WO2023162026A1 - Optical line terminal and bandwidth allocation method - Google Patents

Optical line terminal and bandwidth allocation method Download PDF

Info

Publication number
WO2023162026A1
WO2023162026A1 PCT/JP2022/007339 JP2022007339W WO2023162026A1 WO 2023162026 A1 WO2023162026 A1 WO 2023162026A1 JP 2022007339 W JP2022007339 W JP 2022007339W WO 2023162026 A1 WO2023162026 A1 WO 2023162026A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
onu
time
optical
bandwidth allocation
Prior art date
Application number
PCT/JP2022/007339
Other languages
French (fr)
Japanese (ja)
Inventor
聡志 嶌津
智暁 吉田
隆義 田代
亮太 喜多
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/007339 priority Critical patent/WO2023162026A1/en
Publication of WO2023162026A1 publication Critical patent/WO2023162026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks

Definitions

  • the present invention relates to an optical subscriber line terminal device and a band allocation method.
  • FTTH Fiber To The Home
  • FTTH services include, for example, GE-PON (Gigabit Ethernet (registered trademark)-Passive Optical Network) and 10G-EPON, which realize gigabit-class transmission speeds.
  • GE-PON Gigabit Ethernet (registered trademark)-Passive Optical Network)
  • 10G-EPON which realize gigabit-class transmission speeds.
  • an OLT Optical Line Terminal
  • ONUs Optical Network Units
  • optical splitter 4 ⁇ N (N is an integer equal to or greater than 2).
  • TDM Time Division Multiplexing
  • downlink communication communication from the OLT 2 to the ONU 3
  • downlink communication communication from each ONU 3 to the OLT 2
  • uplink communication uses TDMA (time division multiple access) technology.
  • the DBA function is a bandwidth control function that dynamically allocates bandwidth for upstream communication (hereinafter referred to as "upstream bandwidth") according to traffic volume.
  • upstream bandwidth bandwidth for upstream communication
  • the DBA function realizes efficient upstream bandwidth without generating unused bandwidth by appropriately switching the bandwidth to be allocated according to the status of upstream communication traffic flowing through each ONU 3 .
  • each ONU 3 notifies the OLT 2 of the amount of upstream data waiting for transmission accumulated in the upstream transmission buffer by means of a REPORT frame.
  • the OLT 2 based on the received REPORT frame, notifies each ONU 3 of the uplink data transmission start time and transmission permission amount by the GATE frame so that each ONU 3 can transmit uplink data without time collision. to.
  • Each ONU 3 transmits upstream data based on the transmission permission amount at the transmission start time indicated by the GATE frame. In this way, the DBA function is realized by exchanging data using the GATE frame and the REPORT frame.
  • FIG. 11 is a diagram showing an example of transmission timing notification when one ONU 3 is connected to the OLT 2
  • FIG. is a diagram showing an example of notification of the transmission timing of .
  • a GATE frame is transmitted from OLT2 to ONU3, and ONU3 transmits a REPORT frame and data based on the GATE frame transmitted from OLT2.
  • the OLT 2 instructs each ONU 3 of the transmission start time and transmission permission amount of the upstream data by the GATE frame so that the OLT 2 can transmit the upstream data without time collision. transmits a REPORT frame and data.
  • the ONU 3 may re-notify the OLT 2 of the amount of upstream data accumulated in the buffer for the next allocation of the upstream bandwidth. If the interval between the transmission of the uplink data and the start of transmission of the REPORT frame is short, the ONU 3 has a transmission reservation queue and performs report calculation during transmission of the uplink data accumulated in the transmission reservation queue.
  • An ONU 3 that does not have a transmission reservation queue needs to perform transmission reservation calculation of the transmission permission amount (DATA grant) of uplink data and report calculation in the uplink transmission queue provided in the buffer.
  • these calculations take time, and the transmission reservation calculation of the uplink data transmission permission amount (DATA grant) cannot be completed in time before the REPORT frame transmission starts after the GATE frame is received, or the uplink data transmission permission amount ( DATA Grant) transmission reservation calculation was completed in time, but the report calculation may not be completed in time.
  • the ONU 3 that does not have a transmission reservation queue cannot transmit the transmission permission amount (DATA grant) of uplink data. Furthermore, since the report calculation is too late, the ONU 3 that does not have a transmission reservation queue cannot transmit the REPORT frame. As a result, the OLT 2 does not allow the ONU 3, which does not have a transmission reservation queue, to perform upstream transmission at the next opportunity.
  • the ONU 3 cannot transmit the REPORT frame because the report calculation is not in time. As a result, the OLT 2 does not allow the ONU 3, which does not have a transmission reservation queue, to perform upstream transmission at the next opportunity.
  • the ONU 3 that does not have a transmission reservation queue has the problem that the report calculation cannot be completed in time and upstream communication cannot be performed.
  • the object of the present invention is to provide a technology that enables upstream communication even in ONUs that do not have transmission reservation queues.
  • An aspect of the present invention is an optical subscriber line terminal in an optical access system comprising an optical subscriber line terminal and at least one optical subscriber line terminal having no transmission reservation queue, an identification unit for identifying whether or not said one or more optical subscriber line terminating units are optical subscriber line terminating units having no transmission reservation queue; When the optical network unit does not have a reservation queue, a band allocation unit that performs band allocation control so that transmission reservation calculation and report calculation can be completed in time for the one or more optical network units; and a communication unit for transmitting the results of band allocation control performed in the allocation unit to the one or more optical network terminal units.
  • One aspect of the present invention is a band allocation control method in an optical access system comprising an optical subscriber line terminal device and at least one optical subscriber line terminal device having no transmission reservation queue, wherein the one or more identifying whether or not the optical subscriber line terminating equipment is an optical subscriber line terminating equipment having no transmission reservation queue, and wherein the one or more optical subscriber line terminating equipment is an optical subscriber line terminating equipment having no transmission reservation queue; in the case of optical subscriber line terminating equipment, band allocation control is performed so that transmission reservation calculation and report calculation can be completed in time for said one or more optical subscriber line terminating equipment, and the results of band allocation control are sent to said one or more optical subscriber line terminals; It is a band allocation method for transmitting to a line termination device.
  • an ONU that does not have a transmission reservation queue can perform upstream communication.
  • FIG. 1 is a diagram illustrating a configuration example of an optical access system according to a first embodiment
  • FIG. FIG. 2 is a diagram for explaining an outline of processing of the optical access system in the first embodiment
  • FIG. 3 is a diagram illustrating a configuration example of an OLT in the first embodiment
  • FIG. 4 is a flow chart showing the flow of OLT processing in the first embodiment
  • FIG. 10 is a diagram for explaining an outline of processing of the optical access system in the second embodiment
  • FIG. It is a figure which shows the structural example of OLT in 2nd Embodiment.
  • FIG. 4 is a diagram showing a configuration example of a transmission preparation time database
  • 10 is a flow chart showing the flow of registration processing in the transmission preparation time database performed by the OLT in the second embodiment.
  • FIG. 10 is a flow chart showing the flow of upstream band control processing performed by the OLT in the second embodiment;
  • FIG. 1 is a diagram showing a configuration example of an optical access system using a PON;
  • FIG. 10 is a diagram showing an example of notification of transmission timing when one ONU is connected to the OLT;
  • FIG. 10 is a diagram showing an example of notification of transmission timing when two ONUs are connected to the OLT;
  • FIG. 1 is a diagram showing a configuration example of an optical access system 100 according to the first embodiment.
  • the optical access system 100 comprises an OLT 10 , a plurality of ONUs 20 - 1 to 20 -N, and an optical splitter 30 .
  • the OLT 10 and the optical splitter 30, and the optical splitter 30 and the ONU 20 are connected via optical fibers.
  • the number of OLTs 10, ONUs 20 and optical splitters 30 included in the optical access system 100 is not particularly limited. Although only one optical splitter 30 is shown in FIG. 1 for simplification of explanation, the OLT 10 and the ONU 30 may be connected via a plurality of optical splitters 30 .
  • the OLT 10 receives the optical signal transmitted from each ONU 20 and transfers it to a host device or host network (for example, the Internet, etc.).
  • the OLT 10 receives signals from a host device or a host network and transfers them to each ONU 20 .
  • the OLT 10 notifies each ONU 20 of transmission timing by transmitting a GATE frame to each ONU 20 .
  • the OLT 10 is, for example, an optical subscriber line terminal.
  • the OLT 10 has a DBA function, which is a function necessary for operating GE-PON and 10G-EPON as a system.
  • the DBA function can flexibly allocate an upstream bandwidth according to the traffic of upstream communication from each ONU 20 (hereinafter referred to as "upstream traffic").
  • the OLT 10 controls the transmission of upstream signals using a protocol called MPCP (Multi Point Control Protocol).
  • MPCP Multi Point Control Protocol
  • the OLT 10 instructs each ONU 20 of the upstream signal transmission start time, transmission duration, and transmission permission amount using a GATE frame so that each ONU 20 can transmit an upstream signal without time collision. .
  • the ONU 20 is installed, for example, in the home of a subscriber who receives communication service.
  • the ONU 20 receives the optical signal transmitted from the OLT 10 and converts it into an electrical signal.
  • the ONU 20 then transfers the converted electrical signal to the user's terminal device (for example, PC or the like).
  • the ONU 20 receives an electrical signal transmitted from a user's terminal device and converts it into an optical signal.
  • the ONU 20 then transfers the converted optical signal to the OLT 10 .
  • the ONUs 20 in this embodiment include ONUs with transmission reservation queues and ONUs without transmission reservation queues.
  • the ONU 20-1 is an ONU that does not have a transmission reservation queue
  • the ONU 20-2 is an ONU that has a transmission reservation queue.
  • the number of ONUs without a transmission reservation queue is not particularly limited as long as it is one or more.
  • ONU 20 is, for example, an optical subscriber line terminator.
  • the ONU 20 requests band allocation from the OLT 10 and transmits data to the OLT 10 using the allocated band during the permitted transmission time notified from the OLT 10 .
  • the optical splitter 30 splits the optical signal transmitted from the OLT 10 and outputs it to each ONU 20 , multiplexes the optical signal transmitted from each ONU 20 and outputs it to the OLT 10 .
  • FIG. 2 is a diagram for explaining an outline of processing of the optical access system 100 in the first embodiment.
  • the DBA cycle interval is set so that the ONU 20-1, which does not have a transmission reservation queue, performs the transmission reservation calculation of the transmission permission amount of uplink data and the report calculation in time for the transmission permission time. adjust. More specifically, the OLT 10 determines that the time between the n-th DBA cycle and the (n+1)-th DBA cycle is the time required for transmission reservation calculation and report calculation of the transmission permission amount of uplink data (hereinafter referred to as "before REPORT GAP").
