mmより狭くすると、仕切板46dが支柱41c又は基板保持部材41dと接触する可能性がある。一方、4mmよりも大きくすると、仕切板46dと支柱41c又は基板保持部材41dと間隙から上方又は下方へのガスの流出量・流入量が多くなってガスの流れが乱れてしまい、仕切板46dで保持されているウエハ200の表面におけるガスの流れの制御が乱れてしまう恐れがある。 As shown in FIG. 6, a gap is formed between the partition plate 46d and the support column 41c. The dimensions of each part of the notch 46f formed in the partition plate 46d are 2 to 4 mm larger than the dimensions when the support 41c and the substrate holding member 41d are projected from directly above. If it is narrower than 2 mm, there is a possibility that the partition plate 46d will come into contact with the support column 41c or the substrate holding member 41d. On the other hand, if it is larger than 4 mm, the amount of gas flowing upward or downward from the gap between the partition plate 46d and the support 41c or the substrate holding member 41d will increase, and the gas flow will be disturbed. There is a risk that the control of gas flow on the surface of the wafer 200 being held may be disrupted.
 切欠き部46fの各部の寸法と支柱41cの寸法の関係を上記したような関係にすることにより、仕切板46dと支柱41cとの間のガス流路断面を小さくすることができる。これにより、仕切板46dの上下の空間でのガスの流入・流出を小さく抑えることができ、仕切板46dで保持されているウエハ200の表面におけるガスの流れを精度良く制御することができる。 By setting the relationship between the dimensions of each part of the notch 46f and the dimensions of the support 41c as described above, the cross section of the gas flow path between the partition plate 46d and the support 41c can be reduced. Thereby, the inflow and outflow of gas in the space above and below the partition plate 46d can be suppressed, and the flow of gas on the surface of the wafer 200 held by the partition plate 46d can be controlled with high precision.
 ウエハ200の高さ位置は少なくとも二つ設定可能である。一つ目は、図2に示すように、ウエハ200を搬送する高さである。二つ目は、図1に示すように、プロセス時の高さである。搬送時の高さは基板保持部材41dに載置される高さである。プロセス時の高さは仕切板46dに直乗せ(載置)される高さである。 At least two height positions of the wafer 200 can be set. The first is the height at which the wafer 200 is transported, as shown in FIG. The second factor is the height during processing, as shown in FIG. The height during transportation is the height at which the substrate is placed on the substrate holding member 41d. The height during the process is the height at which it is directly placed (placed) on the partition plate 46d.
 図2および図7に示すように、基板搬入搬出口32を介して、基板支持具へのウエハ200の装填および基板支持具からのウエハ200の脱装が行われる際(ウエハ200の搬送時)は、複数の仕切板46dは、それぞれ、ウエハ200が基板支持部41に装填された際にウエハ200に接触することがないように基板支持部41の基板保持部材41dの下方(基板保持部材41dと基板保持部材41dとの間の高さの位置)に配設されている。 As shown in FIGS. 2 and 7, when the wafer 200 is loaded onto the substrate support and unloaded from the substrate support through the substrate loading/unloading port 32 (when the wafer 200 is transported) , the plurality of partition plates 46d are arranged below the substrate holding member 41d of the substrate supporting unit 41 (substrate holding member 41d and the substrate holding member 41d).
 図1および図8に示すように、ウエハ200の装填後、基板保持部材41dは仕切板46dよりも下方に移動して、仕切板46dにウエハ200の外周を支持させることにより、ウエハ200を支持するようになっている。図1および図8に示すように、ウエハ200の処理時に、仕切板46dの上に乗せられることでウエハ200ごとに空間遮断が行われる。仕切板46dはリング形状としているが、仕切板46dにウエハ200を接触(直乗せ)して貫通孔46eを塞ぐことにより空間分離が可能となる。 As shown in FIGS. 1 and 8, after loading the wafer 200, the substrate holding member 41d moves below the partition plate 46d and supports the wafer 200 by making the partition plate 46d support the outer periphery of the wafer 200. It is supposed to be done. As shown in FIGS. 1 and 8, when the wafers 200 are processed, space is isolated for each wafer 200 by being placed on the partition plate 46d. Although the partition plate 46d has a ring shape, spatial separation is possible by contacting (directly mounting) the wafer 200 on the partition plate 46d to close the through hole 46e.
 例えば、処理温度が400~800℃であり、仕切板46dは処理を継続しているので、温度が高くなってる。ウエハ200の装填時は仕切板46dの温度に対して、ウエハ200の温度が低い。したがって、ウエハ200が熱の急激な変化により反るのを防ぐため、ウエハ200の温度が処理温度の-100~0℃となった後に、ウエハ200の高さ位置を変えて仕切板46dに直接乗せる、もしくは仕切板46dに直置きする動作を行うタイミングは、基板支持具がプロセス開始可能な位置へ配置された後とする。 For example, the processing temperature is 400 to 800° C., and since the partition plate 46d continues processing, the temperature is high. When loading the wafer 200, the temperature of the wafer 200 is lower than the temperature of the partition plate 46d. Therefore, in order to prevent the wafer 200 from warping due to sudden changes in heat, after the temperature of the wafer 200 reaches -100 to 0°C, which is the processing temperature, the height position of the wafer 200 is changed and the wafer 200 is placed directly on the partition plate 46d. The timing for carrying out the operation of placing the substrate or directly placing it on the partition plate 46d is after the substrate support is placed at a position where the process can be started.
 仕切板46dにウエハ200を乗せる場合、成膜による仕切板46dとウエハ200との接着を防止するため、例えば、仕切板46dに0.1~3mmの突起を少なくとも1つ、具体的には3点設け、3点支持としウエハ200の裏面と仕切板46d間の距離は、0.1~3mmとするようにしてもよい。 When placing the wafer 200 on the partition plate 46d, in order to prevent adhesion between the partition plate 46d and the wafer 200 due to film formation, for example, at least one protrusion of 0.1 to 3 mm, specifically three, is provided on the partition plate 46d. The distance between the back surface of the wafer 200 and the partition plate 46d may be 0.1 to 3 mm by providing support at three points.
 仕切板支持部46の下部に設置される断熱部42には、上下動する基板支持部41の一部(支柱41c)との干渉を防ぐため、仕切板46dに設けられた切欠き部46fと同様な凹部が設けられている。 The heat insulating part 42 installed at the lower part of the partition plate support part 46 has a cutout part 46f provided in the partition plate 46d and a cutout part 46f in order to prevent interference with a part (pillar 41c) of the board support part 41 that moves up and down. A similar recess is provided.
 基板支持部41の基部41aおよび支柱41cが別構造で構成されている場合、仕切板46dには切欠き部46fがなくてもよい。例えば、仕切板46dの厚みを厚くしてた場合には、切欠きを設けず、座繰りで実施することも可能である。 If the base portion 41a and the support column 41c of the board support portion 41 are configured separately, the partition plate 46d may not have the notch portion 46f. For example, if the thickness of the partition plate 46d is increased, it is also possible to use a counterbore instead of providing a notch.
