WO2023173329A1 - Detachable two-part wearable device - Google Patents

Detachable two-part wearable device Download PDF

Info

Publication number
WO2023173329A1
WO2023173329A1 PCT/CN2022/081227 CN2022081227W WO2023173329A1 WO 2023173329 A1 WO2023173329 A1 WO 2023173329A1 CN 2022081227 W CN2022081227 W CN 2022081227W WO 2023173329 A1 WO2023173329 A1 WO 2023173329A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
band
smart device
wearer
processor
Prior art date
Application number
PCT/CN2022/081227
Other languages
French (fr)
Inventor
Wen Chen
Daniel James Guest
Yujie Dai
Michael Franco TAVEIRA
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/081227 priority Critical patent/WO2023173329A1/en
Publication of WO2023173329A1 publication Critical patent/WO2023173329A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • A61B2560/045Modular apparatus with a separable interface unit, e.g. for communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1112Global tracking of patients, e.g. by using GPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation

Definitions

  • Wearable devices including smartwatches, fitness bands, and even smart-rings, are widely used for health tracking in addition to supporting common user tasks such as calls, messages, and mobile payments. While most of these tasks primarily happen during daytime when the user is awake and dealing with daily routines, sleep tracking as an important aspect of health monitoring is done mostly at night when the user is resting. While devices with a big display are beneficial for supporting daytime user tasks, wearable devices having a big display are not a preferred form factor for sleep tracking. People who use digital sleep tools often complain that although a big display is convenient for checking information, the big display is uncomfortable to wear during sleep or while resting. In addition, big display wrist wearable devices may get accidently bumped into people or things, particularly someone else that shares a bed with the wearer.
  • wearable devices used for sleep tracking tend to have a relatively short battery life, e.g. most smart watches need to be taken off for charging just about every day. Many users of wearable devices prefer to charge them overnight, which makes using them for sleep tracking difficult.
  • Another constraint of using a wearable device for sleep tracking is that wearable devices can be inaccurate in tracking environmental information that impacts a user’s sleep, such as sound (background noise, snoring) , light, temperature, and humidity since wearable devices and their sensors tend to get covered by clothes or bedding.
  • the detachable two-part wearable device may include a base-band and an outer smart device.
  • the base-band may be configured to be worn in direct or close contact with skin of a wearer.
  • the base-band may include a sensor configured to measure biometrics of the wearer, a base-band battery configured to power the sensor, and a base connector.
  • the outer smart device may be removably coupled to the base-band.
  • the outer smart device may include a processor configured to receive the biometrics measured by the sensor, a smart device battery configured to power the processor, and an outer connector configured to communicatively or electronically couple with the base connector of the base-band.
  • the smart device battery may be configured to charge the base-band battery in response to the base connector coupling with the outer connector.
  • the coupling between the base connector and the outer connector may be configured to transfer power therebetween.
  • the coupling between the base connector and the outer connector may be configured to provide a data communication link therebetween.
  • the outer smart device may further include a smart device sensor coupled to the processor.
  • the smart device sensor may be configured to measure at least one of biometrics of the wearer, information about an environment of the wearer, or other types of information at least one of when the outer smart device may be or may not be physically connected to the base-band.
  • both the base-band and the outer smart device each separately include a display.
  • the display of the base-band may be concealed by the outer smart device when the outer smart device may be coupled to the base-band.
  • the display of the base-band may face in a direction different to that of the display of the outer smart device when the outer smart device may be coupled to the base-band.
  • the outer smart device may include an annular band, such that the annular band may cover the base-band when the annular band may be coupled to the base-band.
  • Some aspects may include an intermediate device configured to be removably coupled between the outer smart device and the base-band. Some aspects may include a secondary band configured to be worn by the wearer, wherein the secondary band includes a secondary connector configured to communicatively or electronically couple with the outer connector instead of the base connector when the outer smart device is not physically connected to the base-band.
  • the method may include de-coupling the outer smart device from a base-band configured to be worn in direct or close contact with skin of a wearer. Additionally, the outer smart device may be placed in a remote location relative to the base-band worn by the wearer. A processor of the outer smart device may receive remote sensor data collected by a base-band sensor of the base-band worn by the wearer. The processor of the outer smart device may determine a biometric assessment of the wearer based on the received remote sensor data.
  • Some aspects may include charging a base-band battery coupled to the base-band using power from a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band. Some aspects may include receiving, at the processor of the outer smart device, onboard sensor data collected by a smart device sensor of the outer smart device, wherein determining the biometric assessment of the wearer may be further based on the received onboard sensor data. Placing the outer smart device in the remote location may include attaching the outer smart device to a part of the wearer’s body that may be remote from the base-band worn by the wearer.
  • Various aspects may include methods that may be implemented using a detachable two-part wearable device.
  • the method may include de-coupling an outer smart device from the base-band device configured to be worn in direct or close contact with skin of a wearer.
  • Biometric data associated with the wearer may be collected by a base-band sensor of the base-band device worn by the wearer.
  • the collected biometric data may be transmitted from the base-band device to the outer smart device.
  • the method may include charging a base-band battery coupled to the base-band device using a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band device.
  • Further aspects may include a processor for use in a computing device configured to perform operations of any of the methods summarized above. Further aspects may include a computing device including means for performing functions of any of the methods summarized above. Further aspects may include a computing device configured with processor-executable instructions to perform operations of any of the methods summarized above.
  • FIG. 1A is a perspective exploded view of a detachable two-part wearable device according to some embodiments.
  • FIG. 1B is a perspective exploded view of a detachable two-part wearable device with low-profile connectors according to some embodiments.
  • FIG. 1C is a perspective exploded view of a detachable two-part wearable device with an open-bracelet style base-band according to some embodiments.
  • FIG. 1D is a perspective exploded view of a detachable two-part wearable device with a base-band including a secondary display according to some embodiments.
  • FIG. 1E is a side view of a detachable two-part wearable device with a continuous base-band according to some embodiments.
  • FIG. 1F is an exploded side view of the detachable two-part wearable device of FIG. 1E according to some embodiments.
  • FIG. 1G is a side view of a detachable two-part wearable device with an annular band covering the baseband according to some embodiments.
  • FIG. 1H is an exploded side view of the detachable two-part wearable device of FIG. 1G according to some embodiments.
  • FIG. 1I is a perspective exploded view of a detachable two-part wearable device with an intermediate device between the base-band and the outer smart device, according to some embodiments.
  • FIG. 1J is perspective relief view of a detachable two-part wearable device in the form of a smart ring according to some embodiments.
  • FIG. 2A is a schematic view of a detachable two-part wearable device used in conjunction with a secondary band on the user’s chest, according to some embodiments.
  • FIG. 2B is a schematic view of a detachable two-part wearable device used in conjunction with a secondary band on the user’s other wrist according to some embodiments.
  • FIG. 2C is a schematic view of a detachable two-part wearable device used in conjunction with a secondary band on the user’s ankle according to some embodiments.
  • FIG. 3 is a component block diagram illustrating a communication environment implementing various embodiments.
  • FIG. 4A is a component block diagram illustrating a processing device suitable for use in an outer smart device implementing various embodiments.
  • FIG. 4B is a component block diagram illustrating a processing device suitable for use in a base-band implementing various embodiments.
  • FIG. 5 is a component block diagram illustrating an example processing system including a wireless modem suitable for implementing various embodiments.
  • FIG. 6A is a process flow diagram illustrating an example method 600a that may be performed by a processing device of an outer smart device according to various embodiments.
  • FIGS. 6B–6C are process flow diagrams illustrating operations that may be performed by a processing device of an outer smart device according to various embodiments.
  • FIG. 7A is a process flow diagram illustrating an example method 700a that may be performed by a base-band device according to various embodiments.
  • FIGS. 7B is a process flow diagrams illustrating operations that may be performed by a processing device of a base-band device according to various embodiments.
  • FIG. 8 is a component block diagram of an outer smart device suitable for use with various embodiments.
  • FIG. 9 is a component block diagram of a base-band device suitable for use with various embodiments.
  • FIG. 10 is a component block diagram of a computing device suitable for use with various embodiments .
  • Various embodiments include a detachable two-part wearable device, which may support continuous daytime and overnight use of at least one of the two parts.
  • the detachable two-part wearable device may be used to address the different requirements that varying individuals may demand.
  • Various embodiments include a detachable two-part wearable device that includes a base-band as one part and an outer smart device as another part.
  • the outer smart device may have a large capacity battery (at least compared to the base-band) , a processor, sensors (e.g. microphone, temperature, humidity, light, etc. ) , a touch-sensitive display, and many other components and features to support daytime tasks.
  • daytime tasks of the outer smart device may include displaying time, making/receiving telephone calls, sending/receiving messages, mobile payment, etc.
  • the outer smart device may be taken off of (i.e., separated from) the base-band for charging. In this way, the outer smart device may be put aside, as a standalone or separate device for monitoring sleep environmental information, as well as connecting to a power source to recharge the battery, such as plugging into a charger or sitting atop a wireless charger.
  • the base-band may have a smaller capacity battery compared to the outer smart device.
  • the base-band and the outer smart device may have the same or similar capacity batteries.
  • the base-band may have a larger capacity battery than the outer smart device.
  • the base-band may include one or more sensors integrated therein.
  • sensors that may be implemented in the base-band include a photoplethysmogram (PPG) or other pulse sensor, an inertial measurement unit (IMU) , a body temperature sensor, an oximeter, an electrocardiogram (EKG) sensor, and the like.
  • the base-band may include a processor, which may be configured to work independent of the processor in the outer smart device.
  • the base-band may be worn alone (i.e., without the outer smart device) as a more comfortable, lighter, and safer sleep tracker during the night and/or as an exercise tracker for weight training, yoga, high-intensity interval training (HIIT) workouts, or other aerobics.
  • HIIT high-intensity interval training
  • the outer smart device and the base-band may still work together when separated, such as via a wireless communication link, which may increase tracking result accuracy and provide features that cannot be well supported by a single unitary wearable device.
  • a detachable two-part device with parts that work together when separated from one another may enable more accurate collection of sleep environment information, such as motion, ambient noise, etc., which may be processed by one or both of the processors to determine on which side the user is sleeping, measure movement during sleep, detect whether or how much the wearer is snoring, and/or detect others in the room (e.g., detect which person in the room is snoring) .
  • the outer smart device may function as a power source for recharging the base-band battery.
  • the base-band may receive power and get charged from the outer smart device. In this way, the base-band would not need to be charged separately and could remain on the wearer 24 hours a day.
  • the base-band could be charged by the outer smart device using wired and/or wireless charging.
  • the same connection used to charge the base-band battery may be used to communicate data (i.e., information ) between the base-band and the outer smart device.
  • the base-band may include a simple low power display (e.g., a liquid crystal display (LCD) or a light emitting diode (LED) display) that may display things like time, heart rate, etc.
  • the base-band display may be located on the underside of the wrist (i.e., opposite the way conventional watches are typically worn) .
  • the base-band display may be located on one or both sides of the wrist (i.e., ninety degrees around the wrist from the way conventional watches are typically worn) . In this way, when the outer smart device is attached, the base-band display may be used to display supplemental information that might change depending on what is happening on the main display.
  • the base-band display may show other information, such as details about a next meeting or the wearer’s heart rate.
  • the base-band display may show the time or other information typically displayed by the smart device display in a normal mode.
  • the base-band display may be facing in the same direction as and thus be covered by the main display on the outer smart device when the two parts are physically connected.
  • the outer smart device may be configured to be attached to another part of the wearer’s body (e.g., forehead, chest, foot, ankle, other wrist, etc. ) to work with the base-band to capture more accurate biometrics (e.g., heart rate, EKG, number of steps, etc. ) .
  • a secondary band that is separate and apart from the base-band for connection to another body part e.g., ankle, chest, etc.
  • a secondary band that is separate and apart from the base-band for connection to another body part (e.g., ankle, chest, etc. ) may be included and configured to communicatively couple (e.g., via a Bluetooth wireless datalink) with the outer smart device when the outer smart device is not physically connected to the base-band.
  • a customized chest, ankle, or wrist strap may enable the user to keep the base-band on one wrist and attach the outer smart device to the secondary band on another part of the wearer’s body.
  • each of the base-band and the outer smart band may be customized and upgraded based on individual requirements, needs, or desires. For example, a user might attach a first outer smart device, such as one with a large display or a particular sensor suit, to the original base-band for certain activities, but then switch to a second outer smart device, such as one with a smaller display or one that is more fully charged, to the original base-band for other situations. Alternatively, the user might connect a first base-band, such as one with more sensors, to the original outer smart device for certain activities, but then switch to a second base-band, such as one with fewer sensors or different features, for connecting to the original outer smart device for other activities.
  • a first outer smart device such as one with a large display or a particular sensor suit
  • a second outer smart device such as one with a smaller display or one that is more fully charged
  • the user might connect a first base-band, such as one with more sensors, to the original outer smart device for certain activities, but then switch to a second base-band
  • biometrics refers to body measurements and/or calculations related to human characteristics.
  • biometrics may measure one or more physiological conditions of the wearer’s body, such as pulse rate, temperature, blood oxygen level, EKG signals, perspiration, movement, and the like.
  • a computing device refers to an electronic device equipped with at least a processor, memory, and a device for presenting output such as a location of an object or objects of interest.
  • a computing device may include wireless communication devices such as a transceiver and antenna configured to communicate with wireless communication networks.
  • a computing device may include any one or all of an outer smart device, a base-band, smart watches, smart rings, smart necklaces, smart glasses, smart contact lenses, contactless sleep tracking devices, smart furniture such as a smart bed or smart sofa, smart exercise equipment, Internet of Things (IoT) devices, augmented/virtual reality devices, cellular telephones, smartphones, portable computing devices, personal or mobile multimedia players, laptop computers, tablet computers, 2-in-1 laptop/table computers, smart books, ultrabooks, multimedia Internet-enabled cellular telephones, entertainment devices (e.g., wireless gaming controllers, music and video players, satellite radios, etc. ) , and similar electronic devices that include a memory, wireless communication components and a programmable processor.
  • IoT Internet of Things
  • a computing device may be wearable device by a person.
  • the term “smart” in conjunction with a device refers to a device that includes a processor for automatic operation, for collecting and/or processing of data, and/or may be programmed to perform all or a portion of the operations described with regard to various embodiments.
  • SOC system on chip
  • a single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions.
  • a single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) .
  • SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a communication device and the communication device may be referred to as a component.
  • One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known computer, processor, and/or process related communication methodologies.
  • FIG. 1A illustrates a detachable two-part wearable device 100 with a base-band 110 separated from an outer smart device 150 according to some embodiments.
  • the base-band 110 may be configured to be worn in direct or close contact with the wearer’s skin.
  • the base-band 110 may include a sensor 120 configured to measure biometrics of the wearer, a base-band battery 130 configured to power the sensor 120, and a base connector 140.
  • the sensor 120 may include more than one sensor, which may be the same or may include different kinds of sensors.
  • the outer smart device 150 may be removably coupled to the base-band 110.
  • the outer smart device 150 may include a processor 160 configured to receive biometric parameters measured by the sensor 120, a smart device battery 170 configured to power the processor 160, a display 162, and an outer connector 180 configured to communicatively and/or electronically couple with the base connector 140 of the base-band 110.
  • the mechanism of attachment between the base connector 140 and the outer connector 180 may be magnetic, friction fitting, clasps, tongue-in-groove interfaces, or other mechanism for holding the two portions together.
  • the base-band 110 and the outer smart device 150 may be configured to wirelessly communicating with each other via a wired and/or wireless communication link. Any wireless communications technology may be used to support communications between the base-band 110 and the outer smart device 150, including but not limited to Bluetooth, Bluetooth LE, PAN, ZigBee, WiFi and the like. Alternatively, the base-band 110 and the outer smart device 150 may communicate data and electrical power via a wired connection between the base-band and outer smart device, which may be via the connectors 140, 180. A wired connection may be used for power transfer from the outer smart device 150 to the base-band battery 130 and/or as a data communications connection.
  • the base-band 110 and the outer smart device 150 may work collaboratively. For example, data collected by the base-band 110 and the outer smart device 150 separately may be used to detect on which side the user is sleeping or which person in the room is snoring (e.g., self or another) .
  • the base-band 110 and the outer smart device 150 may be configured to work together to detect user movements in bed using infrared, motion detection, signal strength variations, detecting breathing patterns, and the like.
  • Communications between the base-band 110 and the outer smart device 150 may be continuous, periodic, or only when reconnected.
  • the base-band 110 may be configured to collect and store locally (e.g., in memory of the base-band 110) sensor data, and then share the stored sensor data with the outer smart device 150 when the two devices are electronically coupled.
  • data may be communicated between the base-band 110 and the outer smart device 150 in response to one or more predetermined events, such as a medical alert, a change in sleeping conditions, movement of the user, changes in breathing patterns, and the like.
  • the outer smart device 150 may have a smart device battery 170 that is relatively large, at least as compared to the base-band battery 130, the smart device battery 170 may be configured to charge the base-band battery 130 when the two devices are connected. In this way, users never need to take off the base-band 110 and data collection by the base-band 110 may be continuous, since the base-band 110 need not ever be removed for charging.
  • the base-band battery 130 may be configured to charge the smart device battery 170.
  • the base-band battery 130 may serve as a battery backup for the smart device battery 170 in case the smart device battery 170 has insufficient charge to power the outer smart device 150.
  • a user may own two base bands 110 and one outer smart device 150, enabling the user to switch base bands when necessary to charge one of the base-band batteries 130, including switching the outer smart device 150 to the newly installed band.
  • power transfer from the smart device battery 170 to the base-band battery 130 may be through a wired connection or contact when the two parts are coupled.
  • power from the smart device battery 170 to charge the base-band battery 130 may be provided via a wireless charging connection between the two portions.
  • the smart device battery 170 may be configured to store not only a charge for itself to operate, but also additional power for charging the base-band 110 once the two parts are connected.
  • the smart device battery 170 can store and transfer sufficient charge for both the outer smart device 150 and the base-band 110 to operate for an extended period (e.g., 12-24 hours) .
  • the components and features included in the base-band 110 and/or the outer smart device 150 may vary in different combinations.
  • the outer smart device 150 may including the bulk of the processing power, battery power, and/or functionality/features, while the base-band 110 may have relatively little processing power, low battery power, and/or have little functionality/features.
  • the base-band 110 may including the bulk of the processing power, battery power, and/or functionality/features, while the outer smart device 150 may have relatively little processing power, low battery power, and/or have little functionality/features.
  • the base-band 110 and the outer smart device 150 may have equal processing power, battery power, and/or functionality/features.
  • the outer-smart device 150 may have certain more powerful features, such as the more powerful processor 160 and the larger battery 170, while the base-band may have a more varied array of sensors 120 or more powerful sensors 120.
  • the outer smart device 150 may have a suite of different types of sensors, such as one or more of a PPG sensor, a microphone, a thermometer, a humidity or perspiration sensor, a pulse oximeter, an EKG sensor, a light sensor, an NFC receiver for detecting/communicating with NFC-equipped devices (e.g., radio frequency tags) , a pedometer, an optical heart rate sensor, calorie counter, bioimpedance sensor, a GPS receiver, motion sensor, and the like.
  • the base-band 110 may have all the same sensors, fewer sensors (a subset thereof) , different sensors, lower quality sensors, or may have sensors that sample at a different rate compared to the outer smart device 150.
  • the outer smart device 150 may sample every 1-5 seconds during the day, while the base-band 110 samples every 1-5 minutes or less frequently.
  • the base-band 110 may have all the biometric sensors 120 while the outer smart device 150 has none, in which case the outer smart device 150 may rely on the base-band 110 for biometric sensor data. In this way, the base-band 110 may not have a cutout 145 for contacting or viewing the wearer’s skin.
  • the base-band 110 may have only a few sensors, such as only an accelerometer (for tracking movement in bed or during exercise or getting up at night) or only a PPG or optical heart rate sensor.
  • the base-band 110 may have sensors 120 around the wrist in places the outer smart device 150 body cannot. Thus, when mounted together the two parts have a more extensive sensor array.
  • base-band sensors 120 may go dormant until the base-band is detached from the outer smart device 150. In some embodiments, some sensors 120 in the base-band may go dormant while other sensors 120 stay active and/or sample at a lower rate.
  • both the base-band 110 and the outer smart device 150 may record the same type information and compared the duplicated information periodically, such as at the end of the day, in the morning, or whenever the two devices are physically coupled together.
  • the base-band 110 may communicate sensor data to the outer smart device 150 for the outer smart device 150 to process.
  • the outer smart device 150 may transmit sensor data to a smartphone (e.g., 310 shown in FIG. 3) or other devices (e.g., 320, 330, 340, 350, 390 in FIG. 3) for processing.
  • the base-band 110 may communicate directly with the smartphone (e.g., 310 in FIG. 3) for the smartphone to perform the processing.
  • the base-band 110 may transmit sensor data directly to a smartphone (e.g., 310 in FIG. 3) for the smartphone to perform processing in the event that communications with the outer smart device 150 are not available.
  • the base-band 110 may be made of a soft, light-weight material, such as rubber, neoprene, cloth, plastic, etc., that is comfortable for a user to wear, stays clean or is easy to clean, does not irritate the skin, and/or can be worn for extended periods (e.g., days, weeks, months) .
  • the base-band 110 may be made of flexible material, configured to stretch in order to allow a user to stretch the flexible material around the user’s hand in order to put the base-band 110 on the user’s wrist.
  • the base-band 110 may include open ends and a fastening mechanism, like conventional watch strap or jewelry clasps, for securing the two open ends onto the wearer’s wrist.
  • the base-band 110 may include a base connector 140 with a central aperture 145 large enough to receive an outer perimeter of a bottom of the outer smart device 150.
  • the outer smart device 150 may include an outer connector 180, which may be a molded element specifically configured to interlock with corresponding elements of the base connector 140.
  • the edges of the central aperture 145 may be configured interlock (e.g., snap-fit) with a base of the outer smart device 150. In this way, a user may push the outer smart device 150 down into the central aperture 145 to lock it in-place, thereby coupling the outer smart device 150 to the base-band 110.
  • a user may apply pressure from underneath the housing of the outer smart device 150, away from the wrist, in order to pop-out (i.e., separate) the outer smart device 150 from the base-band.
  • lateral walls 140a, 140b of the base connector, connecting the two ends of the base-band 110 across the large central aperture 145 may be configured to shield optical sensors on the underside of the outer smart device 150 from environmental light that may impair optical measurements.
  • an underside of the lateral walls 140a, 140b and the adjacent edges of the base connector 140 may include a gasket or soft rim that protrudes slightly toward the wearer’s wrist in order to stabilize a relative position between the upper smart device 150 and the wearer’s skin at the wrist. Such stabilization may improve the accuracy of measurements.
  • FIG. 1B illustrated a detachable two-part wearable device 101 with a base-band 111 separated from an outer smart device 151 according to some embodiments.
  • the base-band 111 may be configured to be worn in direct or close contact with a wearer’s skin.
  • the base-band 111 may include any or all of the features of the base-band 110 described with reference to FIG. 1A.
  • the outer smart device 151 may include any or all of the features of the outer smart device 150 described with reference to FIG. 1A.
  • the base-band 111 may include the sensor 120 configured to measure biometrics of the wearer, the base-band battery 130 configured to power the sensor 120, and a base connector 141.
  • the outer smart device 151 may be removably coupled to the base-band 111.
  • the outer smart device 151 may include the processor 160 configured to receive the biometrics measured by the sensor 120, a display 162, the smart device battery 170 configured to power the processor 160, and an outer connector 181 configured to communicatively and/or electronically couple with the base connector 141 of the base-band 111.
  • the smart device battery 170 may be configured to charge the base-band battery 130 or vise-versa.
  • the base-band 111 may include a cut-out 146 that allows a sensor cluster on the underside of the outer smart device 151 to contact or sense the skin of the user’s wrist through the cutout 146.
  • the cut-out 146 may provide more stability for the outer smart device sensors.
  • the base-band may be configured to fit more snuggly and ensure that the outer smart device 151 senses the appropriate location on the user’s wrist.
  • the cut-out 146 may be a relatively small cut-out compared to the aperture 145 shown in FIG. 1A, such as just large enough to support one or more sensors on the outer smart device 151.
  • the cut-out 146 is illustrated as a rectangular cut-out, the cut-out 146 may be any shape, such as a custom shape that contours around the sensor (s) of the outer smart device 151. Alternatively, the cut-out 146 may be a larger cut-out configured to receive the entire main body seated therein or even a smaller cut-out.
  • the base-band 111 may include a base connector 141 that uses a combination of mechanical and magnetic attraction to hold the outer connector 181 of the outer smart device 151.