  • the ONU 20-1 that does not have a transmission reservation queue can perform transmission reservation calculation of the transmission permission amount of uplink data and report calculation in time for the transmission permission time. Then, the ONU 20-1 can transmit the REPORT frame after waiting for the pre-REPORT GAP time.
  • FIG. 3 is a diagram showing a configuration example of the OLT 10 in the first embodiment.
  • the OLT 10 includes a lower communication unit 11, a higher communication unit 12, a MAC (Media Access Control) processing unit 13, an OAM (Operations Administration Maintenance) processing unit 14, an ONU identification unit 15, a pre-REPORT GAP database 16, A dynamic band allocation unit 17 and an MPCP processing unit 18 are provided.
  • MAC Media Access Control
  • OAM Operations Administration Maintenance
  • the lower communication unit 11 communicates with each ONU 20.
  • the lower communication unit 11 converts the optical signal transmitted from each ONU 20 into an electrical signal and outputs the electrical signal to the MAC processing unit 13 .
  • the lower communication unit 11 converts the electrical signal output from the MAC processing unit 13 into an optical signal and transmits the optical signal to the ONU 20 .
  • the higher communication unit 12 communicates with a higher device or a higher network.
  • the host communication unit 12 converts an optical signal transmitted from a host device or a host network into an electrical signal and outputs the electrical signal to the MAC processing unit 13 .
  • the host communication unit 12 converts the electrical signal addressed to the host device or the host network output from the MAC processing unit 13 into an optical signal and transmits the optical signal to the host device or the host network.
  • the MAC processing unit 13 is a functional unit of the data link layer that controls data transmission/reception.
  • the MAC processing unit 13 is generally configured using a PON chip.
  • the MAC processing unit 13 outputs the electrical signal output from the lower communication unit 11 or the higher communication unit 12 to a predetermined output destination.
  • the OAM processing unit 14 analyzes the OAM frame included in the optical signal received by the lower communication unit 11 . Thereby, the OAM processing unit 14 acquires information about the ONU 20 (hereinafter referred to as "ONU information"). The OAM processing unit 14 outputs the acquired ONU information to the ONU identification unit 15 .
  • the ONU information includes at least ONU identification information, an identifier indicating the ONU type, the amount of uplink data, and the like.
  • the ONU identification information is information for identifying the ONU 20, such as a MAC address.
  • the ONU type identifier is information indicating the ONU model type.
  • the ONU identification unit 15 identifies the ONU 20 that is the transmission source of the optical signal based on the ONU information acquired by the OAM processing unit 14 .
  • identifying the ONU 20 means identifying whether the ONU 20 has a transmission reservation queue or an ONU without a transmission reservation queue.
  • the ONU identification unit 15 identifies the ONU 20, which is the transmission source of the optical signal, based on the ONU information as follows.
  • Each ONU 20 has an identifier (ONU type) for each model.
  • the administrator or the like registers the ONU type in the OLT 10 in advance.
  • the administrator or the like additionally registers an ONU type to the OLT 10 each time a new ONU model is added.
  • the OLT 10 holds a database (not shown) in which ONU types are registered.
  • the ONU identification unit 15 refers to a database (not shown) to determine whether the ONU type included in the acquired ONU information has a transmission reservation queue or does not have a transmission reservation queue.
  • the ONU identification unit 15 determines that the ONU 20 which is the transmission source of the optical signal is an ONU having a transmission reservation queue. Identify.
  • the ONU identification unit 15 determines that the ONU 20 that is the transmission source of the optical signal is an ONU that does not have a transmission reservation queue. identify it as
  • the pre-report gap database 16 stores pre-report gap information, which is the time required for transmission reservation calculation and report calculation of the transmission permission amount of uplink data. It should be noted that the pre-REPORT GAP information stored in the pre-REPORT GAP database 16 may be one or more. In the case of a plurality of ONUs 20 , the pre-REPORT GAP information for each ONU 20 may be stored in the pre-REPORT GAP database 16 .
  • the dynamic bandwidth allocation unit 17 calculates the upstream bandwidth to be allocated to each ONU 20 using the DBA algorithm.
  • the dynamic band allocation unit 17 outputs to the MPCP processing unit 18 information on the permitted amount of transmission, which is the uplink band allocated to each ONU 20 , information on the start time of transmission of uplink data, and information on the duration of transmission.
  • the MPCP processing unit 18 performs processing based on the MPCP protocol. For example, the MPCP processing unit 18 detects the ONU 20 newly connected to the OLT 10 (Discovery processing). For example, the MPCP processing unit 18 generates a GATE frame including information on the permitted transmission amount allocated to each ONU 20 by the dynamic bandwidth allocation unit 17, information on the transmission start time of uplink data, and information on the transmission duration.
  • FIG. 4 is a flow chart showing the processing flow of the OLT 10 in the first embodiment.
  • the lower communication unit 11 of the OLT 10 receives an optical signal (eg, REPORT frame) transmitted from the ONU 20 .
  • the lower communication unit 11 converts the received optical signal into an electrical signal and outputs the electrical signal to the MAC processing unit 13 .
  • the MAC processing unit 13 outputs the electrical signal output from the lower communication unit 11 to the OAM processing unit 14 .
  • the OAM processor 14 acquires ONU information from the electrical signal output from the MAC processor 13 .
  • the OAM processing unit 14 outputs the acquired ONU information to the ONU identification unit 15 .
  • the ONU identification unit 15 acquires identification information of the ONU 20, which is the transmission source of the optical signal, from the ONU information output from the OAM processing unit 14 (step S101).
  • the ONU identification unit 15 determines whether or not the ONU 20 that is the transmission source of the optical signal is the ONU 20 that requires the pre-REPORT GAP, based on the obtained identification information of the ONU 20 (step S102).
  • the ONU 20 that requires the pre-REPORT GAP is an ONU that does not have a transmission reservation queue. Therefore, the ONU identification unit 15 identifies whether the ONU 20 that is the transmission source of the optical signal is an ONU that has a transmission reservation queue or an ONU that does not have a transmission reservation queue, based on the acquired identification information of the ONU 20 . Thus, it is determined whether or not the ONU 20 requires the pre-REPORT GAP.
  • the ONU identification unit 15 determines that the ONU 20 does not require a GAP before REPORT. If the ONU 20 that is the transmission source of the optical signal is an ONU that does not have a transmission reservation queue, the ONU identification unit 15 determines that the ONU 20 requires a pre-REPORT GAP.
  • the ONU identification unit 15 determines that the ONU 20 requires a pre-report GAP (step S102-YES), it acquires pre-report gap information from the pre-report gap database 16 (step S103).
  • the ONU identification unit 15 acquires information on one stored pre-REPORT GAP.
  • the pre-report GAP database 16 stores a plurality of pre-report gap information
  • the ONU identification unit 15 acquires the pre-report gap information associated with the identification information of the ONU 20 .
  • the ONU identification unit 15 outputs the acquired pre-REPORT GAP information to the dynamic band allocation unit 17 .
  • the dynamic band allocation unit 17 calculates the upstream band to be allocated to the ONU 20 that is the transmission source of the optical signal (eg, REPORT frame). Thereby, the dynamic band allocation unit 17 determines the upstream band to be allocated to the ONU 20 which is the transmission source of the optical signal. Furthermore, the dynamic band allocation unit 17 determines the transmission start time of uplink data based on the pre-report GAP information output from the ONU identification unit 15 so that there is a time indicated by the pre-report GAP information. (Step S104). The dynamic bandwidth allocation unit 17 outputs information on the permitted amount of transmission, which is the upstream bandwidth allocated to the ONU 20 , information on the transmission start time of upstream data, and information on the transmission duration, to the MPCP processing unit 18 .
  • the MPCP processing unit 18 generates a GATE frame containing information on the permitted transmission amount determined by the dynamic band allocation unit 17, information on the transmission start time of uplink data, and information on the transmission duration.
  • the MPCP processing unit 18 outputs the generated GATE frame to the MAC processing unit 13 .
  • the MAC processing unit 13 outputs the GATE frame to the lower communication unit 11 .
  • the lower communication unit 11 converts the GATE frame into an optical signal and transmits it to the ONU 20 (step S105).
  • step S106 when the ONU identification unit 15 determines that the ONU 20 does not require a pre-report GAP (step S102-NO), normal bandwidth control is performed (step S106).
  • normal bandwidth control is bandwidth allocation that is commonly performed, and is bandwidth control that does not consider the pre-REPORT GAP.
  • the MPCP processing unit 18 generates a GATE frame including information on the permitted transmission amount determined by the dynamic bandwidth allocation unit 17, information on the transmission start time of uplink data, and information on the transmission duration.
  • the MPCP processing unit 18 outputs the generated GATE frame to the MAC processing unit 13 .
  • the MAC processing unit 13 outputs the GATE frame to the lower communication unit 11 .
  • the lower communication unit 11 converts the GATE frame into an optical signal and transmits it to the ONU 20 (step S105).
  • the OLT 10 sets the DBA cycle interval to pre-REPORT GAP
  • the uplink data transmission start time is determined so that there is an interval of time indicated by .
  • the pre-REPORT GAP is longer than the time required for transmission reservation calculation and report calculation of the transmission permission amount of uplink data.
  • the ONU 20 that does not have a transmission reservation queue can perform transmission reservation calculation of the transmission permission amount of uplink data and report calculation within the transmission permission time (transmission continuation time), and transmit the REPORT frame.
  • the OLT 10 can grant permission for the next uplink transmission. Therefore, the ONU 20 that does not have a transmission reservation queue can perform upstream communication.
  • the configuration is shown in which the report calculation of ONUs without transmission reservation queues is made in time by leaving an interval of the DBA cycle for the time indicated by the pre-report GAP.
  • a configuration will be described in which the report calculation of an ONU that does not have a transmission reservation queue is made in time by reducing the transmission preparation time from the time corresponding to the transmission permission amount of uplink data.
  • the system configuration is the same as the system configuration shown in FIG. Differences from the first embodiment will be described below.
  • the time corresponding to the permitted transmission amount represents the time allocated for transmitting the permitted transmission amount of data.
  • FIG. 5 is a diagram for explaining an outline of processing of the optical access system 100 in the second embodiment.
  • the ONU 20-1 which does not have a transmission reservation queue, performs the transmission reservation calculation of the transmission permission amount of uplink data and the report calculation so that the transmission permission amount of uplink data can be completed in time for the transmission permission time. Adjust to reduce send preparation time from time accordingly.
