WO2023163026A1 - Bisphenol production method, recycled polycarbonate resin production method, epoxy resin production method, cured epoxy resin production method, and bisphenol-alkyl carbonate condensate production method - Google Patents

Bisphenol production method, recycled polycarbonate resin production method, epoxy resin production method, cured epoxy resin production method, and bisphenol-alkyl carbonate condensate production method Download PDF

Info

Publication number
WO2023163026A1
WO2023163026A1 PCT/JP2023/006417 JP2023006417W WO2023163026A1 WO 2023163026 A1 WO2023163026 A1 WO 2023163026A1 JP 2023006417 W JP2023006417 W JP 2023006417W WO 2023163026 A1 WO2023163026 A1 WO 2023163026A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
polycarbonate resin
decomposition
reaction
epoxy resin
Prior art date
Application number
PCT/JP2023/006417
Other languages
French (fr)
Japanese (ja)
Inventor
馨 内山
員正 太田
幸恵 中嶋
俊雄 内堀
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023163026A1 publication Critical patent/WO2023163026A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • C07C37/055Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
    • C07C37/52Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms by splitting polyaromatic compounds, e.g. polyphenolalkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/06Alkylated phenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing bisphenol and a method for producing a bisphenol-alkyl carbonate condensate. More specifically, it relates to a method for producing bisphenol and a method for producing a bisphenol-alkyl carbonate condensate utilizing decomposition of polycarbonate resin. Furthermore, the present invention relates to a method for producing a recycled polycarbonate resin and a method for producing an epoxy resin using the bisphenol obtained by the method for producing bisphenol. The present invention also relates to a method for producing a cured epoxy resin using the epoxy resin obtained by the method for producing an epoxy resin.
  • plastic is easy, durable, and inexpensive, it is mass-produced not only in Japan but around the world. Many of these plastics are used as "disposables" and some are not properly disposed of and end up in the environment. Specifically, plastic waste flows from rivers into the sea, where it is degraded by waves and ultraviolet rays and becomes less than 5 mm. These small pieces of plastic waste are called microplastics. Animals and fish accidentally ingest these microplastics. In this way, plastic waste has a tremendous impact on the ecosystem, and in recent years, it has become a problem all over the world as the marine plastic problem. Polycarbonate resins are used in a wide range of fields due to their transparency, mechanical properties, flame retardancy, dimensional stability, and electrical properties, and this polycarbonate resin is no exception.
  • Patent Document 1 an aromatic polycarbonate dissolved in a monohydroxy compound other than methanol is catalytically transesterified with methanol in a distillation column to continuously form a dihydroxy compound and dimethyl carbonate.
  • a method for systematically opening the ring is disclosed.
  • Patent Document 2 a specific tertiary amine is added as a catalyst to a solution in which waste plastic and monohydric alcohols or monohydric phenols are present, and the polycarbonate resin in the waste plastic is and a step of recovering the decomposition products as useful substances.
  • Non-Patent Document 1 discloses a method for obtaining bisphenol A as a reaction solution by subjecting a polycarbonate resin to methanolysis using a guanidine derivative or an amidine derivative as a catalyst.
  • Non-Patent Document 2 discloses methanolysis of a polycarbonate resin using methyl carbonate (tetramethylammonium) as a catalyst.
  • Aliphatic monoalcohols are usually used in the decomposition method using alcoholysis of polycarbonate resin.
  • alcoholysis of polycarbonate resin In order to dissolve the polycarbonate resin and improve the decomposition rate, it is necessary to carry out the reaction under high pressure conditions at a high decomposition temperature. had to use.
  • Example 1 of Patent Document 1 a polycarbonate resin is dissolved in phenol at 150° C. and decomposed by countercurrent contact with vapors composed of methanol and dimethyl carbonate.
  • the control of the apparatus is complicated and the decomposition control of the polycarbonate resin is difficult.
  • Non-Patent Document 1 uses a guanidine derivative or an amidine derivative as a catalyst to decompose the polycarbonate resin.
  • guanidine derivatives and amidine derivatives cannot be easily removed by washing with water because they have a high affinity for both oil and water.
  • these compounds have high boiling points of 150° C. or higher, they are not easily distilled off.
  • these compounds are lightly colored yellow, it is necessary to perform column chromatography purification and extraction using diethyl ether with a low flash point for purification. Therefore, in order to obtain bisphenol A from a polycarbonate resin, there is a problem that it is industrially unsuitable because it is necessary to take complicated steps.
  • Non-Patent Document 2 also requires the use of a special catalyst, and like the method of Non-Patent Document 1, it is necessary to take complicated steps to obtain bisphenol A from a polycarbonate resin. There was a problem that it was unsuitable for
  • bisphenol A is also used as a raw material for optical materials such as optical polycarbonate resin in some fields. Since optical materials are required to have excellent color tone (transparency), bisphenol A, which is a raw material thereof, is also required to have excellent color tone.
  • the present invention has been made in view of such circumstances, and can decompose a polycarbonate resin with high reactivity using a highly versatile catalyst even under mild conditions with a small environmental load. It is an object of the present invention to provide a method for producing bisphenol which produces bisphenol with good color tone by using a decomposition method. A further object of the present invention is to provide a method for producing a recycled polycarbonate resin and a method for producing an epoxy resin using the obtained bisphenol. Another object of the present invention is to provide a method for producing a cured epoxy resin using the epoxy resin obtained by the method for producing an epoxy resin.
  • Another object of the present invention is to provide a method for producing a bisphenol-alkyl carbonate condensate by utilizing the decomposition method for decomposing the polycarbonate resin.
  • the present inventors have found a decomposition method of decomposing a polycarbonate resin by using a general-purpose catalyst in combination with a dialkyl carbonate and an aliphatic monoalcohol.
  • a method for producing bisphenol was found using the decomposition method of the polycarbonate resin.
  • a method for producing a recycled polycarbonate resin and a method for producing an epoxy resin using the obtained bisphenol have been found.
  • the inventors have found a method for producing a cured epoxy resin using the epoxy resin obtained by the method for producing an epoxy resin.
  • a method for producing a bisphenol-alkyl carbonate condensate was found. That is, the present invention relates to the following inventions.
  • a method for producing bisphenol by performing a decomposition reaction of the polycarbonate resin in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol, and a catalyst, wherein the bisphenol is derived from the bisphenol of the polycarbonate resin used in the decomposition reaction.
  • the molar ratio of the dialkyl carbonate used in the decomposition reaction to 1 mol of the repeating unit is 1.8 or more
  • the catalyst is an alkali metal hydroxide, an alkali metal carbonate, an alkali metal alkoxide, an alkali metal oxide, a chain
  • ⁇ 2> The method for producing bisphenol according to ⁇ 1>, wherein the reaction liquid is in the form of a slurry.
  • ⁇ 3> The method for producing bisphenol according to ⁇ 1> or ⁇ 2>, wherein the dialkyl carbonate contains a dialkyl carbonate not derived from the polycarbonate resin.
  • ⁇ 4> The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 3>, wherein the reaction liquid is prepared by mixing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol, and the catalyst. .
  • the alkali metal hydroxide is sodium hydroxide or potassium hydroxide
  • the alkali metal carbonate is sodium carbonate, potassium carbonate, sodium hydrogen carbonate or potassium hydrogen carbonate
  • the alkali metal alkoxide is The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 4>, wherein the alkali metal oxide is sodium phenoxide or sodium methoxide, and the alkali metal oxide is sodium oxide or potassium oxide.
  • ⁇ 6> The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 5>, wherein the chain alkylamine is represented by the following formula (I) or the following formula (II).
  • R A represents an alkyl group having 1 to 3 carbon atoms
  • R B to R C each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R D to R G each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • m represents an integer of 1 to 6.
  • ⁇ 8> The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 7>, wherein the bisphenol is 2,2-bis(4-hydroxyphenyl)propane.
  • ⁇ 9> The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 8>, wherein the aliphatic monoalcohol is methanol, ethanol or butanol.
  • ⁇ 10> The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 9>, comprising the following Step A, Step B1 and Step C1.
  • Step A Step of decomposing the polycarbonate resin in the reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a non-slurry polycarbonate decomposition solution containing bisphenol
  • Step B1 A step of concentrating the polycarbonate decomposition solution obtained in step A to obtain a concentrated solution.
  • Step C1 An aromatic hydrocarbon is supplied to the concentrated solution obtained in step B1 to precipitate bisphenol.
  • Step A Step of decomposing the polycarbonate resin in the reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a non-slurry polycarbonate decomposition solution containing bisphenol
  • Step B2 A step of removing the dialkyl carbonate and the aliphatic monoalcohol from the solution containing the polycarbonate decomposition solution and the aromatic monoalcohol obtained in step A to obtain a solution containing bisphenol and the aromatic monoalcohol
  • Step C2 the above step Step of recovering bisphenol from the solution containing bisphenol and aromatic monoalcohol obtained in B2 ⁇ 12>
  • the polycarbonate resin is recovered in the reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst.
  • the amount of water mixed with the first decomposition solution is 0.5 mol or more and 1.5 mol or less per 1 mol of repeating units derived from bisphenol in the polycarbonate resin used in the decomposition reaction.
  • ⁇ 14> The aliphatic monoalcohol regenerated in the second decomposition step is separated from the bisphenol as a mixture with the dialkyl carbonate, and the mixture of the aliphatic monoalcohol and the dialkyl carbonate is regenerated in the first decomposition step.
  • ⁇ 15> The method for producing bisphenol according to any one of ⁇ 12> to ⁇ 14>, wherein the reaction liquid is slurry and the first decomposition liquid is not slurry.
  • ⁇ 16> The method for producing bisphenol according to any one of ⁇ 1> to ⁇ 10> above, wherein a bisphenol-alkyl carbonate condensate represented by the following formula (III), which is a by-product of decomposition of the polycarbonate resin, is further recovered.
  • formula (III) R is a methyl group, an ethyl group or a butyl group.
  • ⁇ 17> The method for producing a bisphenol according to ⁇ 16>, wherein in formula (III), R is a methyl group.
  • a bisphenol raw material containing the bisphenol is used to produce a recycled polycarbonate resin. Production method.
  • Epoxy resin production wherein bisphenol is obtained through the method for producing bisphenol according to any one of ⁇ 1> to ⁇ 17>, and then an epoxy resin is produced using a polyhydric hydroxy compound raw material containing the bisphenol. Production method. ⁇ 20> After the epoxy resin is obtained through the method for producing an epoxy resin according to ⁇ 19>, an epoxy resin raw material containing the epoxy resin and a polyhydroxy compound raw material are further reacted to produce an epoxy resin. A method for producing an epoxy resin.
  • An epoxy resin is obtained through the method for producing an epoxy resin according to ⁇ 19> or ⁇ 20> above, an epoxy resin composition containing the epoxy resin and a curing agent is obtained, and then the epoxy resin composition is A method for producing a cured epoxy resin product by curing to obtain a cured epoxy resin product.
  • R is a methyl group, an ethyl group or a butyl group.
  • bisphenol is produced by using a decomposition method that can decompose polycarbonate resin with high reactivity using a general-purpose catalyst even under mild conditions with a small environmental load.
  • a manufacturing method is provided.
  • the method for producing bisphenol of the present invention bisphenol with good color tone can be obtained.
  • a method for producing a recycled polycarbonate resin and a method for producing an epoxy resin using the obtained bisphenol are provided.
  • a method for producing a bisphenol-alkyl carbonate condensate wherein the bisphenol-alkyl carbonate condensate is produced by utilizing the decomposition method of decomposing the polycarbonate resin.
  • the present invention is a method for producing bisphenol, wherein the decomposition reaction of the polycarbonate resin is performed in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol, and a catalyst, and the catalyst is an alkali metal hydroxide or an alkali metal.
  • a method for producing a bisphenol selected from the group consisting of carbonates, alkali metal alkoxides, alkali metal oxides, chain alkylamines and pyridines hereinafter referred to as the "method for producing a bisphenol of the present invention" There is.)
  • the method for producing bisphenol of the present invention decomposes a polycarbonate resin in the presence of a dialkyl carbonate, an aliphatic monoalcohol and a specific catalyst.
  • a dialkyl carbonate and an aliphatic alcohol together, the dialkyl carbonate swells the polycarbonate resin and increases the contact area with the aliphatic monoalcohol, which accelerates the dissolution rate and decomposition rate. Even if there is, it is thought that it will be easily decomposed.
  • the molar ratio of the dialkyl carbonate used in the decomposition reaction (that is, the charged molar ratio) to 1 mol of repeating units derived from bisphenol in the polycarbonate resin used in the decomposition reaction is 1.5. 8 or more.
  • the dissolution rate and decomposition rate of the polycarbonate resin do not decrease as will be described later, and the reaction can be carried out efficiently.
  • the dispersibility of the polycarbonate resin in the dialkyl carbonate is very good, and by using the dialkyl carbonate, the polycarbonate resin swells and can be easily crushed into fine particles and dispersed.
  • the dispersed polycarbonate resin gradually dissolves in the dialkyl carbonate and is decomposed.
  • a dialkyl carbonate is more likely to undergo a decomposition reaction at the solid-liquid interface than a solvent that leaves the polycarbonate resin in the form of lumps. Therefore, in the method for producing bisphenol of the present invention, it is preferable to prepare a slurry-like reaction liquid in which the polycarbonate resin is dispersed, and to decompose the polycarbonate resin in the slurry-like reaction liquid.
  • the range of slurry at the start of polycarbonate decomposition is defined by filtering the reaction liquid using a filter with an opening of 1 mm or less, and the solid concentration of the filtered polycarbonate resin is 5 mass with respect to the reaction liquid. % or more.
  • the decomposition solution is filtered using a filter with an opening of 1 mm or less, and the solid concentration of the filtered polycarbonate resin is less than 5% by mass relative to the decomposition solution. is preferably
  • the polycarbonate resin used in the method for producing bisphenol of the present invention has a repeating unit derived from bisphenol represented by the general formula (1) (hereinafter sometimes simply referred to as "repeating unit").
  • R 1 to R 4 each independently include a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, and the like.
  • R5 and R6 each independently include a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, and the like.
  • hydrogen atom methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-pentyl group, i-pentyl group, n-hexyl group , n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, methoxy group, ethoxy group, n-propoxy group, i -propoxy group, n-butoxy group, i-butoxy group, t-butoxy group, n-pentyloxy group, i-pentyl group
  • R 5 and R 6 are bonded or bridged to each other between the two groups, cycloalkylidene group, fluorenylidene group (fluorene 9,9-diyl group), xanthenylidene group (xanthene 9,9-diyl group), thioxantheni
  • fluorenylidene group fluorene 9,9-diyl group
  • xanthenylidene group xanthene 9,9-diyl group
  • thioxantheni A lidene group (thioxanthene 9,9-diyl group) or the like may be formed.
  • cycloalkylidene groups include cyclopropylidene, cyclobutylidene, cyclopentylidene, cyclohexylidene, 3,3,5-trimethylcyclohexylidene, cycloheptylidene, cyclooctylidene, cyclononylidene, cyclodecylidene, cycloundecylidene, cyclododecylidene and the like.
  • a polycarbonate resin bisphenol A type polycarbonate resin in which R 1 to R 4 in the general formula (1) are hydrogen atoms and R 5 and R 6 are methyl groups, It is preferable to use it as a raw material.
  • the method for producing bisphenol of the present invention is suitable as a method for producing 2,2-bis(4-hydroxyphenyl)propane (hereinafter sometimes referred to as "bisphenol A").
  • n is not particularly limited, but is 2 to 1000, for example.
  • compositions containing resins other than polycarbonate resins such as copolymers and polymer alloys
  • examples of compositions containing resins other than polycarbonate resins include polycarbonate/polyester copolymers, polycarbonate/polyester alloys, polycarbonate/polyarylate copolymers, and polycarbonate/polyarylate alloys.
  • a composition containing a resin other than a polycarbonate resin is used, a composition containing a polycarbonate resin as a main component (containing 50% by mass or more of the polycarbonate resin in the composition) can be suitably used.
  • the polycarbonate resin can be used by mixing two or more different polycarbonate resins.
  • a polycarbonate resin alone may be simply called polycarbonate.
  • the polycarbonate resin contained in waste plastic is preferable.
  • Polycarbonate resins are molded and used for various molded articles such as optical members such as headlamps and optical recording media such as optical discs.
  • optical members such as headlamps
  • optical recording media such as optical discs.
  • waste plastics containing polycarbonate resins leftover materials, defective products, used molded products, and the like in molding polycarbonate resins into these molded products can be used.
  • Waste plastics can be used after washing, crushing, crushing, etc. as appropriate.
  • Methods for crushing waste plastics include coarse crushing to 20 cm or less using a jaw crusher or orbital crusher, medium crushing to 1 cm or less using an orbital crusher, cone crusher, or mill, or using a mill. It is a pulverization or the like that crushes to 1 mm or less, and it is sufficient if it can be reduced to a size that can be supplied to the decomposition tank. If the waste plastic is thin plastic such as CD or DVD, it can be shredded using a shredder or the like and supplied to the decomposition tank.
  • other resins such as copolymers and polymer alloys, and portions formed of components other than the polycarbonate resin, such as the layers on the front and back surfaces of optical discs, may be removed in advance before use.
  • dialkyl carbonate One of the characteristics of the method for producing bisphenol of the present invention is to use a dialkyl carbonate.
  • Dialkyl carbonate is preferably dimethyl carbonate, diethyl carbonate or dibutyl carbonate.
  • dimethyl carbonate and diethyl carbonate are preferable because they have relatively low boiling points and can be easily removed after the decomposition reaction and can reduce the purification load.
  • the dialkyl carbonate includes dialkyl carbonate not derived from polycarbonate resin. That is, when a polycarbonate resin is decomposed in the presence of an aliphatic monoalcohol, a dialkyl carbonate is produced as the polycarbonate resin is decomposed.
  • the dialkyl carbonate is used by supplying it to a reactor for decomposing the polycarbonate resin.
  • dialkyl carbonate not derived from the polycarbonate resin means dialkyl carbonate not derived from the polycarbonate resin used at the same time, and is the dialkyl carbonate supplied to the reaction vessel.
  • the dialkyl carbonate generated by decomposition of the polycarbonate resin may be recycled to the next decomposition reaction as dialkyl carbonate not derived from the polycarbonate resin used simultaneously.
  • the amount of dialkyl carbonate to be used is small relative to the amount of polycarbonate resin to be used, the amount of solid (polycarbonate resin) to the liquid at the initial stage of the reaction will be large, resulting in poor mixing, dissolution rate and decomposition rate of polycarbonate resin. tends to be delayed. Therefore, the molar ratio of the dialkyl carbonate used to 1 mol of the repeating unit of the polycarbonate resin used is 1.8 or more. It is more preferably 1.9 or more, and more preferably 2.0 or more. In addition, when the amount of dialkyl carbonate used relative to the polycarbonate resin used is large, the production efficiency tends to deteriorate. Therefore, the molar ratio of the dialkyl carbonate to be used is preferably 100 or less, more preferably 70 or less, and even more preferably 50 or less to 1 mol of the repeating unit of the polycarbonate resin to be used.
  • the molar ratio of the dialkyl carbonate used in the decomposition reaction to 1 mol of the repeating unit of the polycarbonate resin used in the decomposition reaction is preferably 1.8 or more and 100 or less, more preferably 1.9 or more and 70 or less, and 2.0. 50 or less is more preferable. Also, the molar ratio may be 2.5 or more and 45 or less, or 3.0 or more and 40 or less.
  • the amount (mole or mass) of the polycarbonate resin used for the decomposition reaction means the amount of the polycarbonate resin charged (the amount supplied to the reaction vessel).
  • the "polycarbonate resin used in the decomposition reaction” may be simply described as “the polycarbonate resin used”. The same is true for other materials such as dialkyl carbonates, fatty alcohols and catalysts.
  • the number of moles of the repeating unit of the polycarbonate resin used is the value obtained by dividing the mass of the polycarbonate resin used (mass of preparation) by the molecular weight of the repeating unit derived from bisphenol.
  • the number of moles of the dialkyl carbonate to be used is the value obtained by dividing the mass of the dialkyl carbonate to be used (mass of charge) by the molecular weight of the dialkyl carbonate.
  • the molar ratio of the dialkyl carbonate to be used with respect to 1 mol of the repeating unit of the polycarbonate resin to be used is "(mass of dialkyl carbonate to be used [g]/molecular weight of dialkyl carbonate [g/mol])/(molecular weight of polycarbonate resin to be used mass [g]/molecular weight of repeating unit of polycarbonate resin [g/mol])”.
  • dialkyl carbonate is generated as the polycarbonate resin decomposes
  • the dialkyl carbonate contained in the reaction solution at the end of the reaction is the dialkyl carbonate not derived from the polycarbonate resin (the dialkyl carbonate supplied to the reaction tank) and the polycarbonate resin.
  • dialkyl carbonate (dialkyl carbonate produced by alcoholysis of polycarbonate resin).
  • Part of the dialkyl carbonate contained in the reaction solution at the end of the reaction is dialkyl carbonate not derived from the polycarbonate resin.
  • the molar ratio of the dialkyl carbonate (total of the dialkyl carbonate used and the dialkyl carbonate produced) at the end of the reaction to 1 mol of the repeating unit of the polycarbonate resin used is the ratio of the dialkyl carbonate used to 1 mol of the repeating unit of the polycarbonate resin used. larger than the molar ratio.
  • the molar ratio of the dialkyl carbonate at the end of the reaction (total of the dialkyl carbonate used and the dialkyl carbonate produced) to 1 mol of the repeating unit of the polycarbonate resin used is preferably 2.8 or more, more preferably 2.81 or more. 3.3 or more is more preferable, and 3.8 or more is still more preferable.
  • Aliphatic monoalcohol One of the characteristics of the method for producing bisphenol of the present invention is that an aliphatic monoalcohol is used.
  • Aliphatic monoalcohols include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol, n-pentanol, i-pentanol, n-hexanol, n-heptanol, n- -octanol, n-nonanol, n-decanol, n-undecanol, n-dodecanol and the like.
  • the aliphatic monoalcohol is preferably an alcohol having 1 to 5 carbon atoms, more preferably any one selected from the group consisting of methanol, ethanol and butanol.
  • an aliphatic monoalcohol that has the same alkyl group as the dialkyl carbonate used.
  • methanol when dimethyl carbonate is used as the dialkyl carbonate
  • ethanol is preferably used when diethyl carbonate is used as the dialkyl carbonate
  • butanol is used when dibutyl carbonate is used as the dialkyl carbonate. is preferred.
  • the amount of aliphatic monoalcohol used is small relative to the amount of polycarbonate resin used, the polycarbonate resin will be difficult to decompose and the decomposition rate will decrease, resulting in a longer decomposition time and a tendency to deteriorate efficiency. It is in.
  • the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin ((mass of the aliphatic monoalcohol used [g] / molecular weight of the aliphatic monoalcohol [g / mol]) / (of the polycarbonate resin to be used Mass [g]/molecular weight of repeating unit of polycarbonate resin [g/mol])) is preferably 0.1 or more, more preferably 0.5 or more, and still more preferably 1.0 or more.
  • the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin is preferably 20.0 or less, more preferably 15.0 or less, and even more preferably 10.0 or less.
  • the decomposition of polycarbonate resin can be controlled by adjusting the amount of aliphatic monoalcohol and the reaction time.
  • the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin is 2.0 or more is preferable, 2.1 or more is more preferable, and 2.2 or more is still more preferable.
  • the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin is 2. It is preferably less than 0.0, and may be 1.95 or less, 1.9 or less, 1.85 or less, or 1.8 or less.
  • the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin is 2.0 or more and 20.0 or less, 2.1 or more and 15.0 or less, or 2.1 or more and 15.0 or less. It is preferable to make it 2 or more and 10.0 or less.
  • the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin is 0.1 or more and less than 2.0, 0.5 or more and 1.95. or less, or 1.0 or more and 1.9 or less.
  • the molar ratio of the aliphatic monoalcohol used to the dialkyl carbonate used is preferably 0.01 or more, more preferably 0.05 or more. preferable. Also, the molar ratio is preferably 15.0 or less, more preferably 10.0 or less, more preferably 8.0 or less, and more preferably 5.0 or less. If the molar ratio of the aliphatic monoalcohol used to the dialkyl carbonate used is small, the polycarbonate resin will be difficult to decompose, or the decomposition rate will decrease, resulting in a prolonged decomposition time. Further, when the molar ratio is large, separation of the aliphatic monoalcohol and the dialkyl carbonate becomes complicated when recovering the dialkyl carbonate.
  • the molar ratio of the aliphatic monoalcohol used to the dialkyl carbonate used is 0.01 or more and 10.0 or less, 0.05 or more and 8.0 or less, 0.1 or more and 6.0 or less. , 0.15 to 5.0 or 0.2 to 3.0. Also, the molar ratio may be 0.25 or more and 2.5 or less, or 0.3 or more and 1.8 or less.
  • the method for producing bisphenol of the present invention further uses a catalyst selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal alkoxides, alkali metal oxides, chain alkylamines and pyridine. That is one of the characteristics.
  • the catalyst is preferably one selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal alkoxides and alkali metal oxides, more preferably alkali metal hydroxides or alkali metal carbonates.
  • alkali metal hydroxides alkali metal carbonates
  • alkali metal alkoxides alkali metal oxides
  • alkali metal hydroxides or alkali metal carbonates The use of inorganic metal catalysts such as alkali metal hydroxides and alkali metal carbonates was considered unfavorable because the dialkyl carbonate would decompose.
  • the present inventors found that when a polycarbonate resin is decomposed in the presence of a dialkyl carbonate and an aliphatic monoalcohol using an alkali metal hydroxide, an alkali metal carbonate, or the like as a catalyst, the polycarbonate resin decomposes at a high reaction rate, It was found that bisphenol with good color tone can be obtained. Further, by using any one selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal alkoxides and alkali metal oxides, odor is less likely to occur, so it is preferable to use these catalysts. .
  • an alkali metal hydroxide is a salt of an alkali metal ion (M + ) and a hydroxide ion (OH ⁇ ), and is a compound represented by MOH (M represents an alkali metal atom).
  • M represents an alkali metal atom
  • Sodium hydroxide or potassium hydroxide is preferred as the alkali metal hydroxide.
  • the molar ratio of the alkali metal hydroxide used to 1 mol of the repeating unit of the polycarbonate resin used ((mass of alkali metal hydroxide used [g]/molecular weight of alkali metal hydroxide [g/mol]) /(mass [g] of polycarbonate resin used/molecular weight [g/mol] of repeating unit of polycarbonate resin)) is preferably 0.0001 or more, more preferably 0.0005 or more, and still more preferably 0.0007 or more. .
  • the molar ratio of the alkali metal hydroxide to be used to 1 mol of the repeating unit of the polycarbonate resin to be used is preferably 1 or less, more preferably 0.9 or less, and even more preferably 0.8 or less.
  • an alkali metal carbonate is a salt of an alkali metal ion (M + ) and a carbonate ion (CO 3 2 ⁇ ), and M 2 CO 3 or MHCO 3 (M represents an alkali metal atom).
  • M represents an alkali metal atom
  • the alkali metal carbonate is preferably sodium carbonate, potassium carbonate, sodium hydrogencarbonate or potassium hydrogencarbonate, and more preferably sodium carbonate or potassium carbonate.
  • the molar ratio of the alkali metal carbonate used to 1 mol of the repeating unit of the polycarbonate resin used ((mass of the alkali metal carbonate used [g] / molecular weight of the alkali metal carbonate [g / mol]) / (used The mass [g] of the polycarbonate resin/molecular weight [g/mol] of the repeating unit of the polycarbonate resin)) is preferably 0.0001 or more, more preferably 0.0005 or more, and still more preferably 0.001 or more.
  • the molar ratio of the alkali metal carbonate used to 1 mol of the repeating unit of the polycarbonate resin used is preferably 1 or less, more preferably 0.9 or less, and even more preferably 0.8 or less.
  • an alkali metal alkoxide is a salt of an alkali metal ion (M + ) and an aliphatic or aromatic alkoxide, and is a compound represented by the following formula (2).
  • MOR H Formula (2) M represents an alkali metal atom, preferably sodium or potassium.
  • R H represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • Preferred alkali metal alkoxides are sodium phenoxide, sodium methoxide, sodium ethoxide, potassium phenoxide, potassium methoxide, potassium ethoxide and potassium t-butoxide.
  • the molar ratio of the alkali metal alkoxide used to 1 mol of the repeating unit of the polycarbonate resin used ((mass of alkali metal alkoxide used [g] / molecular weight of alkali metal alkoxide [g / mol]) / (polycarbonate resin used mass [g]/molecular weight of repeating unit of polycarbonate resin [g/mol])) is preferably 0.0001 or more, more preferably 0.0005 or more, and still more preferably 0.001 or more.
  • the molar ratio of the alkali metal alkoxide used to 1 mol of the repeating unit of the polycarbonate resin used is preferably 1 or less, more preferably 0.9 or less, and even more preferably 0.8 or less.
  • Alkali metal oxides include sodium oxide, potassium oxide, and the like.
  • the molar ratio of the alkali metal oxide to be used to 1 mol of the repeating unit of the polycarbonate resin to be used ((mass of the alkali metal oxide to be used [g] / molecular weight of the alkali metal oxide [g / mol]) / (used The mass [g] of the polycarbonate resin/molecular weight [g/mol] of the repeating unit of the polycarbonate resin)) is preferably 0.0001 or more, more preferably 0.0005 or more, and still more preferably 0.001 or more.
  • the molar ratio of the alkali metal oxide to be used to 1 mol of the repeating unit of the polycarbonate resin to be used is preferably 1 or less, more preferably 0.9 or less, and even more preferably 0.8 or less.
  • a chain alkylamine is a compound having an amine structure in which at least one hydrogen atom of ammonia is substituted with an alkyl group.
  • the chain alkylamine preferably has a boiling point of 200° C. or lower, more preferably 160° C. or lower. If it has such a boiling point, it can be removed together with the dialkyl carbonate by reducing pressure and/or heating. On the other hand, if the boiling point is too low, the chain alkylamine may volatilize during the decomposition reaction and the decomposition rate may decrease.
  • the chain alkylamine is preferably a chain alkyl monoamine or a chain alkyl diamine.
  • the monoalkyl monoamine which is a primary amine, reacts with the carbonate-bonded portion of the polycarbonate resin to generate isocyanate, and is more preferably a dialkyl monoamine, which is a secondary amine, or a trialkyl monoamine, which is a tertiary amine.
  • a dialkylmonoamine which is a secondary amine, reacts with the carbonate-bonded portion of the polycarbonate resin to form a tetraalkylurea, and is more preferably a trialkylmonoamine, which is a tertiary amine.
  • the chain alkylamine is preferably an alkylmonoamine represented by general formula (I).
  • R A represents an alkyl group having 1 to 3 carbon atoms
  • R B to R C each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R A is preferably a methyl group, ethyl group, n-propyl group, or i-propyl group
  • R B to R C are each independently a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or i -Propyl groups are preferred.
  • chain alkylamines represented by general formula (I) include methylamine, ethylamine, propylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, and the like.
  • the chain alkylamine is preferably an alkyldiamine represented by general formula (II).
  • R D to R G each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 1 to 6.
  • R D to R G are each independently preferably a methyl group, an ethyl group, an n-propyl group, or an i-propyl group.
  • chain alkylamines represented by formula (II) include ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, N-methylethylenediamine, N,N'-dimethylethylenediamine, N , N-dimethyltrimethylenediamine, N,N,N',N'-tetramethylethylenediamine, N,N'-diethylethylenediamine, N,N,N',N'-tetraethylethylenediamine, 1,3-diaminopropane, N-methyl-1,3-diaminopropane, N,N'-dimethyl-1,3-diaminopropane, N,N,N',N'-tetramethyl-1,3-diaminopropane and the like.
  • the molar ratio of N of the amino group of the chain alkylamine to be used with respect to 1 mol of the repeating unit of the polycarbonate resin to be used ((mass of alkylamine to be used [g] ⁇ number of N of amino group / number of chain alkylamine Molecular weight [g/mol])/(mass of polycarbonate resin to be used [g]/molecular weight of repeating unit of polycarbonate resin [g/mol])) is preferably 0.0005 or more, more preferably 0.0007 or more, 0.001 or more is more preferable.
  • the molar ratio of N of the amino group of the chain alkylamine used to 1 mol of the repeating unit of the polycarbonate resin used is preferably 4.5 or less, 4.0 or less, 3.0 or less, 2.0 or less, 1.0 or less, 0.9 or less, and 0.8 or less, in this order, the more preferable.
  • pyridine may be unsubstituted or may have a substituent such as a methyl group or a hydroxyl group. Preferred is unsubstituted pyridine.
  • the molar ratio of pyridine to be used per 1 mol of repeating units of the polycarbonate resin to be used ((mass of pyridine to be used [g]/molecular weight of pyridine [g/mol])/(mass of polycarbonate resin to be used [g]/ The molecular weight [g/mol])) of the repeating unit of the polycarbonate resin is preferably 0.0005 or more, more preferably 0.0007 or more, and still more preferably 0.001 or more. For example, it can be 0.01 or more, or 0.1 or more.
  • the molar ratio of pyridine to be used with respect to 1 mol of repeating units of the polycarbonate resin to be used is preferably 4.5 or less, 4.0 or less, 3.0 or less, 2.0 or less, 1.0 or less, 0.9 In the following, the smaller the value in the order of 0.8 or less, the more preferable.
  • a polycarbonate resin, a dialkyl carbonate (a dialkyl carbonate not derived from a polycarbonate resin), an aliphatic monoalcohol and a catalyst are mixed to prepare a reaction solution. That is, in the method for producing bisphenol of the present invention, a dialkyl carbonate not derived from a polycarbonate resin is supplied to a reaction tank in which the polycarbonate resin is decomposed to prepare a reaction solution.
  • the mixing order of polycarbonate resin, dialkyl carbonate (dialkyl carbonate not derived from polycarbonate resin), aliphatic monoalcohol and catalyst is not particularly limited.
  • a polycarbonate resin, an aliphatic monoalcohol and a catalyst may be sequentially supplied to the dialkyl carbonate.
  • the polycarbonate resin is preferably fed to the reaction vessel after the dialkyl carbonate and/or the aliphatic monoalcohol so that it can be mixed more uniformly.
  • reaction solution contains a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst. At least the reaction immediately after the start of the reaction is preferably carried out with a slurry solution in which the polycarbonate resin is dispersed in the liquid component containing the dialkyl carbonate and the aliphatic monoalcohol.
  • the theoretical slurry concentration in the reaction solution to be prepared is preferably 0.05 or more, more preferably 0.1 or more. preferable. Moreover, 0.5 or less is preferable and 0.4 or less is more preferable. If the theoretical slurry concentration (concentration of solids) is too low, the decomposition efficiency will decrease, and if the theoretical slurry concentration is too high, poor mixing will occur.
  • the liquid components in the reaction solution to be prepared are mainly composed of dialkyl carbonate and aliphatic monoalcohol, and the total mass of dialkyl carbonate and aliphatic monoalcohol with respect to the mass of all liquid components is 0.8 or more. 0.9 or more, 0.95 or more, and the like.
  • the total mass of the polycarbonate resin, dialkyl carbonate, aliphatic monoalcohol and catalyst with respect to the mass of the prepared reaction solution is 0.9 or more, 0.95 or more, 0.98 or more, 0.99 or more. be able to.
  • the reaction liquid may be composed of a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst.
  • the content of water in the prepared reaction solution (mass of water/mass of reaction solution) is usually 0.005 or less.
  • the content of water in the reaction solution is preferably 0.001 or less, more preferably 0.0005 or less.
  • the reaction solution is preferably prepared at 10°C or higher, more preferably at 20°C or higher. Also, the reaction solution is preferably prepared at 40° C. or lower, more preferably at 35° C. or lower. If the temperature during preparation of the reaction solution is too low, the rate of dissolution of the polycarbonate resin will decrease. In addition, the viscosity of the reaction liquid increases, and poor mixing tends to occur, and uniform mixing may become difficult. Also, if the temperature during preparation of the reaction solution is too high, depending on the type of catalyst, it may easily volatilize, making it difficult to prepare the reaction solution at a predetermined concentration or to control the decomposition reaction.
  • composition reaction In the method for producing bisphenol of the present invention, the presence of the dialkyl carbonate, the aliphatic monoalcohol and the catalyst causes cleavage of the carbonate bond portion of the polycarbonate resin, resulting in decomposition. That is, the polycarbonate resin reacts with the aliphatic monoalcohol and is decomposed by alcoholysis. As a result, decomposition products such as bisphenol, dialkyl carbonate, and condensates of bisphenol and dialkyl carbonate are produced. By controlling the amount of dialkyl carbonate and aliphatic monoalcohol and the reaction time, it is possible to control the decomposition reaction such as preferentially producing bisphenol and dialkyl carbonate.
  • the molar ratio of the aliphatic monoalcohol used to 1 mol of the repeating unit of the polycarbonate resin used is less than 2.0, or the reaction time is shortened to produce a condensate of bisphenol and dialkyl carbonate. good too.
  • the concentration of the polycarbonate resin and the reaction solution may be clearly separated by controlling the temperature or the like during preparation, but the reaction solution adjustment step and the decomposition reaction step do not necessarily need to be clearly separated.
  • a decomposition reaction of the polycarbonate resin proceeds during the preparation of the reaction liquid, and a part of the polycarbonate resin may be decomposed. By partially decomposing the polycarbonate resin during the preparation of the reaction solution, the decomposition reaction can proceed more efficiently.
  • the decomposition reaction may be carried out under normal pressure or under pressure, but since the reaction proceeds sufficiently even under normal pressure, it is preferable to carry it out under normal pressure.
  • reaction temperature From the preparation of the reaction solution to the termination of the decomposition reaction, the temperature may be the same as the temperature during the preparation of the reaction solution. ), it is preferable to raise the temperature to a predetermined reaction temperature. If the temperature during preparation of the reaction solution is too high, it may become difficult to control the decomposition reaction. It is preferable to raise the temperature of the reaction solution after preparation because the decomposition reaction can proceed stably.
  • the reaction temperature is appropriately selected according to the type of dialkyl carbonate, the reaction time, etc. However, if the temperature is too high, the aliphatic monoalcohol in the reaction solution will evaporate and the alcoholysis will stop. In addition, when the temperature is low, the solvolysis is difficult to proceed and the reaction rate is lowered, so the time required for decomposition is prolonged.
  • the reaction temperature is preferably 20° C. or higher, and more preferably 30° C. or higher and 40° C. or higher in that order. In addition, 120° C. or less is preferable, and the smaller numerical value is more preferable in the order of 110° C. or less, 100° C. or less, and 95° C. or less.
  • the decomposition of the polycarbonate resin is preferably carried out at a reaction temperature of 20 to 120° C. and normal pressure, more preferably at a reaction temperature of 30 to 110° C. and normal pressure, and at a reaction temperature of 40 to 100° C. and normal pressure. is more preferred.
  • the reaction temperature is adjusted from the time when the mixing of the polycarbonate resin, dialkyl carbonate, aliphatic monoalcohol and catalyst is completed, for neutralization or for stopping the decomposition reaction. It is the average temperature up to the point at which the distillation operation is started. In addition, when the temperature is raised after the reaction solution is prepared and the reaction is performed, it is the average temperature from the time when the predetermined temperature is reached to the time when the neutralization or distillation operation for stopping the decomposition reaction is started. .
  • the reaction temperature in each step is preferably the above reaction temperature. Further, the reaction temperature may be the same or different in the first decomposition step and the second decomposition step.
  • reaction time The reaction time is appropriately selected according to the theoretical slurry concentration, reaction temperature, etc., but if it is long, the bisphenol produced tends to decompose, so it is preferably 30 hours or less, 25 hours or less, and 20 hours. The shorter the time, in the order of 15 hours or less, 10 hours or less, and 5 hours or less, the more preferable. If the reaction time is short, the decomposition reaction may not proceed sufficiently. Therefore, the reaction time is preferably 0.1 hour or longer, more preferably 0.5 hour or longer, and still more preferably 1 hour or longer.
  • the reaction time is the time from the completion of mixing the polycarbonate resin, dialkyl carbonate, aliphatic monoalcohol, and catalyst to the start of the neutralization and distillation operations for stopping the decomposition reaction.
  • the end point of the reaction time may be determined by tracking the decomposition reaction by liquid chromatography or the like.
  • the reaction time is the total time of the first decomposition step and the second decomposition step.
  • a decomposition method (1) for a polycarbonate resin a polycarbonate resin is decomposed in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst to obtain a first decomposition solution containing bisphenol.
  • a decomposition step and a second decomposition step of hydrolyzing the dialkyl carbonate by mixing the first decomposition solution and water to regenerate the aliphatic monoalcohol and decomposing the polycarbonate resin to produce bisphenol. and wherein the first decomposition step and the second decomposition step are continuously performed.
  • the first decomposition step is a step of decomposing a polycarbonate resin in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst to obtain a first decomposition solution containing bisphenol.
  • the polycarbonate resin reacts with the aliphatic monoalcohol and is decomposed by alcoholysis, the aliphatic monoalcohol is consumed, and decomposition products such as bisphenol, dialkyl carbonate, and condensates of bisphenol and dialkyl carbonate are produced. do.
  • the prepared reaction solution is preferably slurry.
  • the theoretical slurry concentration in the reaction solution to be prepared is preferably 0.05 or more, more preferably 0.1 or more. preferable. Moreover, 0.5 or less is preferable and 0.4 or less is more preferable. If the theoretical slurry concentration (concentration of solid content) is too low, the decomposition efficiency will decrease, and if the theoretical slurry concentration is too high, poor mixing will occur. It is preferable that the slurry in which the polycarbonate resin is dispersed disappears at the end of the first decomposition step. More preferably, the polycarbonate resin is completely dissolved at the end of the first decomposition step, and the first decomposition liquid is not a slurry.
  • the preparation method and reaction temperature of the reaction solution are as described above. More preferably, 2.2 or more is even more preferable
  • the first decomposition step 0.1 mol of water is added to 1 mol of repeating units of the polycarbonate resin to be used (that is, the amount of polycarbonate resin charged) so that the decomposition product is not hydrolyzed in the first decomposition step. It is preferable that the decomposition reaction is carried out under conditions such as 0.05 mol or less, 0.01 mol or less, or the like.
  • the water content of the reaction solution to be prepared may be controlled, and the water content of the reaction solution to be prepared is 0.5% by mass or less, 0.1% by mass or less, 0.05% by mass or less, etc.
  • the first decomposition step can be performed as
  • the reaction time in the first decomposition step is not particularly limited, but when the reaction liquid is slurry at the start of the reaction, it should be at least the time required for the slurry in which the polycarbonate resin is dispersed to disappear and become a non-slurry liquid. preferably. Further, it is more preferable to set the reaction solution to a time longer than at least until the polycarbonate resin is completely dissolved. If the second decomposition step is carried out in the state of a slurry-like reaction liquid, the dissolution rate of the undissolved polycarbonate resin tends to decrease, and decomposition tends to take a long time.
  • the first decomposition step can be 0.1 hours or longer, 0.25 hours or longer, 0.5 hours or longer, 1 hour or longer, and the like.
  • the first decomposition solution is mixed with water to hydrolyze the dialkyl carbonate to regenerate the aliphatic monoalcohol, and the polycarbonate resin is decomposed to generate bisphenol. be.
  • the alcoholysis of the polycarbonate resin proceeds along with the hydrolysis of the dialkyl carbonate.
  • the aliphatic monoalcohol produced by hydrolysis of the dialkyl carbonate can react with the polycarbonate resin, thereby improving the reaction rate of decomposition of the polycarbonate resin.
  • the reaction liquid (decomposition liquid) is a non-slurry liquid in which bisphenol is dissolved. Even if the polycarbonate resin remains at the end of the second decomposition step, the slurry in which the polycarbonate resin is dispersed disappears, leaving a non-slurry liquid. At the end of the second decomposition step, it is preferable that the polycarbonate resin is completely dissolved and the decomposition liquid is not a slurry.
  • the environmental load becomes lower.
  • the decomposition liquid obtained in the second decomposition step contains bisphenol, aliphatic monoalcohol and dialkyl carbonate.
  • Aliphatic monoalcohol and dialkyl carbonate can be recovered by distilling the decomposed liquid or a liquid obtained by neutralizing the same.
  • dimethyl carbonate and methanol azeotrope when dimethyl carbonate and methanol are used, a mixture of dimethyl carbonate and methanol can be recovered by distillation. The recovered distillate can be reused for preparing the reaction solution in the first decomposition step.
  • the second decomposition step if the amount of water mixed with the first decomposition solution is too small, the amount of regenerated aliphatic monoalcohol is small, and the effect of accelerating the decomposition of the undecomposed polycarbonate resin is low. On the other hand, if the amount is too large, the amount of the regenerated aliphatic monoalcohol increases, so that the undecomposed polycarbonate resin can be efficiently decomposed. However, when the mixture of the aliphatic monoalcohol and the dialkyl carbonate is recovered in the first decomposition step and reused, the aliphatic monoalcohol becomes excessive, making it difficult to use the entire recovered amount as it is.
  • the amount of water mixed with the first decomposition solution is preferably 0.5 mol or more and 1.5 mol or less, more preferably 0.6 mol, per 1 mol of the repeating unit of the polycarbonate resin used. mol or more and 1.4 mol or less, and most preferably 0.7 mol or more and 1.3 mol or less.
  • the amount of aliphatic monoalcohol and dialkyl carbonate contained in the decomposition solution after the second decomposition step is 80% by mass to 120% by mass relative to the amount used in the first decomposition step (amount charged). It is preferably in the range, more preferably in the range of 90% by mass to 110% by mass. With a composition within this range, even if the mixed liquid of the aliphatic monoalcohol and the dialkyl carbonate is used for the preparation of the reaction liquid in the first decomposition step, it is easy to adjust the reaction liquid to a desired composition. Therefore, it is easy to recycle to the first decomposition step as a mixture of aliphatic monoalcohol and dialkyl carbonate.
  • Method for decomposing polycarbonate resin (2) When trying to obtain a condensate together with bisphenol, it is preferable to carry out a decomposition reaction so as not to hydrolyze the condensate. In such a case, after preparing the reaction solution, it is preferable to adopt a method in which the decomposition reaction is carried out until the reaction is completed without additionally supplying water. In order to suppress the hydrolysis of the decomposition products, the water content of the reaction solution to be prepared is 0.5% by mass or less, 0.1% by mass or less, or 0.05% by mass or less. It is preferred to carry out the reaction.
  • the amount of water per 1 mol of the repeating unit of the polycarbonate resin used may be controlled, and water is 0.1 mol or less, 0.05 mol or less, or 0.01 mol or less per 1 mol of the repeating unit of the polycarbonate resin used. It can be set as a condition such as mol or less.
  • a method for stopping the decomposition reaction of the polycarbonate resin is appropriately selected depending on the type of catalyst used.
  • the decomposition reaction can be stopped by distilling off or neutralizing the chain alkylamine or pyridine.
  • an ammonium salt or pyridinium salt is generated and its removal is also required. Therefore, the removal of the chain alkylamine or pyridine is preferably It is a method of distilling off.
  • the decomposition reaction can be stopped by neutralization or the like.
  • Bisphenol can be recovered from the reaction solution after the decomposition reaction by means such as crystallization or column chromatography after stopping the decomposition reaction of the polycarbonate resin.
  • Bisphenol is preferably recovered by crystallization, and the method for producing bisphenol of the present invention preferably has a crystallization step of recovering bisphenol by crystallization. Specifically, after the decomposition reaction of the polycarbonate resin, the organic phase obtained by removing the catalyst and solvent from the reaction solution and adding and mixing the organic solvent is washed with water or saline, and if necessary, Neutralize and wash with ammonium chloride water. The washed organic phase is then cooled and crystallized.
  • Organic solvents that can be used during neutralization or crystallization include aromatic hydrocarbons such as toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, and mesitylene; Aliphatic hydrocarbons, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol, n-pentanol, i-pentanol, n-hexanol, n-heptanol, n-octanol , n-nonanol, n-decanol, n-undecanol, n-dodecanol, ethylene glycol, diethylene glycol, triethylene glycol and other aliphatic alcohols can be used.
  • aromatic hydrocarbons such as toluene, xylene, ethylbenzene
  • the bisphenol-alkyl carbonate condensate represented by the following formula (III), which is a by-product of the decomposition of the polycarbonate resin, can be further recovered.
  • R is a methyl group, an ethyl group, or a butyl group, preferably a methyl group.
  • the recovery (isolation and purification) of the bisphenol-alkyl carbonate condensate can be carried out by a conventional method. Examples include crystallization and purification by column chromatography.
  • the method for producing bisphenol of the present invention can be a method (1) for producing bisphenol having the following steps A, B1 and C1.
  • Step A Step of decomposing the polycarbonate resin in a reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a polycarbonate decomposition solution containing bisphenol
  • Step B1 Obtained in Step A Step of concentrating the obtained polycarbonate decomposition solution to obtain a concentrate
  • An aromatic hydrocarbon is supplied to the concentrate obtained in Step B1 to crystallize to precipitate bisphenol, and a slurry containing bisphenol is obtained. and obtaining bisphenol by solid-liquid separation of the obtained slurry
  • step A for example, any selected from the group consisting of a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol, an alkali metal hydroxide, an alkali metal carbonate, an alkali metal alkoxide, a chain alkylamine and pyridine is stirred for a predetermined period of time.
  • the polycarbonate resin is decomposed to produce bisphenol, and a bisphenol-containing polycarbonate decomposition solution is obtained.
  • the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol, the type and mixing ratio of the catalyst, the reaction temperature, etc. are as described above.
  • step A it is preferable to decompose the polycarbonate resin in a slurry-like reaction liquid to carry out the reaction.
  • the decomposition reaction may be carried out until the reaction is completed without additional supply, or water may be mixed in the middle of the reaction to allow the decomposition reaction to proceed.
  • the balance may be controlled.
  • Theoretical slurry concentration in the reaction solution to be prepared is preferably 0.05 or more, more preferably 0.1 or more. .
  • 0.5 or less is preferable and 0.4 or less is more preferable.
  • the decomposition efficiency will decrease, and if the theoretical slurry concentration is too high, poor mixing will occur.
  • the polycarbonate resin dissolves, and the slurry in which the polycarbonate resin is dispersed disappears.
  • a non-slurry liquid in which bisphenol is dissolved is obtained. Even if the polycarbonate resin remains at the end of step A, it is preferable that the liquid is not a slurry and that the polycarbonate resin is completely dissolved.
  • step B1 concentration of the polycarbonate decomposition solution can be performed by distilling off the solvent. Distillation is preferably carried out so that the concentration of the concentrated liquid is 70% by mass or less, preferably 60% by mass or less, and more preferably 50% by mass or less of the polycarbonate decomposition liquid. . Distillation is preferably carried out so that the concentration of the concentrated liquid is 20% by mass or more, preferably 30% by mass or less, of the polycarbonate decomposition liquid. If the solution is concentrated too much, bisphenol will precipitate and the solution will solidify. For example, distillation can be carried out at a temperature of 50-200° C. and a pressure of 0.1 kPa to 150 kPa.
  • the polycarbonate decomposition solution may be concentrated after neutralization and washing.
  • Neutralization is performed by mixing a polycarbonate decomposing solution with an acid such as hydrochloric acid, sulfuric acid, or phosphoric acid. Neutralization is preferably carried out by adjusting the amount of acid to be mixed so that the pH becomes 5.5 to 9.0 (preferably pH 6.0 to 8.0).
  • the aqueous phase is removed, or if the neutralized salt precipitates, the neutralized salt is removed to obtain a neutralized solution containing bisphenol. This neutralized liquid may be concentrated.
  • step C1 first, the concentrated liquid and the aromatic hydrocarbon are mixed, and bisphenol is precipitated from the mixed liquid containing the concentrated liquid and the aromatic hydrocarbon by crystallization.
  • the aromatic hydrocarbon to be mixed with the concentrated liquid include toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, mesitylene, etc. Toluene is preferred.
  • Crystallization can usually be carried out by cooling a mixed liquid containing a concentrated liquid and an aromatic hydrocarbon.
  • the temperature before crystallization is set to 60 to 100°C (preferably 70 to 90°C) and cooled to 40 to 70°C (preferably 40 to 65°C).
  • the temperature before crystallization is set to 60 to 100°C (preferably 70 to 90°C) and cooled to 40 to 70°C (preferably 40 to 65°C).
  • Solid-liquid separation can be performed by known means such as filtration and centrifugation.
  • solid-liquid separation is performed using a horizontal belt filter, rotary vacuum filter, rotary pressure filter, batch filter, centrifugal filter separator, centrifugal sedimentation separator, a hybrid centrifuge (screen ball decanter), etc. be able to.
  • the obtained bisphenol may be further purified by washing with water or suspension washing. Also, crystallization may be performed multiple times. By dissolving the bisphenol obtained in step C1 in an aromatic hydrocarbon and crystallizing the obtained solution, bisphenol with higher purity can be precipitated.
  • the method for producing bisphenol of the present invention can be a method (2) for producing bisphenol having the following steps A, B2 and C2.
  • Step A Step of decomposing the polycarbonate resin in a reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a polycarbonate decomposition solution containing bisphenol
  • Step B2 Obtained in Step A
  • Step C2 The bisphenol obtained in Step B2 and a step of recovering bisphenol from a solution containing an aromatic monoalcohol
  • the process A of the bisphenol manufacturing method (2) is the same as the process A of the bisphenol manufacturing method (1).
  • step B2 the dialkyl carbonate and the aliphatic monoalcohol can be distilled off by distilling the solution containing the polycarbonate decomposition solution and the aromatic monoalcohol.
  • distillation can be carried out at a temperature of 50-200° C. and a pressure of 0.1 kPa to 150 kPa. It is also preferable to distill off at least part of the aromatic monoalcohol by distillation.
  • the polycarbonate decomposition solution may be subjected to step B2 after neutralization and washing, as in step B1 of the method for producing bisphenol (1).
  • Step B2 is carried out using, for example, a mixed liquid obtained by mixing the polycarbonate decomposition liquid obtained in Step A and an aromatic monoalcohol.
  • the polycarbonate decomposition solution may be neutralized or washed, mixed with an aromatic monoalcohol, and subjected to step B2.
  • Step C2 Crystallization or the like can be used to recover bisphenol from the solution containing bisphenol and aromatic monoalcohol obtained in step B2.
  • a polycarbonate resin derived from bisphenol A is used and phenol is used as the aromatic monoalcohol in step B2
  • a polycarbonate decomposition solution containing bisphenol A is obtained in step A
  • bisphenol A and phenol are used in step B2.
  • a solution containing In step C2 the solution containing bisphenol A and phenol is crystallized to obtain adduct crystals of bisphenol A and phenol, and then phenol is removed from the melt of the adduct crystals to obtain bisphenol A. .
  • a solution containing bisphenol A and phenol can be incorporated into the reaction process and purification process of a manufacturing plant that manufactures bisphenol A from acetone and phenol, the recycling process of the mother liquor (the process of alkaline decomposition of bisphenol A in the mother liquor), etc. , Crystallization is performed together with bisphenol A produced in the production plant to obtain adduct crystals of bisphenol A and phenol, and then phenol is removed from the melt of the adduct crystals to obtain bisphenol A. good.
  • Bisphenol obtained by the method for producing bisphenol of the present invention can be used in various applications such as optical materials, recording materials, insulating materials, transparent materials, electronic materials, adhesive materials, and heat-resistant materials.
  • Various thermoplastic resins such as polyether resins, polyester resins, polyarylate resins, polycarbonate resins, polyurethane resins, acrylic resins, epoxy resins, unsaturated polyester resins, phenolic resins, polybenzoxazine resins, cyanates It can be used as a constituent component of various thermosetting resins such as resins, a curing agent, an additive, or a precursor thereof. It is also useful as an additive such as a color developer for heat-sensitive recording materials, an anti-fading agent, a bactericide, and an antibacterial and antifungal agent.
  • thermoplastic resins and thermosetting resins it is preferable to use it as a raw material (monomer) for thermoplastic resins and thermosetting resins, and more preferably as a raw material for polycarbonate resins and epoxy resins, because it can impart good mechanical properties. It is also preferably used as a developer, and more preferably used in combination with a leuco dye and a discoloration temperature regulator.
  • polycarbonate resins are selected from the group consisting of dialkyl carbonates, aliphatic monoalcohols, alkali metal hydroxides, alkali metal carbonates, alkali metal alkoxides, alkali metal oxides, chain alkylamines and pyridine.
  • a method for producing a bisphenol-alkyl carbonate condensate represented by the following formula (III), which is decomposed in the presence of any catalyst hereinafter sometimes referred to as the “method for producing the condensate of the present invention”. It is a thing.
  • R is a methyl group, an ethyl group, or a butyl group.
  • the polycarbonate resin is a dialkyl carbonate, an aliphatic monoalcohol, an alkali metal hydroxide, an alkali metal carbonate, an alkali metal alkoxide, an alkali metal oxide, a chain alkylamine and pyridine.
  • any catalyst selected from the group consisting of
  • the types and amounts of the polycarbonate resin, dialkyl carbonate, aliphatic monoalcohol, and catalyst used in the method for producing a condensate of the present invention, the reaction temperature, the reaction time, etc. are the same as in the method for producing bisphenol of the present invention, and are suitable. Aspects are also the same. Further, similarly to the method for producing bisphenol of the present invention, the method for producing a condensate of the present invention comprises decomposing a polycarbonate resin in a slurry-like reaction liquid containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst. is preferred.
  • the amount of aliphatic monoalcohol and the reaction time can be adjusted to produce a bisphenol-alkyl carbonate condensate as a by-product.
  • a bisphenol-alkyl carbonate condensate can be obtained. Recovery of the bisphenol-alkyl carbonate condensate is as described above.
  • the molar ratio of the aliphatic monoalcohol used to 1 mol of the repeating unit of the polycarbonate resin used is preferably less than 2.0 and 1.95 or less. , 1.9 or less, 1.85 or less, or 1.8 or less.
  • a bisphenol-alkyl carbonate condensate can also be obtained by shortening the reaction time.
  • alkyl carbonate group can be used as a protective group in the bisphenol-alkyl carbonate condensate, different functional groups can be selectively introduced into the two hydroxyl groups of bisphenol, leading to new products. .
  • the present invention provides a method for producing a recycled polycarbonate resin (hereinafter referred to as "recycled polycarbonate of the present invention"), in which a recycled polycarbonate resin is produced using a bisphenol raw material containing bisphenol (recycled bisphenol) obtained by the method for producing bisphenol of the present invention. It may be described as "resin manufacturing method”).
  • the method for producing recycled polycarbonate resin of the present invention utilizes a chemical recycling method for producing polycarbonate resin using recycled bisphenol obtained by decomposing polycarbonate resin contained in waste plastic or the like into bisphenol, which is a monomer, as a raw material.
  • the method for producing the polycarbonate resin of the present invention can be carried out by appropriately selecting a known polymerization method for polycarbonate resins, except that a bisphenol raw material containing recycled bisphenol is used as the bisphenol.
  • Polycarbonate resins are generally produced by polymerizing bisphenol and carbonic diester in the presence of a catalyst.
  • the recycled polycarbonate resin can be obtained, for example, by polymerizing a bisphenol raw material containing recycled bisphenol (the bisphenol obtained by the method for producing a bisphenol of the present invention) and a diester carbonate raw material. can be done.
  • a recycled polycarbonate resin can be produced by a method such as transesterifying a bisphenol raw material containing recycled bisphenol and a carbonate diester raw material such as diphenyl carbonate in the presence of an alkali metal compound and/or an alkaline earth metal compound. can.
  • Recycled bisphenol may be used as the entire bisphenol raw material, or may be mixed with general bisphenol that is not recycled bisphenol and used as part of the bisphenol raw material.
  • the amount of regenerated bisphenol is not particularly limited, and may be 0.1% by mass or more, 1% by mass or more, 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more, or 70% by mass. % or more, 80% by mass or more, or 90% by mass or more.
  • the larger the ratio of recycled bisphenol the more environmentally friendly it is. Therefore, from the viewpoint of consideration for the environment, the amount of recycled bisphenol relative to the bisphenol raw material is preferably large.
  • the transesterification reaction can be carried out by appropriately selecting a known method, and an example of a method using diphenyl carbonate as a raw material for diester carbonate will be described below.
  • the amount of diphenyl carbonate used with respect to the bisphenol raw material is preferably large in terms of the produced regenerated polycarbonate resin having few terminal hydroxyl groups and excellent thermal stability of the polymer. From the viewpoint of easy production of a recycled polycarbonate resin having a molecular weight, it is preferably small.
  • the amount of diphenyl carbonate used per 1 mol of the bisphenol raw material used is usually 1.001 mol or more, preferably 1.002 mol or more, and usually 1.3 mol or less, preferably 1.0 mol or more. 2 mol or less.
  • the bisphenol raw material and diphenyl carbonate can be supplied in solid form, but it is preferable to melt one or both of them and supply them in a liquid state.
  • a transesterification catalyst is usually used when producing a recycled polycarbonate resin through a transesterification reaction between diphenyl carbonate and a bisphenol raw material.
  • An alkali metal compound and/or an alkaline earth metal compound is preferably used as this transesterification catalyst. These may be used alone, or two or more of them may be used in any combination and ratio. Practically, it is desirable to use an alkali metal compound.
  • the amount of the catalyst used per 1 mol of the bisphenol raw material or diphenyl carbonate is usually 0.05 ⁇ mol or more, preferably 0.08 ⁇ mol or more, more preferably 0.10 ⁇ mol or more, and usually 100 ⁇ mol or less, preferably is 50 ⁇ mol or less, more preferably 20 ⁇ mol or less.
  • the amount of the catalyst used is within the above range, it is easy to obtain the polymerization activity necessary for producing a recycled polycarbonate resin having a desired molecular weight, the polymer color is excellent, and excessive branching of the polymer does not proceed. It is easy to obtain a polycarbonate resin with excellent fluidity during molding.
  • both raw materials supplied to the raw material mixing tank are usually stirred uniformly and then supplied to the polymerization tank where the catalyst is added to produce the polymer.
  • the recycled polycarbonate resin obtained by the method for producing a recycled polycarbonate resin of the present invention may be used as it is, or may be used as a recycled polycarbonate resin composition containing unused polycarbonate resin and recycled polycarbonate resin.
  • the recycled polycarbonate resin composition can be obtained by appropriately selecting a known kneading method or the like to mix virgin polycarbonate resin and recycled polycarbonate resin.
  • the amount of recycled polycarbonate resin is not particularly limited, but the larger the proportion of recycled polycarbonate resin, the more environmentally friendly.
  • the amount of the recycled polycarbonate resin relative to the recycled polycarbonate resin composition is preferably 50% by mass or more, and the larger the amount, the higher is 70% by mass or more, 80% by mass or more, and 90% by mass or more. more preferred.
  • the obtained recycled polycarbonate resin and composition can be molded into various molded articles such as optical members and optical recording media in the same manner as virgin polycarbonate resin.
  • the present invention relates to a method for producing an epoxy resin, comprising obtaining bisphenol through the method for producing bisphenol of the present invention and then producing an epoxy resin using a polyhydric hydroxy compound starting material containing the bisphenol.
  • the present invention also relates to a method for producing an epoxy resin, comprising further reacting an epoxy resin raw material containing the epoxy resin obtained through the above epoxy resin production method with a polyhydric hydroxy compound raw material to produce an epoxy resin.
  • recycled bisphenol and/or an epoxy resin produced using recycled bisphenol is used to produce an epoxy resin (hereinafter referred to as "recycled epoxy resin" There is.) to manufacture.
  • the method for producing the epoxy resin of the present invention is not particularly limited except that the recycled bisphenol (the bisphenol obtained by the method for producing the bisphenol of the present invention) and/or the epoxy resin produced using the recycled bisphenol is used as a raw material.
  • a known manufacturing method can be used.
  • regenerated bisphenol can be used as at least a part of the polyhydric hydroxy compound raw material for production using a one-step method, an oxidation method, or a two-step method.
  • the obtained epoxy resin can also be used as at least a part of the epoxy resin raw material for production using the two-step method.
  • epoxy resin raw material means an epoxy resin used as a raw material in the method for producing an epoxy resin of the present invention.
  • Polyvalent hydroxy compound is a general term for dihydric or higher phenol compounds and dihydric or higher alcohol compounds, and "polyhydric hydroxy compound raw material” is used as a raw material for the method for producing an epoxy resin of the present invention. hydroxy compounds.
  • the one-step method for producing an epoxy resin is a method of obtaining an epoxy resin by reacting regenerated bisphenol (the bisphenol obtained by the method for producing bisphenol of the present invention) with epihalohydrin.
  • the method for producing an epoxy resin by an oxidation method is a method in which a regenerated bisphenol is allylated with an allyl halide (such as allyl chloride or allyl bromide) and then subjected to an oxidation reaction to obtain an epoxy resin.
  • the two-step method for producing an epoxy resin is a method in which an epoxy resin raw material and a polyhydric hydroxy compound raw material are reacted, and recycled bisphenol and/or an epoxy resin produced using recycled bisphenol is used as the raw material.
  • the method for producing the epoxy resin by the one-step method is not particularly limited as long as it is a known production method, and will be described in detail below.
  • a polyhydroxy compound other than the regenerated bisphenol (hereinafter sometimes referred to as "another polyhydroxy compound”) may be used in combination with the regenerated bisphenol. That is, the method for producing an epoxy resin by the one-step method is a method of obtaining an epoxy resin by reacting a polyhydric hydroxy compound raw material with epihalohydrin, and at least a part of the polyhydric hydroxy compound raw material is a method of regenerated bisphenol. can be done.
  • the content of regenerated bisphenol in the polyhydric hydroxy compound raw material is not particularly limited, but is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, because a high content of regenerated bisphenol is environmentally friendly.
  • polyhydric hydroxy compounds is a general term for dihydric or higher phenol compounds and dihydric or higher alcohol compounds, excluding regenerated bisphenol.
  • the "polyhydroxy compound raw material” is the total polyhydroxy compound including the regenerated bisphenol and optionally other polyhydroxy compounds.
  • polyhydric hydroxy compounds include bisphenol A, tetramethylbisphenol A, bisphenol F, tetramethylbisphenol F, bisphenol S, bisphenol C, bisphenol AD, bisphenol AF, hydroquinone, resorcin, methylresorcin, biphenol, tetramethylbiphenol, Dihydroxynaphthalene, dihydroxydiphenyl ether, thiodiphenols, phenol novolak resin, cresol novolak resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, terpene phenol resin, dicyclopentadiene phenol resin, bisphenol A novolak resin, naphthol novolak resin, Various polyhydric phenols such as brominated bisphenol A and brominated phenol novolak resins, and polyhydric phenols obtained by condensation reaction of various phenols with various aldehydes such as benzaldehyde, hydroxybenzalde
  • Resins polyhydric phenol resins obtained by the condensation reaction of xylene resin and phenols, various phenolic resins such as co-condensation resins of heavy oils or pitches, phenols and formaldehydes, ethylene glycol, Chains such as methylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 1,6-hexanediol cycloaliphatic diols, cyclic aliphatic diols such as cyclohexanediol and cyclodecanediol, and polyalkylene ether glycols such as polyethylene ether glycol, polyoxytrimethylene ether glycol and polypropylene ether glycol.
  • the polyvalent hydroxy compound raw material is dissolved in epihalohydrin to form a uniform solution.
  • epihalohydrin epichlorohydrin or epibromohydrin is usually used, and epichlorohydrin is preferred in the present invention.
  • the amount of epihalohydrin to be used is usually 1.0 to 14.0 equivalents, particularly 2.0 to 10.0 equivalents, per equivalent of hydroxyl groups in the starting polyhydroxy compound (all polyhydroxy compounds). is preferred.
  • the amount of epihalohydrin is at least the above lower limit, it is preferable because the polymerization reaction can be easily controlled and the resulting epoxy resin can have an appropriate epoxy equivalent weight.
  • the amount of epihalohydrin is equal to or less than the above upper limit, production efficiency tends to improve, which is preferable.
  • an alkali metal hydroxide is added in an amount corresponding to usually 0.1 to 3.0 equivalents, preferably 0.8 to 2.0 equivalents, per 1 equivalent of the hydroxyl group of the polyvalent hydroxy compound raw material. It is added as a solid or an aqueous solution to react.
  • the amount of the alkali metal hydroxide added is at least the above lower limit, the reaction between the unreacted hydroxyl groups and the produced epoxy resin is less likely to occur, and the polymerization reaction can be easily controlled, which is preferable.
  • the amount of the alkali metal hydroxide to be added is equal to or less than the above upper limit because impurities due to side reactions are less likely to be generated.
  • Alkali metal hydroxides used herein typically include sodium hydroxide or potassium hydroxide.
  • This reaction can be carried out under normal pressure or reduced pressure, and the reaction temperature is preferably 20-200°C, more preferably 40-150°C.
  • the reaction temperature is equal to or higher than the above lower limit, it is preferable because it facilitates the progress of the reaction and facilitates control of the reaction.
  • the reaction temperature is equal to or lower than the above upper limit, the side reaction is less likely to proceed, and particularly the amount of polymer can be easily reduced, which is preferable.
  • the reaction liquid is azeotroped while maintaining a predetermined temperature as necessary, and the condensed liquid obtained by cooling the volatilizing steam is separated into oil and water, and the oil content after removing the water is reacted. It is carried out while dehydrating by the method of returning to the system.
  • the alkali metal hydroxide is added intermittently or continuously little by little over a period of preferably 0.1 to 24 hours, more preferably 0.5 to 10 hours, in order to suppress abrupt reaction.
  • the addition time of the alkali metal hydroxide is longer than the above lower limit, it is possible to prevent the reaction from progressing rapidly, and the reaction temperature can be easily controlled, which is preferable. If the addition time is equal to or less than the above upper limit, the amount of polymer can be easily reduced, which is preferable.
  • the insoluble by-product salt can be removed by filtration or removed by washing with water, and then unreacted epihalohydrin can be removed by heating and/or distillation under reduced pressure.
  • quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide
  • tertiary amines such as benzyldimethylamine and 2,4,6-tris(dimethylaminomethyl)phenol
  • 2-ethyl Catalysts such as imidazoles such as 4-methylimidazole and 2-phenylimidazole
  • phosphonium salts such as ethyltriphenylphosphonium iodide
  • phosphines such as triphenylphosphine
  • alcohols such as ethanol and isopropanol
  • ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • ethers such as dioxane and ethylene glycol dimethyl ether
  • glycol ethers such as methoxypropanol
  • You may use an inert organic solvent, such as an aprotic polar solvent, such as.
  • An organic solvent for dissolving the epoxy resin may be used for the reaction with the alkali.
  • the organic solvent used in the reaction is not particularly limited, it is preferable to use a ketone-based organic solvent from the viewpoint of production efficiency, handleability, workability, and the like.
  • an aprotic polar solvent may be used from the viewpoint of lowering the amount of hydrolyzable chlorine.
  • ketone-based organic solvents examples include ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Methyl isobutyl ketone is particularly preferred because of its effects and ease of post-treatment. These may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • aprotic polar solvents examples include dimethylsulfoxide, diethylsulfoxide, dimethylsulfone, sulfolane, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, and the like. These may be used individually by 1 type, and may be used in mixture of 2 or more types. Among these aprotic polar solvents, dimethylsulfoxide is preferred because it is readily available and has excellent effects.
  • the amount of the solvent used is such that the concentration of the epoxy resin in the liquid to be treated with alkali is usually 1 to 95% by mass, preferably 5 to 80% by mass.
  • alkali a solid or solution of alkali metal hydroxide can be used.
  • alkali metal hydroxides include potassium hydroxide and sodium hydroxide, preferably sodium hydroxide.
  • the alkali metal hydroxide may be dissolved in an organic solvent or water.
  • the alkali metal hydroxide is used as a solution dissolved in an aqueous solvent or an organic solvent.
  • the amount of the alkali metal hydroxide to be used is preferably 0.01 to 20.0 parts by mass or less per 100 parts by mass of the epoxy resin in terms of the solid content of the alkali metal hydroxide. More preferably, it is 0.10 to 10.0 parts by mass. If the amount of alkali metal hydroxide used is less than the above lower limit, the effect of reducing the total chlorine content is low.
  • the reaction temperature is preferably 20-200°C, more preferably 40-150°C, and the reaction time is preferably 0.1-24 hours, more preferably 0.5-10 hours.
  • excess alkali metal hydroxides and secondary salts can be removed by a method such as washing with water, and the organic solvent can be removed by heating and/or vacuum distillation and/or steam distillation.
  • the method for producing an epoxy resin by an oxidation method is not particularly limited as long as it is a known production method. It can be carried out according to the methods described.
  • the recycled bisphenol may be produced in combination with a polyhydric hydroxy compound other than the recycled bisphenol. That is, the method for producing an epoxy resin by an oxidation method is a method for obtaining an epoxy resin by allylating a polyhydroxy compound raw material with an allyl halide and then subjecting it to an oxidation reaction. Part can be a method in which the recycled bisphenol.
  • the "polyhydroxy compound raw material” is a total polyhydroxy compound that is a combination of recycled bisphenol and other polyhydroxy compounds that are used as necessary.
  • the hydroxy compound include those used in the one-step method.
  • the content of regenerated bisphenol in the polyhydric hydroxy compound raw material is not particularly limited, but is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, because a high content of regenerated bisphenol is environmentally friendly.
  • the method for producing an epoxy resin by the two-step method is not particularly limited as long as it is a known production method, and will be described in detail below.
  • the method for producing an epoxy resin by a two-step method has a step of reacting an epoxy resin raw material and a polyhydric hydroxy compound raw material, and at least part of the epoxy resin raw material is an epoxy resin produced using recycled bisphenol. and/or wherein at least a portion of the polyhydric hydroxy compound feedstock is regenerated bisphenol.
  • the two-step method for producing an epoxy resin is any of the following methods (i) to (iii).
  • the epoxy resin raw material is an epoxy resin other than the epoxy resin produced using recycled bisphenol.
  • the polyhydric hydroxy compound raw material is a total polyhydric hydroxy compound obtained by combining regenerated bisphenol and other polyhydric hydroxy compounds used as necessary.
  • the epoxy resin raw material is a total epoxy resin that is a combination of epoxy resin produced using recycled bisphenol and other epoxy resins that are used as necessary.
  • the polyhydric hydroxy compound raw material is a total polyhydric hydroxy compound obtained by combining regenerated bisphenol and other polyhydric hydroxy compounds used as necessary.
  • the epoxy resin raw material is a total epoxy resin that is a combination of an epoxy resin produced using recycled bisphenol and other epoxy resins that are used as necessary.
  • the polyhydric hydroxy compound raw material is a polyhydric hydroxy compound other than the regenerated bisphenol.
  • the epoxy resin produced using the regenerated bisphenol used in method (ii) and method (iii) can be obtained by a one-step epoxy resin production method or an oxidation method. Also, the epoxy resin obtained by method (i) may be used.
  • the epoxy resin other than the epoxy resin produced using the recycled bisphenol is the same as the other epoxy resin described later in the method for producing a cured epoxy resin, and the other polyvalent hydroxy compound is the same as the one-step method. It is the same.
  • the content of the regenerated bisphenol in the polyhydric hydroxy compound containing regenerated bisphenol is not particularly limited. Preferably, 10 to 100% by mass is more preferable.
  • the content of the epoxy resin produced using the recycled bisphenol in the epoxy resin raw material containing the epoxy resin produced using the recycled bisphenol is not particularly limited. Since a high content of the epoxy resin produced using is environmentally friendly, it is preferably 1 to 100% by mass, more preferably 10 to 100% by mass.
  • the equivalent ratio is within the above range, the molecular weight can be easily increased, and more terminal epoxy groups can be left, which is preferable.
  • a catalyst may be used in the reaction by the two-step method, and as the catalyst, any compound having a catalytic ability to promote the reaction between an epoxy group and a phenolic hydroxyl group or an alcoholic hydroxyl group may be used. It's okay. Examples thereof include alkali metal compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts, cyclic amines, imidazoles and the like. Among these, quaternary ammonium salts are preferred.
  • one type of catalyst can be used alone, or two or more types can be used in combination. The amount of catalyst used is usually 0.001 to 10% by mass based on the epoxy resin raw material.
  • a solvent may be used, and any solvent that dissolves the epoxy resin raw material may be used.
  • examples thereof include aromatic solvents, ketone solvents, amide solvents, glycol ether solvents and the like. Only one type of solvent may be used, or two or more types may be used in combination.
  • the resin concentration in the solvent is preferably 10 to 95% by mass. More preferably, it is 20 to 80% by mass.
  • the solvent can be additionally added to continue the reaction. After completion of the reaction, the solvent can be removed or added as necessary.
  • the reaction temperature is preferably 20-250°C, more preferably 50-200°C. If the reaction temperature is higher than the above upper limit, the resulting epoxy resin may deteriorate. Further, if the content is below the above lower limit, the reaction may not proceed sufficiently. Further, the reaction time is usually 0.1 to 24 hours, preferably 0.5 to 12 hours.
  • an epoxy resin is obtained through the above-described method for producing an epoxy resin, and a composition containing the epoxy resin and a curing agent (hereinafter sometimes referred to as an "epoxy resin composition") ), the epoxy resin composition is cured to obtain a cured epoxy resin.
  • the epoxy resin composition may contain epoxy resins other than the epoxy resin obtained by the method for producing an epoxy resin of the present invention (hereinafter sometimes simply referred to as "other epoxy resins"), Curing agents, curing accelerators, inorganic fillers, coupling agents, and the like can be appropriately blended.
  • the content of the recycled epoxy resin in the epoxy resin composition is not particularly limited. Since a high recycled epoxy resin content is environmentally friendly, the recycled epoxy resin is preferably 40 parts by mass or more, more preferably 60 parts by mass or more, with respect to 100 parts by mass of all epoxy resin components in the epoxy resin composition. When other epoxy resins are included, the recycled epoxy resin can be 40 to 99 parts by mass, or 60 to 99 parts by mass, etc., with respect to 100 parts by mass of all epoxy resin components in the epoxy resin composition.
  • the "total epoxy resin component” corresponds to the amount of all epoxy resins contained in the epoxy resin composition, and is the sum of the recycled epoxy resin and other epoxy resins used as necessary.
  • the curing agent refers to a substance that contributes to cross-linking reaction and/or chain extension reaction between epoxy groups of epoxy resin.
  • a substance is usually called a "curing accelerator”, it can be regarded as a curing agent as long as it contributes to the cross-linking reaction and/or chain extension reaction between the epoxy groups of the epoxy resin.
  • the content of the curing agent is preferably 0.1 to 1000 parts by mass with respect to 100 parts by mass of the total epoxy resin component. Moreover, it is more preferably 500 parts by mass or less.
  • any one generally known as an epoxy resin curing agent can be used.
  • phenolic curing agents, aliphatic amines, polyether amines, alicyclic amines, amine curing agents such as aromatic amines, acid anhydride curing agents, amide curing agents, tertiary amines, imidazoles, etc. is mentioned.
  • One curing agent may be used alone, or two or more curing agents may be used in combination. When two or more curing agents are used in combination, they may be mixed in advance to prepare a mixed curing agent before use, or the recycled epoxy resin obtained by the method for producing an epoxy resin of the present invention and other epoxy resins. Each component of the curing agent may be added separately and mixed at the same time.
  • phenol-based curing agents include recycled bisphenol, bisphenol A, tetramethylbisphenol A, bisphenol F, tetramethylbisphenol F, bisphenol C, bisphenol S, bisphenol AD, bisphenol AF, hydroquinone, resorcinol, methylresorcinol, biphenol, Tetramethylbiphenol, dihydroxynaphthalene, dihydroxydiphenyl ether, thiodiphenols, phenol novolak resin, cresol novolak resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, terpene phenol resin, dicyclopentadiene phenol resin, bisphenol A novolak resin, Various polyhydric phenols such as trisphenolmethane type resins, naphthol novolac resins, brominated bisphenol A, brominated phenol novolac resins, various phenols and various aldehydes such as
  • phenol-based curing agents may be used alone or in combination of two or more in an arbitrary combination and blending ratio.
  • the amount of the phenol-based curing agent is preferably 0.1 to 1000 parts by mass, more preferably 500 parts by mass or less with respect to 100 parts by mass of all epoxy resin components in the epoxy resin composition.
  • amine curing agent examples include aliphatic amines, polyetheramines, alicyclic amines, aromatic amines and the like.
  • aliphatic amines examples include ethylenediamine, 1,3-diaminopropane, 1,4-diaminopropane, hexamethylenediamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, diethylenetriamine, iminobispropylamine, bis( hexamethylene)triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethylethylenediamine, tetra(hydroxyethyl)ethylenediamine and the like.
  • polyetheramines examples include triethylene glycol diamine, tetraethylene glycol diamine, diethylene glycol bis(propylamine), polyoxypropylene diamine, and polyoxypropylene triamines.
  • alicyclic amines examples include isophoronediamine, methacenediamine, N-aminoethylpiperazine, bis(4-amino-3-methyldicyclohexyl)methane, bis(aminomethyl)cyclohexane, 3,9-bis(3-amino Propyl)-2,4,8,10-tetraoxaspiro(5,5)undecane, norbornenediamine and the like are exemplified.
  • Aromatic amines include tetrachloro-p-xylylenediamine, m-xylylenediamine, p-xylylenediamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-diaminoanisole, 2,4 -toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, m-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-(dimethylaminomethyl)phenol, triethanolamine, methylbenzylamine, ⁇ -(m-aminophenyl)ethylamine
  • the amine-based curing agents listed above may be used alone, or two or more of them may be used in any combination and in any mixing ratio.
  • the above amine-based curing agent can be used so that the equivalent ratio of the functional groups in the curing agent to the epoxy groups in all the epoxy resin components contained in the epoxy resin composition is in the range of 0.1 to 2.0. preferable. More preferably, the equivalent ratio is in the range of 0.8 to 1.2. Within this range, unreacted epoxy groups and functional groups of the curing agent are less likely to remain, which is preferable.
  • Tertiary amines include 1,8-diazabicyclo(5,4,0)undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol and the like. .
  • the tertiary amines listed above may be used singly or two or more of them may be used in any combination and blending ratio.
  • the above tertiary amine can be used so that the equivalent ratio of the functional group in the curing agent to the epoxy group in all the epoxy resin components contained in the epoxy resin composition is in the range of 0.1 to 2.0. preferable. More preferably, the equivalent ratio is in the range of 0.8 to 1.2. Within this range, unreacted epoxy groups and functional groups of the curing agent are less likely to remain, which is preferable.
  • acid anhydride curing agent examples include acid anhydrides and modified acid anhydrides.
  • acid anhydrides examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, dodecenylsuccinic anhydride, polyadipic anhydride, polyazelaic anhydride, and polysebacic acid.
  • Anhydride poly(ethyloctadecanedioic anhydride), poly(phenylhexadecanedioic anhydride), tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride , methylhimic acid anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride, methylcyclohexene tetracarboxylic acid anhydride, ethylene glycol bistrimellitate dianhydride, het acid anhydride, nadic acid anhydride, methyl nadic anhydride, 5-(2,5-dioxotetrahydro-3-furanyl)-3-methyl-3-cyclohexane-1,2-dicarboxylic anhydride, 3,4-dicarboxy-1,2, 3,4-tetra
  • Modified acid anhydrides include, for example, those obtained by modifying the above-mentioned acid anhydrides with glycol.
  • glycols that can be used for modification include alkylene glycols such as ethylene glycol, propylene glycol and neopentyl glycol, and polyether glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol. mentioned.
  • polyether glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol. mentioned.
  • two or more of these glycols and/or copolymerized polyether glycols of polyether glycols can also be used.
  • the acid anhydride-based curing agents listed above may be used alone or in combination of two or more in any combination and amount.
  • the equivalent ratio of the functional group in the curing agent to the epoxy groups in all the epoxy resin components in the epoxy resin composition is in the range of 0.1 to 2.0. is preferred. More preferably, the equivalent ratio is in the range of 0.8 to 1.2. Within this range, unreacted epoxy groups and functional groups of the curing agent are less likely to remain, which is preferable.
  • amide curing agents include dicyandiamide and derivatives thereof, and polyamide resins.
  • the amide-based curing agent may be used alone, or two or more of them may be used in any combination and ratio.
  • imidazoles examples include 2-phenylimidazole, 2-ethyl-4(5)-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1 -Cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino- 6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-ethyl-4′-methylimidazolyl-(1′)]-ethyl-s -triazine, 2,4-diamino-6-[2′-methylimidazolyl-(
  • imidazoles Since imidazoles have catalytic activity, they can be generally classified as curing accelerators, but in the present invention they are classified as curing agents.
  • the above-mentioned imidazoles may be used singly or as a mixture of two or more in any combination and ratio.
  • imidazoles When imidazoles are used, it is preferable to use imidazoles in an amount of 0.1 to 20% by mass based on the total of all epoxy resin components and imidazoles in the epoxy resin composition.
  • Other curing agents can be used in the epoxy resin composition in addition to the curing agents described above.
  • Other curing agents that can be used in the epoxy resin composition are not particularly limited, and all those generally known as curing agents for epoxy resins can be used. These other curing agents may be used alone or in combination of two or more.
  • the epoxy resin composition can contain epoxy resins other than the epoxy resin obtained by the method for producing an epoxy resin of the present invention. Various physical properties can be improved by including other epoxy resins.
  • epoxy resins that can be used in the epoxy resin composition include all epoxy resins other than the epoxy resin obtained by the method for producing an epoxy resin of the present invention. Specific examples include bisphenol A-type epoxy resin, bisphenol C-type epoxy resin, trisphenolmethane-type epoxy resin, anthracene-type epoxy resin, phenol-modified xylene resin-type epoxy resin, bisphenolcyclododecyl-type epoxy resin, and bisphenoldiisopropylideneresorcin type.
  • Epoxy resin bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol AF type epoxy resin, hydroquinone type epoxy resin, methylhydroquinone type epoxy resin, dibutylhydroquinone type epoxy resin, resorcin type epoxy resin, methylresorcin type epoxy resin, biphenol type epoxy resin, tetramethylbiphenol type epoxy resin, tetramethylbisphenol F type epoxy resin, dihydroxydiphenyl ether type epoxy resin, epoxy resin derived from thiodiphenols, dihydroxynaphthalene type epoxy resin, dihydroxyanthracene type epoxy resin, dihydroxydihydro Anthracene type epoxy resin, dicyclopentadiene type epoxy resin, epoxy resin derived from dihydroxystilbenes, phenol novolac type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolac type epoxy resin, naphthol novolac type epoxy resin, phenol aralkyl type Epoxy resins, naphthol aralkyl type
  • the content thereof is preferably 1 to 60 parts by mass, more preferably 40 parts by mass, based on 100 parts by mass of all epoxy resin components in the composition. It is below the department.
  • the epoxy resin composition preferably contains a curing accelerator.
  • a curing accelerator By including a curing accelerator, it is possible to shorten the curing time and lower the curing temperature, and to easily obtain a desired cured product.
  • the curing accelerator is not particularly limited, but specific examples include organic phosphines, phosphorous compounds such as phosphonium salts, tetraphenyl boron salts, organic acid dihydrazides, boron halide amine complexes, and the like.
  • Phosphorus compounds that can be used as curing accelerators include triphenylphosphine, diphenyl(p-tolyl)phosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, tris(alkyl/alkoxyphenyl)phosphine, tris( dialkylphenyl)phosphine, tris(trialkylphenyl)phosphine, tris(tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine, trialkylphosphine, dialkyl Organic phosphines such as arylphosphines and alkyldiarylphosphines, complexes of these organic phosphines with organic borons, and these organic phosphine
  • organic phosphines and phosphonium salts are preferred, and organic phosphines are most preferred.
  • only one type may be used, or two or more types may be mixed and used in an arbitrary combination and ratio.
  • the curing accelerator is preferably used in a range of 0.1 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of all epoxy resin components in the epoxy resin composition.
  • the content of the curing accelerator is at least the above lower limit, a good curing acceleration effect can be obtained.
  • An inorganic filler can be blended into the epoxy resin composition.
  • inorganic fillers include fused silica, crystalline silica, glass powder, alumina, calcium carbonate, calcium sulfate, talc, and boron nitride. These may be used alone, or two or more of them may be used in any combination and blending ratio.
  • the blending amount of the inorganic filler is preferably 10 to 95% by mass of the entire epoxy resin composition.
  • release agent can be blended in the epoxy resin composition.
  • release agents include natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate and their metal salts, and hydrocarbon release agents such as paraffin. can be done. These may be used alone, or two or more of them may be used in any combination and blending ratio.
  • the amount of the release agent to be blended is preferably 0.001 to 10.0 parts by mass with respect to 100 parts by mass of all the epoxy resin components in the epoxy resin composition. It is preferable that the content of the release agent is within the above range, because good release properties can be exhibited while maintaining curing properties.
  • a coupling agent can be added to the epoxy resin composition.
  • the coupling agent is preferably used in combination with the inorganic filler, and the addition of the coupling agent can improve the adhesion between the matrix epoxy resin and the inorganic filler.
  • Examples of coupling agents include silane coupling agents and titanate coupling agents.
  • silane coupling agents include epoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ - Aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -ureidopropyltriethoxy aminosilanes such as silane, mercaptosilanes such as 3-mercaptopropyltrimethoxysilane, p-styryltrimethoxysilane, vinyltrichlorosilane, vinyltris( ⁇ -methoxy
  • titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tri(N-aminoethyl/aminoethyl) titanate, diisopropyl bis(dioctylphosphate) titanate, tetraisopropyl bis(dioctylphosphite) titanate, tetraoctyl bis ( ditridecylphosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate and the like. be done.
  • any one of these coupling agents may be used alone, or two or more may be used in any combination and ratio.
  • the compounding amount is preferably 0.001 to 10.0 parts by mass with respect to 100 parts by mass of the total epoxy resin component. If the amount of the coupling agent is at least the above lower limit, the effect of improving the adhesion between the matrix epoxy resin and the inorganic filler tends to be enhanced by adding the coupling agent. On the other hand, if the amount of the coupling agent is less than the above upper limit, the coupling agent is less likely to bleed out from the resulting cured product, which is preferable.
  • compositions other than those described above can be added to the epoxy resin composition.
  • Other compounding components include, for example, flame retardants, plasticizers, reactive diluents, pigments, etc., and can be appropriately compounded as necessary. However, this does not preclude the use of ingredients other than those listed above.
  • Flame retardants include halogen-based flame retardants such as brominated epoxy resins and brominated phenol resins, antimony compounds such as antimony trioxide, phosphorus-based flame retardants such as red phosphorus, phosphate esters and phosphines, and melamine derivatives. Nitrogen flame retardants and inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide can be used.
  • a cured epoxy resin can be obtained by curing the epoxy resin composition.
  • the curing method is not particularly limited, but usually a cured product can be obtained by a thermosetting reaction by heating.
  • a thermosetting reaction it is preferable to appropriately select the curing temperature depending on the type of curing agent used. For example, when a phenolic curing agent is used, the curing temperature is usually 80-250°C.
  • the reaction time is preferably 0.01 to 20 hours. When the reaction time is at least the above lower limit, the curing reaction tends to proceed sufficiently, which is preferable. On the other hand, when the reaction time is equal to or less than the above upper limit, deterioration due to heating and energy loss during heating are easily reduced, which is preferable.
  • the epoxy resin cured product obtained by curing the epoxy resin composition has a high elastic modulus at 250° C., and a cured product excellent in heat deformation resistance can be obtained. Therefore, the epoxy resin cured product can be effectively used in any application as long as these physical properties are required.
  • paints such as electrodeposition paints for automobiles, heavy-duty anti-corrosion paints for ships and bridges, and paints for the inner surface of beverage cans; Suitable for any application such as seismic reinforcement of bridges, reinforcement of concrete, flooring of buildings, lining of water supply facilities, drainage/permeable pavement, civil engineering, construction, and adhesives for vehicles and aircraft. can be done.
  • the epoxy resin composition may be used after curing for the above applications, or may be cured during the manufacturing process for the above applications.
  • Viscosity average molecular weight (Mv) Viscosity average molecular weight (Mv) is obtained by dissolving polycarbonate resin in methylene chloride (concentration 6.0 g / L), measuring specific viscosity ( ⁇ sp) at 20 ° C. using Ubbelohde viscosity tube, viscosity average molecular weight according to the following formula (Mv) was calculated.
  • the pellet YI (transparency of polycarbonate resin) was evaluated by measuring the YI value (yellowness index value) of polycarbonate resin pellets in reflected light according to ASTM D1925.
  • a spectrophotometer "CM-5" manufactured by Konica Minolta Co., Ltd. was used as the apparatus, and the measurement conditions were a measurement diameter of 30 mm and SCE.
  • a calibration glass for petri dish measurement "CM-A212" was fitted into the measurement part, and a zero calibration box “CM-A124" was placed over it to perform zero calibration, followed by white calibration using the built-in white calibration plate. .
  • YI was -0.58 ⁇ 0.01.
  • YI was measured by filling a cylindrical glass container with an inner diameter of 30 mm and a height of 50 mm with pellets to a depth of about 40 mm. The operation of taking out the pellets from the glass container and measuring again was repeated twice, and the average value of the measured values of a total of three times was used.
  • Table 1 summarizes the reaction yields of the catalyst, solvent, and bisphenol in Examples 1 to 4 and Comparative Example 1.
  • Dilute sulfuric acid was added to the resulting reaction solution until the pH of the aqueous phase reached 6.
  • the precipitated potassium sulfate was filtered off by filtration under reduced pressure to obtain a uniform extract.
  • the extracted liquid was transferred to a distillation apparatus equipped with a thermometer, a stirring blade, a distillation tube, and a pressure regulator.
  • the pressure was changed from normal pressure (760 Torr) to 120 Torr, the internal temperature was raised from room temperature to 80° C. while observing the amount of distillation, and 392 g of a fraction was withdrawn to obtain a still residue.
  • the whole amount of the obtained cake was supplied to a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer under a nitrogen atmosphere. After that, 10 g of dimethyl carbonate and 280 g of toluene were supplied. The resulting slurry liquid was heated to 80° C. to form a uniform solution. The homogeneous solution obtained was washed with 100 g of demineralized water three times. After that, the temperature was lowered to 5° C. to obtain a slurry liquid. The resulting slurry liquid was filtered using a centrifugal separator to obtain a fine cake. Using an evaporator equipped with an oil bath, the entire amount of the fine cake was dried at an oil bath temperature of 85° C. and 15 Torr for 3 hours to obtain 121 g of a solid.
  • the rotation speed of the stirrer was set to 100 times per minute, and the pressure in the reactor was increased to 101 in absolute pressure over 40 minutes while distilling off the phenol by-product of the oligomerization reaction of bisphenol A and diphenyl carbonate in the reactor.
  • the pressure was reduced from 3 kPa to 13.3 kPa.
  • the pressure in the reactor was maintained at 13.3 kPa, and transesterification was carried out for 80 minutes while further distilling off phenol.
  • the external temperature of the reaction vessel was raised to 250° C., and the internal pressure of the reaction vessel was reduced from 13.3 kPa to 399 Pa in absolute pressure over 40 minutes to remove distilled phenol out of the system.
  • the temperature outside the reaction vessel was raised to 290° C.
  • the absolute pressure in the reaction vessel was reduced to 30 Pa, and a polycondensation reaction was carried out.
  • the polycondensation reaction was terminated when the stirrer in the reaction vessel reached a predetermined stirring power.
  • the time from raising the temperature to 290° C. to completing the polymerization was 140 minutes.
  • the pressure in the reactor was restored to 101.3 kPa in terms of absolute pressure with nitrogen, and then the pressure was increased to 0.2 MPa in terms of gauge pressure, and the polycarbonate resin was discharged from the bottom of the reactor in the form of strands to obtain a polycarbonate resin in strands. .
  • the strand was pelletized using a rotary cutter to obtain a polycarbonate resin in the form of pellets.
  • the resulting polycarbonate resin had a viscosity-average molecular weight (Mv) of 20,900 and a pellet YI of 8.4.
  • Example 5 and Comparative Example 2 the type of catalyst, the production rate of bisphenol A (BPA), the melt color of the obtained bisphenol A (BPA), and the obtained polycarbonate (PC) resin pellets YI are shown in Table 2. summarized. From Table 2, it can be seen that the melt color of the bisphenol A obtained by using potassium hydroxide is good, and the pellets YI of the obtained polycarbonate resin are also good.
  • the method for producing bisphenol of the present invention can use a general-purpose catalyst, and the catalyst cost is low.
  • 500 g of sodium hydroxide is 1,250 yen
  • 500 g of potassium hydroxide is 1,400 yen
  • 500 mL of triethylamine is 1,450 yen
  • 100 g of potassium carbonate is 2,200 yen.
  • 5 g of TBD costs 16,300 yen, and when TBD is used, the cost of the catalyst becomes high in order to obtain the same production rate of bisphenol A.
  • the mixture was reacted for 3 hours while maintaining the jacket temperature at 65° C. to obtain a uniform reaction solution.
  • potassium sulfate was filtered to obtain a filtrate.
  • the filtrate was placed in an eggplant flask and dried under full vacuum using an evaporator equipped with an oil bath to obtain 57 g of a solid.
  • a portion of the obtained solid was analyzed by high-performance liquid chromatography to find 87.3% by mass of bisphenol A and 12.7% by mass of bisphenol-methyl carbonate condensate.
  • Example 9A 46 g of bisphenol A obtained in Example 5 (BPA purity of 99%), 259 g of epichlorohydrin, 100 g of isopropanol, and 36 g of water were placed in a 1-liter four-necked flask equipped with a thermometer, a stirrer, and a cooling tube, and the temperature was raised to 40°C. After the mixture was heated and uniformly dissolved, 38 g of a 48.5% by weight sodium hydroxide aqueous solution was added dropwise over 90 minutes. Simultaneously with the dropping, the temperature was raised from 40° C. to 65° C. over 90 minutes.
  • reaction solution was held at 65°C for 30 minutes to complete the reaction, transferred to a 1 L separating funnel, added with 69 g of water at 65°C, and allowed to stand at 65°C for 1 hour. After standing, the water layer was extracted from the separated oil layer and water layer, and by-product salts and excess sodium hydroxide were removed. After that, epichlorohydrin was completely removed under reduced pressure at 150°C. After that, 102 g of methyl isobutyl ketone was charged, heated to 65° C. and dissolved uniformly, then 1.4 g of a 48.5% by weight sodium hydroxide aqueous solution was charged, reacted for 60 minutes, and then 57 g of methyl isobutyl ketone.
  • Example 9A The epoxy equivalent of the obtained epoxy resin was measured according to JISK7236 (2009) and found to be 179 g/equivalent.
  • reaction solution was kept at 65°C for 30 minutes to complete the reaction, transferred to a 1 L separating funnel, added with 69 g of water at 65°C, and allowed to stand at 65°C for 1 hour. After standing, the water layer was extracted from the separated oil layer and water layer, and by-product salts and excess sodium hydroxide were removed. After that, epichlorohydrin was completely removed under reduced pressure at 150°C. After that, 102 g of methyl isobutyl ketone was charged, heated to 65° C. and dissolved uniformly, then 1.4 g of a 48.5% by weight sodium hydroxide aqueous solution was charged, reacted for 60 minutes, and then 57 g of methyl isobutyl ketone.
  • Example 9B and Reference Example 1B (Epoxy resin composition)
  • the epoxy resin of Example 9A or Reference Example 1A a curing agent (trade name Rikacid MH-700 manufactured by Shin Nippon Rika Co., Ltd.) and a curing catalyst (trade name Cure Sol 2E4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.)
  • the ingredients were weighed, stirred and mixed at room temperature until uniform, to obtain an epoxy resin composition.
  • Epoxy resin cured product Two glass plates to which the release PET film was adhered were prepared, and the distance between the two glass plates was adjusted to 3 mm with the release PET film on the inner side to prepare a mold. An epoxy resin composition was cast into this mold and heated at 100° C. for 3 hours and then at 140° C. for 3 hours to obtain a cured epoxy resin. The resulting cured product was cut into a length of 5 cm, a width of 1 cm and a thickness of 3 mm to obtain a test piece.
  • test piece was heated from 30° C. to 280° C. at a rate of 5° C./min in a three-point bending mode using a thermomechanical analyzer (DMA: EXSTAR6100 manufactured by Seiko Instruments Inc.), and E′ at 250° C. was measured. , 250° C. elastic modulus.
  • DMA thermomechanical analyzer
  • the reaction solution was extracted and weighed to be 243.8 g.
  • Example 11 A first decomposition step was performed in the same manner as in Example 10 to obtain a first decomposition solution (uniform reaction solution).
  • a first decomposition solution uniform reaction solution.
  • methanol was 14.6% by mass and dimethyl carbonate was 55.3% by mass.
  • Dilute sulfuric acid was added to the resulting reaction solution until the pH of the aqueous phase reached 6.
  • the precipitated potassium sulfate was filtered off by filtration under reduced pressure to obtain a uniform extract.
  • the obtained extracted liquid was dried using an evaporator equipped with an oil bath to obtain bisphenol.
  • reaction solution was extracted and weighed to find 243.6 g.
  • Example 13 A first decomposition step was performed in the same manner as in Example 10 to obtain a first decomposition solution (uniform reaction solution).
  • a first decomposition solution uniform reaction solution.
  • the composition was confirmed by gas chromatography, it was 14.7% by mass of methanol and 55.2% by mass of dimethyl carbonate.
  • the reaction liquid was extracted and weighed to be 248.8 g.
  • Example 14 A first decomposition step was performed in the same manner as in Example 10 to obtain a first decomposition solution (uniform reaction solution).
  • a first decomposition solution uniform reaction solution.
  • methanol was 14.7% by mass and dimethyl carbonate was 55.2% by mass.
  • the reaction solution was extracted and weighed to find 235.4 g.
  • Example 10-14 The results of Examples 10-14 are summarized in Table 4. From Table 4, it can be seen that by adding water during the reaction to hydrolyze the dialkyl carbonate, the decomposition reaction of bisphenol A can be accelerated and the yield of bisphenol A can be further improved. In addition, by adjusting the amount of water to be added within a certain range, the aliphatic monoalcohol is regenerated from the dialkyl carbonate produced by the alcoholysis of the polycarbonate resin, and the ratio of the dialkyl carbonate and the aliphatic monoalcohol in the recovered mixture is changed to , it is possible to maintain a ratio (80% by mass to 120% by mass) that is easy to reuse in the first decomposition step.
  • the mixture was reacted for 3 hours while maintaining the jacket temperature at 70° C. to obtain a uniform reaction solution.
  • the reaction solution was homogeneous 3 hours after the start of decomposition.
  • the reaction solution was homogeneous 3 hours after the start of decomposition.
  • the reaction solution was homogeneous 3 hours after the start of decomposition.
  • the reaction solution was homogeneous 3 hours after the start of decomposition.
  • Example 15-19 and Comparative Examples 3-5 are summarized in Table 5. From Table 5, it can be seen that the dissolution rate and decomposition rate of the polycarbonate resin can be maintained by supplying an appropriate amount of the dialkyl carbonate solvent to the repeating units of the polycarbonate resin to be decomposed. If the amount of dialkyl carbonate supplied is small with respect to the repeating units of the polycarbonate resin, the rate of dissolution of the polycarbonate resin will decrease, and the time required for decomposition of the polycarbonate resin will lengthen, which is inefficient.
  • chemical recycling can be used to obtain useful compounds such as bisphenol from waste plastics. Furthermore, using these, polycarbonate resins and epoxy resins can be produced again, which is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The purpose of the present invention is to provide a bisphenol production method in which, using a highly-versatile catalyst, a polycarbonate resin is decomposed with a high level of reactivity to produce bisphenol. Provided is a bisphenol production method which carries out a decomposition reaction of a polycarbonate resin in a reaction liquid containing the polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst, wherein the molar ratio of the dialkyl carbonate to be used in the decomposition reaction to 1 mole of a bisphenol-derived repeating unit of the polycarbonate resin to be used in the decomposition reaction is 1.8 or more, and the catalyst is one selected from the group consisting of an alkali metal hydroxide, an alkali metal carbonate, an alkali metal alkoxide, an alkali metal oxide, a chain alkylamine and pyridine.