  • the base-band 111 may have a magnetic clasp 125 that releasably attaches two open ends of the base-band 111.
  • the base-band 111 may enhance the sensor capabilities of the outer smart device 151, such as by better blocking out light because the band may have a tighter seal against the user’s wrist/skin.
  • the base-band 111 may magnify sensors of the outer smart device 151 so as to enhance sensitivity or accuracy of the outer smart device sensors.
  • the base-band 111 may include a lens (not shown) configured to magnify laser light directed to or reflected from the wearer’s skin.
  • FIG. 1C illustrates a detachable two-part wearable device 102 with a base-band 112 separated from an outer smart device 152 according to some embodiments.
  • the base-band 112 may be configured to be worn in direct or close contact with a wearer’s skin.
  • the base-band 112 may include any or all of the features of the base-bands 110, 111 described with reference to FIGS. 1A and 1B.
  • the outer smart device 152 may include any or all of the features of the outer smart devices 150, 151 described with reference to FIGS. 1A and 1B.
  • the base-band 112 may include the sensor 120 configured to measure biometrics of the wearer, the base-band battery 130 configured to power the sensor 120, and a base connector 142.
  • the outer smart device 152 may be removably coupled to the base-band 112.
  • the outer smart device 152 may include the processor 160 configured to receive the biometrics measured by the sensor 120, a display 162, the smart device battery 170 configured to power the processor 160, and an outer connector 182 configured to communicatively and/or electronically couple with the base connector 142 of the base-band 112.
  • the smart device battery 170 may be configured to charge the base-band battery 130 or vise-versa.
  • the base-band 112 may be formed as an open-bracelet (e.g., C-shaped) that may hold a shape configured to snugly fit the wearer’s wrist.
  • the open ends of the base-band 112 may include the base connectors 142, which are configured to receive and mate with the outer connectors 182 of the outer smart device 152.
  • a gap 144 may be formed between the two open ends of the base-band 112, with the gap 144 large enough for the user wrist to slip through in order to put the base-band 112 on the user’s wrist.
  • FIG. 1D illustrates a detachable two-part wearable device 103 with a base-band 113 separated from an outer smart device 153 according to some embodiments.
  • the base-band 113 may be configured to be worn in direct or close contact with a wearer’s skin.
  • the base-band 113 may include any or all of the features of the base-bands 110, 111, 112 described with reference to FIGS. 1A-1C.
  • the outer smart device 153 may include any or all of the features of the outer smart devices 150, 151, 152 described with reference to FIGS. 1A-1C.
  • the base-band 113 may include sensors 120 configured to measure biometrics of the wearer, the base-band battery 130 configured to power the sensor 120, and the base connector 141.
  • the outer smart device 153 may be removably coupled to the base-band 113.
  • the outer smart device 153 may include the processor 160 configured to receive the biometrics measured by the sensor 120, a display 162, the smart device battery 170 configured to power the processor 160, and the outer connector 181 configured to communicatively and/or electronically couple with the base connector 141 of the base-band 113.
  • the base-band 113 may include the base connector 141 that uses a combination of mechanical and magnetic attraction to hold the outer connector 181 of the outer smart device 153.
  • the smart device battery 170 may be configured to charge the base-band battery 130 or vise-versa.
  • the base-band 113 may also include a base-band display 135.
  • the base-band display 135 may be disposed in the same place that the outer smart device sits when coupled to the base-band display 135. In this way, the base-band display 135 is concealed by the outer smart device 153 when the outer smart device 153 is coupled to the base-band, but visible when the outer smart device 153 is removed.
  • the base-band display 135 may be on the opposite side of the base-band 113. In this way, the base-band display 135 may be facing in an opposite direction to the display 162 of the outer smart device 153 when the outer smart device is coupled to the base-band.
  • the base-band display 135 may be a simple low-power display, such as LED or LCD, in order to conserve power.
  • the base-band display 135 may display the time, stopwatch-type functions, a timer, the wearer’s heart rate, or other text or symbol-based messages associated with applications running on a base-band processor, the processor 160 of the outer smart device 153, another processor (e.g., in another computing device) , or a combination thereof.
  • the base-band display 135 may be a flexible display in order to ensure comfort to the wearer.
  • the base-band display 135 may be a touch-screen display with the same or similar functionality as the display of the outer smart device 120.
  • FIGS. 1E and 1F illustrate a detachable two-part wearable device 104 with a base-band 114 separated from an outer smart device 154 and the base-band 114 connected to the outer smart device 154, respectively, according to some embodiments.
  • the base-band 114 may be configured to be worn in direct or close contact with a wearer’s skin.
  • the base-band 114 may include any or all of the features of the base-bands 110, 111, 112, 113 described with reference to FIGS. 1A-1D.
  • the outer smart device 154 may include any or all of the features of the outer smart devices 150, 151, 152, 153 described with reference to FIGS. 1A-1D.
  • the base-band 114 may include the sensor 120 configured to measure biometrics of the wearer, the base-band battery 130 configured to power the sensor 120, and the base connector 144.
  • the outer smart device 154 may be removably coupled to the base-band 114.
  • the outer smart device 154 may include the processor 160 configured to receive the biometrics measured by the sensor 120, the smart device battery 170 configured to power the processor 160, and the outer connector 184 configured to communicatively and/or electronically couple with the base connector 144 of the base-band 114.
  • the base-band 114 may include the base connector 144 that uses a mechanical and/or magnetic attraction to hold the outer connector 184 of the outer smart device 154.
  • the smart device battery 170 may be configured to charge the base-band battery 130 or vise-versa.
  • the base-band 114 may be a continuous band without any apertures. With a continuous band, the base-band 114 may block the underside of the outer smart device 154 from coming in contact or even being exposed to the wearer’s skin. Thus, the base-band 114 may include various biometric sensors 124, 134 that would otherwise be blocked if included on the outer smart device 154.
  • FIGS. 1G and 1H illustrate a detachable two-part wearable device 105 with a base-band 115 separated from an outer smart device 155 and the base-band 115 connected to the outer smart device 155, respectively, according to some embodiments.
  • the base-band 115 may be configured to be worn in direct or close contact with a wearer’s skin.
  • the base-band 115 may include any or all of the features of the base-bands 110, 111, 112, 113, 114 described with reference to FIGS. 1A-1F.
  • the outer smart device 155 may include any or all of the features of the outer smart devices 150, 151, 152, 153, 154 described with reference to FIGS. 1A-1F.
  • the outer smart device 155 may include an annular band 55 that may cover the base-band 115 when the outer smart device 155 and the annular band 55 are coupled to the base-band 115.
  • annular band 55 may be a smart-band with a processor, memory, and a battery.
  • the annular band 55 may be a strap designed as a fashion item without providing other functionality.
  • the annular band 55 may include outer connectors 185, which may be disposed on an inside of the annular band 55.
  • the outer connectors may be configured to communicatively and/or electronically couple with the base connectors 145 for coupling the base-band 115 with the annular band 55 and the outer smart device 155.
  • the base connector 145 and the outer connector 185 may together use a mechanical and/or magnetic attraction to hold the base connector 145 and the outer connector 185 together.
  • the base-band 115 may include sensors 120 configured to measure biometrics of the wearer and the base-band battery 130 may be configured to power the sensor.
  • the outer smart device 155 may be removably coupled to the base-band 115.
  • the outer smart device 155 may include the processor (e.g., 160) configured to receive the biometrics measured by the sensor and the smart device battery (e.g., 170) configured to power the processor.
  • the base-band 115 may be considered a “24-hour band, ” which a user can wear all day underneath a conventional smartwatch, such as the outer smart device 155 and annular band 55.
  • the annular band 55 may have less or no functionality other serving as a wrist fastener and fashion accessory.
  • the base-band 115 with all its sensors and functionality may remain hidden under the annular band 55.
  • the user may wear the base-band 115 on one wrist and use the outer smart device 155 with its annular band 55 temporarily on the other wrist for improved sensor data collection.
  • FIG. 1I illustrate a detachable two-part wearable device 106 with a base-band 111 separated from an outer smart device 151, similar to that described with reference to FIG. 1B, but with an intermediate device 156 between the base-band 111 and the outer smart device 151, according to some embodiments.
  • the base-band 111 may be configured to be worn in direct or close contact with a wearer’s skin while the intermediate device 156 may function as a separate battery module that may be attached to the base-band 111 or held between the outer smart device 151 and the base-band 111.
  • the intermediate device 156 may connect the base-band 111 and the outer smart device 151.
  • the intermediate device 156 may be configured as an optional device that can be used when more power is required (e.g., for extended use) , but is not necessary because the base-band 111 and the outer smart device 151 cannot be attached to one another without the intermediate device 156 and function as described herein.
  • the intermediate device 156 may include one or more additional components.
  • the intermediate device 156 may include a special sensor cluster useful for a particular application, such that the wearer may include the intermediate device 156 when that application is desired, but leave off the intermediate device at other times.
  • intermediate device 156 may be wafer thin, so as to not add a lot of bulk to the detachable two-part wearable device.
  • the intermediate device 156 may include components that provide an upgrade to or augmentation of components of either the base-band 111 or the outer smart device 151 (e.g., better or more accurate GPS receiver or more accurate sensors or a higher capacity battery) .
  • the base-band 111 and outer smart device 151 may be configured to enable a wearer to customize the assembly using interchangeable parts.
  • the display 162 may be configured as an interchangeable part to enable the wearer install a large-screen display format for during the day or during a particular activity (or lack thereof) , and install a different size display during another part of the day and/or for a different activity (or lack thereof) .
  • the different outer smart devices or the different bands may have different sensors, with some sensor suites being customized to particular activities.
  • a base-band with fewer sensors may be less expensive or may be helpful for enabling longer battery life, which a user may desire.
  • one band may fit more snuggly than another, which allows the snug band to take better heart rate readings during strenuous exercise (e.g., during HIIT training) , or to provide different comfort levels.
  • a swimming band may have special array of sensors configure to work underwater and/or sense biometric or external parameters that are relevant to swimming activities.
  • the outer smart device 151 may charge a newly connected alternate band, which may be handy if a user forgets to charge the alternate band.
  • FIG. 1J illustrates a detachable two-part wearable device 107 in the form of a smart ring with a base-band 117 seated concentrically inside an annular band of the outer smart device 157 according to some embodiments.
  • the base-band 117 may be configured to be worn in direct or close contact with a wearer’s finger.
  • the outer smart device 157 may be removably coupled to the base-band 117.
  • the bulkier smart ring may be configured to be removed for charging, etc.
  • the smaller, lightweight base-band 117 may be made of a flexible material while the outer smart device 157 may be as an annular band made of a stiff material.
  • the outer smart device 157 may cover the base-band 117 when the outer smart device 157 and the base-band 117 are coupled together.
  • the outer smart device 157 may include outer connectors 187, which may be disposed on an inside of the annular band of the outer smart device 157.
  • the outer connectors 187 may be configured to communicatively and/or electronically couple with inner connectors 147 of the base-band 115.
  • the base connector and the outer connector may together use a mechanical and/or magnetic attraction to hold the base connector and the outer connector together.
  • the base-band 117 may include any or all of the features of the base-bands 110, 111, 112, 113, 114, 115 described with reference to FIGS. 1A-1I.
  • the base-band 117 may include one or more sensors 120 configured to measure biometrics of the wearer and a base-band battery 130 configured to power the sensors.
  • the outer smart device 157 may include any or all of the features of the outer smart devices 150, 151, 152, 153, 154, 155 described with reference to FIGS. 1A-1I.
  • the outer smart device 157 may include a processor 160 configured to receive the biometrics measured by the sensors 120 on the base band, and a smart device battery 170 configured to power the processor 160.
  • the smart device battery 170 may be configured to charge the base-band battery 130 or vise-versa.
  • the base-band 117 may be configured to be a “24-hour band, ” which a user can wear all day underneath the outer smart device 157, and all night when the outer smart device is removed.
  • the base-band 117 with its sensors and functionality may remain hidden under the outer smart device 157.
  • the user may wear the base-band 117 on one finger and use the outer smart device 157 temporarily on another finger for improved sensor data collection.
  • the base-band 117 may work in conjunction with a conventional smart ring that is not designed to specifically work with the base-band 117.
  • the base-band 117 may be configured to temporarily provide sensor data when the smart ring is removed for charging.
  • the base-band may be configured to work in concert with the conventional smart ring, but on a different finger of the same hand or on an opposite hand for providing additional sensor inputs (e.g., more accurate sleep tracking or sleep position tracking) .
  • the base-band 117 may be configured to work to temporarily charge the conventional smart ring, thus allowing extended or continuous wearing of the smart ring.
  • the base-band 117 may take over providing sensor data typically obtained by sensors on the smart ring (e.g., during the day) and may continue taking readings throughout the night when the smart ring is removed.
  • Smart jewelry such as a smart ring with a gem-stone or ornamental metal outer layers, may be configured to allow the user to remove the bulky gemstone or outer layer (e.g., at night) while continuing to have biometric parameters monitored by the base-band 117.
  • An intermediate layer may provide the charging function to the base-band 117.
  • an ankle bracelet may have a similar design as the two-part watch or ring.
  • the outer smart device e.g., 150, 151, 152, 153, 154, 155, 157 in FIGS. 1A-1J
  • the outer smart device such as a smart ring or smart watch
  • another electronic device e.g., a smartphone 1000 illustrated in FIG. 10.
  • the other electronic device may have a docking port, compartment, or other structure to support wired or wireless charging of the outer smart device battery.
  • the outer smart device (e.g., 150, 151, 152, 153, 154, 155, 157 in FIGS. 1A-1J) , may be disconnected from the base-band (e.g., 110, 111, 112, 113, 114, 115, 117 in FIGS. 1A-1J) and re-connected to another location on the user’s body, such as the chest via a chest strap, another wrist/finger, or on a foot, toe, ankle, or leg.
  • the base-band e.g., 110, 111, 112, 113, 114, 115, 117 in FIGS. 1A-1J
  • an outer smart device e.g., 150, 151, 152, 153, 154, 155, 157 attached to a wearer’s shoe may provide more accurate sensor data for measuring steps, stride length, cadence, foot position on the ground (pronating/supinating) , and the like.
  • This disconnected configuration may enable the outer smart device to work together with the base-band to obtain more accurate data, such as heart rate, EKG, or number of steps.
  • FIG. 2A illustrates a detachable two-part wearable device with a base-band 110 separated from an outer smart device 150 that is attached to a secondary band 210 configured to be worn on the wearers 5 chest, according to some embodiments.
  • the secondary band 210 may be a chest strap configured to receive the outer smart device 150.
  • the base-band 110 may still be worn on a wrist, as described earlier.
  • a specialized body strap may be provided that allows the outer smart device to be attached to the wearer 5 at numerous different positions on the body. By using sensors in multiple locations on a wearer, results may emulate or replicate a multi-lead EKG.
  • a conventional EKG machine may use a dozen or so measurement points for detecting and diagnosing different cardiovascular issues, but by moving the outer smart device (e.g., 150) around to the different positions on the specialized body strap within a short interval, multi-lead EKG-level accuracy may be achieved.
  • Systems have been developed that allow a user to touch the crown of a watch for a brief period in order to measure heart rate or other EKG measurements.
  • Some embodiments may allow the user to take similar EKG-type measurements without having to put their finger on the crown of a smart watch.
  • the base-band e.g., 110
  • the base-band may provide a first set of sensor points (e.g., with sensors 120) and the outer smart device (e.g., 150) attached to another part of the wearer’s body (e.g., the chest or the other wrist) may provide a second set of sensor points from sensors included therein.
  • the first and second sets of sensor points may provide measurements at different positions on the wearer’s body, which may be configured to provide the accuracy of a multi-lead EKG device, such as 3-lead, 6-lead, 8-lead, and 12-lead EKG systems that can identify heart problems.
  • using multiple bands working together with the outer smart device as a main processing unit could provide multiple leads.
  • These embodiments may be useful to high risk patients or patients in locations where EKGs are difficult to obtain. For example, these embodiments may be useful for
  • FIG. 2B illustrates a detachable two-part wearable device with a base-band 110 separated from an outer smart device 150 that is attached to a secondary band 211 configured to be worn by the wearer 5 on the opposite wrist to that of the base-band 110, according to some embodiments.
  • the secondary band 211 may be a wrist strap configured to receive the outer smart device 150.
  • the base-band 110 may still be worn on a wrist, as described earlier. Attaching the secondary band 211 with the outer smart device 150 on the other wrist, creates a full circuit between both wrists for measuring heart rate, blood pressure, or other biometrics. This may provide better tracking or sensor data collection.
  • wearing sensors on wrists may enable the sensors to detect problems with the user’s gate.
  • a processor e.g., 160
  • a processor e.g. 160
  • having sensors on both wrists may more accurately detect when the user is sleeping, resting, reading, working at a computer, etc.
  • a smartwatch working in conjunction with a base-band configured to take sensor measurements may more easily perform automatic detection of the types of activities that are being performed.
  • FIG. 2C illustrates a detachable two-part wearable device with a base-band 110 separated from an outer smart device 150 that is attached to a secondary band 211 configured to be worn by the wearer 5 on a shoe or ankle, according to some embodiments.
  • the secondary band 212 may be a shoe/sneaker strap or an ankle strap configured to receive the outer smart device 150.
  • the base-band 110 may be worn on a wrist as described. Attaching the secondary band 212 with the outer smart device 150 on a shoe or ankle, may provide a data collection point better positioned for determining a user’s walking or running cadence or measuring the user’s gate. This may provide better tracking or sensor data collection for such activities.
  • a processor of the detachable two-part wearable device may receive sensor data relevant to sleep of the user from one or more sensors coupled to the detachable two-part wearable device.
  • the sensors may be disposed on or in individual parts of the detachable two-part wearable device and coupled to a processor of the other part of the detachable two-part wearable device.
  • the sensors may be sensors of another computing device and may be coupled to the detachable two-part wearable device via an interface and communication link (e.g., a wired or wireless communication link) .
  • the processor of the detachable two-part wearable device may determine one or more user sleep metrics relevant to the sleep of the user based on the received sensor data. In some embodiments, the processor of the detachable two-part wearable device may determine one or more user sleep metrics relevant to the sleep of the user based on sensor data received during a sleep period (e.g., a night’s sleep) . In some embodiments, the processor of the detachable two-part wearable device may determine one or more user sleep metrics relevant to the sleep of the user based on sensor data received during a plurality of sleep periods (e.g., over a period of time, such as days, week (s) , month (s) , etc. ) .
  • a sleep period e.g., a night’s sleep
  • the processor of the detachable two-part wearable device may determine one or more user sleep metrics relevant to the sleep of the user based on sensor data received during a plurality of sleep periods (e.g., over a period of
  • sleep metrics relevant to the sleep of the user based on the received sensor data include determining at least one of sleep duration, sleep efficiency (e.g., a percentage of time a user actually sleeps while in bed or in a sleeping position) , an amount of restorative sleep (e.g., sleep that makes a person feel well rested) , an amount of restlessness, or a sleep latency (also called sleep onset latency, e.g., a time it takes for a person to fall asleep) .
  • sleep efficiency e.g., a percentage of time a user actually sleeps while in bed or in a sleeping position
  • sleep efficiency e.g., a percentage of time a user actually sleeps while in bed or in a sleeping position
  • an amount of restorative sleep e.g., sleep that makes a person feel well rested
  • an amount of restlessness e.g., an amount of restlessness
  • sleep latency also called sleep onset latency, e.g., a time it takes for
  • a processor of the outer smart device may receive base-band sensor data relevant to biometrics of the user from one or more sensors of the base-band when that outer smart device is uncoupled from the base-band.
  • the outer smart device may also receive the smart device sensor data from sensors disposed on or in the outer smart device and coupled to a processor of the outer smart device.
  • the sensor data may be received from sensors of another computing device and may be coupled to the detachable two-part wearable device via an interface and communication link (e.g., a wired or wireless communication link) .
  • the processor of the detachable two-part wearable device may receive the sensor data in response to detecting a condition, event, ambient noise, etc.
  • the processor of the detachable two-part wearable device may receive the sensor data “passively” while the user is performing an activity, but without notifying the user that such data is being gathered (e.g., obtaining the sensor data “in the background” of another activity) .
  • a camera may track a user’s body and/or eye movement while the user is sleeping.
  • communication signal strength between the outer smart device and the base-band may provide positioning and/or movement information about the user.
  • one or more displays of the detachable two-part wearable device may display an indication of the measured biometrics of the wearer. In some embodiments, the one or more displays of the detachable two-part wearable device may display an indication of an amount of sleep that correlates to improved user performance. In some embodiments, the one or more displays of the detachable two-part wearable device may display an indication of user sleep metrics. In this manner, the processor of the two-part wearable device may provide an indication of which sleep positions and/or rituals are most effective for a user to improve their sleep.
  • the action taken by the processor of the two-part wearable device may include generating a warning of a physical and/or psychological disorder based on biometric measurements obtained by sensors (e.g., 120) of the detachable two-part wearable device.
  • a processor of the detachable two-part wearable device may be configured to detect subtle changes that may indicate, for example, a disease or disorder that reduces or impairs a user’s health.
  • the processor of the detachable two-part wearable device may be configured to detect disease or disorders that correlate with increased sleep, such as depression, epilepsy, narcolepsy, hypersomnia, or another such disease or disorder.
  • FIG. 3 is a system block diagram illustrating an example communications environment 300 suitable for implementing various embodiments.
  • the communication environment 300 may include a base-band 110, an outer smart device 150, a computing device 310, an access point 330, a base station 340, a communication network 350, and a network element 390.
  • the base-band 110 is illustrated as a bracelet and the outer smart device 150 is illustrated as the main component of a smart watch, but this is not intended as a limitation.
  • the outer smart device (e.g., 150) may include any wearable device computing device such as a smart ring, smart necklace, smart earring, or another wearable device computing device.
  • the base-band (e.g., 110) may include any band that is configured to be worn in direct or close contact with a wearer’s skin and configured to be removably coupled to the outer smart device.
  • the base-band may include devices such as a fitness band or strap configured to work with the outer smart device.
  • the communication system 300 also may include various other computing devices, such as the charging station 315 and/or the appliance 320 (e.g., a smart clock) , for example, another smart device or smart equipment, such as exercise equipment, a tablet computer, a desktop or laptop computer, and the like.
  • the base station 340 and the access point 330 may provide wireless communications to access the communication network 350 over a wired and/or wireless communication backhaul 326 and 328, respectively.
  • the base station 340 may include base stations configured to provide wireless communications over a wide area (e.g., macro cells) , as well as small cells, which may include a micro cell, a femto cell, a pico cell, and other similar network access points.
  • the access point 330 may include access points configured to provide wireless communications over a relatively smaller area. Other examples of base stations and access points are also possible.
  • Various configurations of base stations, including aggregated base stations and disaggregated base stations, are further described below.
  • the base-band 110 may communicate with the outer smart device 150 over a wireless communication link 311.
  • the base-band 110 and the outer smart device 150 may communicate and/or exchange power (i.e., charging) via a wired or conductive connection.
  • the base-band 110 may communicate with other devices, such as the appliance 320, the access point 330, and/or the computing device 310 via short-range communication links 312.
  • the outer smart device 150 may communicate with other devices, such as the appliance 320, the access point 330, and/or the computing device 310 via the short-range communication links 312.
  • the outer smart device 150 may communicate with the base station 340 via a long-range communication link 313.
  • the computing device 310 may communicate with the base station 340 via the long-range communication link 313.
  • the computing device 310 may communicate with the access point 330 over short-range communication link 312.
  • the wireless communication links 311, 312, 313 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels.
  • the wireless communication links 120–126 may utilize one or more radio access technologies (RATs) .
  • RATs radio access technologies
  • Examples of RATs that may be used in a wireless communication link in various embodiments include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
  • RATs radio access technologies
  • a wireless communication link uses other RATs, such as 3GPP Long Term Evolution (LTE) , 3G, 4G, 5G, Global System for Mobility (GSM) , Code Division Multiple Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs.
  • LTE Long Term Evolution
  • GSM Global System for Mobility
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WiMAX Worldwide Interoperability for Microwave Access
  • TDMA Time Division Multiple Access
  • the network element 390 may include a network server or another similar network element.
  • the network element 390 may communicate with the communication network 350 over a communication link 355.
  • the outer smart device 150, the computing device 310, the network element 390, and optionally the base-band 110 may communicate via the communication network 350.
  • the network element 390 may provide the outer smart device 150 with information, access to one or more data structures, instructions, or commands relevant to operations of the outer smart device 150 and/or the base-band 110.
  • a network node a network entity, a mobility element of a network, a radio access network (RAN) node, a core network node, a network element, or a network equipment, such as a base station (BS) , or one or more units (or components) performing base station functionality, may be implemented in an aggregated or disaggregated architecture.
  • RAN radio access network
  • BS base station
  • units (or components) performing base station functionality may be implemented in an aggregated or disaggregated architecture.
  • a base station such as a Node B (NB) , evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a transmit receive point (TRP) , or a cell, etc.
  • NB Node B
  • eNB evolved NB
  • NR BS 5G NB
  • AP access point
  • TRP transmit receive point
  • a cell etc.
  • a base station may be implemented as an aggregated base station (also known as a standalone BS or a monolithic BS) or as a disaggregated base station.
  • An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node.
  • a disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more central or centralized units (CUs) , one or more distributed units (DUs) , or one or more radio units (RUs) ) .
  • a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes.
  • the DUs may be implemented to communicate with one or more RUs.
