WO2023171286A1 - Flame retardant cloth and flame retardant work clothing - Google Patents

Flame retardant cloth and flame retardant work clothing Download PDF

Info

Publication number
WO2023171286A1
WO2023171286A1 PCT/JP2023/005405 JP2023005405W WO2023171286A1 WO 2023171286 A1 WO2023171286 A1 WO 2023171286A1 JP 2023005405 W JP2023005405 W JP 2023005405W WO 2023171286 A1 WO2023171286 A1 WO 2023171286A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
fibers
mass
retardant
acrylic
Prior art date
Application number
PCT/JP2023/005405
Other languages
French (fr)
Japanese (ja)
Inventor
見尾渡
尾崎彰
中村晋也
内堀恵太
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023171286A1 publication Critical patent/WO2023171286A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/08Heat resistant; Fire retardant
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/40Modacrylic fibres, i.e. containing 35 to 85% acrylonitrile
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • D03D15/217Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based natural from plants, e.g. cotton
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • D03D15/225Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based artificial, e.g. viscose
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials

Definitions

  • the present invention relates to a flame-retardant fabric that has improved flame retardancy while being environmentally friendly, and flame-retardant work clothes using the same.
  • halogen-containing fibers such as acrylic fibers and other fibers, such as cellulose fibers
  • the conventional method for making halogen-containing fibers such as acrylic fibers flame retardant has been to include about 1 to 50 parts by mass of an antimony compound as a flame retardant (for example, Patent Document 1).
  • an antimony compound as a flame retardant
  • Patent Documents 2 and 3 propose that halogen-containing fibers contain a tin-based compound as a compound that imparts flame retardancy, and that the halogen-containing fibers are used in combination with cellulose-based fibers.
  • Patent Document 2 there was a problem that the cost was high because the halogen-containing fiber contained 20 to 50% by weight of a zinc stannate compound. Further, the fiber composite described in Patent Document 3 may not have sufficient flame retardancy when used for work clothes or the like.
  • the present invention provides a flame-retardant fabric and flame-retardant work clothes that are environmentally friendly, reduce costs, and have improved flame retardancy.
  • One or more embodiments of the present invention include 30-80% by weight of flame-retardant acrylic fibers and 20-70% by weight of other fibers selected from the group consisting of natural fibers and synthetic fibers,
  • the acrylic fiber contains 100 parts by mass of an acrylic copolymer and 1 to 18 parts by mass of a zinc stannate compound, and relates to a flame-retardant fabric having an afterflame time of 30 seconds or less in an ISO 15025 combustion test.
  • One or more embodiments of the present invention relate to flame-retardant workwear comprising the flame-retardant fabric described above.
  • the inventors of the present invention have conducted repeated studies to improve the flame retardancy of fabrics containing acrylic fibers while being environmentally friendly.
  • the fabric can improve the flame retardant properties of work clothes. It shows excellent flame retardancy (flame retardancy) in the combustion test used to evaluate the standard, for example, the ISO 15025: 2016 combustion test method, and specifically the afterflame time measured by the ISO 15025: 2016 combustion test method. It was found that it is easy to adjust the time to 30 seconds or less.
  • the flame-retardant acrylic fiber contains 1 to 18 parts by mass of a zinc stannate compound based on 100 parts by mass of the acrylic copolymer.
  • a zinc stannate compound based on 100 parts by mass of the acrylic copolymer.
  • zinc stannate was added to 100 parts by mass of the acrylic copolymer.
  • the content of the compound is preferably 2 parts by mass or more, more preferably 3 parts by mass or more, and even more preferably 4 parts by mass or more.
  • the flame-retardant acrylic fiber is composed of:
  • the zinc stannate compound is preferably contained in 16 parts by mass or less, more preferably in 15 parts by mass or less, even more preferably in 14 parts by mass or less, and even more preferably in 13 parts by mass or less.
  • the flame-retardant acrylic fiber preferably contains 1.0 to 15.3% by mass, more preferably 2.0 to 13.8% by mass of a zinc stannate compound, based on the total mass of the fiber. It is more preferable to contain 2.5 to 13.0% by mass, even more preferably to contain 3.0 to 12.3% by mass, and even more preferably to contain 3.5 to 11.5% by mass.
  • the content of "zinc stannate compound" in the flame-retardant acrylic fiber can be measured by fluorescent X-ray analysis.
  • the zinc stannate compound may be, for example, zinc stannate (ZnSnO 3 ) or zinc hydroxystannate (ZnSn(OH) 6 ). Therefore, zinc hydroxystannate is preferred.
  • the zinc stannate compound is not particularly limited, but for example, from the viewpoint of spinnability and fiber strength, the average particle diameter D50 is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and still more preferably 2 ⁇ m or less. Further, the lower limit of the average particle diameter D50 of the zinc stannate compound is not particularly limited, but may be, for example, 0.1 ⁇ m or more from the viewpoint of handleability. In addition, from the viewpoint of improving flame retardancy when the amount of flame-retardant acrylic fiber is reduced, for example, less than 45% by mass or 40% by mass, it is preferably 0.5 ⁇ m or more, and 0.5 ⁇ m or more.
  • the halogen-containing monomer includes one or more selected from the group consisting of a halogen-containing vinyl monomer and a halogen-containing vinylidene monomer.
  • the other copolymerizable vinyl monomer is not particularly limited as long as it is copolymerizable with acrylonitrile.
  • halogen-containing vinyl monomer examples include vinyl chloride and vinyl bromide
  • examples of the halogen-containing vinylidene monomer include vinylidene chloride and vinylidene bromide. These halogen-containing monomers may be used alone or in combination of two or more. Among these, one or more selected from the group consisting of vinyl chloride and vinylidene chloride is preferred, and vinylidene chloride is more preferred.
  • the other copolymerizable vinyl monomers are not particularly limited, but include, for example, unsaturated carboxylic acids such as acrylic acid and methacrylic acid, salts thereof, and methacrylic esters such as methyl methacrylate. , esters of unsaturated carboxylic acids such as glycidyl methacrylate, vinyl esters such as vinyl acetate and vinyl butyrate, monomers containing sulfonic acid groups, and the like can be used.
  • the acrylic copolymer can be obtained by known polymerization methods such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization. Among these, suspension polymerization, emulsion polymerization, and solution polymerization are preferred from an industrial viewpoint.
  • the flame-retardant acrylic fiber optionally contains an antistatic agent, a thermal coloring inhibitor, a light fastness improver, a whiteness improver, a devitrification inhibitor, and a colorant. It may also contain other additives such as.
  • the flame-retardant acrylic fibers may be short fibers or long fibers, and can be appropriately selected depending on the method of use.
  • the single fiber fineness is appropriately selected depending on the purpose of the fabric and textile product used, but it may be 1 to 50 dtex, 1.5 to 30 dtex, or 1.7 to 15 dtex. good.
  • the fiber length is appropriately selected depending on the use of the fabric or textile product. Examples include short-cut fibers (fiber length 0.1 to 5 mm), short fibers (fiber length 15 to 176 mm, 20 to 160 mm, 25 to 138 mm, or 30 to 128 mm), and long fibers (filaments).
  • the flame-retardant acrylic fiber can be produced by spinning a composition preferably including, but not limited to, an acrylic copolymer and a zinc stannate compound.
  • a composition preferably including, but not limited to, an acrylic copolymer and a zinc stannate compound.
  • known methods such as a wet spinning method, a dry spinning method, and a semi-dry semi-wet method can be used.
  • wet spinning the method is similar to the case of general acrylic fibers, except that a spinning stock solution obtained by dissolving the acrylic copolymer in a solvent and adding a zinc stannate compound thereto is used.
  • a solution of a zinc stannate compound dissolved in a solvent may be added to a resin solution containing an acrylic copolymer dissolved in a solvent.
  • the solvent include organic solvents such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and acetone, and inorganic solvents such as rhodan salt aqueous solution and nitric acid aqueous solution.
  • the flame-retardant fabric according to one or more embodiments of the present invention contains 30 to 80% by mass of the flame-retardant acrylic fibers and 20% by mass of one or more other fibers selected from the group consisting of natural fibers and chemical fibers. Contains ⁇ 70% by mass. This makes it possible to improve the flame retardance of the flame-retardant fabric while imparting the characteristics of other fibers.
  • the flame-retardant fabric more preferably contains 35 to 75% by mass of the flame-retardant acrylic fibers and 25 to 65% by mass of other fibers selected from the group consisting of natural fibers and chemical fibers, and even more preferably It contains 40 to 75% by mass of the flame-retardant acrylic fiber and 25 to 60% by mass of other fibers selected from the group consisting of natural fibers and chemical fibers.
  • regenerated fibers examples include regenerated cellulose fibers such as rayon, polynosic, cupro, and lyocell, regenerated collagen fibers, regenerated protein fibers, cellulose acetate fibers, and promix fibers.
  • the other fibers mentioned above may be used alone or in combination of two or more.
  • the other fibers may be short fibers or long fibers, and can be appropriately selected depending on the method of use.
  • the single fiber fineness is appropriately selected depending on the purpose of the fabric and textile product used, but it may be 1 to 50 dtex, 1.5 to 30 dtex, or 1.7 to 15 dtex. good.
  • the fiber length is appropriately selected depending on the use of the fabric or textile product. Examples include short-cut fibers (fiber length 0.1 to 5 mm), short fibers (fiber length 15 to 176 mm, 20 to 160 mm, 25 to 138 mm, or 30 to 128 mm), and long fibers (filaments).
  • the flame-retardant fabric may be a woven fabric or a knitted fabric.
  • Fabrics include plain weave, oblique weave, satin weave, variable plain weave, variable oblique weave, variable satin weave, variable weave, patterned weave, single layer weave, double weave, multiple weave, warp pile weave, weft pile weave, and Examples include twine weave. Plain weave, satin weave, and patterned weave have excellent texture and strength as products.
  • the flame retardant fabric may have an afterflame time of 30 seconds or less in the ISO 15025:2016 combustion test, but from the viewpoint of superior flame retardancy (flame resistance), the afterflame time should be 10 seconds or less in the ISO 15025:2016 combustion test.
  • the time is preferably at most seconds, more preferably at most 5 seconds, even more preferably at most 3 seconds, particularly preferably at most 2.0 seconds.
  • it can be suitably used for flame-retardant work clothes for work involving fire, such as protective clothing and firefighting clothing.
  • the flame retardant fabric is not particularly limited, but from the viewpoint of texture, it is preferable that the fabric weight is 150 to 400 g/m 2 , more preferably 200 to 380 g/m 2 , and still more preferably 220 to 350 g/m 2 . m2 .
  • Fabrics such as woven and/or knitted fabrics having the following fiber compositions can be suitably used as flame-retardant workwear fabrics for work involving fire, such as protective clothing and firefighting clothing.
  • cellulose fibers in combination, it is possible to impart hygroscopicity and comfort to fabrics and work clothes. If the content of cellulose fibers is less than 20% by mass, comfort may not be maintained.
  • fabrics such as woven and/or knitted fabrics with the following fiber composition are preferably used as flame-retardant workwear fabrics for work that handles fire, such as protective clothing and firefighting clothing. be able to.
  • the combined use of Lyocell and flame-retardant acrylic fibers containing zinc stannate compounds significantly improved flame retardancy, especially in the ISO 15025:2016 flame test method. show. (1) Contains 30 to 80% by mass of the flame-retardant acrylic fiber and 20 to 70% by mass of Lyocell. (2) Contains 35-75% by mass of the flame-retardant acrylic fiber and 25-65% by mass of Lyocell. (3) Contains 40 to 70% by mass of the flame-retardant acrylic fiber and 30 to 60% by mass of Lyocell.
  • Zinc hydroxystannate in a dispersion of zinc hydroxystannate or metastannic acid was measured using a laser diffraction/scattering method using a laser diffraction/scattering particle size distribution measuring device (manufactured by Horiba, Ltd., particle size distribution measuring device LA-950V2).
  • the particle size distribution of metastannic acid was measured to determine the average particle size D50.
  • the combustion test method based on ISO 15025:2016 is a method in which a flame of 25 ⁇ 2 mm is ignited for 10 seconds from a position 17 ⁇ 1 mm away at right angles to the evaluation fabric set in a specified holder.
  • the content of the flame retardant (zinc hydroxystannate or metastannic acid) in the acrylic fibers was measured by a fluorescent X-ray analysis method using a fluorescent X-ray device ("SEA2210A" manufactured by SII Nano Technology). Using a standard sample with a known tin content, the fluorescent X-ray intensity of tin was measured in advance to create a calibration curve. Next, the tin content in the acrylic fiber was determined by measuring the fluorescent X-ray intensity of tin in the acrylic fiber and comparing it with a calibration curve.
  • the zinc hydroxystannate was added in advance to dimethyl sulfoxide in an amount of 30% by mass, and was uniformly dispersed for use as a prepared dispersion.
  • the average particle diameter D50 of zinc hydroxystannate measured by a laser diffraction/scattering method was 1.2 ⁇ m.
  • the obtained spinning stock solution was extruded into a 50% by mass dimethyl sulfoxide aqueous solution to solidify it, then washed with water and dried at 120°C, and after drying, it was tripled in size.
  • an acrylic fiber was obtained by further performing a heat treatment at 145° C. for 5 minutes.
  • the obtained acrylic fiber of Production Example 1 had a single fiber fineness of 1.7 dtex and a cut length of 38 mm.
  • Acrylic fibers were produced in the same manner as in Production Example 1, except that the amount of zinc hydroxystannate added was 5 parts by mass based on 100 parts by mass of the acrylic copolymer.
  • the obtained acrylic fiber of Production Example 2 had a single fiber fineness of 1.6 dtex and a cut length of 38 mm.
  • Acrylic fibers were produced in the same manner as in Production Example 1, except that the amount of zinc hydroxystannate added was 7 parts by mass based on 100 parts by mass of the acrylic copolymer.
  • the obtained acrylic fiber of Production Example 3 had a single fiber fineness of 1.7 dtex and a cut length of 38 mm.
  • Acrylic fibers were produced in the same manner as in Production Example 1, except that the amount of zinc hydroxystannate added was 10 parts by mass based on 100 parts by mass of the acrylic copolymer.
  • the obtained acrylic fiber of Production Example 4 had a single fiber fineness of 1.8 dtex and a cut length of 38 mm.
  • the acrylic fibers of Production Examples 1 to 4 contain zinc hydroxystannate inside the fibers, and the acrylic fibers of Production Example 5 contain metastannic acid inside the fibers.
  • the content of zinc hydroxystannate or metastannic acid in the acrylic fibers was measured as described above, and the results are shown in Table 1 below.
  • a roving yarn was produced using a high-speed roving frame FL200 manufactured by Toyota Industries Corporation, and a spun yarn with a count of 20/1 was produced using a high-speed spinning frame UA37 manufactured by Howa Kogyo Co., Ltd.
  • a single knit fabric having a basis weight shown in Table 2 below was produced using a computerized flat knitting machine SSG series 122FC manufactured by Shima Seiki Co., Ltd.
  • Table 2 below the amounts of zinc hydroxystannate and metastannic acid are based on 100 parts by mass of the acrylic copolymer.
  • [1] Contains 30 to 80% by mass of flame-retardant acrylic fibers and 20 to 70% by mass of one or more other fibers selected from the group consisting of natural fibers and chemical fibers,
  • the flame-retardant acrylic fiber contains 100 parts by mass of an acrylic copolymer and 1 to 18 parts by mass of a zinc stannate compound,
  • a flame-retardant fabric having an afterflame time of 30 seconds or less in an ISO15025 combustion test.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Abstract