 基板支持具は、ロッド43によって支持されている。ロッド43は、移載室33の気密状態を維持しつつ、下部チャンバ30の底部を貫通しており、さらには下部チャンバ30の下方の外部で昇降・回転機構(ボートエレベータ)44に接続されている。昇降・回転機構44は、基板支持具を昇降させることで、基板支持具に支持されたウエハ200を処理室23と移載室33との間で垂直方向に昇降させるように構成されている。すなわち、昇降・回転機構44は、基板支持具、すなわちウエハ200を、処理室23と移載室33との間で搬送する搬送装置(搬送機構)として構成されている。例えば、昇降・回転機構44が上昇動作を行うと、基板支持具は、図1で示される処理室23内の位置(ウエハ処理位置)まで上昇し、昇降・回転機構44が下降動作を行うと、基板支持具は、図2で示される移載室33内の位置(ウエハ搬送位置)まで下降する。また、昇降・回転機構44は、基板支持具を回転させることでウエハ200を回転させるように構成されている。昇降・回転機構44は、仕切板支持部46に対して基板支持部41を上下方向に駆動する機構を備えている。 The substrate support is supported by rods 43. The rod 43 penetrates the bottom of the lower chamber 30 while maintaining the airtight state of the transfer chamber 33, and is further connected to a lifting/rotating mechanism (boat elevator) 44 below and outside the lower chamber 30. There is. The elevating/rotating mechanism 44 is configured to vertically move the wafer 200 supported by the substrate support between the processing chamber 23 and the transfer chamber 33 by elevating the substrate support. That is, the elevating/rotating mechanism 44 is configured as a transport device (transport mechanism) that transports the substrate support, that is, the wafer 200, between the processing chamber 23 and the transfer chamber 33. For example, when the lifting/rotating mechanism 44 performs an upward movement, the substrate support rises to the position in the processing chamber 23 (wafer processing position) shown in FIG. , the substrate support is lowered to a position within the transfer chamber 33 (wafer transfer position) shown in FIG. Further, the lifting/rotating mechanism 44 is configured to rotate the wafer 200 by rotating the substrate support. The elevating/rotating mechanism 44 includes a mechanism for driving the substrate support section 41 in the vertical direction with respect to the partition plate support section 46 .
 なお、ロッド43の上端付近であって、断熱部42の下方には、反応管20の下部を閉塞する蓋47が設けられていてもよい。蓋47を設けて、反応管20の下部を閉塞することにより、反応管20内に存在する原料ガスや反応ガスが、移載室33へ拡散することを抑制することが可能となる。また、反応管20内の圧力制御が容易となり、ウエハ200への処理の均一性を向上させることが可能となる。 Note that a lid 47 that closes the lower part of the reaction tube 20 may be provided near the upper end of the rod 43 and below the heat insulating section 42. By providing the lid 47 to close the lower part of the reaction tube 20, it becomes possible to suppress the source gas and reaction gas present in the reaction tube 20 from diffusing into the transfer chamber 33. Further, the pressure inside the reaction tube 20 can be easily controlled, and the uniformity of processing on the wafers 200 can be improved.
 内管21内には、温度検出器としての温度センサ11が設置されている。温度センサ11により検出された温度情報に基づきヒータ10への通電具合を調整することで、処理室23内の温度が所望の温度分布となる。温度センサ11はノズル24と同様にL字型に構成されており、内管21の内壁に沿って設けられている。 A temperature sensor 11 as a temperature detector is installed inside the inner tube 21. By adjusting the power supply to the heater 10 based on the temperature information detected by the temperature sensor 11, the temperature in the processing chamber 23 becomes a desired temperature distribution. The temperature sensor 11 is L-shaped like the nozzle 24, and is provided along the inner wall of the inner tube 21.
 図9に示すように、制御部(制御手段)であるコントローラ70は、CPU(Central Processing Unit)71、RAM(Random Access Memory)72、記憶装置73、I/Oポート74を備えたコンピュータとして構成されている。RAM72、記憶装置73、I/Oポート74は、内部バス75を介して、CPU71とデータ交換可能なように構成されている。コントローラ70には、例えばタッチパネル等として構成された入出力装置82、外部記憶装置81が接続されている。 As shown in FIG. 9, a controller 70, which is a control unit (control means), is configured as a computer equipped with a CPU (Central Processing Unit) 71, a RAM (Random Access Memory) 72, a storage device 73, and an I/O port 74. has been done. The RAM 72, storage device 73, and I/O port 74 are configured to be able to exchange data with the CPU 71 via an internal bus 75. The controller 70 is connected to an input/output device 82 configured as, for example, a touch panel, and an external storage device 81.
 記憶装置73は、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置73内には、基板処理装置の動作を制御する制御プログラムや、後述する半導体装置の製造方法の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ70に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM72は、CPU71によって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 73 is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like. In the storage device 73, a control program for controlling the operation of the substrate processing apparatus, a process recipe in which procedures, conditions, etc. of a semiconductor device manufacturing method, which will be described later, are described are readably stored. The process recipe is a combination of processes (each step) in a method for manufacturing a semiconductor device, which will be described later, to be executed by the controller 70 to obtain a predetermined result, and functions as a program. Hereinafter, process recipes, control programs, etc. will be collectively referred to as simply programs. Further, a process recipe is also simply referred to as a recipe. When the word program is used in this specification, it may include only a single recipe, only a single control program, or both. The RAM 72 is configured as a memory area (work area) in which programs, data, etc. read by the CPU 71 are temporarily held.
 I/Oポート74は、上述のMFC52a~56a、バルブ52b~56b、圧力センサ62、APCバルブ63、真空ポンプ64、ヒータ10、温度センサ11、昇降・回転機構44等に接続されている。 The I/O port 74 is connected to the above-mentioned MFCs 52a to 56a, valves 52b to 56b, pressure sensor 62, APC valve 63, vacuum pump 64, heater 10, temperature sensor 11, lifting/rotating mechanism 44, and the like.
 CPU71は、記憶装置73から制御プログラムを読み出して実行するとともに、入出力装置82からの操作コマンドの入力等に応じて記憶装置73からレシピを読み出すように構成されている。CPU71は、読み出したレシピの内容に沿うように、MFC52a~56aによる各種ガスの流量調整動作、バルブ52b~56bの開閉動作、APCバルブ63の開閉動作および圧力センサ62に基づくAPCバルブ63による圧力調整動作、真空ポンプ64の起動および停止、温度センサ11に基づくヒータ10の温度調整動作、昇降・回転機構44による基板支持具の昇降動作、回転および回転速度調節動作等を制御するように構成されている。 The CPU 71 is configured to read and execute a control program from the storage device 73 and read recipes from the storage device 73 in response to input of operation commands from the input/output device 82 and the like. The CPU 71 adjusts the flow rate of various gases by the MFCs 52a to 56a, opens and closes the valves 52b to 56b, opens and closes the APC valve 63, and adjusts the pressure by the APC valve 63 based on the pressure sensor 62 in accordance with the contents of the read recipe. It is configured to control the operation, starting and stopping of the vacuum pump 64, temperature adjustment operation of the heater 10 based on the temperature sensor 11, lifting/lowering operation of the substrate support by the lifting/rotating mechanism 44, rotation and rotation speed adjusting operation, etc. There is.
 コントローラ70は、外部記憶装置81に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。外部記憶装置81は、例えば、磁気テープ、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリを含む。記憶装置73や外部記憶装置81は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置73単体のみを含む場合、外部記憶装置81単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置81を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 70 can be configured by installing the above-mentioned program stored in the external storage device 81 into a computer. The external storage device 81 includes, for example, a magnetic tape, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as an MO, and a semiconductor memory such as a USB memory. The storage device 73 and the external storage device 81 are configured as computer-readable recording media. Hereinafter, these will be collectively referred to as simply recording media. When the term "recording medium" is used in this specification, it may include only the storage device 73, only the external storage device 81, or both. Note that the program may be provided to the computer using communication means such as the Internet or a dedicated line, without using the external storage device 81.
(2)基板処理工程
 上述の基板処理装置を用いて基板としてのウエハ200上に薄膜を形成する基板処理シーケンス、すなわち、成膜シーケンスの例について説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ70により制御される。
(2) Substrate Processing Step An example of a substrate processing sequence, that is, a film formation sequence, in which a thin film is formed on the wafer 200 as a substrate using the above-described substrate processing apparatus will be described. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by a controller 70.
 ここでは、原料ガスと反応ガスを用いて、それらを交互に供給することによってウエハ200上に膜を形成する成膜処理について、図10を用いて説明する。図10に示す成膜工程(成膜シーケンス)では、
 ウエハ200に対して、原料ガスを供給するステップと、
 ウエハ200に対して反応ガスを供給するステップと、
 を非同時に行うサイクルを所定回数行うことで、ウエハ200上に膜を形成するステップを行う。
Here, a film forming process in which a film is formed on the wafer 200 by alternately supplying a source gas and a reaction gas will be described with reference to FIG. In the film forming process (film forming sequence) shown in FIG.
supplying source gas to the wafer 200;
supplying a reactive gas to the wafer 200;
A step of forming a film on the wafer 200 is performed by performing a cycle of non-simultaneously a predetermined number of times.