  • Each of the CUs, DUs and RUs also can be implemented as virtual units, referred to as a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) .
  • VCU virtual central unit
  • VDU virtual
  • Base station-type operations or network design may consider aggregation characteristics of base station functionality.
  • disaggregated base stations may be utilized in an integrated access backhaul (IAB) network, an open radio access network (O-RAN) (such as the network configuration sponsored by the O-RAN Alliance) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) .
  • Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design.
  • the various units of the disaggregated base station, or disaggregated RAN architecture can be configured for wired or wireless communication with at least one other unit.
  • FIG. 4A is a component block diagram illustrating a processing device 450 suitable for use in an outer smart device 150 (see also, 151, 152, 153, 154, 155, 157) implementing various embodiments.
  • the outer smart device 150 may include the processing device 450.
  • the processing device 450 may include various circuits, devices, and/or functions used to control operations thereof.
  • the processing device 450 may include a processor 160, electronic storage 414 (i.e., memory) , an input module 418, and an output module 416.
  • the processing device 450 may be coupled to a transceiver 422 for transmitting and/or receiving wireless communications (e.g., with the base-band 110, base station 340, access point 330, and/or a computing devices 310, 320 via communication links 311, 312, 313, as described) , one or more sensors 420, and an output device 428 such as a display device (e.g., 170) , a sound output device (e.g., a speaker) , a haptic feedback device, etc.
  • wireless communications e.g., with the base-band 110, base station 340, access point 330, and/or a computing devices 310, 320 via communication links 311, 312, 313, as described
  • an output device 428 such as a display device (e.g., 170) , a sound output device (e.g., a speaker) , a haptic feedback device, etc.
  • Electronic storage 414 may include non-transitory storage media that electronically stores information.
  • the electronic storage media of electronic storage 414 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with the computing device 102 and/or removable storage that is removably connectable to the computing device 102 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) .
  • a port e.g., a universal serial bus (USB) port, a firewire port, etc.
  • a drive e.g., a disk drive, etc.
  • electronic storage 412 may include one or more of electrical charge-based storage media (e.g., EEPROM, RAM, etc. ) , solid-state storage media (e.g., flash drive, etc.
  • Electronic storage 412 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) .
  • Electronic storage 412 may store software algorithms, information determined by processor (s) 410, information received from the computing device 140, information received from network element 110, and/or other information that enables the computing device 102 to function as described herein.
  • the processing device 450 may be configured to receive sensor data relevant to sleep of the user from one or more sensors coupled to the computing device.
  • the sensor data may be received from one or more of the onboard sensors 320 or remote sensors (e.g., 120) .
  • the sensor data may be received from the base-band 110 and/or another computing device (e.g., 310, 320) .
  • the processing device 450 may be configured to determine one or more user sleep metrics relevant to the sleep of the user based on the received sensor data, and to apply the user sleep metrics to a performance prediction model configured to use the user sleep metrics to predict one or more metrics of user performance.
  • the processing device 450 may be configured to receive second sensor data relevant to performance of the task by the user from one or more sensors coupled to the outer smart device.
  • the processing device 450 may be configured to determine one or more user performance metrics based on the received second sensor data.
  • the processing device 450 may be configured to take an action based on the predicted one or more metrics of user performance.
  • the processing device 450 may be configured to update the performance prediction model based on a difference between the predicted one or more metrics of user performance and the determined one or more user performance metrics.
  • Processor (s) 160 may include one of more local processors (e.g., 212, 214, 216, 218, 260, 312) , which may be configured to provide information processing capabilities in the outer smart device 150.
  • processor (s) 160 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information.
  • processor (s) 160 is shown in FIG. 4 as a single entity, this is for illustrative purposes only.
  • processor (s) 410 may include a plurality of processing units. These processing units may be physically located within the same device, or processor (s) 160 may represent processing functionality of a plurality of devices operating in coordination.
  • FIG. 4B is a component block diagram illustrating a processing device 410 suitable for use in a base-band 110 (see also, 111, 112, 113, 114, 115) implementing various embodiments.
  • the base-band 110 may include the processing device 410.
  • the processing device 410 may include various circuits, devices, and/or functions used to control operations thereof.
  • the processing device 410 may include the processor 160, the electronic storage 414 (i.e., memory) , the input module 418, and the output module 416.
  • the processing device 410 may be coupled to the transceiver 422 for transmitting and/or receiving wireless communications (e.g., with the outer smart device 150, base station 340, access point 330, and/or a computing devices 310, 320 via communication links 311, 312, 313, as described) , one or more sensors 420, and the output device 428 such as a display device, a sound output device (e.g., a speaker) , a haptic feedback device, etc.
  • wireless communications e.g., with the outer smart device 150, base station 340, access point 330, and/or a computing devices 310, 320 via communication links 311, 312, 313, as described
  • the output device 428 such as a display device, a sound output device (e.g., a speaker) , a haptic feedback device, etc.
  • the processing device 410 may be configured to receive sensor data relevant to sleep of the user from one or more sensors coupled to the computing device.
  • the sensor data may be received from one or more of the onboard sensors 320 or remote sensors (e.g., 120) .
  • the sensor data may be received from the outer smart device 150 and/or another computing device (e.g., 310, 320) .
  • the processing device 410 may be configured to determine one or more user sleep metrics relevant to the sleep of the user based on the received sensor data, and to apply the user sleep metrics to a performance prediction model configured to use the user sleep metrics to predict one or more metrics of user performance.
  • the processing device 410 may be configured to receive second sensor data (e.g., from a smart device located on another part of the wearer’s body or spaced away from the user, such as on a bedside table) relevant to performance of the task by the user from one or more sensors coupled to the outer smart device.
  • the processing device 410 may be configured to determine one or more user performance metrics based on the received second sensor data.
  • the processing device 410 may be configured to take an action based on the predicted one or more metrics of user performance.
  • the processing device 410 may be configured to update the performance prediction model based on a difference between the predicted one or more metrics of user performance and the determined one or more user performance metrics.
  • FIG. 5 is a component block diagram illustrating an example computing system 200 including a wireless modem suitable for implementing various embodiments.
  • the illustrated example processing system 500 includes two SOCs 502, 504, a clock 506, a voltage regulator 508, a wireless transceiver 566, and an output device 568 such as a display device, a sound output device (e.g., a speaker) , a haptic feedback device, etc.
  • the first SOC 502 operates as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions.
  • CPU central processing unit
  • the second SOC 504 may operate as a specialized processing unit.
  • the second SOC 504 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , and/or very high frequency short wave length (e.g., 28 GHz millimeter wave (mmWave) spectrum, etc. ) communications.
  • high speed e.g., 5 Gbps, etc.
  • very high frequency short wave length e.g., 28 GHz millimeter wave (mmWave) spectrum, etc.
  • the first SOC 502 may include a digital signal processor (DSP) 510, a modem processor 512, a graphics processor 514, an application processor 516, one or more coprocessors 518 (e.g., vector co-processor) connected to one or more of the processors, memory 520, custom circuitry 522, system components and resources 524, an interconnection/bus module 526, one or more sensors 530 (e.g., thermal sensors, motion sensors, proximity sensors, a multimeter, etc. ) , a thermal management unit 532, and a thermal power envelope (TPE) component 534.
  • DSP digital signal processor
  • modem processor 512 e.g., a graphics processor 514
  • an application processor 516 e.g., one or more coprocessors 518 (e.g., vector co-processor) connected to one or more of the processors, memory 520, custom circuitry 522, system components and resources 524, an interconnection/bus module 526, one or more sensors 530
  • the second SOC 504 may include a 5G modem processor 552, a power management unit 554, an interconnection/bus module 564, memory 558, and various additional processors 560, such as an applications processor, packet processor, etc.
  • the second SOC 504 may further be coupled to a plurality of mmWave transceivers 556, which may be separate integrated circuits that are radio frequency shielded on or packaged separate from the second SOC 504 as indicated by the dashed line.
  • Each processor 510, 512, 514, 516, 518, 552, 560 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores.
  • the first SOC 502 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) .
  • a first type of operating system e.g., FreeBSD, LINUX, OS X, etc.
  • a processor that executes a second type of operating system e.g., MICROSOFT WINDOWS 10.
  • processors 510, 512, 514, 516, 518, 552, 560 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
  • a processor cluster architecture e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc.
  • the first and second SOC 502, 504 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser.
  • the system components and resources 524 of the first SOC 502 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device.
  • the system components and resources 524 and/or custom circuitry 522 may also include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
  • the first and second SOC 502, 504 may communicate via interconnection/bus module 550.
  • the various processors 510, 512, 514, 516, 518, may be interconnected to one or more memory elements 520, system components and resources 524, and custom circuitry 522, and a thermal management unit 532 via an interconnection/bus module 526.
  • the processor 552 may be interconnected to the power management unit 554, the mmWave transceivers 556, memory 558, and various additional processors 560 via the interconnection/bus module 564.
  • the interconnection/bus module 526, 550, 564 may include an array of reconfigurable logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
  • NoCs high-performance networks-on chip
  • the first and/or second SOCs 502, 504 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 506 and a voltage regulator 508.
  • resources external to the SOC e.g., clock 506, voltage regulator 508 may be shared by two or more of the internal SOC processors/cores.
  • various embodiments may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
  • only one SOC e.g., 502, 504 may be used in a less capable computing device that are configured to provide sensor information to a more capable computing device.
  • FIG. 6A is a process flow diagram illustrating an example method 600a that may be performed by a processor of an outer smart device according to various embodiments.
  • means for performing each of the operations of the method 600a may be a processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) of the outer smart device (e.g., 150) and the like.
  • a user or other individual may de-couple the outer smart device from a base-band configured to be worn in direct or close contact with a wearer’s skin.
  • the user or other individual may place the outer smart device in a remote location relative to the base-band worn by the wearer.
  • placing the outer smart device in the remote location may include attaching the outer smart device to a part of the wearer’s body that is remote from the base-band worn by the wearer,
  • the processor of the outer smart device may receive remote sensor data collected by a base-band sensor of the base-band worn by the wearer.
  • Means for performing the operations of block 606 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) and a transceiver (e.g., 422, 566) .
  • the processor of the outer smart device may determine a biometric assessment of the wearer based on the received remote sensor data.
  • actions taken by the processor may include displaying an indication of one or more predicted metrics of user performance, displaying an indication of an amount of sleep that correlates to improved user performance, displaying an indication of user sleep metrics that are relatively more predictive than the other user sleep metrics of user performance, outputting an indication of one or more user sleep metrics that predict with greater reliability or confidence a user performance, and the like.
  • FIGS. 6B–6C are process flow diagrams illustrating operations 600b–600c that may be performed by a processing device of an outer smart device as part of the method 600a according to various embodiments.
  • means for performing the operations 600b–600c may be a processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) , of the outer smart device (e.g., 150) , a smart device battery (e.g., 170) , and the like.
  • the processor may charge a base-band battery coupled to the base-band using a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band in block 610.
  • Means for performing the operations of block 610 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) , of the outer smart device (e.g., 150) , a smart device battery (e.g., 170) , a base-band battery (e.g., 130) , and the like.
  • the processor may receive onboard sensor data collected by a smart device sensor of the outer smart device, wherein determining the biometric assessment of the wearer is further based on the received onboard sensor data in block 612.
  • Means for performing the operations of block 610 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) , of the outer smart device (e.g., 150) , a smart device battery (e.g., 170) , and the like.
  • the processor may then perform the operations of block 608 as described.
  • FIG. 7A is a process flow diagram illustrating an example method 700a that may be performed by a processor of a base-band according to various embodiments.
  • means for performing each of the operations of the method 700a may be a processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) of the base-band (e.g., 110) and the like.
  • a user or other individual may de-couple an outer smart device from the base-band configured to be worn in direct or close contact with a wearer’s skin.
  • a base-band sensor of the base-band worn by the wearer may collect biometric data associated with the wearer.
  • Means for performing the operations of block 702 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) and one or more sensors (e.g., 120) of the base-band.
  • the transmitter of the base-band may transmit the collected biometric data to the outer smart device.
  • Means for performing the operations of block 606 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) and the transceiver (e.g., 422, 566) .
  • FIG. 7B is a process flow diagram illustrating operations 700b that may be performed by a processing device of a base-band as part of the method 700a according to various embodiments.
  • means for performing the operations 700b may be a processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) , a base-band battery (e.g., 130) , and the like.
  • a user or other individual may re-couple the outer smart device to the base-band in block 708.
  • the processor may charge a base-band battery coupled to the base-band using a smart device battery coupled to the outer smart device in response to coupling the outer smart device.
  • Means for performing the operations of block 708 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) , of the base-band (e.g., 110) , a base-band battery (e.g., 130) , and the like.
  • FIG. 8 is a component block diagram of a computing device suitable for use with various embodiments.
  • various embodiments may be implemented on a variety of computing devices, an example of which is illustrated in FIG. 8 in the form of an outer smart device 150.
  • the outer smart device 150 may include a clasp or base-band (e.g., 110) to fasten or adhere the outer smart device 150 to a body part or to clothing.
  • the clasp or wrist band may include or be coupled to a support 804 configured to support a body 806 of the outer smart device 150.
  • the body 806 may include a display device 162 that is configured to display information.
  • the display device 162 also may be configured to receive a user input (e.g., a touchscreen display or the like) .
  • the outer smart device 150 may include a number of sensors that may be configured to obtain information about wearer actions and external conditions that may be useful for sensing images, sounds, motions and other phenomena.
  • outer smart device 150 may include a camera 835 configured to capture still images or video.
  • the outer smart device 150 may include a microphone 810 positioned and configured to record sounds in the vicinity of the outer smart device 150.
  • outer smart device 150 may include other sensors (e.g., a thermometer, heart rate monitor, body temperature sensor, pulse oximeter, etc. ) for collecting information pertaining to environment and/or user conditions.
  • the outer smart device 150 may include a processing system 812 that includes processing and communication SOCs 502, 504 which may include one or more processors (e.g., 510, 512, 514, 516, 518, 552, and 560) one or more of which may be configured with processor-executable instructions to perform operations of various embodiments.
  • the processing and communications SOCs 502, 504 may be coupled to internal sensors 820, internal memory 822, and communication circuitry 824 coupled one or more antenna 826 for establishing a wireless communication link (e.g., with a base-band 110, access point 330, a base station 340, or a second computing device 310, 320) .
  • the processing and communication SOCs 502, 504 may also be coupled to sensor interface circuitry 828 configured to control and received data from a camera 835, microphone (s) 810, and other sensors positioned on the body 806.
  • the internal sensors 820 may include an inertial measurement unit (IMU) that includes electronic gyroscopes, accelerometers, and a magnetic compass configured to measure movements and orientation of the outer smart device 150.
  • the internal sensors 820 may further include a magnetometer, an altimeter, an odometer, and an atmospheric pressure sensor, as well as other sensors useful for determining the orientation and motions of the outer smart device 150.
  • the processing system 812 may further include a power source such as a rechargeable battery 830 coupled to the SOCs 502, 504 as well as the external sensors on the frame 802.
  • FIG. 9 is a component block diagram of a computing device suitable for use with various embodiments.
  • various embodiments may be implemented on a variety of computing devices, an example of which is illustrated in FIG. 9 in the form of a base-band 110.
  • the base-band 110 may include a clasp to fasten or adhere to the outer smart device (e.g., 150) to a body part, or to clothing (e.g., a strap) .
  • the clasp or wrist band may include or be coupled to a substrate 904 of the base-band 110 configured to support a base connector (e.g., 140) of the base-band 110.
  • the substrate 904 may include a display device 135 that is configured to display information.
  • the display device 135 also may be configured to receive a user input (e.g., a touchscreen display or the like) .
  • the base-band 110 may include a number of sensors that may be configured to obtain information about wearer actions and external conditions that may be useful for sensing images, sounds, motions and other phenomena.
  • base-band 110 may include a sensor 120 configured to capture sensor information.
  • the base-band 110 may include a microphone 910 positioned and configured to record sounds in the vicinity of the base-band 110.
  • base-band 110 may include other sensors (e.g., a thermometer, heart rate monitor, body temperature sensor, pulse oximeter, etc. ) for collecting information pertaining to environment and/or user conditions.
  • the base-band 110 may include a processing system 160 that includes processing and communication SOCs 502, 504 which may include one or more processors (e.g., 510, 512, 514, 516, 518, 552, and 560) one or more of which may be configured with processor-executable instructions to perform operations of various embodiments.
  • the processing and communications SOCs 502, 504 may be coupled to internal sensors 920, internal memory 922, and communication circuitry 924 coupled one or more antenna 926 for establishing a wireless communication link (e.g., with the outer smart device 150, access point 330, a base station 340, or a second computing device 310, 320) .
  • the processing and communication SOCs 502, 504 may also be coupled to sensor interface circuitry 928 configured to control and received data from a camera, microphone (s) 910, and other sensors positioned on the substrate 904.
  • the internal sensors 920 may include an inertial measurement unit (IMU) that includes electronic gyroscopes, accelerometers, and a magnetic compass configured to measure movements and orientation of the base-band 110.
  • the internal sensors 920 may further include a magnetometer, an altimeter, an odometer, and an atmospheric pressure sensor, as well as other sensors useful for determining the orientation and motions of the base-band 110.
  • the processing system 912 may further include a power source such as a rechargeable battery 930 coupled to the SOCs 502, 504 as well as the external sensors.
  • FIG. 10 is a component block diagram of a wireless device 1000 (e.g., a computing device 310) suitable for use with various embodiments.
  • the wireless device 1000 may operate as a network element providing communication links with a base band 110 and/or an outer smart device 150.
  • various embodiments may be implemented on a variety of wireless devices 1000 (for example, the computing device 310) , an example of which is illustrated in FIG. 10 in the form of a smartphone.
  • the wireless device 1000 may include a first SOC 502 (for example, a SOC-CPU) coupled to a second SOC 504 (for example, a 5G capable SOC) .
  • a first SOC 502 for example, a SOC-CPU
  • second SOC 504 for example, a 5G capable SOC
  • the first and second SOCs 502, 504 may be coupled to internal memory 1006, 1016, a display 1012, and to a speaker 1014. Additionally, the wireless device 1000 may include an antenna 1004 for sending and receiving electromagnetic radiation that may be connected to a transceiver 1027 coupled to one or more processors in the first and/or second SOCs 502, 504. Wireless device 1000 may include menu selection buttons or rocker switches 1020 for receiving user inputs.
  • the wireless device 1000 wireless device 1000 may include a sound encoding/decoding (CODEC) circuit 1010, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound.
  • CODEC sound encoding/decoding
  • One or more of the processors in the first and second SOCs 502, 504, wireless transceiver 1027 and CODEC 1010 may include a digital signal processor (DSP) circuit (not shown separately) .
  • DSP digital signal processor
  • the processors of the wireless device 1000 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of some implementations described below.
  • multiple processors may be provided, such as one processor within an SOC 504 dedicated to wireless communication functions and one processor within an SOC 502 dedicated to running other applications.
  • Software applications may be stored in the memory 1006, 1016 before they are accessed and loaded into the processor.
  • the processors may include internal memory sufficient to store the application software instructions.
  • the processors implementing various embodiments may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of the various embodiments described in this application.
  • multiple processors may be provided, such as one processor dedicated to wireless communication functions and one processor dedicated to running other applications.
  • software applications may be stored in the internal memory before they are accessed and loaded into the processor.
  • the processor may include internal memory sufficient to store the application software instructions.
  • Implementation examples are described in the following paragraphs. While some of the following implementation examples are described in terms of example methods, further example implementations may include: the example methods discussed in the following paragraphs implemented by a computing device comprising a processor configured with processor-executable instructions to perform operations of the methods of the following implementation examples; the example methods discussed in the following paragraphs implemented by a computing device comprising means for performing functions of the methods of the following implementation examples; and the example methods discussed in the following paragraphs may be implemented as a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a computing device to perform the operations of the methods of the following implementation examples.
  • a detachable two-part wearable device including: a base-band configured to be worn in direct or close contact with skin of a wearer, in which the base-band includes: a sensor configured to measure biometrics of the wearer; a base-band battery configured to power the sensor; and a base connector; and an outer smart device removably coupled to the base-band, in which the outer smart device includes: a processor configured to receive the biometrics measured by the sensor; a smart device battery configured to power the processor; and an outer connector configured to communicatively or electronically couple with the base connector of the base-band.
  • Example 2 The detachable two-part wearable device of 1, in which the smart device battery is configured to charge the base-band battery in response to the base connector coupling with the outer connector.
  • Example 3 The detachable two-part wearable device of either of examples 1 or 2, in which the coupling between the base connector and the outer connector is configured to transfer power therebetween.
  • Example 4 The detachable two-part wearable device of any of examples 1-3, in which the coupling between the base connector and the outer connector is configured to provide a data communication link therebetween.
  • Example 5 The detachable two-part wearable device of any of examples 1-4, in which the outer smart device further includes a smart device sensor coupled to the processor; and the smart device sensor is configured to measure at least one of biometrics of the wearer, information about an environment of the wearer, or other types of information at least one of when the outer smart device is or is not physically connected to the base-band.
  • the outer smart device further includes a smart device sensor coupled to the processor; and the smart device sensor is configured to measure at least one of biometrics of the wearer, information about an environment of the wearer, or other types of information at least one of when the outer smart device is or is not physically connected to the base-band.
  • Example 6 The detachable two-part wearable device of any of examples 1-5, in which both the base-band and the outer smart device each separately include a display.
  • Example 7 The detachable two-part wearable device of example 6, in which the display of the base-band is concealed by the outer smart device when the outer smart device is coupled to the base-band.
  • Examples 8 The detachable two-part wearable device of example 6, in which the display of the base-band faces in a direction different to that of the display of the outer smart device when the outer smart device is coupled to the base-band.
  • Example 9 The detachable two-part wearable device of any of examples 1-8, in which the outer smart device includes an annular band; and the annular band covers the base-band when the annular band is coupled to the base-band.
  • Example 10 The detachable two-part wearable device of any of examples 1-9, further including an intermediate device configured to be removably coupled between the outer smart device and the base-band.
  • Example 11 The detachable two-part wearable device of any of examples 1-10, further including a secondary band configured to be worn by the wearer, wherein the secondary band includes a secondary connector configured to communicatively or electronically couple with the outer connector instead of the base connector when the outer smart device is not physically connected to the base-band.
  • Example 12 A method of using a detachable two-part wearable device including de-coupling the outer smart device from a base-band configured to be worn in direct or close contact with skin of a wearer, placing the outer smart device in a remote location relative to the base-band worn by the wearer, receiving, at a processor of the outer smart device, remote sensor data collected by a base-band sensor of the base-band worn by the wearer, and determining, by the processor of the outer smart device, a biometric assessment of the wearer based on the received remote sensor data.
  • Example 13 The method of example 12, further including charging a base-band battery coupled to the base-band using power from a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band.
  • Example 14 The method of either of examples 12 or 13, further including receiving, at the processor of the outer smart device, onboard sensor data collected by a smart device sensor of the outer smart device, in which determining the biometric assessment of the wearer is further based on the received onboard sensor data.
  • Example 15 The method of any of examples 12-14, in which placing the outer smart device in t1he remote location includes attaching the outer smart device to a part of the wearer’s body that is remote from the base-band worn by the wearer.
  • Example 16 A method of using a detachable two-part wearable device including de-coupling an outer smart device from the base-band device configured to be worn in direct or close contact with skin of a wearer, collecting biometric data associated with the wearer by a base-band sensor of the base-band device worn by the wearer, and transmitting the collected biometric data from the base-band device to the outer smart device.
  • Example 17 The method of example 16, further including charging a base-band battery coupled to the base-band device using a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band device.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium.
  • the operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium.
  • Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor.
  • non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media.
  • the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