At least one embodiment of the present invention pertains to a flame retardant cloth containing 30-80 mass% of flame retardant acrylic fibers; and 20-70 mass% of at least another type of fibers selected from naturally-occurring fibers and chemical fibers. The flame retardant acrylic fibers contain 100 parts by mass of an acrylic copolymer and 1-18 parts by mass of a zinc stannate compound. The afterflame time of the cloth as measured in an ISO 15025 burning test is at most 30 seconds. As a result, provided are a flame retardant cloth and flame retardant work clothing that are environmentally friendly, and have improved flame retardant properties.

Description

難燃性布帛及び難燃性作業服Flame retardant fabrics and flame retardant work clothes
 本発明は、環境に配慮しつつ、難燃性を高めた難燃性布帛及びそれを用いた難燃性作業服に関する。 The present invention relates to a flame-retardant fabric that has improved flame retardancy while being environmentally friendly, and flame-retardant work clothes using the same.
 アクリル系繊維等のハロゲン含有繊維と、他の繊維、例えばセルロース系繊維の組合せは、一般的に、とりわけ作業服の分野で好適に使用されている。一方、アクリル系繊維等のハロゲン含有繊維の難燃化は、従来、難燃剤としてアンチモン化合物を1~50質量部程度含有させる方法が一般的であった(例えば、特許文献1)。しかし、アンチモン化合物が環境や人体に影響を及ぼす恐れがあることから、アンチモン化合物以外の難燃剤が検討されている。例えば、特許文献2及び3には、ハロゲン含有繊維に難燃性を付与する化合物としてスズ系化合物を含ませ、該ハロゲン含有繊維をセルロース系繊維と組み合わせて使用することが提案されている。 Combinations of halogen-containing fibers such as acrylic fibers and other fibers, such as cellulose fibers, are generally suitably used, particularly in the field of workwear. On the other hand, the conventional method for making halogen-containing fibers such as acrylic fibers flame retardant has been to include about 1 to 50 parts by mass of an antimony compound as a flame retardant (for example, Patent Document 1). However, since antimony compounds may affect the environment and the human body, flame retardants other than antimony compounds are being considered. For example, Patent Documents 2 and 3 propose that halogen-containing fibers contain a tin-based compound as a compound that imparts flame retardancy, and that the halogen-containing fibers are used in combination with cellulose-based fibers.
特公平4-18050号公報Special Publication No. 4-18050 特開平10-001822号公報Japanese Patent Application Publication No. 10-001822 特開平11-1842号公報Japanese Patent Application Publication No. 11-1842
 しかしながら、特許文献2では、ハロゲン含有繊維にスズ酸亜鉛化合物を20~50重量%含ませていることから、コストが高いという問題があった。また、特許文献3に記載の繊維複合体は、作業服等に使用した場合、難燃性が十分ではない場合があった。 However, in Patent Document 2, there was a problem that the cost was high because the halogen-containing fiber contained 20 to 50% by weight of a zinc stannate compound. Further, the fiber composite described in Patent Document 3 may not have sufficient flame retardancy when used for work clothes or the like.
 本発明は、上記従来の問題を解決するため、環境に配慮しつつ、コストを抑え、難燃性を高めた難燃性布帛及び難燃性作業服を提供する。 In order to solve the above-mentioned conventional problems, the present invention provides a flame-retardant fabric and flame-retardant work clothes that are environmentally friendly, reduce costs, and have improved flame retardancy.
 本発明の1以上の実施態様は、難燃性アクリル系繊維を30~80質量%、並びに天然繊維及び化学繊維からなる群から選ばれる他の繊維を20~70質量%含み、前記難燃性アクリル系繊維は、アクリル系共重合体100質量部及びスズ酸亜鉛化合物1~18質量部を含有し、ISO15025燃焼試験において残炎時間が30秒以下である、難燃性布帛に関する。 One or more embodiments of the present invention include 30-80% by weight of flame-retardant acrylic fibers and 20-70% by weight of other fibers selected from the group consisting of natural fibers and synthetic fibers, The acrylic fiber contains 100 parts by mass of an acrylic copolymer and 1 to 18 parts by mass of a zinc stannate compound, and relates to a flame-retardant fabric having an afterflame time of 30 seconds or less in an ISO 15025 combustion test.
 本発明の1以上の実施態様は、前記難燃性布帛を含む難燃性作業服に関する。 One or more embodiments of the present invention relate to flame-retardant workwear comprising the flame-retardant fabric described above.
 本発明によれば、環境に配慮しつつ、コストを抑え、難燃性を高めた難燃性布帛及びそれを含む難燃性作業服を提供する。 According to the present invention, it is possible to provide a flame-retardant fabric that is environmentally friendly, reduces costs, and has improved flame retardancy, and flame-retardant work clothes containing the same.
 本発明の発明者らは、環境に配慮しつつ、アクリル系繊維を含む布帛の難燃性を高めるために検討を重ねた。その結果、アクリル系繊維に所定量のスズ酸亜鉛化合物を含ませるとともに、布帛における該アクリル系繊維と他の繊維の配合割合を所定の範囲にすることで、該布帛が作業服の難燃性基準を評価するのに用いる燃焼試験、例えばISO15025:2016の燃焼試験方法において優れた難燃性(防炎性)を示し、具体的にはISO15025:2016の燃焼試験方法にて測定した残炎時間を30秒以下に調整しやすいことを見出した。 The inventors of the present invention have conducted repeated studies to improve the flame retardancy of fabrics containing acrylic fibers while being environmentally friendly. As a result, by incorporating a predetermined amount of zinc stannate compound into acrylic fibers and by adjusting the blending ratio of the acrylic fibers and other fibers within a predetermined range, the fabric can improve the flame retardant properties of work clothes. It shows excellent flame retardancy (flame retardancy) in the combustion test used to evaluate the standard, for example, the ISO 15025: 2016 combustion test method, and specifically the afterflame time measured by the ISO 15025: 2016 combustion test method. It was found that it is easy to adjust the time to 30 seconds or less.
 特に、驚くことに、本発明においては、理由は定かではないが、スズ酸亜鉛化合物を含むアクリル系繊維と、リヨセルを併用した場合、スズ酸亜鉛化合物の配合量が少なくても、作業服の難燃性基準を評価するのに用いる燃焼試験、例えばISO15025:2016の燃焼試験方法において極めて高い難燃性(防炎性)を示し、具体的にはISO15025:2016の燃焼試験方法にて測定した残炎時間が2秒以下になることを見出した。 In particular, surprisingly, in the present invention, although the reason is not clear, when acrylic fibers containing a zinc stannate compound and Lyocell are used together, even if the amount of the zinc stannate compound is small, the work clothes It showed extremely high flame retardancy (flame retardancy) in the combustion test used to evaluate flame retardant standards, for example, the ISO 15025: 2016 combustion test method, and specifically, it was measured using the ISO 15025: 2016 combustion test method. It was found that the afterflame time was 2 seconds or less.
 本明細書において、数値範囲が「~」で示されている場合、該数値範囲は両端値(上限及び下限)を含む。例えば、「A~B」という数値範囲は、A及びBという両端値を含む範囲であり、「A以上B以下」と同じ範囲である。また、本明細書において、数値範囲が複数記載されている場合、異なる数値範囲の上限及び下限を適宜組み合わせた数値範囲を含むものとする。 In this specification, when a numerical range is indicated by "~", the numerical range includes both end values (upper limit and lower limit). For example, the numerical range "A to B" is a range that includes both end values of A and B, and is the same range as "A to B". Moreover, in this specification, when multiple numerical ranges are described, numerical ranges that are appropriately combined with the upper and lower limits of different numerical ranges are included.
 本発明の1以上の実施態様において、難燃性アクリル系繊維は、アクリル系共重合体100質量部に対して、スズ酸亜鉛化合物を1~18質量部含む。作業服の難燃性基準を評価するのに用いる燃焼試験、特に、ISO15025:2016の燃焼試験における難燃性基準を満たしやすい観点から、アクリル系共重合体100質量部に対して、スズ酸亜鉛化合物を2質量部以上含むことが好ましく、3質量部以上含むことがより好ましく、4質量部以上含むことがさらに好ましい。また、本発明の1以上の実施態様において、難燃性アクリル系繊維は、コスト、強度、紡糸性、着色防止、及び染色性等の観点から、アクリル系共重合体100質量部に対して、スズ酸亜鉛化合物を16質量部以下含むことが好ましく、15質量部以下含むことがより好ましく、14質量部以下含むことがさらに好ましく、13質量部以下含むことがさらにより好ましい。 In one or more embodiments of the present invention, the flame-retardant acrylic fiber contains 1 to 18 parts by mass of a zinc stannate compound based on 100 parts by mass of the acrylic copolymer. From the viewpoint of easily meeting the flame retardant standards in the flame retardant tests used to evaluate the flame retardant standards of work clothes, especially the ISO15025:2016 flame retardant standards, zinc stannate was added to 100 parts by mass of the acrylic copolymer. The content of the compound is preferably 2 parts by mass or more, more preferably 3 parts by mass or more, and even more preferably 4 parts by mass or more. In addition, in one or more embodiments of the present invention, the flame-retardant acrylic fiber is composed of: The zinc stannate compound is preferably contained in 16 parts by mass or less, more preferably in 15 parts by mass or less, even more preferably in 14 parts by mass or less, and even more preferably in 13 parts by mass or less.