Description

ビスフェノールの製造方法、再生ポリカーボネート樹脂の製造方法、エポキシ樹脂の製造方法、エポキシ樹脂硬化物の製造方法及びビスフェノール-炭酸アルキル縮合体の製造方法Method for producing bisphenol, method for producing recycled polycarbonate resin, method for producing epoxy resin, method for producing cured epoxy resin, and method for producing bisphenol-alkyl carbonate condensate
 本発明は、ビスフェノールの製造方法及びビスフェノール-炭酸アルキル縮合体の製造方法に関するものである。詳しくは、ポリカーボネート樹脂の分解を利用したビスフェノールの製造方法及びビスフェノール-炭酸アルキル縮合体の製造方法に関するものである。更に、前記ビスフェノールの製造方法で得られるビスフェノールを用いた再生ポリカーボネート樹脂の製造方法及びエポキシ樹脂の製造方法に関するものである。また、前記エポキシ樹脂の製造方法で得られるエポキシ樹脂を用いたエポキシ樹脂硬化物の製造方法に関するものである。 The present invention relates to a method for producing bisphenol and a method for producing a bisphenol-alkyl carbonate condensate. More specifically, it relates to a method for producing bisphenol and a method for producing a bisphenol-alkyl carbonate condensate utilizing decomposition of polycarbonate resin. Furthermore, the present invention relates to a method for producing a recycled polycarbonate resin and a method for producing an epoxy resin using the bisphenol obtained by the method for producing bisphenol. The present invention also relates to a method for producing a cured epoxy resin using the epoxy resin obtained by the method for producing an epoxy resin.
 プラスチックは手軽で耐久性に富み、安価であることから我が国のみならず世界中で大量に生産されている。そのプラスチックの多くは「使い捨て」として用いられるため、適切に処理されず、環境中に流出するものもある。具体的には、プラスチックごみは河川から海へと流れ込み、その過程で波や紫外線で劣化して5mm以下となる。このような小さなプラスチックゴミは、マイクロプラスチックと呼ばれる。このマイクロプラスチックを、動物や魚が誤飲してしまう。このように、プラスチックゴミは生態系に甚大な影響を与え、近年、海洋プラスチック問題として世界中で問題視されている。ポリカーボネート樹脂は、透明性、機械物性、難燃性、寸法安定性、電気特性により、幅広い分野で用いられるが、このポリカーボネート樹脂も例外ではない。 Because plastic is easy, durable, and inexpensive, it is mass-produced not only in Japan but around the world. Many of these plastics are used as "disposables" and some are not properly disposed of and end up in the environment. Specifically, plastic waste flows from rivers into the sea, where it is degraded by waves and ultraviolet rays and becomes less than 5 mm. These small pieces of plastic waste are called microplastics. Animals and fish accidentally ingest these microplastics. In this way, plastic waste has a tremendous impact on the ecosystem, and in recent years, it has become a problem all over the world as the marine plastic problem. Polycarbonate resins are used in a wide range of fields due to their transparency, mechanical properties, flame retardancy, dimensional stability, and electrical properties, and this polycarbonate resin is no exception.
 ポリカーボネート樹脂のリサイクル方法の1つとして、ポリカーボネート樹脂を化学的に分解しビスフェノールまで戻して再利用するケミカルリサイクルがあり、ポリカーボネート樹脂の分解方法の1つとして、アルコリシスが知られている。 As one of the recycling methods for polycarbonate resin, there is chemical recycling in which polycarbonate resin is chemically decomposed and returned to bisphenol for reuse, and alcoholysis is known as one method for decomposing polycarbonate resin.
 例えば、特許文献1には、蒸留塔の中でメタノール以外のモノヒドロキシ化合物の中に溶解した芳香族ポリカーボネートをメタノールで接触的にエステル交換することによって、芳香族ポリカーボネートをジヒドロキシ化合物およびジメチルカーボネートに連続的に開環する方法が開示されている。 For example, in Patent Document 1, an aromatic polycarbonate dissolved in a monohydroxy compound other than methanol is catalytically transesterified with methanol in a distillation column to continuously form a dihydroxy compound and dimethyl carbonate. A method for systematically opening the ring is disclosed.
 また、特許文献2には、廃プラスチックと、一価のアルコール類または一価のフェノール類とが存在する溶液中に、特定の第三級アミンを触媒として加え、前記廃プラスチック中の前記ポリカーボネート樹脂を化学的に分解する工程と、分解生成物を有用物として回収する工程とからなる廃プラスチックからの有用物回収方法が開示されている。 Further, in Patent Document 2, a specific tertiary amine is added as a catalyst to a solution in which waste plastic and monohydric alcohols or monohydric phenols are present, and the polycarbonate resin in the waste plastic is and a step of recovering the decomposition products as useful substances.
 非特許文献1には、グアニジン誘導体やアミジン誘導体を触媒として、ポリカーボネート樹脂をメタノリシスさせて、反応液としてビスフェノールAを得る方法が開示されている。非特許文献2には、炭酸メチル(テトラメチルアンモニウム)を触媒に用いた、ポリカーボネート樹脂のメタノリシスが開示されている。 Non-Patent Document 1 discloses a method for obtaining bisphenol A as a reaction solution by subjecting a polycarbonate resin to methanolysis using a guanidine derivative or an amidine derivative as a catalyst. Non-Patent Document 2 discloses methanolysis of a polycarbonate resin using methyl carbonate (tetramethylammonium) as a catalyst.
特開平6-340591号公報JP-A-6-340591 特開2004-51620号公報JP-A-2004-51620
 ポリカーボネート樹脂のアルコリシスを利用した分解方法では、通常、脂肪族モノアルコールが用いられる。しかし、ポリカーボネート樹脂を溶解するため、また、分解速度を向上させるために、高い分解温度で高圧条件で反応をさせる必要があり、炭素数の少ない脂肪族モノアルコールは沸点が低いため、耐圧容器を用いる必要があった。 Aliphatic monoalcohols are usually used in the decomposition method using alcoholysis of polycarbonate resin. However, in order to dissolve the polycarbonate resin and improve the decomposition rate, it is necessary to carry out the reaction under high pressure conditions at a high decomposition temperature. had to use.
 また、特許文献1の実施例1によれば、ポリカーボネート樹脂を、150℃でフェノールに溶解させ、メタノールおよびジメチルカーボネートから成る蒸気と向流接触させて分解させているが、常圧で実施するためには、装置の制御が複雑であったり、ポリカーボネート樹脂の分解制御が困難であるという問題があった。 Further, according to Example 1 of Patent Document 1, a polycarbonate resin is dissolved in phenol at 150° C. and decomposed by countercurrent contact with vapors composed of methanol and dimethyl carbonate. However, there is a problem that the control of the apparatus is complicated and the decomposition control of the polycarbonate resin is difficult.
 また、特許文献2の方法では、ポリカーボネート樹脂がメタノールに溶けにくいため、アミンを溶媒及び触媒として用いている。しかし、アミンの量が少ない場合は、反応性が低く反応時間が長時間化するという問題があった。 In addition, in the method of Patent Document 2, amine is used as a solvent and a catalyst because polycarbonate resin is difficult to dissolve in methanol. However, when the amount of amine is small, there is a problem that the reactivity is low and the reaction time is prolonged.
 更に、非特許文献1の方法は、グアニジン誘導体やアミジン誘導体を触媒に用いて、ポリカーボネート樹脂を分解させている。これらグアニジン誘導体やアミジン誘導体は、油にも水にも親和性が高いために水洗によって容易に除去することが出来ない。また、これらの化合物は、その沸点が150℃以上と沸点が高いために、留去することも容易ではない。更に、これらの化合物が薄く黄色に着色しているので、精製のため、カラムクロマト精製や引火点の低いジエチルエーテルを用いた抽出を実施する必要がある。そのため、ポリカーボネート樹脂からビスフェノールAを得るためには、煩雑なステップを踏む必要があるため、工業的に不向きであるという問題があった。 Furthermore, the method of Non-Patent Document 1 uses a guanidine derivative or an amidine derivative as a catalyst to decompose the polycarbonate resin. These guanidine derivatives and amidine derivatives cannot be easily removed by washing with water because they have a high affinity for both oil and water. Moreover, since these compounds have high boiling points of 150° C. or higher, they are not easily distilled off. Furthermore, since these compounds are lightly colored yellow, it is necessary to perform column chromatography purification and extraction using diethyl ether with a low flash point for purification. Therefore, in order to obtain bisphenol A from a polycarbonate resin, there is a problem that it is industrially unsuitable because it is necessary to take complicated steps.
 非特許文献2の方法も、特殊な触媒を用いる必要があり、非特許文献1の方法と同様に、ポリカーボネート樹脂からビスフェノールAを得るためには、煩雑なステップを踏む必要があるため、工業的に不向きであるという問題があった。 The method of Non-Patent Document 2 also requires the use of a special catalyst, and like the method of Non-Patent Document 1, it is necessary to take complicated steps to obtain bisphenol A from a polycarbonate resin. There was a problem that it was unsuitable for
 前述の、いずれのポリカーボネート樹脂の脂肪族モノアルコールを用いた分解方法も、高温や高圧な分解条件が必要であったり、反応性が乏しかったり、操作が煩雑であったりと、さらなる改良が求められていた。 In any of the above-described decomposition methods of polycarbonate resins using aliphatic monoalcohols, further improvements are required, such as requiring high temperature and high pressure decomposition conditions, poor reactivity, and complicated operations. was
 また、ビスフェノールAは、光学用ポリカーボネート樹脂のような光学用材料の原料として使用される分野もある。光学用材料は、優れた色調(透明性)が求められるため、その原料となるビスフェノールAも優れた色調であることが求められている。 In addition, bisphenol A is also used as a raw material for optical materials such as optical polycarbonate resin in some fields. Since optical materials are required to have excellent color tone (transparency), bisphenol A, which is a raw material thereof, is also required to have excellent color tone.
 本発明は、このような事情に鑑みなされたものであって、汎用性の高い触媒を用い、温和で環境負荷の小さい条件であっても、高い反応性で、ポリカーボネート樹脂を分解することができる分解方法を利用して、色調の良好なビスフェノールを製造するビスフェノールの製造方法を提供することを目的とする。更に、得られた前記ビスフェノールを用いた再生ポリカーボネート樹脂の製造方法やエポキシ樹脂の製造方法を提供することを目的とする。また、前記エポキシ樹脂の製造方法で得られたエポキシ樹脂を用いたエポキシ樹脂硬化物の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and can decompose a polycarbonate resin with high reactivity using a highly versatile catalyst even under mild conditions with a small environmental load. It is an object of the present invention to provide a method for producing bisphenol which produces bisphenol with good color tone by using a decomposition method. A further object of the present invention is to provide a method for producing a recycled polycarbonate resin and a method for producing an epoxy resin using the obtained bisphenol. Another object of the present invention is to provide a method for producing a cured epoxy resin using the epoxy resin obtained by the method for producing an epoxy resin.
 また、前記ポリカーボネート樹脂を分解する分解方法を利用して、ビスフェノール-炭酸アルキル縮合体を製造するビスフェノール-炭酸アルキル縮合体の製造方法を提供することを目的とする。 Another object of the present invention is to provide a method for producing a bisphenol-alkyl carbonate condensate by utilizing the decomposition method for decomposing the polycarbonate resin.
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、汎用な触媒を用い、炭酸ジアルキルと脂肪族モノアルコールを併用して、ポリカーボネート樹脂を分解させる分解方法を見出した。また、前記ポリカーボネート樹脂の分解方法を用い、ビスフェノールを製造する方法を見出した。更に、得られた前記ビスフェノールを用いた再生ポリカーボネート樹脂の製造方法及びエポキシ樹脂の製造方法を見出した。また、前記エポキシ樹脂の製造方法で得られたエポキシ樹脂を用いたエポキシ樹脂硬化物の製造方法を見出した。
 また、ビスフェノール-炭酸アルキル縮合体の製造方法を見出した。
 すなわち、本発明は、以下の発明に係るものである。
As a result of intensive studies to solve the above problems, the present inventors have found a decomposition method of decomposing a polycarbonate resin by using a general-purpose catalyst in combination with a dialkyl carbonate and an aliphatic monoalcohol. In addition, a method for producing bisphenol was found using the decomposition method of the polycarbonate resin. Furthermore, a method for producing a recycled polycarbonate resin and a method for producing an epoxy resin using the obtained bisphenol have been found. Furthermore, the inventors have found a method for producing a cured epoxy resin using the epoxy resin obtained by the method for producing an epoxy resin.
Also, a method for producing a bisphenol-alkyl carbonate condensate was found.
That is, the present invention relates to the following inventions.
 <1> ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒を含む反応液中で前記ポリカーボネート樹脂の分解反応を行う、ビスフェノールの製造方法であり、前記分解反応に使用するポリカーボネート樹脂のビスフェノールに由来する繰り返し単位1モルに対する、前記分解反応に使用する炭酸ジアルキルのモル比が1.8以上であり、前記触媒が、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド、アルカリ金属酸化物、鎖状アルキルアミン及びピリジンからなる群から選択されるいずれかである、ビスフェノールの製造方法。
 <2> 前記反応液が、スラリー状である、前記<1>に記載のビスフェノールの製造方法。
 <3> 前記炭酸ジアルキルが、前記ポリカーボネート樹脂に由来しない炭酸ジアルキルを含む、前記<1>又は<2>に記載のビスフェノールの製造方法。
 <4> 前記反応液が、前記ポリカーボネート樹脂、前記炭酸ジアルキル、前記脂肪族モノアルコール及び前記触媒を混合して調製される、前記<1>から<3>のいずれかに記載のビスフェノールの製造方法。
 <5> 前記アルカリ金属水酸化物が、水酸化ナトリウム又は水酸化カリウムであり、前記アルカリ金属炭酸塩が、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム又は炭酸水素カリウムであり、前記アルカリ金属アルコキシドが、ナトリウムフェノキシド又はナトリウムメトキシドであり、前記アルカリ金属酸化物が、酸化ナトリウム又は酸化カリウムである、前記<1>から<4>のいずれかに記載のビスフェノールの製造方法。
 <6> 前記鎖状アルキルアミンが、下記式(I)又は下記式(II)で示される、前記<1>から<5>のいずれかに記載のビスフェノールの製造方法。
 式(I)中、Rは、炭素数1~3のアルキル基を表し、R~Rは、それぞれに独立に水素原子又は炭素数1~3のアルキル基を表す。
 式(II)中、R~Rは、それぞれに独立に水素原子又は炭素数1~3のアルキル基を表し、mは1~6の整数を表す。
 <7> 前記炭酸ジアルキルが、炭酸ジメチル、炭酸ジエチル又は炭酸ジブチルである、前記<1>から<6>のいずれかに記載のビスフェノールの製造方法。
 <8> 前記ビスフェノールが、2,2-ビス(4-ヒドロキシフェニル)プロパンである、前記<1>から<7>のいずれかに記載のビスフェノールの製造方法。
 <9> 前記脂肪族モノアルコールが、メタノール、エタノール又はブタノールである前記<1>から<8>のいずれかに記載のビスフェノールの製造方法。
 <10> 下記工程A、工程B1及び工程C1を有する、前記<1>から<9>のいずれかに記載のビスフェノールの製造方法。
 工程A:前記ポリカーボネート樹脂、前記炭酸ジアルキル、前記脂肪族モノアルコール及び前記触媒を含む前記反応液中で、前記ポリカーボネート樹脂を分解させて、ビスフェノールを含むスラリー状でないポリカーボネート分解液を得る工程
 工程B1:前記工程Aで得られたポリカーボネート分解液を濃縮して、濃縮液を得る工程
 工程C1:前記工程B1で得られた濃縮液に芳香族炭化水素を供給して晶析することでビスフェノールを析出させ、ビスフェノールを含むスラリーを得て、得られたスラリーを固液分離してビスフェノールを得る工程
 <11> 下記工程A、工程B2及び工程C2を有する、前記<1>から<9>のいずれかに記載のビスフェノールの製造方法。
 工程A:前記ポリカーボネート樹脂、前記炭酸ジアルキル、前記脂肪族モノアルコール及び前記触媒を含む前記反応液中で、前記ポリカーボネート樹脂を分解させて、ビスフェノールを含むスラリー状でないポリカーボネート分解液を得る工程
 工程B2:前記工程Aで得られたポリカーボネート分解液及び芳香族モノアルコールを含む溶液から前記炭酸ジアルキル及び前記脂肪族モノアルコールを除去して、ビスフェノール及び芳香族モノアルコールを含む溶液を得る工程
 工程C2:前記工程B2で得られたビスフェノール及び芳香族モノアルコールを含む溶液からビスフェノールを回収する工程
 <12> 前記ポリカーボネート樹脂、前記炭酸ジアルキル、前記脂肪族モノアルコール及び前記触媒を含む前記反応液中で前記ポリカーボネート樹脂を分解させて、ビスフェノールを含む第1の分解液を得る第1の分解工程と、前記第1の分解液と水とを混合することで前記炭酸ジアルキルを加水分解して、脂肪族モノアルコールを再生させると共に、ポリカーボネート樹脂を分解して、ビスフェノールを生成させる第2の分解工程とを有し、前記第1の分解工程と前記第2の分解工程が連続してなされる、前記<1>から<10>のいずれかに記載のビスフェノールの製造方法。
 <13> 前記分解反応に使用するポリカーボネート樹脂のビスフェノールに由来する繰り返し単位1モルに対して、前記第1の分解液と混合される水が、0.5モル以上1.5モル以下である、前記<12>に記載のビスフェノールの製造方法。
 <14> 前記第2の分解工程で再生した脂肪族モノアルコールを、前記炭酸ジアルキルとの混合物としてビスフェノールから分離し、前記脂肪族モノアルコールと前記炭酸ジアルキルの混合物を前記第1の分解工程に再利用する、前記<12>又は<13>に記載のビスフェノールの製造方法。
 <15> 前記反応液がスラリー状であり、前記第1の分解液がスラリー状でない、前記<12>から<14>のいずれかに記載のビスフェノールの製造方法。
 <16> 前記ポリカーボネート樹脂の分解において副生した下記式(III)に示すビスフェノール-炭酸アルキル縮合体を更に回収する、前記<1>から<10>のいずれかに記載のビスフェノールの製造方法。
 式(III)中、Rは、メチル基、エチル基又はブチル基である。
 <17> 前記式(III)において、Rがメチル基である、前記<16>に記載のビスフェノールの製造方法。
 <18> 前記<1>から<17>のいずれかに記載のビスフェノールの製造方法を経てビスフェノールを得た後、該ビスフェノールを含むビスフェノール原料を用いて、再生ポリカーボネート樹脂を製造する、再生ポリカーボネート樹脂の製造方法。
 <19> 前記<1>から<17>のいずれかに記載のビスフェノールの製造方法を経てビスフェノールを得た後、該ビスフェノールを含む多価ヒドロキシ化合物原料を用いてエポキシ樹脂を製造する、エポキシ樹脂の製造方法。
 <20> 前記<19>に記載のエポキシ樹脂の製造方法を経てエポキシ樹脂を得た後、該エポキシ樹脂を含むエポキシ樹脂原料と多価ヒドロキシ化合物原料とを更に反応させ、エポキシ樹脂を製造する、エポキシ樹脂の製造方法。
 <21> 前記<19>又は<20>に記載のエポキシ樹脂の製造方法を経てエポキシ樹脂を得て、該エポキシ樹脂と硬化剤を含むエポキシ樹脂組成物を得た後、該エポキシ樹脂組成物を硬化してエポキシ樹脂硬化物を得る、エポキシ樹脂硬化物の製造方法。
 <22> ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒を含む反応液中で前記ポリカーボネート樹脂を分解させる、下記式(III)に示すビスフェノール-炭酸アルキル縮合体の製造方法であり、前記触媒が、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド、アルカリ金属酸化物、鎖状アルキルアミン及びピリジンからなる群から選択されるいずれかである、ビスフェノール-炭酸アルキル縮合体の製造方法。
 式(III)中、Rは、メチル基、エチル基又はブチル基である。
<1> A method for producing bisphenol by performing a decomposition reaction of the polycarbonate resin in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol, and a catalyst, wherein the bisphenol is derived from the bisphenol of the polycarbonate resin used in the decomposition reaction. The molar ratio of the dialkyl carbonate used in the decomposition reaction to 1 mol of the repeating unit is 1.8 or more, and the catalyst is an alkali metal hydroxide, an alkali metal carbonate, an alkali metal alkoxide, an alkali metal oxide, a chain A method for producing a bisphenol selected from the group consisting of alkylamines and pyridines.
<2> The method for producing bisphenol according to <1>, wherein the reaction liquid is in the form of a slurry.
<3> The method for producing bisphenol according to <1> or <2>, wherein the dialkyl carbonate contains a dialkyl carbonate not derived from the polycarbonate resin.
<4> The method for producing bisphenol according to any one of <1> to <3>, wherein the reaction liquid is prepared by mixing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol, and the catalyst. .
<5> The alkali metal hydroxide is sodium hydroxide or potassium hydroxide, the alkali metal carbonate is sodium carbonate, potassium carbonate, sodium hydrogen carbonate or potassium hydrogen carbonate, and the alkali metal alkoxide is The method for producing bisphenol according to any one of <1> to <4>, wherein the alkali metal oxide is sodium phenoxide or sodium methoxide, and the alkali metal oxide is sodium oxide or potassium oxide.
<6> The method for producing bisphenol according to any one of <1> to <5>, wherein the chain alkylamine is represented by the following formula (I) or the following formula (II).
In formula (I), R A represents an alkyl group having 1 to 3 carbon atoms, and R B to R C each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
In formula (II), R D to R G each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 1 to 6.
<7> The method for producing bisphenol according to any one of <1> to <6>, wherein the dialkyl carbonate is dimethyl carbonate, diethyl carbonate, or dibutyl carbonate.
<8> The method for producing bisphenol according to any one of <1> to <7>, wherein the bisphenol is 2,2-bis(4-hydroxyphenyl)propane.
<9> The method for producing bisphenol according to any one of <1> to <8>, wherein the aliphatic monoalcohol is methanol, ethanol or butanol.
<10> The method for producing bisphenol according to any one of <1> to <9>, comprising the following Step A, Step B1 and Step C1.
Step A: Step of decomposing the polycarbonate resin in the reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a non-slurry polycarbonate decomposition solution containing bisphenol Step B1: A step of concentrating the polycarbonate decomposition solution obtained in step A to obtain a concentrated solution. Step C1: An aromatic hydrocarbon is supplied to the concentrated solution obtained in step B1 to precipitate bisphenol. , a step of obtaining a slurry containing bisphenol, and solid-liquid separation of the obtained slurry to obtain bisphenol <11> Any of the above <1> to <9> having the following step A, step B2 and step C2 A process for the preparation of the described bisphenol.
Step A: Step of decomposing the polycarbonate resin in the reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a non-slurry polycarbonate decomposition solution containing bisphenol Step B2: A step of removing the dialkyl carbonate and the aliphatic monoalcohol from the solution containing the polycarbonate decomposition solution and the aromatic monoalcohol obtained in step A to obtain a solution containing bisphenol and the aromatic monoalcohol Step C2: the above step Step of recovering bisphenol from the solution containing bisphenol and aromatic monoalcohol obtained in B2 <12> The polycarbonate resin is recovered in the reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst. A first decomposition step of decomposing to obtain a first decomposition solution containing bisphenol, and mixing the first decomposition solution and water to hydrolyze the dialkyl carbonate to regenerate the aliphatic monoalcohol. and a second decomposition step of decomposing the polycarbonate resin to generate bisphenol, wherein the first decomposition step and the second decomposition step are performed continuously, from <1> to <10> The method for producing bisphenol according to any one of the above.
<13> The amount of water mixed with the first decomposition solution is 0.5 mol or more and 1.5 mol or less per 1 mol of repeating units derived from bisphenol in the polycarbonate resin used in the decomposition reaction. The method for producing bisphenol according to <12>.
<14> The aliphatic monoalcohol regenerated in the second decomposition step is separated from the bisphenol as a mixture with the dialkyl carbonate, and the mixture of the aliphatic monoalcohol and the dialkyl carbonate is regenerated in the first decomposition step. The method for producing bisphenol according to <12> or <13>.
<15> The method for producing bisphenol according to any one of <12> to <14>, wherein the reaction liquid is slurry and the first decomposition liquid is not slurry.
<16> The method for producing bisphenol according to any one of <1> to <10> above, wherein a bisphenol-alkyl carbonate condensate represented by the following formula (III), which is a by-product of decomposition of the polycarbonate resin, is further recovered.
In formula (III), R is a methyl group, an ethyl group or a butyl group.
<17> The method for producing a bisphenol according to <16>, wherein in formula (III), R is a methyl group.
<18> After obtaining bisphenol through the method for producing bisphenol according to any one of <1> to <17> above, a bisphenol raw material containing the bisphenol is used to produce a recycled polycarbonate resin. Production method.
<19> Epoxy resin production, wherein bisphenol is obtained through the method for producing bisphenol according to any one of <1> to <17>, and then an epoxy resin is produced using a polyhydric hydroxy compound raw material containing the bisphenol. Production method.
<20> After the epoxy resin is obtained through the method for producing an epoxy resin according to <19>, an epoxy resin raw material containing the epoxy resin and a polyhydroxy compound raw material are further reacted to produce an epoxy resin. A method for producing an epoxy resin.
<21> An epoxy resin is obtained through the method for producing an epoxy resin according to <19> or <20> above, an epoxy resin composition containing the epoxy resin and a curing agent is obtained, and then the epoxy resin composition is A method for producing a cured epoxy resin product by curing to obtain a cured epoxy resin product.
<22> A method for producing a bisphenol-alkyl carbonate condensate represented by the following formula (III), wherein the polycarbonate resin is decomposed in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol, and a catalyst, wherein the catalyst is , an alkali metal hydroxide, an alkali metal carbonate, an alkali metal alkoxide, an alkali metal oxide, a chain alkylamine and a pyridine.
In formula (III), R is a methyl group, an ethyl group or a butyl group.
 本発明によれば、温和で環境負荷の小さい条件であっても、汎用な触媒を用い、高い反応性で、ポリカーボネート樹脂を分解することができる分解方法を利用して、ビスフェノールを製造するビスフェノールの製造方法が提供される。本発明のビスフェノールの製造方法によれば、色調の良好なビスフェノールを得ることができる。
 更に、得られた前記ビスフェノールを用いた再生ポリカーボネート樹脂の製造方法やエポキシ樹脂の製造方法が提供される。
 また、前記ポリカーボネート樹脂を分解する分解方法を利用してビスフェノール-炭酸アルキル縮合体を製造するビスフェノール-炭酸アルキル縮合体の製造方法が提供される。
According to the present invention, bisphenol is produced by using a decomposition method that can decompose polycarbonate resin with high reactivity using a general-purpose catalyst even under mild conditions with a small environmental load. A manufacturing method is provided. According to the method for producing bisphenol of the present invention, bisphenol with good color tone can be obtained.
Furthermore, a method for producing a recycled polycarbonate resin and a method for producing an epoxy resin using the obtained bisphenol are provided.
Also provided is a method for producing a bisphenol-alkyl carbonate condensate, wherein the bisphenol-alkyl carbonate condensate is produced by utilizing the decomposition method of decomposing the polycarbonate resin.
 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施の態様の一例であり、本発明はその要旨を超えない限り、以下の記載内容に限定されるものではない。なお、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。 The embodiments of the present invention will be described in detail below, but the description of the constituent elements described below is an example of the embodiments of the present invention, and the present invention does not exceed the gist thereof. is not limited to In addition, when the expression "~" is used in this specification, it is used as an expression including numerical values or physical property values before and after it.
<ビスフェノールの製造方法>
 本発明は、ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒を含む反応液中で前記ポリカーボネート樹脂の分解反応を行う、ビスフェノールの製造方法であり、前記触媒が、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド、アルカリ金属酸化物、鎖状アルキルアミン及びピリジンからなる群から選択されるいずれかである、ビスフェノールの製造方法(以下、「本発明のビスフェノールの製造方法」と記載する場合がある。)に関するものである。
<Method for producing bisphenol>
The present invention is a method for producing bisphenol, wherein the decomposition reaction of the polycarbonate resin is performed in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol, and a catalyst, and the catalyst is an alkali metal hydroxide or an alkali metal. A method for producing a bisphenol selected from the group consisting of carbonates, alkali metal alkoxides, alkali metal oxides, chain alkylamines and pyridines (hereinafter referred to as the "method for producing a bisphenol of the present invention") There is.)
 本発明のビスフェノールの製造方法は、ポリカーボネート樹脂を、炭酸ジアルキル、脂肪族モノアルコール及び特定の触媒の存在下で分解させる。炭酸ジアルキルと脂肪族アルコールを併用することで、炭酸ジアルキルがポリカーボネート樹脂を膨潤させ、脂肪族モノアルコールとの接触面積が増えることで溶解速度及び分解速度が加速するため、ポリカーボネート樹脂が温和な条件であっても分解されやすくなると考えられる。 The method for producing bisphenol of the present invention decomposes a polycarbonate resin in the presence of a dialkyl carbonate, an aliphatic monoalcohol and a specific catalyst. By using a dialkyl carbonate and an aliphatic alcohol together, the dialkyl carbonate swells the polycarbonate resin and increases the contact area with the aliphatic monoalcohol, which accelerates the dissolution rate and decomposition rate. Even if there is, it is thought that it will be easily decomposed.
 また、本発明のビスフェノールの製造方法は、分解反応に使用するポリカーボネート樹脂のビスフェノールに由来する繰り返し単位1モルに対する、分解反応に使用する炭酸ジアルキルのモル比(すなわち、仕込みのモル比)が1.8以上である。これにより、後述のようにポリカーボネート樹脂の溶解速度や分解速度が低下せず、効率的に反応させることができる。 In the method for producing bisphenol of the present invention, the molar ratio of the dialkyl carbonate used in the decomposition reaction (that is, the charged molar ratio) to 1 mol of repeating units derived from bisphenol in the polycarbonate resin used in the decomposition reaction is 1.5. 8 or more. As a result, the dissolution rate and decomposition rate of the polycarbonate resin do not decrease as will be described later, and the reaction can be carried out efficiently.
 また、ポリカーボネート樹脂の炭酸ジアルキルへの分散性は非常に良好であり、炭酸ジアルキルを用いることにより、ポリカーボネート樹脂は膨潤しつつ簡単に砕けて微細化し分散することができる。分散したポリカーボネート樹脂は、炭酸ジアルキルに徐々に溶解し、分解される。炭酸ジアルキルは、ポリカーボネート樹脂が塊の状態で残るような溶媒に比べて、固液界面での分解反応が進みやすい。そのため、本発明のビスフェノールの製造方法は、ポリカーボネート樹脂が分散したスラリー状の反応液を調製し、スラリー状の反応液中でポリカーボネート樹脂を分解させることが好ましい。 In addition, the dispersibility of the polycarbonate resin in the dialkyl carbonate is very good, and by using the dialkyl carbonate, the polycarbonate resin swells and can be easily crushed into fine particles and dispersed. The dispersed polycarbonate resin gradually dissolves in the dialkyl carbonate and is decomposed. A dialkyl carbonate is more likely to undergo a decomposition reaction at the solid-liquid interface than a solvent that leaves the polycarbonate resin in the form of lumps. Therefore, in the method for producing bisphenol of the present invention, it is preferable to prepare a slurry-like reaction liquid in which the polycarbonate resin is dispersed, and to decompose the polycarbonate resin in the slurry-like reaction liquid.
 スラリー状の反応液中でポリカーボネート樹脂を分解させることで、溶解度分だけ溶解したポリカーボネート樹脂のみが分解反応に関与するため反応の制御が行いやすく、安定してポリカーボネート樹脂を分解させることができる。そして、分解反応の進行に伴い、ポリカーボネート樹脂は完全に溶解し、分解反応終了時点の反応液(分解液)は、ポリカーボネート樹脂が分散したスラリー状が消失し、生成したビスフェノールが溶解したスラリー状でない液となる。なお、本願において、ポリカーボネート分解開始時のスラリー状である範囲としては、反応液を目開き1mm以下のろ過器を用いてろ過し、濾別されたポリカーボネート樹脂の固体濃度が反応液に対し5質量%以上であることが好ましい。また、分解反応終了時の時のスラリー状でない範囲としては、分解液を目開き1mm以下のろ過器を用いてろ過し、濾別されたポリカーボネート樹脂の固体濃度が分解液に対し5質量%未満であることが好ましい。 By decomposing the polycarbonate resin in the slurry-like reaction liquid, only the dissolved polycarbonate resin participates in the decomposition reaction, making it easy to control the reaction and stably decomposing the polycarbonate resin. As the decomposition reaction progresses, the polycarbonate resin is completely dissolved, and the reaction liquid (decomposition liquid) at the end of the decomposition reaction is no longer a slurry in which the polycarbonate resin is dispersed, and is not a slurry in which the generated bisphenol is dissolved. becomes liquid. In the present application, the range of slurry at the start of polycarbonate decomposition is defined by filtering the reaction liquid using a filter with an opening of 1 mm or less, and the solid concentration of the filtered polycarbonate resin is 5 mass with respect to the reaction liquid. % or more. In addition, as a range that is not slurry at the end of the decomposition reaction, the decomposition solution is filtered using a filter with an opening of 1 mm or less, and the solid concentration of the filtered polycarbonate resin is less than 5% by mass relative to the decomposition solution. is preferably
(ポリカーボネート樹脂(PC))
 本発明のビスフェノールの製造方法で用いられるポリカーボネート樹脂は、カーボネート結合(-O-C(=O)-O-)を含む重合組成物を含むものである。具体的には、本発明のビスフェノールの製造方法で用いられるポリカーボネート樹脂は、一般式(1)で示される、ビスフェノールに由来する繰り返し単位(以下、単に「繰り返し単位」と記載する場合もある。)を含むポリマーを含むものである。
(Polycarbonate resin (PC))
The polycarbonate resin used in the method for producing bisphenol of the present invention contains a polymer composition containing a carbonate bond (--O--C(=O)--O--). Specifically, the polycarbonate resin used in the method for producing bisphenol of the present invention has a repeating unit derived from bisphenol represented by the general formula (1) (hereinafter sometimes simply referred to as "repeating unit"). A polymer containing
 R~Rとしては、それぞれに独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基などが挙げられる。例えば、水素原子、フルオロ基、クロロ基、ブロモ基、ヨード基、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、i-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、n-ドデシルオキシ基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロオクチル基、シクロドデシル基、ベンジル基、フェニル基、トリル基、2,6-ジメチルフェニル基などが挙げられる。 R 1 to R 4 each independently include a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, and the like. For example, hydrogen atom, fluoro group, chloro group, bromo group, iodo group, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n- pentyl group, i-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, methoxy group, ethoxy group, n -propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, t-butoxy group, n-pentyloxy group, i-pentyloxy group, n-hexyloxy group, n-heptyloxy group, n- octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group , cyclododecyl group, benzyl group, phenyl group, tolyl group, 2,6-dimethylphenyl group and the like.
 RとRとしては、それぞれに独立に水素原子、アルキル基、アルコキシ基、アリール基などが挙げられる。例えば、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルへキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、i-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、n-ドデシルオキシ基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロオクチル基、シクロドデシル基、ベンジル基、フェニル基、トリル基、2,6-ジメチルフェニル基などが挙げられる。 R5 and R6 each independently include a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, and the like. For example, hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-pentyl group, i-pentyl group, n-hexyl group , n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, methoxy group, ethoxy group, n-propoxy group, i -propoxy group, n-butoxy group, i-butoxy group, t-butoxy group, n-pentyloxy group, i-pentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n -nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclododecyl group, benzyl group, phenyl group, tolyl group, 2,6-dimethylphenyl group and the like.
 RとRは、2つの基の間で互いに結合又は架橋し、シクロアルキリデン基、フルオレニリデン基(フルオレン9,9-ジイル基)、キサンテニリデン基(キサンテン9,9-ジイル基)、チオキサンテニリデン基(チオキサンテン9,9-ジイル基)などを形成しても良い。例えば、シクロアルキリデン基としては、シクロプロピリデン、シクロブチリデン、シクロペンチリデン、シクロヘキシリデン、3,3,5-トリメチルシクロヘキシリデン、シクロヘプチリデン、シクロオクチリデン、シクロノニリデン、シクロデシリデン、シクロウンデシリデン、シクロドデシリデンなどが挙げられる。 R 5 and R 6 are bonded or bridged to each other between the two groups, cycloalkylidene group, fluorenylidene group (fluorene 9,9-diyl group), xanthenylidene group (xanthene 9,9-diyl group), thioxantheni A lidene group (thioxanthene 9,9-diyl group) or the like may be formed. For example, cycloalkylidene groups include cyclopropylidene, cyclobutylidene, cyclopentylidene, cyclohexylidene, 3,3,5-trimethylcyclohexylidene, cycloheptylidene, cyclooctylidene, cyclononylidene, cyclodecylidene, cycloundecylidene, cyclododecylidene and the like.
 本発明のビスフェノールの製造方法は、中でも、上記一般式(1)のR~Rが水素原子であり、R、Rがメチル基であるポリカーボネート樹脂(ビスフェノールA型のポリカーボネート樹脂)を原料として用いることが好適である。 In the method for producing bisphenol of the present invention, among others, a polycarbonate resin (bisphenol A type polycarbonate resin) in which R 1 to R 4 in the general formula (1) are hydrogen atoms and R 5 and R 6 are methyl groups, It is preferable to use it as a raw material.
 すなわち、本発明のビスフェノールの製造方法は、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」と記載する場合がある。)の製造方法として好適である。 That is, the method for producing bisphenol of the present invention is suitable as a method for producing 2,2-bis(4-hydroxyphenyl)propane (hereinafter sometimes referred to as "bisphenol A").
 一般式(1)において、nは特に限定はないが、例えば、2~1000である。 In general formula (1), n is not particularly limited, but is 2 to 1000, for example.
 本発明のビスフェノールの製造方法の原料としては、ポリカーボネート樹脂単独のものだけでなく、共重合体やポリマーアロイのようにポリカーボネート樹脂以外の樹脂を含む組成物を用いてもよい。ポリカーボネート樹脂以外の樹脂を含む組成物としては、例えば、ポリカーボネート/ポリエステル共重合体、ポリカーボネート/ポリエステルアロイ、ポリカーボネート/ポリアリレート共重合体、ポリカーボネート/ポリアリレートアロイ等が挙げられる。ポリカーボネート樹脂以外の樹脂を含む組成物を用いる場合、ポリカーボネート樹脂が主成分である(組成物中にポリカーボネート樹脂を50質量%以上含む)ものが好適に使用できる。 As raw materials for the method for producing bisphenol of the present invention, not only polycarbonate resins alone, but also compositions containing resins other than polycarbonate resins, such as copolymers and polymer alloys, may be used. Examples of compositions containing resins other than polycarbonate resins include polycarbonate/polyester copolymers, polycarbonate/polyester alloys, polycarbonate/polyarylate copolymers, and polycarbonate/polyarylate alloys. When a composition containing a resin other than a polycarbonate resin is used, a composition containing a polycarbonate resin as a main component (containing 50% by mass or more of the polycarbonate resin in the composition) can be suitably used.
 また、ポリカーボネート樹脂は、2種類以上の異なるポリカーボネート樹脂を混合して用いることができる。なお、ポリカーボネート樹脂単独のものは、単にポリカーボネートと呼ばれることがある。 Also, the polycarbonate resin can be used by mixing two or more different polycarbonate resins. A polycarbonate resin alone may be simply called polycarbonate.
 ケミカルリサイクルの観点から、ポリカーボネート樹脂は、廃プラスチックに含まれるポリカーボネート樹脂が好ましい。ポリカーボネート樹脂は、ヘッドランプなどの光学部材や、光学ディスクなどの光学記録媒体などの各種成形品に成形加工されて用いられている。ポリカーボネート樹脂を含む廃プラスチックとして、これらの成形品にポリカーボネート樹脂を成形加工する際の端材や不良品、使用済みの成形品などを用いることができる。 From the viewpoint of chemical recycling, the polycarbonate resin contained in waste plastic is preferable. Polycarbonate resins are molded and used for various molded articles such as optical members such as headlamps and optical recording media such as optical discs. As the waste plastics containing polycarbonate resins, leftover materials, defective products, used molded products, and the like in molding polycarbonate resins into these molded products can be used.
 廃プラスチックは、適宜、洗浄、破砕、粉砕などをしたものを用いることができる。廃プラスチックの破砕の方法としては、ジョークラッシャや旋回式クラッシャを用いて20cm以下に破砕する粗砕や、旋回式クラッシャ、コーンクラッシャ、ミルを用いて1cm以下まで破砕する中砕、ミルを用いて1mm以下まで破砕する粉砕等であり、分解槽に供給出来る大きさまで小さくできれば良い。また、廃プラスチックがCDやDVDのように薄いプラスチックの場合、シュレッダー等を用いて裁断し、分解槽に供給することができる。また、共重合体やポリマーアロイの他の樹脂、光学ディスクの表面や裏面の層のようにポリカーボネート樹脂以外の成分で形成される部分を予め除去して用いてもよい。 Waste plastics can be used after washing, crushing, crushing, etc. as appropriate. Methods for crushing waste plastics include coarse crushing to 20 cm or less using a jaw crusher or orbital crusher, medium crushing to 1 cm or less using an orbital crusher, cone crusher, or mill, or using a mill. It is a pulverization or the like that crushes to 1 mm or less, and it is sufficient if it can be reduced to a size that can be supplied to the decomposition tank. If the waste plastic is thin plastic such as CD or DVD, it can be shredded using a shredder or the like and supplied to the decomposition tank. In addition, other resins such as copolymers and polymer alloys, and portions formed of components other than the polycarbonate resin, such as the layers on the front and back surfaces of optical discs, may be removed in advance before use.
(炭酸ジアルキル)
 本発明のビスフェノールの製造方法は、炭酸ジアルキルを用いることが特徴の一つである。炭酸ジアルキルは、炭酸ジメチル、炭酸ジエチル又は炭酸ジブチルが好ましい。
(dialkyl carbonate)
One of the characteristics of the method for producing bisphenol of the present invention is to use a dialkyl carbonate. Dialkyl carbonate is preferably dimethyl carbonate, diethyl carbonate or dibutyl carbonate.
 中でも、炭酸ジメチルと炭酸ジエチルは沸点が比較的低いため、分解反応後に除去しやすく精製負荷を低減させることができるため好ましい。 Among them, dimethyl carbonate and diethyl carbonate are preferable because they have relatively low boiling points and can be easily removed after the decomposition reaction and can reduce the purification load.
 炭酸ジアルキルは、ポリカーボネート樹脂に由来しない炭酸ジアルキルを含む。すなわち、脂肪族モノアルコールの存在下でポリカーボネート樹脂を分解させるとポリカーボネート樹脂が分解するにつれて炭酸ジアルキルが生成されるが、本発明のビスフェノールの製造方法では、この反応中に生じる炭酸ジアルキルとは別に、炭酸ジアルキルを、ポリカーボネート樹脂の分解を行う反応槽に供給して使用する。 The dialkyl carbonate includes dialkyl carbonate not derived from polycarbonate resin. That is, when a polycarbonate resin is decomposed in the presence of an aliphatic monoalcohol, a dialkyl carbonate is produced as the polycarbonate resin is decomposed. The dialkyl carbonate is used by supplying it to a reactor for decomposing the polycarbonate resin.
 なお、「ポリカーボネート樹脂に由来しない炭酸ジアルキル」とは、同時に使用するポリカーボネート樹脂に由来しない炭酸ジアルキルという意味であり、反応槽に供給される炭酸ジアルキルのことである。本発明のビスフェノールの製造方法では、ポリカーボネート樹脂の分解により生じた炭酸ジアルキルを、同時に使用するポリカーボネート樹脂に由来しない炭酸ジアルキルとして次の分解反応にリサイクルしてもよい。 The "dialkyl carbonate not derived from the polycarbonate resin" means dialkyl carbonate not derived from the polycarbonate resin used at the same time, and is the dialkyl carbonate supplied to the reaction vessel. In the method for producing bisphenol of the present invention, the dialkyl carbonate generated by decomposition of the polycarbonate resin may be recycled to the next decomposition reaction as dialkyl carbonate not derived from the polycarbonate resin used simultaneously.
 使用するポリカーボネート樹脂の量に対して使用する炭酸ジアルキルの量が小さいと、反応初期の液に対する固体(ポリカーボネート樹脂)の量が多くなって、混合不良となったり、ポリカーボネート樹脂の溶解速度及び分解速度が遅くなる傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用する炭酸ジアルキルのモル比は、1.8以上である。より好ましくは1.9以上であり、2.0以上がより好ましい。また、使用するポリカーボネート樹脂に対して使用する炭酸ジアルキルの量が大きいと、製造効率が悪化する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する、使用する炭酸ジアルキルのモル比は、100以下が好ましく、70以下がより好ましく、50以下が更に好ましい。 If the amount of dialkyl carbonate to be used is small relative to the amount of polycarbonate resin to be used, the amount of solid (polycarbonate resin) to the liquid at the initial stage of the reaction will be large, resulting in poor mixing, dissolution rate and decomposition rate of polycarbonate resin. tends to be delayed. Therefore, the molar ratio of the dialkyl carbonate used to 1 mol of the repeating unit of the polycarbonate resin used is 1.8 or more. It is more preferably 1.9 or more, and more preferably 2.0 or more. In addition, when the amount of dialkyl carbonate used relative to the polycarbonate resin used is large, the production efficiency tends to deteriorate. Therefore, the molar ratio of the dialkyl carbonate to be used is preferably 100 or less, more preferably 70 or less, and even more preferably 50 or less to 1 mol of the repeating unit of the polycarbonate resin to be used.
 例えば、分解反応に使用するポリカーボネート樹脂の繰り返し単位1モルに対する、分解反応に使用する炭酸ジアルキルのモル比は、1.8以上100以下が好ましく、1.9以上70以下がより好ましく、2.0以上50以下が更に好ましい。また、当該モル比は、2.5以上45以下や、3.0以上40以下などとしてもよい。 For example, the molar ratio of the dialkyl carbonate used in the decomposition reaction to 1 mol of the repeating unit of the polycarbonate resin used in the decomposition reaction is preferably 1.8 or more and 100 or less, more preferably 1.9 or more and 70 or less, and 2.0. 50 or less is more preferable. Also, the molar ratio may be 2.5 or more and 45 or less, or 3.0 or more and 40 or less.
 なお、本願において、分解反応に使用するポリカーボネート樹脂の量(モルや質量)とは、ポリカーボネート樹脂の仕込み量(反応槽に供給する量)を意味する。また、「分解反応に使用するポリカーボネート樹脂」を、単に「使用するポリカーボネート樹脂」と記載する場合がある。炭酸ジアルキルや、脂肪族アルコール、触媒などその他の材料ついても同様である。 In the present application, the amount (mole or mass) of the polycarbonate resin used for the decomposition reaction means the amount of the polycarbonate resin charged (the amount supplied to the reaction vessel). Also, the "polycarbonate resin used in the decomposition reaction" may be simply described as "the polycarbonate resin used". The same is true for other materials such as dialkyl carbonates, fatty alcohols and catalysts.
 使用するポリカーボネート樹脂の繰り返し単位のモル数は、使用するポリカーボネート樹脂の質量(仕込みの質量)を、ビスフェノールに由来する繰り返し単位の分子量で除した値である。上記一般式(1)で表されるポリカーボネート樹脂の場合、そのビスフェノールに由来する繰り返し単位は、上記一般式(1)のn=1の構造である。使用する炭酸ジアルキルのモル数は、使用する炭酸ジアルキルの質量(仕込みの質量)を炭酸ジアルキルの分子量で除した値である。よって、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用する炭酸ジアルキルのモル比は、「(使用する炭酸ジアルキルの質量[g]/炭酸ジアルキルの分子量[g/mol])/(使用するポリカーボネート樹脂の質量[g]/ポリカーボネート樹脂の繰り返し単位の分子量[g/mol])」である。 The number of moles of the repeating unit of the polycarbonate resin used is the value obtained by dividing the mass of the polycarbonate resin used (mass of preparation) by the molecular weight of the repeating unit derived from bisphenol. In the case of the polycarbonate resin represented by the general formula (1), the repeating unit derived from bisphenol has a structure of n=1 in the general formula (1). The number of moles of the dialkyl carbonate to be used is the value obtained by dividing the mass of the dialkyl carbonate to be used (mass of charge) by the molecular weight of the dialkyl carbonate. Therefore, the molar ratio of the dialkyl carbonate to be used with respect to 1 mol of the repeating unit of the polycarbonate resin to be used is "(mass of dialkyl carbonate to be used [g]/molecular weight of dialkyl carbonate [g/mol])/(molecular weight of polycarbonate resin to be used mass [g]/molecular weight of repeating unit of polycarbonate resin [g/mol])”.
 なお、ポリカーボネート樹脂が分解するにつれて炭酸ジアルキルが生成されるため、反応終了時の反応液に含まれる炭酸ジアルキルは、ポリカーボネート樹脂に由来しない炭酸ジアルキル(反応槽に供給した炭酸ジアルキル)とポリカーボネート樹脂に由来する炭酸ジアルキル(ポリカーボネート樹脂のアルコリシスにより生成した炭酸ジアルキル)とからなる。反応終了時の反応液に含まれる炭酸ジアルキルの一部がポリカーボネート樹脂に由来しない炭酸ジアルキルである。使用したポリカーボネート樹脂の繰り返し単位1モルに対する反応終了時の炭酸ジアルキル(使用した炭酸ジアルキルと生成した炭酸ジアルキルとの合計)のモル比は、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用する炭酸ジアルキルのモル比よりも大きくなる。使用するポリカーボネート樹脂の繰り返し単位1モルに対する反応終了時の炭酸ジアルキル(使用した炭酸ジアルキルと生成した炭酸ジアルキルとの合計)のモル比は、2.8以上が好ましく、2.81以上がより好ましく、3.3以上がより好ましく、3.8以上が更に好ましい。 Since dialkyl carbonate is generated as the polycarbonate resin decomposes, the dialkyl carbonate contained in the reaction solution at the end of the reaction is the dialkyl carbonate not derived from the polycarbonate resin (the dialkyl carbonate supplied to the reaction tank) and the polycarbonate resin. dialkyl carbonate (dialkyl carbonate produced by alcoholysis of polycarbonate resin). Part of the dialkyl carbonate contained in the reaction solution at the end of the reaction is dialkyl carbonate not derived from the polycarbonate resin. The molar ratio of the dialkyl carbonate (total of the dialkyl carbonate used and the dialkyl carbonate produced) at the end of the reaction to 1 mol of the repeating unit of the polycarbonate resin used is the ratio of the dialkyl carbonate used to 1 mol of the repeating unit of the polycarbonate resin used. larger than the molar ratio. The molar ratio of the dialkyl carbonate at the end of the reaction (total of the dialkyl carbonate used and the dialkyl carbonate produced) to 1 mol of the repeating unit of the polycarbonate resin used is preferably 2.8 or more, more preferably 2.81 or more. 3.3 or more is more preferable, and 3.8 or more is still more preferable.
(脂肪族モノアルコール)
 本発明のビスフェノールの製造方法は、脂肪族モノアルコールを用いることが特徴の一つである。脂肪族モノアルコールとしては、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、t-ブタノール、n-ペンタノール、i-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール、n-ウンデカノール、n-ドデカノール等が挙げられる。
(aliphatic monoalcohol)
One of the characteristics of the method for producing bisphenol of the present invention is that an aliphatic monoalcohol is used. Aliphatic monoalcohols include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol, n-pentanol, i-pentanol, n-hexanol, n-heptanol, n- -octanol, n-nonanol, n-decanol, n-undecanol, n-dodecanol and the like.
 中でも、脂肪族モノアルコールは炭素数が1~5のアルコールであることが好ましく、メタノール、エタノール及びブタノールからなる群から選択されるいずれかが更に好ましい。 Among them, the aliphatic monoalcohol is preferably an alcohol having 1 to 5 carbon atoms, more preferably any one selected from the group consisting of methanol, ethanol and butanol.
 また、脂肪族モノアルコールは、使用する炭酸ジアルキルと同じアルキル基を有するものを用いることが好ましい。例えば、炭酸ジアルキルとして炭酸ジメチルを用いる場合にはメタノールを用いることが好ましく、炭酸ジアルキルとして炭酸ジエチルを用いる場合にはエタノールを用いることが好ましく、炭酸ジアルキルとして炭酸ジブチルを用いる場合にはブタノールを用いることが好ましい。 In addition, it is preferable to use an aliphatic monoalcohol that has the same alkyl group as the dialkyl carbonate used. For example, it is preferable to use methanol when dimethyl carbonate is used as the dialkyl carbonate, ethanol is preferably used when diethyl carbonate is used as the dialkyl carbonate, and butanol is used when dibutyl carbonate is used as the dialkyl carbonate. is preferred.
 使用するポリカーボネート樹脂の量に対して使用する脂肪族モノアルコールの量が小さいと、ポリカーボネート樹脂が分解されにくくなったり、分解速度が低下するため、分解時間が長時間化して、効率が悪化する傾向にある。そのため、ポリカーボネート樹脂の繰り返し単位1モルに対する脂肪族モノアルコールのモル比((使用する脂肪族モノアルコールの質量[g]/脂肪族モノアルコールの分子量[g/mol])/(使用するポリカーボネート樹脂の質量[g]/ポリカーボネート樹脂の繰り返し単位の分子量[g/mol]))は、0.1以上が好ましく、0.5以上がより好ましく、1.0以上が更に好ましい。また、使用するポリカーボネート樹脂に対して使用する脂肪族モノアルコールの量が大きいと、製造効率が悪化する傾向にある。そのため、ポリカーボネート樹脂の繰り返し単位1モルに対する脂肪族モノアルコールのモル比は、20.0以下が好ましく、15.0以下がより好ましく、10.0以下が更に好ましい。 If the amount of aliphatic monoalcohol used is small relative to the amount of polycarbonate resin used, the polycarbonate resin will be difficult to decompose and the decomposition rate will decrease, resulting in a longer decomposition time and a tendency to deteriorate efficiency. It is in. Therefore, the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin ((mass of the aliphatic monoalcohol used [g] / molecular weight of the aliphatic monoalcohol [g / mol]) / (of the polycarbonate resin to be used Mass [g]/molecular weight of repeating unit of polycarbonate resin [g/mol])) is preferably 0.1 or more, more preferably 0.5 or more, and still more preferably 1.0 or more. Moreover, when the amount of the aliphatic monoalcohol used relative to the polycarbonate resin used is large, the production efficiency tends to deteriorate. Therefore, the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin is preferably 20.0 or less, more preferably 15.0 or less, and even more preferably 10.0 or less.
 ポリカーボネート樹脂の分解は、脂肪族モノアルコールの量や反応時間を調整することで制御することができる。得ようとする分解生成物の構造を、脂肪族モノアルコールの量で制御する場合、炭酸ジアルキルを効率よく製造するためには、ポリカーボネート樹脂の繰り返し単位1モルに対する脂肪族モノアルコールのモル比は、2.0以上が好ましく、2.1以上がより好ましく、2.2以上が更に好ましい。また、ビスフェノール-アルキルカーボネート縮合体(単に、「縮合体」と記載する場合がある。)を効率的に製造するためには、ポリカーボネート樹脂の繰り返し単位1モルに対する脂肪族モノアルコールのモル比は2.0未満が好ましく、1.95以下や、1.9以下、1.85以下、1.8以下などとしてもよい。 The decomposition of polycarbonate resin can be controlled by adjusting the amount of aliphatic monoalcohol and the reaction time. When the structure of the decomposition product to be obtained is controlled by the amount of the aliphatic monoalcohol, in order to efficiently produce the dialkyl carbonate, the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin is 2.0 or more is preferable, 2.1 or more is more preferable, and 2.2 or more is still more preferable. In order to efficiently produce a bisphenol-alkyl carbonate condensate (sometimes simply referred to as a "condensate"), the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin is 2. It is preferably less than 0.0, and may be 1.95 or less, 1.9 or less, 1.85 or less, or 1.8 or less.
 例えば、炭酸ジアルキルを効率的よく製造するためには、ポリカーボネート樹脂の繰り返し単位1モルに対する脂肪族モノアルコールのモル比を2.0以上20.0以下、2.1以上15.0以下又は2.2以上10.0以下とすることが好ましい。また、ビスフェノール-アルキルカーボネート縮合体を効率的に製造するためには、ポリカーボネート樹脂の繰り返し単位1モルに対する脂肪族モノアルコールのモル比を0.1以上2.0未満、0.5以上1.95以下又は1.0以上1.9以下とすることが好ましい。 For example, in order to efficiently produce a dialkyl carbonate, the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin is 2.0 or more and 20.0 or less, 2.1 or more and 15.0 or less, or 2.1 or more and 15.0 or less. It is preferable to make it 2 or more and 10.0 or less. Further, in order to efficiently produce the bisphenol-alkyl carbonate condensate, the molar ratio of the aliphatic monoalcohol to 1 mol of the repeating unit of the polycarbonate resin is 0.1 or more and less than 2.0, 0.5 or more and 1.95. or less, or 1.0 or more and 1.9 or less.
 また、使用する炭酸ジアルキルに対する使用する脂肪族モノアルコールのモル比(使用する脂肪族モノアルコールのモル数/使用する炭酸ジアルキルのモル数)は、0.01以上が好ましく、0.05以上がより好ましい。また、該モル比は、15.0以下が好ましく、10.0以下がより好ましく、8.0以下がより好ましく、5.0以下がより好ましい。使用する炭酸ジアルキルに対する使用する脂肪族モノアルコールのモル比が小さいと、ポリカーボネート樹脂が分解されにくくなったり、分解速度が低下して分解時間が長時間化する。また、該モル比が大きいと、炭酸ジアルキルを回収する場合には、脂肪族モノアルコールと炭酸ジアルキルとの分離が煩雑となる。 The molar ratio of the aliphatic monoalcohol used to the dialkyl carbonate used (the number of moles of the aliphatic monoalcohol used/the number of moles of the dialkyl carbonate used) is preferably 0.01 or more, more preferably 0.05 or more. preferable. Also, the molar ratio is preferably 15.0 or less, more preferably 10.0 or less, more preferably 8.0 or less, and more preferably 5.0 or less. If the molar ratio of the aliphatic monoalcohol used to the dialkyl carbonate used is small, the polycarbonate resin will be difficult to decompose, or the decomposition rate will decrease, resulting in a prolonged decomposition time. Further, when the molar ratio is large, separation of the aliphatic monoalcohol and the dialkyl carbonate becomes complicated when recovering the dialkyl carbonate.
 例えば、使用する炭酸ジアルキルに対する使用する脂肪族モノアルコールのモル比(仕込みのモル比)は、0.01以上10.0以下、0.05以上8.0以下、0.1以上6.0以下、0.15以上5.0以下又は0.2以上3.0以下とすることが好ましい。また、当該モル比は、0.25以上2.5以下や、0.3以上1.8以下などとしてもよい。 For example, the molar ratio of the aliphatic monoalcohol used to the dialkyl carbonate used (molar ratio of charge) is 0.01 or more and 10.0 or less, 0.05 or more and 8.0 or less, 0.1 or more and 6.0 or less. , 0.15 to 5.0 or 0.2 to 3.0. Also, the molar ratio may be 0.25 or more and 2.5 or less, or 0.3 or more and 1.8 or less.
(触媒)
 本発明のビスフェノールの製造方法は、更に、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド、アルカリ金属酸化物、鎖状アルキルアミン及びピリジンからなる群から選択されるいずれかの触媒を用いることが特徴の一つである。
(catalyst)
The method for producing bisphenol of the present invention further uses a catalyst selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal alkoxides, alkali metal oxides, chain alkylamines and pyridine. That is one of the characteristics.