A detachable two-part wearable device and methods that may be implemented using a detachable two-part wearable device. The detachable two-part wearable device includes a base-band (110, 111, 112, 113, 114, 115, 117) and an outer smart device (150, 151, 152, 153, 154, 155, 157). The base-band (110, 111, 112, 113, 114, 115, 117) may be configured to be worn in direct or close contact with skin of a wearer (5). The base-band (150, 151, 152, 153, 154, 155, 157) may include a sensor (120, 124, 134) configured to measure biometrics of the wearer (5), a base-band battery (130) configured to power the sensor (120, 124, 134), and a base connector (140, 141, 142, 144, 145, 147). The outer smart device (150, 151, 152, 153, 154, 155, 157) may be removably coupled to the base-band (110, 111, 112, 113, 114, 115, 117). The outer smart device (150, 151, 152, 153, 154, 155, 157) may include a processor (160)configured to receive the biometrics measured by the sensor (120, 124, 134), a smart device battery (170) configured to power the processor (170), and an outer connector (187) configured to communicatively or electronically couple with the base connector (140, 141, 142, 144, 145, 147) of the base-band (110, 111, 112, 113, 114, 115, 117).

Description

Detachable Two-Part Wearable device BACKGROUND
Wearable devices, including smartwatches, fitness bands, and even smart-rings, are widely used for health tracking in addition to supporting common user tasks such as calls, messages, and mobile payments. While most of these tasks primarily happen during daytime when the user is awake and dealing with daily routines, sleep tracking as an important aspect of health monitoring is done mostly at night when the user is resting. While devices with a big display are beneficial for supporting daytime user tasks, wearable devices having a big display are not a preferred form factor for sleep tracking. People who use digital sleep tools often complain that although a big display is convenient for checking information, the big display is uncomfortable to wear during sleep or while resting. In addition, big display wrist wearable devices may get accidently bumped into people or things, particularly someone else that shares a bed with the wearer.
Another shortcoming of wearable devices used for sleep tracking is that wearable devices tend to have a relatively short battery life, e.g. most smart watches need to be taken off for charging just about every day. Many users of wearable devices prefer to charge them overnight, which makes using them for sleep tracking difficult. Another constraint of using a wearable device for sleep tracking is that wearable devices can be inaccurate in tracking environmental information that impacts a user’s sleep, such as sound (background noise, snoring) , light, temperature, and humidity since wearable devices and their sensors tend to get covered by clothes or bedding.
In addition to sleep tracking, bulky wrist devices or rings are also inconvenient or uncomfortable to wear during certain types of exercise (e.g., weight training, yoga, swimming, etc. ) . Also, some exercises and/or sporting activities risk either damaging the device (e.g., the delicate watch face) or the device could interfere with the activity.
SUMMARY
Various aspects include a detachable two-part wearable device. The detachable two-part wearable device may include a base-band and an outer smart device. The base-band may be configured to be worn in direct or close contact with skin of a wearer. The base-band may include a sensor configured to measure biometrics of the wearer, a base-band battery configured to power the sensor, and a base connector. The outer smart device may be removably coupled to the base-band. The outer smart device may include a processor configured to receive the biometrics measured by the sensor, a smart device battery configured to power the processor, and an outer connector configured to communicatively or electronically couple with the base connector of the base-band.
In some aspects, the smart device battery may be configured to charge the base-band battery in response to the base connector coupling with the outer connector. The coupling between the base connector and the outer connector may be configured to transfer power therebetween. The coupling between the base connector and the outer connector may be configured to provide a data communication link therebetween. The outer smart device may further include a smart device sensor coupled to the processor. In addition, the smart device sensor may be configured to measure at least one of biometrics of the wearer, information about an environment of the wearer, or other types of information at least one of when the outer smart device may be or may not be physically connected to the base-band.
In some aspects, both the base-band and the outer smart device each separately include a display. The display of the base-band may be concealed by the outer smart device when the outer smart device may be coupled to the base-band. The display of the base-band may face in a direction different to that of the display of the outer smart device when the outer smart device may be coupled to the base-band. The outer smart device may include an annular band, such that the annular band may cover the base-band when the annular band may be coupled to the base-band.
Some aspects may include an intermediate device configured to be removably coupled between the outer smart device and the base-band. Some aspects may include a secondary band configured to be worn by the wearer, wherein the secondary band includes a secondary connector configured to communicatively or electronically couple with the outer connector instead of the base connector when the outer smart device is not physically connected to the base-band.
Various aspects include methods that may be implemented using a detachable two-part wearable device for assessing sleep of a user. In various aspects, the method may include de-coupling the outer smart device from a base-band configured to be worn in direct or close contact with skin of a wearer. Additionally, the outer smart device may be placed in a remote location relative to the base-band worn by the wearer. A processor of the outer smart device may receive remote sensor data collected by a base-band sensor of the base-band worn by the wearer. The processor of the outer smart device may determine a biometric assessment of the wearer based on the received remote sensor data.
Some aspects may include charging a base-band battery coupled to the base-band using power from a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band. Some aspects may include receiving, at the processor of the outer smart device, onboard sensor data collected by a smart device sensor of the outer smart device, wherein determining the biometric assessment of the wearer may be further based on the received onboard sensor data. Placing the outer smart device in the remote location may include attaching the outer smart device to a part of the wearer’s body that may be remote from the base-band worn by the wearer.
Various aspects may include methods that may be implemented using a detachable two-part wearable device. The method may include de-coupling an outer smart device from the base-band device configured to be worn in direct or close contact with skin of a wearer. Biometric data associated with the wearer may be collected by a base-band sensor of the base-band device worn by the wearer. In  addition, the collected biometric data may be transmitted from the base-band device to the outer smart device.
In some aspects, the method may include charging a base-band battery coupled to the base-band device using a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band device.
Further aspects may include a processor for use in a computing device configured to perform operations of any of the methods summarized above. Further aspects may include a computing device including means for performing functions of any of the methods summarized above. Further aspects may include a computing device configured with processor-executable instructions to perform operations of any of the methods summarized above.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate example embodiments, and together with the general description given above and the detailed description given below, serve to explain the features of various embodiments.
FIG. 1A is a perspective exploded view of a detachable two-part wearable device according to some embodiments.
FIG. 1B is a perspective exploded view of a detachable two-part wearable device with low-profile connectors according to some embodiments.
FIG. 1C is a perspective exploded view of a detachable two-part wearable device with an open-bracelet style base-band according to some embodiments.
FIG. 1D is a perspective exploded view of a detachable two-part wearable device with a base-band including a secondary display according to some embodiments.
FIG. 1E is a side view of a detachable two-part wearable device with a continuous base-band according to some embodiments.
FIG. 1F is an exploded side view of the detachable two-part wearable device of FIG. 1E according to some embodiments.
FIG. 1G is a side view of a detachable two-part wearable device with an annular band covering the baseband according to some embodiments.
FIG. 1H is an exploded side view of the detachable two-part wearable device of FIG. 1G according to some embodiments.
FIG. 1I is a perspective exploded view of a detachable two-part wearable device with an intermediate device between the base-band and the outer smart device, according to some embodiments.
FIG. 1J is perspective relief view of a detachable two-part wearable device in the form of a smart ring according to some embodiments.
FIG. 2A is a schematic view of a detachable two-part wearable device used in conjunction with a secondary band on the user’s chest, according to some embodiments.
FIG. 2B is a schematic view of a detachable two-part wearable device used in conjunction with a secondary band on the user’s other wrist according to some embodiments.
FIG. 2C is a schematic view of a detachable two-part wearable device used in conjunction with a secondary band on the user’s ankle according to some embodiments.
FIG. 3 is a component block diagram illustrating a communication environment implementing various embodiments.
FIG. 4A is a component block diagram illustrating a processing device suitable for use in an outer smart device implementing various embodiments.
FIG. 4B is a component block diagram illustrating a processing device suitable for use in a base-band implementing various embodiments.
FIG. 5 is a component block diagram illustrating an example processing system including a wireless modem suitable for implementing various embodiments.
FIG. 6A is a process flow diagram illustrating an example method 600a that may be performed by a processing device of an outer smart device according to various embodiments.
FIGS. 6B–6C are process flow diagrams illustrating operations that may be performed by a processing device of an outer smart device according to various embodiments.
FIG. 7A is a process flow diagram illustrating an example method 700a that may be performed by a base-band device according to various embodiments.
FIGS. 7B is a process flow diagrams illustrating operations that may be performed by a processing device of a base-band device according to various embodiments.
FIG. 8 is a component block diagram of an outer smart device suitable for use with various embodiments.
FIG. 9 is a component block diagram of a base-band device suitable for use with various embodiments.
FIG. 10 is a component block diagram of a computing device suitable for use with various embodiments .
DETAILED DESCRIPTION
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and embodiments are for illustrative purposes, and are not intended to limit the scope of the claims.
Various embodiments include a detachable two-part wearable device, which may support continuous daytime and overnight use of at least one of the two parts. In  addition, the detachable two-part wearable device may be used to address the different requirements that varying individuals may demand.
Various embodiments include a detachable two-part wearable device that includes a base-band as one part and an outer smart device as another part. The outer smart device may have a large capacity battery (at least compared to the base-band) , a processor, sensors (e.g. microphone, temperature, humidity, light, etc. ) , a touch-sensitive display, and many other components and features to support daytime tasks. For example, daytime tasks of the outer smart device may include displaying time, making/receiving telephone calls, sending/receiving messages, mobile payment, etc. At the end of the day or when the wearer feels appropriate, the outer smart device may be taken off of (i.e., separated from) the base-band for charging. In this way, the outer smart device may be put aside, as a standalone or separate device for monitoring sleep environmental information, as well as connecting to a power source to recharge the battery, such as plugging into a charger or sitting atop a wireless charger.
In some embodiments, the base-band may have a smaller capacity battery compared to the outer smart device. Alternatively, the base-band and the outer smart device may have the same or similar capacity batteries. In a further alternative, the base-band may have a larger capacity battery than the outer smart device.
In some embodiments, the base-band may include one or more sensors integrated therein. Non-limiting examples of sensors that may be implemented in the base-band include a photoplethysmogram (PPG) or other pulse sensor, an inertial measurement unit (IMU) , a body temperature sensor, an oximeter, an electrocardiogram (EKG) sensor, and the like. In some embodiments, the base-band may include a processor, which may be configured to work independent of the processor in the outer smart device. In this way, the base-band may be worn alone (i.e., without the outer smart device) as a more comfortable, lighter, and safer sleep tracker during the night and/or as an exercise tracker for weight training, yoga, high-intensity interval training (HIIT) workouts, or other aerobics.
In some embodiments, the outer smart device and the base-band may still work together when separated, such as via a wireless communication link, which may increase tracking result accuracy and provide features that cannot be well supported by a single unitary wearable device. For example, using a detachable two-part device with parts that work together when separated from one another may enable more accurate collection of sleep environment information, such as motion, ambient noise, etc., which may be processed by one or both of the processors to determine on which side the user is sleeping, measure movement during sleep, detect whether or how much the wearer is snoring, and/or detect others in the room (e.g., detect which person in the room is snoring) .
In some embodiment, the outer smart device may function as a power source for recharging the base-band battery. In such embodiments, when the two parts are physically connected, the base-band may receive power and get charged from the outer smart device. In this way, the base-band would not need to be charged separately and could remain on the wearer 24 hours a day. The base-band could be charged by the outer smart device using wired and/or wireless charging. In some embodiments, the same connection used to charge the base-band battery may be used to communicate data (i.e., information ) between the base-band and the outer smart device.
In some embodiments, the base-band may include a simple low power display (e.g., a liquid crystal display (LCD) or a light emitting diode (LED) display) that may display things like time, heart rate, etc. In some embodiment, the base-band display may be located on the underside of the wrist (i.e., opposite the way conventional watches are typically worn) . Alternatively or additionally, the base-band display may be located on one or both sides of the wrist (i.e., ninety degrees around the wrist from the way conventional watches are typically worn) . In this way, when the outer smart device is attached, the base-band display may be used to display supplemental information that might change depending on what is happening on the main display. For example, when the main display is showing the time of day or the detachable two- part wearable device is in a basic display mode, the base-band display may show other information, such as details about a next meeting or the wearer’s heart rate. Similarly, when the detachable two-part wearable device is in exercise mode displaying details about the current exercise or the wearer’s biometric readings (e.g., heart rate, duration, distance, etc. ) , the base-band display may show the time or other information typically displayed by the smart device display in a normal mode. Alternatively, the base-band display may be facing in the same direction as and thus be covered by the main display on the outer smart device when the two parts are physically connected.
In some embodiments, the outer smart device may be configured to be attached to another part of the wearer’s body (e.g., forehead, chest, foot, ankle, other wrist, etc. ) to work with the base-band to capture more accurate biometrics (e.g., heart rate, EKG, number of steps, etc. ) . In some embodiments, a secondary band that is separate and apart from the base-band for connection to another body part (e.g., ankle, chest, etc. ) may be included and configured to communicatively couple (e.g., via a Bluetooth wireless datalink) with the outer smart device when the outer smart device is not physically connected to the base-band. For example, a customized chest, ankle, or wrist strap may enable the user to keep the base-band on one wrist and attach the outer smart device to the secondary band on another part of the wearer’s body.
In some embodiments, each of the base-band and the outer smart band may be customized and upgraded based on individual requirements, needs, or desires. For example, a user might attach a first outer smart device, such as one with a large display or a particular sensor suit, to the original base-band for certain activities, but then switch to a second outer smart device, such as one with a smaller display or one that is more fully charged, to the original base-band for other situations. Alternatively, the user might connect a first base-band, such as one with more sensors, to the original outer smart device for certain activities, but then switch to a second base-band, such as one with fewer sensors or different features, for connecting to the original outer smart device for other activities.
As used herein, the term “biometrics” refers to body measurements and/or calculations related to human characteristics. In particular, biometrics may measure one or more physiological conditions of the wearer’s body, such as pulse rate, temperature, blood oxygen level, EKG signals, perspiration, movement, and the like.
As used herein, the term “computing device” refers to an electronic device equipped with at least a processor, memory, and a device for presenting output such as a location of an object or objects of interest. In some embodiments, a computing device may include wireless communication devices such as a transceiver and antenna configured to communicate with wireless communication networks. A computing device may include any one or all of an outer smart device, a base-band, smart watches, smart rings, smart necklaces, smart glasses, smart contact lenses, contactless sleep tracking devices, smart furniture such as a smart bed or smart sofa, smart exercise equipment, Internet of Things (IoT) devices, augmented/virtual reality devices, cellular telephones, smartphones, portable computing devices, personal or mobile multimedia players, laptop computers, tablet computers, 2-in-1 laptop/table computers, smart books, ultrabooks, multimedia Internet-enabled cellular telephones, entertainment devices (e.g., wireless gaming controllers, music and video players, satellite radios, etc. ) , and similar electronic devices that include a memory, wireless communication components and a programmable processor. In some embodiments, a computing device may be wearable device by a person. As used herein, the term “smart” in conjunction with a device, refers to a device that includes a processor for automatic operation, for collecting and/or processing of data, and/or may be programmed to perform all or a portion of the operations described with regard to various embodiments.
The term “system on chip” (SOC) is used herein to refer to a single integrated circuit (IC) chip that contains multiple resources and/or processors integrated on a single substrate. A single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions. A single SOC may also include any number of general purpose and/or specialized processors (digital signal processors, modem processors,  video processors, etc. ) , memory blocks (e.g., ROM, RAM, Flash, etc. ) , and resources (e.g., timers, voltage regulators, oscillators, etc. ) . SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
The term “system in a package” (SIP) may be used herein to refer to a single module or package that contains multiple resources, computational units, cores and/or processors on two or more IC chips, substrates, or SOCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP may also include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
As used herein, the terms “component, ” “system, ” “unit, ” “module, ” and the like include a computer-related entity, such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution, which are configured to perform particular operations or functions. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a communication device and the communication device may be referred to as a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and  other known computer, processor, and/or process related communication methodologies.
FIG. 1A illustrates a detachable two-part wearable device 100 with a base-band 110 separated from an outer smart device 150 according to some embodiments. With reference to FIG. 1A, the base-band 110 may be configured to be worn in direct or close contact with the wearer’s skin. The base-band 110 may include a sensor 120 configured to measure biometrics of the wearer, a base-band battery 130 configured to power the sensor 120, and a base connector 140. The sensor 120 may include more than one sensor, which may be the same or may include different kinds of sensors. The outer smart device 150 may be removably coupled to the base-band 110. The outer smart device 150 may include a processor 160 configured to receive biometric parameters measured by the sensor 120, a smart device battery 170 configured to power the processor 160, a display 162, and an outer connector 180 configured to communicatively and/or electronically couple with the base connector 140 of the base-band 110. The mechanism of attachment between the base connector 140 and the outer connector 180 may be magnetic, friction fitting, clasps, tongue-in-groove interfaces, or other mechanism for holding the two portions together.
The base-band 110 and the outer smart device 150 may be configured to wirelessly communicating with each other via a wired and/or wireless communication link. Any wireless communications technology may be used to support communications between the base-band 110 and the outer smart device 150, including but not limited to Bluetooth, Bluetooth LE, PAN, ZigBee, WiFi and the like. Alternatively, the base-band 110 and the outer smart device 150 may communicate data and electrical power via a wired connection between the base-band and outer smart device, which may be via the  connectors  140, 180. A wired connection may be used for power transfer from the outer smart device 150 to the base-band battery 130 and/or as a data communications connection.
In some embodiments, the base-band 110 and the outer smart device 150 may work collaboratively. For example, data collected by the base-band 110 and the outer  smart device 150 separately may be used to detect on which side the user is sleeping or which person in the room is snoring (e.g., self or another) . In addition, the base-band 110 and the outer smart device 150 may be configured to work together to detect user movements in bed using infrared, motion detection, signal strength variations, detecting breathing patterns, and the like.
Communications between the base-band 110 and the outer smart device 150 may be continuous, periodic, or only when reconnected. In embodiments that communicate only when the base-band 110 and the outer smart device 150 are connected to each other, the base-band 110 may be configured to collect and store locally (e.g., in memory of the base-band 110) sensor data, and then share the stored sensor data with the outer smart device 150 when the two devices are electronically coupled. In addition, data may be communicated between the base-band 110 and the outer smart device 150 in response to one or more predetermined events, such as a medical alert, a change in sleeping conditions, movement of the user, changes in breathing patterns, and the like.
In some embodiments, since the outer smart device 150 may have a smart device battery 170 that is relatively large, at least as compared to the base-band battery 130, the smart device battery 170 may be configured to charge the base-band battery 130 when the two devices are connected. In this way, users never need to take off the base-band 110 and data collection by the base-band 110 may be continuous, since the base-band 110 need not ever be removed for charging.
In some embodiments, the base-band battery 130 may be configured to charge the smart device battery 170. For example, the base-band battery 130 may serve as a battery backup for the smart device battery 170 in case the smart device battery 170 has insufficient charge to power the outer smart device 150. In such embodiments, a user may own two base bands 110 and one outer smart device 150, enabling the user to switch base bands when necessary to charge one of the base-band batteries 130, including switching the outer smart device 150 to the newly installed band.
In some embodiments, power transfer from the smart device battery 170 to the base-band battery 130 (or from the base-band battery 130 to the smart device battery 170) may be through a wired connection or contact when the two parts are coupled. In some embodiments, power from the smart device battery 170 to charge the base-band battery 130 (or vice-versa) may be provided via a wireless charging connection between the two portions. Thus, the smart device battery 170 may be configured to store not only a charge for itself to operate, but also additional power for charging the base-band 110 once the two parts are connected. Preferably the smart device battery 170 can store and transfer sufficient charge for both the outer smart device 150 and the base-band 110 to operate for an extended period (e.g., 12-24 hours) .
The components and features included in the base-band 110 and/or the outer smart device 150 may vary in different combinations. For example, the outer smart device 150 may including the bulk of the processing power, battery power, and/or functionality/features, while the base-band 110 may have relatively little processing power, low battery power, and/or have little functionality/features. Alternatively, the base-band 110 may including the bulk of the processing power, battery power, and/or functionality/features, while the outer smart device 150 may have relatively little processing power, low battery power, and/or have little functionality/features. As a further alternative, the base-band 110 and the outer smart device 150 may have equal processing power, battery power, and/or functionality/features. Further still, the outer-smart device 150 may have certain more powerful features, such as the more powerful processor 160 and the larger battery 170, while the base-band may have a more varied array of sensors 120 or more powerful sensors 120.
In some embodiments, the outer smart device 150 may have a suite of different types of sensors, such as one or more of a PPG sensor, a microphone, a thermometer, a humidity or perspiration sensor, a pulse oximeter, an EKG sensor, a light sensor, an NFC receiver for detecting/communicating with NFC-equipped devices (e.g., radio frequency tags) , a pedometer, an optical heart rate sensor, calorie counter, bioimpedance sensor, a GPS receiver, motion sensor, and the like. In some  embodiments, the base-band 110 may have all the same sensors, fewer sensors (a subset thereof) , different sensors, lower quality sensors, or may have sensors that sample at a different rate compared to the outer smart device 150. As an example, the outer smart device 150 may sample every 1-5 seconds during the day, while the base-band 110 samples every 1-5 minutes or less frequently. In some embodiments, the base-band 110 may have all the biometric sensors 120 while the outer smart device 150 has none, in which case the outer smart device 150 may rely on the base-band 110 for biometric sensor data. In this way, the base-band 110 may not have a cutout 145 for contacting or viewing the wearer’s skin. In some embodiments, the base-band 110 may have only a few sensors, such as only an accelerometer (for tracking movement in bed or during exercise or getting up at night) or only a PPG or optical heart rate sensor.
In some embodiments, the base-band 110 may have sensors 120 around the wrist in places the outer smart device 150 body cannot. Thus, when mounted together the two parts have a more extensive sensor array.
In some embodiments, during the day, sets of sensors from both the base-band 110 and the outer smart device 150 may continue to operate. In some embodiments, base-band sensors 120 may go dormant until the base-band is detached from the outer smart device 150. In some embodiments, some sensors 120 in the base-band may go dormant while other sensors 120 stay active and/or sample at a lower rate.
In some embodiments, both the base-band 110 and the outer smart device 150 may record the same type information and compared the duplicated information periodically, such as at the end of the day, in the morning, or whenever the two devices are physically coupled together.
The base-band 110 may communicate sensor data to the outer smart device 150 for the outer smart device 150 to process. In some embodiments, the outer smart device 150 may transmit sensor data to a smartphone (e.g., 310 shown in FIG. 3) or other devices (e.g., 320, 330, 340, 350, 390 in FIG. 3) for processing. In some  embodiments, the base-band 110 may communicate directly with the smartphone (e.g., 310 in FIG. 3) for the smartphone to perform the processing. In some embodiments, the base-band 110 may transmit sensor data directly to a smartphone (e.g., 310 in FIG. 3) for the smartphone to perform processing in the event that communications with the outer smart device 150 are not available.
In some embodiments, the base-band 110 may be made of a soft, light-weight material, such as rubber, neoprene, cloth, plastic, etc., that is comfortable for a user to wear, stays clean or is easy to clean, does not irritate the skin, and/or can be worn for extended periods (e.g., days, weeks, months) . The base-band 110 may be made of flexible material, configured to stretch in order to allow a user to stretch the flexible material around the user’s hand in order to put the base-band 110 on the user’s wrist. Alternatively, the base-band 110 may include open ends and a fastening mechanism, like conventional watch strap or jewelry clasps, for securing the two open ends onto the wearer’s wrist.
In some embodiments, the base-band 110 may include a base connector 140 with a central aperture 145 large enough to receive an outer perimeter of a bottom of the outer smart device 150. In some embodiments, the outer smart device 150 may include an outer connector 180, which may be a molded element specifically configured to interlock with corresponding elements of the base connector 140. In some embodiments, the edges of the central aperture 145 may be configured interlock (e.g., snap-fit) with a base of the outer smart device 150. In this way, a user may push the outer smart device 150 down into the central aperture 145 to lock it in-place, thereby coupling the outer smart device 150 to the base-band 110. To release the outer smart device 150 from its coupling with the base-band 110, a user may apply pressure from underneath the housing of the outer smart device 150, away from the wrist, in order to pop-out (i.e., separate) the outer smart device 150 from the base-band.
In some embodiments,  lateral walls  140a, 140b of the base connector, connecting the two ends of the base-band 110 across the large central aperture 145  may be configured to shield optical sensors on the underside of the outer smart device 150 from environmental light that may impair optical measurements. In some embodiments, an underside of the  lateral walls  140a, 140b and the adjacent edges of the base connector 140 may include a gasket or soft rim that protrudes slightly toward the wearer’s wrist in order to stabilize a relative position between the upper smart device 150 and the wearer’s skin at the wrist. Such stabilization may improve the accuracy of measurements.
FIG. 1B illustrated a detachable two-part wearable device 101 with a base-band 111 separated from an outer smart device 151 according to some embodiments. With reference to FIGS. 1A-1B, the base-band 111 may be configured to be worn in direct or close contact with a wearer’s skin. The base-band 111 may include any or all of the features of the base-band 110 described with reference to FIG. 1A. Similarly, the outer smart device 151 may include any or all of the features of the outer smart device 150 described with reference to FIG. 1A.