 前記難燃性アクリル系繊維は、繊維全質量に対して、スズ酸亜鉛化合物を1.0~15.3質量%含むことが好ましく、2.0~13.8質量%含むことがより好ましく、2.5~13.0質量%含むことがさらに好ましく、3.0~12.3質量%含むことがさらにより好ましく、3.5~11.5質量%含むことがさらにより好ましい。本明細書において、難燃性アクリル系繊維中の「スズ酸亜鉛化合物」の含有量は、蛍光X線分析法で測定することができる。 The flame-retardant acrylic fiber preferably contains 1.0 to 15.3% by mass, more preferably 2.0 to 13.8% by mass of a zinc stannate compound, based on the total mass of the fiber. It is more preferable to contain 2.5 to 13.0% by mass, even more preferably to contain 3.0 to 12.3% by mass, and even more preferably to contain 3.5 to 11.5% by mass. In this specification, the content of "zinc stannate compound" in the flame-retardant acrylic fiber can be measured by fluorescent X-ray analysis.
 前記スズ酸亜鉛化合物は、例えば、スズ酸亜鉛(ZnSnO3)でもよく、ヒドロキシ錫酸亜鉛(ZnSn(OH)6)でもよいが、例えば、繊維、布帛及び作業服の難燃性をより高める観点から、ヒドロキシ錫酸亜鉛であることが好ましい。 The zinc stannate compound may be, for example, zinc stannate (ZnSnO 3 ) or zinc hydroxystannate (ZnSn(OH) 6 ). Therefore, zinc hydroxystannate is preferred.
 前記スズ酸亜鉛化合物は、特に限定されないが、例えば紡糸性や繊維強度の観点から、平均粒子径D50が好ましくは5μm以下、より好ましくは3μm以下、さらに好ましくは2μm以下である。また、前記スズ酸亜鉛化合物の平均粒子径D50の下限は、特に限定されないが、例えば、取扱性の観点から、0.1μm以上であってもよい。また、難燃性アクリル系繊維の配合量を少なくした場合、例えば、45質量%未満又は40質量%以下にした場合の難燃性を高める観点から、0.5μm以上であることが好ましく、0.6μm以上であることがより好ましく、0.7μm以上であることが特に好ましい。本明細書において、化合物の平均粒子径D50は、水や有機溶媒に分散した分散体(分散液)を用い、レーザー回折/散乱法又は動的光散乱法で測定することができる。 The zinc stannate compound is not particularly limited, but for example, from the viewpoint of spinnability and fiber strength, the average particle diameter D50 is preferably 5 μm or less, more preferably 3 μm or less, and still more preferably 2 μm or less. Further, the lower limit of the average particle diameter D50 of the zinc stannate compound is not particularly limited, but may be, for example, 0.1 μm or more from the viewpoint of handleability. In addition, from the viewpoint of improving flame retardancy when the amount of flame-retardant acrylic fiber is reduced, for example, less than 45% by mass or 40% by mass, it is preferably 0.5 μm or more, and 0.5 μm or more. It is more preferably .6 μm or more, and particularly preferably 0.7 μm or more. In this specification, the average particle diameter D50 of a compound can be measured by a laser diffraction/scattering method or a dynamic light scattering method using a dispersion (dispersion liquid) dispersed in water or an organic solvent.
 前記アクリル系共重合体は、アクリロニトリル、ハロゲン含有単量体、並びに他の共重合可能なビニル単量体を含むものを用いることができる。耐熱性及び難燃性をより高める観点から、前記アクリル系共重合体は、アクリロニトリルを30~85質量%、ハロゲン含有単量体を15~70質量%、及び他の共重合可能なビニル単量体を0~3質量%以下含むことが好ましく、アクリロニトリルを35~75質量%、ハロゲン含有単量体を25~65質量%、及び他の共重合可能なビニル単量体を0~3質量%以下含むことがより好ましく、アクリロニトリルを40~70質量%、ハロゲン含有単量体を30~60質量%、及び他の共重合可能なビニル単量体を0~3質量%以下含むことがさらに好ましい。前記ハロゲン含有単量体は、ハロゲン含有ビニル単量体及びハロゲン含有ビニリデン単量体からなる群から選ばれる1以上を含む。前記他の共重合可能なビニル系単量体としては、アクリロニトリルと共重合可能なものであればよく特に限定されない。 The acrylic copolymer may contain acrylonitrile, a halogen-containing monomer, and other copolymerizable vinyl monomers. From the viewpoint of further increasing heat resistance and flame retardancy, the acrylic copolymer contains 30 to 85% by mass of acrylonitrile, 15 to 70% by mass of a halogen-containing monomer, and other copolymerizable vinyl monomers. It preferably contains 0 to 3% by mass or less of acrylonitrile, 35 to 75% by mass of acrylonitrile, 25 to 65% by mass of a halogen-containing monomer, and 0 to 3% by mass of other copolymerizable vinyl monomers. It is more preferable to contain the following: 40 to 70% by mass of acrylonitrile, 30 to 60% by mass of a halogen-containing monomer, and even more preferably 0 to 3% by mass of other copolymerizable vinyl monomers. . The halogen-containing monomer includes one or more selected from the group consisting of a halogen-containing vinyl monomer and a halogen-containing vinylidene monomer. The other copolymerizable vinyl monomer is not particularly limited as long as it is copolymerizable with acrylonitrile.
 前記ハロゲン含有ビニル単量体としては、例えば、塩化ビニル、臭化ビニル等が挙げられ、ハロゲン含有ビニリデン単量体としては、塩化ビニリデン、臭化ビニリデン等が挙げられる。これらのハロゲン含有単量体は、1種又は2種以上を組み合わせて用いてもよい。中でも、塩化ビニル及び塩化ビニリデンからなる群から選ばれる一種以上が好ましく、塩化ビニリデンがより好ましい。 Examples of the halogen-containing vinyl monomer include vinyl chloride and vinyl bromide, and examples of the halogen-containing vinylidene monomer include vinylidene chloride and vinylidene bromide. These halogen-containing monomers may be used alone or in combination of two or more. Among these, one or more selected from the group consisting of vinyl chloride and vinylidene chloride is preferred, and vinylidene chloride is more preferred.
 前記他の共重合可能なビニル系単量体としては、特に限定されないが、例えば、アクリル酸やメタクリル酸に代表される不飽和カルボン酸類及びこれらの塩類、メタクリル酸メチルに代表されるメタクリル酸エステル、グリシジルメタクリレート等に代表される不飽和カルボン酸のエステル類、酢酸ビニルや酪酸ビニルに代表されるビニルエステル類、スルホン酸基を含有する単量体等を用いることができる。前記スルホン酸基を含有する単量体としては、特に限定されないが、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、イソプレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸並びにこれらのナトリウム塩等の金属塩類及びアミン塩類等を用いることができる。これらの他の共重合可能なビニル系単量体は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。スルホン酸基を含有する単量体は必要に応じて使用されるが、前記アクリル系共重合体中のスルホン酸基を含有する単量体の含有量が3質量%以下であれば紡糸工程の生産安定性に優れる。 The other copolymerizable vinyl monomers are not particularly limited, but include, for example, unsaturated carboxylic acids such as acrylic acid and methacrylic acid, salts thereof, and methacrylic esters such as methyl methacrylate. , esters of unsaturated carboxylic acids such as glycidyl methacrylate, vinyl esters such as vinyl acetate and vinyl butyrate, monomers containing sulfonic acid groups, and the like can be used. The monomer containing the sulfonic acid group is not particularly limited, but includes allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid, isoprenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and sodium salts thereof. Metal salts such as, amine salts, etc. can be used. These other copolymerizable vinyl monomers may be used alone or in combination of two or more. A monomer containing a sulfonic acid group may be used as necessary, but if the content of the monomer containing a sulfonic acid group in the acrylic copolymer is 3% by mass or less, it may be used in the spinning process. Excellent production stability.
 前記アクリル系共重合体は、取扱性及び難燃性をより高める観点から、アクリロニトリルを35~75質量%、塩化ビニル及び/又は塩化ビニリデンを25~65質量%、並びに他の共重合可能なビニル系単量体を0~3質量%含むことが好ましく、アクリルニトリルを40~70質量%、塩化ビニル及び/又は塩化ビニリデンを30~60質量%、並びに他の共重合可能なビニル系単量体を0~3質量%含むことがより好ましい。また、アクリル系共重合体はアクリロニトリルを35~75質量%、塩化ビニリデンを25~65質量%、及び他の共重合可能なビニル系単量体を0~3質量%含むことが好ましく、アクリルニトリルを40~70質量%、塩化ビニリデンを30~60質量%、及び他の共重合可能なビニル系単量体を0~3質量%含むことがより好ましい。 The acrylic copolymer contains 35 to 75% by mass of acrylonitrile, 25 to 65% by mass of vinyl chloride and/or vinylidene chloride, and other copolymerizable vinyls, from the viewpoint of improving handleability and flame retardance. It preferably contains 0 to 3% by mass of monomers, including 40 to 70% by mass of acrylonitrile, 30 to 60% by mass of vinyl chloride and/or vinylidene chloride, and other copolymerizable vinyl monomers. More preferably, it contains 0 to 3% by mass. Further, the acrylic copolymer preferably contains 35 to 75% by mass of acrylonitrile, 25 to 65% by mass of vinylidene chloride, and 0 to 3% by mass of other copolymerizable vinyl monomers. More preferably, it contains 40 to 70% by mass of vinylidene chloride, 30 to 60% by mass of vinylidene chloride, and 0 to 3% by mass of other copolymerizable vinyl monomers.
 前記アクリル系共重合体は、塊状重合、懸濁重合、乳化重合、溶液重合等の既知の重合方法で得ることができる。この中でも工業的視点から、懸濁重合、乳化重合又は溶液重合が好ましい。 The acrylic copolymer can be obtained by known polymerization methods such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization. Among these, suspension polymerization, emulsion polymerization, and solution polymerization are preferred from an industrial viewpoint.
 本発明の1以上の実施態様において、難燃性アクリル系繊維は、必要に応じて帯電防止剤、熱着色防止剤、耐光性向上剤、白度向上剤、失透性防止剤、及び着色剤等の他の添加剤を含有してもよい。 In one or more embodiments of the present invention, the flame-retardant acrylic fiber optionally contains an antistatic agent, a thermal coloring inhibitor, a light fastness improver, a whiteness improver, a devitrification inhibitor, and a colorant. It may also contain other additives such as.
 本発明の1以上の実施態様において、難燃性アクリル系繊維は、短繊維でも長繊維でもよく、使用方法において適宜選択することが可能である。単繊維繊度は、使用される布帛、繊維製品の用途により適宜選択されるが、1~50dtexであってもよく、1.5~30dtexであってもよく、1.7~15dtexであってもよい。繊維長は、布帛、繊維製品の用途により適宜選択される。例えば、ショートカットファイバー(繊維長0.1~5mm)、短繊維(繊維長15~176mm、20~160mm、25~138mm、又は30~128mm)、及び長繊維(フィラメント)が挙げられる。 In one or more embodiments of the present invention, the flame-retardant acrylic fibers may be short fibers or long fibers, and can be appropriately selected depending on the method of use. The single fiber fineness is appropriately selected depending on the purpose of the fabric and textile product used, but it may be 1 to 50 dtex, 1.5 to 30 dtex, or 1.7 to 15 dtex. good. The fiber length is appropriately selected depending on the use of the fabric or textile product. Examples include short-cut fibers (fiber length 0.1 to 5 mm), short fibers (fiber length 15 to 176 mm, 20 to 160 mm, 25 to 138 mm, or 30 to 128 mm), and long fibers (filaments).