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 When the word "wafer" is used in this specification, it may mean the wafer itself, or it may mean a stack of a wafer and a predetermined layer or film formed on its surface. In this specification, when the term "wafer surface" is used, it may mean the surface of the wafer itself, or the surface of a predetermined layer formed on the wafer. In this specification, when the expression "forming a predetermined layer on a wafer" refers to forming a predetermined layer directly on the surface of the wafer itself, or a layer formed on the wafer, etc. Sometimes it means forming a predetermined layer on top of. In this specification, when the word "substrate" is used, it has the same meaning as when the word "wafer" is used.
(ウエハチャージ:S110)
 基板支持具の基板支持部41に、複数枚(例えば5枚)のウエハ200を装填(ウエハチャージ)する。具体的には、移載室33内において、基板支持部41におけるウエハ200の載置位置を基板搬入搬出口32と対向させた状態で、基板搬入搬出口32を通じて基板支持部41の所定の位置にウエハ200を載置する。1枚のウエハ200を基板支持部41に装填したら、昇降・回転機構44によって基板支持具の上下方向位置を移動させつつ、基板支持部41の他のウエハ載置位置に他のウエハ200を装填する。この動作を複数回繰り返す。具体的には、基板支持具を降ろしながらウエハ200を装填する。なお、基板支持具には、複数枚のウエハ200を装填した際に隣接するウエハ200間の位置および最下部に配置されたウエハ200の下方の位置にウエハ200に沿って仕切板46dが多段に配設された状態となるように、仕切板支持部46が予め配設されている。このとき基板支持部41に装填されたウエハ200は、仕切板支持部46によって加熱される。
(Wafer charge: S110)
A plurality of (for example, five) wafers 200 are loaded (wafer charging) into the substrate support part 41 of the substrate support. Specifically, in the transfer chamber 33, with the mounting position of the wafer 200 on the substrate support 41 facing the substrate loading/unloading port 32, the substrate supporting portion 41 is moved to a predetermined position through the substrate loading/unloading port 32. The wafer 200 is placed on. Once one wafer 200 is loaded onto the substrate support 41, another wafer 200 is loaded onto another wafer placement position on the substrate support 41 while moving the vertical position of the substrate support using the lifting/rotating mechanism 44. do. Repeat this action multiple times. Specifically, the wafer 200 is loaded while lowering the substrate support. Note that when a plurality of wafers 200 are loaded on the substrate support, partition plates 46d are arranged in multiple stages along the wafers 200 at positions between adjacent wafers 200 and at positions below the wafer 200 placed at the bottom. The partition plate support portion 46 is arranged in advance so as to be in the arranged state. At this time, the wafer 200 loaded on the substrate support section 41 is heated by the partition plate support section 46 .
(ボートロード:S120)
 ウエハ200が基板支持具に装填された後、図1に示すように、複数枚のウエハ200を支持した基板支持具は、昇降・回転機構44によって上昇させられて(持ち上げられて)処理室23内へ搬入(ボートロード)される。この際、ガス供給孔24aの高さ位置が、それぞれ、ウエハ200の表面よりもわずかに高い位置に位置するように、仕切板支持部46の高さ位置を調整する。これにより、各ウエハ200の表面に対してガスを確実に供給することが可能となる。
(Boat load: S120)
After the wafers 200 are loaded onto the substrate support, as shown in FIG. It is brought into the country (boatload). At this time, the height positions of the partition plate supports 46 are adjusted so that the height positions of the gas supply holes 24a are respectively located at slightly higher positions than the surface of the wafer 200. This makes it possible to reliably supply gas to the surface of each wafer 200.
(圧力調整および温度調整:S130)
 処理室23内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ64によって処理室23内が真空排気(減圧排気)される。この際、処理室23内の圧力は圧力センサ62で測定され、この測定された圧力情報に基づきAPCバルブ63がフィードバック制御される(圧力調整)。また、処理室23内のウエハ200が、所望の処理温度となるように、ヒータ10によって加熱される。この際、処理室23内が所望の温度分布となるように、温度センサ11が検出した温度情報に基づきヒータ10への通電具合がフィードバック制御される(温度調整)。また、基板支持部41が下降させられてウエハ200が仕切板46dの上に載置される。また、昇降・回転機構44によるウエハ200の回転を開始する。真空ポンプ64の稼働、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
(Pressure adjustment and temperature adjustment: S130)
The inside of the processing chamber 23 is evacuated (decompressed) by the vacuum pump 64 so that the inside of the processing chamber 23, that is, the space in which the wafer 200 exists, reaches a desired pressure (degree of vacuum). At this time, the pressure inside the processing chamber 23 is measured by the pressure sensor 62, and the APC valve 63 is feedback-controlled (pressure adjustment) based on the measured pressure information. Further, the wafer 200 in the processing chamber 23 is heated by the heater 10 to a desired processing temperature. At this time, the energization of the heater 10 is feedback-controlled based on the temperature information detected by the temperature sensor 11 so that the inside of the processing chamber 23 has a desired temperature distribution (temperature adjustment). Further, the substrate support section 41 is lowered and the wafer 200 is placed on the partition plate 46d. Further, rotation of the wafer 200 by the lifting/rotating mechanism 44 is started. The operation of the vacuum pump 64 and the heating and rotation of the wafer 200 are all continued at least until the processing on the wafer 200 is completed.
(成膜工程:S140)
 その後、次の2つのステップ、すなわち、原料ガス供給ステップ(S141)、反応ガス供給ステップ(S143)を順次実施する。
(Film forming process: S140)
After that, the next two steps, that is, a raw material gas supply step (S141) and a reaction gas supply step (S143) are sequentially performed.
[原料ガス供給ステップ:S141]
 このステップでは、処理室23内のウエハ200に対して原料ガスを供給する。
[Raw material gas supply step: S141]
In this step, source gas is supplied to the wafer 200 in the processing chamber 23.
 具体的には、バルブ52bを開き、ガス供給管52へ原料ガスを流す。原料ガスは、MFC52aにより流量調整され、ガス供給管51、ノズル24を介して処理室23内へ供給される。処理室23内へ供給された原料ガスは、処理室23内を上昇し、内管21の上端開口から排気流路25に流出して排気流路25を流下し、ポンピング部26を経て排気管61から排気される。このとき、ウエハ200に対して原料ガスが供給される。このとき、バルブ53b,55bを開き、ガス供給管51,53,55、ノズル24を介して処理室23内へ不活性ガスガスを流す。不活性ガスの供給は不実施としてもよい。処理室23内からのガス排気を、ポンピング部26を介して行うことで、排気動作の安定化を図ることができる。 Specifically, the valve 52b is opened and the raw material gas is allowed to flow into the gas supply pipe 52. The flow rate of the source gas is adjusted by the MFC 52a, and the raw material gas is supplied into the processing chamber 23 via the gas supply pipe 51 and the nozzle 24. The raw material gas supplied into the processing chamber 23 rises within the processing chamber 23, flows out from the upper end opening of the inner pipe 21 into the exhaust flow path 25, flows down the exhaust flow path 25, passes through the pumping section 26, and flows into the exhaust pipe. It is exhausted from 61. At this time, source gas is supplied to the wafer 200. At this time, the valves 53b and 55b are opened to flow inert gas into the processing chamber 23 through the gas supply pipes 51, 53, 55 and the nozzle 24. The supply of inert gas may be omitted. By exhausting gas from inside the processing chamber 23 via the pumping section 26, the exhaust operation can be stabilized.
 本ステップにおける処理条件としては、
 原料ガス供給流量:0.01~2slm、好ましくは0.1~1slm
 不活性ガス供給流量(ガス供給管毎):0~10slm
 各ガス供給時間:0.1~120秒、好ましくは0.1~60秒
 処理温度:250~900℃、好ましくは400~700℃
 処理圧力:1~2666Pa、好ましくは67~1333Pa
 が例示される。
The processing conditions in this step are:
Raw material gas supply flow rate: 0.01 to 2 slm, preferably 0.1 to 1 slm
Inert gas supply flow rate (for each gas supply pipe): 0 to 10slm
Each gas supply time: 0.1 to 120 seconds, preferably 0.1 to 60 seconds Processing temperature: 250 to 900°C, preferably 400 to 700°C
Processing pressure: 1 to 2666 Pa, preferably 67 to 1333 Pa
is exemplified.