The base-band 111 may include the sensor 120 configured to measure biometrics of the wearer, the base-band battery 130 configured to power the sensor 120, and a base connector 141. The outer smart device 151 may be removably coupled to the base-band 111. Also, the outer smart device 151 may include the processor 160 configured to receive the biometrics measured by the sensor 120, a display 162, the smart device battery 170 configured to power the processor 160, and an outer connector 181 configured to communicatively and/or electronically couple with the base connector 141 of the base-band 111. As noted above, the smart device battery 170 may be configured to charge the base-band battery 130 or vise-versa.
In some embodiments, the base-band 111 may include a cut-out 146 that allows a sensor cluster on the underside of the outer smart device 151 to contact or sense the skin of the user’s wrist through the cutout 146. The cut-out 146 may provide more stability for the outer smart device sensors. Also, the base-band may be configured to fit more snuggly and ensure that the outer smart device 151 senses the appropriate location on the user’s wrist. The cut-out 146 may be a relatively small  cut-out compared to the aperture 145 shown in FIG. 1A, such as just large enough to support one or more sensors on the outer smart device 151. Although the cut-out 146 is illustrated as a rectangular cut-out, the cut-out 146 may be any shape, such as a custom shape that contours around the sensor (s) of the outer smart device 151. Alternatively, the cut-out 146 may be a larger cut-out configured to receive the entire main body seated therein or even a smaller cut-out.
In some embodiments, the base-band 111 may include a base connector 141 that uses a combination of mechanical and magnetic attraction to hold the outer connector 181 of the outer smart device 151. In some embodiments, the base-band 111 may have a magnetic clasp 125 that releasably attaches two open ends of the base-band 111.
In some embodiments, the base-band 111 may enhance the sensor capabilities of the outer smart device 151, such as by better blocking out light because the band may have a tighter seal against the user’s wrist/skin. In some embodiments, the base-band 111 may magnify sensors of the outer smart device 151 so as to enhance sensitivity or accuracy of the outer smart device sensors. As an example, the base-band 111 may include a lens (not shown) configured to magnify laser light directed to or reflected from the wearer’s skin.
FIG. 1C illustrates a detachable two-part wearable device 102 with a base-band 112 separated from an outer smart device 152 according to some embodiments. With reference to FIGS. 1A-1C, the base-band 112 may be configured to be worn in direct or close contact with a wearer’s skin. The base-band 112 may include any or all of the features of the base- bands  110, 111 described with reference to FIGS. 1A and 1B. Similarly, the outer smart device 152 may include any or all of the features of the outer  smart devices  150, 151 described with reference to FIGS. 1A and 1B.
The base-band 112 may include the sensor 120 configured to measure biometrics of the wearer, the base-band battery 130 configured to power the sensor 120, and a base connector 142. The outer smart device 152 may be removably  coupled to the base-band 112. Also, the outer smart device 152 may include the processor 160 configured to receive the biometrics measured by the sensor 120, a display 162, the smart device battery 170 configured to power the processor 160, and an outer connector 182 configured to communicatively and/or electronically couple with the base connector 142 of the base-band 112. As noted above, the smart device battery 170 may be configured to charge the base-band battery 130 or vise-versa.
In some embodiments, the base-band 112 may be formed as an open-bracelet (e.g., C-shaped) that may hold a shape configured to snugly fit the wearer’s wrist. The open ends of the base-band 112 may include the base connectors 142, which are configured to receive and mate with the outer connectors 182 of the outer smart device 152. A gap 144 may be formed between the two open ends of the base-band 112, with the gap 144 large enough for the user wrist to slip through in order to put the base-band 112 on the user’s wrist.
FIG. 1D illustrates a detachable two-part wearable device 103 with a base-band 113 separated from an outer smart device 153 according to some embodiments. With reference to FIGS. 1A-1D, the base-band 113 may be configured to be worn in direct or close contact with a wearer’s skin. The base-band 113 may include any or all of the features of the base- bands  110, 111, 112 described with reference to FIGS. 1A-1C. Similarly, the outer smart device 153 may include any or all of the features of the outer  smart devices  150, 151, 152 described with reference to FIGS. 1A-1C.
The base-band 113 may include sensors 120 configured to measure biometrics of the wearer, the base-band battery 130 configured to power the sensor 120, and the base connector 141. The outer smart device 153 may be removably coupled to the base-band 113. Also, the outer smart device 153 may include the processor 160 configured to receive the biometrics measured by the sensor 120, a display 162, the smart device battery 170 configured to power the processor 160, and the outer connector 181 configured to communicatively and/or electronically couple with the base connector 141 of the base-band 113. The base-band 113 may include the base connector 141 that uses a combination of mechanical and magnetic attraction to hold  the outer connector 181 of the outer smart device 153. As noted above, the smart device battery 170 may be configured to charge the base-band battery 130 or vise-versa.
In some embodiments, the base-band 113 may also include a base-band display 135. In some embodiments, the base-band display 135 may be disposed in the same place that the outer smart device sits when coupled to the base-band display 135. In this way, the base-band display 135 is concealed by the outer smart device 153 when the outer smart device 153 is coupled to the base-band, but visible when the outer smart device 153 is removed. In some embodiments, the base-band display 135 may be on the opposite side of the base-band 113. In this way, the base-band display 135 may be facing in an opposite direction to the display 162 of the outer smart device 153 when the outer smart device is coupled to the base-band.
In some embodiments, the base-band display 135 may be a simple low-power display, such as LED or LCD, in order to conserve power. The base-band display 135 may display the time, stopwatch-type functions, a timer, the wearer’s heart rate, or other text or symbol-based messages associated with applications running on a base-band processor, the processor 160 of the outer smart device 153, another processor (e.g., in another computing device) , or a combination thereof. In some embodiments, the base-band display 135 may be a flexible display in order to ensure comfort to the wearer. In some embodiments, the base-band display 135 may be a touch-screen display with the same or similar functionality as the display of the outer smart device 120.
FIGS. 1E and 1F illustrate a detachable two-part wearable device 104 with a base-band 114 separated from an outer smart device 154 and the base-band 114 connected to the outer smart device 154, respectively, according to some embodiments. With reference to FIGS. 1A-1E, the base-band 114 may be configured to be worn in direct or close contact with a wearer’s skin. The base-band 114 may include any or all of the features of the base- bands  110, 111, 112, 113 described with reference to FIGS. 1A-1D. Similarly, the outer smart device 154 may include any or  all of the features of the outer  smart devices  150, 151, 152, 153 described with reference to FIGS. 1A-1D.
The base-band 114 may include the sensor 120 configured to measure biometrics of the wearer, the base-band battery 130 configured to power the sensor 120, and the base connector 144. The outer smart device 154 may be removably coupled to the base-band 114. Also, the outer smart device 154 may include the processor 160 configured to receive the biometrics measured by the sensor 120, the smart device battery 170 configured to power the processor 160, and the outer connector 184 configured to communicatively and/or electronically couple with the base connector 144 of the base-band 114. The base-band 114 may include the base connector 144 that uses a mechanical and/or magnetic attraction to hold the outer connector 184 of the outer smart device 154. As noted above, the smart device battery 170 may be configured to charge the base-band battery 130 or vise-versa.
In some embodiments, the base-band 114 may be a continuous band without any apertures. With a continuous band, the base-band 114 may block the underside of the outer smart device 154 from coming in contact or even being exposed to the wearer’s skin. Thus, the base-band 114 may include various  biometric sensors  124, 134 that would otherwise be blocked if included on the outer smart device 154.
FIGS. 1G and 1H illustrate a detachable two-part wearable device 105 with a base-band 115 separated from an outer smart device 155 and the base-band 115 connected to the outer smart device 155, respectively, according to some embodiments. With reference to FIGS. 1A-1H, the base-band 115 may be configured to be worn in direct or close contact with a wearer’s skin. The base-band 115 may include any or all of the features of the base- bands  110, 111, 112, 113, 114 described with reference to FIGS. 1A-1F. Similarly, the outer smart device 155 may include any or all of the features of the outer  smart devices  150, 151, 152, 153, 154 described with reference to FIGS. 1A-1F.
In some embodiments, the outer smart device 155 may include an annular band 55 that may cover the base-band 115 when the outer smart device 155 and the annular band 55 are coupled to the base-band 115. In some embodiments, annular band 55 may be a smart-band with a processor, memory, and a battery. In some embodiments, the annular band 55 may be a strap designed as a fashion item without providing other functionality.
In some embodiments, the annular band 55 may include outer connectors 185, which may be disposed on an inside of the annular band 55. The outer connectors may be configured to communicatively and/or electronically couple with the base connectors 145 for coupling the base-band 115 with the annular band 55 and the outer smart device 155. The base connector 145 and the outer connector 185 may together use a mechanical and/or magnetic attraction to hold the base connector 145 and the outer connector 185 together.
Similar to other embodiments, the base-band 115 may include sensors 120 configured to measure biometrics of the wearer and the base-band battery 130 may be configured to power the sensor. The outer smart device 155 may be removably coupled to the base-band 115. Also, the outer smart device 155 may include the processor (e.g., 160) configured to receive the biometrics measured by the sensor and the smart device battery (e.g., 170) configured to power the processor.
The base-band 115 may be considered a “24-hour band, ” which a user can wear all day underneath a conventional smartwatch, such as the outer smart device 155 and annular band 55. Thus, in some embodiments the annular band 55 may have less or no functionality other serving as a wrist fastener and fashion accessory. In some embodiments, the base-band 115 with all its sensors and functionality may remain hidden under the annular band 55. In some embodiments, the user may wear the base-band 115 on one wrist and use the outer smart device 155 with its annular band 55 temporarily on the other wrist for improved sensor data collection.
FIG. 1I illustrate a detachable two-part wearable device 106 with a base-band 111 separated from an outer smart device 151, similar to that described with reference to FIG. 1B, but with an intermediate device 156 between the base-band 111 and the outer smart device 151, according to some embodiments.
With reference to FIGS. 1A-1I, the base-band 111 may be configured to be worn in direct or close contact with a wearer’s skin while the intermediate device 156 may function as a separate battery module that may be attached to the base-band 111 or held between the outer smart device 151 and the base-band 111. As a battery module, the intermediate device 156 may connect the base-band 111 and the outer smart device 151. In some embodiments, the intermediate device 156 may be configured as an optional device that can be used when more power is required (e.g., for extended use) , but is not necessary because the base-band 111 and the outer smart device 151 cannot be attached to one another without the intermediate device 156 and function as described herein.
In some embodiments, the intermediate device 156 may include one or more additional components. For example, the intermediate device 156 may include a special sensor cluster useful for a particular application, such that the wearer may include the intermediate device 156 when that application is desired, but leave off the intermediate device at other times. In some embodiments, intermediate device 156 may be wafer thin, so as to not add a lot of bulk to the detachable two-part wearable device. In some embodiments, the intermediate device 156 may include components that provide an upgrade to or augmentation of components of either the base-band 111 or the outer smart device 151 (e.g., better or more accurate GPS receiver or more accurate sensors or a higher capacity battery) .
In some embodiments, the base-band 111 and outer smart device 151 may be configured to enable a wearer to customize the assembly using interchangeable parts. For example, the display 162 may be configured as an interchangeable part to enable the wearer install a large-screen display format for during the day or during a particular activity (or lack thereof) , and install a different size display during another  part of the day and/or for a different activity (or lack thereof) . As another example, the different outer smart devices or the different bands may have different sensors, with some sensor suites being customized to particular activities. As another example, a base-band with fewer sensors may be less expensive or may be helpful for enabling longer battery life, which a user may desire. As a further example, one band may fit more snuggly than another, which allows the snug band to take better heart rate readings during strenuous exercise (e.g., during HIIT training) , or to provide different comfort levels. As another example, a swimming band may have special array of sensors configure to work underwater and/or sense biometric or external parameters that are relevant to swimming activities. In some embodiments, the outer smart device 151 may charge a newly connected alternate band, which may be handy if a user forgets to charge the alternate band.
Some embodiments may be configured in the form of a smart ring with a smaller, lightweight inner band that is configured to work all the time. FIG. 1J illustrates a detachable two-part wearable device 107 in the form of a smart ring with a base-band 117 seated concentrically inside an annular band of the outer smart device 157 according to some embodiments. With reference to FIGS. 1A-1J, the base-band 117 may be configured to be worn in direct or close contact with a wearer’s finger. The outer smart device 157 may be removably coupled to the base-band 117. In this embodiment, the bulkier smart ring may be configured to be removed for charging, etc. The smaller, lightweight base-band 117 may be made of a flexible material while the outer smart device 157 may be as an annular band made of a stiff material. The outer smart device 157 may cover the base-band 117 when the outer smart device 157 and the base-band 117 are coupled together. The outer smart device 157 may include outer connectors 187, which may be disposed on an inside of the annular band of the outer smart device 157. The outer connectors 187 may be configured to communicatively and/or electronically couple with inner connectors 147 of the base-band 115. The base connector and the outer connector may together use a mechanical and/or magnetic attraction to hold the base connector and the outer connector together.
The base-band 117 may include any or all of the features of the base- bands  110, 111, 112, 113, 114, 115 described with reference to FIGS. 1A-1I. In particular, the base-band 117 may include one or more sensors 120 configured to measure biometrics of the wearer and a base-band battery 130 configured to power the sensors.
The outer smart device 157 may include any or all of the features of the outer  smart devices  150, 151, 152, 153, 154, 155 described with reference to FIGS. 1A-1I. In particular, the outer smart device 157 may include a processor 160 configured to receive the biometrics measured by the sensors 120 on the base band, and a smart device battery 170 configured to power the processor 160. As noted above, the smart device battery 170 may be configured to charge the base-band battery 130 or vise-versa.
The base-band 117 may be configured to be a “24-hour band, ” which a user can wear all day underneath the outer smart device 157, and all night when the outer smart device is removed. The base-band 117 with its sensors and functionality may remain hidden under the outer smart device 157. Also, optionally the user may wear the base-band 117 on one finger and use the outer smart device 157 temporarily on another finger for improved sensor data collection.
In some embodiments, the base-band 117 may work in conjunction with a conventional smart ring that is not designed to specifically work with the base-band 117. The base-band 117 may be configured to temporarily provide sensor data when the smart ring is removed for charging. Alternatively or additionally, the base-band may be configured to work in concert with the conventional smart ring, but on a different finger of the same hand or on an opposite hand for providing additional sensor inputs (e.g., more accurate sleep tracking or sleep position tracking) . The base-band 117 may be configured to work to temporarily charge the conventional smart ring, thus allowing extended or continuous wearing of the smart ring. In some embodiments, the base-band 117 may take over providing sensor data typically obtained by sensors on the smart ring (e.g., during the day) and may continue taking readings throughout the night when the smart ring is removed.
Smart jewelry, such as a smart ring with a gem-stone or ornamental metal outer layers, may be configured to allow the user to remove the bulky gemstone or outer layer (e.g., at night) while continuing to have biometric parameters monitored by the base-band 117. An intermediate layer may provide the charging function to the base-band 117. Similarly, an ankle bracelet may have a similar design as the two-part watch or ring.
In some embodiments, the outer smart device (e.g., 150, 151, 152, 153, 154, 155, 157 in FIGS. 1A-1J) , such as a smart ring or smart watch may be charged by another electronic device (e.g., a smartphone 1000 illustrated in FIG. 10) . The other electronic device may have a docking port, compartment, or other structure to support wired or wireless charging of the outer smart device battery.
In another embodiment, the outer smart device (e.g., 150, 151, 152, 153, 154, 155, 157 in FIGS. 1A-1J) , may be disconnected from the base-band (e.g., 110, 111, 112, 113, 114, 115, 117 in FIGS. 1A-1J) and re-connected to another location on the user’s body, such as the chest via a chest strap, another wrist/finger, or on a foot, toe, ankle, or leg. For example, an outer smart device (e.g., 150, 151, 152, 153, 154, 155, 157) attached to a wearer’s shoe may provide more accurate sensor data for measuring steps, stride length, cadence, foot position on the ground (pronating/supinating) , and the like. This disconnected configuration may enable the outer smart device to work together with the base-band to obtain more accurate data, such as heart rate, EKG, or number of steps.
FIG. 2A illustrates a detachable two-part wearable device with a base-band 110 separated from an outer smart device 150 that is attached to a secondary band 210 configured to be worn on the wearers 5 chest, according to some embodiments. With reference to FIGS. 1A-2A, the secondary band 210 may be a chest strap configured to receive the outer smart device 150. In addition, the base-band 110 may still be worn on a wrist, as described earlier.
In some embodiments, a specialized body strap may be provided that allows the outer smart device to be attached to the wearer 5 at numerous different positions on the body. By using sensors in multiple locations on a wearer, results may emulate or replicate a multi-lead EKG. A conventional EKG machine may use a dozen or so measurement points for detecting and diagnosing different cardiovascular issues, but by moving the outer smart device (e.g., 150) around to the different positions on the specialized body strap within a short interval, multi-lead EKG-level accuracy may be achieved. Systems have been developed that allow a user to touch the crown of a watch for a brief period in order to measure heart rate or other EKG measurements. Some embodiments may allow the user to take similar EKG-type measurements without having to put their finger on the crown of a smart watch. The base-band (e.g., 110) may provide a first set of sensor points (e.g., with sensors 120) and the outer smart device (e.g., 150) attached to another part of the wearer’s body (e.g., the chest or the other wrist) may provide a second set of sensor points from sensors included therein. In this way, the first and second sets of sensor points may provide measurements at different positions on the wearer’s body, which may be configured to provide the accuracy of a multi-lead EKG device, such as 3-lead, 6-lead, 8-lead, and 12-lead EKG systems that can identify heart problems. Also, using multiple bands, working together with the outer smart device as a main processing unit could provide multiple leads. These embodiments may be useful to high risk patients or patients in locations where EKGs are difficult to obtain. For example, these embodiments may be useful for tele-medicine.
FIG. 2B illustrates a detachable two-part wearable device with a base-band 110 separated from an outer smart device 150 that is attached to a secondary band 211 configured to be worn by the wearer 5 on the opposite wrist to that of the base-band 110, according to some embodiments. With reference to FIGS. 1A-2B, the secondary band 211 may be a wrist strap configured to receive the outer smart device 150. In addition, the base-band 110 may still be worn on a wrist, as described earlier. Attaching the secondary band 211 with the outer smart device 150 on the other wrist,  creates a full circuit between both wrists for measuring heart rate, blood pressure, or other biometrics. This may provide better tracking or sensor data collection. For example, wearing sensors on wrists may enable the sensors to detect problems with the user’s gate. Also, by having sensors on both wrists during many activities (e.g., sports, exercise, hiking, walking, etc. ) , a processor (e.g., 160) may be able to more accurately determine the activity that is being performed. Similarly, having sensors on both wrists may more accurately detect when the user is sleeping, resting, reading, working at a computer, etc. In this way, a smartwatch working in conjunction with a base-band configured to take sensor measurements may more easily perform automatic detection of the types of activities that are being performed.
FIG. 2C illustrates a detachable two-part wearable device with a base-band 110 separated from an outer smart device 150 that is attached to a secondary band 211 configured to be worn by the wearer 5 on a shoe or ankle, according to some embodiments. With reference to FIGS. 1A-2C, the secondary band 212 may be a shoe/sneaker strap or an ankle strap configured to receive the outer smart device 150. In such embodiments, the base-band 110 may be worn on a wrist as described. Attaching the secondary band 212 with the outer smart device 150 on a shoe or ankle, may provide a data collection point better positioned for determining a user’s walking or running cadence or measuring the user’s gate. This may provide better tracking or sensor data collection for such activities.
In some embodiments, a processor of the detachable two-part wearable device may receive sensor data relevant to sleep of the user from one or more sensors coupled to the detachable two-part wearable device. In some embodiments, the sensors may be disposed on or in individual parts of the detachable two-part wearable device and coupled to a processor of the other part of the detachable two-part wearable device. In some embodiments, the sensors may be sensors of another computing device and may be coupled to the detachable two-part wearable device via an interface and communication link (e.g., a wired or wireless communication link) .
In some embodiments, the processor of the detachable two-part wearable device may determine one or more user sleep metrics relevant to the sleep of the user based on the received sensor data. In some embodiments, the processor of the detachable two-part wearable device may determine one or more user sleep metrics relevant to the sleep of the user based on sensor data received during a sleep period (e.g., a night’s sleep) . In some embodiments, the processor of the detachable two-part wearable device may determine one or more user sleep metrics relevant to the sleep of the user based on sensor data received during a plurality of sleep periods (e.g., over a period of time, such as days, week (s) , month (s) , etc. ) . Examples of sleep metrics relevant to the sleep of the user based on the received sensor data include determining at least one of sleep duration, sleep efficiency (e.g., a percentage of time a user actually sleeps while in bed or in a sleeping position) , an amount of restorative sleep (e.g., sleep that makes a person feel well rested) , an amount of restlessness, or a sleep latency (also called sleep onset latency, e.g., a time it takes for a person to fall asleep) .
In some embodiments, a processor of the outer smart device may receive base-band sensor data relevant to biometrics of the user from one or more sensors of the base-band when that outer smart device is uncoupled from the base-band. In some embodiments, the outer smart device may also receive the smart device sensor data from sensors disposed on or in the outer smart device and coupled to a processor of the outer smart device. In some embodiments, the sensor data may be received from sensors of another computing device and may be coupled to the detachable two-part wearable device via an interface and communication link (e.g., a wired or wireless communication link) . In some embodiments, the processor of the detachable two-part wearable device may receive the sensor data in response to detecting a condition, event, ambient noise, etc. In some embodiments, the processor of the detachable two-part wearable device may receive the sensor data “passively” while the user is performing an activity, but without notifying the user that such data is being gathered (e.g., obtaining the sensor data “in the background” of another activity) . As an example, a camera may track a user’s body and/or eye movement while the user is  sleeping. As another example, communication signal strength between the outer smart device and the base-band may provide positioning and/or movement information about the user.
In some embodiments, one or more displays of the detachable two-part wearable device may display an indication of the measured biometrics of the wearer. In some embodiments, the one or more displays of the detachable two-part wearable device may display an indication of an amount of sleep that correlates to improved user performance. In some embodiments, the one or more displays of the detachable two-part wearable device may display an indication of user sleep metrics. In this manner, the processor of the two-part wearable device may provide an indication of which sleep positions and/or rituals are most effective for a user to improve their sleep.
In some embodiments, the action taken by the processor of the two-part wearable device may include generating a warning of a physical and/or psychological disorder based on biometric measurements obtained by sensors (e.g., 120) of the detachable two-part wearable device. For example, based on long-term information received about a user, a processor of the detachable two-part wearable device may be configured to detect subtle changes that may indicate, for example, a disease or disorder that reduces or impairs a user’s health. As another example, the processor of the detachable two-part wearable device may be configured to detect disease or disorders that correlate with increased sleep, such as depression, epilepsy, narcolepsy, hypersomnia, or another such disease or disorder.
FIG. 3 is a system block diagram illustrating an example communications environment 300 suitable for implementing various embodiments. The communication environment 300 may include a base-band 110, an outer smart device 150, a computing device 310, an access point 330, a base station 340, a communication network 350, and a network element 390. The base-band 110 is illustrated as a bracelet and the outer smart device 150 is illustrated as the main component of a smart watch, but this is not intended as a limitation. The outer smart  device (e.g., 150) may include any wearable device computing device such as a smart ring, smart necklace, smart earring, or another wearable device computing device. Similarly, the base-band (e.g., 110) may include any band that is configured to be worn in direct or close contact with a wearer’s skin and configured to be removably coupled to the outer smart device. In some embodiments, the base-band may include devices such as a fitness band or strap configured to work with the outer smart device. The communication system 300 also may include various other computing devices, such as the charging station 315 and/or the appliance 320 (e.g., a smart clock) , for example, another smart device or smart equipment, such as exercise equipment, a tablet computer, a desktop or laptop computer, and the like.
The base station 340 and the access point 330 may provide wireless communications to access the communication network 350 over a wired and/or  wireless communication backhaul  326 and 328, respectively. The base station 340 may include base stations configured to provide wireless communications over a wide area (e.g., macro cells) , as well as small cells, which may include a micro cell, a femto cell, a pico cell, and other similar network access points. The access point 330 may include access points configured to provide wireless communications over a relatively smaller area. Other examples of base stations and access points are also possible. Various configurations of base stations, including aggregated base stations and disaggregated base stations, are further described below.
The base-band 110 may communicate with the outer smart device 150 over a wireless communication link 311. Optionally, once connected to one another the base-band 110 and the outer smart device 150 may communicate and/or exchange power (i.e., charging) via a wired or conductive connection. Additionally, the base-band 110 may communicate with other devices, such as the appliance 320, the access point 330, and/or the computing device 310 via short-range communication links 312. Similarly, the outer smart device 150 may communicate with other devices, such as the appliance 320, the access point 330, and/or the computing device 310 via the short-range communication links 312. Optionally, the outer smart device 150 may  communicate with the base station 340 via a long-range communication link 313. Similarly, the computing device 310 may communicate with the base station 340 via the long-range communication link 313. Further, the computing device 310 may communicate with the access point 330 over short-range communication link 312.
The  wireless communication links  311, 312, 313 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels. The wireless communication links 120–126 may utilize one or more radio access technologies (RATs) . Examples of RATs that may be used in a wireless communication link in various embodiments include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) . However, such examples should not be considered limiting. For example, embodiments are also possible in which a wireless communication link uses other RATs, such as 3GPP Long Term Evolution (LTE) , 3G, 4G, 5G, Global System for Mobility (GSM) , Code Division Multiple Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs.
The network element 390 may include a network server or another similar network element. The network element 390 may communicate with the communication network 350 over a communication link 355. The outer smart device 150, the computing device 310, the network element 390, and optionally the base-band 110 may communicate via the communication network 350. The network element 390 may provide the outer smart device 150 with information, access to one or more data structures, instructions, or commands relevant to operations of the outer smart device 150 and/or the base-band 110.
Deployment of communication systems, such as 5G new radio (NR) systems, may be arranged in multiple manners with various components or constituent parts. In a 5G NR system, or network, a network node, a network entity, a mobility element of  a network, a radio access network (RAN) node, a core network node, a network element, or a network equipment, such as a base station (BS) , or one or more units (or components) performing base station functionality, may be implemented in an aggregated or disaggregated architecture. For example, a base station (such as a Node B (NB) , evolved NB (eNB) , NR BS, 5G NB, access point (AP) , a transmit receive point (TRP) , or a cell, etc. ) may be implemented as an aggregated base station (also known as a standalone BS or a monolithic BS) or as a disaggregated base station.