 本発明の1以上の実施態様において、難燃性アクリル系繊維は、例えば耐久性の観点から、単繊維強度が1.0~4.0cN/dtexであることが好ましく、1.5~3.5cN/dtexであることがより好ましい。本発明の1以上の実施態様において、難燃性アクリル系繊維は、例えば実用性の観点から、伸度が20~40%であることが好ましく、伸度が20~30%であることがより好ましい。本明細書において、難燃性アクリル系繊維の単繊維強度及び伸度は、JIS L 1013:2021又はJIS L 1015:2021に準じて測定することができる。 In one or more embodiments of the present invention, the flame-retardant acrylic fiber preferably has a single fiber strength of 1.0 to 4.0 cN/dtex, and 1.5 to 3.0 cN/dtex, for example, from the viewpoint of durability. More preferably, it is 5 cN/dtex. In one or more embodiments of the present invention, the flame-retardant acrylic fiber preferably has an elongation of 20 to 40%, and more preferably an elongation of 20 to 30%, for example from a practical standpoint. preferable. In this specification, the single fiber strength and elongation of the flame-retardant acrylic fiber can be measured according to JIS L 1013:2021 or JIS L 1015:2021.
 本発明の1以上の実施態様において、難燃性アクリル系繊維は、特に限定されないが、好ましくはアクリル系共重合体と、スズ酸亜鉛化合物を含む組成物を紡糸することにより製造することができる。具体的には、湿式紡糸法、乾式紡糸法、及び半乾半湿式法等の公知の方法で行うことができる。例えば湿式紡糸法の場合は、前記アクリル系共重合体を溶媒に溶解した後、そこへスズ酸亜鉛化合物を添加して得られた紡糸原液を用いる以外は、一般的なアクリル系繊維の場合と同様に、紡糸原液をノズルを通じて凝固浴に押出すことで凝固させ、次いで延伸、水洗、乾燥、熱処理し、必要であれば捲縮を付与して切断することで作製することができる。スズ酸亜鉛化合物を溶媒に溶解したスズ酸亜鉛化合物の溶液を、アクリル系共重合体を溶媒に溶解した樹脂溶液に添加してもよい。前記溶媒としては、例えば、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、及びアセトン等の有機溶媒や、ロダン塩水溶液、及び硝酸水溶液等の無機溶媒が挙げられる。湿式紡糸にて得られたアクリル系繊維中の化合物の粒子径は、紡糸原液中の化合物の粒子径と同等であり、湿式紡糸にて得られたアクリル系繊維中の化合物の平均粒子径D50は、紡糸原液中の化合物の平均粒子径で示すことができる。 In one or more embodiments of the present invention, the flame-retardant acrylic fiber can be produced by spinning a composition preferably including, but not limited to, an acrylic copolymer and a zinc stannate compound. . Specifically, known methods such as a wet spinning method, a dry spinning method, and a semi-dry semi-wet method can be used. For example, in the case of wet spinning, the method is similar to the case of general acrylic fibers, except that a spinning stock solution obtained by dissolving the acrylic copolymer in a solvent and adding a zinc stannate compound thereto is used. Similarly, it can be produced by coagulating the spinning solution by extruding it into a coagulation bath through a nozzle, followed by stretching, washing with water, drying, heat treatment, and if necessary, crimping and cutting. A solution of a zinc stannate compound dissolved in a solvent may be added to a resin solution containing an acrylic copolymer dissolved in a solvent. Examples of the solvent include organic solvents such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and acetone, and inorganic solvents such as rhodan salt aqueous solution and nitric acid aqueous solution. The particle diameter of the compound in the acrylic fiber obtained by wet spinning is equivalent to the particle diameter of the compound in the spinning dope, and the average particle diameter D50 of the compound in the acrylic fiber obtained by wet spinning is , can be expressed as the average particle diameter of the compound in the spinning dope.
 本発明の1以上の実施態様の難燃性布帛は、前記難燃性アクリル系繊維を30~80質量%、並びに天然繊維及び化学繊維からなる群から選ばれる一つ以上の他の繊維を20~70質量%含む。これにより、難燃性布帛の難燃性を良好にしつつ、他の繊維による特性を付与することができる。前記難燃性布帛は、より好ましくは前記難燃性アクリル系繊維を35~75質量%、並びに天然繊維及び化学繊維からなる群から選ばれる他の繊維を25~65質量%含み、さらに好ましくは前記難燃性アクリル系繊維を40~75質量%、並びに天然繊維及び化学繊維からなる群から選ばれる他の繊維を25~60質量%含む。 The flame-retardant fabric according to one or more embodiments of the present invention contains 30 to 80% by mass of the flame-retardant acrylic fibers and 20% by mass of one or more other fibers selected from the group consisting of natural fibers and chemical fibers. Contains ~70% by mass. This makes it possible to improve the flame retardance of the flame-retardant fabric while imparting the characteristics of other fibers. The flame-retardant fabric more preferably contains 35 to 75% by mass of the flame-retardant acrylic fibers and 25 to 65% by mass of other fibers selected from the group consisting of natural fibers and chemical fibers, and even more preferably It contains 40 to 75% by mass of the flame-retardant acrylic fiber and 25 to 60% by mass of other fibers selected from the group consisting of natural fibers and chemical fibers.
 前記天然繊維としては、木綿繊維、カポック繊維、亜麻繊維、大麻繊維、ラミー繊維、ジュート繊維、マニラ麻繊維、ケナフ繊維等の天然セルロース繊維;羊毛繊維、モヘア繊維、カシミヤ繊維、ラクダ繊維、アルパカ繊維、アンゴラ繊維、絹繊維等の天然動物繊維等が挙げられる。 The natural fibers include natural cellulose fibers such as cotton fiber, kapok fiber, flax fiber, hemp fiber, ramie fiber, jute fiber, Manila hemp fiber, and kenaf fiber; wool fiber, mohair fiber, cashmere fiber, camel fiber, alpaca fiber, Examples include natural animal fibers such as angora fiber and silk fiber.
 前記再生繊維としては、レーヨン、ポリノジック、キュプラ、リヨセル等の再生セルロース繊維、再生コラーゲン繊維、再生タンパク繊維、酢酸セルロース繊維、プロミックス繊維等が挙げられる。 Examples of the regenerated fibers include regenerated cellulose fibers such as rayon, polynosic, cupro, and lyocell, regenerated collagen fibers, regenerated protein fibers, cellulose acetate fibers, and promix fibers.
 前記合成繊維としては、ポリエステル繊維、ポリアミド繊維、ポリ乳酸繊維、アクリル繊維、ポリオレフィン繊維(ポリエチレン繊維及びポリプロピレン繊維等)、ポリビニルアルコール繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、ポリクラール繊維、ポリウレタン繊維、ポリオキシメチレン繊維、ポリテトラフルオロエチレン繊維、アラミド繊維、ベンゾエート繊維、ポリフェニレンスルフィド繊維、ポリエーテルエーテルケトン繊維、ポリベンズアゾール繊維、ポリイミド繊維、ポリアミドイミド繊維等が挙げられる。また、前記合成繊維として、難燃ポリエステル、ポリエチレンナフタレート繊維、メラミン繊維、アクリレート繊維、ポリベンズオキサイド繊維等を用いてもよい。その他、酸化アクリル繊維、炭素繊維、ガラス繊維、活性炭素繊維等が挙げられる。 The synthetic fibers include polyester fibers, polyamide fibers, polylactic acid fibers, acrylic fibers, polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyvinyl alcohol fibers, polyvinyl chloride fibers, polyvinylidene chloride fibers, polyclar fibers, polyurethane fibers, Examples include polyoxymethylene fibers, polytetrafluoroethylene fibers, aramid fibers, benzoate fibers, polyphenylene sulfide fibers, polyetheretherketone fibers, polybenzazole fibers, polyimide fibers, polyamideimide fibers, and the like. Further, as the synthetic fiber, flame-retardant polyester, polyethylene naphthalate fiber, melamine fiber, acrylate fiber, polybenzoxide fiber, etc. may be used. Other examples include acrylic oxide fiber, carbon fiber, glass fiber, and activated carbon fiber.
 前記他の繊維としては、天然繊維、再生セルロース繊維、ポリエステル繊維、アラミド繊維及びメラミン繊維等が好ましい。 Preferable examples of the other fibers include natural fibers, regenerated cellulose fibers, polyester fibers, aramid fibers, and melamine fibers.
 上述した他の繊維は、一つを単独で用いてもよく、二つ以上を組合わせて用いてもよい。 The other fibers mentioned above may be used alone or in combination of two or more.
 本発明の1以上の実施態様において、他の繊維は、短繊維でも長繊維でもよく、使用方法において適宜選択することが可能である。単繊維繊度は、使用される布帛、繊維製品の用途により適宜選択されるが、1~50dtexであってもよく、1.5~30dtexであってもよく、1.7~15dtexであってもよい。繊維長は、布帛、繊維製品の用途により適宜選択される。例えば、ショートカットファイバー(繊維長0.1~5mm)、短繊維(繊維長15~176mm、20~160mm、25~138mm、又は30~128mm)、及び長繊維(フィラメント)が挙げられる。 In one or more embodiments of the present invention, the other fibers may be short fibers or long fibers, and can be appropriately selected depending on the method of use. The single fiber fineness is appropriately selected depending on the purpose of the fabric and textile product used, but it may be 1 to 50 dtex, 1.5 to 30 dtex, or 1.7 to 15 dtex. good. The fiber length is appropriately selected depending on the use of the fabric or textile product. Examples include short-cut fibers (fiber length 0.1 to 5 mm), short fibers (fiber length 15 to 176 mm, 20 to 160 mm, 25 to 138 mm, or 30 to 128 mm), and long fibers (filaments).
 前記難燃性布帛は、織物でもよく、編物でもよい。 The flame-retardant fabric may be a woven fabric or a knitted fabric.
 織物としては、平織、斜文織、朱子織、変化平織、変化斜文織、変化朱子織、変わり織、紋織、片重ね織、二重組織、多重組織、経パイル織、緯パイル織、及び絡み織等が挙げられる。平織、朱子織、紋織が、商品としての風合いや強度等に優れる。 Fabrics include plain weave, oblique weave, satin weave, variable plain weave, variable oblique weave, variable satin weave, variable weave, patterned weave, single layer weave, double weave, multiple weave, warp pile weave, weft pile weave, and Examples include twine weave. Plain weave, satin weave, and patterned weave have excellent texture and strength as products.