  • the transmission preparation time may be notified by an OAM frame or the like when the ONU 20 connects to the OLT 10a, or may be set in the OLT 10a by the network administrator.
  • the ONU 20 When the ONU 20 notifies by an OAM frame or the like when connecting to the OLT 10a, the ONU 20 notifies the time obtained by adding the maximum value of the transmission reservation calculation time and the maximum value of the report calculation time as the transmission preparation time.
  • the transmission reservation calculation time and the report calculation time vary depending on the grant transmission permission time and the ONU buffer. can consider the transmission preparation time for the ONU 20-1 that does not have a transmission reservation queue.
  • the transmission completion time of the uplink data transmission permission amount and the transmission start time of the REPORT frame of the ONU 20-1 in the next DBA cycle are set. If the difference is shorter than the transmission preparation time of ONU 20-1, the time obtained by subtracting the transmission preparation time of ONU 20-1 from the time corresponding to the transmission permission amount of uplink data is the transmission permission amount of uplink data of ONU 20-1. Set the time according to
  • the ONU 20-1 that does not have a transmission reservation queue can perform transmission reservation calculation of the transmission permission amount of uplink data and report calculation in time for the transmission permission time. ONU 20-1 can then transmit a REPORT frame.
  • FIG. 6 is a diagram showing a configuration example of the OLT 10a in the second embodiment.
  • the OLT 10a includes a lower communication unit 11, a higher communication unit 12, a MAC processing unit 13, an OAM processing unit 14a, an ONU identification unit 15a, a dynamic band allocation unit 17a, an MPCP processing unit 18, a transmission preparation time a database 19;
  • the OLT 10a has an OAM processing unit 14a, an ONU identification unit 15a, and a dynamic band allocation unit 17a instead of the OAM processing unit 14, ONU identification unit 15, and dynamic band allocation unit 17, and the transmission preparation time database 19 is newly added.
  • the configuration differs from that of the OLT 10 in that it is prepared for Other configurations of the OLT 10a are the same as those of the OLT 10. FIG. Therefore, the OAM processing unit 14a, the ONU identification unit 15a, the dynamic band allocation unit 17a, and the transmission preparation time database 19 will be explained.
  • the OAM processing unit 14a analyzes the OAM frame included in the optical signal received by the lower communication unit 11. Thereby, the OAM processing unit 14a acquires the ONU information.
  • the ONU information may include information on transmission preparation time. For example, if the source of the optical signal is the ONU 20-1 that does not have a transmission reservation queue, the ONU 20-1 notifies the OLT 10a of the transmission preparation time by including it in an OAM frame. On the other hand, the ONU 20-2 having the transmission reservation queue does not transmit the OAM frame including the transmission preparation time information.
  • the OAM processing unit 14 a outputs the acquired ONU information to the ONU identification unit 15 .
  • the ONU identification section 15a Based on the ONU information acquired by the OAM processing section 14, the ONU identification section 15a identifies the ONU 20 that is the source of the optical signal. When the ONU 20 that is the transmission source of the optical signal is an ONU that does not have a transmission reservation queue, the ONU identification unit 15a associates the transmission preparation time information included in the ONU information with the identification information of the ONU 20 to create the transmission preparation time database 19. to register.
  • the dynamic band allocation unit 17a calculates an upstream band to be allocated to the ONU 20 that is the transmission source of the optical signal (eg, REPORT frame). Specifically, for the ONUs 20 registered in the transmission preparation time database 19, the dynamic bandwidth allocation unit 17a calculates an upstream bandwidth in consideration of transmission preparation time information. For example, if the difference between the transmission completion time of the transmission permission amount of uplink data and the transmission start time of the REPORT frame of the ONU 20-1 in the next DBA cycle is shorter than the transmission preparation time, the dynamic bandwidth allocation unit 17a The time obtained by subtracting the transmission preparation time of ONU 20-1 from the time corresponding to the permitted amount of transmission of uplink data is set to the time corresponding to the permitted amount of transmission of uplink data of ONU 20-1.
  • the dynamic band allocation unit 17a allocates the permitted amount of transmission of uplink data according to the band requested by the ONU 20-1.
  • the transmission preparation time database 19 is a database in which information on the transmission preparation time for each ONU is registered.
  • FIG. 7 is a diagram showing a configuration example of the transmission preparation time database 19.
  • the transmission preparation time database 19 is composed of a plurality of records in which information relating to transmission preparation time for each ONU is registered. Each record includes ONU identification information and transmission preparation time. ONU identification information is information for identifying the ONU 20 .
  • the transmission preparation time represents the time required for the ONU 20 to transmit the REPORT frame.
  • FIG. 8 is a flow chart showing the flow of registration processing in the transmission preparation time database 19 performed by the OLT 10a according to the second embodiment.
  • the lower communication unit 11 of the OLT 10a receives an optical signal (eg, REPORT frame) transmitted from the ONU 20.
  • FIG. The lower communication unit 11 converts the received optical signal into an electrical signal and outputs the electrical signal to the MAC processing unit 13 .
  • the MAC processing unit 13 outputs the electrical signal output from the lower communication unit 11 to the OAM processing unit 14 .
  • the OAM processor 14 acquires ONU information from the electrical signal output from the MAC processor 13 .
  • the OAM processing unit 14 outputs the acquired ONU information to the ONU identification unit 15a.
  • the ONU identification unit 15a acquires the identification information of the ONU 20, which is the transmission source of the optical signal, from the ONU information output from the OAM processing unit 14 (step S201).
  • the ONU identification unit 15a determines whether or not the ONU 20 that is the transmission source of the optical signal requires a transmission preparation time based on the obtained identification information of the ONU 20 (step S202). When the ONU identification unit 15a determines that the ONU 20 requires a transmission preparation time (step S202-YES), the ONU identification unit 15a associates the acquired identification information of the ONU 20 with the transmission preparation time information included in the ONU information, and transmits the information. It is registered in the preparation time database 19 (step S203).
  • FIG. 9 is a flowchart showing the flow of upstream band control processing performed by the OLT 10a in the second embodiment.
  • the dynamic band allocation unit 17a determines whether or not the following first condition is satisfied (step S301).
  • DG (n) last onu represents the identification information of the ONU 20 that notified the permitted amount of uplink data transmission at the end of the n-th DBA (Dynamic Bandwidth Assignment) cycle.
  • RG (n+1) first onu represents the identification information of the ONU 20 of the first Report Grant in the (n+1)th DBA cycle. That is, the dynamic bandwidth allocation unit 17a provides the identification information of the ONU 20 that notified the transmission permission amount of uplink data at the end of the n-th DBA cycle, and the identification information of the ONU 20 that received the first Report Grant in the (n+1)-th DBA cycle. are the same.
  • step S301-NO When the dynamic band allocation unit 17a determines that the first condition is not satisfied (step S301-NO), it ends the processing of FIG. On the other hand, when determining that the first condition is satisfied (step S301-YES), the dynamic bandwidth allocation unit 17a determines whether or not the following second condition is satisfied (step S302).
  • RG(n+1) first onu_start represents the start time of the first Report Grant of the (n+1)th DBA cycle.
  • DG(n) last onu_start represents the start time of the last Data Grant of the n-th DBA cycle.
  • DG(n) last onu_length represents the time length of the last Data Grant of the n-th DBA cycle.
  • the transmission preparation time (DG (n) last onu ) represents the transmission preparation period of the ONU 20 corresponding to the acquired identification information of the ONU 20 .
  • (DG(n) last onu_start )+(DG(n) last onu_length ) represents the transmission completion time of the last DATA Grant in the n-th DBA cycle.
  • the dynamic bandwidth allocation unit 17a acquires the time obtained by subtracting the transmission completion time of the last DATA Grant in the n-th DBA cycle from the start time of the first Report Grant in the (n+1)-th DBA cycle. It is determined whether or not the transmission preparation period of the ONU 20 corresponding to the identification information of the ONU 20 is longer than the transmission preparation period.
  • the dynamic band allocation unit 17a determines that the second condition is not satisfied (step S302-NO), it ends the processing of FIG.
  • the dynamic bandwidth allocation unit 17a subtracts the transmission preparation period of the ONU 20 from the length of time of the Data Grant in the n-th DBA cycle. A value is assigned as the length of time of the Data Grant for the n-th DBA cycle in the ONU 20 (step S303).
  • the dynamic band allocation unit 17a determines the upstream band to be allocated to the ONU 20, which is the source of the optical signal.
  • the dynamic band allocation unit 17a determines the transmission start time of uplink data.
  • the dynamic bandwidth allocation unit 17 a outputs information on the transmission permission amount, which is the upstream bandwidth allocated to the ONU 20 , and information on the transmission start time of the upstream data to the MPCP processing unit 18 .
  • the MPCP processing unit 18 generates a GATE frame containing information on the permitted transmission amount determined by the dynamic band allocation unit 17 and information on the transmission start time of uplink data.
  • the MPCP processing unit 18 outputs the generated GATE frame to the MAC processing unit 13 .
  • the MAC processing unit 13 outputs the GATE frame to the lower communication unit 11 .
  • the lower communication unit 11 converts the GATE frame into an optical signal and transmits the optical signal to the ONU 20 .
  • the OLT 10 when the ONU 20 having no transmission reservation queue is connected to the OLT 10, the amount of upstream transmission permission is transmitted as necessary. Reduce send preparation time from time. As a result, the ONU 20 that does not have a transmission reservation queue can perform transmission reservation calculation of the transmission permission amount of uplink data and report calculation within the transmission permission time (transmission continuation time), and transmit the REPORT frame. As a result, the OLT 10 can grant permission for the next uplink transmission. Therefore, the ONU 20 that does not have a transmission reservation queue can perform upstream communication.
  • the transmission order of the ONUs 20 not having a reserved transmission queue is the same as that of the ONUs 20 having a reserved transmission queue. It may be configured to preferentially allocate earlier.
  • the optical access system 100 described above has a configuration in which the ONUs 20 having a transmission reservation queue and the ONUs 20 not having a transmission reservation queue are mixed. It can also be applied if
  • a part of the functions of the OLTs 10 and 10a in the above-described embodiment may be realized by a computer.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” refers to a program that dynamically retains programs for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as FPGA.
  • the present invention can be applied to an optical access system having ONUs without transmission reservation queues.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

Provided is an optical line terminal in an optical access system comprising the optical line terminal and at least one optical network unit not having a transmission reservation queue. The optical line terminal comprises: an identification unit that identifies whether or not the at least one optical network unit is the optical network unit not having the transmission reservation queue; a bandwidth allocation unit that, when the at least one optical network unit is the optical network unit not having the transmission reservation queue, performs bandwidth allocation control such that a transmission reservation calculation and a report calculation are completed in time in the at least one optical network unit; and a communication unit that transmits the result of the bandwidth allocation control performed in the bandwidth allocation unit to the at least one optical network unit. 