 中でも、触媒は、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド及びアルカリ金属酸化物からなる群から選択されるいずれかが好ましく、アルカリ金属水酸化物又はアルカリ金属炭酸塩がより好ましい。アルカリ金属水酸化物やアルカリ金属炭酸塩のような無機系の金属触媒を用いると、炭酸ジアルキルが分解するため好ましくないと考えられた。しかし、本発明者らは、炭酸ジアルキル及び脂肪族モノアルコールの存在下、アルカリ金属水酸化物やアルカリ金属炭酸塩等を触媒としてポリカーボネート樹脂を分解させると、高い反応率でポリカーボネート樹脂が分解し、色調の良好なビスフェノールが得られることを発見した。また、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド及びアルカリ金属酸化物からなる群から選択されるいずれかを用いることで、臭気も発生しにくいため、これらの触媒を用いることが好ましい。 Above all, the catalyst is preferably one selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal alkoxides and alkali metal oxides, more preferably alkali metal hydroxides or alkali metal carbonates. The use of inorganic metal catalysts such as alkali metal hydroxides and alkali metal carbonates was considered unfavorable because the dialkyl carbonate would decompose. However, the present inventors found that when a polycarbonate resin is decomposed in the presence of a dialkyl carbonate and an aliphatic monoalcohol using an alkali metal hydroxide, an alkali metal carbonate, or the like as a catalyst, the polycarbonate resin decomposes at a high reaction rate, It was found that bisphenol with good color tone can be obtained. Further, by using any one selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal alkoxides and alkali metal oxides, odor is less likely to occur, so it is preferable to use these catalysts. .
[アルカリ金属水酸化物]
 本発明において、アルカリ金属水酸化物は、アルカリ金属イオン(M)と水酸化物イオン(OH)との塩であり、MOH(Mはアルカリ金属原子を表す。)で表される化合物である。アルカリ金属水酸化物としては、水酸化ナトリウム又は水酸化カリウムが好ましい。
[Alkali metal hydroxide]
In the present invention, an alkali metal hydroxide is a salt of an alkali metal ion (M + ) and a hydroxide ion (OH ), and is a compound represented by MOH (M represents an alkali metal atom). be. Sodium hydroxide or potassium hydroxide is preferred as the alkali metal hydroxide.
 使用するポリカーボネート樹脂に対して使用するアルカリ金属水酸化物の量が小さいと分解速度が遅くなり、分解時間が長時間化して、効率が悪化する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用するアルカリ金属水酸化物のモル比((使用するアルカリ金属水酸化物の質量[g]/アルカリ金属水酸化物の分子量[g/mol])/(使用するポリカーボネート樹脂の質量[g]/ポリカーボネート樹脂の繰り返し単位の分子量[g/mol]))は、0.0001以上が好ましく、0.0005以上がより好ましく、0.0007以上が更に好ましい。例えば、0.001以上や、0.01以上などとすることができる。使用するポリカーボネート樹脂に対して使用するアルカリ金属水酸化物の量が大きいと、分解後の中和に要する酸の量が増加して、製造効率が低下する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用するアルカリ金属水酸化物のモル比は、1以下が好ましく、0.9以下がより好ましく、0.8以下が更に好ましい。 If the amount of alkali metal hydroxide used relative to the polycarbonate resin used is small, the decomposition rate will be slow, the decomposition time will be prolonged, and the efficiency will tend to deteriorate. Therefore, the molar ratio of the alkali metal hydroxide used to 1 mol of the repeating unit of the polycarbonate resin used ((mass of alkali metal hydroxide used [g]/molecular weight of alkali metal hydroxide [g/mol]) /(mass [g] of polycarbonate resin used/molecular weight [g/mol] of repeating unit of polycarbonate resin)) is preferably 0.0001 or more, more preferably 0.0005 or more, and still more preferably 0.0007 or more. . For example, it can be 0.001 or more, or 0.01 or more. If the amount of alkali metal hydroxide used relative to the polycarbonate resin used is large, the amount of acid required for neutralization after decomposition tends to increase, resulting in a decrease in production efficiency. Therefore, the molar ratio of the alkali metal hydroxide to be used to 1 mol of the repeating unit of the polycarbonate resin to be used is preferably 1 or less, more preferably 0.9 or less, and even more preferably 0.8 or less.
[アルカリ金属炭酸塩]
 本発明において、アルカリ金属炭酸塩は、アルカリ金属イオン(M)と炭酸イオン(CO 2-)との塩であり、MCO又はMHCO(Mはアルカリ金属原子を表す。)で表される化合物である。アルカリ金属炭酸塩としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム又は炭酸水素カリウム等が好ましく、炭酸ナトリウム又は炭酸カリウムがより好ましい。
[Alkali metal carbonate]
In the present invention, an alkali metal carbonate is a salt of an alkali metal ion (M + ) and a carbonate ion (CO 3 2− ), and M 2 CO 3 or MHCO 3 (M represents an alkali metal atom). is the compound represented. The alkali metal carbonate is preferably sodium carbonate, potassium carbonate, sodium hydrogencarbonate or potassium hydrogencarbonate, and more preferably sodium carbonate or potassium carbonate.
 使用するポリカーボネート樹脂に対して使用するアルカリ金属炭酸塩の量が小さいと分解速度が遅くなり、分解時間が長時間化して、効率が悪化する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用するアルカリ金属炭酸塩のモル比((使用するアルカリ金属炭酸塩の質量[g]/アルカリ金属炭酸塩の分子量[g/mol])/(使用するポリカーボネート樹脂の質量[g]/ポリカーボネート樹脂の繰り返し単位の分子量[g/mol]))は、0.0001以上が好ましく、0.0005以上がより好ましく、0.001以上が更に好ましい。例えば、0.001以上や、0.01以上などとすることができる。使用するポリカーボネート樹脂に対して使用するアルカリ金属炭酸塩の量が大きいと、分解後の中和に要する酸の量が増加して、製造効率が低下する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用するアルカリ金属炭酸塩のモル比は、1以下が好ましく、0.9以下がより好ましく、0.8以下が更に好ましい。 If the amount of alkali metal carbonate used relative to the polycarbonate resin used is small, the decomposition rate will be slow, the decomposition time will be prolonged, and efficiency will tend to deteriorate. Therefore, the molar ratio of the alkali metal carbonate used to 1 mol of the repeating unit of the polycarbonate resin used ((mass of the alkali metal carbonate used [g] / molecular weight of the alkali metal carbonate [g / mol]) / (used The mass [g] of the polycarbonate resin/molecular weight [g/mol] of the repeating unit of the polycarbonate resin)) is preferably 0.0001 or more, more preferably 0.0005 or more, and still more preferably 0.001 or more. For example, it can be 0.001 or more, or 0.01 or more. If the amount of alkali metal carbonate used relative to the amount of polycarbonate resin used is large, the amount of acid required for neutralization after decomposition tends to increase, resulting in a decrease in production efficiency. Therefore, the molar ratio of the alkali metal carbonate used to 1 mol of the repeating unit of the polycarbonate resin used is preferably 1 or less, more preferably 0.9 or less, and even more preferably 0.8 or less.
[アルカリ金属アルコキシド]
 本発明において、アルカリ金属アルコキシドは、アルカリ金属イオン(M)と脂肪族又は芳香族アルコキシドとの塩であり、下記式(2)で表される化合物である。
 MOR ・・・ 式(2)
 式(2)中、Mはアルカリ金属原子を表し、ナトリウム又はカリウムが好ましい。Rはアルキル基又はアリール基を表し、炭素数1~5のアルキル基又はフェニル基が好ましい。
[Alkali metal alkoxide]
In the present invention, an alkali metal alkoxide is a salt of an alkali metal ion (M + ) and an aliphatic or aromatic alkoxide, and is a compound represented by the following formula (2).
MOR H Formula (2)
In formula (2), M represents an alkali metal atom, preferably sodium or potassium. R H represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 5 carbon atoms or a phenyl group.
 アルカリ金属アルコキシドとしては、ナトリウムフェノキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムフェノキシド、カリウムメトキシド、カリウムエトキシド、カリウムt-ブトキシドが好ましい。 Preferred alkali metal alkoxides are sodium phenoxide, sodium methoxide, sodium ethoxide, potassium phenoxide, potassium methoxide, potassium ethoxide and potassium t-butoxide.
 使用するポリカーボネート樹脂に対して使用するアルカリ金属アルコキシドの量が小さいと分解速度が遅くなり、分解時間が長時間化して、効率が悪化する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用するアルカリ金属アルコキシドのモル比((使用するアルカリ金属アルコキシドの質量[g]/アルカリ金属アルコキシドの分子量[g/mol])/(使用するポリカーボネート樹脂の質量[g]/ポリカーボネート樹脂の繰り返し単位の分子量[g/mol]))は、0.0001以上が好ましく、0.0005以上がより好ましく、0.001以上が更に好ましい。例えば、0.001以上や、0.01以上などとすることができる。使用するポリカーボネート樹脂に対して使用するアルカリ金属アルコキシドの量が大きいと、分解後の中和に要する酸の量が増加して、製造効率が低下する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用するアルカリ金属アルコキシドのモル比は、1以下が好ましく、0.9以下がより好ましく、0.8以下が更に好ましい。 If the amount of alkali metal alkoxide used relative to the polycarbonate resin used is small, the decomposition rate will be slow, the decomposition time will be prolonged, and efficiency will tend to deteriorate. Therefore, the molar ratio of the alkali metal alkoxide used to 1 mol of the repeating unit of the polycarbonate resin used ((mass of alkali metal alkoxide used [g] / molecular weight of alkali metal alkoxide [g / mol]) / (polycarbonate resin used mass [g]/molecular weight of repeating unit of polycarbonate resin [g/mol])) is preferably 0.0001 or more, more preferably 0.0005 or more, and still more preferably 0.001 or more. For example, it can be 0.001 or more, or 0.01 or more. If the amount of alkali metal alkoxide used relative to the polycarbonate resin used is large, the amount of acid required for neutralization after decomposition tends to increase, resulting in a decrease in production efficiency. Therefore, the molar ratio of the alkali metal alkoxide used to 1 mol of the repeating unit of the polycarbonate resin used is preferably 1 or less, more preferably 0.9 or less, and even more preferably 0.8 or less.
[アルカリ金属酸化物]
 アルカリ金属酸化物としては、酸化ナトリウム又は酸化カリウム等が挙げられる。
[Alkali metal oxide]
Alkali metal oxides include sodium oxide, potassium oxide, and the like.
 使用するポリカーボネート樹脂に対して使用するアルカリ金属酸化物の量が小さいと分解速度が遅くなり、分解時間が長時間化して、効率が悪化する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用するアルカリ金属酸化物のモル比((使用するアルカリ金属酸化物の質量[g]/アルカリ金属酸化物の分子量[g/mol])/(使用するポリカーボネート樹脂の質量[g]/ポリカーボネート樹脂の繰り返し単位の分子量[g/mol]))は、0.0001以上が好ましく、0.0005以上がより好ましく、0.001以上が更に好ましい。例えば、0.001以上や、0.01以上などとすることができる。使用するポリカーボネート樹脂に対して使用するアルカリ金属酸化物の量が大きいと、分解後の中和に要する酸の量が増加して、製造効率が低下する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用するアルカリ金属酸化物のモル比は、1以下が好ましく、0.9以下がより好ましく、0.8以下が更に好ましい。 If the amount of alkali metal oxide used relative to the polycarbonate resin used is small, the decomposition rate will be slow, the decomposition time will be prolonged, and efficiency will tend to deteriorate. Therefore, the molar ratio of the alkali metal oxide to be used to 1 mol of the repeating unit of the polycarbonate resin to be used ((mass of the alkali metal oxide to be used [g] / molecular weight of the alkali metal oxide [g / mol]) / (used The mass [g] of the polycarbonate resin/molecular weight [g/mol] of the repeating unit of the polycarbonate resin)) is preferably 0.0001 or more, more preferably 0.0005 or more, and still more preferably 0.001 or more. For example, it can be 0.001 or more, or 0.01 or more. If the amount of alkali metal oxide used relative to the polycarbonate resin used is large, the amount of acid required for neutralization after decomposition tends to increase, resulting in a decrease in production efficiency. Therefore, the molar ratio of the alkali metal oxide to be used to 1 mol of the repeating unit of the polycarbonate resin to be used is preferably 1 or less, more preferably 0.9 or less, and even more preferably 0.8 or less.
[鎖状アルキルアミン]
 本発明において、鎖状アルキルアミンは、アンモニアの少なくとも1つの水素原子がアルキル基で置換されたアミン構造を有する化合物である。鎖状アルキルアミンは、200℃以下の沸点のものが好ましく、160℃以下の沸点のものがより好ましい。このような沸点であれば、炭酸ジアルキルと共に減圧及び/又は加熱により除去することができる。また、沸点が低すぎると、分解反応中に鎖状アルキルアミンが揮発し分解速度が低下する場合があるため、鎖状アルキルアミンの沸点は、10℃以上が好ましく、30℃以上がより好ましい。
[Chain alkylamine]
In the present invention, a chain alkylamine is a compound having an amine structure in which at least one hydrogen atom of ammonia is substituted with an alkyl group. The chain alkylamine preferably has a boiling point of 200° C. or lower, more preferably 160° C. or lower. If it has such a boiling point, it can be removed together with the dialkyl carbonate by reducing pressure and/or heating. On the other hand, if the boiling point is too low, the chain alkylamine may volatilize during the decomposition reaction and the decomposition rate may decrease.
 鎖状アルキルアミンは、鎖状アルキルモノアミン又は鎖状アルキルジアミンが好ましい。 The chain alkylamine is preferably a chain alkyl monoamine or a chain alkyl diamine.
 鎖状アルキルモノアミンの中でも1級アミンであるモノアルキルモノアミンはポリカーボネート樹脂のカーボネート結合部分と反応してイソシアネートを生成するので、より好ましくは2級アミンであるジアルキルモノアミン又は3級アミンであるトリアルキルモノアミンである。2級アミンであるジアルキルモノアミンはポリカーボネート樹脂のカーボネート結合部分と反応してテトラアルキル尿素を生成するので、更に好ましくは3級アミンであるトリアルキルモノアミンである。 Among the chain alkyl monoamines, the monoalkyl monoamine, which is a primary amine, reacts with the carbonate-bonded portion of the polycarbonate resin to generate isocyanate, and is more preferably a dialkyl monoamine, which is a secondary amine, or a trialkyl monoamine, which is a tertiary amine. is. A dialkylmonoamine, which is a secondary amine, reacts with the carbonate-bonded portion of the polycarbonate resin to form a tetraalkylurea, and is more preferably a trialkylmonoamine, which is a tertiary amine.
 鎖状アルキルアミンは、一般式(I)で示されるアルキルモノアミンであることが好ましい。 The chain alkylamine is preferably an alkylmonoamine represented by general formula (I).
 一般式(I)中、Rは、炭素数1~3のアルキル基を表し、R~Rは、それぞれに独立に水素原子又は炭素数1~3のアルキル基を表す。
 Rは、メチル基、エチル基、n-プロピル基、又はi-プロピル基が好ましく、R~Rは、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、又はi-プロピル基が好ましい。
In general formula (I), R A represents an alkyl group having 1 to 3 carbon atoms, and R B to R C each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
R A is preferably a methyl group, ethyl group, n-propyl group, or i-propyl group, and R B to R C are each independently a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or i -Propyl groups are preferred.
 一般式(I)で示される鎖状アルキルアミンの具体例としては、メチルアミン、エチルアミン、プロピルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン等が挙げられる。 Specific examples of chain alkylamines represented by general formula (I) include methylamine, ethylamine, propylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, and the like.
 鎖状アルキルアミンは、一般式(II)で示されるアルキルジアミンであることが好ましい。 The chain alkylamine is preferably an alkyldiamine represented by general formula (II).
 一般式(II)中、R~Rは、それぞれに独立に水素原子又は炭素数1~3のアルキル基を表し、mは1~6の整数を表す。
 R~Rは、それぞれに独立に、メチル基、エチル基、n-プロピル基、又はi-プロピル基が好ましい。
In general formula (II), R D to R G each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 1 to 6.
R D to R G are each independently preferably a methyl group, an ethyl group, an n-propyl group, or an i-propyl group.
 一般式(II)で示される鎖状アルキルアミンの具体例としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、N-メチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N-ジメチルトリメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、1,3-ジアミノプロパン、N-メチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン等が挙げられる。 Specific examples of chain alkylamines represented by formula (II) include ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, N-methylethylenediamine, N,N'-dimethylethylenediamine, N , N-dimethyltrimethylenediamine, N,N,N',N'-tetramethylethylenediamine, N,N'-diethylethylenediamine, N,N,N',N'-tetraethylethylenediamine, 1,3-diaminopropane, N-methyl-1,3-diaminopropane, N,N'-dimethyl-1,3-diaminopropane, N,N,N',N'-tetramethyl-1,3-diaminopropane and the like.
 使用するポリカーボネート樹脂に対して使用する鎖状アルキルアミンの量が小さいと分解速度が遅くなり、分解時間が長時間化して、効率が悪化する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用する鎖状アルキルアミンのアミノ基のNのモル比((使用するアルキルアミンの質量[g]×アミノ基のNの数/鎖状アルキルアミンの分子量[g/mol])/(使用するポリカーボネート樹脂の質量[g]/ポリカーボネート樹脂の繰り返し単位の分子量[g/mol]))は、0.0005以上が好ましく、0.0007以上がより好ましく、0.001以上が更に好ましい。例えば、0.01以上や、0.1以上などとすることができる。使用するポリカーボネート樹脂に対して使用する鎖状アルキルアミンの量が大きいと、アミン臭がより発生しやすくなったり、炭酸ジアルキルや縮合体が生成しにくくなる。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用する鎖状アルキルアミンのアミノ基のNのモル比は、4.5以下が好ましく、4.0以下、3.0以下、2.0以下、1.0以下、0.9以下、0.8以下の順に小さい程より好ましい。 If the amount of chain alkylamine used relative to the polycarbonate resin used is small, the decomposition rate will be slow, the decomposition time will be prolonged, and efficiency will tend to deteriorate. Therefore, the molar ratio of N of the amino group of the chain alkylamine to be used with respect to 1 mol of the repeating unit of the polycarbonate resin to be used ((mass of alkylamine to be used [g] × number of N of amino group / number of chain alkylamine Molecular weight [g/mol])/(mass of polycarbonate resin to be used [g]/molecular weight of repeating unit of polycarbonate resin [g/mol])) is preferably 0.0005 or more, more preferably 0.0007 or more, 0.001 or more is more preferable. For example, it can be 0.01 or more, or 0.1 or more. If the amount of chain alkylamine used relative to the polycarbonate resin used is large, amine odor is more likely to occur, and dialkyl carbonates and condensates are less likely to form. Therefore, the molar ratio of N of the amino group of the chain alkylamine used to 1 mol of the repeating unit of the polycarbonate resin used is preferably 4.5 or less, 4.0 or less, 3.0 or less, 2.0 or less, 1.0 or less, 0.9 or less, and 0.8 or less, in this order, the more preferable.
[ピリジン]
 本発明において、ピリジンは、無置換であっても、メチル基やヒドロキシル基等の置換基を有してもよい。好ましくは、無置換のピリジンである。
[pyridine]
In the present invention, pyridine may be unsubstituted or may have a substituent such as a methyl group or a hydroxyl group. Preferred is unsubstituted pyridine.
 使用するポリカーボネート樹脂に対して使用するピリジンの量が小さいと分解速度が遅くなり、分解時間が長時間化して、効率が悪化する傾向にある。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用するピリジンのモル比((使用するピリジンの質量[g]/ピリジンの分子量[g/mol])/(使用するポリカーボネート樹脂の質量[g]/ポリカーボネート樹脂の繰り返し単位の分子量[g/mol]))は、0.0005以上が好ましく、0.0007以上がより好ましく、0.001以上が更に好ましい。例えば、0.01以上や、0.1以上などとすることができる。使用するポリカーボネート樹脂に対して使用するピリジンの量が大きいと、臭気がより発生しやすくなったり、炭酸ジアルキルや縮合体が生成しにくくなる。そのため、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用するピリジンのモル比は、4.5以下が好ましく、4.0以下、3.0以下、2.0以下、1.0以下、0.9以下、0.8以下の順に小さい程より好ましい。 If the amount of pyridine used relative to the polycarbonate resin used is small, the decomposition rate will be slow, the decomposition time will be prolonged, and the efficiency will tend to deteriorate. Therefore, the molar ratio of pyridine to be used per 1 mol of repeating units of the polycarbonate resin to be used ((mass of pyridine to be used [g]/molecular weight of pyridine [g/mol])/(mass of polycarbonate resin to be used [g]/ The molecular weight [g/mol])) of the repeating unit of the polycarbonate resin is preferably 0.0005 or more, more preferably 0.0007 or more, and still more preferably 0.001 or more. For example, it can be 0.01 or more, or 0.1 or more. If the amount of pyridine used relative to the polycarbonate resin used is too large, odor is more likely to occur, and dialkyl carbonates and condensates are less likely to form. Therefore, the molar ratio of pyridine to be used with respect to 1 mol of repeating units of the polycarbonate resin to be used is preferably 4.5 or less, 4.0 or less, 3.0 or less, 2.0 or less, 1.0 or less, 0.9 In the following, the smaller the value in the order of 0.8 or less, the more preferable.
(反応液の調製)
 本発明のビスフェノールの製造方法は、ポリカーボネート樹脂、炭酸ジアルキル(ポリカーボネート樹脂に由来しない炭酸ジアルキル)、脂肪族モノアルコール及び触媒を混合して反応液を調製する。すなわち、本発明のビスフェノールの製造方法は、ポリカーボネート樹脂に由来しない炭酸ジアルキルを、ポリカーボネート樹脂の分解を行う反応槽に供給し、反応液を調製する。
(Preparation of reaction solution)
In the method for producing bisphenol of the present invention, a polycarbonate resin, a dialkyl carbonate (a dialkyl carbonate not derived from a polycarbonate resin), an aliphatic monoalcohol and a catalyst are mixed to prepare a reaction solution. That is, in the method for producing bisphenol of the present invention, a dialkyl carbonate not derived from a polycarbonate resin is supplied to a reaction tank in which the polycarbonate resin is decomposed to prepare a reaction solution.
 ポリカーボネート樹脂、炭酸ジアルキル(ポリカーボネート樹脂に由来しない炭酸ジアルキル)、脂肪族モノアルコール及び触媒の混合順は特に限定されず、例えば、ポリカーボネート樹脂に、炭酸ジアルキル、脂肪族モノアルコール及び触媒を順次供給してもよいし、炭酸ジアルキルに、ポリカーボネート樹脂、脂肪族モノアルコール及び触媒を順次供給してもよい。より均一に混合できるため、ポリカーボネート樹脂は、炭酸ジアルキル及び/又は脂肪族モノアルコールの後に反応槽に供給することが好ましい。 The mixing order of polycarbonate resin, dialkyl carbonate (dialkyl carbonate not derived from polycarbonate resin), aliphatic monoalcohol and catalyst is not particularly limited. Alternatively, a polycarbonate resin, an aliphatic monoalcohol and a catalyst may be sequentially supplied to the dialkyl carbonate. The polycarbonate resin is preferably fed to the reaction vessel after the dialkyl carbonate and/or the aliphatic monoalcohol so that it can be mixed more uniformly.
(反応液)
 調製される反応液(反応開始時の反応液)は、ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒を含む。少なくとも反応開始直後の反応は、炭酸ジアルキルと脂肪族モノアルコールとを含む液体成分にポリカーボネート樹脂が分散したスラリー状の溶液で行うことが好ましい。調製される反応液中の理論スラリー濃度(反応液の調製に使用する固形分の質量/反応液の調製に使用する全材料の質量)は、0.05以上が好ましく、0.1以上がより好ましい。また、0.5以下が好ましく、0.4以下がより好ましい。理論スラリー濃度(固形分の濃度)が低すぎると分解効率が低下し、理論スラリー濃度が高すぎると混合不良となる。
(Reaction solution)
The prepared reaction solution (reaction solution at the start of the reaction) contains a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst. At least the reaction immediately after the start of the reaction is preferably carried out with a slurry solution in which the polycarbonate resin is dispersed in the liquid component containing the dialkyl carbonate and the aliphatic monoalcohol. The theoretical slurry concentration in the reaction solution to be prepared (mass of solid content used to prepare the reaction solution/mass of all materials used to prepare the reaction solution) is preferably 0.05 or more, more preferably 0.1 or more. preferable. Moreover, 0.5 or less is preferable and 0.4 or less is more preferable. If the theoretical slurry concentration (concentration of solids) is too low, the decomposition efficiency will decrease, and if the theoretical slurry concentration is too high, poor mixing will occur.
 調製される反応液中の液体成分は、炭酸ジアルキル及び脂肪族モノアルコールを主成分とするものであり、全液体成分の質量に対する炭酸ジアルキル及び脂肪族モノアルコールの合計質量は、0.8以上や0.9以上、0.95以上などである。 The liquid components in the reaction solution to be prepared are mainly composed of dialkyl carbonate and aliphatic monoalcohol, and the total mass of dialkyl carbonate and aliphatic monoalcohol with respect to the mass of all liquid components is 0.8 or more. 0.9 or more, 0.95 or more, and the like.
 調製される反応液の質量に対する、ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒の合計の質量は、0.9以上や、0.95以上、0.98以上、0.99以上などとすることができる。また、反応液は、ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒からなるものとしても良い。 The total mass of the polycarbonate resin, dialkyl carbonate, aliphatic monoalcohol and catalyst with respect to the mass of the prepared reaction solution is 0.9 or more, 0.95 or more, 0.98 or more, 0.99 or more. be able to. Moreover, the reaction liquid may be composed of a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst.
 ビスフェノールと共に炭酸ジアルキルや縮合体を得ようとする場合、調製される反応液中に水を含むと、生成した炭酸ジアルキルや縮合体が分解されやすくなる。そのため、調製される反応液中の水の含有量(水の質量/反応液の質量)は、通常、0.005以下である。反応液中の水の含有量は0.001以下が好ましく、0.0005以下がより好ましい。 When trying to obtain a dialkyl carbonate or a condensate together with bisphenol, if water is included in the prepared reaction solution, the resulting dialkyl carbonate or condensate is likely to be decomposed. Therefore, the content of water in the prepared reaction solution (mass of water/mass of reaction solution) is usually 0.005 or less. The content of water in the reaction solution is preferably 0.001 or less, more preferably 0.0005 or less.
 反応液の調製は、10℃以上で行うことが好ましく、20℃以上で行うことがより好ましい。また、反応液の調製は、40℃以下で行うことが好ましく、35℃以下で行うことがより好ましい。反応液調製時の温度が低すぎるとポリカーボネート樹脂の溶解速度が低下する。また、反応液の粘度が上昇し、混合不良が生じやすくなったり、均一に混合することが困難になる場合がある。また、反応液の調製時の温度が高すぎると、触媒の種類によっては揮発しやすく、所定濃度に調製することや分解反応の制御が困難になるおそれもある。 The reaction solution is preferably prepared at 10°C or higher, more preferably at 20°C or higher. Also, the reaction solution is preferably prepared at 40° C. or lower, more preferably at 35° C. or lower. If the temperature during preparation of the reaction solution is too low, the rate of dissolution of the polycarbonate resin will decrease. In addition, the viscosity of the reaction liquid increases, and poor mixing tends to occur, and uniform mixing may become difficult. Also, if the temperature during preparation of the reaction solution is too high, depending on the type of catalyst, it may easily volatilize, making it difficult to prepare the reaction solution at a predetermined concentration or to control the decomposition reaction.
(分解反応)
 本発明のビスフェノールの製造方法では、炭酸ジアルキル、脂肪族モノアルコール及び触媒の存在により、ポリカーボネート樹脂のカーボネート結合部分が切断され、分解が起こる。すなわち、ポリカーボネート樹脂は、脂肪族モノアルコールと反応し、アルコリシスにより分解される。これにより、ビスフェノールや、炭酸ジアルキル、ビスフェノールと炭酸ジアルキルの縮合物等の分解生成物が生成する。炭酸ジアルキル及び脂肪族モノアルコールの量や、反応時間を制御することで、ビスフェノールと炭酸ジアルキルを優先的に生成させるなど分解反応を制御することができる。
(decomposition reaction)
In the method for producing bisphenol of the present invention, the presence of the dialkyl carbonate, the aliphatic monoalcohol and the catalyst causes cleavage of the carbonate bond portion of the polycarbonate resin, resulting in decomposition. That is, the polycarbonate resin reacts with the aliphatic monoalcohol and is decomposed by alcoholysis. As a result, decomposition products such as bisphenol, dialkyl carbonate, and condensates of bisphenol and dialkyl carbonate are produced. By controlling the amount of dialkyl carbonate and aliphatic monoalcohol and the reaction time, it is possible to control the decomposition reaction such as preferentially producing bisphenol and dialkyl carbonate.
 例えば、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用する脂肪族モノアルコールのモル比を2.0以上とすることで、ポリカーボネート樹脂を、ビスフェノールと、炭酸ジアルキルとに分解させる反応が優先的に起こる。これにより、ビスフェノールと、炭酸ジアルキルとを効率的に得ることができる。 For example, by setting the molar ratio of the aliphatic monoalcohol used to 1 mol of the repeating unit of the polycarbonate resin used to 2.0 or more, the reaction of decomposing the polycarbonate resin into bisphenol and dialkyl carbonate preferentially occurs. . Thereby, bisphenol and dialkyl carbonate can be efficiently obtained.
 また、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用する脂肪族モノアルコールのモル比を2.0未満としたり、反応時間を短くしたりして、ビスフェノールと炭酸ジアルキルとの縮合物を生成させてもよい。 In addition, the molar ratio of the aliphatic monoalcohol used to 1 mol of the repeating unit of the polycarbonate resin used is less than 2.0, or the reaction time is shortened to produce a condensate of bisphenol and dialkyl carbonate. good too.
 なお、反応液の調製中(ポリカーボネート樹脂、炭酸ジアルキル(ポリカーボネート樹脂に由来しない炭酸ジアルキル)、脂肪族モノアルコール及び触媒の混合中)に分解反応が進行しないように、ポリカーボネート樹脂の濃度や反応液の調製時の温度等を制御して、反応液の調製工程と分解反応工程とを明確に分けてもよいが、反応液の調整工程と分解工程とは必ずしも明確に分ける必要はない。反応液の調製中にポリカーボネート樹脂の分解反応が進行し、ポリカーボネート樹脂の一部は分解されてよい。反応液の調製中にポリカーボネート樹脂の一部が分解することで、より効率的に分解反応を進行させることができる。 In order to prevent the decomposition reaction from proceeding during the preparation of the reaction solution (during the mixing of the polycarbonate resin, dialkyl carbonate (dialkyl carbonate not derived from the polycarbonate resin), aliphatic monoalcohol and catalyst), the concentration of the polycarbonate resin and the reaction solution The reaction solution preparation step and the decomposition reaction step may be clearly separated by controlling the temperature or the like during preparation, but the reaction solution adjustment step and the decomposition reaction step do not necessarily need to be clearly separated. A decomposition reaction of the polycarbonate resin proceeds during the preparation of the reaction liquid, and a part of the polycarbonate resin may be decomposed. By partially decomposing the polycarbonate resin during the preparation of the reaction solution, the decomposition reaction can proceed more efficiently.
 分解反応は、常圧下で行っても加圧下で行ってもよいが、常圧下でも十分に反応は進行するため、常圧下で行うことが好ましい。 The decomposition reaction may be carried out under normal pressure or under pressure, but since the reaction proceeds sufficiently even under normal pressure, it is preferable to carry it out under normal pressure.
(反応温度)
 反応液の調製から分解反応の停止までは、反応液の調製時の温度と同じ温度で行ってもよいが、反応液を調製後(ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒を混合後)に所定の反応温度に昇温することが好ましい。反応液の調製時の温度が高すぎると分解反応の制御が困難になるおそれがある。反応液を調製後に昇温することで、分解反応を安定に進行させることができるため好ましい。
(reaction temperature)
From the preparation of the reaction solution to the termination of the decomposition reaction, the temperature may be the same as the temperature during the preparation of the reaction solution. ), it is preferable to raise the temperature to a predetermined reaction temperature. If the temperature during preparation of the reaction solution is too high, it may become difficult to control the decomposition reaction. It is preferable to raise the temperature of the reaction solution after preparation because the decomposition reaction can proceed stably.
 反応温度は、炭酸ジアルキルの種類や反応時間等に応じて適宜選択されるものであるが、高温の場合は反応液中の脂肪族モノアルコールが蒸発してしまい、アルコリシスが停止する。また、低温の場合は、加溶媒分解が進行しにくくなり反応速度が低下したりするため、分解に要する時間が長時間化する。これらのことから、反応温度は、20℃以上が好ましく、30℃以上、40℃以上の順で大きい程より好ましい。また、120℃以下が好ましく、110℃以下、100℃以下、95℃以下の順で数値の小さい程より好ましい。 The reaction temperature is appropriately selected according to the type of dialkyl carbonate, the reaction time, etc. However, if the temperature is too high, the aliphatic monoalcohol in the reaction solution will evaporate and the alcoholysis will stop. In addition, when the temperature is low, the solvolysis is difficult to proceed and the reaction rate is lowered, so the time required for decomposition is prolonged. For these reasons, the reaction temperature is preferably 20° C. or higher, and more preferably 30° C. or higher and 40° C. or higher in that order. In addition, 120° C. or less is preferable, and the smaller numerical value is more preferable in the order of 110° C. or less, 100° C. or less, and 95° C. or less.
 特に、ポリカーボネート樹脂の分解は、反応温度20~120℃かつ常圧下で行うことが好ましく、反応温度30~110℃かつ常圧下で行うことがより好ましく、反応温度40~100℃かつ常圧下で行うことが更に好ましい。 In particular, the decomposition of the polycarbonate resin is preferably carried out at a reaction temperature of 20 to 120° C. and normal pressure, more preferably at a reaction temperature of 30 to 110° C. and normal pressure, and at a reaction temperature of 40 to 100° C. and normal pressure. is more preferred.
 なお、反応液の調製時と同じ温度で反応を行う場合、反応温度は、ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒の混合が完了した時点から、分解反応を停止させるための中和や留去の操作を始める時点までの平均の温度である。また、反応液調製後に昇温を行い、反応を行う場合は、所定の温度に到達した時点から、分解反応を停止させるための中和や留去の操作を始める時点までの平均の温度である。 In addition, when the reaction is carried out at the same temperature as in the preparation of the reaction solution, the reaction temperature is adjusted from the time when the mixing of the polycarbonate resin, dialkyl carbonate, aliphatic monoalcohol and catalyst is completed, for neutralization or for stopping the decomposition reaction. It is the average temperature up to the point at which the distillation operation is started. In addition, when the temperature is raised after the reaction solution is prepared and the reaction is performed, it is the average temperature from the time when the predetermined temperature is reached to the time when the neutralization or distillation operation for stopping the decomposition reaction is started. .
 また、後述するように、第1の分解工程及び第2の分解工程を行う場合も、各工程の反応温度は、上記の反応温度とすることが好ましい。また、第1の分解工程及び第2の分解工程において、反応温度は同じであっても、異なるものとしてもよい。 Also, as will be described later, even when the first decomposition step and the second decomposition step are performed, the reaction temperature in each step is preferably the above reaction temperature. Further, the reaction temperature may be the same or different in the first decomposition step and the second decomposition step.
(反応時間)
 反応時間は、理論スラリー濃度や反応温度等に応じて適宜選択されるものであるが、長い場合は生成したビスフェノールが分解する傾向にあることから、30時間以下が好ましく、25時間以下、20時間以下、15時間以下、10時間以下、5時間以下の順で短い程より好ましい。また、反応時間が短い場合は分解反応が十分に進行しない場合があるため、好ましくは0.1時間以上、より好ましくは0.5時間以上、更に好ましくは1時間以上である。
(reaction time)
The reaction time is appropriately selected according to the theoretical slurry concentration, reaction temperature, etc., but if it is long, the bisphenol produced tends to decompose, so it is preferably 30 hours or less, 25 hours or less, and 20 hours. The shorter the time, in the order of 15 hours or less, 10 hours or less, and 5 hours or less, the more preferable. If the reaction time is short, the decomposition reaction may not proceed sufficiently. Therefore, the reaction time is preferably 0.1 hour or longer, more preferably 0.5 hour or longer, and still more preferably 1 hour or longer.
 なお、反応時間は、ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒の混合が完了した時点から、分解反応を停止させるための中和や留去の操作を始める時点までの時間である。反応時間の終点は、液体クロマトグラフィーなどで分解反応を追跡して決定してもよい。 The reaction time is the time from the completion of mixing the polycarbonate resin, dialkyl carbonate, aliphatic monoalcohol, and catalyst to the start of the neutralization and distillation operations for stopping the decomposition reaction. The end point of the reaction time may be determined by tracking the decomposition reaction by liquid chromatography or the like.
 なお、第1の分解工程及び第2の分解工程を行いポリカーボネート樹脂の分解する場合、上記反応時間は、第1の分解工程及び第2の分解工程の合計の時間である。 When the polycarbonate resin is decomposed by performing the first decomposition step and the second decomposition step, the reaction time is the total time of the first decomposition step and the second decomposition step.
(分解方法)
 本発明のビスフェノールの製造方法は、ポリカーボネート樹脂をアルコリシスにより分解させることができればよいので、反応液を調製した後、追加供給を行わずに、反応終了まで分解反応を行ってもよいし、反応途中で水等を供給して、分解反応の平衡を制御するなどしてもよい。
(Decomposition method)
In the method for producing bisphenol of the present invention, it suffices if the polycarbonate resin can be decomposed by alcoholysis. Therefore, after preparing the reaction solution, the decomposition reaction may be carried out until the reaction is completed without additional supply, or during the reaction. Water or the like may be supplied to control the equilibrium of the decomposition reaction.
 ビスフェノールの収率を向上させたり、炭酸ジアルキルと脂肪族モノアルコールを再利用しやすいものとするためには、分解反応をある程度進行させた後で、反応液に水を混合することが好ましい。 In order to improve the yield of bisphenol and make it easier to reuse the dialkyl carbonate and the aliphatic monoalcohol, it is preferable to mix water with the reaction solution after the decomposition reaction has progressed to some extent.
[ポリカーボネート樹脂の分解方法(1)]
 例えば、ポリカーボネート樹脂の分解方法(1)として、ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒を含む反応液中でポリカーボネート樹脂を分解させて、ビスフェノールを含む第1の分解液を得る第1の分解工程と、第1の分解液と水とを混合することで炭酸ジアルキルを加水分解して、脂肪族モノアルコールを再生させると共に、ポリカーボネート樹脂を分解して、ビスフェノールを生成させる第2の分解工程とを有し、第1の分解工程と前記第2の分解工程が連続してなされる方法が挙げられる。
[Method for decomposing polycarbonate resin (1)]
For example, as a decomposition method (1) for a polycarbonate resin, a polycarbonate resin is decomposed in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst to obtain a first decomposition solution containing bisphenol. A decomposition step and a second decomposition step of hydrolyzing the dialkyl carbonate by mixing the first decomposition solution and water to regenerate the aliphatic monoalcohol and decomposing the polycarbonate resin to produce bisphenol. and wherein the first decomposition step and the second decomposition step are continuously performed.
 このような方法とすることで、ポリカーボネート樹脂をアルコリシスにより分解しつつ、ビスフェノールと共に生成する炭酸ジアルキルや縮合体を加水分解して、脂肪族モノアルコールを再生(生成)することができる。これにより、ポリカーボネート樹脂の分解反応の平衡が移動して、ポリカーボネート樹脂の分解反応がより進行しやすくなる。 By adopting such a method, it is possible to regenerate (generate) an aliphatic monoalcohol by hydrolyzing dialkyl carbonates and condensates produced together with bisphenol while decomposing the polycarbonate resin by alcoholysis. As a result, the equilibrium of the decomposition reaction of the polycarbonate resin shifts, and the decomposition reaction of the polycarbonate resin proceeds more easily.
[第1の分解工程]
 第1の分解工程は、ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒を含む反応液中でポリカーボネート樹脂を分解させて、ビスフェノールを含む第1の分解液を得る工程である。第1の分解工程では、ポリカーボネート樹脂が脂肪族モノアルコールと反応してアルコリシスにより分解し、脂肪族モノアルコールが消費され、ビスフェノール、炭酸ジアルキル、ビスフェノールと炭酸ジアルキルの縮合物等の分解生成物が生成する。
[First decomposition step]
The first decomposition step is a step of decomposing a polycarbonate resin in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst to obtain a first decomposition solution containing bisphenol. In the first decomposition step, the polycarbonate resin reacts with the aliphatic monoalcohol and is decomposed by alcoholysis, the aliphatic monoalcohol is consumed, and decomposition products such as bisphenol, dialkyl carbonate, and condensates of bisphenol and dialkyl carbonate are produced. do.
 第1の分解工程において、調製される反応液はスラリー状であることが好ましい。調製される反応液中の理論スラリー濃度(反応液の調製に使用する固形分の質量/反応液の調製に使用する全材料の質量)は、0.05以上が好ましく、0.1以上がより好ましい。また、0.5以下が好ましく、0.4以下がより好ましい。理論スラリー濃度(固形分の濃度)が低すぎると分解効率が低下し、理論スラリー濃度が高すぎると混合不良となる。そして、第1の分解工程終了時点でポリカーボネート樹脂が分散したスラリー状が消失していることが好ましい。また、第1の分解工程終了時点でポリカーボネート樹脂は完全に溶解し、第1の分解液はスラリー状でない液になっていることがより好ましい。 In the first decomposition step, the prepared reaction solution is preferably slurry. The theoretical slurry concentration in the reaction solution to be prepared (mass of solid content used to prepare the reaction solution/mass of all materials used to prepare the reaction solution) is preferably 0.05 or more, more preferably 0.1 or more. preferable. Moreover, 0.5 or less is preferable and 0.4 or less is more preferable. If the theoretical slurry concentration (concentration of solid content) is too low, the decomposition efficiency will decrease, and if the theoretical slurry concentration is too high, poor mixing will occur. It is preferable that the slurry in which the polycarbonate resin is dispersed disappears at the end of the first decomposition step. More preferably, the polycarbonate resin is completely dissolved at the end of the first decomposition step, and the first decomposition liquid is not a slurry.
 反応液の調製方法や反応温度は、上記の通りであるが、使用するポリカーボネート樹脂の繰り返し単位1モルに対する使用する脂肪族モノアルコールのモル比は、2.0以上が好ましく、2.1以上がより好ましく、2.2以上が更に好ましい The preparation method and reaction temperature of the reaction solution are as described above. More preferably, 2.2 or more is even more preferable
 第1の分解工程では分解生成物が加水分解されないように、第1の分解工程は、使用するポリカーボネート樹脂(すなわち、ポリカーボネート樹脂の仕込み量)の繰り返し単位1モルに対して水が0.1モル以下や、0.05モル以下、0.01モル以下等となる条件で、分解反応を行うものとすることが好ましい。また、調製する反応液の水の含水量を管理してもよく、調製する反応液の水の含水量を0.5質量%以下や、0.1質量%以下、0.05質量%以下等として第1の分解工程を行うことができる。 In the first decomposition step, 0.1 mol of water is added to 1 mol of repeating units of the polycarbonate resin to be used (that is, the amount of polycarbonate resin charged) so that the decomposition product is not hydrolyzed in the first decomposition step. It is preferable that the decomposition reaction is carried out under conditions such as 0.05 mol or less, 0.01 mol or less, or the like. In addition, the water content of the reaction solution to be prepared may be controlled, and the water content of the reaction solution to be prepared is 0.5% by mass or less, 0.1% by mass or less, 0.05% by mass or less, etc. The first decomposition step can be performed as
 第1の分解工程の反応時間は、特に限定されないが、反応開始時がスラリー状の反応液の場合には、ポリカーボネート樹脂が分散したスラリー状が消失しスラリー状でない液になるまでの時間以上とすることが好ましい。また、反応液が少なくともポリカーボネート樹脂がすべて溶解した液になるまでの時間以上とすることがより好ましい。スラリー状の反応液の状態で第2の分解工程に移行すると、未溶解のポリカーボネート樹脂の溶解速度が低下し、分解に時間を要する傾向にある。例えば、第1の分解工程は0.1時間以上や、0.25時間以上、0.5時間以上、1時間以上等とすることが出来る。 The reaction time in the first decomposition step is not particularly limited, but when the reaction liquid is slurry at the start of the reaction, it should be at least the time required for the slurry in which the polycarbonate resin is dispersed to disappear and become a non-slurry liquid. preferably. Further, it is more preferable to set the reaction solution to a time longer than at least until the polycarbonate resin is completely dissolved. If the second decomposition step is carried out in the state of a slurry-like reaction liquid, the dissolution rate of the undissolved polycarbonate resin tends to decrease, and decomposition tends to take a long time. For example, the first decomposition step can be 0.1 hours or longer, 0.25 hours or longer, 0.5 hours or longer, 1 hour or longer, and the like.
[第2の分解工程]
 第2の分解工程は、第1の分解液と水とを混合することで炭酸ジアルキルを加水分解して、脂肪族モノアルコールを再生させると共に、ポリカーボネート樹脂を分解して、ビスフェノールを生成させる工程である。第2の分解工程では、炭酸ジアルキルの加水分解と共に、ポリカーボネート樹脂のアルコリシスも進行する。このとき、未反応の脂肪族モノアルコールに加えて、炭酸ジアルキルの加水分解により生成する脂肪族モノアルコールが、ポリカーボネート樹脂と反応できるため、ポリカーボネート樹脂の分解の反応速度が向上する。第2の分解工程終了時点の反応液(分解液)は、ビスフェノールが溶解しスラリー状でない液になっている。第2の分解工程終了時点でポリカーボネート樹脂が残存していたとしても、ポリカーボネート樹脂が分散したスラリー状が消失し、スラリー状でない液となっている。第2の分解工程は、終了時点において、ポリカーボネート樹脂は完全に溶解しており、分解液はスラリー状でない液であることが好ましい。
[Second decomposition step]
In the second decomposition step, the first decomposition solution is mixed with water to hydrolyze the dialkyl carbonate to regenerate the aliphatic monoalcohol, and the polycarbonate resin is decomposed to generate bisphenol. be. In the second decomposition step, the alcoholysis of the polycarbonate resin proceeds along with the hydrolysis of the dialkyl carbonate. At this time, in addition to the unreacted aliphatic monoalcohol, the aliphatic monoalcohol produced by hydrolysis of the dialkyl carbonate can react with the polycarbonate resin, thereby improving the reaction rate of decomposition of the polycarbonate resin. At the end of the second decomposition step, the reaction liquid (decomposition liquid) is a non-slurry liquid in which bisphenol is dissolved. Even if the polycarbonate resin remains at the end of the second decomposition step, the slurry in which the polycarbonate resin is dispersed disappears, leaving a non-slurry liquid. At the end of the second decomposition step, it is preferable that the polycarbonate resin is completely dissolved and the decomposition liquid is not a slurry.
 また、第2の分解工程で再生した脂肪族モノアルコールを、炭酸ジアルキルとの混合物としてビスフェノールから分離し、脂肪族モノアルコールと炭酸ジアルキルの混合物を第1の分解工程に再利用することが好ましい。このようにすれば、環境負荷がより低いものとなる。 In addition, it is preferable to separate the aliphatic monoalcohol regenerated in the second decomposition step from the bisphenol as a mixture with the dialkyl carbonate, and reuse the mixture of the aliphatic monoalcohol and the dialkyl carbonate in the first decomposition step. In this way, the environmental load becomes lower.
 例えば、第2の分解工程で得られる分解液は、ビスフェノール、脂肪族モノアルコール及び炭酸ジアルキルを含む。この分解液やこれを中和等して得られた液を蒸留することで、脂肪族モノアルコールと炭酸ジアルキルを回収できる。特に、炭酸ジメチルとメタノールは共沸するため、炭酸ジメチルとメタノールを用いた場合には、蒸留により炭酸ジメチルとメタノールの混合物が回収できる。回収された留去液を、第1の分解工程の反応液の調製に再利用することができる。 For example, the decomposition liquid obtained in the second decomposition step contains bisphenol, aliphatic monoalcohol and dialkyl carbonate. Aliphatic monoalcohol and dialkyl carbonate can be recovered by distilling the decomposed liquid or a liquid obtained by neutralizing the same. In particular, since dimethyl carbonate and methanol azeotrope, when dimethyl carbonate and methanol are used, a mixture of dimethyl carbonate and methanol can be recovered by distillation. The recovered distillate can be reused for preparing the reaction solution in the first decomposition step.
 第2の分解工程において、第1の分解液と混合される水の物質量は、少なすぎる場合、再生される脂肪族モノアルコールの量が少なく、未分解のポリカーボネート樹脂の分解促進効果が低い。一方、多すぎる場合、再生される脂肪族モノアルコールの量が多くなるため、未分解のポリカーボネート樹脂を効率的に分解することができる。しかし、脂肪族モノアルコールと炭酸ジアルキルとの混合物を第1の分解工程に回収し再利用する場合、脂肪族モノアルコールが過剰となるため、回収した全量をそのまま利用することが困難になる。特に、メタノールと炭酸ジメチルは共沸組成を形成するため、蒸留によりそれぞれを単独で得るのは難しい。そのため、第1の分解液と混合される水の物質量は、使用するポリカーボネート樹脂の繰り返し単位1モルに対し、好ましくは0.5モル以上1.5モル以下であり、より好ましくは0.6モル以上1.4モル以下であり、最も好ましくは0.7モル以上1.3モル以下である。 In the second decomposition step, if the amount of water mixed with the first decomposition solution is too small, the amount of regenerated aliphatic monoalcohol is small, and the effect of accelerating the decomposition of the undecomposed polycarbonate resin is low. On the other hand, if the amount is too large, the amount of the regenerated aliphatic monoalcohol increases, so that the undecomposed polycarbonate resin can be efficiently decomposed. However, when the mixture of the aliphatic monoalcohol and the dialkyl carbonate is recovered in the first decomposition step and reused, the aliphatic monoalcohol becomes excessive, making it difficult to use the entire recovered amount as it is. In particular, since methanol and dimethyl carbonate form an azeotropic composition, it is difficult to obtain each separately by distillation. Therefore, the amount of water mixed with the first decomposition solution is preferably 0.5 mol or more and 1.5 mol or less, more preferably 0.6 mol, per 1 mol of the repeating unit of the polycarbonate resin used. mol or more and 1.4 mol or less, and most preferably 0.7 mol or more and 1.3 mol or less.
 第2の分解工程後の分解液中に含まれる脂肪族モノアルコール及び炭酸ジアルキルの量は、それぞれ、第1の分解工程で使用した量(仕込み量)に対し、80質量%~120質量%の範囲であることが好ましく、90質量%~110質量%の範囲であることがより好ましい。この範囲の組成であれば、脂肪族モノアルコールと炭酸ジアルキルとの混合液の状態で、第1の分解工程の反応液の調製に用いても、反応液を所望の組成に調整しやすい。そのため、脂肪族モノアルコールと炭酸ジアルキルとの混合液として、第1の分解工程にリサイクルすることが容易である。 The amount of aliphatic monoalcohol and dialkyl carbonate contained in the decomposition solution after the second decomposition step is 80% by mass to 120% by mass relative to the amount used in the first decomposition step (amount charged). It is preferably in the range, more preferably in the range of 90% by mass to 110% by mass. With a composition within this range, even if the mixed liquid of the aliphatic monoalcohol and the dialkyl carbonate is used for the preparation of the reaction liquid in the first decomposition step, it is easy to adjust the reaction liquid to a desired composition. Therefore, it is easy to recycle to the first decomposition step as a mixture of aliphatic monoalcohol and dialkyl carbonate.
[ポリカーボネート樹脂の分解方法(2)]
 ビスフェノールと共に縮合体を得ようとする場合などは、縮合体を加水分解させないように分解反応を行うことが好ましい。このような場合は、反応液を調製した後、水の追加供給を行わずに、反応終了まで分解反応を行う方法とすることが好ましい。分解生成物の加水分解を抑制するためには、調製する反応液の水の含水量を0.5質量%以下や、0.1質量%以下、0.05質量%以下等となる条件で分解反応を行うことが好ましい。使用するポリカーボネート樹脂の繰り返し単位1モルに対する水の量を管理してもよく、使用するポリカーボネート樹脂の繰り返し単位1モルに対して水が0.1モル以下や、0.05モル以下、0.01モル以下等となる条件とすることができる。
[Method for decomposing polycarbonate resin (2)]
When trying to obtain a condensate together with bisphenol, it is preferable to carry out a decomposition reaction so as not to hydrolyze the condensate. In such a case, after preparing the reaction solution, it is preferable to adopt a method in which the decomposition reaction is carried out until the reaction is completed without additionally supplying water. In order to suppress the hydrolysis of the decomposition products, the water content of the reaction solution to be prepared is 0.5% by mass or less, 0.1% by mass or less, or 0.05% by mass or less. It is preferred to carry out the reaction. The amount of water per 1 mol of the repeating unit of the polycarbonate resin used may be controlled, and water is 0.1 mol or less, 0.05 mol or less, or 0.01 mol or less per 1 mol of the repeating unit of the polycarbonate resin used. It can be set as a condition such as mol or less.
(ポリカーボネート樹脂の分解反応の停止方法)
 ポリカーボネート樹脂の分解反応の停止方法は、用いる触媒の種類によって、適宜選択される。触媒として、鎖状アルキルアミン又はピリジンが使用される場合は、鎖状アルキルアミン又はピリジンを留去や中和することにより、分解反応を停止することができる。酸を供給して中和により鎖状アルキルアミン又はピリジンを除去する方法では、アンモニウム塩又はピリジニウム塩が発生し、その除去も必要となることから、鎖状アルキルアミン又はピリジンの除去は、好ましくは留去する方法である。また、触媒として、アルカリ金属水酸化物又はアルカリ金属炭酸塩が使用される場合は、中和などにより分解反応を停止することができる。
(Method for stopping decomposition reaction of polycarbonate resin)
A method for stopping the decomposition reaction of the polycarbonate resin is appropriately selected depending on the type of catalyst used. When a chain alkylamine or pyridine is used as a catalyst, the decomposition reaction can be stopped by distilling off or neutralizing the chain alkylamine or pyridine. In the method of removing the chain alkylamine or pyridine by neutralization by supplying an acid, an ammonium salt or pyridinium salt is generated and its removal is also required. Therefore, the removal of the chain alkylamine or pyridine is preferably It is a method of distilling off. Moreover, when an alkali metal hydroxide or alkali metal carbonate is used as a catalyst, the decomposition reaction can be stopped by neutralization or the like.
(ビスフェノール回収)
 分解反応後の反応液からのビスフェノールの回収は、ポリカーボネート樹脂の分解反応を停止させた後、晶析やカラムクロマトグラフィーなどの手段により行うことができる。
(Bisphenol recovery)
Bisphenol can be recovered from the reaction solution after the decomposition reaction by means such as crystallization or column chromatography after stopping the decomposition reaction of the polycarbonate resin.
 ビスフェノールは晶析により回収することが好ましく、本発明のビスフェノールの製造方法は、晶析によりビスフェノールを回収する晶析工程を有することが好ましい。具体的には、ポリカーボネート樹脂の分解反応後、反応液からの触媒、溶媒の除去や有機溶媒の添加混合を行い得られた有機相を、水又は食塩水などで洗浄し、更に必要に応じて塩化アンモニウム水などで中和洗浄する。次いで、洗浄後の有機相を冷却し晶析させる。 Bisphenol is preferably recovered by crystallization, and the method for producing bisphenol of the present invention preferably has a crystallization step of recovering bisphenol by crystallization. Specifically, after the decomposition reaction of the polycarbonate resin, the organic phase obtained by removing the catalyst and solvent from the reaction solution and adding and mixing the organic solvent is washed with water or saline, and if necessary, Neutralize and wash with ammonium chloride water. The washed organic phase is then cooled and crystallized.
 中和時や晶析時に用いることのできる有機溶媒としては、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、メシチレン等の芳香族炭化水素、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン等の脂肪族炭化水素、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、t-ブタノール、n-ペンタノール、i-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール、n-ウンデカノール、n-ドデカノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール等の脂肪族アルコールなどを用いることができる。 Organic solvents that can be used during neutralization or crystallization include aromatic hydrocarbons such as toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, and mesitylene; Aliphatic hydrocarbons, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol, n-pentanol, i-pentanol, n-hexanol, n-heptanol, n-octanol , n-nonanol, n-decanol, n-undecanol, n-dodecanol, ethylene glycol, diethylene glycol, triethylene glycol and other aliphatic alcohols can be used.
 なお、該晶析前に蒸留により余剰の炭酸ジアルキルや有機溶媒を留去してから晶析させてもよい。 Before the crystallization, excess dialkyl carbonate and organic solvent may be distilled off before crystallization.
(ビスフェノール-炭酸アルキル縮合体の回収)
 本発明のビスフェノールの製造方法は、ポリカーボネート樹脂の分解において副生した下記式(III)に示すビスフェノール-炭酸アルキル縮合体を更に回収するものとできる。
(Recovery of bisphenol-alkyl carbonate condensate)
In the method for producing bisphenol of the present invention, the bisphenol-alkyl carbonate condensate represented by the following formula (III), which is a by-product of the decomposition of the polycarbonate resin, can be further recovered.
 式(III)において、Rは、メチル基、エチル基、又はブチル基であり、メチル基が好ましい。 In formula (III), R is a methyl group, an ethyl group, or a butyl group, preferably a methyl group.
 ビスフェノール-炭酸アルキル縮合体の回収(単離、精製)は、常法により行うことが出来る。例えば、晶析や、カラムクロマトグラフィー等による精製が挙げられる。 The recovery (isolation and purification) of the bisphenol-alkyl carbonate condensate can be carried out by a conventional method. Examples include crystallization and purification by column chromatography.