 なお、本明細書における「1~2666Pa」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「1~2666Pa」とは「1Pa以上2666Pa以下」を意味する。他の数値範囲についても同様である。 Note that the notation of a numerical range such as "1 to 2666 Pa" in this specification means that the lower limit value and the upper limit value are included in the range. Therefore, for example, "1 to 2666 Pa" means "1 Pa or more and 2666 Pa or less". The same applies to other numerical ranges.
 上述の条件下でウエハ200に対して、例えば、SiおよびClを含む原料ガスを供給することにより、ウエハ200の最表面上に、第1層として、例えば1原子層未満から数原子層程度の厚さのClを含むSi含有層が形成される。Clを含むSi含有層は、ウエハ200の表面への、原料ガスの化学吸着や物理吸着、原料ガスの一部が分解した物質(SixCly)の化学吸着、原料ガスの熱分解によるSiの堆積等により形成される。Clを含むSi含有層は、原料ガスやSixClyの吸着層(物理吸着層や化学吸着層)であってもよく、Clを含むSiの堆積層であってもよい。本明細書では、Clを含むSi含有層を、単に、Si含有層とも称する。 By supplying a source gas containing, for example, Si and Cl to the wafer 200 under the above-mentioned conditions, a layer of, for example, less than one atomic layer to several atomic layers is formed as a first layer on the outermost surface of the wafer 200. A thick Cl-containing Si-containing layer is formed. The Si-containing layer containing Cl is formed by chemical adsorption or physical adsorption of the source gas on the surface of the wafer 200, chemical adsorption of a substance (SixCly) that is partially decomposed of the source gas, deposition of Si due to thermal decomposition of the source gas, etc. formed by. The Si-containing layer containing Cl may be an adsorption layer (physical adsorption layer or chemical adsorption layer) of source gas or SixCly, or may be a deposited layer of Si containing Cl. In this specification, the Si-containing layer containing Cl is also simply referred to as the Si-containing layer.
 また、このとき、移載室33内に不活性ガス(パージガス)を供給する(移載室33内のパージ)。具体的には、バルブ56bを開き、ガス供給管56内へ不活性ガスを流す。不活性ガスは、MFC56aにより流量調整され、移載室33内へ供給される。移載室33に供給されたNガスは、移載室33内を上昇し、開口27を介してポンピング部26に排出される。ポンピング部26に排出されたNガスは、処理室23内からポンピング部26に排出された原料ガス等と一緒に排気管61から排気される。移載室33からのガス排気を、ポンピング部26を介して行うことで、排気動作の安定化を図ることができる。 At this time, an inert gas (purge gas) is supplied into the transfer chamber 33 (purging the transfer chamber 33). Specifically, the valve 56b is opened to allow inert gas to flow into the gas supply pipe 56. The flow rate of the inert gas is adjusted by the MFC 56a, and the inert gas is supplied into the transfer chamber 33. The N 2 gas supplied to the transfer chamber 33 rises within the transfer chamber 33 and is discharged to the pumping section 26 through the opening 27 . The N 2 gas discharged to the pumping section 26 is exhausted from the exhaust pipe 61 together with the raw material gas etc. discharged from the inside of the processing chamber 23 to the pumping section 26 . By exhausting gas from the transfer chamber 33 via the pumping section 26, the exhaust operation can be stabilized.
 移載室33内への不活性ガスの供給は、移載室33内のガス圧力が処理室23内のガス圧力よりも高くなる(処理室23内のガス圧力<移載室33内のガス圧力)とともに、移載室33内へ供給されるガスの流量が処理室23内へ供給されるガスの合計流量よりも多くなる(処理室23内に供給されるガスの合計流量<移載室33内に供給されるガス流量)ような条件で行う。 When the inert gas is supplied into the transfer chamber 33, the gas pressure in the transfer chamber 33 becomes higher than the gas pressure in the processing chamber 23 (gas pressure in the processing chamber 23<gas pressure in the transfer chamber 33). pressure), and the flow rate of gas supplied into the transfer chamber 33 becomes larger than the total flow rate of gas supplied into the processing chamber 23 (total flow rate of gas supplied into the processing chamber 23<transfer chamber 33).
 ウエハ200の表面上に第1層が形成された後、バルブ52bを閉じ、処理室23内への原料ガスの供給を停止する。そして、処理室23内に残留するガス等を処理室23内から排除する(パージ)。このとき、バルブ53b、55bを開き、ガス供給管51、ノズル24を介して処理室23内へ不活性ガスを供給する。不活性ガスはパージガスとして作用し、これにより、処理室23内がパージされる。 After the first layer is formed on the surface of the wafer 200, the valve 52b is closed and the supply of source gas into the processing chamber 23 is stopped. Gas and the like remaining in the processing chamber 23 are then removed from the processing chamber 23 (purge). At this time, the valves 53b and 55b are opened to supply inert gas into the processing chamber 23 through the gas supply pipe 51 and the nozzle 24. The inert gas acts as a purge gas, thereby purging the inside of the processing chamber 23.
 第一ガス(原料ガス)としては、モノクロロシラン(SiHCl、略称:MCS)ガス、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等のクロロシラン系ガスを用いることができる。 The first gas (raw material gas) includes monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, and dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas. , trichlorosilane (SiHCl 3 , abbreviation: TCS) gas, tetrachlorosilane (SiCl 4 , abbreviation: STC) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas, and other chlorosilane-based gases can be used. .
 不活性ガスとしては、Arガス、Heガス、Nガス、Neガス、Xeガス等の希ガスを用いることができる。この点は、後述する各ステップにおいても同様である。 As the inert gas, rare gases such as Ar gas, He gas, N 2 gas, Ne gas, and Xe gas can be used. This point also applies to each step described below.
[反応ガス供給ステップ:S143]
 このステップでは、処理室23内のウエハ200、すなわち、ウエハ200上に形成された第1層に対して反応ガスを供給する。
[Reaction gas supply step: S143]
In this step, a reactive gas is supplied to the wafer 200 in the processing chamber 23, that is, the first layer formed on the wafer 200.
 具体的には、バルブ54bを開き、ガス供給管54内へ反応ガスを流す。反応ガスは、MFC54aにより流量調整され、ガス供給管51、ノズル24を介して処理室23内へ供給される。処理室23内へ供給された反応ガスは、処理室23内を上昇し、内管21の上端開口から排気流路25に流出して排気流路25を流下し、ポンピング部26を経て排気管61から排気される。このとき、ウエハ200に対して反応ガスが供給される。このとき、バルブ53b,55bは閉じ、不活性ガスが反応ガスと一緒に処理室23内に供給されないようにする。すなわち、第二ガスは、不活性ガスで希釈されることなく、処理室23内に供給され、排気管61から排気されるようにする。このように、反応ガスを、不活性ガスで希釈することなく、処理室23内へ供給することにより、薄膜の成膜レートを向上させることができる。 Specifically, the valve 54b is opened to allow the reaction gas to flow into the gas supply pipe 54. The flow rate of the reaction gas is adjusted by the MFC 54a, and the reaction gas is supplied into the processing chamber 23 through the gas supply pipe 51 and the nozzle 24. The reaction gas supplied into the processing chamber 23 rises within the processing chamber 23, flows out from the upper end opening of the inner pipe 21 into the exhaust flow path 25, flows down the exhaust flow path 25, passes through the pumping section 26, and flows into the exhaust pipe. It is exhausted from 61. At this time, a reactive gas is supplied to the wafer 200. At this time, the valves 53b and 55b are closed to prevent the inert gas from being supplied into the processing chamber 23 together with the reaction gas. That is, the second gas is supplied into the processing chamber 23 and exhausted from the exhaust pipe 61 without being diluted with an inert gas. In this way, by supplying the reaction gas into the processing chamber 23 without diluting it with an inert gas, the thin film deposition rate can be improved.