Description

光加入者線端局装置及び帯域割当方法Optical subscriber line terminal equipment and band allocation method
 本発明は、光加入者線端局装置及び帯域割当方法に関する。 The present invention relates to an optical subscriber line terminal device and a band allocation method.
 アクセスサービスの高速化に対するニーズの高まりに応じて、FTTH(Fiber To The Home)が世界的に普及している。FTTHサービスとして、例えば、ギガビット級の伝送速度を実現するGE-PON(Gigabit Ethernet(登録商標)-Passive Optical Network)や10G-EPON等がある。 FTTH (Fiber To The Home) is spreading worldwide in response to the growing need for faster access services. FTTH services include, for example, GE-PON (Gigabit Ethernet (registered trademark)-Passive Optical Network) and 10G-EPON, which realize gigabit-class transmission speeds.
 このようなPONを用いた光アクセスシステムでは、図10に示すように、OLT(Optical Line Terminal)2が、光ファイバ及び光スプリッタ4を介して複数のONU(Optical Network Unit)3-1~3-N(Nは2以上の整数)と接続される。PONでは、OLT2からONU3への方向の通信(以下「下り通信」という。)においては、TDM(Time Division Multiplexing;時分割多重化)技術が用いられ、各ONU3からOLT2への方向の通信(以下「上り通信」という。)においては、TDMA(time division multiple access:時分割多重アクセス)技術が用いられる。 In an optical access system using such a PON, as shown in FIG. 10, an OLT (Optical Line Terminal) 2 is connected to a plurality of ONUs (Optical Network Units) 3-1 to 3 through optical fibers and an optical splitter 4. −N (N is an integer equal to or greater than 2). In the PON, TDM (Time Division Multiplexing) technology is used in communication from the OLT 2 to the ONU 3 (hereinafter referred to as "downlink communication"), and communication from each ONU 3 to the OLT 2 (hereinafter referred to as "downlink communication"). (referred to as “uplink communication”) uses TDMA (time division multiple access) technology.
 GE-PON及び10G-EPONをシステムとして動作させるために必要な機能の1つとしてDBA(Dynamic Bandwidth Allocation;動的帯域割当)機能がある。DBA機能は、上り通信における帯域(以下「上り帯域」という。)を、トラヒック量に応じて動的に割り当てる帯域制御機能である。DBA機能は、各ONU3に流れる上り通信のトラヒックの状況に応じて、割り当てる帯域を適切に切り替えることで、未使用帯域を発生させることなく、効率的な上り帯域を実現する。 One of the functions required to operate GE-PON and 10G-EPON as a system is the DBA (Dynamic Bandwidth Allocation) function. The DBA function is a bandwidth control function that dynamically allocates bandwidth for upstream communication (hereinafter referred to as "upstream bandwidth") according to traffic volume. The DBA function realizes efficient upstream bandwidth without generating unused bandwidth by appropriately switching the bandwidth to be allocated according to the status of upstream communication traffic flowing through each ONU 3 .
 DBA機能では、各ONU3は、上り送信バッファに蓄積されている送信待ちの上りデータのデータ量を、REPORTフレームによってOLT2に伝える。一方、OLT2は、受信したREPORTフレームに基づいて、各ONU3が時間的に衝突することなく上りデータを送信することができるように、上りデータの送信開始時刻及び送信許可量をGATEフレームによって各ONU3へ指示する。各ONU3は、GATEフレームによって指示された送信開始時刻に、送信許可量に基づいて上りデータの送信を行う。このように、GATEフレームとREPORTフレームとを用いたやりとりによって、DBA機能が実現される。 In the DBA function, each ONU 3 notifies the OLT 2 of the amount of upstream data waiting for transmission accumulated in the upstream transmission buffer by means of a REPORT frame. On the other hand, based on the received REPORT frame, the OLT 2 notifies each ONU 3 of the uplink data transmission start time and transmission permission amount by the GATE frame so that each ONU 3 can transmit uplink data without time collision. to. Each ONU 3 transmits upstream data based on the transmission permission amount at the transmission start time indicated by the GATE frame. In this way, the DBA function is realized by exchanging data using the GATE frame and the REPORT frame.
 図11は、OLT2に1台のONU3が接続されている場合の送信タイミングの通知例を示す図であり、図12は、OLT2に2台のONU3-1,3-2が接続されている場合の送信タイミングの通知例を示す図である。図11に示すように、OLT2からONU3へGATEフレームが送信され、ONU3はOLT2から送信されたGATEフレームに基づいてREPORTフレームの送信及びデータの送信を行う。図12においては、OLT2は時間的に衝突することなく上りデータを送信することができるように、上りデータの送信開始時刻及び送信許可量をGATEフレームによって各ONU3へ指示し、各ONU3は異なるタイミングにてREPORTフレームの送信及びデータの送信を行う。 FIG. 11 is a diagram showing an example of transmission timing notification when one ONU 3 is connected to the OLT 2, and FIG. is a diagram showing an example of notification of the transmission timing of . As shown in FIG. 11, a GATE frame is transmitted from OLT2 to ONU3, and ONU3 transmits a REPORT frame and data based on the GATE frame transmitted from OLT2. In FIG. 12, the OLT 2 instructs each ONU 3 of the transmission start time and transmission permission amount of the upstream data by the GATE frame so that the OLT 2 can transmit the upstream data without time collision. transmits a REPORT frame and data.
特開2003-87283号公報JP-A-2003-87283
 ONU3は、上りデータの送信後、次回の上り帯域の割当のために、バッファに蓄積されている上りデータのデータ量をOLT2へ再度通知することがある。上りデータの送信後と、REPORTフレームの送信開始の間隔が短い場合、ONU3は送信予約キューを持ち、送信予約キューに蓄積されている上りデータの送信中にreport計算を行う。 After transmitting the upstream data, the ONU 3 may re-notify the OLT 2 of the amount of upstream data accumulated in the buffer for the next allocation of the upstream bandwidth. If the interval between the transmission of the uplink data and the start of transmission of the REPORT frame is short, the ONU 3 has a transmission reservation queue and performs report calculation during transmission of the uplink data accumulated in the transmission reservation queue.
 送信予約キューを持たないONU3は、バッファに備えられる上り送信キューの中で上りデータの送信許可量(DATA grant)の送信予約計算と、report計算とを行う必要がある。しかしながら、これらの計算に時間がかかり、GATEフレームの受信後にREPORTフレームの送信開始までに、上りデータの送信許可量(DATA grant)の送信予約計算が間に合わない、又は、上りデータの送信許可量(DATA grant)の送信予約計算は間に合ったが、report計算が間に合わない場合がある。 An ONU 3 that does not have a transmission reservation queue needs to perform transmission reservation calculation of the transmission permission amount (DATA grant) of uplink data and report calculation in the uplink transmission queue provided in the buffer. However, these calculations take time, and the transmission reservation calculation of the uplink data transmission permission amount (DATA grant) cannot be completed in time before the REPORT frame transmission starts after the GATE frame is received, or the uplink data transmission permission amount ( DATA Grant) transmission reservation calculation was completed in time, but the report calculation may not be completed in time.
 上りデータの送信許可量(DATA grant)の送信予約計算が間に合わない場合には、送信予約キューを持たないONU3は、上りデータの送信許可量(DATA grant)の送信ができない。さらにreport計算が間に合わないため、送信予約キューを持たないONU3はREPORTフレームを送信することができない。その結果、OLT2は、送信予約キューを持たないONU3に対して次の機会での上り送信許可を与えないため送信予約キューを持たないONU3が上り通信を行うことができない。 If the transmission reservation calculation of the transmission permission amount (DATA grant) of uplink data is not completed in time, the ONU 3 that does not have a transmission reservation queue cannot transmit the transmission permission amount (DATA grant) of uplink data. Furthermore, since the report calculation is too late, the ONU 3 that does not have a transmission reservation queue cannot transmit the REPORT frame. As a result, the OLT 2 does not allow the ONU 3, which does not have a transmission reservation queue, to perform upstream transmission at the next opportunity.
 上りデータの送信許可量(DATA grant)の送信予約計算は間に合ったが、report計算が間に合わない場合には、report計算が間に合わないため、そのONU3がREPORTフレームを送信することができない。その結果、OLT2は、送信予約キューを持たないONU3に対して次の機会での上り送信許可を与えないため送信予約キューを持たないONU3が上り通信を行うことができない。 If the transmission reservation calculation of the transmission permission amount (DATA grant) of the uplink data is in time, but the report calculation is not in time, the ONU 3 cannot transmit the REPORT frame because the report calculation is not in time. As a result, the OLT 2 does not allow the ONU 3, which does not have a transmission reservation queue, to perform upstream transmission at the next opportunity.
 以上のように、送信予約キューを持たないONU3は、report計算が間に合わず、上り通信ができないという問題があった。 As described above, the ONU 3 that does not have a transmission reservation queue has the problem that the report calculation cannot be completed in time and upstream communication cannot be performed.
 上記事情に鑑み、本発明は、送信予約キューを持たないONUにおいても、上り通信を行うことができる技術の提供を目的としている。 In view of the above circumstances, the object of the present invention is to provide a technology that enables upstream communication even in ONUs that do not have transmission reservation queues.
 本発明の一態様は、光加入者線端局装置と、少なくとも送信予約キューを持たない1以上の光加入者線終端装置とを備える光アクセスシステムにおける前記光加入者線端局装置であって、前記1以上の光加入者線終端装置が、送信予約キューを持たない光加入者線終端装置であるか否かを識別する識別部と、前記1以上の光加入者線終端装置が、送信予約キューを持たない光加入者線終端装置である場合、前記1以上の光加入者線終端装置において送信予約計算とレポート計算とが間に合うように、帯域割当制御を行う帯域割当部と、前記帯域割当部において行われた帯域割当制御の結果を前記1以上の光加入者線終端装置に送信する通信部と、備える光加入者線端局装置である。 An aspect of the present invention is an optical subscriber line terminal in an optical access system comprising an optical subscriber line terminal and at least one optical subscriber line terminal having no transmission reservation queue, an identification unit for identifying whether or not said one or more optical subscriber line terminating units are optical subscriber line terminating units having no transmission reservation queue; When the optical network unit does not have a reservation queue, a band allocation unit that performs band allocation control so that transmission reservation calculation and report calculation can be completed in time for the one or more optical network units; and a communication unit for transmitting the results of band allocation control performed in the allocation unit to the one or more optical network terminal units.