[ビスフェノールの製造方法(1)]
 本発明のビスフェノールの製造方法は、下記工程A、工程B1及び工程C1を有するビスフェノールの製造方法(1)とできる。
 工程A:前記ポリカーボネート樹脂、前記炭酸ジアルキル、前記脂肪族モノアルコール及び前記触媒を含む反応液中で、前記ポリカーボネート樹脂を分解させて、ビスフェノールを含むポリカーボネート分解液を得る工程
 工程B1:工程Aで得られたポリカーボネート分解液を濃縮して、濃縮液を得る工程
 工程C1:工程B1で得られた濃縮液に芳香族炭化水素を供給して晶析することでビスフェノールを析出させ、ビスフェノールを含むスラリーを得て、得られたスラリーを固液分離してビスフェノールを得る工程
[Method for producing bisphenol (1)]
The method for producing bisphenol of the present invention can be a method (1) for producing bisphenol having the following steps A, B1 and C1.
Step A: Step of decomposing the polycarbonate resin in a reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a polycarbonate decomposition solution containing bisphenol Step B1: Obtained in Step A Step of concentrating the obtained polycarbonate decomposition solution to obtain a concentrate Step C1: An aromatic hydrocarbon is supplied to the concentrate obtained in Step B1 to crystallize to precipitate bisphenol, and a slurry containing bisphenol is obtained. and obtaining bisphenol by solid-liquid separation of the obtained slurry
[工程A]
 工程Aでは、例えば、ポリカーボネート樹脂と、炭酸ジアルキルと、脂肪族モノアルコールと、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド、鎖状アルキルアミン及びピリジンからなる群から選択されるいずれかの触媒とを含む反応液を所定の時間攪拌する。これにより、ポリカーボネート樹脂が分解され、ビスフェノールが生成し、ビスフェノールを含むポリカーボネート分解液が得られる。ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール、触媒の種類やその混合割合、反応温度等は上述の通りである。
[Step A]
In step A, for example, any selected from the group consisting of a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol, an alkali metal hydroxide, an alkali metal carbonate, an alkali metal alkoxide, a chain alkylamine and pyridine is stirred for a predetermined period of time. As a result, the polycarbonate resin is decomposed to produce bisphenol, and a bisphenol-containing polycarbonate decomposition solution is obtained. The polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol, the type and mixing ratio of the catalyst, the reaction temperature, etc. are as described above.
 また、工程Aでは、スラリー状の反応液中でポリカーボネート樹脂を分解させ、反応を実施することが好ましい。工程Aは、目的に応じて、スラリー状の反応液を調製した後、追加供給を行わずに、反応終了まで分解反応を行ってもよいし、反応途中で水を混合して、分解反応の平衡を制御するなどしてもよい。調製する反応液中の理論スラリー濃度(反応液の調製に使用する固形分の質量/反応液の調製に使用する全材料の質量)は、0.05以上が好ましく、0.1以上がより好ましい。また、0.5以下が好ましく、0.4以下がより好ましい。理論スラリー濃度(固形分の濃度)が低すぎると分解効率が低下し、理論スラリー濃度が高すぎると混合不良となる。そして、分解反応の進行とともにポリカーボネート樹脂が溶解し、ポリカーボネート樹脂が分散したスラリー状が消失する。工程A終了時点では、ビスフェノールが溶解したスラリー状でない液が得られる。工程A終了時点でポリカーボネート樹脂が残存していたとしても、スラリー状でない液になっており、ポリカーボネート樹脂が完全に溶解した液になっていることが好ましい。 Further, in step A, it is preferable to decompose the polycarbonate resin in a slurry-like reaction liquid to carry out the reaction. In step A, depending on the purpose, after preparing a slurry-like reaction liquid, the decomposition reaction may be carried out until the reaction is completed without additional supply, or water may be mixed in the middle of the reaction to allow the decomposition reaction to proceed. For example, the balance may be controlled. Theoretical slurry concentration in the reaction solution to be prepared (mass of solid content used in preparation of reaction solution/mass of all materials used in preparation of reaction solution) is preferably 0.05 or more, more preferably 0.1 or more. . Moreover, 0.5 or less is preferable and 0.4 or less is more preferable. If the theoretical slurry concentration (concentration of solid content) is too low, the decomposition efficiency will decrease, and if the theoretical slurry concentration is too high, poor mixing will occur. As the decomposition reaction progresses, the polycarbonate resin dissolves, and the slurry in which the polycarbonate resin is dispersed disappears. At the end of step A, a non-slurry liquid in which bisphenol is dissolved is obtained. Even if the polycarbonate resin remains at the end of step A, it is preferable that the liquid is not a slurry and that the polycarbonate resin is completely dissolved.
[工程B1]
 工程B1は、ポリカーボネート分解液の濃縮は、蒸留により溶媒を留去することで行うことができる。蒸留は、濃縮液が、ポリカーボネート分解液の70質量%以下となるように行うことが好ましく、60質量%以下となるように行うことが好ましく、50質量%以下となるように行うことが更に好ましい。また、蒸留は、濃縮液が、ポリカーボネート分解液の20質量%以上となるように行うことが好ましく、30質量%以下となるように行うことが好ましい。濃縮しすぎると、ビスフェノールが析出し、濃縮液が固化するという問題がある。例えば、蒸留は、温度50~200℃、圧力0.1kPa~150kPaで行うことができる。
[Step B1]
In step B1, concentration of the polycarbonate decomposition solution can be performed by distilling off the solvent. Distillation is preferably carried out so that the concentration of the concentrated liquid is 70% by mass or less, preferably 60% by mass or less, and more preferably 50% by mass or less of the polycarbonate decomposition liquid. . Distillation is preferably carried out so that the concentration of the concentrated liquid is 20% by mass or more, preferably 30% by mass or less, of the polycarbonate decomposition liquid. If the solution is concentrated too much, bisphenol will precipitate and the solution will solidify. For example, distillation can be carried out at a temperature of 50-200° C. and a pressure of 0.1 kPa to 150 kPa.
 また、ポリカーボネート分解液は、中和や洗浄した後に濃縮してもよい。中和は、ポリカーボネート分解液と、塩酸や硫酸、リン酸などの酸とを混合することで行われる。中和は、混合する酸の量を調整して、pHが、5.5~9.0(好ましくは、pH6.0~8.0)となるように行うことが好ましい。ポリカーボネート分解液と酸とを混合した後、水相を除去したり、中和塩が析出する場合は中和塩を除去したりすることで、ビスフェノールを含む中和液を得る。この中和液を濃縮してもよい。 Also, the polycarbonate decomposition solution may be concentrated after neutralization and washing. Neutralization is performed by mixing a polycarbonate decomposing solution with an acid such as hydrochloric acid, sulfuric acid, or phosphoric acid. Neutralization is preferably carried out by adjusting the amount of acid to be mixed so that the pH becomes 5.5 to 9.0 (preferably pH 6.0 to 8.0). After mixing the polycarbonate decomposing solution and the acid, the aqueous phase is removed, or if the neutralized salt precipitates, the neutralized salt is removed to obtain a neutralized solution containing bisphenol. This neutralized liquid may be concentrated.
[工程C1]
 工程C1では、まず、濃縮液と芳香族炭化水素を混合し、晶析により、濃縮液と芳香族炭化水素を含む混合液からビスフェノールを析出させる。濃縮液と混合させる芳香族炭化水素としては、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、メシチレン等が挙げられ、トルエンが好ましい。
[Step C1]
In step C1, first, the concentrated liquid and the aromatic hydrocarbon are mixed, and bisphenol is precipitated from the mixed liquid containing the concentrated liquid and the aromatic hydrocarbon by crystallization. Examples of the aromatic hydrocarbon to be mixed with the concentrated liquid include toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, mesitylene, etc. Toluene is preferred.
 晶析は、通常、濃縮液と芳香族炭化水素を含む混合液を冷却することで行うことができる。例えば、晶析前の温度を60~100℃(好ましくは70~90℃)とし、40~70℃(好ましくは、40~65℃)まで冷却する。これによって、混合液中にビスフェノールが析出し、ビスフェノールを含むスラリーが得られる。 Crystallization can usually be carried out by cooling a mixed liquid containing a concentrated liquid and an aromatic hydrocarbon. For example, the temperature before crystallization is set to 60 to 100°C (preferably 70 to 90°C) and cooled to 40 to 70°C (preferably 40 to 65°C). As a result, bisphenol is precipitated in the mixed liquid, and a slurry containing bisphenol is obtained.
 次いで、ビスフェノールを含むスラリーを固液分離することで、ビスフェノールを固形分として回収できる。固液分離は、ろ過や遠心分離等の公知の手段により行うことができる。例えば、水平ベルトフィルター、ロータリーバキュームフィルター、ロータリープレッシャーフィルター、回分式ろ過器、遠心濾過分離器、遠心沈降分離器、それらのハイブリッド型の遠心分離器(スクリーンボールデカンタ)等を用いて固液分離することができる。 Then, by solid-liquid separation of the slurry containing bisphenol, bisphenol can be recovered as a solid content. Solid-liquid separation can be performed by known means such as filtration and centrifugation. For example, solid-liquid separation is performed using a horizontal belt filter, rotary vacuum filter, rotary pressure filter, batch filter, centrifugal filter separator, centrifugal sedimentation separator, a hybrid centrifuge (screen ball decanter), etc. be able to.
 得られたビスフェノールは、水洗や懸濁洗浄等を行い、更に精製してもよい。また、晶析は複数回行ってよい。工程C1で得られたビスフェノールを芳香族炭化水素に溶解させ、得られた溶液を晶析することで、より純度の高いビスフェノールを析出させることができる。 The obtained bisphenol may be further purified by washing with water or suspension washing. Also, crystallization may be performed multiple times. By dissolving the bisphenol obtained in step C1 in an aromatic hydrocarbon and crystallizing the obtained solution, bisphenol with higher purity can be precipitated.
[ビスフェノールの製造方法(2)]
 本発明のビスフェノールの製造方法は、下記工程A、工程B2及び工程C2を有するビスフェノールの製造方法(2)とできる。
 工程A:前記ポリカーボネート樹脂、前記炭酸ジアルキル、前記脂肪族モノアルコール及び前記触媒を含む反応液中で、前記ポリカーボネート樹脂を分解させて、ビスフェノールを含むポリカーボネート分解液を得る工程
 工程B2:工程Aで得られたポリカーボネート分解液及び芳香族モノアルコールを含む溶液から前記炭酸ジアルキル及び前記脂肪族モノアルコールを除去して、ビスフェノール及び芳香族モノアルコールを含む溶液を得る工程
 工程C2:工程B2で得られたビスフェノール及び芳香族モノアルコールを含む溶液からビスフェノールを回収する工程
[Method for producing bisphenol (2)]
The method for producing bisphenol of the present invention can be a method (2) for producing bisphenol having the following steps A, B2 and C2.
Step A: Step of decomposing the polycarbonate resin in a reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a polycarbonate decomposition solution containing bisphenol Step B2: Obtained in Step A A step of removing the dialkyl carbonate and the aliphatic monoalcohol from the solution containing the polycarbonate decomposition solution and the aromatic monoalcohol to obtain a solution containing bisphenol and the aromatic monoalcohol Step C2: The bisphenol obtained in Step B2 and a step of recovering bisphenol from a solution containing an aromatic monoalcohol
 ビスフェノールの製造方法(2)の工程Aは、ビスフェノールの製造方法(1)の工程Aと同じである。 The process A of the bisphenol manufacturing method (2) is the same as the process A of the bisphenol manufacturing method (1).
[工程B2]
 工程B2では、ポリカーボネート分解液及び芳香族モノアルコールを含む溶液を蒸留することで、炭酸ジアルキル及び脂肪族モノアルコールを留去することができる。例えば、蒸留は、温度50~200℃、圧力0.1kPa~150kPaで行うことができる。また、蒸留によって、芳香族モノアルコールの少なくとも一部も留去することが好ましい。
[Step B2]
In step B2, the dialkyl carbonate and the aliphatic monoalcohol can be distilled off by distilling the solution containing the polycarbonate decomposition solution and the aromatic monoalcohol. For example, distillation can be carried out at a temperature of 50-200° C. and a pressure of 0.1 kPa to 150 kPa. It is also preferable to distill off at least part of the aromatic monoalcohol by distillation.
 また、ポリカーボネート分解液は、ビスフェノールの製造方法(1)の工程B1と同様に、中和や洗浄した後に工程B2に供してもよい。工程B2は、例えば、工程Aで得られたポリカーボネート分解液と芳香族モノアルコールとを混合した混合液を用いて行われる。ポリカーボネート分解液は、中和や洗浄した後に芳香族モノアルコールと混合し、工程B2に供してもよい。 In addition, the polycarbonate decomposition solution may be subjected to step B2 after neutralization and washing, as in step B1 of the method for producing bisphenol (1). Step B2 is carried out using, for example, a mixed liquid obtained by mixing the polycarbonate decomposition liquid obtained in Step A and an aromatic monoalcohol. The polycarbonate decomposition solution may be neutralized or washed, mixed with an aromatic monoalcohol, and subjected to step B2.
[工程C2]
 工程B2で得られたビスフェノール及び芳香族モノアルコールを含む溶液からのビスフェノールの回収は、晶析等を利用することができる。例えば、ビスフェノールAに由来するポリカーボネート樹脂を用い、工程B2の芳香族モノアルコールとしてフェノールを用いた場合、工程Aでは、ビスフェノールAを含むポリカーボネート分解液が得られ、工程B2では、ビスフェノールA及びフェノールを含む溶液が得られる。
 工程C2では、このビスフェノールA及びフェノールを含む溶液を晶析し、ビスフェノールAとフェノールとの付加物結晶を得た後、付加物結晶の溶融液からフェノールを除去してビスフェノールAを得ることができる。また、ビスフェノールA及びフェノールを含む溶液を、アセトンとフェノールとからビスフェノールAを製造する製造プラントの反応工程や精製工程、母液の循環工程(母液中のビスフェノールAをアルカリ分解する工程)などに組み込んで、該製造プラントで製造されるビスフェノールAと一緒に晶析をし、ビスフェノールAとフェノールとの付加物結晶を得た後、付加物結晶の溶融液からフェノールを除去してビスフェノールAを得てもよい。
[Step C2]
Crystallization or the like can be used to recover bisphenol from the solution containing bisphenol and aromatic monoalcohol obtained in step B2. For example, when a polycarbonate resin derived from bisphenol A is used and phenol is used as the aromatic monoalcohol in step B2, a polycarbonate decomposition solution containing bisphenol A is obtained in step A, and bisphenol A and phenol are used in step B2. A solution containing
In step C2, the solution containing bisphenol A and phenol is crystallized to obtain adduct crystals of bisphenol A and phenol, and then phenol is removed from the melt of the adduct crystals to obtain bisphenol A. . In addition, a solution containing bisphenol A and phenol can be incorporated into the reaction process and purification process of a manufacturing plant that manufactures bisphenol A from acetone and phenol, the recycling process of the mother liquor (the process of alkaline decomposition of bisphenol A in the mother liquor), etc. , Crystallization is performed together with bisphenol A produced in the production plant to obtain adduct crystals of bisphenol A and phenol, and then phenol is removed from the melt of the adduct crystals to obtain bisphenol A. good.
<ビスフェノールの用途>
 本発明のビスフェノールの製造方法で得られるビスフェノール(以下、「再生ビスフェノール」と記載する場合がある。)は、光学材料、記録材料、絶縁材料、透明材料、電子材料、接着材料、耐熱材料など種々の用途に用いられるポリエーテル樹脂、ポリエステル樹脂、ポリアリレ-ト樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、アクリル樹脂など種々の熱可塑性樹脂や、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリベンゾオキサジン樹脂、シアネート樹脂など種々の熱硬化性樹脂などの構成成分、硬化剤、添加剤もしくはそれらの前駆体などとして用いることができる。また、感熱記録材料等の顕色剤や退色防止剤、殺菌剤、防菌防カビ剤等の添加剤としても有用である。
<Uses of bisphenol>
Bisphenol obtained by the method for producing bisphenol of the present invention (hereinafter sometimes referred to as "recycled bisphenol") can be used in various applications such as optical materials, recording materials, insulating materials, transparent materials, electronic materials, adhesive materials, and heat-resistant materials. Various thermoplastic resins such as polyether resins, polyester resins, polyarylate resins, polycarbonate resins, polyurethane resins, acrylic resins, epoxy resins, unsaturated polyester resins, phenolic resins, polybenzoxazine resins, cyanates It can be used as a constituent component of various thermosetting resins such as resins, a curing agent, an additive, or a precursor thereof. It is also useful as an additive such as a color developer for heat-sensitive recording materials, an anti-fading agent, a bactericide, and an antibacterial and antifungal agent.
 これらのうち、良好な機械物性を付与できるため、熱可塑性樹脂、熱硬化性樹脂の原料(モノマ-)として用いることが好ましく、中でも、ポリカーボネート樹脂、エポキシ樹脂の原料として用いることがより好ましい。また、顕色剤として用いることも好ましく、特にロイコ染料、変色温度調整剤と組み合わせて用いることがより好ましい。 Of these, it is preferable to use it as a raw material (monomer) for thermoplastic resins and thermosetting resins, and more preferably as a raw material for polycarbonate resins and epoxy resins, because it can impart good mechanical properties. It is also preferably used as a developer, and more preferably used in combination with a leuco dye and a discoloration temperature regulator.
<ビスフェノール-炭酸アルキル縮合体の製造方法>
 本発明は、ポリカーボネート樹脂を、炭酸ジアルキル、脂肪族モノアルコール、並びに、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド、アルカリ金属酸化物、鎖状アルキルアミン及びピリジンからなる群から選択されるいずれかの触媒の存在下で分解させる、下記式(III)に示すビスフェノール-炭酸アルキル縮合体の製造方法(以下、「本発明の縮合体の製造方法」と記載する場合がある。)に関するものである。
<Method for producing bisphenol-alkyl carbonate condensate>
In the present invention, polycarbonate resins are selected from the group consisting of dialkyl carbonates, aliphatic monoalcohols, alkali metal hydroxides, alkali metal carbonates, alkali metal alkoxides, alkali metal oxides, chain alkylamines and pyridine. A method for producing a bisphenol-alkyl carbonate condensate represented by the following formula (III), which is decomposed in the presence of any catalyst (hereinafter sometimes referred to as the “method for producing the condensate of the present invention”). It is a thing.
 式中(III)において、Rは、メチル基、エチル基、又はブチル基である。 In formula (III), R is a methyl group, an ethyl group, or a butyl group.
 本発明の縮合体の製造方法では、ポリカーボネート樹脂を、炭酸ジアルキル、脂肪族モノアルコール、並びに、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド、アルカリ金属酸化物、鎖状アルキルアミン及びピリジンからなる群から選択されるいずれかの触媒の存在下で分解させる。 In the method for producing the condensate of the present invention, the polycarbonate resin is a dialkyl carbonate, an aliphatic monoalcohol, an alkali metal hydroxide, an alkali metal carbonate, an alkali metal alkoxide, an alkali metal oxide, a chain alkylamine and pyridine. Decompose in the presence of any catalyst selected from the group consisting of
 本発明の縮合体の製造方法で使用するポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒の種類やその量、反応温度、反応時間等は、本発明のビスフェノールの製造方法と同様であり、好適な態様も同様である。また、本発明のビスフェノールの製造方法と同様に、本発明の縮合体の製造方法は、ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒を含むスラリー状の反応液中でポリカーボネート樹脂を分解させることが好ましい。 The types and amounts of the polycarbonate resin, dialkyl carbonate, aliphatic monoalcohol, and catalyst used in the method for producing a condensate of the present invention, the reaction temperature, the reaction time, etc. are the same as in the method for producing bisphenol of the present invention, and are suitable. Aspects are also the same. Further, similarly to the method for producing bisphenol of the present invention, the method for producing a condensate of the present invention comprises decomposing a polycarbonate resin in a slurry-like reaction liquid containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst. is preferred.
 上記の通り、本発明のビスフェノールの製造方法では、脂肪族モノアルコールの量や反応時間を調整して、ビスフェノール-炭酸アルキル縮合体を副生させることができる。このビスフェノール-炭酸アルキル縮合体を回収することで、ビスフェノール-炭酸アルキル縮合体が得られる。ビスフェノール-炭酸アルキル縮合体を回収は上記の通りである。 As described above, in the method for producing bisphenol of the present invention, the amount of aliphatic monoalcohol and the reaction time can be adjusted to produce a bisphenol-alkyl carbonate condensate as a by-product. By recovering this bisphenol-alkyl carbonate condensate, a bisphenol-alkyl carbonate condensate can be obtained. Recovery of the bisphenol-alkyl carbonate condensate is as described above.
 より効率的にビスフェノール-炭酸アルキル縮合体を製造するためには、使用するポリカーボネート樹脂の繰り返し単位1モルに対する、使用する脂肪族モノアルコールのモル比が、2.0未満が好ましく、1.95以下や、1.9以下、1.85以下、1.8以下などとしてもよい。 In order to produce a bisphenol-alkyl carbonate condensate more efficiently, the molar ratio of the aliphatic monoalcohol used to 1 mol of the repeating unit of the polycarbonate resin used is preferably less than 2.0 and 1.95 or less. , 1.9 or less, 1.85 or less, or 1.8 or less.
 また、反応時間を短くして、ビスフェノール-炭酸アルキル縮合体を得ることもできる。 A bisphenol-alkyl carbonate condensate can also be obtained by shortening the reaction time.
 ビスフェノール-炭酸アルキル縮合体は、炭酸アルキル基が保護基として用いることが出来ることから、ビスフェノールが有する2つの水酸基に、異なる官能基を選択的に導入し、新しい製品に誘導することが可能である。 Since the alkyl carbonate group can be used as a protective group in the bisphenol-alkyl carbonate condensate, different functional groups can be selectively introduced into the two hydroxyl groups of bisphenol, leading to new products. .
<本発明の再生ポリカーボネート樹脂の製造方法>
 本発明は、本発明のビスフェノールの製造方法で得られたビスフェノール(再生ビスフェノール)を含むビスフェノール原料を用いて、再生ポリカーボネート樹脂を製造する、再生ポリカーボネート樹脂の製造方法(以下、「本発明の再生ポリカーボネート樹脂の製造方法」と記載する場合がある。)に関するものである。本発明の再生ポリカーボネート樹脂の製造方法は、廃プラスチック等に含まれるポリカーボネート樹脂をモノマーであるビスフェノールまで分解して得られる再生ビスフェノールを原料としてポリカーボネート樹脂を製造するケミカルリサイクル方法を利用するものである。
<Method for Producing Recycled Polycarbonate Resin of the Present Invention>
The present invention provides a method for producing a recycled polycarbonate resin (hereinafter referred to as "recycled polycarbonate of the present invention"), in which a recycled polycarbonate resin is produced using a bisphenol raw material containing bisphenol (recycled bisphenol) obtained by the method for producing bisphenol of the present invention. It may be described as "resin manufacturing method"). The method for producing recycled polycarbonate resin of the present invention utilizes a chemical recycling method for producing polycarbonate resin using recycled bisphenol obtained by decomposing polycarbonate resin contained in waste plastic or the like into bisphenol, which is a monomer, as a raw material.
 本発明のポリカーボネート樹脂の製造方法は、ビスフェノールとして、再生ビスフェノールを含むビスフェノール原料を用いる以外は、公知のポリカーボネート樹脂の重合方法を適宜選択して行うことができる。ポリカーボネート樹脂は、一般的に、触媒の存在下でビスフェノールと炭酸ジエステルとを重合することで製造される。 The method for producing the polycarbonate resin of the present invention can be carried out by appropriately selecting a known polymerization method for polycarbonate resins, except that a bisphenol raw material containing recycled bisphenol is used as the bisphenol. Polycarbonate resins are generally produced by polymerizing bisphenol and carbonic diester in the presence of a catalyst.
 本発明の再生ポリカーボネート樹脂の製造方法では、再生ポリカーボネート樹脂は、例えば、再生ビスフェノール(本発明のビスフェノールの製造方法により得られたビスフェノール)を含むビスフェノール原料と炭酸ジエステル原料とを重合させることで得ることができる。 In the method for producing a recycled polycarbonate resin of the present invention, the recycled polycarbonate resin can be obtained, for example, by polymerizing a bisphenol raw material containing recycled bisphenol (the bisphenol obtained by the method for producing a bisphenol of the present invention) and a diester carbonate raw material. can be done.
 例えば、再生ビスフェノールを含むビスフェノール原料と、炭酸ジフェニル等の炭酸ジエステル原料とを、アルカリ金属化合物及び/又はアルカリ土類金属化合物の存在下でエステル交換反応させる方法などにより再生ポリカーボネート樹脂を製造することができる。 For example, a recycled polycarbonate resin can be produced by a method such as transesterifying a bisphenol raw material containing recycled bisphenol and a carbonate diester raw material such as diphenyl carbonate in the presence of an alkali metal compound and/or an alkaline earth metal compound. can.
 再生ビスフェノールは、ビスフェノール原料の全部として使用しても良いし、再生ビスフェノールでない一般のビスフェノールと混合してビスフェノール原料の一部として使用しても良い。再生ビスフェノールの量に特に限定はなく、0.1質量%以上や、1質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、70質量%以上、80質量%以上、90質量%以上など任意である。再生ビスフェノールの割合が多いほど、環境に優しいため、環境への配慮の観点からは、ビスフェノール原料に対する再生ビスフェノールの量は、多いことが好ましい。 Recycled bisphenol may be used as the entire bisphenol raw material, or may be mixed with general bisphenol that is not recycled bisphenol and used as part of the bisphenol raw material. The amount of regenerated bisphenol is not particularly limited, and may be 0.1% by mass or more, 1% by mass or more, 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more, or 70% by mass. % or more, 80% by mass or more, or 90% by mass or more. The larger the ratio of recycled bisphenol, the more environmentally friendly it is. Therefore, from the viewpoint of consideration for the environment, the amount of recycled bisphenol relative to the bisphenol raw material is preferably large.
 上記エステル交換反応は、公知の方法を適宜選択して行うことができるが、以下に炭酸ジエステル原料として炭酸ジフェニルを用いた方法の一例を説明する。 The transesterification reaction can be carried out by appropriately selecting a known method, and an example of a method using diphenyl carbonate as a raw material for diester carbonate will be described below.
 本発明の再生ポリカーボネート樹脂の製造方法において、炭酸ジフェニルは、ビスフェノール原料に対して過剰量用いることが好ましい。該ビスフェノール原料に対して用いる炭酸ジフェニルの量は、製造された再生ポリカーボネート樹脂に末端水酸基が少なく、ポリマーの熱安定性に優れる点では大きいことが好ましく、また、エステル交換反応速度が速く、所望の分子量の再生ポリカーボネート樹脂を製造し易い点では少ないことが好ましい。これらのことから、使用するビスフェノール原料1モルに対する使用する炭酸ジフェニルの量は、通常1.001モル以上、好ましくは1.002モル以上であり、また、通常1.3モル以下、好ましくは1.2モル以下である。 In the method for producing a recycled polycarbonate resin of the present invention, it is preferable to use an excess amount of diphenyl carbonate relative to the bisphenol raw material. The amount of diphenyl carbonate used with respect to the bisphenol raw material is preferably large in terms of the produced regenerated polycarbonate resin having few terminal hydroxyl groups and excellent thermal stability of the polymer. From the viewpoint of easy production of a recycled polycarbonate resin having a molecular weight, it is preferably small. For these reasons, the amount of diphenyl carbonate used per 1 mol of the bisphenol raw material used is usually 1.001 mol or more, preferably 1.002 mol or more, and usually 1.3 mol or less, preferably 1.0 mol or more. 2 mol or less.
 原料の供給方法としては、ビスフェノール原料及び炭酸ジフェニルを固体で供給することもできるが、一方又は両方を、溶融させて液体状態で供給することが好ましい。 As a raw material supply method, the bisphenol raw material and diphenyl carbonate can be supplied in solid form, but it is preferable to melt one or both of them and supply them in a liquid state.
 炭酸ジフェニルとビスフェノール原料とのエステル交換反応で再生ポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。このエステル交換触媒として、アルカリ金属化合物及び/又はアルカリ土類金属化合物を使用するのが好ましい。これらは、1種類で使用してもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。実用的には、アルカリ金属化合物を用いることが望ましい。 A transesterification catalyst is usually used when producing a recycled polycarbonate resin through a transesterification reaction between diphenyl carbonate and a bisphenol raw material. An alkali metal compound and/or an alkaline earth metal compound is preferably used as this transesterification catalyst. These may be used alone, or two or more of them may be used in any combination and ratio. Practically, it is desirable to use an alkali metal compound.
 ビスフェノール原料又は炭酸ジフェニル1モルに対して用いられる触媒量は、通常0.05μモル以上、好ましくは0.08μモル以上、さらに好ましくは0.10μモル以上であり、また、通常100μモル以下、好ましくは50μモル以下、さらに好ましくは20μモル以下である。 The amount of the catalyst used per 1 mol of the bisphenol raw material or diphenyl carbonate is usually 0.05 μmol or more, preferably 0.08 μmol or more, more preferably 0.10 μmol or more, and usually 100 μmol or less, preferably is 50 μmol or less, more preferably 20 μmol or less.
 触媒の使用量が上記範囲内であることにより、所望の分子量の再生ポリカーボネート樹脂を製造するために必要な重合活性を得やすく、且つ、ポリマー色相に優れ、また過度のポリマーの分岐化が進まず、成形時の流動性に優れたポリカーボネート樹脂を得やすい。
 上記方法により再生ポリカーボネート樹脂を製造するには、上記の両原料を、原料混合槽に連続的に供給し、得られた混合物とエステル交換触媒を重合槽に連続的に供給することが好ましい。
When the amount of the catalyst used is within the above range, it is easy to obtain the polymerization activity necessary for producing a recycled polycarbonate resin having a desired molecular weight, the polymer color is excellent, and excessive branching of the polymer does not proceed. It is easy to obtain a polycarbonate resin with excellent fluidity during molding.
In order to produce a recycled polycarbonate resin by the above method, it is preferable to continuously supply both the above raw materials to a raw material mixing tank, and continuously supply the obtained mixture and the transesterification catalyst to a polymerization tank.
 エステル交換法による再生ポリカーボネート樹脂の製造においては、通常、原料混合槽に供給された両原料は、均一に攪拌された後、触媒が添加される重合槽に供給され、ポリマーが生産される。 In the production of recycled polycarbonate resin by the transesterification method, both raw materials supplied to the raw material mixing tank are usually stirred uniformly and then supplied to the polymerization tank where the catalyst is added to produce the polymer.
(再生ポリカーボネート樹脂及びその組成物)
 本発明の再生ポリカーボネート樹脂の製造方法により得られた再生ポリカーボネート樹脂は、そのまま用いてもよいし、未使用のポリカーボネート樹脂と再生ポリカーボネート樹脂とを含む再生ポリカーボネート樹脂組成物として用いてもよい。再生ポリカーボネート樹脂組成物は、公知の混練方法等を適宜選択して、未使用のポリカーボネート樹脂と再生ポリカーボネート樹脂とを混合することで得ることができる。未使用のポリカーボネート樹脂と再生ポリカーボネート樹脂とを含む再生ポリカーボネート樹脂組成物とする場合、再生ポリカーボネート樹脂の量に特に限定はないが、再生ポリカーボネート樹脂の割合が多いほど、環境に優しい。そのため、環境への配慮の観点からは、再生ポリカーボネート樹脂組成物に対する再生ポリカーボネート樹脂の量は、50質量%以上が好ましく、70質量%以上、80質量%以上、90質量%以上の順で大きい程より好ましい。
(Recycled polycarbonate resin and its composition)
The recycled polycarbonate resin obtained by the method for producing a recycled polycarbonate resin of the present invention may be used as it is, or may be used as a recycled polycarbonate resin composition containing unused polycarbonate resin and recycled polycarbonate resin. The recycled polycarbonate resin composition can be obtained by appropriately selecting a known kneading method or the like to mix virgin polycarbonate resin and recycled polycarbonate resin. When a recycled polycarbonate resin composition containing unused polycarbonate resin and recycled polycarbonate resin is used, the amount of recycled polycarbonate resin is not particularly limited, but the larger the proportion of recycled polycarbonate resin, the more environmentally friendly. Therefore, from the viewpoint of consideration for the environment, the amount of the recycled polycarbonate resin relative to the recycled polycarbonate resin composition is preferably 50% by mass or more, and the larger the amount, the higher is 70% by mass or more, 80% by mass or more, and 90% by mass or more. more preferred.
 得られた再生ポリカーボネート樹脂や組成物は、未使用のポリカーボネート樹脂と同様に、光学部材や光学記録媒体などの各種成形品に成形加工することができる。 The obtained recycled polycarbonate resin and composition can be molded into various molded articles such as optical members and optical recording media in the same manner as virgin polycarbonate resin.
<エポキシ樹脂の製造方法>
 本発明は、本発明のビスフェノールの製造方法を経てビスフェノールを得た後、該ビスフェノールを含む多価ヒドロキシ化合物原料を用いてエポキシ樹脂を製造する、エポキシ樹脂の製造方法に関するものである。また、前記エポキシ樹脂の製造方法を経て得られたエポキシ樹脂を含むエポキシ樹脂原料と多価ヒドロキシ化合物原料とを更に反応させ、エポキシ樹脂を製造する、エポキシ樹脂の製造方法に関するものである。
<Method for producing epoxy resin>
The present invention relates to a method for producing an epoxy resin, comprising obtaining bisphenol through the method for producing bisphenol of the present invention and then producing an epoxy resin using a polyhydric hydroxy compound starting material containing the bisphenol. The present invention also relates to a method for producing an epoxy resin, comprising further reacting an epoxy resin raw material containing the epoxy resin obtained through the above epoxy resin production method with a polyhydric hydroxy compound raw material to produce an epoxy resin.
 本発明のエポキシ樹脂の製造方法では、原料の少なくとも一部に、再生ビスフェノール及び/又は再生ビスフェノールを用いて製造されたエポキシ樹脂を用いて、エポキシ樹脂(以下、「再生エポキシ樹脂」と記載する場合がある。)を製造する。 In the method for producing an epoxy resin of the present invention, as at least a part of raw materials, recycled bisphenol and/or an epoxy resin produced using recycled bisphenol is used to produce an epoxy resin (hereinafter referred to as "recycled epoxy resin" There is.) to manufacture.
 本発明のエポキシ樹脂の製造方法は、再生ビスフェノール(本発明のビスフェノールの製造方法で得られたビスフェノール)及び/又は再生ビスフェノールを用いて製造されたエポキシ樹脂を原料として用いる以外は、特に制限はなく、公知の製造方法を利用することができる。例えば、再生ビスフェノールは、後述する通り、一段法や酸化法、二段法を利用して製造する際の多価ヒドロキシ化合物原料の少なくとも一部として用いることができる。得られたエポキシ樹脂は、二段法を利用して製造する際のエポキシ樹脂原料の少なくとも一部として用いることもできる。 The method for producing the epoxy resin of the present invention is not particularly limited except that the recycled bisphenol (the bisphenol obtained by the method for producing the bisphenol of the present invention) and/or the epoxy resin produced using the recycled bisphenol is used as a raw material. , a known manufacturing method can be used. For example, as described later, regenerated bisphenol can be used as at least a part of the polyhydric hydroxy compound raw material for production using a one-step method, an oxidation method, or a two-step method. The obtained epoxy resin can also be used as at least a part of the epoxy resin raw material for production using the two-step method.
 なお、「エポキシ樹脂原料」とは、本発明のエポキシ樹脂の製造方法の原料として用いられるエポキシ樹脂を意味する。「多価ヒドロキシ化合物」は、2価以上のフェノール化合物及び2価以上のアルコール化合物の総称であり、「多価ヒドロキシ化合物原料」とは、本発明のエポキシ樹脂の製造方法の原料として用いられる多価ヒドロキシ化合物を意味する。 The term "epoxy resin raw material" means an epoxy resin used as a raw material in the method for producing an epoxy resin of the present invention. "Polyvalent hydroxy compound" is a general term for dihydric or higher phenol compounds and dihydric or higher alcohol compounds, and "polyhydric hydroxy compound raw material" is used as a raw material for the method for producing an epoxy resin of the present invention. hydroxy compounds.
 本発明のエポキシ樹脂の製造方法としては、一段法、酸化法、二段法などを利用することができる。
 一段法によるエポキシ樹脂の製造方法は、再生ビスフェノール(本発明のビスフェノールの製造方法で得られるビスフェノール)を用いてエピハロヒドリンと反応させてエポキシ樹脂を得る方法である。
 酸化法によるエポキシ樹脂の製造方法は、再生ビスフェノールを、ハロゲン化アリル(塩化アリルや臭化アリル等)を用いてアリル化した後に、酸化反応させてエポキシ樹脂を得る方法である。
 二段法によるエポキシ樹脂の製造方法は、エポキシ樹脂原料と多価ヒドロキシ化合物原料とを反応させる方法であり、原料として、再生ビスフェノール及び/又は再生ビスフェノールを用いて製造されたエポキシ樹脂を用いる。
As a method for producing the epoxy resin of the present invention, a one-step method, an oxidation method, a two-step method, or the like can be used.
The one-step method for producing an epoxy resin is a method of obtaining an epoxy resin by reacting regenerated bisphenol (the bisphenol obtained by the method for producing bisphenol of the present invention) with epihalohydrin.
The method for producing an epoxy resin by an oxidation method is a method in which a regenerated bisphenol is allylated with an allyl halide (such as allyl chloride or allyl bromide) and then subjected to an oxidation reaction to obtain an epoxy resin.
The two-step method for producing an epoxy resin is a method in which an epoxy resin raw material and a polyhydric hydroxy compound raw material are reacted, and recycled bisphenol and/or an epoxy resin produced using recycled bisphenol is used as the raw material.
 以下、一段法、酸化法、及び二段法を利用したエポキシ樹脂の製造方法について説明する。 The methods for manufacturing epoxy resin using the one-step method, the oxidation method, and the two-step method will be described below.
(一段法によるエポキシ樹脂の製造方法)
 本発明において、一段法によるエポキシ樹脂の製造方法は、公知の製造方法であれば特に制限はないが、以下に詳述する。
(Method for producing epoxy resin by one-step method)
In the present invention, the method for producing the epoxy resin by the one-step method is not particularly limited as long as it is a known production method, and will be described in detail below.
 一段法によるエポキシ樹脂の製造方法は、再生ビスフェノールに、再生ビスフェノール以外の多価ヒドロキシ化合物(以下、「他の多価ヒドロキシ化合物」と称する場合がある。)を併用して製造してもよい。すなわち、一段法によるエポキシ樹脂の製造方法は、多価ヒドロキシ化合物原料とエピハロヒドリンと反応させてエポキシ樹脂を得る方法であり、多価ヒドロキシ化合物原料の少なくとも一部が、再生ビスフェノールである方法とすることができる。 In the one-step method for producing an epoxy resin, a polyhydroxy compound other than the regenerated bisphenol (hereinafter sometimes referred to as "another polyhydroxy compound") may be used in combination with the regenerated bisphenol. That is, the method for producing an epoxy resin by the one-step method is a method of obtaining an epoxy resin by reacting a polyhydric hydroxy compound raw material with epihalohydrin, and at least a part of the polyhydric hydroxy compound raw material is a method of regenerated bisphenol. can be done.
 多価ヒドロキシ化合物原料における再生ビスフェノールの含有量は特に限定されないが、再生ビスフェノールの含有量が高いと環境に優しいことから、1~100質量%が好ましく、10~100質量%がより好ましい。 The content of regenerated bisphenol in the polyhydric hydroxy compound raw material is not particularly limited, but is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, because a high content of regenerated bisphenol is environmentally friendly.
 ここで、「他の多価ヒドロキシ化合物」とは、再生ビスフェノールを除く、2価以上のフェノール化合物及び2価以上のアルコール化合物の総称である。一段法によるエポキシ樹脂の製造方法においては、「多価ヒドロキシ化合物原料」は、再生ビスフェノールと、必要に応じて用いられる他の多価ヒドロキシ化合物をあわせた全多価ヒドロキシ化合物である。 Here, "other polyhydric hydroxy compounds" is a general term for dihydric or higher phenol compounds and dihydric or higher alcohol compounds, excluding regenerated bisphenol. In the one-step method for producing an epoxy resin, the "polyhydroxy compound raw material" is the total polyhydroxy compound including the regenerated bisphenol and optionally other polyhydroxy compounds.
 他の多価ヒドロキシ化合物としては、ビスフェノールA、テトラメチルビスフェノールA、ビスフェノールF、テトラメチルビスフェノールF、ビスフェノールS、ビスフェノールC、ビスフェノールAD、ビスフェノールAF、ハイドロキノン、レゾルシン、メチルレゾルシン、ビフェノール、テトラメチルビフェノール、ジヒドロキシナフタレン、ジヒドロキシジフェニルエーテル、チオジフェノール類、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、テルペンフェノール樹脂、ジシクロペンタジエンフェノール樹脂、ビスフェノールAノボラック樹脂、ナフトールノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂等の種々の多価フェノール類や、種々のフェノール類とベンズアルデヒド、ヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザール等の種々のアルデヒド類との縮合反応で得られる多価フェノール樹脂類、キシレン樹脂とフェノール類との縮合反応で得られる多価フェノール樹脂類、重質油又はピッチ類とフェノール類とホルムアルデヒド類との共縮合樹脂等の各種のフェノール樹脂類、エチレングリコール、トリメチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等の鎖状脂肪族ジオール類、シクロヘキサンジオール、シクロデカンジオール等の環状脂肪族ジオール類、ポリエチレンエーテルグリコール、ポリオキシトリメチレンエーテルグリコール、ポリプロピレンエーテルグリコール等のポリアルキレンエーテルグリコール類等が例示される。 Other polyhydric hydroxy compounds include bisphenol A, tetramethylbisphenol A, bisphenol F, tetramethylbisphenol F, bisphenol S, bisphenol C, bisphenol AD, bisphenol AF, hydroquinone, resorcin, methylresorcin, biphenol, tetramethylbiphenol, Dihydroxynaphthalene, dihydroxydiphenyl ether, thiodiphenols, phenol novolak resin, cresol novolak resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, terpene phenol resin, dicyclopentadiene phenol resin, bisphenol A novolak resin, naphthol novolak resin, Various polyhydric phenols such as brominated bisphenol A and brominated phenol novolak resins, and polyhydric phenols obtained by condensation reaction of various phenols with various aldehydes such as benzaldehyde, hydroxybenzaldehyde, crotonaldehyde, glyoxal, etc. Resins, polyhydric phenol resins obtained by the condensation reaction of xylene resin and phenols, various phenolic resins such as co-condensation resins of heavy oils or pitches, phenols and formaldehydes, ethylene glycol, Chains such as methylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 1,6-hexanediol cycloaliphatic diols, cyclic aliphatic diols such as cyclohexanediol and cyclodecanediol, and polyalkylene ether glycols such as polyethylene ether glycol, polyoxytrimethylene ether glycol and polypropylene ether glycol.
 反応に際しては、多価ヒドロキシ化合物原料を、エピハロヒドリンに溶解させて均一な溶液とする。エピハロヒドリンとしては、通常、エピクロロヒドリン又はエピブロモヒドリンが用いられるが、本発明ではエピクロロヒドリンが好ましい。 For the reaction, the polyvalent hydroxy compound raw material is dissolved in epihalohydrin to form a uniform solution. As the epihalohydrin, epichlorohydrin or epibromohydrin is usually used, and epichlorohydrin is preferred in the present invention.
 エピハロヒドリンの使用量は、多価ヒドロキシ化合物原料(全多価ヒドロキシ化合物)の水酸基1当量あたり、通常1.0~14.0当量、特に2.0~10.0当量に相当する量であることが好ましい。エピハロヒドリンの量が上記下限以上であると、高分子量化反応を制御しやすく、得られるエポキシ樹脂を適切なエポキシ当量とすることができるために好ましい。一方、エピハロヒドリンの量が上記上限以下であると、生産効率が向上する傾向にあるために好ましい。 The amount of epihalohydrin to be used is usually 1.0 to 14.0 equivalents, particularly 2.0 to 10.0 equivalents, per equivalent of hydroxyl groups in the starting polyhydroxy compound (all polyhydroxy compounds). is preferred. When the amount of epihalohydrin is at least the above lower limit, it is preferable because the polymerization reaction can be easily controlled and the resulting epoxy resin can have an appropriate epoxy equivalent weight. On the other hand, when the amount of epihalohydrin is equal to or less than the above upper limit, production efficiency tends to improve, which is preferable.
 次いで、上記溶液を攪拌しながら、多価ヒドロキシ化合物原料の水酸基1当量あたり通常0.1~3.0当量、好ましくは0.8~2.0当量に相当する量のアルカリ金属水酸化物を固体又は水溶液で加えて反応させる。アルカリ金属水酸化物の添加量が上記下限以上であると、未反応の水酸基と生成したエポキシ樹脂が反応しにくく、高分子量化反応を制御しやすいために好ましい。また、アルカリ金属水酸化物の添加量が上記上限以下であると、副反応による不純物が生成しにくいために好ましい。ここで用いられるアルカリ金属水酸化物としては通常、水酸化ナトリウム又は水酸化カリウムが挙げられる。 Then, while stirring the solution, an alkali metal hydroxide is added in an amount corresponding to usually 0.1 to 3.0 equivalents, preferably 0.8 to 2.0 equivalents, per 1 equivalent of the hydroxyl group of the polyvalent hydroxy compound raw material. It is added as a solid or an aqueous solution to react. When the amount of the alkali metal hydroxide added is at least the above lower limit, the reaction between the unreacted hydroxyl groups and the produced epoxy resin is less likely to occur, and the polymerization reaction can be easily controlled, which is preferable. Moreover, it is preferable that the amount of the alkali metal hydroxide to be added is equal to or less than the above upper limit because impurities due to side reactions are less likely to be generated. Alkali metal hydroxides used herein typically include sodium hydroxide or potassium hydroxide.
 この反応は、常圧下又は減圧下で行うことができ、反応温度は好ましくは20~200℃、より好ましくは40~150℃である。反応温度が上記下限以上であると、反応を進行させやすく、且つ反応を制御しやすいために好ましい。また、反応温度が上記上限以下であると、副反応が進行しにくく、特にポリマー量を低減しやすいために好ましい。 This reaction can be carried out under normal pressure or reduced pressure, and the reaction temperature is preferably 20-200°C, more preferably 40-150°C. When the reaction temperature is equal to or higher than the above lower limit, it is preferable because it facilitates the progress of the reaction and facilitates control of the reaction. In addition, if the reaction temperature is equal to or lower than the above upper limit, the side reaction is less likely to proceed, and particularly the amount of polymer can be easily reduced, which is preferable.
 また、この反応は、必要に応じて所定の温度を保持しながら反応液を共沸させ、揮発する蒸気を冷却して得られた凝縮液を油/水分離し、水分を除いた油分を反応系へ戻す方法により脱水しながら行われる。アルカリ金属水酸化物は、急激な反応を抑えるために、好ましくは0.1~24時間、より好ましくは0.5~10時間かけて少量ずつを断続的又は連続的に添加する。アルカリ金属水酸化物の添加時間が上記下限以上であると、急激に反応が進行するのを防ぐことができ、反応温度の制御がしやすくなるために好ましい。添加時間が上記上限以下であると、ポリマー量を低減しやすいため好ましい。 In addition, in this reaction, the reaction liquid is azeotroped while maintaining a predetermined temperature as necessary, and the condensed liquid obtained by cooling the volatilizing steam is separated into oil and water, and the oil content after removing the water is reacted. It is carried out while dehydrating by the method of returning to the system. The alkali metal hydroxide is added intermittently or continuously little by little over a period of preferably 0.1 to 24 hours, more preferably 0.5 to 10 hours, in order to suppress abrupt reaction. When the addition time of the alkali metal hydroxide is longer than the above lower limit, it is possible to prevent the reaction from progressing rapidly, and the reaction temperature can be easily controlled, which is preferable. If the addition time is equal to or less than the above upper limit, the amount of polymer can be easily reduced, which is preferable.
 反応終了後、不溶性の副生塩を濾別して除くか、水洗により除去した後、未反応のエピハロヒドリンを加温及び/又は減圧留去によって留去し、除くことができる。 After completion of the reaction, the insoluble by-product salt can be removed by filtration or removed by washing with water, and then unreacted epihalohydrin can be removed by heating and/or distillation under reduced pressure.
 また、この反応においては、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムブロミド等の第四級アンモニウム塩、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等の第三級アミン、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類、エチルトリフェニルホスホニウムアイオダイド等のホスホニウム塩、トリフェニルホスフィン等のホスフィン類等の触媒を用いてもよい。 In this reaction, quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide, tertiary amines such as benzyldimethylamine and 2,4,6-tris(dimethylaminomethyl)phenol, 2-ethyl Catalysts such as imidazoles such as 4-methylimidazole and 2-phenylimidazole, phosphonium salts such as ethyltriphenylphosphonium iodide, and phosphines such as triphenylphosphine may also be used.
 更に、この反応においては、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ジオキサン、エチレングリコールジメチルエーテル等のエーテル類、メトキシプロパノール等のグリコールエーテル類、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等の不活性な有機溶媒を用いてもよい。 Furthermore, in this reaction, alcohols such as ethanol and isopropanol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethers such as dioxane and ethylene glycol dimethyl ether; glycol ethers such as methoxypropanol; You may use an inert organic solvent, such as an aprotic polar solvent, such as.
[全塩素含有量が低下したエポキシ樹脂の製造]
 上記のようにして得られたエポキシ樹脂の全塩素含有量を低減する必要がある場合には、アルカリとの反応によって全塩素含有量が低下したエポキシ樹脂を製造することができる。
[Production of epoxy resin with reduced total chlorine content]
If it is necessary to reduce the total chlorine content of the epoxy resin obtained as described above, an epoxy resin with a reduced total chlorine content can be produced by reaction with alkali.
 アルカリとの反応には、エポキシ樹脂を溶解させるための有機溶媒を用いてもよい。反応に用いる有機溶媒は、特に制限されるものではないが、製造効率、取り扱い性、作業性等の面から、ケトン系の有機溶媒を用いることが好ましい。また、より加水分解性塩素量を下げる観点から、非プロトン性極性溶媒を用いても良い。 An organic solvent for dissolving the epoxy resin may be used for the reaction with the alkali. Although the organic solvent used in the reaction is not particularly limited, it is preferable to use a ketone-based organic solvent from the viewpoint of production efficiency, handleability, workability, and the like. In addition, an aprotic polar solvent may be used from the viewpoint of lowering the amount of hydrolyzable chlorine.
 ケトン系の有機溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒が挙げられる。効果や後処理の容易さなどから、特にメチルイソブチルケトンが好ましい。これらは1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。 Examples of ketone-based organic solvents include ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Methyl isobutyl ketone is particularly preferred because of its effects and ease of post-treatment. These may be used individually by 1 type, and may be used in mixture of 2 or more types.
 非プロトン性極性溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルスルホン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホルアミド等が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。これらの非プロトン性極性溶媒の中では、入手し易く、効果が優れていることから、ジメチルスルホキシドが好ましい。 Examples of aprotic polar solvents include dimethylsulfoxide, diethylsulfoxide, dimethylsulfone, sulfolane, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, and the like. These may be used individually by 1 type, and may be used in mixture of 2 or more types. Among these aprotic polar solvents, dimethylsulfoxide is preferred because it is readily available and has excellent effects.
 上記の溶媒の使用量は、アルカリによる処理に供する液中のエポキシ樹脂の濃度が通常1~95質量%となる量であり、好ましくは5~80質量%となる量である。 The amount of the solvent used is such that the concentration of the epoxy resin in the liquid to be treated with alkali is usually 1 to 95% by mass, preferably 5 to 80% by mass.
 アルカリとしては、アルカリ金属水酸化物の固体又は溶液を使用することができる。アルカリ金属水酸化物としては、水酸化カリウム、水酸化ナトリウム等が挙げられ、好ましくは水酸化ナトリウムである。また、アルカリ金属水酸化物は、有機溶媒や水に溶解したものを使用してもよい。好ましくは、アルカリ金属水酸化物を水溶媒、又は有機溶媒に溶解した溶液として用いる。 As the alkali, a solid or solution of alkali metal hydroxide can be used. Examples of alkali metal hydroxides include potassium hydroxide and sodium hydroxide, preferably sodium hydroxide. Also, the alkali metal hydroxide may be dissolved in an organic solvent or water. Preferably, the alkali metal hydroxide is used as a solution dissolved in an aqueous solvent or an organic solvent.
 使用するアルカリ金属水酸化物の量としては、アルカリ金属水酸化物の固形分換算でエポキシ樹脂100質量部に対して0.01~20.0質量部以下が好ましい。より好ましくは0.10~10.0質量部である。アルカリ金属水酸化物の使用量が上記下限以下の場合、全塩素含有量の低減効果が低く、また上記上限以上の場合は、ポリマーが多く生成するため収率が低下する。 The amount of the alkali metal hydroxide to be used is preferably 0.01 to 20.0 parts by mass or less per 100 parts by mass of the epoxy resin in terms of the solid content of the alkali metal hydroxide. More preferably, it is 0.10 to 10.0 parts by mass. If the amount of alkali metal hydroxide used is less than the above lower limit, the effect of reducing the total chlorine content is low.
 反応温度は好ましくは20~200℃、より好ましくは40~150℃であり、反応時間は好ましくは0.1~24時間、より好ましくは0.5~10時間である。 The reaction temperature is preferably 20-200°C, more preferably 40-150°C, and the reaction time is preferably 0.1-24 hours, more preferably 0.5-10 hours.
 反応後、水洗等の方法で過剰のアルカリ金属水酸化物や副性塩を除去し、更に有機溶媒を加温及び/又は減圧留去及び/又は水蒸気蒸留で除去することができる。 After the reaction, excess alkali metal hydroxides and secondary salts can be removed by a method such as washing with water, and the organic solvent can be removed by heating and/or vacuum distillation and/or steam distillation.
(酸化法によるエポキシ樹脂の製造方法)
 酸化法によるエポキシ樹脂の製造方法は、公知の製造方法であれば特に制限はないが、例えば、特開2011-225711号公報、特開2012-092247号公報、特開2012-111858号公報等に記載の方法に従って実施することができる。
(Method for producing epoxy resin by oxidation method)
The method for producing an epoxy resin by an oxidation method is not particularly limited as long as it is a known production method. It can be carried out according to the methods described.
 酸化法によるエポキシ樹脂の製造方法においても、一段法と同様に、再生ビスフェノールに、再生ビスフェノール以外の他の多価ヒドロキシ化合物を併用して製造してもよい。すなわち、酸化法によるエポキシ樹脂の製造方法は、多価ヒドロキシ化合物原料を、ハロゲン化アリルを用いてアリル化した後に、酸化反応させてエポキシ樹脂を得る方法であり、多価ヒドロキシ化合物原料の少なくとも一部が、再生ビスフェノールである方法とすることができる。 In the method for producing an epoxy resin by the oxidation method, similarly to the one-step method, the recycled bisphenol may be produced in combination with a polyhydric hydroxy compound other than the recycled bisphenol. That is, the method for producing an epoxy resin by an oxidation method is a method for obtaining an epoxy resin by allylating a polyhydroxy compound raw material with an allyl halide and then subjecting it to an oxidation reaction. Part can be a method in which the recycled bisphenol.
 酸化法によるエポキシ樹脂の製造方法においては、「多価ヒドロキシ化合物原料」は、再生ビスフェノールと、必要に応じて用いられる他の多価ヒドロキシ化合物をあわせた全多価ヒドロキシ化合物であり、他の多価ヒドロキシ化合物としては、一段法と同様のものが挙げられる。多価ヒドロキシ化合物原料における再生ビスフェノールの含有量は特に限定されないが、再生ビスフェノールの含有量が高いと環境に優しいことから、1~100質量%が好ましく、10~100質量%がより好ましい。 In the method of producing an epoxy resin by an oxidation method, the "polyhydroxy compound raw material" is a total polyhydroxy compound that is a combination of recycled bisphenol and other polyhydroxy compounds that are used as necessary. Examples of the hydroxy compound include those used in the one-step method. The content of regenerated bisphenol in the polyhydric hydroxy compound raw material is not particularly limited, but is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, because a high content of regenerated bisphenol is environmentally friendly.
(二段法によるエポキシ樹脂の製造方法)
 二段法によるエポキシ樹脂の製造方法は、公知の製造方法であれば特に制限はないが、以下に詳述する。
(Method for producing epoxy resin by two-step method)
The method for producing an epoxy resin by the two-step method is not particularly limited as long as it is a known production method, and will be described in detail below.
 二段法によるエポキシ樹脂の製造方法は、エポキシ樹脂原料と多価ヒドロキシ化合物原料とを反応させる工程を有し、前記エポキシ樹脂原料の少なくとも一部が、再生ビスフェノールを用いて製造されたエポキシ樹脂であり、及び/又は、前記多価ヒドロキシ化合物原料の少なくとも一部が、再生ビスフェノールである、方法とすることができる。二段法によるエポキシ樹脂の製造方法は、下記方法(i)~方法(iii)のいずれかである。 The method for producing an epoxy resin by a two-step method has a step of reacting an epoxy resin raw material and a polyhydric hydroxy compound raw material, and at least part of the epoxy resin raw material is an epoxy resin produced using recycled bisphenol. and/or wherein at least a portion of the polyhydric hydroxy compound feedstock is regenerated bisphenol. The two-step method for producing an epoxy resin is any of the following methods (i) to (iii).
方法(i):再生ビスフェノールを用いて製造されたエポキシ樹脂以外の他のエポキシ樹脂と、再生ビスフェノールを含む多価ヒドロキシ化合物原料を反応させる方法 Method (i): A method of reacting a polyhydric hydroxy compound raw material containing recycled bisphenol with an epoxy resin other than an epoxy resin produced using recycled bisphenol.
 方法(i)において、エポキシ樹脂原料は、再生ビスフェノールを用いて製造されたエポキシ樹脂以外の他のエポキシ樹脂である。また、多価ヒドロキシ化合物原料は、再生ビスフェノールと、必要に応じて用いられる他の多価ヒドロキシ化合物をあわせた全多価ヒドロキシ化合物である。 In method (i), the epoxy resin raw material is an epoxy resin other than the epoxy resin produced using recycled bisphenol. Further, the polyhydric hydroxy compound raw material is a total polyhydric hydroxy compound obtained by combining regenerated bisphenol and other polyhydric hydroxy compounds used as necessary.