 また、このときも、上述した原料ガス供給ステップ(S141)の場合における移載室33内のパージと同様の処理手順により、移載室33内に不活性ガスを供給する。 Also, at this time, inert gas is supplied into the transfer chamber 33 using the same process procedure as that for purging the transfer chamber 33 in the raw material gas supply step (S141) described above.
 本ステップにおける処理条件としては、
 反応ガス供給流量:0.1~10slm
 処理圧力:1~4000Pa、好ましくは1~3000Pa
 が例示される。他の処理条件は、原料ガス供給ステップ(S141)における処理条件と同様とする。
The processing conditions in this step are:
Reaction gas supply flow rate: 0.1-10slm
Processing pressure: 1 to 4000 Pa, preferably 1 to 3000 Pa
is exemplified. Other processing conditions are the same as those in the raw material gas supply step (S141).
 上述の条件下でウエハ200に対して、例えば、反応ガスとして酸素含有ガスガスを供給することにより、ウエハ200上に形成された第1層の少なくとも一部が酸化(改質)される。第1層が改質されることで、ウエハ200上に、第2層として、SiおよびOを含む層、すなわち、SiO層が形成される。第2層を形成する際、第1層に含まれていたCl等の不純物は、反応ガスによる第1層の改質反応の過程において、少なくともClを含むガス状物質を構成し、処理室23内から排出される。これにより、第2層は、第1層に比べてCl等の不純物が少ない層となる。 By supplying, for example, an oxygen-containing gas as a reactive gas to the wafer 200 under the above conditions, at least a portion of the first layer formed on the wafer 200 is oxidized (modified). By modifying the first layer, a layer containing Si and O, that is, a SiO layer is formed as a second layer on the wafer 200. When forming the second layer, impurities such as Cl contained in the first layer constitute a gaseous substance containing at least Cl in the process of the reforming reaction of the first layer with the reaction gas, and Expelled from within. As a result, the second layer becomes a layer containing less impurities such as Cl than the first layer.
 第2層が形成された後、バルブ54bを閉じ、処理室23内への反応ガスの供給を停止する。そして、上述の原料ガス供給ステップ(S141)におけるパージと同様の処理手順により、処理室23内に残留するガス等を処理室23内から排除する。 After the second layer is formed, the valve 54b is closed and the supply of the reaction gas into the processing chamber 23 is stopped. Then, the gas remaining in the processing chamber 23 is removed from the processing chamber 23 by the same processing procedure as the purge in the above-described raw material gas supply step (S141).
 反応ガスとしては、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、酸素(O)ガス、オゾン(O)ガス、水蒸気(HOガス)、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等のO含有ガスを用いることができる。 Reactive gases include nitrous oxide (N 2 O) gas, nitric oxide (NO) gas, nitrogen dioxide (NO 2 ) gas, oxygen (O 2 ) gas, ozone (O 3 ) gas, and water vapor (H 2 O). An O-containing gas such as carbon monoxide (CO) gas, carbon dioxide (CO 2 ) gas, etc. can be used.
(実施回数確認:S150)
 上述した原料ガス供給ステップ(S141)と反応ガス供給ステップ(S143)とを非同時に、すなわち、同期させることなく交互に行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハ200の表面上に、例えば、SiO膜を形成することができる。上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成されるSiO層の厚さを所望の膜厚よりも薄くし、SiO層を積層することで形成される膜の膜厚が所望の膜厚(例えば0.1~2nm)になるまで、上述のサイクルを複数回(例えば10~80回程度、より好ましくは10~15回程度)繰り返すのが好ましい。上述のサイクルが終了する度に、このサイクルを予め設定された回数(所定回数)実施したか否かを判断する。
(Confirmation of number of times performed: S150)
By performing a cycle in which the above-described raw material gas supply step (S141) and reaction gas supply step (S143) are performed non-simultaneously, that is, alternately without synchronization, a predetermined number of times (n times, n is an integer of 1 or more), For example, a SiO film can be formed on the surface of the wafer 200. Preferably, the above-described cycle is repeated multiple times. That is, the thickness of the SiO layer formed per cycle is made thinner than the desired film thickness, and the film thickness of the film formed by stacking the SiO layers is set to the desired film thickness (for example, 0.1 to 2 nm). ) It is preferable to repeat the above-mentioned cycle multiple times (for example, about 10 to 80 times, more preferably about 10 to 15 times). Each time the above-mentioned cycle ends, it is determined whether this cycle has been performed a preset number of times (predetermined number of times).
(アフターパージ:S160)
 上述のサイクルを所定回数繰り返したことが確認された後、ガス供給管53,55のそれぞれからパージガスを処理室23内へ供給し、ポンピング部26を介して排気管61から排気する。これにより、処理室23内がパージされ、処理室23内に残留するガスや副生成物が処理室23内から除去される。
(Afterpurge: S160)
After it is confirmed that the above-described cycle has been repeated a predetermined number of times, purge gas is supplied into the processing chamber 23 from each of the gas supply pipes 53 and 55, and is exhausted from the exhaust pipe 61 via the pumping section 26. As a result, the inside of the processing chamber 23 is purged, and gases and byproducts remaining in the processing chamber 23 are removed from the inside of the processing chamber 23.
(大気圧復帰:S170)
 その後、処理室23内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室23内の圧力が常圧に復帰される。
(Atmospheric pressure return: S170)
Thereafter, the atmosphere within the processing chamber 23 is replaced with an inert gas (inert gas replacement), and the pressure within the processing chamber 23 is returned to normal pressure.
(ボートアンロード:S180)
 その後、上述したボートロード工程(S120)とは逆の手順で、基板支持部41が上昇させられてウエハ200が基板保持部材41dの上に載置される。図2に示すように、昇降・回転機構44により基板支持具が下降され、処理済のウエハ200が、基板支持部41に支持された状態で処理室23内から下部チャンバ30の移載室33に搬出(ボートアンロード)される。
(Boat unload: S180)
Thereafter, in the reverse procedure of the boat loading step (S120) described above, the substrate support section 41 is raised and the wafer 200 is placed on the substrate holding member 41d. As shown in FIG. 2, the substrate support is lowered by the lifting/rotating mechanism 44, and the processed wafer 200 is transferred from the processing chamber 23 to the transfer chamber 33 of the lower chamber 30 while being supported by the substrate support 41. It will be carried out (boat unloaded).
(ウエハディスチャージ:S190)
 その後、上述したウエハチャージ工程(S110)とは逆の手順で、処理済のウエハ200は、基板支持部41より脱装され(取り出され)、基板搬入搬出口32を通じて下部チャンバ30の外部に搬出する。なお、処理済のウエハ200の取り出しは、基板支持部41の下部から行われる。つまり、ボートアンロード(S180)とウエハディスチャージ(S190)は、一部並行して行われる。
(Wafer discharge: S190)
Thereafter, in the reverse procedure of the wafer charging step (S110) described above, the processed wafer 200 is unloaded (taken out) from the substrate support part 41 and carried out to the outside of the lower chamber 30 through the substrate loading/unloading port 32. do. Note that the processed wafer 200 is taken out from the lower part of the substrate support section 41. In other words, boat unloading (S180) and wafer discharge (S190) are partially performed in parallel.
 このようにして、複数枚のウエハ200のそれぞれに対して、SiO層を形成する成膜工程が完了することになる。 In this way, the film forming process of forming the SiO layer on each of the plurality of wafers 200 is completed.
(3)本態様による効果
 上述の態様によれば、以下に示す1つまたは複数の効果が得られる。
(3) Effects of this embodiment According to the above embodiment, one or more of the following effects can be obtained.
(a)本態様では、仕切板46dは中央部に貫通孔46eが設けられてリング形状に構成される。これにより、円板形状の仕切板に比べて体積を減らすことができ、熱容量が小さくなるので、昇降温の速度を上げることが可能となる。 (a) In this embodiment, the partition plate 46d is configured in a ring shape with a through hole 46e provided in the center. As a result, the volume can be reduced compared to a disk-shaped partition plate, and the heat capacity becomes smaller, so it is possible to increase the rate of temperature rise and fall.