 本発明の一態様は、光加入者線端局装置と、少なくとも送信予約キューを持たない1以上の光加入者線終端装置とを備える光アクセスシステムにおける帯域割当制御方法であって、前記1以上の光加入者線終端装置が、送信予約キューを持たない光加入者線終端装置であるか否かを識別し、前記1以上の光加入者線終端装置が、送信予約キューを持たない光加入者線終端装置である場合、前記1以上の光加入者線終端装置において送信予約計算とレポート計算とが間に合うように、帯域割当制御を行い、帯域割当制御の結果を前記1以上の光加入者線終端装置に送信する、帯域割当方法である。 One aspect of the present invention is a band allocation control method in an optical access system comprising an optical subscriber line terminal device and at least one optical subscriber line terminal device having no transmission reservation queue, wherein the one or more identifying whether or not the optical subscriber line terminating equipment is an optical subscriber line terminating equipment having no transmission reservation queue, and wherein the one or more optical subscriber line terminating equipment is an optical subscriber line terminating equipment having no transmission reservation queue; in the case of optical subscriber line terminating equipment, band allocation control is performed so that transmission reservation calculation and report calculation can be completed in time for said one or more optical subscriber line terminating equipment, and the results of band allocation control are sent to said one or more optical subscriber line terminals; It is a band allocation method for transmitting to a line termination device.
 本発明により、送信予約キューを持たないONUにおいても、上り通信を行うことが可能となる。 According to the present invention, even an ONU that does not have a transmission reservation queue can perform upstream communication.
第1の実施形態における光アクセスシステムの構成例を示す図である。1 is a diagram illustrating a configuration example of an optical access system according to a first embodiment; FIG. 第1の実施形態における光アクセスシステムの処理の概要を説明するための図である。FIG. 2 is a diagram for explaining an outline of processing of the optical access system in the first embodiment; FIG. 第1の実施形態におけるOLTの構成例を示す図である。3 is a diagram illustrating a configuration example of an OLT in the first embodiment; FIG. 第1の実施形態におけるOLTの処理の流れを示すフローチャートである。4 is a flow chart showing the flow of OLT processing in the first embodiment. 第2の実施形態における光アクセスシステムの処理の概要を説明するための図である。FIG. 10 is a diagram for explaining an outline of processing of the optical access system in the second embodiment; FIG. 第2の実施形態におけるOLTの構成例を示す図である。It is a figure which shows the structural example of OLT in 2nd Embodiment. 送信準備時間データベースの構成例を示す図である。FIG. 4 is a diagram showing a configuration example of a transmission preparation time database; 第2の実施形態におけるOLTが行う送信準備時間データベースへの登録処理の流れを示すフローチャートである。10 is a flow chart showing the flow of registration processing in the transmission preparation time database performed by the OLT in the second embodiment. 第2の実施形態におけるOLTが行う上り帯域制御処理の流れを示すフローチャートである。FIG. 10 is a flow chart showing the flow of upstream band control processing performed by the OLT in the second embodiment; FIG. PONを用いた光アクセスシステムの構成例を示す図である。1 is a diagram showing a configuration example of an optical access system using a PON; FIG. OLTに1台のONUが接続されている場合の送信タイミングの通知例を示す図である。FIG. 10 is a diagram showing an example of notification of transmission timing when one ONU is connected to the OLT; OLTに2台のONUが接続されている場合の送信タイミングの通知例を示す図である。FIG. 10 is a diagram showing an example of notification of transmission timing when two ONUs are connected to the OLT;
 以下、本発明の一実施形態を、図面を参照しながら説明する。
(第1の実施形態)
 図1は、第1の実施形態における光アクセスシステム100の構成例を示す図である。光アクセスシステム100は、OLT10と、複数のONU20-1~20-Nと、光スプリッタ30とを備える。OLT10と光スプリッタ30との間、光スプリッタ30とONU20との間は、光ファイバを介して接続されている。以下の説明では、ONU20が2台(N=2)の場合を例に説明する。
An embodiment of the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram showing a configuration example of an optical access system 100 according to the first embodiment. The optical access system 100 comprises an OLT 10 , a plurality of ONUs 20 - 1 to 20 -N, and an optical splitter 30 . The OLT 10 and the optical splitter 30, and the optical splitter 30 and the ONU 20 are connected via optical fibers. In the following description, an example in which there are two ONUs 20 (N=2) will be described.
 光アクセスシステム100が備えるOLT10、ONU20及び光スプリッタ30の台数は、特に限定されない。なお、図1では、説明の簡単化のため、光スプリッタ30を1台のみ示しているが、OLT10とONU30との間は、複数の光スプリッタ30を介して接続されてもよい。 The number of OLTs 10, ONUs 20 and optical splitters 30 included in the optical access system 100 is not particularly limited. Although only one optical splitter 30 is shown in FIG. 1 for simplification of explanation, the OLT 10 and the ONU 30 may be connected via a plurality of optical splitters 30 .
 OLT10は、各ONU20から送信された光信号を受信して、上位装置あるいは上位ネットワーク(例えば、インターネット等)へ転送する。OLT10は、上位装置あるいは上位ネットワークからの信号を受信して、各ONU20へ転送する。OLT10は、各ONU20に対してGATEフレームを送信することで、各ONU20に送信タイミングを通知する。OLT10は、例えば光加入者線端局装置である。 The OLT 10 receives the optical signal transmitted from each ONU 20 and transfers it to a host device or host network (for example, the Internet, etc.). The OLT 10 receives signals from a host device or a host network and transfers them to each ONU 20 . The OLT 10 notifies each ONU 20 of transmission timing by transmitting a GATE frame to each ONU 20 . The OLT 10 is, for example, an optical subscriber line terminal.
 OLT10は、GE-PON及び10G-EPONをシステムとして動作させるために必要な機能であるDBA機能を有する。DBA機能は、各ONU20からの上り通信のトラヒック(以下「上りトラヒック」という。)に応じて、柔軟に上り帯域を割り当てることができる。 The OLT 10 has a DBA function, which is a function necessary for operating GE-PON and 10G-EPON as a system. The DBA function can flexibly allocate an upstream bandwidth according to the traffic of upstream communication from each ONU 20 (hereinafter referred to as "upstream traffic").
 OLT10は、MPCP(Multi Point Control Protocol)と呼ばれるプロトコルを用いて上り信号の送信制御を行う。OLT10は、各ONU20が時間的に衝突することなく上り信号を送信することができるように、各ONU20に対して上り信号の送信開始時刻、送信継続時間及び送信許可量を、GATEフレームによって指示する。 The OLT 10 controls the transmission of upstream signals using a protocol called MPCP (Multi Point Control Protocol). The OLT 10 instructs each ONU 20 of the upstream signal transmission start time, transmission duration, and transmission permission amount using a GATE frame so that each ONU 20 can transmit an upstream signal without time collision. .
 ONU20は、例えば通信サービスの提供を受ける加入者の宅内に設置される。ONU20は、OLT10から送信された光信号を受信して電気信号に変換する。そして、ONU20は、変換された電気信号をユーザの端末装置(例えば、PC等)へ転送する。ONU20は、ユーザの端末装置から送信された電気信号を受信して光信号に変換する。そして、ONU20は、変換された光信号をOLT10へ転送する。 The ONU 20 is installed, for example, in the home of a subscriber who receives communication service. The ONU 20 receives the optical signal transmitted from the OLT 10 and converts it into an electrical signal. The ONU 20 then transfers the converted electrical signal to the user's terminal device (for example, PC or the like). The ONU 20 receives an electrical signal transmitted from a user's terminal device and converts it into an optical signal. The ONU 20 then transfers the converted optical signal to the OLT 10 .
 本実施形態におけるONU20は、送信予約キューを持つONUと、送信予約キューを持たないONUとを含む。以下の説明では、ONU20-1が送信予約キューを持たないONUであり、ONU20-2が送信予約キューを持つONUであるとして説明する。なお、光アクセスシステム100において、送信予約キューを持たないONUの台数は1台以上であれば特に数に限定はない。ONU20は、例えば光加入者線終端装置である。 The ONUs 20 in this embodiment include ONUs with transmission reservation queues and ONUs without transmission reservation queues. In the following explanation, it is assumed that the ONU 20-1 is an ONU that does not have a transmission reservation queue, and the ONU 20-2 is an ONU that has a transmission reservation queue. In the optical access system 100, the number of ONUs without a transmission reservation queue is not particularly limited as long as it is one or more. ONU 20 is, for example, an optical subscriber line terminator.
 ONU20は、OLT10に対して帯域割当を要求し、OLT10から通知された送信許可時間において、割り当てられた帯域を利用してデータをOLT10に送信する。 The ONU 20 requests band allocation from the OLT 10 and transmits data to the OLT 10 using the allocated band during the permitted transmission time notified from the OLT 10 .
 光スプリッタ30は、OLT10から送信された光信号を分岐して各ONU20に出力し、各ONU20から送信された光信号を合波してOLT10に出力する。 The optical splitter 30 splits the optical signal transmitted from the OLT 10 and outputs it to each ONU 20 , multiplexes the optical signal transmitted from each ONU 20 and outputs it to the OLT 10 .
 図2は、第1の実施形態における光アクセスシステム100の処理の概要を説明するための図である。
 第1の実施形態におけるOLT10では、送信予約キューを持たないONU20-1において上りデータの送信許可量の送信予約計算と、report計算とが、送信許可時刻に間に合うように、DBA周期を行う間隔を調整する。より具体的には、OLT10は、n回目のDBA周期と、(n+1)回目のDBA周期との間が、上りデータの送信許可量の送信予約計算とreport計算とに要する時間(以下「REPORT前GAP」という。)以上空くように、送信開始時刻を設定する。
FIG. 2 is a diagram for explaining an outline of processing of the optical access system 100 in the first embodiment.
In the OLT 10 according to the first embodiment, the DBA cycle interval is set so that the ONU 20-1, which does not have a transmission reservation queue, performs the transmission reservation calculation of the transmission permission amount of uplink data and the report calculation in time for the transmission permission time. adjust. More specifically, the OLT 10 determines that the time between the n-th DBA cycle and the (n+1)-th DBA cycle is the time required for transmission reservation calculation and report calculation of the transmission permission amount of uplink data (hereinafter referred to as "before REPORT GAP").
 上記の設定を行うことによって、送信予約キューを持たないONU20-1は、送信許可時刻に間に合うように、上りデータの送信許可量の送信予約計算と、report計算とを行うことができる。そして、ONU20-1は、REPORT前GAPの時間待ってからREPORTフレームを送信することができる。 By performing the above settings, the ONU 20-1 that does not have a transmission reservation queue can perform transmission reservation calculation of the transmission permission amount of uplink data and report calculation in time for the transmission permission time. Then, the ONU 20-1 can transmit the REPORT frame after waiting for the pre-REPORT GAP time.