方法(ii):再生ビスフェノールを用いて製造されたエポキシ樹脂を含むエポキシ樹脂原料と、再生ビスフェノールを含む多価ヒドロキシ化合物原料を反応させる方法 Method (ii): A method of reacting an epoxy resin raw material containing an epoxy resin produced using recycled bisphenol with a polyhydric hydroxy compound raw material containing recycled bisphenol.
 方法(ii)において、エポキシ樹脂原料は、再生ビスフェノールを用いて製造されたエポキシ樹脂と、必要に応じて用いられる他のエポキシ樹脂をあわせた全エポキシ樹脂である。また、多価ヒドロキシ化合物原料は、再生ビスフェノールと、必要に応じて用いられる他の多価ヒドロキシ化合物をあわせた全多価ヒドロキシ化合物である。 In method (ii), the epoxy resin raw material is a total epoxy resin that is a combination of epoxy resin produced using recycled bisphenol and other epoxy resins that are used as necessary. Further, the polyhydric hydroxy compound raw material is a total polyhydric hydroxy compound obtained by combining regenerated bisphenol and other polyhydric hydroxy compounds used as necessary.
方法(iii):再生ビスフェノールを用いて製造されたエポキシ樹脂を含むエポキシ樹脂原料と、再生ビスフェノール以外の他の多価ヒドロキシ化合物を反応させる方法 Method (iii): A method of reacting an epoxy resin raw material containing an epoxy resin produced using regenerated bisphenol with a polyhydroxy compound other than regenerated bisphenol.
 方法(iii)において、エポキシ樹脂原料は、再生ビスフェノールを用いて製造されたエポキシ樹脂と、必要に応じて用いられる他のエポキシ樹脂をあわせた全エポキシ樹脂である。また、多価ヒドロキシ化合物原料は、再生ビスフェノール以外の他の多価ヒドロキシ化合物である。 In method (iii), the epoxy resin raw material is a total epoxy resin that is a combination of an epoxy resin produced using recycled bisphenol and other epoxy resins that are used as necessary. Moreover, the polyhydric hydroxy compound raw material is a polyhydric hydroxy compound other than the regenerated bisphenol.
 方法(ii)及び方法(iii)で用いられる再生ビスフェノールを用いて製造されたエポキシ樹脂は、一段法によるエポキシ樹脂の製造方法や、酸化法によるエポキシ樹脂の製造方法により得ることができる。また、方法(i)で得られたエポキシ樹脂を用いて良い。なお、再生ビスフェノールを用いて製造されたエポキシ樹脂以外の他のエポキシ樹脂は、エポキシ樹脂硬化物の製造方法において後述する他のエポキシ樹脂と同様であり、他の多価ヒドロキシ化合物は、一段法と同様である。 The epoxy resin produced using the regenerated bisphenol used in method (ii) and method (iii) can be obtained by a one-step epoxy resin production method or an oxidation method. Also, the epoxy resin obtained by method (i) may be used. The epoxy resin other than the epoxy resin produced using the recycled bisphenol is the same as the other epoxy resin described later in the method for producing a cured epoxy resin, and the other polyvalent hydroxy compound is the same as the one-step method. It is the same.
 方法(i)、方法(ii)において、再生ビスフェノールを含む多価ヒドロキシ化合物における再生ビスフェノールの含有量は特に限定されないが、再生ビスフェノールの含有量が高いと環境に優しいため、1~100質量%が好ましく、10~100質量%がより好ましい。
 また、方法(ii)、方法(iii)において、再生ビスフェノールを用いて製造されたエポキシ樹脂を含むエポキシ樹脂原料における再生ビスフェノールを用いて製造されたエポキシ樹脂の含有量は特に限定されないが、再生ビスフェノールを用いて製造されたエポキシ樹脂の含有量が高いと環境に優しいため、1~100質量%が好ましく、10~100質量%がより好ましい。
In method (i) and method (ii), the content of the regenerated bisphenol in the polyhydric hydroxy compound containing regenerated bisphenol is not particularly limited. Preferably, 10 to 100% by mass is more preferable.
In methods (ii) and (iii), the content of the epoxy resin produced using the recycled bisphenol in the epoxy resin raw material containing the epoxy resin produced using the recycled bisphenol is not particularly limited. Since a high content of the epoxy resin produced using is environmentally friendly, it is preferably 1 to 100% by mass, more preferably 10 to 100% by mass.
 二段法による反応において、エポキシ樹脂原料と多価ヒドロキシ化合物原料の使用量は、その配合当量比で、(エポキシ基当量):(水酸基当量)=1:0.1~2.0となるようにするのが好ましい。より好ましくは、1:0.2~1.2である。この当量比が上記範囲内であると高分子量化を進行させやすく、また、エポキシ基末端をより多く残すことができるため好ましい。 In the two-step reaction, the amounts of the epoxy resin raw material and the polyhydric hydroxy compound raw material used are such that the blending equivalent ratio is (epoxy group equivalent):(hydroxyl group equivalent)=1:0.1 to 2.0. is preferred. More preferably, it is 1:0.2 to 1.2. When the equivalent ratio is within the above range, the molecular weight can be easily increased, and more terminal epoxy groups can be left, which is preferable.
 また、二段法による反応においては触媒を用いてもよく、その触媒としては、エポキシ基とフェノール性水酸基、アルコール性水酸基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよい。例えば、アルカリ金属化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩、環状アミン類、イミダゾール類等が挙げられる。これらの中でも第4級アンモニウム塩が好ましい。また、触媒は1種類のみを使用することも、2種類以上を組み合わせて使用することもできる。触媒の使用量は、エポキシ樹脂原料に対して、通常0.001~10質量%である。 In addition, a catalyst may be used in the reaction by the two-step method, and as the catalyst, any compound having a catalytic ability to promote the reaction between an epoxy group and a phenolic hydroxyl group or an alcoholic hydroxyl group may be used. It's okay. Examples thereof include alkali metal compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts, cyclic amines, imidazoles and the like. Among these, quaternary ammonium salts are preferred. In addition, one type of catalyst can be used alone, or two or more types can be used in combination. The amount of catalyst used is usually 0.001 to 10% by mass based on the epoxy resin raw material.
 また、二段法による反応において、溶媒を用いてもよく、その溶媒としては、エポキシ樹脂原料を溶解するものであれどのようなものでもよい。例えば、芳香族系溶媒、ケトン系溶媒、アミド系溶媒、グリコールエーテル系溶媒等が挙げられる。溶媒は1種類のみで用いてもよく、2種類以上を組み合わせて用いることもできる。また溶媒中の樹脂濃度は10~95質量%が好ましい。より好ましくは20~80質量%である。また、反応途中で高粘性生成物が生じたときは溶媒を追加添加して反応を続けることもできる。反応終了後、溶媒は必要に応じて、除去することもできるし、更に追加することもできる。 In addition, in the two-step reaction, a solvent may be used, and any solvent that dissolves the epoxy resin raw material may be used. Examples thereof include aromatic solvents, ketone solvents, amide solvents, glycol ether solvents and the like. Only one type of solvent may be used, or two or more types may be used in combination. Also, the resin concentration in the solvent is preferably 10 to 95% by mass. More preferably, it is 20 to 80% by mass. Further, when a highly viscous product is generated during the reaction, the solvent can be additionally added to continue the reaction. After completion of the reaction, the solvent can be removed or added as necessary.
 二段法による反応において、反応温度は好ましくは20~250℃、より好ましくは50~200℃である。反応温度が上記上限以上の場合、生成するエポキシ樹脂が劣化するおそれがある。また上記下限以下の場合、十分に反応が進まないことがある。また、反応時間は通常0.1~24時間、好ましくは0.5~12時間である。 In the two-step reaction, the reaction temperature is preferably 20-250°C, more preferably 50-200°C. If the reaction temperature is higher than the above upper limit, the resulting epoxy resin may deteriorate. Further, if the content is below the above lower limit, the reaction may not proceed sufficiently. Further, the reaction time is usually 0.1 to 24 hours, preferably 0.5 to 12 hours.
<エポキシ樹脂硬化物の製造方法>
 本発明のエポキシ樹脂硬化物の製造方法は、上述するエポキシ樹脂の製造方法を経てエポキシ樹脂を得て、該エポキシ樹脂と硬化剤を含む組成物(以下、「エポキシ樹脂組成物」と称する場合がある。)を得た後、該エポキシ樹脂組成物を硬化してエポキシ樹脂硬化物を得るものである。
<Method for Producing Cured Epoxy Resin>
In the method for producing a cured epoxy resin product of the present invention, an epoxy resin is obtained through the above-described method for producing an epoxy resin, and a composition containing the epoxy resin and a curing agent (hereinafter sometimes referred to as an "epoxy resin composition") ), the epoxy resin composition is cured to obtain a cured epoxy resin.
 また、エポキシ樹脂組成物には必要に応じて、本発明のエポキシ樹脂の製造方法によって得られるエポキシ樹脂以外の他のエポキシ樹脂(以下、単に「他のエポキシ樹脂」と称する場合がある。)、硬化剤、硬化促進剤、無機充填剤、カップリング剤等を適宜配合することができる。 If necessary, the epoxy resin composition may contain epoxy resins other than the epoxy resin obtained by the method for producing an epoxy resin of the present invention (hereinafter sometimes simply referred to as "other epoxy resins"), Curing agents, curing accelerators, inorganic fillers, coupling agents, and the like can be appropriately blended.
 エポキシ樹脂組成物における再生エポキシ樹脂の含有量は特に限定されない。再生エポキシ樹脂の含有量が高いと環境に優しいため、エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対して、再生エポキシ樹脂は40質量部以上が好ましく、60質量部以上がより好ましい。他のエポキシ樹脂を含む場合、エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対して、再生エポキシ樹脂は40~99質量部や、60~99質量部などとすることができる。なお、「全エポキシ樹脂成分」とは、エポキシ樹脂組成物に含まれる全てのエポキシ樹脂の量に相当し、再生エポキシ樹脂と必要に応じて用いられる他のエポキシ樹脂との合計である。 The content of the recycled epoxy resin in the epoxy resin composition is not particularly limited. Since a high recycled epoxy resin content is environmentally friendly, the recycled epoxy resin is preferably 40 parts by mass or more, more preferably 60 parts by mass or more, with respect to 100 parts by mass of all epoxy resin components in the epoxy resin composition. When other epoxy resins are included, the recycled epoxy resin can be 40 to 99 parts by mass, or 60 to 99 parts by mass, etc., with respect to 100 parts by mass of all epoxy resin components in the epoxy resin composition. The "total epoxy resin component" corresponds to the amount of all epoxy resins contained in the epoxy resin composition, and is the sum of the recycled epoxy resin and other epoxy resins used as necessary.
(硬化剤)
 本発明において硬化剤とは、エポキシ樹脂のエポキシ基間の架橋反応及び/又は鎖長延長反応に寄与する物質を示す。なお、本発明においては、通常、「硬化促進剤」と呼ばれるものであってもエポキシ樹脂のエポキシ基間の架橋反応及び/又は鎖長延長反応に寄与する物質であれば、硬化剤とみなすこととする。
(curing agent)
In the present invention, the curing agent refers to a substance that contributes to cross-linking reaction and/or chain extension reaction between epoxy groups of epoxy resin. In the present invention, even if a substance is usually called a "curing accelerator", it can be regarded as a curing agent as long as it contributes to the cross-linking reaction and/or chain extension reaction between the epoxy groups of the epoxy resin. and
 エポキシ樹脂組成物において、硬化剤の含有量は、全エポキシ樹脂成分100質量部に対して好ましくは0.1~1000質量部である。また、より好ましくは500質量部以下である。 In the epoxy resin composition, the content of the curing agent is preferably 0.1 to 1000 parts by mass with respect to 100 parts by mass of the total epoxy resin component. Moreover, it is more preferably 500 parts by mass or less.
 硬化剤としては、特に制限はなく一般的にエポキシ樹脂硬化剤として知られているものはすべて使用できる。例えば、フェノール系硬化剤、脂肪族アミン、ポリエーテルアミン、脂環式アミン、芳香族アミンなどのアミン系硬化剤、酸無水物系硬化剤、アミド系硬化剤、第3級アミン、イミダゾール類等が挙げられる。硬化剤は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。硬化剤を2種類以上併用する場合、これらをあらかじめ混合して混合硬化剤を調製してから使用してもよいし、本発明のエポキシ樹脂の製造方法によって得られる再生エポキシ樹脂や他のエポキシ樹脂の各成分を混合する際に硬化剤の各成分をそれぞれ別々に添加して同時に混合してもよい。 There are no particular restrictions on the curing agent, and any one generally known as an epoxy resin curing agent can be used. For example, phenolic curing agents, aliphatic amines, polyether amines, alicyclic amines, amine curing agents such as aromatic amines, acid anhydride curing agents, amide curing agents, tertiary amines, imidazoles, etc. is mentioned. One curing agent may be used alone, or two or more curing agents may be used in combination. When two or more curing agents are used in combination, they may be mixed in advance to prepare a mixed curing agent before use, or the recycled epoxy resin obtained by the method for producing an epoxy resin of the present invention and other epoxy resins. Each component of the curing agent may be added separately and mixed at the same time.
[フェノール系硬化剤]
 フェノール系硬化剤の具体例としては、再生ビスフェノール、ビスフェノールA、テトラメチルビスフェノールA、ビスフェノールF、テトラメチルビスフェノールF、ビスフェノールC、ビスフェノールS、ビスフェノールAD、ビスフェノールAF、ハイドロキノン、レゾルシン、メチルレゾルシン、ビフェノール、テトラメチルビフェノール、ジヒドロキシナフタレン、ジヒドロキシジフェニルエーテル、チオジフェノール類、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、テルペンフェノール樹脂、ジシクロペンタジエンフェノール樹脂、ビスフェノールAノボラック樹脂、トリスフェノールメタン型樹脂、ナフトールノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂等の種々の多価フェノール類や、種々のフェノール類とベンズアルデヒド、ヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザール等の種々のアルデヒド類との縮合反応で得られる多価フェノール樹脂類、キシレン樹脂とフェノール類との縮合反応で得られる多価フェノール樹脂類、重質油又はピッチ類とフェノール類とホルムアルデヒド類との共縮合樹脂、フェノール・ベンズアルデヒド・キシリレンジメトキサイド重縮合物、フェノール・ベンズアルデヒド・キシリレンジハライド重縮合物、フェノール・ベンズアルデヒド・4,4’-ジメトキサイドビフェニル重縮合物、フェノール・ベンズアルデヒド・4,4’-ジハライドビフェニル重縮合物等の各種のフェノール樹脂類等が挙げられる。
[Phenolic curing agent]
Specific examples of phenol-based curing agents include recycled bisphenol, bisphenol A, tetramethylbisphenol A, bisphenol F, tetramethylbisphenol F, bisphenol C, bisphenol S, bisphenol AD, bisphenol AF, hydroquinone, resorcinol, methylresorcinol, biphenol, Tetramethylbiphenol, dihydroxynaphthalene, dihydroxydiphenyl ether, thiodiphenols, phenol novolak resin, cresol novolak resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, terpene phenol resin, dicyclopentadiene phenol resin, bisphenol A novolak resin, Various polyhydric phenols such as trisphenolmethane type resins, naphthol novolac resins, brominated bisphenol A, brominated phenol novolac resins, various phenols and various aldehydes such as benzaldehyde, hydroxybenzaldehyde, crotonaldehyde, and glyoxal polyhydric phenol resins obtained by the condensation reaction with, polyhydric phenol resins obtained by the condensation reaction of xylene resin and phenols, co-condensation resins of heavy oils or pitches, phenols and formaldehydes, phenol Benzaldehyde/xylylene dimethoxide polycondensate, phenol/benzaldehyde/xylylene dihalide polycondensate, phenol/benzaldehyde/4,4'-dimethoxide biphenyl polycondensate, phenol/benzaldehyde/4,4'-dihalide Various phenolic resins such as biphenyl polycondensates can be used.
 これらのフェノール系硬化剤は、1種類のみで用いても2種類以上を任意の組み合わせ及び配合比率で組み合わせて用いてもよい。 These phenol-based curing agents may be used alone or in combination of two or more in an arbitrary combination and blending ratio.
 フェノール系硬化剤の配合量は、エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対して好ましくは0.1~1000質量部であり、より好ましくは500質量部以下である。 The amount of the phenol-based curing agent is preferably 0.1 to 1000 parts by mass, more preferably 500 parts by mass or less with respect to 100 parts by mass of all epoxy resin components in the epoxy resin composition.
[アミン系硬化剤]
 アミン系硬化剤(ただし、第3級アミンを除く。)の例としては、脂肪族アミン類、ポリエーテルアミン類、脂環式アミン類、芳香族アミン類等が挙げられる。
[Amine curing agent]
Examples of amine curing agents (excluding tertiary amines) include aliphatic amines, polyetheramines, alicyclic amines, aromatic amines and the like.
 脂肪族アミン類としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノプロパン、ヘキサメチレンジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-ヒドロキシエチルエチレンジアミン、テトラ(ヒドロキシエチル)エチレンジアミン等が例示される。 Examples of aliphatic amines include ethylenediamine, 1,3-diaminopropane, 1,4-diaminopropane, hexamethylenediamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, diethylenetriamine, iminobispropylamine, bis( hexamethylene)triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethylethylenediamine, tetra(hydroxyethyl)ethylenediamine and the like.
 ポリエーテルアミン類としては、トリエチレングリコールジアミン、テトラエチレングリコールジアミン、ジエチレングリコールビス(プロピルアミン)、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン類等が例示される。 Examples of polyetheramines include triethylene glycol diamine, tetraethylene glycol diamine, diethylene glycol bis(propylamine), polyoxypropylene diamine, and polyoxypropylene triamines.
 脂環式アミン類としては、イソホロンジアミン、メタセンジアミン、N-アミノエチルピペラジン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、ノルボルネンジアミン等が例示される。 Examples of alicyclic amines include isophoronediamine, methacenediamine, N-aminoethylpiperazine, bis(4-amino-3-methyldicyclohexyl)methane, bis(aminomethyl)cyclohexane, 3,9-bis(3-amino Propyl)-2,4,8,10-tetraoxaspiro(5,5)undecane, norbornenediamine and the like are exemplified.
 芳香族アミン類としては、テトラクロロ-p-キシレンジアミン、m-キシレンジアミン、p-キシレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノアニソール、2,4-トルエンジアミン、2,4-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-1,2-ジフェニルエタン、2,4-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、m-アミノフェノール、m-アミノベンジルアミン、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、トリエタノールアミン、メチルベンジルアミン、α-(m-アミノフェニル)エチルアミン、α-(p-アミノフェニル)エチルアミン、ジアミノジエチルジメチルジフェニルメタン、α,α’-ビス(4-アミノフェニル)-p-ジイソプロピルベンゼン等が例示される。 Aromatic amines include tetrachloro-p-xylylenediamine, m-xylylenediamine, p-xylylenediamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-diaminoanisole, 2,4 -toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, m-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-(dimethylaminomethyl)phenol, triethanolamine, methylbenzylamine, α-(m-aminophenyl)ethylamine, α-(p-aminophenyl) Examples include ethylamine, diaminodiethyldimethyldiphenylmethane, α,α'-bis(4-aminophenyl)-p-diisopropylbenzene and the like.
 以上で挙げたアミン系硬化剤は1種類のみで用いても2種類以上を任意の組み合わせ及び配合比率で組み合わせて用いてもよい。 The amine-based curing agents listed above may be used alone, or two or more of them may be used in any combination and in any mixing ratio.
 上記のアミン系硬化剤は、エポキシ樹脂組成物に含まれる全エポキシ樹脂成分中のエポキシ基に対する硬化剤中の官能基の当量比で0.1~2.0の範囲となるように用いることが好ましい。より好ましくは当量比で0.8~1.2の範囲である。この範囲内であると未反応のエポキシ基や硬化剤の官能基が残留しにくくなるために好ましい。 The above amine-based curing agent can be used so that the equivalent ratio of the functional groups in the curing agent to the epoxy groups in all the epoxy resin components contained in the epoxy resin composition is in the range of 0.1 to 2.0. preferable. More preferably, the equivalent ratio is in the range of 0.8 to 1.2. Within this range, unreacted epoxy groups and functional groups of the curing agent are less likely to remain, which is preferable.
[第3級アミン]
 第3級アミンとしては、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等が例示される。
 以上で挙げた第3級アミンは1種類のみで用いても2種類以上を任意の組み合わせ及び配合比率で組み合わせて用いてもよい。
[Tertiary amine]
Tertiary amines include 1,8-diazabicyclo(5,4,0)undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol and the like. .
The tertiary amines listed above may be used singly or two or more of them may be used in any combination and blending ratio.
 上記の第3級アミンは、エポキシ樹脂組成物に含まれる全エポキシ樹脂成分中のエポキシ基に対する硬化剤中の官能基の当量比で0.1~2.0の範囲となるように用いることが好ましい。より好ましくは当量比で0.8~1.2の範囲である。この範囲内であると未反応のエポキシ基や硬化剤の官能基が残留しにくくなるために好ましい。 The above tertiary amine can be used so that the equivalent ratio of the functional group in the curing agent to the epoxy group in all the epoxy resin components contained in the epoxy resin composition is in the range of 0.1 to 2.0. preferable. More preferably, the equivalent ratio is in the range of 0.8 to 1.2. Within this range, unreacted epoxy groups and functional groups of the curing agent are less likely to remain, which is preferable.
[酸無水物系硬化剤]
 酸無水物系硬化剤としては、酸無水物、酸無水物の変性物等が挙げられる。
[Acid anhydride curing agent]
Examples of the acid anhydride curing agent include acid anhydrides and modified acid anhydrides.
 酸無水物としては、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、ドデセニルコハク酸無水物、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリ(フェニルヘキサデカン二酸)無水物、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルハイミック酸無水物、トリアルキルテトラヒドロフタル酸無水物、メチルシクロヘキセンジカルボン酸無水物、メチルシクロヘキセンテトラカルボン酸無水物、エチレングリコールビストリメリテート二無水物、ヘット酸無水物、ナジック酸無水物、メチルナジック酸無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキサン-1,2-ジカルボン酸無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1-メチル-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物等が挙げられる。 Examples of acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, dodecenylsuccinic anhydride, polyadipic anhydride, polyazelaic anhydride, and polysebacic acid. Anhydride, poly(ethyloctadecanedioic anhydride), poly(phenylhexadecanedioic anhydride), tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride , methylhimic acid anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride, methylcyclohexene tetracarboxylic acid anhydride, ethylene glycol bistrimellitate dianhydride, het acid anhydride, nadic acid anhydride, methyl nadic anhydride, 5-(2,5-dioxotetrahydro-3-furanyl)-3-methyl-3-cyclohexane-1,2-dicarboxylic anhydride, 3,4-dicarboxy-1,2, 3,4-tetrahydro-1-naphthalenesuccinic dianhydride, 1-methyl-dicarboxy-1,2,3,4-tetrahydro-1-naphthalenesuccinic dianhydride and the like.
 酸無水物の変性物としては、例えば、上述した酸無水物をグリコールで変性したもの等が挙げられる。ここで、変性に用いることのできるグリコールの例としては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール等のアルキレングリコール類や、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等のポリエーテルグリコール類等が挙げられる。更には、これらのうちの2種類以上のグリコール及び/又はポリエーテルグリコールの共重合ポリエーテルグリコールを用いることもできる。 Modified acid anhydrides include, for example, those obtained by modifying the above-mentioned acid anhydrides with glycol. Here, examples of glycols that can be used for modification include alkylene glycols such as ethylene glycol, propylene glycol and neopentyl glycol, and polyether glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol. mentioned. Furthermore, two or more of these glycols and/or copolymerized polyether glycols of polyether glycols can also be used.
 以上で挙げた酸無水物系硬化剤は1種類のみでも2種類以上を任意の組み合わせ及び配合量で組み合わせて用いてもよい。 The acid anhydride-based curing agents listed above may be used alone or in combination of two or more in any combination and amount.
 酸無水物系硬化剤を用いる場合、エポキシ樹脂組成物中の全エポキシ樹脂成分中のエポキシ基に対する硬化剤中の官能基の当量比で0.1~2.0の範囲となるように用いることが好ましい。より好ましくは当量比で0.8~1.2の範囲である。この範囲内であると未反応のエポキシ基や硬化剤の官能基が残留しにくくなるために好ましい。 When using an acid anhydride-based curing agent, it should be used so that the equivalent ratio of the functional group in the curing agent to the epoxy groups in all the epoxy resin components in the epoxy resin composition is in the range of 0.1 to 2.0. is preferred. More preferably, the equivalent ratio is in the range of 0.8 to 1.2. Within this range, unreacted epoxy groups and functional groups of the curing agent are less likely to remain, which is preferable.
[アミド系硬化剤]
 アミド系硬化剤としてはジシアンジアミド及びその誘導体、ポリアミド樹脂等が挙げられる。アミド系硬化剤は1種類のみで用いても、2種類以上を任意の組み合わせ及び比率で混合して用いてもよい。アミド系硬化剤を用いる場合、エポキシ樹脂組成物中の全エポキシ樹脂成分とアミド系硬化剤との合計に対してアミド系硬化剤が0.1~20質量%となるように用いることが好ましい。
[Amide curing agent]
Examples of amide curing agents include dicyandiamide and derivatives thereof, and polyamide resins. The amide-based curing agent may be used alone, or two or more of them may be used in any combination and ratio. When an amide-based curing agent is used, it is preferable to use the amide-based curing agent in an amount of 0.1 to 20% by mass based on the total of all epoxy resin components and the amide-based curing agent in the epoxy resin composition.
[イミダゾール類]
 イミダゾール類としては、2-フェニルイミダゾール、2-エチル-4(5)-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及びエポキシ樹脂と上記イミダゾール類との付加体等が例示される。なお、イミダゾール類は触媒能を有するため、一般的には硬化促進剤にも分類されうるが、本発明においては硬化剤として分類するものとする。
 以上に挙げたイミダゾール類は1種類のみでも、2種類以上を任意の組み合わせ及び比率で混合して用いてもよい。
[Imidazoles]
Examples of imidazoles include 2-phenylimidazole, 2-ethyl-4(5)-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1 -Cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino- 6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-ethyl-4′-methylimidazolyl-(1′)]-ethyl-s -triazine, 2,4-diamino-6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazine isocyanurate, 2-phenylimidazole isocyanurate, 2-phenyl-4,5 -dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, adducts of epoxy resins and the above imidazoles, and the like. Since imidazoles have catalytic activity, they can be generally classified as curing accelerators, but in the present invention they are classified as curing agents.
The above-mentioned imidazoles may be used singly or as a mixture of two or more in any combination and ratio.
 イミダゾール類を用いる場合、エポキシ樹脂組成物中の全エポキシ樹脂成分とイミダゾール類との合計に対してイミダゾール類が0.1~20質量%となるように用いることが好ましい。 When imidazoles are used, it is preferable to use imidazoles in an amount of 0.1 to 20% by mass based on the total of all epoxy resin components and imidazoles in the epoxy resin composition.
[他の硬化剤]
 エポキシ樹脂組成物においては前記硬化剤以外にその他の硬化剤を用いることができる。エポキシ樹脂組成物に使用することのできるその他の硬化剤は特に制限はなく、一般的にエポキシ樹脂の硬化剤として知られているものはすべて使用できる。
 これらの他の硬化剤は1種類のみで用いても、2種類以上を組み合わせて用いてもよい。
[Other curing agents]
Other curing agents can be used in the epoxy resin composition in addition to the curing agents described above. Other curing agents that can be used in the epoxy resin composition are not particularly limited, and all those generally known as curing agents for epoxy resins can be used.
These other curing agents may be used alone or in combination of two or more.
[他のエポキシ樹脂]
 エポキシ樹脂組成物は、本発明のエポキシ樹脂の製造方法によって得られるエポキシ樹脂以外の他のエポキシ樹脂を含むことができる。他のエポキシ樹脂を含むことにより、様々な物性を向上させることができる。
[Other epoxy resins]
The epoxy resin composition can contain epoxy resins other than the epoxy resin obtained by the method for producing an epoxy resin of the present invention. Various physical properties can be improved by including other epoxy resins.
 エポキシ樹脂組成物に用いることのできる他のエポキシ樹脂は、本発明のエポキシ樹脂の製造方法によって得られるエポキシ樹脂以外のエポキシ樹脂すべてが該当する。具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールC型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノール変性キシレン樹脂型エポキシ樹脂、ビスフェノールシクロドデシル型エポキシ樹脂、ビスフェノールジイソプロピリデンレゾルシン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、メチルハイドロキノン型エポキシ樹脂、ジブチルハイドロキノン型エポキシ樹脂、レゾルシン型エポキシ樹脂、メチルレゾルシン型エポキシ樹脂、ビフェノール型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ジヒドロキシジフェニルエーテル型エポキシ樹脂、チオジフェノール類から誘導されるエポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシアントラセン型エポキシ樹脂、ジヒドロキシジヒドロアントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジヒドロキシスチルベン類から誘導されるエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、テルペンフェノール型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、フェノール・ヒドロキシベンズアルデヒドの縮合物から誘導されるエポキシ樹脂、フェノール・クロトンアルデヒドの縮合物から誘導されるエポキシ樹脂、フェノール・グリオキザールの縮合物から誘導されるエポキシ樹脂、重質油又はピッチ類とフェノール類とホルムアルデヒド類との共縮合樹脂から誘導されるエポキシ樹脂、ジアミノジフェニルメタンから誘導されるエポキシ樹脂、アミノフェノールから誘導されるエポキシ樹脂、キシレンジアミンから誘導されるエポキシ樹脂、メチルヘキサヒドロフタル酸から誘導されるエポキシ樹脂、ダイマー酸から誘導されるエポキシ樹脂等が挙げられる。これらは1種類のみで用いても、2種類以上を任意の組み合わせ及び配合比率で用いてもよい。 Other epoxy resins that can be used in the epoxy resin composition include all epoxy resins other than the epoxy resin obtained by the method for producing an epoxy resin of the present invention. Specific examples include bisphenol A-type epoxy resin, bisphenol C-type epoxy resin, trisphenolmethane-type epoxy resin, anthracene-type epoxy resin, phenol-modified xylene resin-type epoxy resin, bisphenolcyclododecyl-type epoxy resin, and bisphenoldiisopropylideneresorcin type. Epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol AF type epoxy resin, hydroquinone type epoxy resin, methylhydroquinone type epoxy resin, dibutylhydroquinone type epoxy resin, resorcin type epoxy resin, methylresorcin type epoxy resin, biphenol type epoxy resin, tetramethylbiphenol type epoxy resin, tetramethylbisphenol F type epoxy resin, dihydroxydiphenyl ether type epoxy resin, epoxy resin derived from thiodiphenols, dihydroxynaphthalene type epoxy resin, dihydroxyanthracene type epoxy resin, dihydroxydihydro Anthracene type epoxy resin, dicyclopentadiene type epoxy resin, epoxy resin derived from dihydroxystilbenes, phenol novolac type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolac type epoxy resin, naphthol novolac type epoxy resin, phenol aralkyl type Epoxy resins, naphthol aralkyl type epoxy resins, biphenyl aralkyl type epoxy resins, terpene phenol type epoxy resins, dicyclopentadiene phenol type epoxy resins, epoxy resins derived from phenol/hydroxybenzaldehyde condensates, phenol/crotonaldehyde condensates Epoxy resins derived from, epoxy resins derived from phenol-glyoxal condensates, epoxy resins derived from co-condensation resins of heavy oils or pitches, phenols and formaldehydes, derived from diaminodiphenylmethane Examples include epoxy resins, epoxy resins derived from aminophenol, epoxy resins derived from xylenediamine, epoxy resins derived from methylhexahydrophthalic acid, and epoxy resins derived from dimer acid. These may be used alone, or two or more may be used in any combination and blending ratio.
 エポキシ樹脂組成物が、上記の他のエポキシ樹脂を含む場合、その含有量は組成物中の、全エポキシ樹脂成分100質量部に対して好ましくは1~60質量部であり、より好ましくは40質量部以下である。 When the epoxy resin composition contains the above other epoxy resin, the content thereof is preferably 1 to 60 parts by mass, more preferably 40 parts by mass, based on 100 parts by mass of all epoxy resin components in the composition. It is below the department.
(硬化促進剤)
 エポキシ樹脂組成物は、硬化促進剤を含むことが好ましい。硬化促進剤を含むことにより、硬化時間の短縮、硬化温度の低温化が可能となり、所望の硬化物を得やすくすることができる。
(Curing accelerator)
The epoxy resin composition preferably contains a curing accelerator. By including a curing accelerator, it is possible to shorten the curing time and lower the curing temperature, and to easily obtain a desired cured product.
 硬化促進剤は特に制限されないが、具体例としては、有機ホスフィン類、ホスホニウム塩等のリン系化合物、テトラフェニルボロン塩、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体等が挙げられる。 The curing accelerator is not particularly limited, but specific examples include organic phosphines, phosphorous compounds such as phosphonium salts, tetraphenyl boron salts, organic acid dihydrazides, boron halide amine complexes, and the like.
 硬化促進剤として使用可能なリン系化合物としては、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の有機ホスフィン類又はこれら有機ホスフィン類と有機ボロン類との錯体やこれら有機ホスフィン類と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン等の化合物を付加してなる化合物等が例示される。 Phosphorus compounds that can be used as curing accelerators include triphenylphosphine, diphenyl(p-tolyl)phosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, tris(alkyl/alkoxyphenyl)phosphine, tris( dialkylphenyl)phosphine, tris(trialkylphenyl)phosphine, tris(tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine, trialkylphosphine, dialkyl Organic phosphines such as arylphosphines and alkyldiarylphosphines, complexes of these organic phosphines with organic borons, and these organic phosphines with maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, and 1,4-naphthoquinone , 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone Examples include quinone compounds such as and compounds obtained by adding compounds such as diazophenylmethane.
 以上に挙げた硬化促進剤の中でも有機ホスフィン類、ホスホニウム塩が好ましく、有機ホスフィン類が最も好ましい。また、硬化促進剤は、上記に挙げたもののうち、1種類のみで用いてもよく、2種類以上を任意の組み合わせ及び比率で混合して用いてもよい。 Among the curing accelerators listed above, organic phosphines and phosphonium salts are preferred, and organic phosphines are most preferred. In addition, among the curing accelerators listed above, only one type may be used, or two or more types may be mixed and used in an arbitrary combination and ratio.
 硬化促進剤は、エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対して0.1質量部以上20質量部以下の範囲で用いることが好ましい。硬化促進剤の含有量が上記下限値以上であると、良好な硬化促進効果を得ることができ、一方、上記上限値以下であると、所望の硬化物性が得られやすいために好ましい。 The curing accelerator is preferably used in a range of 0.1 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of all epoxy resin components in the epoxy resin composition. When the content of the curing accelerator is at least the above lower limit, a good curing acceleration effect can be obtained.
(無機充填材)
 エポキシ樹脂組成物には無機充填材を配合することができる。無機充填材としては例えば、溶融シリカ、結晶性シリカ、ガラス粉、アルミナ、炭酸カルシウム、硫酸カルシウム、タルク、チッ化ホウ素等が挙げられる。これらは、1種類のみで用いても2種類以上を任意の組み合わせ及び配合比率で組み合わせて用いてもよい。無機充填材の配合量はエポキシ樹脂組成物全体の10~95質量%が好ましい。
(Inorganic filler)
An inorganic filler can be blended into the epoxy resin composition. Examples of inorganic fillers include fused silica, crystalline silica, glass powder, alumina, calcium carbonate, calcium sulfate, talc, and boron nitride. These may be used alone, or two or more of them may be used in any combination and blending ratio. The blending amount of the inorganic filler is preferably 10 to 95% by mass of the entire epoxy resin composition.
(離型剤)
 エポキシ樹脂組成物には離型剤を配合することができる。離型剤としては例えば、カルナバワックス等の天然ワックスや、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸類及びその金属塩類、パラフィン等の炭化水素系離型剤を用いることができる。これらは、1種類のみで用いても2種類以上を任意の組み合わせ及び配合比率で組み合わせて用いてもよい。
(Release agent)
A release agent can be blended in the epoxy resin composition. Examples of release agents include natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate and their metal salts, and hydrocarbon release agents such as paraffin. can be done. These may be used alone, or two or more of them may be used in any combination and blending ratio.
 離型剤の配合量は、エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対して、好ましくは0.001~10.0質量部である。離型剤の配合量が上記範囲内であると、硬化特性を維持しつつ、良好な離型性を発現することができるために好ましい。 The amount of the release agent to be blended is preferably 0.001 to 10.0 parts by mass with respect to 100 parts by mass of all the epoxy resin components in the epoxy resin composition. It is preferable that the content of the release agent is within the above range, because good release properties can be exhibited while maintaining curing properties.
(カップリング剤)
 エポキシ樹脂組成物には、カップリング剤を配合することができる。カップリング剤は無機充填材と併用することが好ましく、カップリング剤を配合することにより、マトリックスであるエポキシ樹脂と無機充填材との接着性を向上させることができる。カップリング剤としてはシランカップリング剤、チタネートカップリング剤等が挙げられる。
(coupling agent)
A coupling agent can be added to the epoxy resin composition. The coupling agent is preferably used in combination with the inorganic filler, and the addition of the coupling agent can improve the adhesion between the matrix epoxy resin and the inorganic filler. Examples of coupling agents include silane coupling agents and titanate coupling agents.
 シランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のアミノシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプトシラン、p-スチリルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のビニルシラン、更に、エポキシ系、アミノ系、ビニル系の高分子タイプのシラン等が挙げられる。 Examples of silane coupling agents include epoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ- Aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxy aminosilanes such as silane, mercaptosilanes such as 3-mercaptopropyltrimethoxysilane, p-styryltrimethoxysilane, vinyltrichlorosilane, vinyltris(β-methoxyethoxy)silane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacrylic Examples include vinylsilanes such as roxypropyltrimethoxysilane, epoxy-based, amino-based, and vinyl-based high-molecular-type silanes.
 チタネートカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル・アミノエチル)チタネート、ジイソプロピルビス(ジオクチルホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。 Examples of titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tri(N-aminoethyl/aminoethyl) titanate, diisopropyl bis(dioctylphosphate) titanate, tetraisopropyl bis(dioctylphosphite) titanate, tetraoctyl bis ( ditridecylphosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate and the like. be done.
 これらのカップリング剤は、いずれも1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。 Any one of these coupling agents may be used alone, or two or more may be used in any combination and ratio.
 エポキシ樹脂組成物にカップリング剤を用いる場合、その配合量は、全エポキシ樹脂成分100質量部に対し、好ましくは0.001~10.0質量部である。カップリング剤の配合量が上記下限値以上であると、カップリング剤を配合したことによるマトリックスであるエポキシ樹脂と無機充填材との密着性の向上効果が向上する傾向にある。一方、カップリング剤の配合量が上記上限値以下であると、得られる硬化物からカップリング剤がブリードアウトしにくくなるために好ましい。 When a coupling agent is used in the epoxy resin composition, the compounding amount is preferably 0.001 to 10.0 parts by mass with respect to 100 parts by mass of the total epoxy resin component. If the amount of the coupling agent is at least the above lower limit, the effect of improving the adhesion between the matrix epoxy resin and the inorganic filler tends to be enhanced by adding the coupling agent. On the other hand, if the amount of the coupling agent is less than the above upper limit, the coupling agent is less likely to bleed out from the resulting cured product, which is preferable.
(その他の配合成分)
 エポキシ樹脂組成物には、前記した以外の成分を配合することができる。その他の配合成分としては例えば、難燃剤、可塑剤、反応性希釈剤、顔料等が挙げられ、必要に応じて適宜に配合することができる。ただし、上記で挙げた成分以外のものを配合することを何ら妨げるものではない。
(Other ingredients)
Components other than those described above can be added to the epoxy resin composition. Other compounding components include, for example, flame retardants, plasticizers, reactive diluents, pigments, etc., and can be appropriately compounded as necessary. However, this does not preclude the use of ingredients other than those listed above.
 難燃剤としては、臭素化エポキシ樹脂、臭素化フェノール樹脂等のハロゲン系難燃剤、三酸化アンチモン等のアンチモン化合物、赤燐、リン酸エステル類、ホスフィン類等のリン系難燃剤、メラミン誘導体等の窒素系難燃剤及び水酸化アルミニウム、水酸化マグネシウム等の無機系難燃剤等が挙げられる。 Flame retardants include halogen-based flame retardants such as brominated epoxy resins and brominated phenol resins, antimony compounds such as antimony trioxide, phosphorus-based flame retardants such as red phosphorus, phosphate esters and phosphines, and melamine derivatives. Nitrogen flame retardants and inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide can be used.
(硬化方法)
 エポキシ樹脂組成物を硬化させることによりエポキシ樹脂硬化物を得ることができる。硬化方法について、特に限定はされないが、通常、加熱による熱硬化反応により硬化物を得ることができる。熱硬化反応時には、用いた硬化剤の種類によって硬化温度を適宜選択することが好ましい。例えば、フェノール系硬化剤を用いた場合、硬化温度は通常80~250℃である。またこれらの硬化剤に硬化促進剤を添加することで、その硬化温度を下げることも可能である。反応時間は、0.01~20時間が好ましい。反応時間が上記下限値以上であると硬化反応が十分に進行しやすくなる傾向にあるために好ましい。一方、反応時間が上記上限値以下であると加熱による劣化、加熱時のエネルギーロスを低減しやすいために好ましい。
(Curing method)
A cured epoxy resin can be obtained by curing the epoxy resin composition. The curing method is not particularly limited, but usually a cured product can be obtained by a thermosetting reaction by heating. During the thermosetting reaction, it is preferable to appropriately select the curing temperature depending on the type of curing agent used. For example, when a phenolic curing agent is used, the curing temperature is usually 80-250°C. By adding a curing accelerator to these curing agents, it is also possible to lower the curing temperature. The reaction time is preferably 0.01 to 20 hours. When the reaction time is at least the above lower limit, the curing reaction tends to proceed sufficiently, which is preferable. On the other hand, when the reaction time is equal to or less than the above upper limit, deterioration due to heating and energy loss during heating are easily reduced, which is preferable.
(用途)
 エポキシ樹脂組成物を硬化して得られるエポキシ樹脂硬化物は250℃弾性率が高く、耐熱変形性に優れた硬化物を得ることができる。
 従って、エポキシ樹脂硬化物はこれらの物性が求められる用途であれば、いかなる用途にも有効に用いることができる。例えば、自動車用電着塗料、船舶・橋梁用重防食塗料、飲料用缶の内面塗装用塗料等の塗料分野;積層板、半導体封止材、絶縁粉体塗料、コイル含浸用等の電気電子分野;橋梁の耐震補強、コンクリート補強、建築物の床材、水道施設のライニング、排水・透水舗装、車両・航空機用接着剤の土木・建築・接着剤分野等の用途にいずれにも好適に用いることができる。
(Application)
The epoxy resin cured product obtained by curing the epoxy resin composition has a high elastic modulus at 250° C., and a cured product excellent in heat deformation resistance can be obtained.
Therefore, the epoxy resin cured product can be effectively used in any application as long as these physical properties are required. For example, in the field of paints such as electrodeposition paints for automobiles, heavy-duty anti-corrosion paints for ships and bridges, and paints for the inner surface of beverage cans; Suitable for any application such as seismic reinforcement of bridges, reinforcement of concrete, flooring of buildings, lining of water supply facilities, drainage/permeable pavement, civil engineering, construction, and adhesives for vehicles and aircraft. can be done.
 エポキシ樹脂組成物は、前記用途に対し硬化後に使用してもよく、前記用途の製造工程にて硬化させてもよい。 The epoxy resin composition may be used after curing for the above applications, or may be cured during the manufacturing process for the above applications.
 以下、実施例および比較例によって、本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited by the following examples as long as it does not exceed the gist thereof.
[原料及び試薬]
 ポリカーボネート樹脂(PC)は、三菱ケミカルエンジニアリングプラスチックス株式会社のポリカーボネート樹脂「NOVAREX(登録商標) M7027BF」を使用した。
 メタノール、炭酸ジメチル、エタノール、炭酸ジエチル、ブタノール、トリエチルアミン、ナトリウムフェノキシド、水酸化ナトリウム、水酸化カリウム、アセトニトリル、及び炭酸セシウムは、富士フィルム和光純薬株式会社の試薬を使用した。
 1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)は、東京化成工業株式会社の試薬を使用した。
 炭酸ジブチルは、メルク株式会社の試薬を使用した。
 炭酸ジフェニルは、三菱ケミカル株式会社の製品を使用した。
[Raw materials and reagents]
Polycarbonate resin "NOVAREX (registered trademark) M7027BF" manufactured by Mitsubishi Chemical Engineering Plastics Co., Ltd. was used as polycarbonate resin (PC).
Methanol, dimethyl carbonate, ethanol, diethyl carbonate, butanol, triethylamine, sodium phenoxide, sodium hydroxide, potassium hydroxide, acetonitrile, and cesium carbonate were reagents supplied by Fujifilm Wako Pure Chemical Industries, Ltd.
1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was a reagent from Tokyo Chemical Industry Co., Ltd.
Merck Co., Ltd. reagent was used for dibutyl carbonate.
Diphenyl carbonate used was a product of Mitsubishi Chemical Corporation.
[分析]
 ビスフェノールAの生成確認、純度、定量は、高速液体クロマトグラフィーにより、以下の手順と条件で行った。
・定量法:ビフェニルを内部標準とした内部標準方法
・装置:島津製作所社製LC-2010A、Waters社 5μm 150mm×4.6mmID
・方式:低圧グラジェント法
・分析温度:40℃
・溶離液組成:
 A液 アセトニトリル
 B液 85%リン酸:水=1mL:999mLの溶液
 分析時間0分では、A液:B液=35:65(体積比、以下同様。)、分析時間0~5分は溶離液組成をA液:B液=35:65とした後、分析時間5~40分で徐々にA液:B液=90:10にした。
・流速:0.85mL/分
・検出波長:280nm
[analysis]
Production confirmation, purity and quantification of bisphenol A were performed by high performance liquid chromatography under the following procedures and conditions.
・ Quantitative method: internal standard method using biphenyl as an internal standard ・ Apparatus: LC-2010A manufactured by Shimadzu Corporation, Waters 5 μm 150 mm × 4.6 mm ID
・Method: Low-pressure gradient method ・Analysis temperature: 40°C
・Eluent composition:
A solution Acetonitrile B solution 85% phosphoric acid: water = 1 mL: 999 mL solution At analysis time 0 minutes, A solution: B solution = 35: 65 (volume ratio, hereinafter the same), analysis time 0 to 5 minutes is eluent The composition was set to A solution: B solution = 35:65, and then gradually changed to A solution: B solution = 90:10 over an analysis time of 5 to 40 minutes.
・Flow rate: 0.85 mL/min ・Detection wavelength: 280 nm
[粘度平均分子量(Mv)]
 粘度平均分子量(Mv)は、ポリカーボネート樹脂を塩化メチレンに溶解し(濃度6.0g/L)、ウベローデ粘度管を用いて20℃における比粘度(ηsp)を測定し、下記の式により粘度平均分子量(Mv)を算出した。
 ηsp/C=[η](1+0.28ηsp)
 [η]=1.23×10-4Mv0.83
[Viscosity average molecular weight (Mv)]
Viscosity average molecular weight (Mv) is obtained by dissolving polycarbonate resin in methylene chloride (concentration 6.0 g / L), measuring specific viscosity (ηsp) at 20 ° C. using Ubbelohde viscosity tube, viscosity average molecular weight according to the following formula (Mv) was calculated.
ηsp/C=[η](1+0.28ηsp)
[η]=1.23×10 −4 Mv 0.83
[ペレットYI]
 ペレットYI(ポリカーボネート樹脂の透明性)は、ASTM D1925に準拠して、ポリカーボネート樹脂ペレットの反射光におけるYI値(イエローネスインデックス値)を測定して評価した。装置はコニカミノルタ社製分光測色計「CM-5」を用い、測定条件は測定径30mm、SCEを選択した。
 シャーレ測定用校正ガラス「CM-A212」を測定部にはめ込み、その上からゼロ校正ボックス「CM-A124」をかぶせてゼロ校正を行い、続いて内蔵の白色校正板を用いて白色校正を行った。次いで、白色校正板「CM-A210」を用いて測定を行い、L*が99.40±0.05、a*が0.03±0.01、b*が-0.43±0.01、YIが-0.58±0.01となることを確認した。
 YIは、内径30mm、高さ50mmの円柱ガラス容器にペレットを40mm程度の深さまで詰めて測定を行った。ガラス容器からペレットを取り出してから再度測定を行う操作を2回繰り返し、計3回の測定値の平均値を用いた。
[Pellet YI]
The pellet YI (transparency of polycarbonate resin) was evaluated by measuring the YI value (yellowness index value) of polycarbonate resin pellets in reflected light according to ASTM D1925. A spectrophotometer "CM-5" manufactured by Konica Minolta Co., Ltd. was used as the apparatus, and the measurement conditions were a measurement diameter of 30 mm and SCE.
A calibration glass for petri dish measurement "CM-A212" was fitted into the measurement part, and a zero calibration box "CM-A124" was placed over it to perform zero calibration, followed by white calibration using the built-in white calibration plate. . Then, using a white calibration plate "CM-A210", L * is 99.40 ± 0.05, a * is 0.03 ± 0.01, b * is -0.43 ± 0.01 , YI was -0.58±0.01.
YI was measured by filling a cylindrical glass container with an inner diameter of 30 mm and a height of 50 mm with pellets to a depth of about 40 mm. The operation of taking out the pellets from the glass container and measuring again was repeated twice, and the average value of the measured values of a total of three times was used.
[pHの測定]
 pHの測定は、株式会社堀場製作所pH計「pH METER ES-73」を用いて、フラスコから取り出した25℃の水相に対して実施した。
[Measurement of pH]
The pH was measured using a pH meter "pH METER ES-73" manufactured by Horiba, Ltd. on the aqueous phase at 25° C. taken out from the flask.
[ビスフェノールAの溶融色]
 ビスフェノールAの溶融色は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールCを20g入れて、175℃で30分間溶融させ、日本電色工業社製「SE6000」を用い、そのハーゼン色数を測定した。
[Molten color of bisphenol A]
For the molten color of bisphenol A, put 20 g of bisphenol C in a test tube "P-24" (24 mmφ x 200 mm) manufactured by Nichiden Rika Glass Co., Ltd., melt at 175 ° C. for 30 minutes, and use "SE6000" manufactured by Nippon Denshoku Industries Co., Ltd. was used to measure the Hazen color number.
[実施例1]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、メタノール52g(52g÷32g/モル=1.6モル、メタノール/PCの繰り返し単位(モル比)=1.6モル÷0.31モル=5.2)、炭酸ジメチル120g(120g÷90g/モル=1.3モル、炭酸ジメチル/PCの繰り返し単位(モル比)=1.3モル÷0.31モル=4.2)、及び水酸化ナトリウム1.1g(0.03モル、水酸化ナトリウム/PCの繰り返し単位(モル比)=0.03モル÷0.31モル=0.10)を入れた後、ポリカーボネート樹脂80g(ポリカーボネート樹脂の繰り返し単位の分子量は254g/モルであるので、繰り返し単位のモル数=80g÷254g/モル=0.31モル)を室温で入れた(液量は52g+120g+1.1g+80g=253.1g)。
 その後、ジャケット温度を70℃に昇温した。70℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。そのまま、ジャケット温度を70℃に維持したまま3時間反応させて均一の反応液を得た。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが18.5質量%(18.5÷100×253.1g÷228g/モル÷0.31モル×100=66モル%)であった。
[Example 1]
In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 52 g of methanol (52 g/32 g/mol = 1.6 mol, methanol/PC repeating unit (molar ratio) = 1.6 mol) was placed in a nitrogen atmosphere. 6 mol/0.31 mol=5.2), 120 g of dimethyl carbonate (120 g/90 g/mol=1.3 mol, dimethyl carbonate/PC repeating unit (molar ratio)=1.3 mol/0.31 mol= 4.2), and 1.1 g of sodium hydroxide (0.03 mol, sodium hydroxide/PC repeating unit (molar ratio) = 0.03 mol ÷ 0.31 mol = 0.10), 80 g of polycarbonate resin (Since the molecular weight of the repeating unit of the polycarbonate resin is 254 g/mol, the number of moles of the repeating unit = 80 g/254 g/mol = 0.31 mol) was added at room temperature (liquid volume was 52 g + 120 g + 1.1 g + 80 g = 253 g). .1g).
After that, the jacket temperature was raised to 70°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 70° C. (it was in the form of a slurry). The mixture was reacted for 3 hours while maintaining the jacket temperature at 70° C. to obtain a uniform reaction liquid.
When the composition of a portion of the obtained reaction solution was confirmed by high-performance liquid chromatography, bisphenol A was found to be 18.5% by mass (18.5/100 x 253.1 g/228 g/mol/0.31 mol x 100 = 66 mol%).
[実施例2]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、メタノール52g(1.6モル、メタノール/PCの繰り返し単位(モル比)=5.2)、炭酸ジメチル120g(1.3モル、炭酸ジメチル/PCの繰り返し単位(モル比)=4.2)、及び水酸化カリウム1.1g(0.02モル、水酸化カリウム/PCの繰り返し単位(モル比)=0.02モル÷0.31モル=0.06)を入れた後、ポリカーボネート樹脂80g(繰り返し単位のモル数=0.31モル)を室温で入れた(液量は52g+120g+1.1g+80g=253.1g)。
 その後、ジャケット温度を70℃に昇温した。70℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。そのまま、ジャケット温度を65℃に維持したまま3時間反応させて均一の反応液を得た。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが23.2質量%(23.2÷100×253.1g÷228g/モル÷0.31モル×100=83モル%)であった。
[Example 2]
In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 52 g of methanol (1.6 mol, methanol/PC repeating unit (molar ratio) = 5.2) and 120 g of dimethyl carbonate were placed under a nitrogen atmosphere. (1.3 mol, dimethyl carbonate/PC repeating unit (molar ratio) = 4.2), and 1.1 g of potassium hydroxide (0.02 mol, potassium hydroxide/PC repeating unit (molar ratio) = 0 .02 mol ÷ 0.31 mol = 0.06) was added, and then 80 g of polycarbonate resin (number of moles of repeating unit = 0.31 mol) was added at room temperature (liquid volume was 52 g + 120 g + 1.1 g + 80 g = 253.1 g). .
After that, the jacket temperature was raised to 70°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 70° C. (it was in the form of a slurry). The mixture was reacted for 3 hours while maintaining the jacket temperature at 65° C. to obtain a uniform reaction solution.
A portion of the resulting reaction solution was confirmed for composition by high-performance liquid chromatography, and bisphenol A was found to be 23.2% by mass (23.2/100 x 253.1 g/228 g/mol/0.31 mol x 100 = 83 mol%).
[実施例3]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、メタノール80g(80g÷32g/モル=2.5モル、メタノール/PCの繰り返し単位(モル比)=2.5モル÷0.31モル=8.1)、炭酸ジメチル120g(1.3モル、炭酸ジメチル/PCの繰り返し単位(モル比)=4.2)、及びトリエチルアミン20g(0.20モル、トリエチルアミン/PCの繰り返し単位(モル比)=0.20モル÷0.31モル=0.65)を入れた後、ポリカーボネート樹脂80g(繰り返し単位のモル数=80g÷254g/モル=0.31モル)を室温で入れた(液量は80g+120g+20g+80g=300g)。
 その後、ジャケット温度を70℃に昇温した。70℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。そのまま、ジャケット温度を65℃に維持したまま3時間反応させて均一の反応液を得た。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが19.5質量%(19.5÷100×300g÷228g/モル÷0.31モル×100=83モル%)であった。
[Example 3]
In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 80 g of methanol (80 g/32 g/mol = 2.5 mol, methanol/PC repeating unit (molar ratio) = 2.5 mol) was added under a nitrogen atmosphere. 5 mol/0.31 mol=8.1), 120 g of dimethyl carbonate (1.3 mol, dimethyl carbonate/PC repeating unit (molar ratio)=4.2), and 20 g of triethylamine (0.20 mol, triethylamine/ PC repeating unit (molar ratio) = 0.20 mol ÷ 0.31 mol = 0.65), then 80 g of polycarbonate resin (moles of repeating unit = 80 g ÷ 254 g / mol = 0.31 mol). It was added at room temperature (liquid volume: 80 g + 120 g + 20 g + 80 g = 300 g).
After that, the jacket temperature was raised to 70°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 70° C. (it was in the form of a slurry). The mixture was reacted for 3 hours while maintaining the jacket temperature at 65° C. to obtain a uniform reaction solution.
When the composition of a part of the obtained reaction solution was confirmed by high-performance liquid chromatography, bisphenol A was found to be 19.5% by mass (19.5/100 x 300 g/228 g/mol/0.31 mol x 100 = 83 mol %).
[実施例4]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、メタノール52g(1.6モル、メタノール/PCの繰り返し単位(モル比)=5.2)、炭酸ジメチル120g(1.3モル、炭酸ジメチル/PCの繰り返し単位(モル比)=4.2)、及び炭酸カリウム1.1g(0.01モル、炭酸カリウム/PCの繰り返し単位(モル比)=0.01モル÷0.31モル=0.03)を入れた後、ポリカーボネート樹脂80g(繰り返し単位のモル数=0.31モル)を室温で入れた(液量は52g+120g+1.1g+80g=253.1g)。
 その後、ジャケット温度を70℃に昇温した。70℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。そのまま、ジャケット温度を70℃に維持したまま3時間反応させて均一の反応液を得た。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが24.1質量%(24.1÷100×253.1g÷228g/モル÷0.31モル×100=86モル%)であった。
[Example 4]
In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 52 g of methanol (1.6 mol, methanol/PC repeating unit (molar ratio) = 5.2) and 120 g of dimethyl carbonate were placed under a nitrogen atmosphere. (1.3 mol, dimethyl carbonate/PC repeating unit (molar ratio) = 4.2), and 1.1 g of potassium carbonate (0.01 mol, potassium carbonate/PC repeating unit (molar ratio) = 0.01 mol÷0.31 mol=0.03), and then 80 g of polycarbonate resin (number of moles of repeating unit=0.31 mol) was added at room temperature (liquid volume: 52 g+120 g+1.1 g+80 g=253.1 g).