An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node. A disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more central or centralized units (CUs) , one or more distributed units (DUs) , or one or more radio units (RUs) ) . In some embodiments, a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other RAN nodes. The DUs may be implemented to communicate with one or more RUs. Each of the CUs, DUs and RUs also can be implemented as virtual units, referred to as a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) .
Base station-type operations or network design may consider aggregation characteristics of base station functionality. For example, disaggregated base stations may be utilized in an integrated access backhaul (IAB) network, an open radio access network (O-RAN) (such as the network configuration sponsored by the O-RAN Alliance) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) . Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design. The various units of the disaggregated base station, or disaggregated RAN architecture, can be configured for wired or wireless communication with at least one other unit.
FIG. 4A is a component block diagram illustrating a processing device 450 suitable for use in an outer smart device 150 (see also, 151, 152, 153, 154, 155, 157) implementing various embodiments. With reference to FIGS. 1A–4A, the outer smart device 150 may include the processing device 450. The processing device 450 may include various circuits, devices, and/or functions used to control operations thereof. For example, the processing device 450 may include a processor 160, electronic storage 414 (i.e., memory) , an input module 418, and an output module 416. In addition, the processing device 450 may be coupled to a transceiver 422 for transmitting and/or receiving wireless communications (e.g., with the base-band 110, base station 340, access point 330, and/or a  computing devices  310, 320 via  communication links  311, 312, 313, as described) , one or more sensors 420, and an output device 428 such as a display device (e.g., 170) , a sound output device (e.g., a speaker) , a haptic feedback device, etc.
Electronic storage 414 may include non-transitory storage media that electronically stores information. The electronic storage media of electronic storage 414 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with the computing device 102 and/or removable storage that is removably connectable to the computing device 102 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) . In various embodiments, electronic storage 412 may include one or more of electrical charge-based storage media (e.g., EEPROM, RAM, etc. ) , solid-state storage media (e.g., flash drive, etc. ) , optically readable storage media (e.g., optical disks, etc. ) , magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc. ) , and/or other electronically readable storage media. Electronic storage 412 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) . Electronic storage 412 may store software algorithms, information determined by processor (s) 410, information received from the computing device 140, information received from  network element 110, and/or other information that enables the computing device 102 to function as described herein.
In some embodiments, the processing device 450 may be configured to receive sensor data relevant to sleep of the user from one or more sensors coupled to the computing device. The sensor data may be received from one or more of the onboard sensors 320 or remote sensors (e.g., 120) . The sensor data may be received from the base-band 110 and/or another computing device (e.g., 310, 320) . The processing device 450 may be configured to determine one or more user sleep metrics relevant to the sleep of the user based on the received sensor data, and to apply the user sleep metrics to a performance prediction model configured to use the user sleep metrics to predict one or more metrics of user performance. In some embodiments, the processing device 450 may be configured to receive second sensor data relevant to performance of the task by the user from one or more sensors coupled to the outer smart device. The processing device 450 may be configured to determine one or more user performance metrics based on the received second sensor data. In some embodiments, the processing device 450 may be configured to take an action based on the predicted one or more metrics of user performance. In some embodiments, the processing device 450 may be configured to update the performance prediction model based on a difference between the predicted one or more metrics of user performance and the determined one or more user performance metrics.
Processor (s) 160 may include one of more local processors (e.g., 212, 214, 216, 218, 260, 312) , which may be configured to provide information processing capabilities in the outer smart device 150. As such, processor (s) 160 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. Although processor (s) 160 is shown in FIG. 4 as a single entity, this is for illustrative purposes only. In some embodiments, processor (s) 410 may include a plurality of processing units. These processing units may be physically located within the same  device, or processor (s) 160 may represent processing functionality of a plurality of devices operating in coordination.
FIG. 4B is a component block diagram illustrating a processing device 410 suitable for use in a base-band 110 (see also, 111, 112, 113, 114, 115) implementing various embodiments. With reference to FIGS. 1A–4B, the base-band 110 may include the processing device 410. The processing device 410 may include various circuits, devices, and/or functions used to control operations thereof. For example, the processing device 410 may include the processor 160, the electronic storage 414 (i.e., memory) , the input module 418, and the output module 416. In addition, the processing device 410 may be coupled to the transceiver 422 for transmitting and/or receiving wireless communications (e.g., with the outer smart device 150, base station 340, access point 330, and/or a  computing devices  310, 320 via  communication links  311, 312, 313, as described) , one or more sensors 420, and the output device 428 such as a display device, a sound output device (e.g., a speaker) , a haptic feedback device, etc.
In some embodiments, the processing device 410 may be configured to receive sensor data relevant to sleep of the user from one or more sensors coupled to the computing device. The sensor data may be received from one or more of the onboard sensors 320 or remote sensors (e.g., 120) . The sensor data may be received from the outer smart device 150 and/or another computing device (e.g., 310, 320) . The processing device 410 may be configured to determine one or more user sleep metrics relevant to the sleep of the user based on the received sensor data, and to apply the user sleep metrics to a performance prediction model configured to use the user sleep metrics to predict one or more metrics of user performance. In some embodiments, the processing device 410 may be configured to receive second sensor data (e.g., from a smart device located on another part of the wearer’s body or spaced away from the user, such as on a bedside table) relevant to performance of the task by the user from one or more sensors coupled to the outer smart device. The processing device 410 may be configured to determine one or more user performance metrics based on the  received second sensor data. In some embodiments, the processing device 410 may be configured to take an action based on the predicted one or more metrics of user performance. In some embodiments, the processing device 410 may be configured to update the performance prediction model based on a difference between the predicted one or more metrics of user performance and the determined one or more user performance metrics.
FIG. 5 is a component block diagram illustrating an example computing system 200 including a wireless modem suitable for implementing various embodiments. With reference to FIGS. 1A–5, the illustrated example processing system 500 includes two  SOCs  502, 504, a clock 506, a voltage regulator 508, a wireless transceiver 566, and an output device 568 such as a display device, a sound output device (e.g., a speaker) , a haptic feedback device, etc. In some embodiments, the first SOC 502 operates as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions. In some embodiments, the second SOC 504 may operate as a specialized processing unit. For example, the second SOC 504 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (e.g., 5 Gbps, etc. ) , and/or very high frequency short wave length (e.g., 28 GHz millimeter wave (mmWave) spectrum, etc. ) communications.
The first SOC 502 may include a digital signal processor (DSP) 510, a modem processor 512, a graphics processor 514, an application processor 516, one or more coprocessors 518 (e.g., vector co-processor) connected to one or more of the processors, memory 520, custom circuitry 522, system components and resources 524, an interconnection/bus module 526, one or more sensors 530 (e.g., thermal sensors, motion sensors, proximity sensors, a multimeter, etc. ) , a thermal management unit 532, and a thermal power envelope (TPE) component 534. The second SOC 504 may include a 5G modem processor 552, a power management unit 554, an interconnection/bus module 564, memory 558, and various additional processors 560,  such as an applications processor, packet processor, etc. The second SOC 504 may further be coupled to a plurality of mmWave transceivers 556, which may be separate integrated circuits that are radio frequency shielded on or packaged separate from the second SOC 504 as indicated by the dashed line.
Each  processor  510, 512, 514, 516, 518, 552, 560 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores. For example, the first SOC 502 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10) . In addition, any or all of the  processors  510, 512, 514, 516, 518, 552, 560 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
The first and  second SOC  502, 504 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser. For example, the system components and resources 524 of the first SOC 502 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device. The system components and resources 524 and/or custom circuitry 522 may also include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
The first and  second SOC  502, 504 may communicate via interconnection/bus module 550. The  various processors  510, 512, 514, 516, 518, may be interconnected to one or more memory elements 520, system components and resources 524, and custom circuitry 522, and a thermal management unit 532 via an interconnection/bus  module 526. Similarly, the processor 552 may be interconnected to the power management unit 554, the mmWave transceivers 556, memory 558, and various additional processors 560 via the interconnection/bus module 564. The interconnection/ bus module  526, 550, 564 may include an array of reconfigurable logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
The first and/or  second SOCs  502, 504 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 506 and a voltage regulator 508. Resources external to the SOC (e.g., clock 506, voltage regulator 508) may be shared by two or more of the internal SOC processors/cores.
In addition to the example processing system 500 discussed above, various embodiments may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof. In some embodiments, only one SOC (e.g., 502, 504) may be used in a less capable computing device that are configured to provide sensor information to a more capable computing device.
FIG. 6A is a process flow diagram illustrating an example method 600a that may be performed by a processor of an outer smart device according to various embodiments. With reference to FIGS. 1A–6A, means for performing each of the operations of the method 600a may be a processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) of the outer smart device (e.g., 150) and the like.
In block 602, a user or other individual may de-couple the outer smart device from a base-band configured to be worn in direct or close contact with a wearer’s skin.
In block 604, the user or other individual may place the outer smart device in a remote location relative to the base-band worn by the wearer. In some embodiments placing the outer smart device in the remote location may include attaching the outer  smart device to a part of the wearer’s body that is remote from the base-band worn by the wearer,
In block 606, the processor of the outer smart device may receive remote sensor data collected by a base-band sensor of the base-band worn by the wearer. Means for performing the operations of block 606 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) and a transceiver (e.g., 422, 566) .
In block 608, the processor of the outer smart device may determine a biometric assessment of the wearer based on the received remote sensor data. In some embodiments, actions taken by the processor may include displaying an indication of one or more predicted metrics of user performance, displaying an indication of an amount of sleep that correlates to improved user performance, displaying an indication of user sleep metrics that are relatively more predictive than the other user sleep metrics of user performance, outputting an indication of one or more user sleep metrics that predict with greater reliability or confidence a user performance, and the like.
FIGS. 6B–6C are process flow diagrams illustrating operations 600b–600c that may be performed by a processing device of an outer smart device as part of the method 600a according to various embodiments. With reference to FIGS. 1A–6C, means for performing the operations 600b–600c may be a processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) , of the outer smart device (e.g., 150) , a smart device battery (e.g., 170) , and the like.
With reference to FIG. 6B, following the operations in block 608 of the method 600a, the processor may charge a base-band battery coupled to the base-band using a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band in block 610. Means for performing the operations of block 610 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) , of the outer smart device (e.g., 150) , a smart device battery (e.g., 170) , a base-band battery (e.g., 130) , and the like.
With reference to FIG. 6C, following the operations in block 606 of the method 600a as described, the processor may receive onboard sensor data collected by a smart device sensor of the outer smart device, wherein determining the biometric assessment of the wearer is further based on the received onboard sensor data in block 612. Means for performing the operations of block 610 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) , of the outer smart device (e.g., 150) , a smart device battery (e.g., 170) , and the like.
The processor may then perform the operations of block 608 as described.
FIG. 7A is a process flow diagram illustrating an example method 700a that may be performed by a processor of a base-band according to various embodiments. With reference to FIGS. 1A–7A, means for performing each of the operations of the method 700a may be a processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) of the base-band (e.g., 110) and the like.
In block 702, a user or other individual may de-couple an outer smart device from the base-band configured to be worn in direct or close contact with a wearer’s skin.
In block 704, a base-band sensor of the base-band worn by the wearer, may collect biometric data associated with the wearer. Means for performing the operations of block 702 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) and one or more sensors (e.g., 120) of the base-band.
In block 706, the transmitter of the base-band may transmit the collected biometric data to the outer smart device. Means for performing the operations of block 606 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) and the transceiver (e.g., 422, 566) .
FIG. 7B is a process flow diagram illustrating operations 700b that may be performed by a processing device of a base-band as part of the method 700a according to various embodiments. With reference to FIGS. 1A–7B, means for performing the  operations 700b may be a processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) , a base-band battery (e.g., 130) , and the like.
With reference to FIG. 7B, at some point after the outer smart device has been disconnected decoupled from the base-band in block 702, a user or other individual may re-couple the outer smart device to the base-band in block 708.
In block 708, the processor may charge a base-band battery coupled to the base-band using a smart device battery coupled to the outer smart device in response to coupling the outer smart device. Means for performing the operations of block 708 may include the processor (e.g., 160, 510, 512, 514, 516, 518, 552, and 560) , of the base-band (e.g., 110) , a base-band battery (e.g., 130) , and the like.
FIG. 8 is a component block diagram of a computing device suitable for use with various embodiments. With reference to FIGS. 1A–8, various embodiments (including embodiments discussed above with reference to FIGS. 1A-7B) may be implemented on a variety of computing devices, an example of which is illustrated in FIG. 8 in the form of an outer smart device 150. The outer smart device 150 may include a clasp or base-band (e.g., 110) to fasten or adhere the outer smart device 150 to a body part or to clothing. In some embodiments, the clasp or wrist band may include or be coupled to a support 804 configured to support a body 806 of the outer smart device 150. The body 806 may include a display device 162 that is configured to display information. The display device 162 also may be configured to receive a user input (e.g., a touchscreen display or the like) .
The outer smart device 150 may include a number of sensors that may be configured to obtain information about wearer actions and external conditions that may be useful for sensing images, sounds, motions and other phenomena. In some embodiments, outer smart device 150 may include a camera 835 configured to capture still images or video. In some embodiments, the outer smart device 150 may include a microphone 810 positioned and configured to record sounds in the vicinity of the outer smart device 150. In some embodiments, outer smart device 150 may include  other sensors (e.g., a thermometer, heart rate monitor, body temperature sensor, pulse oximeter, etc. ) for collecting information pertaining to environment and/or user conditions.
The outer smart device 150 may include a processing system 812 that includes processing and  communication SOCs  502, 504 which may include one or more processors (e.g., 510, 512, 514, 516, 518, 552, and 560) one or more of which may be configured with processor-executable instructions to perform operations of various embodiments. The processing and  communications SOCs  502, 504 may be coupled to internal sensors 820, internal memory 822, and communication circuitry 824 coupled one or more antenna 826 for establishing a wireless communication link (e.g., with a base-band 110, access point 330, a base station 340, or a second computing device 310, 320) . The processing and  communication SOCs  502, 504 may also be coupled to sensor interface circuitry 828 configured to control and received data from a camera 835, microphone (s) 810, and other sensors positioned on the body 806.
The internal sensors 820 may include an inertial measurement unit (IMU) that includes electronic gyroscopes, accelerometers, and a magnetic compass configured to measure movements and orientation of the outer smart device 150. The internal sensors 820 may further include a magnetometer, an altimeter, an odometer, and an atmospheric pressure sensor, as well as other sensors useful for determining the orientation and motions of the outer smart device 150. The processing system 812 may further include a power source such as a rechargeable battery 830 coupled to the  SOCs  502, 504 as well as the external sensors on the frame 802.
FIG. 9 is a component block diagram of a computing device suitable for use with various embodiments. With reference to FIGS. 1A–9, various embodiments (including embodiments discussed above with reference to FIGS. 1A-7B) may be implemented on a variety of computing devices, an example of which is illustrated in FIG. 9 in the form of a base-band 110. The base-band 110 may include a clasp to fasten or adhere to the outer smart device (e.g., 150) to a body part, or to clothing (e.g., a strap) . In some embodiments, the clasp or wrist band may include or be  coupled to a substrate 904 of the base-band 110 configured to support a base connector (e.g., 140) of the base-band 110. The substrate 904 may include a display device 135 that is configured to display information. The display device 135 also may be configured to receive a user input (e.g., a touchscreen display or the like) .
The base-band 110 may include a number of sensors that may be configured to obtain information about wearer actions and external conditions that may be useful for sensing images, sounds, motions and other phenomena. In some embodiments, base-band 110 may include a sensor 120 configured to capture sensor information. In some embodiments, the base-band 110 may include a microphone 910 positioned and configured to record sounds in the vicinity of the base-band 110. In some embodiments, base-band 110 may include other sensors (e.g., a thermometer, heart rate monitor, body temperature sensor, pulse oximeter, etc. ) for collecting information pertaining to environment and/or user conditions.
The base-band 110 may include a processing system 160 that includes processing and  communication SOCs  502, 504 which may include one or more processors (e.g., 510, 512, 514, 516, 518, 552, and 560) one or more of which may be configured with processor-executable instructions to perform operations of various embodiments. The processing and  communications SOCs  502, 504 may be coupled to internal sensors 920, internal memory 922, and communication circuitry 924 coupled one or more antenna 926 for establishing a wireless communication link (e.g., with the outer smart device 150, access point 330, a base station 340, or a second computing device 310, 320) . The processing and  communication SOCs  502, 504 may also be coupled to sensor interface circuitry 928 configured to control and received data from a camera, microphone (s) 910, and other sensors positioned on the substrate 904.
The internal sensors 920 may include an inertial measurement unit (IMU) that includes electronic gyroscopes, accelerometers, and a magnetic compass configured to measure movements and orientation of the base-band 110. The internal sensors 920 may further include a magnetometer, an altimeter, an odometer, and an atmospheric  pressure sensor, as well as other sensors useful for determining the orientation and motions of the base-band 110. The processing system 912 may further include a power source such as a rechargeable battery 930 coupled to the  SOCs  502, 504 as well as the external sensors.
FIG. 10 is a component block diagram of a wireless device 1000 (e.g., a computing device 310) suitable for use with various embodiments. In some embodiments, the wireless device 1000 may operate as a network element providing communication links with a base band 110 and/or an outer smart device 150. With reference to FIGS. 1–10, various embodiments may be implemented on a variety of wireless devices 1000 (for example, the computing device 310) , an example of which is illustrated in FIG. 10 in the form of a smartphone. The wireless device 1000 may include a first SOC 502 (for example, a SOC-CPU) coupled to a second SOC 504 (for example, a 5G capable SOC) . The first and  second SOCs  502, 504 may be coupled to  internal memory  1006, 1016, a display 1012, and to a speaker 1014. Additionally, the wireless device 1000 may include an antenna 1004 for sending and receiving electromagnetic radiation that may be connected to a transceiver 1027 coupled to one or more processors in the first and/or  second SOCs  502, 504. Wireless device 1000 may include menu selection buttons or rocker switches 1020 for receiving user inputs.
The wireless device 1000 wireless device 1000 may include a sound encoding/decoding (CODEC) circuit 1010, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound. One or more of the processors in the first and  second SOCs  502, 504, wireless transceiver 1027 and CODEC 1010 may include a digital signal processor (DSP) circuit (not shown separately) .
The processors of the wireless device 1000 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of some implementations described below. In some wireless  devices, multiple processors may be provided, such as one processor within an SOC 504 dedicated to wireless communication functions and one processor within an SOC 502 dedicated to running other applications. Software applications may be stored in the  memory  1006, 1016 before they are accessed and loaded into the processor. The processors may include internal memory sufficient to store the application software instructions.
The processors implementing various embodiments may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of the various embodiments described in this application. In some communication devices, multiple processors may be provided, such as one processor dedicated to wireless communication functions and one processor dedicated to running other applications. Typically, software applications may be stored in the internal memory before they are accessed and loaded into the processor. The processor may include internal memory sufficient to store the application software instructions.
Implementation examples are described in the following paragraphs. While some of the following implementation examples are described in terms of example methods, further example implementations may include: the example methods discussed in the following paragraphs implemented by a computing device comprising a processor configured with processor-executable instructions to perform operations of the methods of the following implementation examples; the example methods discussed in the following paragraphs implemented by a computing device comprising means for performing functions of the methods of the following implementation examples; and the example methods discussed in the following paragraphs may be implemented as a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a computing device to perform the operations of the methods of the following implementation examples.
Example 1. A detachable two-part wearable device, including: a base-band configured to be worn in direct or close contact with skin of a wearer, in which the base-band includes: a sensor configured to measure biometrics of the wearer; a base-band battery configured to power the sensor; and a base connector; and an outer smart device removably coupled to the base-band, in which the outer smart device includes: a processor configured to receive the biometrics measured by the sensor; a smart device battery configured to power the processor; and an outer connector configured to communicatively or electronically couple with the base connector of the base-band.
Example 2. The detachable two-part wearable device of 1, in which the smart device battery is configured to charge the base-band battery in response to the base connector coupling with the outer connector.
Example 3. The detachable two-part wearable device of either of examples 1 or 2, in which the coupling between the base connector and the outer connector is configured to transfer power therebetween.
Example 4. The detachable two-part wearable device of any of examples 1-3, in which the coupling between the base connector and the outer connector is configured to provide a data communication link therebetween.
Example 5. The detachable two-part wearable device of any of examples 1-4, in which the outer smart device further includes a smart device sensor coupled to the processor; and the smart device sensor is configured to measure at least one of biometrics of the wearer, information about an environment of the wearer, or other types of information at least one of when the outer smart device is or is not physically connected to the base-band.
Example 6. The detachable two-part wearable device of any of examples 1-5, in which both the base-band and the outer smart device each separately include a display.
Example 7. The detachable two-part wearable device of example 6, in which the display of the base-band is concealed by the outer smart device when the outer smart device is coupled to the base-band.
Examples 8. The detachable two-part wearable device of example 6, in which the display of the base-band faces in a direction different to that of the display of the outer smart device when the outer smart device is coupled to the base-band.
Example 9. The detachable two-part wearable device of any of examples 1-8, in which the outer smart device includes an annular band; and the annular band covers the base-band when the annular band is coupled to the base-band.
Example 10. The detachable two-part wearable device of any of examples 1-9, further including an intermediate device configured to be removably coupled between the outer smart device and the base-band.
Example 11. The detachable two-part wearable device of any of examples 1-10, further including a secondary band configured to be worn by the wearer, wherein the secondary band includes a secondary connector configured to communicatively or electronically couple with the outer connector instead of the base connector when the outer smart device is not physically connected to the base-band.
Example 12. A method of using a detachable two-part wearable device including de-coupling the outer smart device from a base-band configured to be worn in direct or close contact with skin of a wearer, placing the outer smart device in a remote location relative to the base-band worn by the wearer, receiving, at a processor of the outer smart device, remote sensor data collected by a base-band sensor of the base-band worn by the wearer, and determining, by the processor of the outer smart device, a biometric assessment of the wearer based on the received remote sensor data.
Example 13. The method of example 12, further including charging a base-band battery coupled to the base-band using power from a smart device battery  coupled to the outer smart device in response to coupling the outer smart device to the base-band.
Example 14. The method of either of examples 12 or 13, further including receiving, at the processor of the outer smart device, onboard sensor data collected by a smart device sensor of the outer smart device, in which determining the biometric assessment of the wearer is further based on the received onboard sensor data.
Example 15. The method of any of examples 12-14, in which placing the outer smart device in t1he remote location includes attaching the outer smart device to a part of the wearer’s body that is remote from the base-band worn by the wearer.
Example 16. A method of using a detachable two-part wearable device including de-coupling an outer smart device from the base-band device configured to be worn in direct or close contact with skin of a wearer, collecting biometric data associated with the wearer by a base-band sensor of the base-band device worn by the wearer, and transmitting the collected biometric data from the base-band device to the outer smart device.
Example 17. The method of example 16, further including charging a base-band battery coupled to the base-band device using a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band device.
Various embodiments illustrated and described are provided merely as examples to illustrate various features of the claims. However, features shown and described with respect to any given embodiment are not necessarily limited to the associated embodiment and may be used or combined with other embodiments that are shown and described. Further, the claims are not intended to be limited by any one example embodiment. For example, one or more of the operations of the methods may be substituted for or combined with one or more operations of the methods.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that  the operations of various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the order of operations in the foregoing embodiments may be performed in any order. Words such as “thereafter, ” “then, ” “next, ” etc. are not intended to limit the order of the operations; these words are used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a, ” “an, ” or “the” is not to be construed as limiting the element to the singular.
Various illustrative logical blocks, modules, circuits, and algorithm operations described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such embodiment decisions should not be interpreted as causing a departure from the scope of the claims.
The hardware used to implement various illustrative logics, logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in  conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
In one or more embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium. The operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium. Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor. By way of example but not limitation, such non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.
The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the claims. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic  principles defined herein may be applied to other embodiments without departing from the spirit or scope of the claims. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims (20)