(b)本態様では、仕切板46dとウエハ200の間隔が可変である。すなわち、リング形状の仕切板46dを支持する仕切板支持部46とウエハ200を支持する基板支持部41がそれぞれ独立して構成され、基板支持部41と仕切板支持部46の一方もしくは両方を昇降させる。これにより、仕切板46dの上にウエハ200を直接乗せることを可能となり、ウエハ200ごとに成膜処理空間を隔てることが可能となる。 (b) In this embodiment, the distance between the partition plate 46d and the wafer 200 is variable. That is, the partition plate support part 46 that supports the ring-shaped partition plate 46d and the substrate support part 41 that supports the wafer 200 are each configured independently, and one or both of the substrate support part 41 and the partition plate support part 46 can be moved up and down. let This makes it possible to place the wafer 200 directly on the partition plate 46d, making it possible to separate the film-forming processing space for each wafer 200.
(c)本態様では、仕切板46dをリング形状とすることで、重量を軽くすることも可能となり、メンテナンス時等に基板支持具の取り外しを容易にすることも可能となる。 (c) In this aspect, by forming the partition plate 46d into a ring shape, it is possible to reduce the weight, and it is also possible to easily remove the substrate support during maintenance or the like.
<本開示の他の態様>
 以上、本開示の態様を具体的に説明したが、本開示が上述の態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更が可能である。
<Other aspects of the present disclosure>
Although aspects of the present disclosure have been specifically described above, the present disclosure is not limited to the above-mentioned aspects, and various changes can be made without departing from the gist thereof.
 上述の態様では、反応管が内管と外管とを有する例を示したが、本開示がこれに限定されず、反応管は、内管を有さず外管のみを有する構成であってもよい。 In the above embodiment, an example is shown in which the reaction tube has an inner tube and an outer tube, but the present disclosure is not limited thereto, and the reaction tube may have a configuration without an inner tube and only an outer tube. Good too.
 また、上述の態様では、反応管の下側に下部チャンバを配設する例を示したが、本開示がこれに限定されることはない。例えば、反応管を横型に構成し、反応管の隣にチャンバ(下部チャンバ)を配設してもよい。また、縦型装置であっても、反応管の上部にチャンバ(下部チャンバ)を配設してもよい。つまり、基板の移載室を形成するチャンバは、反応管に連なるように配されたものであれば、上述した下部チャンバに限られるものではない。 Furthermore, in the above embodiment, an example is shown in which the lower chamber is disposed below the reaction tube, but the present disclosure is not limited thereto. For example, the reaction tube may be configured horizontally, and a chamber (lower chamber) may be disposed next to the reaction tube. Furthermore, even in the case of a vertical apparatus, a chamber (lower chamber) may be provided at the upper part of the reaction tube. In other words, the chamber forming the substrate transfer chamber is not limited to the above-mentioned lower chamber as long as it is arranged so as to be continuous with the reaction tube.
 また、上述の態様では、薄膜としてSiO膜を形成する例について説明したが、本開示はこのような形態に限定されない。 Furthermore, in the above embodiment, an example in which a SiO film is formed as a thin film has been described, but the present disclosure is not limited to such a form.
 例えば、反応体として、Oガス等のO含有ガスの他、アンモニア(NH)ガス等の窒素(N)含有ガス、トリエチルアミン((CN、略称:TEA)ガス等のN及び炭素(C)含有ガス、プロピレン(C)ガス等のC含有ガス、トリクロロボラン(BCl)ガス等のホウ素(B)含有ガス等を用いるようにしてもよい。そして、以下に示すガス供給シーケンスにより、基板の表面上に、シリコン酸化膜(SiO膜)シリコン窒化膜(SiN膜)、シリコン酸窒化膜(SiON)膜、シリコン炭窒化膜(SiCN膜)、シリコン酸炭化膜(SiOC膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン硼窒化膜(SiBN膜)、シリコン硼炭窒化膜(SiBCN膜)等の膜を形成するようにしてもよい。これらの場合においても、上述の態様における効果と同様の効果が得られる。これらの反応ガスを供給する際の処理手順、処理条件は、例えば、上述の態様において反応ガスを供給する際のそれらと同様とすることができる。これらの場合においても、上述の態様における効果と同様の効果が得られる。 For example, as a reactant, in addition to O-containing gas such as O 2 gas, nitrogen (N)-containing gas such as ammonia (NH 3 ) gas, triethylamine ((C 2 H 5 ) 3 N, abbreviation: TEA) gas, etc. A gas containing N and carbon (C), a gas containing C such as propylene (C 3 H 6 ) gas, a gas containing boron (B) such as trichloroborane (BCl 3 ) gas, etc. may be used. Then, by the gas supply sequence shown below, silicon oxide film (SiO film), silicon nitride film (SiN film), silicon oxynitride film (SiON) film, silicon carbonitride film (SiCN film), silicon A film such as an oxycarbide film (SiOC film), a silicon oxycarbonitride film (SiOCN film), a silicon boronitride film (SiBN film), a silicon borocarbonitride film (SiBCN film), or the like may be formed. In these cases as well, the same effects as in the above embodiments can be obtained. The processing procedure and processing conditions when supplying these reactive gases can be, for example, the same as those when supplying the reactive gases in the above-described embodiment. In these cases as well, the same effects as in the above embodiments can be obtained.
 (HCDS→O)×n ⇒ SiO
 (HCDS→NH)×n ⇒ SiN
 (HCDS→O→NH)×n ⇒ SiON
 (HCDS→TEA)×n ⇒ SiCN
 (HCDS→TEA→O)×n ⇒ SiOC(N)
 (HCDS→C→NH→O)×n ⇒ SiOCN
 (HCDS→C→O→NH)×n ⇒ SiOCN
 (HCDS→BCl→NH)×n ⇒ SiBN
 (HCDS→C→BCl→NH)×n ⇒ SiBCN
 (DCS→O)×n ⇒ SiO
 (DCS→O→NH)×n ⇒ SiON
(HCDS→O 2 )×n ⇒ SiO
(HCDS→ NH3 )×n ⇒ SiN
(HCDS → O 2 → NH 3 )×n ⇒ SiON
(HCDS→TEA)×n ⇒ SiCN
(HCDS→TEA→O 2 )×n ⇒ SiOC(N)
(HCDS→ C3H6NH3O2 )×n SiOCN
(HCDS→ C3H6O2NH3 )×n SiOCN
(HCDS→ BCl3NH3 )×n ⇒ SiBN
(HCDS→ C3H6BCl3NH3 )×n SiBCN
(DCS→O 2 )×n ⇒ SiO
(DCS → O 2 → NH 3 )×n ⇒ SiON
 また例えば、基板に対して原料と反応体とを同時に供給し、基板上に、上述の各種膜を形成するようにしてもよい。また例えば、基板に対して原料を単体で供給し、基板上に、シリコン膜(Si膜)を形成するようにしてもよい。これらの場合においても、上述の態様と同様の効果が得られる。これらの原料や反応体を供給する際の処理手順、処理条件は、上述の態様において原料や反応体を供給する際のそれらと同様とすることができる。これらの場合においても、上述の態様における効果と同様の効果が得られる。 Alternatively, for example, the raw material and the reactant may be simultaneously supplied to the substrate to form the various films described above on the substrate. Alternatively, for example, a single raw material may be supplied to the substrate, and a silicon film (Si film) may be formed on the substrate. In these cases as well, effects similar to those of the above embodiments can be obtained. The processing procedures and processing conditions when supplying these raw materials and reactants can be the same as those when supplying the raw materials and reactants in the above embodiment. In these cases as well, the same effects as in the above embodiments can be obtained.
 また例えば、本開示は、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等を含む金属系薄膜を形成する場合にも適用することができる。これらの場合であっても、上述の態様と同様な効果が得られる。すなわち、本開示は、半金属元素(半導体元素)や金属元素等の所定元素を含む膜を形成する場合に適用することができる。 For example, the present disclosure also describes the use of metals including titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W), etc. It can also be applied when forming a system thin film. Even in these cases, effects similar to those of the above embodiments can be obtained. That is, the present disclosure can be applied to the case of forming a film containing a predetermined element such as a semimetal element (semiconductor element) or a metal element.