After that, the jacket temperature was raised to 70°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 70° C. (it was in the form of a slurry). The mixture was reacted for 3 hours while maintaining the jacket temperature at 70° C. to obtain a uniform reaction solution.
When the composition of a portion of the obtained reaction solution was confirmed by high-performance liquid chromatography, bisphenol A was found to be 24.1 mass% (24.1/100 x 253.1 g/228 g/mol/0.31 mol x 100 = 86 mol%).
[比較例1]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ポリカーボネート樹脂80g(繰り返し単位のモル数=0.31モル)、メタノール201g(201g÷32g/モル=6.28モル、メタノール/PCの繰り返し単位(モル比)=6.28モル÷0.31モル=20.25)、トリエチルアミン15gを室温で入れた。
 次いで、内温を85℃に昇温しようとしたが、64℃付近でメタノールの還流が起こったため、そのまま還流を維持して反応させた。4時間反応させたが、ポリカーボネート樹脂は固形分として反応液中に見られ、分解が進行していないことを確認した。
[Comparative Example 1]
In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 80 g of a polycarbonate resin (the number of moles of repeating units = 0.31 mol) and 201 g of methanol (201 g/32 g/mol = 6.0 g) were placed under a nitrogen atmosphere. 28 mol, methanol/PC repeating unit (molar ratio)=6.28 mol/0.31 mol=20.25), and 15 g of triethylamine were added at room temperature.
Next, an attempt was made to raise the internal temperature to 85°C, but methanol refluxed at around 64°C, so the reaction was continued while maintaining the reflux. After reacting for 4 hours, the polycarbonate resin was found as a solid content in the reaction liquid, confirming that decomposition had not progressed.
 実施例1~4及び比較例1における、触媒、溶媒、ビスフェノールの反応収率を、表1に纏めた。 Table 1 summarizes the reaction yields of the catalyst, solvent, and bisphenol in Examples 1 to 4 and Comparative Example 1.
[実施例5]
(i)ビスフェノールAの製造
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、メタノール125g(125g÷32g/モル=3.9モル、メタノール/PCの繰り返し単位(モル比)=3.9モル÷0.79モル=4.9)、炭酸ジメチル300g(300g÷90g/モル=3.3モル、炭酸ジメチル/PCの繰り返し単位(モル比)=3.3モル÷0.79モル=4.2)、及び水酸化カリウム3gを入れた後、ポリカーボネート樹脂200g(繰り返し単位のモル数=200g÷254g/モル=0.79モル)、を室温で入れた(液量は、125g+300g+3g+200g=628g)。
 その後、ジャケット温度を70℃に昇温した。70℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。そのまま、ジャケット温度を70℃に維持したまま3時間反応させて均一の反応液を得た。
得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが24.3質量%(24.3÷100×628g÷228g/モル÷0.79モル×100=85モル%)であった。
[Example 5]
(i) Production of bisphenol A In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 125 g of methanol (125 g/32 g/mol = 3.9 mol, methanol/PC repeating unit) was placed under a nitrogen atmosphere. (molar ratio) = 3.9 mol / 0.79 mol = 4.9), 300 g of dimethyl carbonate (300 g / 90 g / mol = 3.3 mol, dimethyl carbonate / PC repeating unit (molar ratio) = 3.3 mol ÷ 0.79 mol = 4.2), and after adding 3 g of potassium hydroxide, 200 g of polycarbonate resin (number of moles of repeating unit = 200 g ÷ 254 g / mol = 0.79 mol) was added at room temperature ( The amount of liquid is 125 g + 300 g + 3 g + 200 g = 628 g).
After that, the jacket temperature was raised to 70°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 70° C. (it was in the form of a slurry). The mixture was reacted for 3 hours while maintaining the jacket temperature at 70° C. to obtain a uniform reaction solution.
When the composition of a part of the obtained reaction solution was confirmed by high performance liquid chromatography, bisphenol A was found to be 24.3% by mass (24.3/100 x 628 g/228 g/mol/0.79 mol x 100 = 85 mol %).
 得られた反応液に、水相がpH6となるまで希硫酸を加えた。析出した硫酸カリウム塩を減圧濾過で濾別して、均一な抜き出し液を得た。 Dilute sulfuric acid was added to the resulting reaction solution until the pH of the aqueous phase reached 6. The precipitated potassium sulfate was filtered off by filtration under reduced pressure to obtain a uniform extract.
 得られた抜き出し液を、温度計、攪拌翼、留出管、及び圧力調整機を備えた蒸留装置に移した。圧力を常圧(760Torr)から120Torrとし、留出量を見ながら、内温を室温から80℃まで昇温して、留分として392gを抜き出し、釜残を得た。 The extracted liquid was transferred to a distillation apparatus equipped with a thermometer, a stirring blade, a distillation tube, and a pressure regulator. The pressure was changed from normal pressure (760 Torr) to 120 Torr, the internal temperature was raised from room temperature to 80° C. while observing the amount of distillation, and 392 g of a fraction was withdrawn to obtain a still residue.
 得られた釜残に、トルエン280gを加え、80℃のまま均一溶液とした。その後、徐々に温度を5℃まで降温させてスラリー液を得た。得られたスラリー液を遠心分離機で濾別して粗ケーキを得た。 280 g of toluene was added to the obtained still residue to make a uniform solution at 80°C. After that, the temperature was gradually lowered to 5° C. to obtain a slurry liquid. The resulting slurry liquid was filtered using a centrifuge to obtain a crude cake.
 得られたケーキ全量を、ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、供給した。その後、炭酸ジメチル10g、トルエン280gを供給した。得られたスラリー液を、80℃まで昇温させ、均一溶液とした。得られた均一溶液を、100gの脱塩水で3回洗浄した。その後、5℃まで降温して、スラリー液を得た。得られたスラリー液を、遠心分離機で濾別して精ケーキを得た。オイルバスを備えたエバポレータを用いて、精ケーキ全量をオイルバス温度85℃、15Torr、3時間で乾燥させ、固体121gを得た。 The whole amount of the obtained cake was supplied to a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer under a nitrogen atmosphere. After that, 10 g of dimethyl carbonate and 280 g of toluene were supplied. The resulting slurry liquid was heated to 80° C. to form a uniform solution. The homogeneous solution obtained was washed with 100 g of demineralized water three times. After that, the temperature was lowered to 5° C. to obtain a slurry liquid. The resulting slurry liquid was filtered using a centrifugal separator to obtain a fine cake. Using an evaporator equipped with an oil bath, the entire amount of the fine cake was dried at an oil bath temperature of 85° C. and 15 Torr for 3 hours to obtain 121 g of a solid.
 得られた固体を高速液体クロマトグラフィーで確認したところ、ビスフェノールAであり、純度が99.9%であった。得られたビスフェノールAの溶融色は、APHA11であった。 When the obtained solid was confirmed by high performance liquid chromatography, it was found to be bisphenol A with a purity of 99.9%. The melt color of the obtained bisphenol A was APHA11.
(ii)再生ポリカーボネート樹脂の製造
 攪拌機及び留出管を備えた内容量150mLのガラス製反応槽に、上記(i)で得られたビスフェノールAを100.00g(0.44モル)、炭酸ジフェニルを96.30g(0.45モル)及び400質量ppmの炭酸セシウム水溶液を160μL入れた。該ガラス製反応槽を約100Paに減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応槽の内部を窒素に置換した。その後、該反応槽を200℃のオイルバスに浸漬させ、内容物を溶解した。
 攪拌機の回転数を毎分100回とし、反応槽内のビスフェノールAと炭酸ジフェニルのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応槽内の圧力を、絶対圧力で101.3kPaから13.3kPaまで減圧した。続いて反応槽内の圧力を13.3kPaに保持し、フェノールを更に留去させながら、80分間、エステル交換反応を行った。その後、反応槽外部温度を250℃に昇温すると共に、40分間かけて反応槽内圧力を絶対圧力で13.3kPaから399Paまで減圧し、留出するフェノールを系外に除去した。
 その後、反応槽外部温度を290℃に昇温、反応槽の絶対圧力を30Paまで減圧し、重縮合反応を行った。反応槽の攪拌機が予め定めた所定の攪拌動力となったときに、重縮合反応を終了した。290℃に昇温してから重合を終了するまでの時間(後段重合時間)は140分であった。
 次いで、反応槽を窒素により絶対圧力で101.3kPaに復圧した後、ゲージ圧力で0.2MPaまで昇圧し、反応槽の底からポリカーボネート樹脂をストランド状で抜出し、ストランド状のポリカーボネート樹脂を得た。
 その後、回転式カッターを使用して、該ストランドをペレット化して、ペレット状のポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の粘度平均分子量(Mv)は20900で、ペレットYIは8.4であり、色相の良好なポリカーボネート樹脂を得ることができた。
(ii) Production of recycled polycarbonate resin 100.00 g (0.44 mol) of bisphenol A obtained in (i) above and diphenyl carbonate were placed in a 150 mL glass reactor equipped with a stirrer and a distillation tube. 96.30 g (0.45 mol) and 160 μL of an aqueous solution of 400 ppm by mass of cesium carbonate were added. The reaction vessel made of glass was evacuated to about 100 Pa, and then the operation of restoring the pressure to atmospheric pressure with nitrogen was repeated three times to replace the inside of the reaction vessel with nitrogen. After that, the reactor was immersed in an oil bath at 200° C. to dissolve the contents.
The rotation speed of the stirrer was set to 100 times per minute, and the pressure in the reactor was increased to 101 in absolute pressure over 40 minutes while distilling off the phenol by-product of the oligomerization reaction of bisphenol A and diphenyl carbonate in the reactor. The pressure was reduced from 3 kPa to 13.3 kPa. Subsequently, the pressure in the reactor was maintained at 13.3 kPa, and transesterification was carried out for 80 minutes while further distilling off phenol. After that, the external temperature of the reaction vessel was raised to 250° C., and the internal pressure of the reaction vessel was reduced from 13.3 kPa to 399 Pa in absolute pressure over 40 minutes to remove distilled phenol out of the system.
After that, the temperature outside the reaction vessel was raised to 290° C., the absolute pressure in the reaction vessel was reduced to 30 Pa, and a polycondensation reaction was carried out. The polycondensation reaction was terminated when the stirrer in the reaction vessel reached a predetermined stirring power. The time from raising the temperature to 290° C. to completing the polymerization (post-stage polymerization time) was 140 minutes.
Next, the pressure in the reactor was restored to 101.3 kPa in terms of absolute pressure with nitrogen, and then the pressure was increased to 0.2 MPa in terms of gauge pressure, and the polycarbonate resin was discharged from the bottom of the reactor in the form of strands to obtain a polycarbonate resin in strands. .
After that, the strand was pelletized using a rotary cutter to obtain a polycarbonate resin in the form of pellets.
The resulting polycarbonate resin had a viscosity-average molecular weight (Mv) of 20,900 and a pellet YI of 8.4.
[比較例2]
 実施例5において、水酸化カリウム3gの代わりに、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)3gを入れた以外は、実施例5と同様に実施した。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが24.1質量%(24.1÷100×628g÷228g/モル÷0.79モル×100=84モル%)であった。
 固体が120gを得られ、得られた固体を高速液体クロマトグラフィーで確認したところ、ビスフェノールAであり、純度が99.9%であった。得られたビスフェノールAの溶融色は、APHA89であった。
 得られたポリカーボネート樹脂のペレットYIは15であった。
[Comparative Example 2]
In the same manner as in Example 5, except that 3 g of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was added instead of 3 g of potassium hydroxide. carried out.
A part of the obtained reaction solution was checked for composition by high-performance liquid chromatography, and bisphenol A was found to be 24.1% by mass (24.1/100 x 628 g/228 g/mol/0.79 mol x 100 = 84 mol %).
120 g of a solid was obtained, and the resulting solid was confirmed by high performance liquid chromatography to be bisphenol A with a purity of 99.9%. The melt color of the obtained bisphenol A was APHA89.
Pellets YI of the obtained polycarbonate resin was 15.
 実施例5及び比較例2において、触媒の種類、ビスフェノールA(BPA)の生成率、得られたビスフェノールA(BPA)の溶融色、及び得られたポリカーボネート(PC)樹脂のペレットYIを表2に纏めた。表2より、水酸化カリウムを用いることで、得られたビスフェノールAの溶融色が良く、得られたポリカーボネート樹脂のペレットYIも良いことが分かる。 In Example 5 and Comparative Example 2, the type of catalyst, the production rate of bisphenol A (BPA), the melt color of the obtained bisphenol A (BPA), and the obtained polycarbonate (PC) resin pellets YI are shown in Table 2. summarized. From Table 2, it can be seen that the melt color of the bisphenol A obtained by using potassium hydroxide is good, and the pellets YI of the obtained polycarbonate resin are also good.
 なお、本発明のビスフェノールの製造方法は、汎用的な触媒を用いることができ、触媒コストも安価である。例えば、水酸化ナトリウムは500gで1,250円であり、水酸化カリウムは500gで1,400円であり、トリエチルアミンは500mLで1,450円であり、炭酸カリウムは100gで2,200円である。一方、TBDは5gで16,300円であり、TBDを用いた場合には同様なビスフェノールAの生成率を得るためには触媒コストが高価になってしまう。 In addition, the method for producing bisphenol of the present invention can use a general-purpose catalyst, and the catalyst cost is low. For example, 500 g of sodium hydroxide is 1,250 yen, 500 g of potassium hydroxide is 1,400 yen, 500 mL of triethylamine is 1,450 yen, and 100 g of potassium carbonate is 2,200 yen. . On the other hand, 5 g of TBD costs 16,300 yen, and when TBD is used, the cost of the catalyst becomes high in order to obtain the same production rate of bisphenol A.
[実施例6]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、エタノール52g(52g÷46g/モル=1.1モル、エタノール/PCの繰り返し単位(モル比)=1.1モル÷0.31モル=3.5)、炭酸ジエチル120g(120g÷118g/モル=1.0モル、炭酸ジエチル/PCの繰り返し単位(モル比)=1.0モル÷0.31モル=3.2)、及び水酸化カリウム1.1g(0.02モル、水酸化カリウム/PCの繰り返し単位(モル比)=0.02モル÷0.31モル=0.06)を入れた後、ポリカーボネート樹脂80g(繰り返し単位のモル数=0.31モル)、を室温で入れた(液量は52g+120g+1.1g+80g=253.1g)。
 その後、ジャケット温度を70℃に昇温した。70℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。そのまま、ジャケット温度を70℃に維持したまま3時間反応させて均一の反応液を得た。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが22.5質量%(22.5÷100×253.1g÷228g/モル÷0.31モル×100=81モル%)であった。
[Example 6]
In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 52 g of ethanol (52 g/46 g/mol=1.1 mol, ethanol/PC repeating unit (molar ratio)=1. 1 mol/0.31 mol=3.5), 120 g of diethyl carbonate (120 g/118 g/mol=1.0 mol, diethyl carbonate/PC repeating unit (molar ratio)=1.0 mol/0.31 mol= 3.2), and 1.1 g of potassium hydroxide (0.02 mol, potassium hydroxide/PC repeating unit (molar ratio) = 0.02 mol ÷ 0.31 mol = 0.06), 80 g of polycarbonate resin (number of moles of repeating unit=0.31 mol) was added at room temperature (liquid amount: 52 g+120 g+1.1 g+80 g=253.1 g).
After that, the jacket temperature was raised to 70°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 70° C. (it was in the form of a slurry). The mixture was reacted for 3 hours while maintaining the jacket temperature at 70° C. to obtain a uniform reaction solution.
When the composition of a portion of the obtained reaction solution was confirmed by high-performance liquid chromatography, bisphenol A was found to be 22.5% by mass (22.5/100 x 253.1 g/228 g/mol/0.31 mol x 100 = 81 mol%).
[実施例7]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、ブタノール10g(10g÷74g/モル=135ミリモル、ブタノール/PCの繰り返し単位(モル比)=135ミリモル÷39.4ミリモル=3.4)、炭酸ジブチル30g(30g÷174g/モル=172ミリモル、炭酸ジブチル/PCの繰り返し単位(モル比)=172ミリモル÷39.4ミリモル=4.4)、及び水酸化カリウム0.1g(1.8ミリモル、水酸化カリウム/PCの繰り返し単位(モル比)=1.8ミリモル÷39.4ミリモル=0.05)を入れた後、ポリカーボネート樹脂10g(繰り返し単位のモル数=10g÷254g/モル=39.4モル)、を室温で入れた(液量は10g+30g+0.1g+10g=50.1g)。
 その後、ジャケット温度を70℃に昇温した。70℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。そのまま、ジャケット温度を70℃に維持したまま3時間反応させて均一の反応液を得た。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが7.1質量%(7.1÷100×50.1g÷228g/モル÷0.04モル×100=39モル%)であった。
[Example 7]
In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 10 g of butanol (10 g ÷ 74 g / mol = 135 mmol, butanol / PC repeating unit (molar ratio) = 135 mmol ÷ 39 under a nitrogen atmosphere .4 mmol = 3.4), 30 g of dibutyl carbonate (30 g ÷ 174 g/mol = 172 mmol, dibutyl carbonate/PC repeating unit (molar ratio) = 172 mmol ÷ 39.4 mmol = 4.4), and hydroxylation After adding 0.1 g of potassium (1.8 millimoles, potassium hydroxide/PC repeating unit (molar ratio) = 1.8 millimoles ÷ 39.4 millimoles = 0.05), 10 g of polycarbonate resin (repeating unit moles number = 10 g/254 g/mol = 39.4 mol) was added at room temperature (liquid volume was 10 g + 30 g + 0.1 g + 10 g = 50.1 g).
After that, the jacket temperature was raised to 70°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 70° C. (it was in the form of a slurry). The mixture was reacted for 3 hours while maintaining the jacket temperature at 70° C. to obtain a uniform reaction solution.
A portion of the resulting reaction solution was confirmed for composition by high-performance liquid chromatography, and bisphenol A was found to be 7.1% by mass (7.1/100 x 50.1 g/228 g/mol/0.04 mol x 100 = 39 mol%).
[実施例8]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、メタノール16g(16g÷32g/モル=0.5モル、メタノール/PCの繰り返し単位(モル比)=0.5モル÷0.31モル=1.6)、炭酸ジメチル160g(160g÷90g/モル=1.8モル、炭酸ジメチル/PCの繰り返し単位(モル比)=1.8モル÷0.31モル=5.8)、及び水酸化カリウム1.6gを入れた後、ポリカーボネート樹脂80g(繰り返し単位のモル数=0.31モル)、を室温で入れた(液量は16g+160g+1.6g+80g=257.6g)。
 その後、ジャケット温度を65℃に昇温した。65℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。そのまま、ジャケット温度を65℃に維持したまま3時間反応させて均一の反応液を得た。
 得られた反応液を希硫酸で中和した後に、硫酸カリウムをろ過して、ろ液を得た。ろ液をナスフラスコに入れ、オイルバスを備えたエバポレータを用いてフル真空下で乾固させ、固体57gを得た。得られた固体の一部を高速液体クロマトグラフィーで分析したところ、ビスフェノールAが87.3質量%、ビスフェノール-メチルカーボネート縮合体が12.7質量%であった。
[Example 8]
In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 16 g of methanol (16 g/32 g/mol = 0.5 mol, methanol/PC repeating unit (molar ratio) = 0.5 mol) was added under a nitrogen atmosphere. 5 mol/0.31 mol=1.6), 160 g of dimethyl carbonate (160 g/90 g/mol=1.8 mol, dimethyl carbonate/PC repeating unit (molar ratio)=1.8 mol/0.31 mol= 5.8) and 1.6 g of potassium hydroxide were added, and then 80 g of polycarbonate resin (number of moles of repeating unit = 0.31 mol) was added at room temperature (liquid volume was 16 g + 160 g + 1.6 g + 80 g = 257.6 g). .
After that, the jacket temperature was raised to 65°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 65° C. (it was in the form of a slurry). The mixture was reacted for 3 hours while maintaining the jacket temperature at 65° C. to obtain a uniform reaction solution.
After neutralizing the obtained reaction solution with dilute sulfuric acid, potassium sulfate was filtered to obtain a filtrate. The filtrate was placed in an eggplant flask and dried under full vacuum using an evaporator equipped with an oil bath to obtain 57 g of a solid. A portion of the obtained solid was analyzed by high-performance liquid chromatography to find 87.3% by mass of bisphenol A and 12.7% by mass of bisphenol-methyl carbonate condensate.
[実施例9A]
 温度計、攪拌装置、冷却管を備えた内容量1Lの四口フラスコに、実施例5(BPA純度99%)で得られたビスフェノールA46g、エピクロルヒドリン259g、イソプロパノール100g、水36gを仕込み、40℃に昇温して均一に溶解させた後、48.5重量%の水酸化ナトリウム水溶液38gを90分かけて滴下した。滴下と同時に、40℃から65℃まで90分かけて昇温した。その後、65℃で30分保持し反応を完了させ、1Lの分液ロートに反応液を移し、65℃の水69gを加えて65℃の状態で1時間静置した。静置後、分離した油層と水層から水層を抜き出し、副生塩及び過剰の水酸化ナトリウムを除去した。その後、150℃の減圧下でエピクロルヒドリンを完全に除去した。
 その後、メチルイソブチルケトン102gを仕込み、65℃に昇温して均一に溶解させた後、48.5重量%の水酸化ナトリウム水溶液1.4gを仕込み、60分反応させた後、メチルイソブチルケトン57gを仕込み、水200gを用いて水洗を4回行った。その後、150℃の減圧下でメチルイソブチルケトンを完全に除去して実施例9Aの再生エポキシ樹脂を得た。
 JISK7236(2009)に従い、得られたエポキシ樹脂のエポキシ当量を測定したところ、179g/当量であった。
[Example 9A]
46 g of bisphenol A obtained in Example 5 (BPA purity of 99%), 259 g of epichlorohydrin, 100 g of isopropanol, and 36 g of water were placed in a 1-liter four-necked flask equipped with a thermometer, a stirrer, and a cooling tube, and the temperature was raised to 40°C. After the mixture was heated and uniformly dissolved, 38 g of a 48.5% by weight sodium hydroxide aqueous solution was added dropwise over 90 minutes. Simultaneously with the dropping, the temperature was raised from 40° C. to 65° C. over 90 minutes. Thereafter, the reaction solution was held at 65°C for 30 minutes to complete the reaction, transferred to a 1 L separating funnel, added with 69 g of water at 65°C, and allowed to stand at 65°C for 1 hour. After standing, the water layer was extracted from the separated oil layer and water layer, and by-product salts and excess sodium hydroxide were removed. After that, epichlorohydrin was completely removed under reduced pressure at 150°C.
After that, 102 g of methyl isobutyl ketone was charged, heated to 65° C. and dissolved uniformly, then 1.4 g of a 48.5% by weight sodium hydroxide aqueous solution was charged, reacted for 60 minutes, and then 57 g of methyl isobutyl ketone. and washed with 200 g of water four times. Thereafter, methyl isobutyl ketone was completely removed under reduced pressure at 150° C. to obtain a regenerated epoxy resin of Example 9A.
The epoxy equivalent of the obtained epoxy resin was measured according to JISK7236 (2009) and found to be 179 g/equivalent.
[参考例1A]
 温度計、攪拌装置、冷却管を備えた内容量1Lの四口フラスコに、ビスフェノールA(三菱ケミカル株式会社製)46g、エピクロルヒドリン259g、イソプロパノール100g、水36gを仕込み、40℃に昇温して均一に溶解させた後、48.5重量%の水酸化ナトリウム水溶液38gを90分かけて滴下した。滴下と同時に、40℃から65℃まで90分かけて昇温した。その後、65℃で30分保持し反応を完了させ、1Lの分液ロートに反応液を移し、65℃の水69gを加えて65℃の状態で1時間静置した。静置後、分離した油層と水層から水層を抜き出し、副生塩及び過剰の水酸化ナトリウムを除去した。その後、150℃の減圧下でエピクロルヒドリンを完全に除去した。
 その後、メチルイソブチルケトン102gを仕込み、65℃に昇温して均一に溶解させた後、48.5重量%の水酸化ナトリウム水溶液1.4gを仕込み、60分反応させた後、メチルイソブチルケトン57gを仕込み、水200gを用いて水洗を4回行った。その後、150℃の減圧下でメチルイソブチルケトンを完全に除去して参考例1Aのエポキシ樹脂を得た。
 JISK7236(2009)に従い、得られたエポキシ樹脂のエポキシ当量を測定したところ、179g/当量であった。
[Reference Example 1A]
46 g of bisphenol A (Mitsubishi Chemical Co., Ltd.), 259 g of epichlorohydrin, 100 g of isopropanol, and 36 g of water were charged in a 1-liter four-necked flask equipped with a thermometer, a stirrer, and a cooling tube, and the temperature was raised to 40° C. and the temperature was uniform. 38 g of a 48.5% by weight sodium hydroxide aqueous solution was added dropwise over 90 minutes. Simultaneously with the dropping, the temperature was raised from 40° C. to 65° C. over 90 minutes. After that, the reaction solution was kept at 65°C for 30 minutes to complete the reaction, transferred to a 1 L separating funnel, added with 69 g of water at 65°C, and allowed to stand at 65°C for 1 hour. After standing, the water layer was extracted from the separated oil layer and water layer, and by-product salts and excess sodium hydroxide were removed. After that, epichlorohydrin was completely removed under reduced pressure at 150°C.
After that, 102 g of methyl isobutyl ketone was charged, heated to 65° C. and dissolved uniformly, then 1.4 g of a 48.5% by weight sodium hydroxide aqueous solution was charged, reacted for 60 minutes, and then 57 g of methyl isobutyl ketone. and washed with 200 g of water four times. Thereafter, methyl isobutyl ketone was completely removed under reduced pressure at 150° C. to obtain an epoxy resin of Reference Example 1A.
The epoxy equivalent of the obtained epoxy resin was measured according to JISK7236 (2009) and found to be 179 g/equivalent.
[実施例9B及び参考例1B]
(エポキシ樹脂組成物)
 表2に示す割合で、実施例9A又は参考例1Aのエポキシ樹脂と、硬化剤(新日本理化社製 商品名 リカシッド MH-700))及び硬化触媒(四国化成工業社製 商品名 キュアゾール 2E4MZ)を計量、室温で均一になるまで攪拌し混合して、エポキシ樹脂組成物を得た。
[Example 9B and Reference Example 1B]
(Epoxy resin composition)
In the ratio shown in Table 2, the epoxy resin of Example 9A or Reference Example 1A, a curing agent (trade name Rikacid MH-700 manufactured by Shin Nippon Rika Co., Ltd.) and a curing catalyst (trade name Cure Sol 2E4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.) The ingredients were weighed, stirred and mixed at room temperature until uniform, to obtain an epoxy resin composition.
(エポキシ樹脂硬化物)
 離型ペットフィルムを貼りつけたガラス板を2枚用意し、離型ペットフィルムを2枚とも内側にしてガラス板間隔を3mmに調整し、金型を作製した。この金型にエポキシ樹脂組成物を注型し、100℃3時間、その後140℃3時間加熱してエポキシ樹脂硬化物を得た。得られた硬化物を縦5cm、横1cm、厚さ3mmに切削して試験片を得た。
(Epoxy resin cured product)
Two glass plates to which the release PET film was adhered were prepared, and the distance between the two glass plates was adjusted to 3 mm with the release PET film on the inner side to prepare a mold. An epoxy resin composition was cast into this mold and heated at 100° C. for 3 hours and then at 140° C. for 3 hours to obtain a cured epoxy resin. The resulting cured product was cut into a length of 5 cm, a width of 1 cm and a thickness of 3 mm to obtain a test piece.
(硬化物の物性の評価)
 試験片を熱機械分析装置(DMA:セイコーインスツルメント社製 EXSTAR6100)により、3点曲げモードにて、30℃から280℃まで5℃/分で昇温し、250℃のE’を測定し、250℃弾性率とした。
(Evaluation of physical properties of cured product)
The test piece was heated from 30° C. to 280° C. at a rate of 5° C./min in a three-point bending mode using a thermomechanical analyzer (DMA: EXSTAR6100 manufactured by Seiko Instruments Inc.), and E′ at 250° C. was measured. , 250° C. elastic modulus.
[結果の評価]
 表3より、実施例9Bのエポキシ樹脂硬化物は参考例1Bのエポキシ樹脂硬化物に比べて250℃弾性率が高く、耐熱変形性に優れることが分かる。
[Evaluation of results]
From Table 3, it can be seen that the epoxy resin cured product of Example 9B has a higher elastic modulus at 250° C. than the epoxy resin cured product of Reference Example 1B, and is excellent in heat deformation resistance.
[実施例10]
(第1の分解工程)
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、メタノール52g(1.6モル、メタノール/PCの繰り返し単位(モル比)=5.2)、炭酸ジメチル120g(1.3モル、炭酸ジメチル/PCの繰り返し単位(モル比)=4.2)、及び水酸化ナトリウム1.1g(0.03モル、水酸化ナトリウム/PCの繰り返し単位(モル比)=0.10)を入れた後、ポリカーボネート樹脂80g(繰り返し単位のモル数=0.31モル)を室温で入れた(液量は52g+120g+1.1g+80g=253.1g)。
[Example 10]
(First decomposition step)
In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 52 g of methanol (1.6 mol, methanol/PC repeating unit (molar ratio) = 5.2) and 120 g of dimethyl carbonate were placed under a nitrogen atmosphere. (1.3 mol, dimethyl carbonate/PC repeating unit (molar ratio) = 4.2), and 1.1 g of sodium hydroxide (0.03 mol, sodium hydroxide/PC repeating unit (molar ratio) = 0 .10) was added, 80 g of polycarbonate resin (number of moles of repeating unit=0.31 mol) was added at room temperature (liquid amount: 52 g+120 g+1.1 g+80 g=253.1 g).
 その後、ジャケット温度を70℃に昇温した。70℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。そのまま、ジャケット温度を70℃に維持したまま3時間反応させて第1の分解液(均一の反応液)を得た。 After that, the jacket temperature was raised to 70°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 70° C. (it was in the form of a slurry). The reaction was continued for 3 hours while maintaining the jacket temperature at 70° C. to obtain a first decomposition liquid (uniform reaction liquid).
 得られた第1の分解液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが18.5質量%(18.5÷100×253.1g÷228g/モル÷0.31モル×100=66モル%)であった。また、ガスクロマトグラフィーで組成を確認したところメタノールが14.7質量%であり、炭酸ジメチルが55.2質量%であった。 When the composition of a part of the obtained first decomposition liquid was confirmed by high performance liquid chromatography, bisphenol A was found to be 18.5% by mass (18.5/100 x 253.1 g/228 g/mol/0.31 mol×100=66 mol %). Further, when the composition was confirmed by gas chromatography, it was 14.7% by mass of methanol and 55.2% by mass of dimethyl carbonate.
(第2の分解工程)
 この第1の分解液に水5.6g(0.31モル)を加え、70℃に維持したまま1時間攪拌した。1時間後、攪拌を停止し静置するとセパラブルフラスコの壁に白色の固体が析出しているのが確認できた。
(Second decomposition step)
5.6 g (0.31 mol) of water was added to this first decomposition solution, and the mixture was stirred for 1 hour while maintaining the temperature at 70°C. After 1 hour, when the stirring was stopped and the mixture was allowed to stand still, it was confirmed that a white solid had precipitated on the wall of the separable flask.
 反応液を抜き出し、重量を測定すると243.8gであり、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが25.7質量%(25.7÷100×243.8g÷228g/モル÷0.31モル×100=88.6モル%)であった。 The reaction solution was extracted and weighed to be 243.8 g. When the composition was confirmed by high-performance liquid chromatography, 25.7% by mass of bisphenol A (25.7/100 x 243.8 g/228 g/mol/0 .31 mol x 100 = 88.6 mol%).
 また、ガスクロマトグラフィーで組成を確認したところ、メタノールが21.1質量%であり、反応に供給したメタノールに対する回収率は98.9質量%(21.1÷100×243.8÷52g×100=98.9質量%)であった。また、炭酸ジメチルが49.0質量%であり、反応に供給した炭酸ジメチルに対する回収率は99.5質量%(49.0÷100×243.8÷120g×100=99.5質量%)であった。 Further, when the composition was confirmed by gas chromatography, methanol was 21.1% by mass, and the recovery rate for the methanol supplied to the reaction was 98.9% by mass (21.1/100 x 243.8/52 g x 100 = 98.9% by mass). In addition, dimethyl carbonate is 49.0% by mass, and the recovery rate for the dimethyl carbonate supplied to the reaction is 99.5% by mass (49.0/100 x 243.8/120g x 100 = 99.5% by mass). there were.
[実施例11]
(第1の分解工程)
 実施例10と同様にして、第1の分解工程を行い、第1の分解液(均一の反応液)を得た。得られた第1の分解液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが18.4質量%(18.4÷100×253.1g÷228g/モル÷0.31モル×100=66モル%)であった。また、ガスクロマトグラフィーで組成を確認したところメタノールが14.6質量%であり、炭酸ジメチルが55.3質量%であった。
[Example 11]
(First decomposition step)
A first decomposition step was performed in the same manner as in Example 10 to obtain a first decomposition solution (uniform reaction solution). When the composition of a part of the obtained first decomposition liquid was confirmed by high performance liquid chromatography, bisphenol A was found to be 18.4% by mass (18.4/100 x 253.1 g/228 g/mol/0.31 mol×100=66 mol %). Further, when the composition was confirmed by gas chromatography, methanol was 14.6% by mass and dimethyl carbonate was 55.3% by mass.
(第2の分解工程)
 この第1の分解液に水4.5g(0.25モル)を加え、70℃に維持したまま1時間攪拌した。1時間後、攪拌を停止し静置するとセパラブルフラスコの壁に白色の固体が析出しているのが確認できた。
(Second decomposition step)
4.5 g (0.25 mol) of water was added to this first decomposition solution, and the mixture was stirred for 1 hour while maintaining the temperature at 70°C. After 1 hour, when the stirring was stopped and the mixture was allowed to stand still, it was confirmed that a white solid was deposited on the wall of the separable flask.
 反応液を抜き出し、重量を測定すると245.8gであり、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが24.5質量%(24.5÷100×245.8g÷228g/モル÷0.31モル×100=85.2モル%)であった。 When the reaction liquid was extracted and weighed, it was 245.8 g. When the composition was confirmed by high-performance liquid chromatography, 24.5% by mass of bisphenol A (24.5/100 x 245.8 g/228 g/mol/0 .31 mol x 100 = 85.2 mol%).
 また、ガスクロマトグラフィーで組成を確認したところ、メタノールが19.1質量%であり、反応に供給したメタノールに対する回収率は90.3質量%(19.1÷100×245.8÷52g×100=90.3質量%)であった。また、炭酸ジメチルが51.3質量%であり、反応に供給した炭酸ジメチルに対する回収率は105.1質量%(51.3÷100×245.8÷120g×100=105.1質量%)であった。 Further, when the composition was confirmed by gas chromatography, methanol was 19.1% by mass, and the recovery rate for the methanol supplied to the reaction was 90.3% by mass (19.1/100 x 245.8/52 g x 100 = 90.3% by mass). In addition, dimethyl carbonate is 51.3% by mass, and the recovery rate for the dimethyl carbonate supplied to the reaction is 105.1% by mass (51.3/100 x 245.8/120g x 100 = 105.1% by mass). there were.
 得られた反応液に、水相がpH6となるまで希硫酸を加えた。析出した硫酸カリウム塩を減圧濾過で濾別して、均一な抜き出し液を得た。 Dilute sulfuric acid was added to the resulting reaction solution until the pH of the aqueous phase reached 6. The precipitated potassium sulfate was filtered off by filtration under reduced pressure to obtain a uniform extract.
 得られた抜き出し液を、オイルバスを備えたエバポレーターを用いて乾固させ、ビスフェノールを得た。また、留出液は165gであり、ガスクロマトグラフィーで組成を確認したところメタノールが28.4質量%(28.4÷100×165g=46.9g)であり、炭酸ジメチルが70.4質量%(70.4÷100×165g=116.2g)であった。 The obtained extracted liquid was dried using an evaporator equipped with an oil bath to obtain bisphenol. In addition, the distillate was 165 g, and when the composition was confirmed by gas chromatography, it was 28.4% by mass of methanol (28.4 ÷ 100 x 165 g = 46.9 g) and 70.4% by mass of dimethyl carbonate. (70.4/100 x 165g = 116.2g).
[実施例12]
(第1の分解工程)
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、実施例11で得た留出液165g(メタノール46.9g及び炭酸ジメチル116.2gを含む)、メタノール5.1g(留出液中のメタノールと合算し52g(1.6モル)、メタノール/PCの繰り返し単位(モル比)=1.6モル÷0.31モル=5.2)、炭酸ジメチル3.8g(留出液中の炭酸ジメチルと合算し120g(1.3モル)、炭酸ジメチル/PCの繰り返し単位(モル比)=1.3モル÷0.31モル=4.2)、及び水酸化ナトリウム1.1g(0.03モル、水酸化ナトリウム/PCの繰り返し単位(モル比)=0.10)を入れた後、ポリカーボネート樹脂80g(繰り返し単位のモル数=80g÷254g/モル=0.31モル)を室温で入れた(液量は165g+5.1g+3.8g+1.1g+80g=255.0g)。
[Example 12]
(First decomposition step)
In a jacketed separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, under a nitrogen atmosphere, 165 g of the distillate obtained in Example 11 (containing 46.9 g of methanol and 116.2 g of dimethyl carbonate), methanol 5 1 g (52 g (1.6 mol) combined with methanol in the distillate, methanol/PC repeating unit (molar ratio) = 1.6 mol/0.31 mol = 5.2), dimethyl carbonate 3. 8 g (120 g (1.3 mol) combined with dimethyl carbonate in the distillate, dimethyl carbonate/PC repeating unit (molar ratio) = 1.3 mol ÷ 0.31 mol = 4.2), and hydroxylation After adding 1.1 g of sodium (0.03 mol, sodium hydroxide/PC repeating unit (molar ratio) = 0.10), 80 g of polycarbonate resin (moles of repeating unit = 80 g/254 g/mol = 0.10) was added. 31 mol) was added at room temperature (liquid volume was 165 g + 5.1 g + 3.8 g + 1.1 g + 80 g = 255.0 g).
 その後、ジャケット温度を70℃に昇温した。70℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。そのまま、ジャケット温度を70℃に維持したまま3時間反応させて第1の分解液(均一の反応液)を得た。 After that, the jacket temperature was raised to 70°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 70° C. (it was in the form of a slurry). The reaction was continued for 3 hours while maintaining the jacket temperature at 70° C. to obtain a first decomposition liquid (uniform reaction liquid).
 得られた第1の分解液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが18.4質量%(18.4÷100×255.0g÷228g/モル÷0.31モル×100=66モル%)であった。また、ガスクロマトグラフィーで組成を確認したところメタノールが14.6質量%であり、炭酸ジメチルが54.8質量%であった。 When the composition of a part of the obtained first decomposition liquid was confirmed by high-performance liquid chromatography, bisphenol A was found to be 18.4% by mass (18.4/100 x 255.0 g/228 g/mol/0.31 mol×100=66 mol %). Further, when the composition was confirmed by gas chromatography, it was 14.6% by mass of methanol and 54.8% by mass of dimethyl carbonate.
(第2の分解工程)
 この第1の分解液に水6.7g(0.37モル)を加え、70℃に維持したまま1時間攪拌した。1時間後、攪拌を停止し静置するとセパラブルフラスコの壁に白色の固体が析出しているのが確認できた。
(Second decomposition step)
6.7 g (0.37 mol) of water was added to this first decomposition solution, and the mixture was stirred for 1 hour while maintaining the temperature at 70°C. After 1 hour, when the stirring was stopped and the mixture was allowed to stand still, it was confirmed that a white solid was deposited on the wall of the separable flask.
 反応液を抜き出し、重量を測定すると243.6gであり、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが26.2質量%(26.2÷100×243.6g÷228g/モル÷0.31モル×100=90.3モル%)であった。 The reaction solution was extracted and weighed to find 243.6 g. When the composition was confirmed by high-performance liquid chromatography, 26.2% by mass of bisphenol A (26.2/100 x 243.6 g/228 g/mol/0 .31 mol x 100 = 90.3 mol%).
 また、ガスクロマトグラフィーで組成を確認したところ、メタノールが23.1質量%であり、反応に供給したメタノールに対する回収率は109.9質量%(23.1÷100×243.6÷52g×100=108.2質量%)であった。また、炭酸ジメチルが46.3質量%であり、反応に供給した炭酸ジメチルに対する回収率は94.1質量%(46.3÷100×243.6÷120g×100=94.0質量%)であった。 Also, when the composition was confirmed by gas chromatography, methanol was 23.1% by mass, and the recovery rate with respect to the methanol supplied to the reaction was 109.9% by mass (23.1/100 x 243.6/52 g x 100 = 108.2% by mass). In addition, dimethyl carbonate is 46.3% by mass, and the recovery rate for the dimethyl carbonate supplied to the reaction is 94.1% by mass (46.3/100 x 243.6/120g x 100 = 94.0% by mass). there were.
[実施例13]
(第1の分解工程)
 実施例10と同様にして、第1の分解工程を行い、第1の分解液(均一の反応液)を得た。得られた第1の分解液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが18.5質量%(18.5÷100×253.1g÷228g/モル÷0.31モル×100=66モル%)であった。また、ガスクロマトグラフィーで組成を確認したところメタノールが14.7質量%であり、炭酸ジメチルが55.2質量%であった。
[Example 13]
(First decomposition step)
A first decomposition step was performed in the same manner as in Example 10 to obtain a first decomposition solution (uniform reaction solution). When the composition of a part of the obtained first decomposition liquid was confirmed by high performance liquid chromatography, bisphenol A was found to be 18.5% by mass (18.5/100 x 253.1 g/228 g/mol/0.31 mol×100=66 mol %). Further, when the composition was confirmed by gas chromatography, it was 14.7% by mass of methanol and 55.2% by mass of dimethyl carbonate.
(第2の分解工程)
 この第1の分解液に水2.2g(0.12モル)を加え、70℃に維持したまま1時間攪拌した。1時間後、攪拌を停止し静置するとセパラブルフラスコの壁に白色の固体が析出しているのが確認できた。
(Second decomposition step)
2.2 g (0.12 mol) of water was added to this first decomposition solution, and the mixture was stirred for 1 hour while maintaining the temperature at 70°C. After 1 hour, when the stirring was stopped and the mixture was allowed to stand still, it was confirmed that a white solid was deposited on the wall of the separable flask.
 反応液を抜き出し、重量を測定すると248.8gであり、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが22.6質量%(22.6÷100×248.8g÷228g/モル÷0.31モル×100=79.6モル%)であった。 The reaction liquid was extracted and weighed to be 248.8 g. When the composition was confirmed by high-performance liquid chromatography, 22.6% by mass of bisphenol A (22.6/100 x 248.8 g/228 g/mol/0 .31 mol x 100 = 79.6 mol%).
 また、ガスクロマトグラフィーで組成を確認したところ、メタノールが15.9質量%であり、反応に供給したメタノールに対する回収率は77.0質量%(15.9÷100×248.8÷52g×100=76.1質量%)であった。また、炭酸ジメチルが54.8質量%であり、反応に供給した炭酸ジメチルに対する回収率は113.6質量%(54.8÷100×248.8÷120g×100=113.6質量%)であった。 Further, when the composition was confirmed by gas chromatography, methanol was 15.9% by mass, and the recovery rate for the methanol supplied to the reaction was 77.0% by mass (15.9/100 x 248.8/52 g x 100 = 76.1% by mass). In addition, dimethyl carbonate was 54.8% by mass, and the recovery rate with respect to the dimethyl carbonate supplied to the reaction was 113.6% by mass (54.8/100 x 248.8/120g x 100 = 113.6% by mass). there were.
[実施例14]
(第1の分解工程)
 実施例10と同様にして、第1の分解工程を行い、第1の分解液(均一の反応液)を得た。得られた第1の分解液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが18.5質量%(18.5÷100×253.1g÷228g/モル÷0.31モル×100=66モル%)であった。また、ガスクロマトグラフィーで組成を確認したところメタノールが14.7質量%であり、炭酸ジメチルが55.2質量%であった。
[Example 14]
(First decomposition step)
A first decomposition step was performed in the same manner as in Example 10 to obtain a first decomposition solution (uniform reaction solution). When the composition of a part of the obtained first decomposition liquid was confirmed by high-performance liquid chromatography, bisphenol A was found to be 18.5% by mass (18.5/100 x 253.1 g/228 g/mol/0.31 mol×100=66 mol %). Further, when the composition was confirmed by gas chromatography, methanol was 14.7% by mass and dimethyl carbonate was 55.2% by mass.
(第2の分解工程)
 この第1の分解液に水11.2g(0.62モル)を加え、70℃に維持したまま1時間攪拌した。1時間後、攪拌を停止し静置するとセパラブルフラスコの壁に白色の固体が析出しているのが確認できた。
(Second decomposition step)
11.2 g (0.62 mol) of water was added to this first decomposition solution, and the mixture was stirred for 1 hour while maintaining the temperature at 70°C. After 1 hour, when the stirring was stopped and the mixture was allowed to stand still, it was confirmed that a white solid was deposited on the wall of the separable flask.
 反応液を抜き出し、重量を測定すると235.4gであり、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが27.6質量%(27.6÷100×235.4g÷228g/モル÷0.31モル×100=91.9モル%)であった。 The reaction solution was extracted and weighed to find 235.4 g. When the composition was confirmed by high-performance liquid chromatography, 27.6% by mass of bisphenol A (27.6/100 x 235.4 g/228 g/mol/0 .31 mol x 100 = 91.9 mol%).
 また、ガスクロマトグラフィーで組成を確認したところ、メタノールが30.6質量%であり、反応に供給したメタノールに対する回収率は138.5質量%(30.6÷100×235.4÷52g×100=138.5質量%)であった。また、炭酸ジメチルが38.6質量%であり、反応に供給した炭酸ジメチルに対する回収率は75.7質量%(38.6÷100×235.4÷120g×100=75.7質量%)であった。 Further, when the composition was confirmed by gas chromatography, methanol was 30.6% by mass, and the recovery rate for the methanol supplied to the reaction was 138.5% by mass (30.6/100 x 235.4/52 g x 100 = 138.5% by mass). In addition, dimethyl carbonate is 38.6% by mass, and the recovery rate for the dimethyl carbonate supplied to the reaction is 75.7% by mass (38.6/100 x 235.4/120g x 100 = 75.7% by mass). there were.
 実施例10~14の結果を表4にまとめた。表4から、反応途中で水を添加し、炭酸ジアルキルの加水分解を実施することで、ビスフェノールAの分解反応を促進させ、ビスフェノールAの収率をさらに向上させることが可能であることが分かる。また、添加する水の量を一定の範囲に調整することで、ポリカーボネート樹脂のアルコリシスで生成した炭酸ジアルキルから脂肪族モノアルコールを再生し、回収した混合物中の炭酸ジアルキルと脂肪族モノアルコールの比率を、第1の分解工程に再利用することが容易な比率(80質量%~120質量%)に保つことが可能である。 The results of Examples 10-14 are summarized in Table 4. From Table 4, it can be seen that by adding water during the reaction to hydrolyze the dialkyl carbonate, the decomposition reaction of bisphenol A can be accelerated and the yield of bisphenol A can be further improved. In addition, by adjusting the amount of water to be added within a certain range, the aliphatic monoalcohol is regenerated from the dialkyl carbonate produced by the alcoholysis of the polycarbonate resin, and the ratio of the dialkyl carbonate and the aliphatic monoalcohol in the recovered mixture is changed to , it is possible to maintain a ratio (80% by mass to 120% by mass) that is easy to reuse in the first decomposition step.
[実施例15]
 ジムロート冷却管、攪拌翼、温度計を備えたジャケット式セパラブルフラスコに、窒素雰囲気下、メタノール50g(50g÷32g/モル=1.6モル、メタノール/PCの繰り返し単位(モル比)=1.6モル÷0.31モル=5.2)、炭酸ジメチル120g(1.3モル、炭酸ジメチル/PCの繰り返し単位(モル比)=4.2)、及び水酸化カリウム1.2g(0.02モル、水酸化カリウム/PCの繰り返し単位(モル比)=0.02モル÷0.31モル=0.1)を入れた後、ポリカーボネート樹脂80g(繰り返し単位のモル数=0.31モル)を室温で入れた(液量は50g+120g+1.2g+80g=251.2g)。
 その後、ジャケット温度を70℃に昇温した。70℃に到達した時の反応液には、未溶解分のポリカーボネート樹脂が見られた(スラリー状であった)。分解開始時点の理論スラリー濃度は0.32(ポリカーボネート樹脂の質量80g÷分解液質量251.2g=0.32)であった。
 そのまま、ジャケット温度を70℃に維持したまま3時間反応させて均一の反応液を得た。
 得られた反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが24.5質量%(24.5÷100×251.2g÷228g/モル÷0.31モル×100=87モル%)であった。
[Example 15]
In a jacket-type separable flask equipped with a Dimroth condenser, a stirring blade, and a thermometer, 50 g of methanol (50 g/32 g/mol = 1.6 mol, methanol/PC repeating unit (molar ratio) = 1.6 mol) was placed in a nitrogen atmosphere. 6 mol ÷ 0.31 mol = 5.2), 120 g of dimethyl carbonate (1.3 mol, dimethyl carbonate/PC repeating unit (molar ratio) = 4.2), and 1.2 g of potassium hydroxide (0.02 mol, potassium hydroxide / PC repeating unit (molar ratio) = 0.02 mol ÷ 0.31 mol = 0.1), and then 80 g of polycarbonate resin (moles of repeating unit = 0.31 mol). It was added at room temperature (liquid volume: 50 g + 120 g + 1.2 g + 80 g = 251.2 g).
After that, the jacket temperature was raised to 70°C. Undissolved polycarbonate resin was found in the reaction liquid when the temperature reached 70° C. (it was in the form of a slurry). The theoretical slurry concentration at the start of decomposition was 0.32 (mass of polycarbonate resin: 80 g/mass of decomposed liquid: 251.2 g = 0.32).
The mixture was reacted for 3 hours while maintaining the jacket temperature at 70° C. to obtain a uniform reaction solution.
When the composition of a part of the obtained reaction solution was confirmed by high-performance liquid chromatography, bisphenol A was found to be 24.5% by mass (24.5/100 x 251.2 g/228 g/mol/0.31 mol x 100 = 87 mol%).
[実施例16]
 炭酸ジメチルの供給量を120gから105g(1.2モル、炭酸ジメチル/PCの繰り返し単位(モル比)=3.9)に変更した以外は、実施例15と同様の条件でポリカーボネート樹脂を分解した。分解開始時点の理論スラリー濃度は0.34(ポリカーボネート樹脂の質量80g÷分解液質量236.2g=0.34)であった。
 分解開始後3時間時点の反応液は均一であった。この反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが26.7質量%(26.7÷100×236.2g÷228g/モル÷0.31モル×100=89モル%)であった。
[Example 16]
The polycarbonate resin was decomposed under the same conditions as in Example 15, except that the supply amount of dimethyl carbonate was changed from 120 g to 105 g (1.2 mol, dimethyl carbonate/PC repeating unit (molar ratio) = 3.9). . The theoretical slurry concentration at the start of decomposition was 0.34 (mass of polycarbonate resin: 80 g/mass of decomposed liquid: 236.2 g = 0.34).
The reaction solution was homogeneous 3 hours after the start of decomposition. When the composition of a part of this reaction liquid was confirmed by high-performance liquid chromatography, bisphenol A was found to be 26.7% by mass (26.7/100 x 236.2 g/228 g/mol/0.31 mol x 100 = 89 mol %).
[実施例17]
 炭酸ジメチルの供給量を120gから94g(1.0モル、炭酸ジメチル/PCの繰り返し単位(モル比)=3.2)に変更した以外は、実施例15と同様の条件でポリカーボネート樹脂を分解した。分解開始時点の理論スラリー濃度は0.36(ポリカーボネート樹脂の質量80g÷分解液質量225.2g=0.36)であった。
 分解開始後3時間時点の反応液は均一であった。この反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが28.0質量%(28.0÷100×225.2g÷228g/モル÷0.31モル×100=89モル%)であった。
[Example 17]
The polycarbonate resin was decomposed under the same conditions as in Example 15, except that the supply amount of dimethyl carbonate was changed from 120 g to 94 g (1.0 mol, dimethyl carbonate/PC repeating unit (molar ratio) = 3.2). . The theoretical slurry concentration at the start of decomposition was 0.36 (mass of polycarbonate resin: 80 g/mass of decomposed liquid: 225.2 g = 0.36).
The reaction solution was homogeneous 3 hours after the start of decomposition. When the composition of a part of this reaction liquid was confirmed by high-performance liquid chromatography, bisphenol A was found to be 28.0% by mass (28.0 ÷ 100 x 225.2 g ÷ 228 g/mol ÷ 0.31 mol x 100 = 89 mol %).
[実施例18]
 炭酸ジメチルの供給量を120gから74g(0.8モル、炭酸ジメチル/PCの繰り返し単位(モル比)=2.6)に変更した以外は、実施例15と同様の条件でポリカーボネート樹脂を分解した。分解開始時点の理論スラリー濃度は0.39(ポリカーボネート樹脂の質量80g÷分解液質量205.2g=0.39)であった。
 分解開始後3時間時点の反応液は均一であった。この反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが28.4質量%(28.4÷100×205.2g÷228g/モル÷0.31モル×100=82モル%)であった。
[Example 18]
The polycarbonate resin was decomposed under the same conditions as in Example 15, except that the supply amount of dimethyl carbonate was changed from 120 g to 74 g (0.8 mol, dimethyl carbonate/PC repeating unit (molar ratio) = 2.6). . The theoretical slurry concentration at the start of decomposition was 0.39 (mass of polycarbonate resin: 80 g/mass of decomposed liquid: 205.2 g = 0.39).
The reaction solution was homogeneous 3 hours after the start of decomposition. When the composition of a part of this reaction liquid was confirmed by high-performance liquid chromatography, bisphenol A was found to be 28.4% by mass (28.4 ÷ 100 x 205.2 g ÷ 228 g/mol ÷ 0.31 mol x 100 = 82 mol %).
[実施例19]
 炭酸ジメチルの供給量を120gから52g(0.6モル、炭酸ジメチル/PCの繰り返し単位(モル比)=1.9)に変更した以外は、実施例15と同様の条件でポリカーボネート樹脂を分解した。分解開始時点の理論スラリー濃度は0.44(ポリカーボネート樹脂の質量80g÷分解液質量183.2g=0.44)であった。
 分解開始後3時間時点の反応液は均一であった。この反応液の一部を、高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが25.2質量%(25.2÷100×183.2g÷228g/モル÷0.31モル×100=65モル%)であった。
 更に1時間、70℃に維持した状態で反応を継続させ、分解開始後4時間時点の反応液の一部を高速液体クロマトグラフィーで組成を確認したところ、ビスフェノールAが30.8質量%(30.8÷100×183.2g÷228g/モル÷0.31モル×100=80モル%)であった。
[Example 19]
The polycarbonate resin was decomposed under the same conditions as in Example 15, except that the supply amount of dimethyl carbonate was changed from 120 g to 52 g (0.6 mol, dimethyl carbonate/PC repeating unit (molar ratio) = 1.9). . The theoretical slurry concentration at the start of decomposition was 0.44 (mass of polycarbonate resin: 80 g/mass of decomposed liquid: 183.2 g = 0.44).
The reaction solution was homogeneous 3 hours after the start of decomposition. When the composition of a part of this reaction liquid was confirmed by high performance liquid chromatography, bisphenol A was 25.2% by mass (25.2 ÷ 100 x 183.2 g ÷ 228 g/mol ÷ 0.31 mol x 100 = 65 mol %).
The reaction was continued for an additional hour while maintaining the temperature at 70°C. Four hours after the start of decomposition, a portion of the reaction solution was analyzed for composition by high-performance liquid chromatography. .8 ÷ 100 x 183.2 g ÷ 228 g/mole ÷ 0.31 mol x 100 = 80 mol%).
[比較例3]
 炭酸ジメチルの供給量を120gから45g(0.5モル、炭酸ジメチル/PCの繰り返し単位(モル比)=1.6)に変更した以外は、実施例15と同様の条件でポリカーボネート樹脂を分解した。
分解開始直後、ポリカーボネート樹脂の一部が温度計とセパラブルフラスコとの間に堆積した。この堆積したポリカーボネート樹脂の集塊物は、分解開始後3時間時点でも完全に溶解しなかった。分解開始時点の理論スラリー濃度は0.45(ポリカーボネート樹脂の質量80g÷分解液質量176.2g=0.45)であった。
[Comparative Example 3]
The polycarbonate resin was decomposed under the same conditions as in Example 15, except that the supply amount of dimethyl carbonate was changed from 120 g to 45 g (0.5 mol, dimethyl carbonate/PC repeating unit (molar ratio) = 1.6). .
Immediately after decomposition started, part of the polycarbonate resin deposited between the thermometer and the separable flask. This accumulated agglomerate of polycarbonate resin did not completely dissolve even 3 hours after decomposition began. The theoretical slurry concentration at the start of decomposition was 0.45 (mass of polycarbonate resin: 80 g/mass of decomposed liquid: 176.2 g = 0.45).
[比較例4]
 炭酸ジメチルの供給量を120gから30g(0.3モル、炭酸ジメチル/PCの繰り返し単位(モル比)=1.0)に変更した以外は、実施例15と同様の条件でポリカーボネート樹脂を分解した。
 分解開始直後、ポリカーボネート樹脂が分散せず集塊化し、撹拌翼に過負荷がかかったことで空転し、撹拌不能になったため、分解反応を停止させた。分解開始時点の理論スラリー濃度は0.50(ポリカーボネート樹脂の質量80g÷分解液質量161.2g=0.50)であった。
[Comparative Example 4]
The polycarbonate resin was decomposed under the same conditions as in Example 15, except that the supply amount of dimethyl carbonate was changed from 120 g to 30 g (0.3 mol, dimethyl carbonate/PC repeating unit (molar ratio) = 1.0). .
Immediately after the start of decomposition, the polycarbonate resin did not disperse and agglomerated, and the stirring impeller was overloaded, making it idling and making stirring impossible, so the decomposition reaction was stopped. The theoretical slurry concentration at the start of decomposition was 0.50 (mass of polycarbonate resin: 80 g/mass of decomposed liquid: 161.2 g = 0.50).
[比較例5]
 炭酸ジメチルの供給量を120gから30g(0.3モル、炭酸ジメチル/PCの繰り返し単位(モル比)=1.0)、メタノールの供給量を50gから80g(2.5モル、メタノール/PCの繰り返し単位(モル比)=8.1)に変更した以外は、実施例15と同様の条件でポリカーボネート樹脂を分解した。
 ポリカーボネート樹脂の混合性は良好であったが、分解開始後3時間時点でも多くのポリカーボネート樹脂が未溶解であった。更に1時間、70℃に維持した状態で反応を継続させたが、ポリカーボネート樹脂は完溶しなかった。分解開始時点の理論スラリー濃度は0.42(ポリカーボネート樹脂の質量80g÷分解液質量191.2g=0.42)であった。
[Comparative Example 5]
The amount of dimethyl carbonate supplied was 120 g to 30 g (0.3 mol, repeating unit (molar ratio) of dimethyl carbonate/PC = 1.0), and the amount of methanol supplied was 50 g to 80 g (2.5 mol, of methanol/PC). The polycarbonate resin was decomposed under the same conditions as in Example 15, except that the repeating unit (molar ratio) was changed to 8.1).
The mixability of the polycarbonate resin was good, but much of the polycarbonate resin was still undissolved even after 3 hours from the start of decomposition. The reaction was continued while maintaining the temperature at 70° C. for another hour, but the polycarbonate resin was not completely dissolved. The theoretical slurry concentration at the start of decomposition was 0.42 (mass of polycarbonate resin: 80 g/mass of decomposed liquid: 191.2 g = 0.42).
 実施例15~19、比較例3~5の結果を表5にまとめた。表5から、分解に供するポリカーボネート樹脂の繰り返し単位に対し、適切な量の炭酸ジアルキル溶媒を供給することで、ポリカーボネート樹脂の溶解速度及び分解速度を維持することが可能であることが分かる。ポリカーボネート樹脂の繰り返し単位に対し、炭酸ジアルキルの供給量が少ないと、ポリカーボネート樹脂の溶解速度が低下し、ポリカーボネート樹脂の分解に要する時間が長くなり、効率的でない。 The results of Examples 15-19 and Comparative Examples 3-5 are summarized in Table 5. From Table 5, it can be seen that the dissolution rate and decomposition rate of the polycarbonate resin can be maintained by supplying an appropriate amount of the dialkyl carbonate solvent to the repeating units of the polycarbonate resin to be decomposed. If the amount of dialkyl carbonate supplied is small with respect to the repeating units of the polycarbonate resin, the rate of dissolution of the polycarbonate resin will decrease, and the time required for decomposition of the polycarbonate resin will lengthen, which is inefficient.
 本発明によれば、ケミカルリサイクルを利用して廃プラスチック等から、ビスフェノール等の有用な化合物を得ることができる。更に、これらを用いて、再度、ポリカーボネート樹脂やエポキシ樹脂を製造することができ、産業上有用である。 According to the present invention, chemical recycling can be used to obtain useful compounds such as bisphenol from waste plastics. Furthermore, using these, polycarbonate resins and epoxy resins can be produced again, which is industrially useful.