 編物としては、丸編、緯編、経編、パイル編等を含み、平編、天竺編、リブ編、スムース編(両面編)、ゴム編、パール編、デンビー組織、コード組織、アトラス組織、鎖組織、及び挿入組織等が挙げられる。天竺編、リブ編が、商品としての風合いに優れる。 Knitted fabrics include circular knitting, weft knitting, warp knitting, pile knitting, etc., flat knitting, jersey knitting, rib knitting, smooth knitting (double-sided knitting), rubber knitting, pearl knitting, denby knitting, cord knitting, atlas knitting, Examples include chain tissue and intercalated tissue. Tenjiku knitting and ribbed knitting have excellent texture as products.
 前記難燃性布帛は、様々な繊維製品(application)に用いることができる、繊維製品としては、例えば、次のようなものが例示される。
(1)衣類及び日用品材料
 衣服(上着、下着、セーター、ベスト、ズボン等を含む)、手袋、靴下、マフラー、帽子、寝具、枕、クッション、ぬいぐるみ等
(2)特殊服
 防護服及び消防服等の火を取り扱う作業者が着用する作業服、防寒服等
(3)インテリア材料
 椅子張り、カーテン、壁紙、カーペット等
(4)産業資材
 フィルター、耐炎詰め物、ライニング材等。
The flame-retardant fabric can be used in various textile applications. Examples of textile products include the following.
(1) Clothing and daily necessities Clothing (including jackets, underwear, sweaters, vests, pants, etc.), gloves, socks, mufflers, hats, bedding, pillows, cushions, stuffed animals, etc. (2) Special clothing Protective clothing and firefighting clothing (3) Interior materials: Upholstery, curtains, wallpaper, carpets, etc. (4) Industrial materials: Filters, flame-resistant padding, lining materials, etc.
 前記難燃性布帛は、ISO15025:2016燃焼試験において残炎時間が30秒以下であればよいが、難燃性(防炎性)により優れる観点から、ISO15025:2016燃焼試験において残炎時間が10秒以下であることが好ましく、より好ましくは5秒以下であり、さらに好ましくは3秒以下であり、特に好ましくは2.0秒以下である。これにより、防護服及び消防服等の火を取り扱う作業の難燃性作業服に好適に用いることができる。 The flame retardant fabric may have an afterflame time of 30 seconds or less in the ISO 15025:2016 combustion test, but from the viewpoint of superior flame retardancy (flame resistance), the afterflame time should be 10 seconds or less in the ISO 15025:2016 combustion test. The time is preferably at most seconds, more preferably at most 5 seconds, even more preferably at most 3 seconds, particularly preferably at most 2.0 seconds. As a result, it can be suitably used for flame-retardant work clothes for work involving fire, such as protective clothing and firefighting clothing.
 前記難燃性布帛は、特に限定されないが、風合いの観点から、目付が150~400g/m2であることが好ましく、より好ましくは200~380g/m2であり、さらに好ましくは220~350g/m2である。 The flame retardant fabric is not particularly limited, but from the viewpoint of texture, it is preferable that the fabric weight is 150 to 400 g/m 2 , more preferably 200 to 380 g/m 2 , and still more preferably 220 to 350 g/m 2 . m2 .
 防護服及び消防服等の火を取り扱う作業の難燃性作業服用生地としては、下記のような繊維組成の織物及び/又は編物等の布帛を好適に用いることができる。セルロース系繊維を併用することで、布帛や作業服に吸湿性及び快適性を付与することができる。セルロース系繊維の含有量は20質量%未満の場合、快適性を維持できない恐れがある。
(1)前記難燃性アクリル系繊維30~80質量%、及びセルロース系繊維(天然セルロース繊維及び/又は再生セルロース繊維)20~70質量%を含む。
(2)前記難燃性アクリル系繊維35~75質量%、及びセルロース系繊維(天然セルロース繊維及び/又は再生セルロース繊維)25~65質量%を含む。
(3)前記難燃性アクリル系繊維40~70質量%、及びセルロース系繊維(天然セルロース繊維及び/又は再生セルロース繊維)30~60質量%を含む。
Fabrics such as woven and/or knitted fabrics having the following fiber compositions can be suitably used as flame-retardant workwear fabrics for work involving fire, such as protective clothing and firefighting clothing. By using cellulose fibers in combination, it is possible to impart hygroscopicity and comfort to fabrics and work clothes. If the content of cellulose fibers is less than 20% by mass, comfort may not be maintained.
(1) Contains 30 to 80% by mass of the flame-retardant acrylic fibers and 20 to 70% by mass of cellulose fibers (natural cellulose fibers and/or regenerated cellulose fibers).
(2) Contains 35 to 75% by mass of the flame-retardant acrylic fibers and 25 to 65% by mass of cellulose fibers (natural cellulose fibers and/or regenerated cellulose fibers).
(3) Contains 40 to 70% by mass of the flame-retardant acrylic fibers and 30 to 60% by mass of cellulose fibers (natural cellulose fibers and/or regenerated cellulose fibers).
 難燃性をより一層高める観点から、防護服及び消防服等の火を取り扱う作業の難燃性作業服用生地としては、下記のような繊維組成の織物及び/又は編物等の布帛を好適に用いることができる。驚くことに、スズ酸亜鉛化合物を含む難燃性アクリル系繊維とリヨセルを併用することで、難燃性が格段に向上し、特にISO15025:2016の燃焼試験方法において格段に向上した難燃性を示す。
(1)前記難燃性アクリル系繊維30~80質量%、及びリヨセル20~70質量%を含む。
(2)前記難燃性アクリル系繊維35~75質量%、及びリヨセル25~65質量%を含む。
(3)前記難燃性アクリル系繊維40~70質量%、及びリヨセル30~60質量%を含む。
From the perspective of further increasing flame retardancy, fabrics such as woven and/or knitted fabrics with the following fiber composition are preferably used as flame-retardant workwear fabrics for work that handles fire, such as protective clothing and firefighting clothing. be able to. Surprisingly, the combined use of Lyocell and flame-retardant acrylic fibers containing zinc stannate compounds significantly improved flame retardancy, especially in the ISO 15025:2016 flame test method. show.
(1) Contains 30 to 80% by mass of the flame-retardant acrylic fiber and 20 to 70% by mass of Lyocell.
(2) Contains 35-75% by mass of the flame-retardant acrylic fiber and 25-65% by mass of Lyocell.
(3) Contains 40 to 70% by mass of the flame-retardant acrylic fiber and 30 to 60% by mass of Lyocell.
 以下実施例により本発明を更に具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。 The present invention will be explained in more detail with reference to Examples below. Note that the present invention is not limited to the following examples.
 実施例及び比較例にて用いた測定・評価方法は下記のとおりである。 The measurement and evaluation methods used in the Examples and Comparative Examples are as follows.
 (平均粒子径D50)
 レーザー回折/散乱式粒子径分布測定装置(株式会社堀場製作所製、粒子径分布測定装置LA-950V2)を用いてレーザー回折/散乱法でヒドロキシ錫酸亜鉛又はメタスズ酸の分散液におけるヒドロキシ錫酸亜鉛又はメタスズ酸の粒子径分布を測定し、平均粒子径D50を求めた。
(Average particle diameter D50)
Zinc hydroxystannate in a dispersion of zinc hydroxystannate or metastannic acid was measured using a laser diffraction/scattering method using a laser diffraction/scattering particle size distribution measuring device (manufactured by Horiba, Ltd., particle size distribution measuring device LA-950V2). Alternatively, the particle size distribution of metastannic acid was measured to determine the average particle size D50.
 (難燃性)
 ISO15025:2016(ProcedureA)に基づく燃焼試験方法にて評価した。ISO 15025:2016(ProcedureA)に基づく燃焼試験方法は、規定のホルダーにセットした評価用布帛に対して直角に17±1mm離れた場所から25±2mmの炎を10秒間着炎する方法である。
(Flame retardance)
Evaluation was performed using a combustion test method based on ISO15025:2016 (Procedure A). The combustion test method based on ISO 15025:2016 (Procedure A) is a method in which a flame of 25 ± 2 mm is ignited for 10 seconds from a position 17 ± 1 mm away at right angles to the evaluation fabric set in a specified holder.
 (難燃剤の含有量)
 アクリル系繊維中の難燃剤(ヒドロキシ錫酸亜鉛又はメタスズ酸)の含有量は蛍光X線装置(SIIナノテクノロジー社製「SEA2210A」)による蛍光X線分析方法で測定した。予め、スズ含有量が既知の標準試料を用いて、スズの蛍光X線強度を測定し、検量線を作成した。次に、アクリル系繊維におけるスズの蛍光X線強度を測定し、検量線と照らし合わせることでアクリル系繊維におけるスズの含有量を測定した。
(Flame retardant content)
The content of the flame retardant (zinc hydroxystannate or metastannic acid) in the acrylic fibers was measured by a fluorescent X-ray analysis method using a fluorescent X-ray device ("SEA2210A" manufactured by SII Nano Technology). Using a standard sample with a known tin content, the fluorescent X-ray intensity of tin was measured in advance to create a calibration curve. Next, the tin content in the acrylic fiber was determined by measuring the fluorescent X-ray intensity of tin in the acrylic fiber and comparing it with a calibration curve.
 (製造例1)
 アクリロニトリル51質量%、塩化ビニリデン48質量%及びp-スチレンスルホン酸ナトリウム1質量%からなるアクリル系共重合体をジメチルスルホキシドに樹脂濃度が30質量%になるように溶解させた。得られたアクリル系共重合体の溶液に、アクリル系共重合体100質量部に対して4質量部のヒドロキシ錫酸亜鉛(ZnSn(OH)6、SCL Italia. Spa社製、品名「Zinflam(登録商標)ZHS」)を添加し、紡糸原液とした。前記ヒドロキシ錫酸亜鉛は、予め、ジメチルスルホキシドに対して30質量%になるように添加し、均一分散させて調製した分散液として用いた。前記ヒドロキシ錫酸亜鉛の分散液において、レーザー回折/散乱法で測定したヒドロキシ錫酸亜鉛の平均粒子径D50は1.2μmであった。得られた紡糸原液をノズル孔径0.08mm及び孔数300ホールのノズルを用い、50質量%のジメチルスルホキシド水溶液中へ押し出して凝固させ、次いで水洗した後120℃で乾燥し、乾燥後に3倍に延伸してから、さらに145℃で5分間熱処理を行うことにより、アクリル系繊維を得た。得られた製造例1のアクリル系繊維は、単繊維繊度1.7dtex、カット長38mmであった。
(Manufacturing example 1)