 図3は、第1の実施形態におけるOLT10の構成例を示す図である。
 OLT10は、下位通信部11と、上位通信部12と、MAC(Media Access Control)処理部13と、OAM(Operations Administration Maintenance)処理部14と、ONU識別部15と、REPORT前GAPデータベース16と、動的帯域割当部17と、MPCP処理部18とを備える。
FIG. 3 is a diagram showing a configuration example of the OLT 10 in the first embodiment.
The OLT 10 includes a lower communication unit 11, a higher communication unit 12, a MAC (Media Access Control) processing unit 13, an OAM (Operations Administration Maintenance) processing unit 14, an ONU identification unit 15, a pre-REPORT GAP database 16, A dynamic band allocation unit 17 and an MPCP processing unit 18 are provided.
 下位通信部11は、各ONU20との間で通信を行う。下位通信部11は、各ONU20から送信された光信号を電気信号に変換してMAC処理部13に出力する。下位通信部11は、MAC処理部13から出力された電気信号を光信号に変換してONU20に送信する。 The lower communication unit 11 communicates with each ONU 20. The lower communication unit 11 converts the optical signal transmitted from each ONU 20 into an electrical signal and outputs the electrical signal to the MAC processing unit 13 . The lower communication unit 11 converts the electrical signal output from the MAC processing unit 13 into an optical signal and transmits the optical signal to the ONU 20 .
 上位通信部12は、上位装置あるいは上位ネットワークとの間で通信を行う。上位通信部12は、上位装置あるいは上位ネットワークから送信された光信号を電気信号に変換してMAC処理部13に出力する。上位通信部12は、MAC処理部13から出力された上位装置あるいは上位ネットワーク宛の電気信号を光信号に変換して上位装置あるいは上位ネットワークに送信する。 The higher communication unit 12 communicates with a higher device or a higher network. The host communication unit 12 converts an optical signal transmitted from a host device or a host network into an electrical signal and outputs the electrical signal to the MAC processing unit 13 . The host communication unit 12 converts the electrical signal addressed to the host device or the host network output from the MAC processing unit 13 into an optical signal and transmits the optical signal to the host device or the host network.
 MAC処理部13は、データの送受信を制御するデータリンク層の機能部である。MAC処理部13は、一般にPONチップを用いて構成される。MAC処理部13は、下位通信部11又は上位通信部12から出力された電気信号を所定の出力先に出力する。 The MAC processing unit 13 is a functional unit of the data link layer that controls data transmission/reception. The MAC processing unit 13 is generally configured using a PON chip. The MAC processing unit 13 outputs the electrical signal output from the lower communication unit 11 or the higher communication unit 12 to a predetermined output destination.
 OAM処理部14は、下位通信部11により受信された光信号に含まれるOAMフレームを解析する。これにより、OAM処理部14は、ONU20に関する情報(以下「ONU情報」という。)を取得する。OAM処理部14は、取得したONU情報をONU識別部15に出力する。ONU情報には、少なくともONUの識別情報、ONUのタイプを示す識別子、上りデータのデータ量等が含まれる。ONUの識別情報は、ONU20を識別するための情報であり、例えばMACアドレス等である。ONUのタイプを示す識別子は、ONUの機種のタイプを示す情報である。 The OAM processing unit 14 analyzes the OAM frame included in the optical signal received by the lower communication unit 11 . Thereby, the OAM processing unit 14 acquires information about the ONU 20 (hereinafter referred to as "ONU information"). The OAM processing unit 14 outputs the acquired ONU information to the ONU identification unit 15 . The ONU information includes at least ONU identification information, an identifier indicating the ONU type, the amount of uplink data, and the like. The ONU identification information is information for identifying the ONU 20, such as a MAC address. The ONU type identifier is information indicating the ONU model type.
 ONU識別部15は、OAM処理部14により取得されたONU情報に基づいて、光信号の送信元であるONU20を識別する。ここで、ONU20を識別するとは、ONU20が、送信予約キューを持つONUであるか、送信予約キューを持たないONUであるかを特定することを意味する。 The ONU identification unit 15 identifies the ONU 20 that is the transmission source of the optical signal based on the ONU information acquired by the OAM processing unit 14 . Here, identifying the ONU 20 means identifying whether the ONU 20 has a transmission reservation queue or an ONU without a transmission reservation queue.
 ONU識別部15は、ONU情報に基づいて次のように光信号の送信元であるONU20を識別する。各ONU20は、機種毎に識別子(ONUタイプ)を持つ。管理者等は、OLT10にONUタイプを事前に登録しておく。管理者等は、新しいONU機種が増えるたびに、OLT10に対してONUタイプを追加登録していく。OLT10は、ONUタイプが登録された不図示のデータベースを保持する。ONU識別部15は、不図示のデータベースを参照して、取得されたONU情報に含まれるONUタイプが、送信予約キューを持つタイプであるか送信予約キューを持たないタイプであるかを判定する。そして、ONU識別部15は、取得されたONU情報に含まれるONUタイプが、送信予約キューを持つタイプである場合には、光信号の送信元であるONU20が送信予約キューを持つONUであると識別する。一方、ONU識別部15は、取得されたONU情報に含まれるONUタイプが、送信予約キューを持たないタイプである場合には、光信号の送信元であるONU20が送信予約キューを持たないONUであると識別する。 The ONU identification unit 15 identifies the ONU 20, which is the transmission source of the optical signal, based on the ONU information as follows. Each ONU 20 has an identifier (ONU type) for each model. The administrator or the like registers the ONU type in the OLT 10 in advance. The administrator or the like additionally registers an ONU type to the OLT 10 each time a new ONU model is added. The OLT 10 holds a database (not shown) in which ONU types are registered. The ONU identification unit 15 refers to a database (not shown) to determine whether the ONU type included in the acquired ONU information has a transmission reservation queue or does not have a transmission reservation queue. Then, when the ONU type included in the acquired ONU information is a type having a transmission reservation queue, the ONU identification unit 15 determines that the ONU 20 which is the transmission source of the optical signal is an ONU having a transmission reservation queue. Identify. On the other hand, when the ONU type included in the acquired ONU information is a type that does not have a transmission reservation queue, the ONU identification unit 15 determines that the ONU 20 that is the transmission source of the optical signal is an ONU that does not have a transmission reservation queue. identify it as
 REPORT前GAPデータベース16には、上りデータの送信許可量の送信予約計算とreport計算とに要する時間であるREPORT前GAPの情報が格納される。なお、REPORT前GAPデータベース16に格納されるREPORT前GAPの情報は、1つであってもよいし、複数であってもよい。複数の場合には、ONU20毎のREPORT前GAPの情報がREPORT前GAPデータベース16に格納されていてもよい。 The pre-report gap database 16 stores pre-report gap information, which is the time required for transmission reservation calculation and report calculation of the transmission permission amount of uplink data. It should be noted that the pre-REPORT GAP information stored in the pre-REPORT GAP database 16 may be one or more. In the case of a plurality of ONUs 20 , the pre-REPORT GAP information for each ONU 20 may be stored in the pre-REPORT GAP database 16 .
 動的帯域割当部17は、DBAアルゴリズムを用いて、各ONU20に割り当てるべき上り帯域を計算する。動的帯域割当部17は、各ONU20に割り当てた上り帯域である送信許可量の情報、上りデータの送信開始時刻の情報及び送信継続時間の情報をMPCP処理部18に出力する。 The dynamic bandwidth allocation unit 17 calculates the upstream bandwidth to be allocated to each ONU 20 using the DBA algorithm. The dynamic band allocation unit 17 outputs to the MPCP processing unit 18 information on the permitted amount of transmission, which is the uplink band allocated to each ONU 20 , information on the start time of transmission of uplink data, and information on the duration of transmission.
 MPCP処理部18は、MPCPプロトコルに基づく処理を行う。例えば、MPCP処理部18は、OLT10に新たに接続されたONU20を検出する(Discovery処理)。例えば、MPCP処理部18は、動的帯域割当部17により各ONU20に割当てられた送信許可量の情報、上りデータの送信開始時刻の情報及び送信継続時間の情報を含むGATEフレームを生成する。 The MPCP processing unit 18 performs processing based on the MPCP protocol. For example, the MPCP processing unit 18 detects the ONU 20 newly connected to the OLT 10 (Discovery processing). For example, the MPCP processing unit 18 generates a GATE frame including information on the permitted transmission amount allocated to each ONU 20 by the dynamic bandwidth allocation unit 17, information on the transmission start time of uplink data, and information on the transmission duration.
 図4は、第1の実施形態におけるOLT10の処理の流れを示すフローチャートである。
 OLT10の下位通信部11は、ONU20から送信された光信号(例えば、REPORTフレーム)を受信する。下位通信部11は、受信した光信号を電気信号に変換してMAC処理部13に出力する。MAC処理部13は、下位通信部11から出力された電気信号をOAM処理部14に出力する。OAM処理部14は、MAC処理部13から出力された電気信号からONU情報を取得する。OAM処理部14は、取得したONU情報をONU識別部15に出力する。ONU識別部15は、OAM処理部14から出力されたONU情報から、光信号の送信元であるONU20の識別情報を取得する(ステップS101)。
FIG. 4 is a flow chart showing the processing flow of the OLT 10 in the first embodiment.
The lower communication unit 11 of the OLT 10 receives an optical signal (eg, REPORT frame) transmitted from the ONU 20 . The lower communication unit 11 converts the received optical signal into an electrical signal and outputs the electrical signal to the MAC processing unit 13 . The MAC processing unit 13 outputs the electrical signal output from the lower communication unit 11 to the OAM processing unit 14 . The OAM processor 14 acquires ONU information from the electrical signal output from the MAC processor 13 . The OAM processing unit 14 outputs the acquired ONU information to the ONU identification unit 15 . The ONU identification unit 15 acquires identification information of the ONU 20, which is the transmission source of the optical signal, from the ONU information output from the OAM processing unit 14 (step S101).