Claims (22)

  1.  ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒を含む反応液中で前記ポリカーボネート樹脂の分解反応を行う、ビスフェノールの製造方法であり、
     前記分解反応に使用するポリカーボネート樹脂のビスフェノールに由来する繰り返し単位1モルに対する、前記分解反応に使用する炭酸ジアルキルのモル比が1.8以上であり、
     前記触媒が、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド、アルカリ金属酸化物、鎖状アルキルアミン及びピリジンからなる群から選択されるいずれかである、ビスフェノールの製造方法。
    A method for producing bisphenol, wherein the decomposition reaction of the polycarbonate resin is performed in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst,
    The molar ratio of the dialkyl carbonate used in the decomposition reaction to 1 mol of repeating units derived from bisphenol in the polycarbonate resin used in the decomposition reaction is 1.8 or more,
    A method for producing bisphenol, wherein the catalyst is selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal alkoxides, alkali metal oxides, chain alkylamines and pyridine.
  2.  前記反応液が、スラリー状である、請求項1に記載のビスフェノールの製造方法。 The method for producing bisphenol according to claim 1, wherein the reaction liquid is slurry.
  3.  前記炭酸ジアルキルが、前記ポリカーボネート樹脂に由来しない炭酸ジアルキルを含む、請求項1又は2に記載のビスフェノールの製造方法。 The method for producing bisphenol according to claim 1 or 2, wherein the dialkyl carbonate contains a dialkyl carbonate not derived from the polycarbonate resin.
  4.  前記反応液が、前記ポリカーボネート樹脂、前記炭酸ジアルキル、前記脂肪族モノアルコール及び前記触媒を混合して調製される、請求項1又は2に記載のビスフェノールの製造方法。 The method for producing bisphenol according to claim 1 or 2, wherein the reaction liquid is prepared by mixing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol, and the catalyst.
  5.  前記アルカリ金属水酸化物が、水酸化ナトリウム又は水酸化カリウムであり、
     前記アルカリ金属炭酸塩が、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム又は炭酸水素カリウムであり、
     前記アルカリ金属アルコキシドが、ナトリウムフェノキシド又はナトリウムメトキシドであり、
     前記アルカリ金属酸化物が、酸化ナトリウム又は酸化カリウムである、請求項1又は2に記載のビスフェノールの製造方法。
    The alkali metal hydroxide is sodium hydroxide or potassium hydroxide,
    the alkali metal carbonate is sodium carbonate, potassium carbonate, sodium hydrogen carbonate or potassium hydrogen carbonate;
    the alkali metal alkoxide is sodium phenoxide or sodium methoxide,
    3. The method for producing bisphenol according to claim 1, wherein said alkali metal oxide is sodium oxide or potassium oxide.
  6.  前記鎖状アルキルアミンが、下記式(I)又は下記式(II)で示される、請求項1又は2に記載のビスフェノールの製造方法。
     式(I)中、Rは、炭素数1~3のアルキル基を表し、R~Rは、それぞれに独立に水素原子又は炭素数1~3のアルキル基を表す。
     式(II)中、R~Rは、それぞれに独立に水素原子又は炭素数1~3のアルキル基を表し、mは1~6の整数を表す。
    The method for producing bisphenol according to claim 1 or 2, wherein the chain alkylamine is represented by the following formula (I) or the following formula (II).
    In formula (I), R A represents an alkyl group having 1 to 3 carbon atoms, and R B to R C each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
    In formula (II), R D to R G each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 1 to 6.
  7.  前記炭酸ジアルキルが、炭酸ジメチル、炭酸ジエチル又は炭酸ジブチルである、請求項1又は2に記載のビスフェノールの製造方法。 The method for producing bisphenol according to claim 1 or 2, wherein the dialkyl carbonate is dimethyl carbonate, diethyl carbonate or dibutyl carbonate.
  8.  前記ビスフェノールが、2,2-ビス(4-ヒドロキシフェニル)プロパンである、請求項1又は2に記載のビスフェノールの製造方法。 The method for producing bisphenol according to claim 1 or 2, wherein the bisphenol is 2,2-bis(4-hydroxyphenyl)propane.
  9.  前記脂肪族モノアルコールが、メタノール、エタノール又はブタノールである請求項1又は2に記載のビスフェノールの製造方法。 The method for producing bisphenol according to claim 1 or 2, wherein the aliphatic monoalcohol is methanol, ethanol or butanol.
  10.  下記工程A、工程B1及び工程C1を有する、請求項1又は2に記載のビスフェノールの製造方法。
     工程A:前記ポリカーボネート樹脂、前記炭酸ジアルキル、前記脂肪族モノアルコール及び前記触媒を含む前記反応液中で、前記ポリカーボネート樹脂を分解させて、ビスフェノールを含むスラリー状でないポリカーボネート分解液を得る工程
     工程B1:前記工程Aで得られたポリカーボネート分解液を濃縮して、濃縮液を得る工程
     工程C1:前記工程B1で得られた濃縮液に芳香族炭化水素を供給して晶析することでビスフェノールを析出させ、ビスフェノールを含むスラリーを得て、得られたスラリーを固液分離してビスフェノールを得る工程
    3. The method for producing bisphenol according to claim 1 or 2, comprising the following step A, step B1 and step C1.
    Step A: Step of decomposing the polycarbonate resin in the reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a non-slurry polycarbonate decomposition solution containing bisphenol Step B1: A step of concentrating the polycarbonate decomposition liquid obtained in the step A to obtain a concentrated liquid. Step C1: An aromatic hydrocarbon is supplied to the concentrated liquid obtained in the step B1 to crystallize, thereby precipitating bisphenol. a step of obtaining a slurry containing bisphenol and subjecting the obtained slurry to solid-liquid separation to obtain bisphenol
  11.  下記工程A、工程B2及び工程C2を有する、請求項1又は2に記載のビスフェノールの製造方法。
     工程A:前記ポリカーボネート樹脂、前記炭酸ジアルキル、前記脂肪族モノアルコール及び前記触媒を含む前記反応液中で、前記ポリカーボネート樹脂を分解させて、ビスフェノールを含むスラリー状でないポリカーボネート分解液を得る工程
     工程B2:前記工程Aで得られたポリカーボネート分解液及び芳香族モノアルコールを含む溶液から前記炭酸ジアルキル及び前記脂肪族モノアルコールを除去して、ビスフェノール及び芳香族モノアルコールを含む溶液を得る工程
     工程C2:前記工程B2で得られたビスフェノール及び芳香族モノアルコールを含む溶液からビスフェノールを回収する工程
    3. The method for producing bisphenol according to claim 1 or 2, comprising the following Step A, Step B2 and Step C2.
    Step A: Step of decomposing the polycarbonate resin in the reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a non-slurry polycarbonate decomposition solution containing bisphenol Step B2: A step of removing the dialkyl carbonate and the aliphatic monoalcohol from the solution containing the polycarbonate decomposition solution and the aromatic monoalcohol obtained in step A to obtain a solution containing bisphenol and the aromatic monoalcohol Step C2: the above step Step of recovering bisphenol from the solution containing bisphenol and aromatic monoalcohol obtained in B2
  12.  前記ポリカーボネート樹脂、前記炭酸ジアルキル、前記脂肪族モノアルコール及び前記触媒を含む前記反応液中で前記ポリカーボネート樹脂を分解させて、ビスフェノールを含む第1の分解液を得る第1の分解工程と、
     前記第1の分解液と水とを混合することで前記炭酸ジアルキルを加水分解して、脂肪族モノアルコールを再生させると共に、ポリカーボネート樹脂を分解して、ビスフェノールを生成させる第2の分解工程とを有し、
     前記第1の分解工程と前記第2の分解工程が連続してなされる、請求項1に記載のビスフェノールの製造方法。
    a first decomposition step of decomposing the polycarbonate resin in the reaction solution containing the polycarbonate resin, the dialkyl carbonate, the aliphatic monoalcohol and the catalyst to obtain a first decomposition solution containing bisphenol;
    a second decomposition step of hydrolyzing the dialkyl carbonate by mixing the first decomposition liquid and water to regenerate the aliphatic monoalcohol and decomposing the polycarbonate resin to produce bisphenol; have
    2. The method for producing bisphenol according to claim 1, wherein said first decomposition step and said second decomposition step are continuously performed.
  13.  前記分解反応に使用するポリカーボネート樹脂のビスフェノールに由来する繰り返し単位1モルに対して、前記第1の分解液と混合される水が、0.5モル以上1.5モル以下である、請求項12に記載のビスフェノールの製造方法。 12. Water mixed with the first decomposition solution is 0.5 mol or more and 1.5 mol or less per 1 mol of repeating units derived from bisphenol in the polycarbonate resin used in the decomposition reaction. The method for producing bisphenol according to .
  14.  前記第2の分解工程で再生した脂肪族モノアルコールを、前記炭酸ジアルキルとの混合物としてビスフェノールから分離し、前記脂肪族モノアルコールと前記炭酸ジアルキルの混合物を前記第1の分解工程に再利用する、請求項12又は13に記載のビスフェノールの製造方法。 The aliphatic monoalcohol regenerated in the second decomposition step is separated from the bisphenol as a mixture with the dialkyl carbonate, and the mixture of the aliphatic monoalcohol and the dialkyl carbonate is reused in the first decomposition step. The method for producing bisphenol according to claim 12 or 13.
  15.  前記反応液がスラリー状であり、前記第1の分解液がスラリー状でない、請求項12又は13に記載のビスフェノールの製造方法。 The method for producing bisphenol according to claim 12 or 13, wherein the reaction liquid is slurry and the first decomposition liquid is not slurry.
  16.  前記ポリカーボネート樹脂の分解において副生した下記式(III)に示すビスフェノール-炭酸アルキル縮合体を更に回収する、請求項1又は2に記載のビスフェノールの製造方法。
     式(III)中、Rは、メチル基、エチル基又はブチル基である。
    3. The method for producing bisphenol according to claim 1 or 2, wherein a bisphenol-alkyl carbonate condensate represented by the following formula (III), which is a by-product of decomposition of the polycarbonate resin, is further recovered.
    In formula (III), R is a methyl group, an ethyl group or a butyl group.
  17.  前記式(III)において、Rがメチル基である、請求項16に記載のビスフェノールの製造方法。 The method for producing bisphenol according to claim 16, wherein in the formula (III), R is a methyl group.
  18.  請求項1又は2に記載のビスフェノールの製造方法を経てビスフェノールを得た後、該ビスフェノールを含むビスフェノール原料を用いて、再生ポリカーボネート樹脂を製造する、再生ポリカーボネート樹脂の製造方法。 A method for producing recycled polycarbonate resin, comprising obtaining bisphenol through the method for producing bisphenol according to claim 1 or 2, and then producing recycled polycarbonate resin using a bisphenol raw material containing the bisphenol.
  19.  請求項1又は2に記載のビスフェノールの製造方法を経てビスフェノールを得た後、該ビスフェノールを含む多価ヒドロキシ化合物原料を用いてエポキシ樹脂を製造する、エポキシ樹脂の製造方法。 A method for producing an epoxy resin, comprising obtaining bisphenol through the method for producing bisphenol according to claim 1 or 2, and then producing an epoxy resin using a polyhydric hydroxy compound raw material containing the bisphenol.
  20.  請求項19に記載のエポキシ樹脂の製造方法を経てエポキシ樹脂を得た後、該エポキシ樹脂を含むエポキシ樹脂原料と多価ヒドロキシ化合物原料とを更に反応させ、エポキシ樹脂を製造する、エポキシ樹脂の製造方法。 20. Production of an epoxy resin, comprising: obtaining an epoxy resin through the method for producing an epoxy resin according to claim 19; Method.
  21.  請求項19に記載のエポキシ樹脂の製造方法を経てエポキシ樹脂を得、該エポキシ樹脂と硬化剤を含むエポキシ樹脂組成物を得た後、該エポキシ樹脂組成物を硬化してエポキシ樹脂硬化物を得る、エポキシ樹脂硬化物の製造方法。 An epoxy resin is obtained through the method for producing an epoxy resin according to claim 19, an epoxy resin composition containing the epoxy resin and a curing agent is obtained, and the epoxy resin composition is cured to obtain a cured epoxy resin. , a method for producing a cured epoxy resin.
  22.  ポリカーボネート樹脂、炭酸ジアルキル、脂肪族モノアルコール及び触媒を含む反応液中で前記ポリカーボネート樹脂を分解させる、下記式(III)に示すビスフェノール-炭酸アルキル縮合体の製造方法であり、
     前記触媒が、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ金属アルコキシド、アルカリ金属酸化物、鎖状アルキルアミン及びピリジンからなる群から選択されるいずれかである、ビスフェノール-炭酸アルキル縮合体の製造方法。
     式(III)中、Rは、メチル基、エチル基又はブチル基である。
    A method for producing a bisphenol-alkyl carbonate condensate represented by the following formula (III), wherein the polycarbonate resin is decomposed in a reaction solution containing a polycarbonate resin, a dialkyl carbonate, an aliphatic monoalcohol and a catalyst,
    Production of bisphenol-alkyl carbonate condensate, wherein the catalyst is selected from the group consisting of alkali metal hydroxide, alkali metal carbonate, alkali metal alkoxide, alkali metal oxide, chain alkylamine and pyridine Method.
    In formula (III), R is a methyl group, an ethyl group or a butyl group.
PCT/JP2023/006417 2022-02-25 2023-02-22 Bisphenol production method, recycled polycarbonate resin production method, epoxy resin production method, cured epoxy resin production method, and bisphenol-alkyl carbonate condensate production method WO2023163026A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-028163 2022-02-25
JP2022028163 2022-02-25
JP2022-135783 2022-08-29
JP2022135783 2022-08-29