An acrylic copolymer consisting of 51% by mass of acrylonitrile, 48% by mass of vinylidene chloride, and 1% by mass of sodium p-styrene sulfonate was dissolved in dimethyl sulfoxide so that the resin concentration was 30% by mass. To the solution of the obtained acrylic copolymer, 4 parts by mass of zinc hydroxystannate (ZnSn(OH) 6 , manufactured by SCL Italia. Spa, product name "Zinflam (registered) Trademark) ZHS'') was added to prepare a spinning dope. The zinc hydroxystannate was added in advance to dimethyl sulfoxide in an amount of 30% by mass, and was uniformly dispersed for use as a prepared dispersion. In the dispersion of zinc hydroxystannate, the average particle diameter D50 of zinc hydroxystannate measured by a laser diffraction/scattering method was 1.2 μm. Using a nozzle with a nozzle diameter of 0.08 mm and 300 holes, the obtained spinning stock solution was extruded into a 50% by mass dimethyl sulfoxide aqueous solution to solidify it, then washed with water and dried at 120°C, and after drying, it was tripled in size. After the stretching, an acrylic fiber was obtained by further performing a heat treatment at 145° C. for 5 minutes. The obtained acrylic fiber of Production Example 1 had a single fiber fineness of 1.7 dtex and a cut length of 38 mm.
 (製造例2)
 ヒドロキシ錫酸亜鉛の添加量をアクリル系共重合体100質量部に対して5質量部になるようにした以外は、製造例1と同様の方法でアクリル系繊維を作製した。得られた製造例2のアクリル系繊維は、単繊維繊度1.6dtex、カット長38mmであった。
(Manufacturing example 2)
Acrylic fibers were produced in the same manner as in Production Example 1, except that the amount of zinc hydroxystannate added was 5 parts by mass based on 100 parts by mass of the acrylic copolymer. The obtained acrylic fiber of Production Example 2 had a single fiber fineness of 1.6 dtex and a cut length of 38 mm.
 (製造例3)
 ヒドロキシ錫酸亜鉛の添加量をアクリル系共重合体100質量部に対して7質量部になるようにした以外は、製造例1と同様の方法でアクリル系繊維を作製した。得られた製造例3のアクリル系繊維は、単繊維繊度1.7dtex、カット長38mmであった。
(Manufacturing example 3)
Acrylic fibers were produced in the same manner as in Production Example 1, except that the amount of zinc hydroxystannate added was 7 parts by mass based on 100 parts by mass of the acrylic copolymer. The obtained acrylic fiber of Production Example 3 had a single fiber fineness of 1.7 dtex and a cut length of 38 mm.
 (製造例4)
 ヒドロキシ錫酸亜鉛の添加量をアクリル系共重合体100質量部に対して10質量部になるようにした以外は、製造例1と同様の方法でアクリル系繊維を作製した。得られた製造例4のアクリル系繊維は、単繊維繊度1.8dtex、カット長38mmであった。
(Manufacturing example 4)
Acrylic fibers were produced in the same manner as in Production Example 1, except that the amount of zinc hydroxystannate added was 10 parts by mass based on 100 parts by mass of the acrylic copolymer. The obtained acrylic fiber of Production Example 4 had a single fiber fineness of 1.8 dtex and a cut length of 38 mm.
 (製造例5)
 ヒドロキシ錫酸亜鉛に代えてメタスズ酸を用い、メタスズ酸の添加量をアクリル系共重合体100質量部に対して5質量部になるようにした以外は、製造例1と同様の方法でアクリル系繊維を作製した。得られた製造例5のアクリル系繊維は、単繊維繊度1.7dtex、カット長38mmであった。
(Manufacturing example 5)
An acrylic copolymer was prepared in the same manner as in Production Example 1, except that metastannic acid was used instead of zinc hydroxystannate, and the amount of metastannic acid added was 5 parts by mass per 100 parts by mass of the acrylic copolymer. Fibers were produced. The obtained acrylic fiber of Production Example 5 had a single fiber fineness of 1.7 dtex and a cut length of 38 mm.
 製造例1~4のアクリル系繊維は、繊維内部にヒドロキシ錫酸亜鉛を含み、製造例5のアクリル系繊維は、繊維内部にメタスズ酸を含む。アクリル系繊維中のヒドロキシ錫酸亜鉛又はメタスズ酸の含有量を上述したとおりに測定し、その結果を下記表1に示した。 The acrylic fibers of Production Examples 1 to 4 contain zinc hydroxystannate inside the fibers, and the acrylic fibers of Production Example 5 contain metastannic acid inside the fibers. The content of zinc hydroxystannate or metastannic acid in the acrylic fibers was measured as described above, and the results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例1~8、比較例1~8)
 製造例1~5で作製したアクリル系繊維、リヨセル(レンチング社製「テンセル(登録商標)」、単繊維繊度1.3dtex、繊維長51mm)、コットン(カット長31mm以下の天然コットン繊維)を下記表2に示す所定の質量割合で混綿し、大和機工(株)製サンプルローラーカードSC-500にて解繊し、インテック(株)製小型連條機TSM-DFSを用いてスライバーを作製した。次に、このスライバーを用いて豊田自動織機製高速粗紡機FL200にて粗紡糸を、豊和工業株式会社製高速精紡機UA37にて20/1番手の紡績糸を作製した。この紡績糸を用い、島精機株式会社製コンピューター横編み機SSGシリーズ122FCにより、下記表2に示す目付を有するシングルニット編地を作製した。なお、下記表2において、ヒドロキシ錫酸亜鉛及びメタスズ酸の量は、アクリル系共重合体100質量部に対するものである。
(Examples 1 to 8, Comparative Examples 1 to 8)
The acrylic fibers produced in Production Examples 1 to 5, lyocell (“TENCEL (registered trademark)” manufactured by Lenzing, single fiber fineness 1.3 dtex, fiber length 51 mm), and cotton (natural cotton fibers with a cut length of 31 mm or less) are as follows. The cotton was blended at a predetermined mass ratio shown in Table 2, defibrated using a sample roller card SC-500 manufactured by Yamato Kiko Co., Ltd., and a sliver was produced using a small continuous sieve machine TSM-DFS manufactured by Intec Co., Ltd. Next, using this sliver, a roving yarn was produced using a high-speed roving frame FL200 manufactured by Toyota Industries Corporation, and a spun yarn with a count of 20/1 was produced using a high-speed spinning frame UA37 manufactured by Howa Kogyo Co., Ltd. Using this spun yarn, a single knit fabric having a basis weight shown in Table 2 below was produced using a computerized flat knitting machine SSG series 122FC manufactured by Shima Seiki Co., Ltd. In Table 2 below, the amounts of zinc hydroxystannate and metastannic acid are based on 100 parts by mass of the acrylic copolymer.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 前記表2から分かるように、実施例の布帛の場合、ISO 15025:2016(ProcedureA)に基づく燃焼試験方法にて測定した残炎時間が2.0秒以下であり、極めて難燃性(防炎性)が良好であった。 As can be seen from Table 2 above, in the case of the fabric of the example, the afterflame time measured by the combustion test method based on ISO 15025:2016 (Procedure A) is 2.0 seconds or less, and it is extremely flame retardant (flame retardant). performance) was good.
 一方、実施例7と同じ難燃性アクリル系繊維を用いているが、該難燃性アクリル系繊維の配合量が30質量%未満の比較例7の布帛は、ISO 15025:2016(ProcedureA)に基づく燃焼試験方法にて測定した残炎時間が40秒であり、難燃性が劣っていた。また、難燃剤としてメタスズ酸を用いた以外は、アクリル系繊維にける難燃剤の配合量、及びアクリル系繊維とセルロース系繊維の配合割合が実施例2と同様である比較例8の布帛は、ISO 15025:2016(ProcedureA)に基づく燃焼試験方法にて全焼しており、難燃性が極めて劣っていた。 On the other hand, the fabric of Comparative Example 7, which uses the same flame-retardant acrylic fiber as in Example 7, but has a blending amount of the flame-retardant acrylic fiber of less than 30% by mass, conforms to ISO 15025:2016 (Procedure A). The afterflame time measured by the combustion test method based on the standard was 40 seconds, and the flame retardance was poor. In addition, the fabric of Comparative Example 8, which had the same amount of flame retardant in the acrylic fibers and the ratio of acrylic fibers and cellulose fibers as in Example 2, except that metastannic acid was used as the flame retardant, It was completely burnt down by the combustion test method based on ISO 15025:2016 (Procedure A), and its flame retardance was extremely poor.
 本発明は、特に限定されないが、例えば、下記の1以上の実施形態を含むことが望ましい。
[1]難燃性アクリル系繊維を30~80質量%、並びに天然繊維及び化学繊維からなる群から選ばれる一つ以上の他の繊維を20~70質量%含み、
 前記難燃性アクリル系繊維は、アクリル系共重合体100質量部及びスズ酸亜鉛化合物1~18質量部を含有し、
 ISO15025燃焼試験において残炎時間が30秒以下である、難燃性布帛。
[2]前記他の繊維がセルロース系繊維を含む、[1]に記載の難燃性布帛。
[3]前記セルロース系繊維が、リヨセルである、[2]に記載の難燃性布帛。
[4]前記スズ酸亜鉛化合物は、ヒドロキシ錫酸亜鉛である、[1]~[3]のいずれかに記載の難燃性布帛。
[5]前記難燃性布帛は、編物及び織物からなる群から選ばれる一つ以上を含む、[1]~[4]のいずれかに記載の難燃性布帛。
[6]ISO15025燃焼試験において残炎時間が3秒以下である、[1]~[5]のいずれかに記載の難燃性布帛。
[7] 前記アクリル系共重合体は、アクリロニトリル及び塩化ビニリデンを含む、[1]~[6]のいずれかに記載の難燃性布帛。
[8][1]~[7]のいずれかに記載の難燃性布帛を含む難燃性作業服。
Although the present invention is not particularly limited, it is desirable to include, for example, one or more of the following embodiments.
[1] Contains 30 to 80% by mass of flame-retardant acrylic fibers and 20 to 70% by mass of one or more other fibers selected from the group consisting of natural fibers and chemical fibers,
The flame-retardant acrylic fiber contains 100 parts by mass of an acrylic copolymer and 1 to 18 parts by mass of a zinc stannate compound,
A flame-retardant fabric having an afterflame time of 30 seconds or less in an ISO15025 combustion test.
[2] The flame-retardant fabric according to [1], wherein the other fibers include cellulose fibers.
[3] The flame-retardant fabric according to [2], wherein the cellulose fiber is Lyocell.
[4] The flame-retardant fabric according to any one of [1] to [3], wherein the zinc stannate compound is zinc hydroxystannate.
[5] The flame-retardant fabric according to any one of [1] to [4], wherein the flame-retardant fabric includes one or more selected from the group consisting of knitted fabrics and woven fabrics.
[6] The flame-retardant fabric according to any one of [1] to [5], which has an afterflame time of 3 seconds or less in an ISO15025 combustion test.
[7] The flame-retardant fabric according to any one of [1] to [6], wherein the acrylic copolymer contains acrylonitrile and vinylidene chloride.
[8] Flame-retardant work clothes comprising the flame-retardant fabric according to any one of [1] to [7].