 また、上述の態様では、基板処理工程として、主に、基板の表面上に薄膜を形成する場合を例に挙げたが、本開示がこれに限定されることはない。すなわち、本開示は、上述の態様で例に挙げた薄膜形成の他に、上述の態様で例示した薄膜以外の成膜処理にも適用できる。また、基板処理の具体的内容は不問であり、成膜処理だけでなく、熱処理(アニール処理)、プラズマ処理、拡散処理、酸化処理、窒化処理、リソグラフィ処理、イオン打ち込み後のキャリア活性化や平坦化のためのリフロー処理等の他の基板処理を行う場合にも適用できる。 Furthermore, in the above-described embodiment, the case where a thin film is mainly formed on the surface of the substrate is exemplified as the substrate processing step, but the present disclosure is not limited thereto. That is, the present disclosure can be applied to film formation processes other than the thin films exemplified in the above embodiments, in addition to the thin film formation exemplified in the above embodiments. In addition, the specific content of substrate processing does not matter; it includes not only film formation processing, but also heat processing (annealing processing), plasma processing, diffusion processing, oxidation processing, nitriding processing, lithography processing, carrier activation after ion implantation, and flattening. It can also be applied to other substrate processing such as reflow processing for conversion.
 各処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置81を介して記憶装置73内に格納しておくことが好ましい。そして、各処理を開始する際、CPU71が、記憶装置73内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各処理を迅速に開始できるようになる。 It is preferable that the recipes used for each process be prepared individually according to the process content and stored in the storage device 73 via the telecommunications line or the external storage device 81. Then, when starting each process, it is preferable that the CPU 71 appropriately selects an appropriate recipe from among the plurality of recipes stored in the storage device 73 according to the content of the process. This makes it possible to form films of various film types, composition ratios, film qualities, and film thicknesses with good reproducibility using one substrate processing apparatus. Furthermore, the burden on the operator can be reduced, and each process can be started quickly while avoiding operational errors.
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置82を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更してもよい。 The above-mentioned recipe is not limited to the case where it is newly created, but may be prepared by, for example, changing an existing recipe that has already been installed in the substrate processing apparatus. When changing a recipe, the changed recipe may be installed in the substrate processing apparatus via a telecommunications line or a recording medium on which the recipe is recorded. Alternatively, an existing recipe already installed in the substrate processing apparatus may be directly changed by operating the input/output device 82 provided in the existing substrate processing apparatus.
 上述の態様では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の態様では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。 In the above embodiment, an example was described in which a film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at once. The present disclosure is not limited to the above-described embodiments, and can be suitably applied, for example, to a case where a film is formed using a single-wafer type substrate processing apparatus that processes one or several substrates at a time. Further, in the above embodiment, an example was described in which a film is formed using a substrate processing apparatus having a hot wall type processing furnace. The present disclosure is not limited to the above-described embodiments, and can be suitably applied to a case where a film is formed using a substrate processing apparatus having a cold wall type processing furnace.
 上述の態様では、基板処理を抵抗加熱式のヒータによる加熱で行う例について説明した。本開示はこの態様に限定されず、例えば基板処理における加熱を紫外線の照射等により行うようにしてもよい。紫外線照射による加熱を行う場合、例えば、重水素ランプ、ヘリウムランプ、カーボンアークランプ、BRV光源、エキシマランプ、水銀ランプ等を、ヒータ10に代わる加熱手段として用いることができる。また、これらの加熱手段をヒータと組み合わせて用いてもよい。 In the above embodiment, an example was described in which substrate processing is performed by heating with a resistance heating type heater. The present disclosure is not limited to this embodiment, and for example, heating during substrate processing may be performed by irradiating ultraviolet rays or the like. When heating by ultraviolet irradiation, for example, a deuterium lamp, helium lamp, carbon arc lamp, BRV light source, excimer lamp, mercury lamp, etc. can be used as a heating means in place of the heater 10. Further, these heating means may be used in combination with a heater.
 これらの基板処理装置を用いる場合においても、上述の態様と同様な処理手順、処理条件にて各処理を行うことができ、上述の態様と同様の効果が得られる。 Even when using these substrate processing apparatuses, each process can be performed under the same processing procedure and processing conditions as in the above embodiment, and the same effects as in the above embodiment can be obtained.
 上述の態様は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の態様の処理手順、処理条件と同様とすることができる。 The above embodiments can be used in appropriate combinations. The processing procedure and processing conditions at this time can be, for example, the same as the processing procedure and processing conditions of the above embodiment.
 23・・・処理室
 24・・・ノズル(ガス供給部)
 41・・・基板支持部(第1支持部)
 41c・・・支柱(第1支柱)
 46・・・仕切板支持部(第2支持部)
 46c・・・支柱(第2支柱)
 46d・・・仕切板(板)
 46e・・・貫通孔
 200・・・ウエハ(基板)
23... Processing chamber 24... Nozzle (gas supply section)
41... Board support part (first support part)
41c... Support (first support)
46... Partition plate support part (second support part)
46c... Support (second support)
46d...Partition plate (board)
46e...Through hole 200...Wafer (substrate)

Claims (18)

  1.  複数の基板を上下方向に間隔をあけて支持する複数の第1支柱を有する第1支持部と、前記第1支持部に支持された前記複数の基板の間に配置され、中央部に貫通孔を有する複数の板を支持する複数の第2支柱を有する第2支持部と、を備える基板支持具と、
     前記基板支持具を収容する処理室と、
     前記処理室にガスを供給するガス供給部と、
     を備える基板処理装置。
    A first support part having a plurality of first pillars that supports a plurality of substrates at intervals in the vertical direction, and a through hole disposed in a central part between the plurality of substrates supported by the first support part. a second support part having a plurality of second supports supporting a plurality of plates having a substrate support;
    a processing chamber that accommodates the substrate support;
    a gas supply unit that supplies gas to the processing chamber;
    A substrate processing apparatus comprising:
  2.  前記板の形状はリング形状である請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the plate has a ring shape.
  3.  前記板には、少なくとも1つの突起が設けられる請求項1又は請求項2に記載の基板処理装置。 The substrate processing apparatus according to claim 1 or 2, wherein the plate is provided with at least one protrusion.
  4.  前記突起の高さは、0.1mm~3mmである請求項3に記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the height of the protrusion is 0.1 mm to 3 mm.
  5.  前記貫通孔の径は、前記基板の径の1/6~3/4である請求項1~請求項4のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 4, wherein the diameter of the through hole is 1/6 to 3/4 of the diameter of the substrate.
  6.  前記板の径は、前記基板の径の1.03倍~1.30倍である請求項1~請求項5のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 5, wherein the diameter of the plate is 1.03 to 1.30 times the diameter of the substrate.
  7.  前記複数の板には、前記第1支柱を配置する切欠き部が設けられる請求項1~6のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 6, wherein the plurality of plates are provided with a notch in which the first support is arranged.
  8.  前記第1支柱は、前記前記基板を支持するための支持部を有し、
     前記切欠き部は、前記支持部を上下方向に移動可能なように構成されている請求項7に記載の基板処理装置。
    The first support has a support portion for supporting the substrate,
    8. The substrate processing apparatus according to claim 7, wherein the notch portion is configured to allow the supporting portion to move in the vertical direction.
  9.  前記板と前記第1支柱との間には、間隙が形成される請求項7又は8に記載の基板処理装置。 The substrate processing apparatus according to claim 7 or 8, wherein a gap is formed between the plate and the first support.
  10.  前記第1支柱を上下に移動することで、前記基板を任意の高さに移動させることが可能なように構成された請求項7~9のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 7 to 9, wherein the substrate processing apparatus is configured to be able to move the substrate to an arbitrary height by moving the first support up and down.
  11.  前記基板の処理時には、前記基板は前記板上に配置される請求項7~請求項10のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 7 to 10, wherein the substrate is placed on the plate when processing the substrate.
  12.  前記基板の温度が、前記基板を処理する温度より-100℃~0℃になったときに、前記基板が前記板上に配置される請求項11に記載の基板処理装置。 The substrate processing apparatus according to claim 11, wherein the substrate is placed on the plate when the temperature of the substrate is −100° C. to 0° C. below the temperature at which the substrate is processed.