Publications (1)

Publication Number Publication Date
WO2023163026A1 true WO2023163026A1 (en) 2023-08-31

Family

ID=87766000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006417 WO2023163026A1 (en) 2022-02-25 2023-02-22 Bisphenol production method, recycled polycarbonate resin production method, epoxy resin production method, cured epoxy resin production method, and bisphenol-alkyl carbonate condensate production method

Country Status (2)

Country Link
TW (1) TW202337951A (en)
WO (1) WO2023163026A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231774A (en) * 2002-02-12 2003-08-19 Victor Co Of Japan Ltd Method for recovering useful substance from waste plastic
JP2004051620A (en) * 2002-05-30 2004-02-19 Victor Co Of Japan Ltd Method for recovering useful product from waste plastic
JP2004339389A (en) * 2003-05-16 2004-12-02 Teijin Ltd Method for depolymerizing aromatic polycarbonate
JP2005008773A (en) * 2003-06-19 2005-01-13 Victor Co Of Japan Ltd Method for recovering useful material from waste plastic
WO2020257234A1 (en) * 2019-06-19 2020-12-24 Sabic Global Technologies B.V. Isolation of bisphenol a from depolymerization of a poly(carbonate)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231774A (en) * 2002-02-12 2003-08-19 Victor Co Of Japan Ltd Method for recovering useful substance from waste plastic
JP2004051620A (en) * 2002-05-30 2004-02-19 Victor Co Of Japan Ltd Method for recovering useful product from waste plastic
JP2004339389A (en) * 2003-05-16 2004-12-02 Teijin Ltd Method for depolymerizing aromatic polycarbonate
JP2005008773A (en) * 2003-06-19 2005-01-13 Victor Co Of Japan Ltd Method for recovering useful material from waste plastic
WO2020257234A1 (en) * 2019-06-19 2020-12-24 Sabic Global Technologies B.V. Isolation of bisphenol a from depolymerization of a poly(carbonate)

Also Published As

Publication number Publication date
TW202337951A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
US20230322653A1 (en) Bisphenol production method , recycled polycarbonate resin production method, carbon dioxide production method, carbonic acid diester production method, epoxy resin production method, and epoxy resin cured product production method
CN105764878B (en) From the method that bisphenol fluorene class is reclaimed comprising fluorene structured resin
US10913818B2 (en) Epoxy resin, epoxy resin composition, cured product and electrical or electronic component
JP2008056844A (en) Method for producing polycarbonate having vegetable-originated component
TW201627393A (en) Tetramethylbiphenol epoxy resin, epoxy resin composition, cured product and semiconductor sealing material
WO2022113847A1 (en) Polycarbonate resin decomposition method, bisphenol production method, dialkyl carbonate production method, alkyl aryl carbonate production method, diaryl carbonate production method, recycled polycarbonate resin production method, epoxy resin production method, and epoxy resin cured product production method
WO2023163026A1 (en) Bisphenol production method, recycled polycarbonate resin production method, epoxy resin production method, cured epoxy resin production method, and bisphenol-alkyl carbonate condensate production method
JP2023124421A (en) Method for producing bisphenol, method for producing recycled polycarbonate resin, method for producing epoxy resin and method for producing epoxy resin cured product
CN116583495A (en) Method for decomposing polycarbonate resin, method for producing bisphenol, method for producing dialkyl carbonate, method for producing alkylaryl carbonate, method for producing diaryl carbonate, method for producing recycled polycarbonate resin, method for producing epoxy resin, and method for producing cured epoxy resin
KR102197406B1 (en) Method for preparing solid phase epoxy resin using eco-friendly biomass-based isosorbide epoxy
TWI795486B (en) Epoxy resin composition, cured product and electrical and electronic parts
JP6372857B2 (en) Method for recovering bisphenolfluorenes from a resin containing a fluorene structure
WO2024070871A1 (en) Method for producing bisphenol, method for producing epoxy resin, method for producing epoxy resin cured product, and bisphenol composition
JP2023013730A (en) Method for degrading polycarbonate resin, method for producing urea, method for producing bisphenol, and method for producing reclaimed polycarbonate resin
WO2023210563A1 (en) Composition containing bisphenol, production method for same, production method for bisphenol a, and production method for polycarbonate resin
JP2024048433A (en) Method for producing bisphenol A, method for producing epoxy resin, and method for producing cured epoxy resin
TW202116846A (en) Epoxy resin composition, cured product and electrical/electronic component
JP2024048954A (en) Method for producing bisphenol, method for producing epoxy resin, and method for producing cured epoxy resin
JP2022075133A (en) Method for producing bisphenol and method for producing regenerated polycarbonate resin
JP2024017469A (en) Method for producing inorganic matter and phenolic compound simultaneously, and method for producing composite material
JP4857598B2 (en) Epoxy compound, method for producing the same, and epoxy resin composition
JP6972943B2 (en) Epoxy resin, epoxy resin composition, cured product and electrical / electronic parts
JP2024017471A (en) Method for producing metal phenoxide, method for producing epoxy resin, and method for producing cured epoxy resin
JP2024048992A (en) Bisphenol composition, method for producing bisphenol composition, method for producing epoxy resin, and method for producing cured epoxy resin
TW202313750A (en) Phenol mixture, epoxy resin, epoxy resin composition, cured product, and electrical/electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760025

Country of ref document: EP

Kind code of ref document: A1