Claims (8)

  1.  難燃性アクリル系繊維を30~80質量%、並びに天然繊維及び化学繊維からなる群から選ばれる一つ以上の他の繊維を20~70質量%含み、
     前記難燃性アクリル系繊維は、アクリル系共重合体100質量部及びスズ酸亜鉛化合物1~18質量部を含有し、
     ISO15025燃焼試験において残炎時間が30秒以下である、難燃性布帛。
    Containing 30 to 80% by mass of flame-retardant acrylic fibers and 20 to 70% by mass of one or more other fibers selected from the group consisting of natural fibers and chemical fibers,
    The flame-retardant acrylic fiber contains 100 parts by mass of an acrylic copolymer and 1 to 18 parts by mass of a zinc stannate compound,
    A flame-retardant fabric having an afterflame time of 30 seconds or less in an ISO15025 combustion test.
  2.  前記他の繊維がセルロース系繊維を含む、請求項1に記載の難燃性布帛。 The flame-retardant fabric according to claim 1, wherein the other fibers include cellulose fibers.
  3.  前記セルロース系繊維が、リヨセルである、請求項2に記載の難燃性布帛。 The flame-retardant fabric according to claim 2, wherein the cellulosic fiber is Lyocell.
  4.  前記スズ酸亜鉛化合物は、ヒドロキシ錫酸亜鉛である、請求項1~3のいずれかに記載の難燃性布帛。 The flame-retardant fabric according to any one of claims 1 to 3, wherein the zinc stannate compound is zinc hydroxystannate.
  5.  前記難燃性布帛は、編物及び織物からなる群から選ばれる一つ以上布帛を含む、請求項1~4のいずれかに記載の難燃性布帛。 The flame-retardant fabric according to any one of claims 1 to 4, wherein the flame-retardant fabric includes one or more fabrics selected from the group consisting of knitted fabrics and woven fabrics.
  6.  ISO15025燃焼試験において残炎時間が3秒以下である、請求項1~5のいずれかに記載の難燃性布帛。 The flame-retardant fabric according to any one of claims 1 to 5, which has an afterflame time of 3 seconds or less in an ISO15025 combustion test.
  7.  前記アクリル系共重合体は、アクリロニトリル及び塩化ビニリデンを含む、請求項1~6のいずれかに記載の難燃性布帛。 The flame-retardant fabric according to any one of claims 1 to 6, wherein the acrylic copolymer contains acrylonitrile and vinylidene chloride.
  8.  請求項1~7のいずれかに記載の難燃性布帛を含む難燃性作業服。 Flame-retardant work clothes comprising the flame-retardant fabric according to any one of claims 1 to 7.
PCT/JP2023/005405 2022-03-09 2023-02-16 Flame retardant cloth and flame retardant work clothing WO2023171286A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-036294 2022-03-09
JP2022036294 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023171286A1 true WO2023171286A1 (en) 2023-09-14