  13.  複数の基板を上下方向に間隔をあけて支持する複数の第1支柱を有する第1支持部と、
     前記第1支持部に保持された前記複数の基板の間に配置され、中央部に貫通孔を有する複数の仕切板を支持する複数の第2支柱を有する第2支持部と、
     を備える基板支持具。
    a first support part having a plurality of first pillars that support the plurality of substrates at intervals in the vertical direction;
    a second support part having a plurality of second pillars disposed between the plurality of substrates held by the first support part and supporting a plurality of partition plates having a through hole in the center;
    A board support tool comprising:
  14.  複数の基板を上下方向に間隔をあけて支持する複数の第1支柱を有する第1支持部と、前記第1支持部に保持された前記複数の基板の間に配置され、中央部に貫通孔を有する複数の仕切板を支持する複数の第2支柱を有する第2支持部と、を備える基板支持具と、前記基板支持具を収容する処理室と、前記処理室にガスを供給するガス供給部と、を備えた基板処理装置の前記処理室内に前記基板支持具を収容する工程と、
     前記処理室内に前記ガスを供給する工程と、
     を有する半導体装置の製造方法。
    A first support part having a plurality of first pillars supporting a plurality of substrates at intervals in the vertical direction, and a through hole disposed in the center of the first support part, which is disposed between the plurality of substrates held by the first support part. a second support part having a plurality of second supports that support a plurality of partition plates having a substrate support, a processing chamber that accommodates the substrate support, and a gas supply that supplies gas to the processing chamber. accommodating the substrate support in the processing chamber of a substrate processing apparatus comprising a section;
    supplying the gas into the processing chamber;
    A method for manufacturing a semiconductor device having the following.
  15.  前記収容する工程の後に前記基板を加熱する工程を有し、
     前記加熱する工程では、前記基板の温度が、前記基板を処理する温度より-100℃~0℃になったときに、前記基板が前記板上に配置される請求項14に記載の半導体装置の製造方法。
    a step of heating the substrate after the step of accommodating;
    15. The semiconductor device according to claim 14, wherein in the heating step, the substrate is placed on the plate when the temperature of the substrate is −100° C. to 0° C. below the temperature at which the substrate is processed. Production method.
  16.  前記ガスを供給する工程では、前記前記基板が前記板上に配置された後に、前記ガスの供給を開始する請求項14又は請求項15に記載の半導体装置の製造方法。 16. The method of manufacturing a semiconductor device according to claim 14, wherein in the step of supplying the gas, supply of the gas is started after the substrate is placed on the plate.
  17.  複数の基板を上下方向に間隔をあけて支持する複数の第1支柱を有する第1支持部と、前記第1支持部に保持された前記複数の基板の間に配置され、中央部に貫通孔を有する複数の仕切板を支持する複数の第2支柱を有する第2支持部と、を備える基板支持具と、前記基板支持具を収容する処理室と、前記処理室にガスを供給するガス供給部と、を備えた基板処理装置の前記処理室内に前記基板支持具を収容する工程と、
     前記処理室内に前記ガスを供給する工程と、
     を有する基板処理方法。
    A first support part having a plurality of first pillars supporting a plurality of substrates at intervals in the vertical direction, and a through hole disposed in the center of the first support part, which is disposed between the plurality of substrates held by the first support part. a second support part having a plurality of second supports that support a plurality of partition plates having a substrate support, a processing chamber that accommodates the substrate support, and a gas supply that supplies gas to the processing chamber. accommodating the substrate support in the processing chamber of a substrate processing apparatus comprising a section;
    supplying the gas into the processing chamber;
    A substrate processing method comprising:
  18.  複数の基板を上下方向に間隔をあけて支持する複数の第1支柱を有する第1支持部と、前記第1支持部に保持された前記複数の基板の間に配置され、中央部に貫通孔を有する複数の仕切板を支持する複数の第2支柱を有する第2支持部と、を備える基板支持具と、前記基板支持具を収容する処理室と、前記処理室にガスを供給するガス供給部と、を備えた基板処理装置の前記処理室内に前記基板支持具を収容する手順と、
     前記処理室内に前記ガスを供給する手順と、
     をコンピュータを介して前記基板処理装置に実行させるプログラム。
    A first support part having a plurality of first pillars supporting a plurality of substrates at intervals in the vertical direction, and a through hole disposed in the center of the first support part, which is disposed between the plurality of substrates held by the first support part. a second support part having a plurality of second supports that support a plurality of partition plates having a substrate support, a processing chamber that accommodates the substrate support, and a gas supply that supplies gas to the processing chamber. a step of accommodating the substrate support in the processing chamber of a substrate processing apparatus comprising a section;
    a step of supplying the gas into the processing chamber;
    A program that causes the substrate processing apparatus to execute the following via a computer.
PCT/JP2022/012358 2022-03-17 2022-03-17 Substrate treatment device, substrate support, semiconductor device production method, substrate treatment method, and program WO2023175849A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/012358 WO2023175849A1 (en) 2022-03-17 2022-03-17 Substrate treatment device, substrate support, semiconductor device production method, substrate treatment method, and program
TW111144937A TW202339087A (en) 2022-03-17 2022-11-24 Substrate treatment device, substrate support, semiconductor device production method, substrate treatment method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012358 WO2023175849A1 (en) 2022-03-17 2022-03-17 Substrate treatment device, substrate support, semiconductor device production method, substrate treatment method, and program

Publications (1)

Publication Number Publication Date
WO2023175849A1 true WO2023175849A1 (en) 2023-09-21

Family

ID=88022569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012358 WO2023175849A1 (en) 2022-03-17 2022-03-17 Substrate treatment device, substrate support, semiconductor device production method, substrate treatment method, and program

Country Status (2)

Country Link
TW (1) TW202339087A (en)
WO (1) WO2023175849A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326431A (en) * 1990-12-31 1993-12-10 Fukui Shinetsu Sekiei:Kk Vertical-type housing jig
JP2018107174A (en) * 2016-12-22 2018-07-05 東京エレクトロン株式会社 Deposition device and deposition method
JP2018160660A (en) * 2017-03-21 2018-10-11 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus
WO2021059492A1 (en) * 2019-09-27 2021-04-01 株式会社Kokusai Electric Substrate treatment device, raising/lowering mechanism, method for manufacturing semiconductor device, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326431A (en) * 1990-12-31 1993-12-10 Fukui Shinetsu Sekiei:Kk Vertical-type housing jig
JP2018107174A (en) * 2016-12-22 2018-07-05 東京エレクトロン株式会社 Deposition device and deposition method
JP2018160660A (en) * 2017-03-21 2018-10-11 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus
WO2021059492A1 (en) * 2019-09-27 2021-04-01 株式会社Kokusai Electric Substrate treatment device, raising/lowering mechanism, method for manufacturing semiconductor device, and program

Also Published As

Publication number Publication date
TW202339087A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
US10593572B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR102559965B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and computer program
US11591694B2 (en) Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and recording medium
US10714362B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
US10763101B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US11594412B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US11967499B2 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20220157628A1 (en) Substrate processing apparatus, substrate suppport and method of manufacturing semiconductor device
JP2018206827A (en) Semiconductor device manufacturing method, substrate processing apparatus and program
US11094532B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2018163931A (en) Substrate processing device, method of manufacturing semiconductor device, and program
US11728165B2 (en) Method of processing substrate, substrate processing apparatus, recording medium, and method of manufacturing semiconductor device
WO2023175849A1 (en) Substrate treatment device, substrate support, semiconductor device production method, substrate treatment method, and program
US11387097B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP7079340B2 (en) Semiconductor device manufacturing methods, substrate processing devices, and programs
US11728162B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP7179806B2 (en) Substrate processing method, semiconductor device manufacturing method, program, and substrate processing apparatus
WO2024038602A1 (en) Substrate treatment method, method for producing semiconductor device, substrate treatment device, and program
JP2020077890A (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2019195106A (en) Method of manufacturing semiconductor device, substrate processing device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932123

Country of ref document: EP

Kind code of ref document: A1