 ONU識別部15は、取得したONU20の識別情報に基づいて、光信号の送信元であるONU20が、REPORT前GAPが必要なONU20であるか否かを判定する(ステップS102)。ここで、REPORT前GAPが必要なONU20とは、送信予約キューを持たないONUである。そこで、ONU識別部15は、取得したONU20の識別情報に基づいて光信号の送信元であるONU20が、送信予約キューを持つONUであるか、送信予約キューを持たないONUであるかを識別することで、REPORT前GAPが必要なONU20であるか否かを判定する。光信号の送信元であるONU20が、送信予約キューを持つONUである場合、ONU識別部15はREPORT前GAPが必要なONU20ではないと判定する。光信号の送信元であるONU20が、送信予約キューを持たないONUである場合、ONU識別部15はREPORT前GAPが必要なONU20であると判定する。 The ONU identification unit 15 determines whether or not the ONU 20 that is the transmission source of the optical signal is the ONU 20 that requires the pre-REPORT GAP, based on the obtained identification information of the ONU 20 (step S102). Here, the ONU 20 that requires the pre-REPORT GAP is an ONU that does not have a transmission reservation queue. Therefore, the ONU identification unit 15 identifies whether the ONU 20 that is the transmission source of the optical signal is an ONU that has a transmission reservation queue or an ONU that does not have a transmission reservation queue, based on the acquired identification information of the ONU 20 . Thus, it is determined whether or not the ONU 20 requires the pre-REPORT GAP. If the ONU 20 that is the transmission source of the optical signal is an ONU that has a transmission reservation queue, the ONU identification unit 15 determines that the ONU 20 does not require a GAP before REPORT. If the ONU 20 that is the transmission source of the optical signal is an ONU that does not have a transmission reservation queue, the ONU identification unit 15 determines that the ONU 20 requires a pre-REPORT GAP.
 ONU識別部15は、REPORT前GAPが必要なONU20であると判定した場合(ステップS102-YES)、REPORT前GAPデータベース16からREPORT前GAPの情報を取得する(ステップS103)。ONU識別部15は、REPORT前GAPデータベース16に1つのREPORT前GAPの情報が格納されている場合には、格納されている1つのREPORT前GAPの情報を取得する。ONU識別部15は、REPORT前GAPデータベース16に複数のREPORT前GAPの情報が格納されている場合には、ONU20の識別情報に対応付けられたREPORT前GAPの情報を取得する。ONU識別部15は、取得したREPORT前GAPの情報を動的帯域割当部17に出力する。 When the ONU identification unit 15 determines that the ONU 20 requires a pre-report GAP (step S102-YES), it acquires pre-report gap information from the pre-report gap database 16 (step S103). When information on one pre-REPORT GAP is stored in the pre-REPORT GAP database 16, the ONU identification unit 15 acquires information on one stored pre-REPORT GAP. When the pre-report GAP database 16 stores a plurality of pre-report gap information, the ONU identification unit 15 acquires the pre-report gap information associated with the identification information of the ONU 20 . The ONU identification unit 15 outputs the acquired pre-REPORT GAP information to the dynamic band allocation unit 17 .
 動的帯域割当部17は、光信号(例えば、REPORTフレーム)の送信元であるONU20に割り当てる上り帯域を計算する。これにより、動的帯域割当部17は、光信号の送信元であるONU20に割り当てる上り帯域を決定する。さらに、動的帯域割当部17は、ONU識別部15から出力されたREPORT前GAPの情報に基づいて、REPORT前GAPの情報で示される時間だけ空くように、上りデータの送信開始時刻を決定する(ステップS104)。動的帯域割当部17は、ONU20に割り当てた上り帯域である送信許可量の情報、上りデータの送信開始時刻の情報及び送信継続時間の情報をMPCP処理部18に出力する。 The dynamic band allocation unit 17 calculates the upstream band to be allocated to the ONU 20 that is the transmission source of the optical signal (eg, REPORT frame). Thereby, the dynamic band allocation unit 17 determines the upstream band to be allocated to the ONU 20 which is the transmission source of the optical signal. Furthermore, the dynamic band allocation unit 17 determines the transmission start time of uplink data based on the pre-report GAP information output from the ONU identification unit 15 so that there is a time indicated by the pre-report GAP information. (Step S104). The dynamic bandwidth allocation unit 17 outputs information on the permitted amount of transmission, which is the upstream bandwidth allocated to the ONU 20 , information on the transmission start time of upstream data, and information on the transmission duration, to the MPCP processing unit 18 .
 MPCP処理部18は、動的帯域割当部17により決定された送信許可量の情報、上りデータの送信開始時刻の情報及び送信継続時間の情報を含むGATEフレームを生成する。MPCP処理部18は、生成したGATEフレームをMAC処理部13に出力する。MAC処理部13は、GATEフレームを下位通信部11に出力する。下位通信部11は、GATEフレームを光信号に変換してONU20に送信する(ステップS105)。 The MPCP processing unit 18 generates a GATE frame containing information on the permitted transmission amount determined by the dynamic band allocation unit 17, information on the transmission start time of uplink data, and information on the transmission duration. The MPCP processing unit 18 outputs the generated GATE frame to the MAC processing unit 13 . The MAC processing unit 13 outputs the GATE frame to the lower communication unit 11 . The lower communication unit 11 converts the GATE frame into an optical signal and transmits it to the ONU 20 (step S105).
 ステップS102の処理において、ONU識別部15は、REPORT前GAPが必要なONU20ではないと判定した場合(ステップS102-NO)、通常の帯域制御を行う(ステップS106)。ここで通常の帯域制御とは、一般的に行われている帯域割当であり、REPORT前GAPを加味しない帯域制御である。MPCP処理部18は、動的帯域割当部17により決定された送信許可量の情報、上りデータの送信開始時刻の情報及び送信継続時間の情報を含むGATEフレームを生成する。MPCP処理部18は、生成したGATEフレームをMAC処理部13に出力する。MAC処理部13は、GATEフレームを下位通信部11に出力する。下位通信部11は、GATEフレームを光信号に変換してONU20に送信する(ステップS105)。 In the processing of step S102, when the ONU identification unit 15 determines that the ONU 20 does not require a pre-report GAP (step S102-NO), normal bandwidth control is performed (step S106). Here, normal bandwidth control is bandwidth allocation that is commonly performed, and is bandwidth control that does not consider the pre-REPORT GAP. The MPCP processing unit 18 generates a GATE frame including information on the permitted transmission amount determined by the dynamic bandwidth allocation unit 17, information on the transmission start time of uplink data, and information on the transmission duration. The MPCP processing unit 18 outputs the generated GATE frame to the MAC processing unit 13 . The MAC processing unit 13 outputs the GATE frame to the lower communication unit 11 . The lower communication unit 11 converts the GATE frame into an optical signal and transmits it to the ONU 20 (step S105).
 以上のように構成された第1の実施形態における光アクセスシステム100によれば、OLT10は、送信予約キューを持たないONU20がOLT10に接続されている場合、DBA周期を行う間隔を、REPORT前GAPで示される時間だけ空けるように上りデータの送信開始時刻を決定する。REPORT前GAPは、上りデータの送信許可量の送信予約計算とreport計算とに要する時間以上の長さである。これにより、送信予約キューを持たないONU20は、送信許可時間(送信継続時間)内に、上りデータの送信許可量の送信予約計算と、report計算とを行い、REPORTフレームを送信することができる。その結果、OLT10が次の上り送信許可を与えることができる。そのため、送信予約キューを持たないONU20が上り通信を行うことが可能になる。 According to the optical access system 100 of the first embodiment configured as described above, when an ONU 20 having no transmission reservation queue is connected to the OLT 10, the OLT 10 sets the DBA cycle interval to pre-REPORT GAP The uplink data transmission start time is determined so that there is an interval of time indicated by . The pre-REPORT GAP is longer than the time required for transmission reservation calculation and report calculation of the transmission permission amount of uplink data. As a result, the ONU 20 that does not have a transmission reservation queue can perform transmission reservation calculation of the transmission permission amount of uplink data and report calculation within the transmission permission time (transmission continuation time), and transmit the REPORT frame. As a result, the OLT 10 can grant permission for the next uplink transmission. Therefore, the ONU 20 that does not have a transmission reservation queue can perform upstream communication.
(第2の実施形態)
 第1の実施形態では、REPORT前GAPで示される時間分DBA周期の間隔を空けることにより、送信予約キューを持たないONUのreport計算を間に合わせる構成を示した。第2の実施形態では、上りデータの送信許可量に応じた時間から送信準備時間を減らすことによって、送信予約キューを持たないONUのreport計算を間に合わせる構成について説明する。なお、第2の実施形態において、システム構成については図1に示すシステム構成と同様である。以下、第1の実施形態との相違点について説明する。送信許可量に応じた時間とは、送信許可量分のデータを送信するために割り当てられた時間を表す。
(Second embodiment)
In the first embodiment, the configuration is shown in which the report calculation of ONUs without transmission reservation queues is made in time by leaving an interval of the DBA cycle for the time indicated by the pre-report GAP. In the second embodiment, a configuration will be described in which the report calculation of an ONU that does not have a transmission reservation queue is made in time by reducing the transmission preparation time from the time corresponding to the transmission permission amount of uplink data. In addition, in the second embodiment, the system configuration is the same as the system configuration shown in FIG. Differences from the first embodiment will be described below. The time corresponding to the permitted transmission amount represents the time allocated for transmitting the permitted transmission amount of data.
 図5は、第2の実施形態における光アクセスシステム100の処理の概要を説明するための図である。
 第2の実施形態におけるOLT10aでは、送信予約キューを持たないONU20-1において上りデータの送信許可量の送信予約計算と、report計算とが、送信許可時刻に間に合うように、上りデータの送信許可量に応じた時間から送信準備時間を減らす調整する。送信準備時間は、ONU20がOLT10aへの接続時にOAMフレーム等で通知してもよいし、ネットワーク管理者がOLT10aに設定してもよい。ONU20がOLT10aへの接続時にOAMフレーム等で通知する場合、ONU20は送信予約計算時間の最大値とreport計算時間の最大値とを加算した時間を送信準備時間として通知する。送信予約計算時間とreport計算時間は、Grantの送信許可時間やONUバッファによって計算時間が変わるが、上記のように、それら計算時間の最悪値(最大値)を送信準備時間とすることで、OLT10aは送信予約キューを持たないONU20-1に対して送信準備時間を考慮することができる。
FIG. 5 is a diagram for explaining an outline of processing of the optical access system 100 in the second embodiment.
In the OLT 10a according to the second embodiment, the ONU 20-1, which does not have a transmission reservation queue, performs the transmission reservation calculation of the transmission permission amount of uplink data and the report calculation so that the transmission permission amount of uplink data can be completed in time for the transmission permission time. Adjust to reduce send preparation time from time accordingly. The transmission preparation time may be notified by an OAM frame or the like when the ONU 20 connects to the OLT 10a, or may be set in the OLT 10a by the network administrator. When the ONU 20 notifies by an OAM frame or the like when connecting to the OLT 10a, the ONU 20 notifies the time obtained by adding the maximum value of the transmission reservation calculation time and the maximum value of the report calculation time as the transmission preparation time. The transmission reservation calculation time and the report calculation time vary depending on the grant transmission permission time and the ONU buffer. can consider the transmission preparation time for the ONU 20-1 that does not have a transmission reservation queue.