Family

ID=87936801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005405 WO2023171286A1 (en) 2022-03-09 2023-02-16 Flame retardant cloth and flame retardant work clothing

Country Status (1)

Country Link
WO (1) WO2023171286A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032968A1 (en) * 1999-11-04 2001-05-10 Kaneka Corporation Flame-retardant union fabric
JP2004197255A (en) * 2002-12-18 2004-07-15 Kanegafuchi Chem Ind Co Ltd Acrylic fiber having excellent weather resistance and high flame retardance and fabric thereof
JP2005146469A (en) * 2003-11-17 2005-06-09 Kaneka Corp Acrylic fiber and cloth having excellent light resistance and high flame-retardance
JP2007270410A (en) * 2006-03-31 2007-10-18 Kaneka Corp Flame-retardant fabric for cover
JP2010502849A (en) * 2006-08-31 2010-01-28 サザンミルズ インコーポレイテッド Flame retardant fabric and garment made therefrom
JP2014525520A (en) * 2011-09-02 2014-09-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Clothing items for thermal protection
WO2016194766A1 (en) * 2015-06-01 2016-12-08 株式会社カネカ Flame-retardant fabric and protective clothing in which same is used

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032968A1 (en) * 1999-11-04 2001-05-10 Kaneka Corporation Flame-retardant union fabric
JP2004197255A (en) * 2002-12-18 2004-07-15 Kanegafuchi Chem Ind Co Ltd Acrylic fiber having excellent weather resistance and high flame retardance and fabric thereof
JP2005146469A (en) * 2003-11-17 2005-06-09 Kaneka Corp Acrylic fiber and cloth having excellent light resistance and high flame-retardance
JP2007270410A (en) * 2006-03-31 2007-10-18 Kaneka Corp Flame-retardant fabric for cover
JP2010502849A (en) * 2006-08-31 2010-01-28 サザンミルズ インコーポレイテッド Flame retardant fabric and garment made therefrom
JP2014525520A (en) * 2011-09-02 2014-09-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Clothing items for thermal protection
WO2016194766A1 (en) * 2015-06-01 2016-12-08 株式会社カネカ Flame-retardant fabric and protective clothing in which same is used

Similar Documents

Publication Publication Date Title
TWI408266B (en) Flame retardant synthetic fiber, flame retardant fiber composite, production method therefor and textile product
JP4958359B2 (en) Flame retardant interwoven fabric
TWI512154B (en) Halogen-containing flame retardant fibers and methods for their manufacture and flame retardant fiber products using the same
TWI530597B (en) A flame retardant fiber aggregate and a method for manufacturing the same, and a fiber product
US20220167700A1 (en) Flame-retardant fiber composite and flame-retardant working clothes
JP4118238B2 (en) Interwoven fabric with flame retardancy
JP2015067925A (en) Halogen-containing flame-retardant fiber and method for producing the same, and flame-retardant fiber composite and flame-retardant fiber product
WO2023171286A1 (en) Flame retardant cloth and flame retardant work clothing
JPWO2003080909A1 (en) Highly flame retardant interwoven fabric
WO2023171288A1 (en) Flame-retardant acrylic fiber, method for manufacturing same, and flame-retardant fiber aggregate and flame-retardant work clothing including same
US10760185B2 (en) Acrylonitrile-containing fiber dyeable with disperse dyes, method for producing same, and fiber product containing same
JP2011256496A (en) Flame-retardant synthetic fiber and method for producing the same, flame-retardant fiber composite and fiber product
WO2022181337A1 (en) Flame-resistant acrylic fibers, flame-resistant fiber composite, and flame-resistant mattress
WO2023053802A1 (en) Incombustible upholstered furniture
US20240102206A1 (en) Flame-retardant fabric and work clothing using the same
JP2024049407A (en) Flame-retardant acrylic synthetic fiber and flame-retardant fiber composite containing same
WO2023100484A1 (en) Flame-retardant fabric, and flame retardant mattress including same
WO2024004692A1 (en) Flame-retardant cloth and work wear
JP2024049409A (en) Flame-retardant knitted fabric and flame-retardant mattress containing same
JP4346492B2 (en) Halogen-containing fiber and flame-retardant fiber product using the same
JP2021042489A (en) Flame-retardant regenerated cellulose fiber, method for producing the same and fiber product
JPH08209490A (en) Heat and flame resistant cloth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766466

Country of ref document: EP

Kind code of ref document: A1