  1. A detachable two-part wearable device, comprising:
    a base-band configured to be worn in direct or close contact with skin of a wearer, wherein the base-band includes:
    a sensor configured to measure biometrics of the wearer;
    a base-band battery configured to power the sensor; and
    a base connector; and
    an outer smart device removably coupled to the base-band, wherein the outer smart device includes:
    a processor configured to receive the biometrics measured by the sensor,
    a smart device battery configured to power the processor; and
    an outer connector configured to communicatively or electronically couple with the base connector of the base-band.
  2. The detachable two-part wearable device of claim 1, wherein the smart device battery is configured to charge the base-band battery in response to the base connector coupling with the outer connector.
  3. The detachable two-part wearable device of either of claims 1 or 2, wherein the coupling between the base connector and the outer connector is configured to transfer power therebetween.
  4. The detachable two-part wearable device of any of claims 1-3, wherein the coupling between the base connector and the outer connector is configured to provide a data communication link therebetween.
  5. The detachable two-part wearable device of any of claims 1-4, wherein:
    the outer smart device further includes a smart device sensor coupled to the processor; and
    the smart device sensor is configured to measure at least one of biometrics of the wearer, information about an environment of the wearer, or other types of information at least one of when the outer smart device is or is not physically connected to the base-band.
  6. The detachable two-part wearable device of any of claims 1-5, wherein both the base-band and the outer smart device each separately include a display.
  7. The detachable two-part wearable device of claim 6, wherein the display of the base-band is concealed by the outer smart device when the outer smart device is coupled to the base-band.
  8. The detachable two-part wearable device of claim 6, wherein the display of the base-band faces in a direction different to that of the display of the outer smart device when the outer smart device is coupled to the base-band.
  9. The detachable two-part wearable device of any of claims 1-8, wherein:
    the outer smart device includes an annular band; and
    the annular band covers the base-band when the annular band is coupled to the base-band.
  10. The detachable two-part wearable device of any of claims 1-9, further comprising:
    an intermediate device configured to be removably coupled between the outer smart device and the base-band.
  11. The detachable two-part wearable device of any of claims 1-10, further comprising:
    a secondary band configured to be worn by the wearer, wherein the secondary band includes a secondary connector configured to communicatively or electronically couple with the outer connector instead of the base connector when the outer smart device is not physically connected to the base-band.
  12. A method of using a detachable two-part wearable device, comprising:
    de-coupling an outer smart device from a base-band configured to be worn in direct or close contact with skin of a wearer;
    placing the outer smart device in a remote location relative to the base-band worn by the wearer;
    receiving, at a processor of the outer smart device, remote sensor data collected by a base-band sensor of the base-band worn by the wearer; and
    determining, by the processor of the outer smart device, a biometric assessment of the wearer based on the received remote sensor data.
  13. The method of claim 12, further comprising:
    charging a base-band battery coupled to the base-band using power from a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band.
  14. The method of either of claims 12 or 13, further comprising:
    receiving, at the processor of the outer smart device, onboard sensor data collected by a smart device sensor of the outer smart device, wherein determining the biometric assessment of the wearer is further based on the received onboard sensor data.
  15. The method of any of claims 12-14, wherein placing the outer smart device in the remote location includes attaching the outer smart device to a part of the wearer’s body that is remote from the base-band worn by the wearer.
  16. A method of using a detachable two-part wearable device performed by a processor of a base-band device, comprising:
    de-coupling an outer smart device from the base-band device configured to be worn in direct or close contact with skin of a wearer;
    collecting biometric data associated with the wearer by a base-band sensor of the base-band device worn by the wearer; and
    transmitting the collected biometric data from the base-band device to the outer smart device.
  17. The method of claim 16, further comprising:
    charging a base-band battery coupled to the base-band device using a smart device battery coupled to the outer smart device in response to coupling the outer smart device to the base-band device.
  18. An outer smart device, comprising a processor configured with processor-executable instructions to perform operations of any of claims 12-15.
  19. An outer smart device, comprising means for performing functions of any of claims 12-15.
  20. A base-band, comprising means for performing functions of any of claims 16 or 17.
PCT/CN2022/081227 2022-03-16 2022-03-16 Detachable two-part wearable device WO2023173329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081227 WO2023173329A1 (en) 2022-03-16 2022-03-16 Detachable two-part wearable device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081227 WO2023173329A1 (en) 2022-03-16 2022-03-16 Detachable two-part wearable device

Publications (1)

Publication Number Publication Date
WO2023173329A1 true WO2023173329A1 (en) 2023-09-21

Family

ID=88022064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081227 WO2023173329A1 (en) 2022-03-16 2022-03-16 Detachable two-part wearable device

Country Status (1)

Country Link
WO (1) WO2023173329A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150338880A1 (en) * 2014-05-26 2015-11-26 Kabushiki Kaisha Toshiba Band and electronic device
CN107427224A (en) * 2015-03-19 2017-12-01 皇家飞利浦有限公司 Wearable device with two service stages
WO2018066746A1 (en) * 2016-10-04 2018-04-12 엘지전자 주식회사 Mobile terminal and method for controlling same
CN113164047A (en) * 2018-08-03 2021-07-23 普克威塔利缇公司 Body monitoring system with detachable attachment
US20210333759A1 (en) * 2020-04-24 2021-10-28 Facebook Technologies, Llc Split architecture for a wristband system and related devices and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150338880A1 (en) * 2014-05-26 2015-11-26 Kabushiki Kaisha Toshiba Band and electronic device
CN107427224A (en) * 2015-03-19 2017-12-01 皇家飞利浦有限公司 Wearable device with two service stages
WO2018066746A1 (en) * 2016-10-04 2018-04-12 엘지전자 주식회사 Mobile terminal and method for controlling same
US20190312965A1 (en) * 2016-10-04 2019-10-10 Lg Electronics Inc. Mobile terminal and method for controlling same
CN113164047A (en) * 2018-08-03 2021-07-23 普克威塔利缇公司 Body monitoring system with detachable attachment
US20210333759A1 (en) * 2020-04-24 2021-10-28 Facebook Technologies, Llc Split architecture for a wristband system and related devices and methods

Similar Documents

Publication Publication Date Title
US11412980B2 (en) Optical sensor for wearable devices
US10212994B2 (en) Smart watch band
CN105930631B (en) Method for measuring bio-signals and wearable electronic device thereof
KR102604233B1 (en) wearable measuring apparatus
US9592007B2 (en) Adjustable wearable system having a modular sensor platform
US10136857B2 (en) Adjustable wearable system having a modular sensor platform
WO2021057873A1 (en) Human body temperature measurement method, electronic device, and computer-readable storage medium
US20180078181A1 (en) Health wearable using smart energy harvesting
JP2017513626A (en) Method and system for cardiac monitoring using mobile devices and accessories
TW201629649A (en) Watchband with integrated electronics
JP2015112488A (en) Modular sensor platform device and system
US20130289886A1 (en) Calorie Monitoring System
US11287849B2 (en) Separtable wearable device
US20150342494A1 (en) Sports device and system
US20220409186A1 (en) System and method for estimating a fertility status of a woman
US20180059621A1 (en) Wearable smart wriststrap or watchband with integrated smartwatch functionality
US20190090812A1 (en) Smart socks
US20220117504A1 (en) Modular physiological monitoring system
WO2022082077A1 (en) Physiological monitoring systems
WO2023173329A1 (en) Detachable two-part wearable device
Vashist et al. Wearable technologies for personalized mobile healthcare monitoring and management
WO2022089101A1 (en) Pwv measurement method and apparatus based on portable electronic device
WO2016055853A1 (en) Adjustable wearable system having a modular sensor platform
US20230355174A1 (en) Hydration tracking using baseline calibration
Patel et al. Wearable fitness band-based U-health monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931366

Country of ref document: EP

Kind code of ref document: A1