 OLT10aが、送信予約キューを持たない20-1に対するGATEフレームを生成する際、その上りデータの送信許可量の送信完了時刻と、次のDBA周期のONU20-1のREPORTフレームの送信開始時刻との差が、ONU20-1の送信準備時間よりも短い場合は、上りデータの送信許可量に応じた時間からONU20-1の送信準備時間を差し引いた時間を、ONU20-1の上りデータの送信許可量に応じた時間として設定する。 When the OLT 10a generates a GATE frame for 20-1 that does not have a transmission reservation queue, the transmission completion time of the uplink data transmission permission amount and the transmission start time of the REPORT frame of the ONU 20-1 in the next DBA cycle are set. If the difference is shorter than the transmission preparation time of ONU 20-1, the time obtained by subtracting the transmission preparation time of ONU 20-1 from the time corresponding to the transmission permission amount of uplink data is the transmission permission amount of uplink data of ONU 20-1. Set the time according to
 上記の設定を行うことによって、送信予約キューを持たないONU20-1は、送信許可時刻に間に合うように、上りデータの送信許可量の送信予約計算と、report計算とを行うことができる。そして、ONU20-1は、REPORTフレームを送信することができる。 By performing the above settings, the ONU 20-1 that does not have a transmission reservation queue can perform transmission reservation calculation of the transmission permission amount of uplink data and report calculation in time for the transmission permission time. ONU 20-1 can then transmit a REPORT frame.
 図6は、第2の実施形態におけるOLT10aの構成例を示す図である。
 OLT10aは、下位通信部11と、上位通信部12と、MAC処理部13と、OAM処理部14aと、ONU識別部15aと、動的帯域割当部17aと、MPCP処理部18と、送信準備時間データベース19とを備える。
FIG. 6 is a diagram showing a configuration example of the OLT 10a in the second embodiment.
The OLT 10a includes a lower communication unit 11, a higher communication unit 12, a MAC processing unit 13, an OAM processing unit 14a, an ONU identification unit 15a, a dynamic band allocation unit 17a, an MPCP processing unit 18, a transmission preparation time a database 19;
 OLT10aは、OAM処理部14、ONU識別部15及び動的帯域割当部17に代えてOAM処理部14a、ONU識別部15a及び動的帯域割当部17aを備える点、及び送信準備時間データベース19を新たに備える点でOLT10と構成が異なる。OLT10aのその他の構成については、OLT10と同様である。そのため、OAM処理部14a、ONU識別部15a、動的帯域割当部17a及び送信準備時間データベース19について説明する。 The OLT 10a has an OAM processing unit 14a, an ONU identification unit 15a, and a dynamic band allocation unit 17a instead of the OAM processing unit 14, ONU identification unit 15, and dynamic band allocation unit 17, and the transmission preparation time database 19 is newly added. The configuration differs from that of the OLT 10 in that it is prepared for Other configurations of the OLT 10a are the same as those of the OLT 10. FIG. Therefore, the OAM processing unit 14a, the ONU identification unit 15a, the dynamic band allocation unit 17a, and the transmission preparation time database 19 will be explained.
 OAM処理部14aは、下位通信部11により受信された光信号に含まれるOAMフレームを解析する。これにより、OAM処理部14aは、ONU情報を取得する。なお、第2の実施形態において、ONU情報には、送信準備時間の情報が含まれる場合もある。例えば、光信号の送信元が送信予約キューを持たないONU20-1である場合には、送信準備時間をOLT10aに通知するために、ONU20-1が送信準備時間をOAMフレームに含めて通知する。一方で、送信予約キューを持つONU20-2は、送信準備時間の情報を含むOAMフレームを送信しない。OAM処理部14aは、取得したONU情報をONU識別部15に出力する。 The OAM processing unit 14a analyzes the OAM frame included in the optical signal received by the lower communication unit 11. Thereby, the OAM processing unit 14a acquires the ONU information. In the second embodiment, the ONU information may include information on transmission preparation time. For example, if the source of the optical signal is the ONU 20-1 that does not have a transmission reservation queue, the ONU 20-1 notifies the OLT 10a of the transmission preparation time by including it in an OAM frame. On the other hand, the ONU 20-2 having the transmission reservation queue does not transmit the OAM frame including the transmission preparation time information. The OAM processing unit 14 a outputs the acquired ONU information to the ONU identification unit 15 .
 ONU識別部15aは、OAM処理部14により取得されたONU情報に基づいて、光信号の送信元であるONU20を識別する。ONU識別部15aは、光信号の送信元であるONU20が送信予約キューを持たないONUである場合、ONU情報に含まれる送信準備時間の情報をONU20の識別情報に対応付けて送信準備時間データベース19に登録する。 Based on the ONU information acquired by the OAM processing section 14, the ONU identification section 15a identifies the ONU 20 that is the source of the optical signal. When the ONU 20 that is the transmission source of the optical signal is an ONU that does not have a transmission reservation queue, the ONU identification unit 15a associates the transmission preparation time information included in the ONU information with the identification information of the ONU 20 to create the transmission preparation time database 19. to register.
 動的帯域割当部17aは、光信号(例えば、REPORTフレーム)の送信元であるONU20に割り当てる上り帯域を計算する。具体的には、動的帯域割当部17aは、送信準備時間データベース19に登録されているONU20に対しては、送信準備時間の情報を加味した上り帯域を計算する。例えば、動的帯域割当部17aは、上りデータの送信許可量の送信完了時刻と、次のDBA周期のONU20-1のREPORTフレームの送信開始時刻との差が、送信準備時間よりも短い場合、上りデータの送信許可量に応じた時間からONU20-1の送信準備時間を差し引いた時間を、ONU20-1の上りデータの送信許可量に応じた時間に設定する。 The dynamic band allocation unit 17a calculates an upstream band to be allocated to the ONU 20 that is the transmission source of the optical signal (eg, REPORT frame). Specifically, for the ONUs 20 registered in the transmission preparation time database 19, the dynamic bandwidth allocation unit 17a calculates an upstream bandwidth in consideration of transmission preparation time information. For example, if the difference between the transmission completion time of the transmission permission amount of uplink data and the transmission start time of the REPORT frame of the ONU 20-1 in the next DBA cycle is shorter than the transmission preparation time, the dynamic bandwidth allocation unit 17a The time obtained by subtracting the transmission preparation time of ONU 20-1 from the time corresponding to the permitted amount of transmission of uplink data is set to the time corresponding to the permitted amount of transmission of uplink data of ONU 20-1.
 一方で、動的帯域割当部17aは、上りデータの送信許可量の送信完了時刻と、次のDBA周期のONU20-1のREPORTフレームの送信開始時刻との差が、送信準備時間以上である場合、ONU20-1における上りデータの送信許可量の送信予約計算と、report計算とが間に合うため、通常の帯域割当を行う。すなわち、動的帯域割当部17aは、ONU20-1から要求された帯域に応じた上りデータの送信許可量を割り当てる。 On the other hand, if the difference between the transmission completion time of the transmission permission amount of uplink data and the transmission start time of the REPORT frame of the ONU 20-1 in the next DBA period is equal to or greater than the transmission preparation time. , and the ONU 20-1 can make the transmission reservation calculation of the transmission permission amount of uplink data and the report calculation in time, normal band allocation is performed. That is, the dynamic band allocation unit 17a allocates the permitted amount of transmission of uplink data according to the band requested by the ONU 20-1.
 送信準備時間データベース19は、ONU毎の送信準備時間に関する情報が登録されたデータベースである。図7は、送信準備時間データベース19の構成例を示す図である。送信準備時間データベース19は、ONU毎の送信準備時間に関する情報が登録された複数のレコードで構成される、レコードは、ONU識別情報と、送信準備時間とを含む。ONU識別情報は、ONU20を識別するための情報である。送信準備時間は、ONU20においてREPORTフレームの送信に要する時間を表す。 The transmission preparation time database 19 is a database in which information on the transmission preparation time for each ONU is registered. FIG. 7 is a diagram showing a configuration example of the transmission preparation time database 19. As shown in FIG. The transmission preparation time database 19 is composed of a plurality of records in which information relating to transmission preparation time for each ONU is registered. Each record includes ONU identification information and transmission preparation time. ONU identification information is information for identifying the ONU 20 . The transmission preparation time represents the time required for the ONU 20 to transmit the REPORT frame.
 図8は、第2の実施形態におけるOLT10aが行う送信準備時間データベース19への登録処理の流れを示すフローチャートである。
 OLT10aの下位通信部11は、ONU20から送信された光信号(例えば、REPORTフレーム)を受信する。下位通信部11は、受信した光信号を電気信号に変換してMAC処理部13に出力する。MAC処理部13は、下位通信部11から出力された電気信号をOAM処理部14に出力する。OAM処理部14は、MAC処理部13から出力された電気信号からONU情報を取得する。OAM処理部14は、取得したONU情報をONU識別部15aに出力する。ONU識別部15aは、OAM処理部14から出力されたONU情報から、光信号の送信元であるONU20の識別情報を取得する(ステップS201)。
FIG. 8 is a flow chart showing the flow of registration processing in the transmission preparation time database 19 performed by the OLT 10a according to the second embodiment.
The lower communication unit 11 of the OLT 10a receives an optical signal (eg, REPORT frame) transmitted from the ONU 20. FIG. The lower communication unit 11 converts the received optical signal into an electrical signal and outputs the electrical signal to the MAC processing unit 13 . The MAC processing unit 13 outputs the electrical signal output from the lower communication unit 11 to the OAM processing unit 14 . The OAM processor 14 acquires ONU information from the electrical signal output from the MAC processor 13 . The OAM processing unit 14 outputs the acquired ONU information to the ONU identification unit 15a. The ONU identification unit 15a acquires the identification information of the ONU 20, which is the transmission source of the optical signal, from the ONU information output from the OAM processing unit 14 (step S201).
 ONU識別部15aは、取得したONU20の識別情報に基づいて、光信号の送信元であるONU20が、送信準備時間が必要なONU20であるか否かを判定する(ステップS202)。ONU識別部15aは、送信準備時間が必要なONU20であると判定した場合(ステップS202-YES)、取得したONU20の識別情報と、ONU情報に含まれる送信準備時間の情報とを対応付けて送信準備時間データベース19に登録する(ステップS203)。 The ONU identification unit 15a determines whether or not the ONU 20 that is the transmission source of the optical signal requires a transmission preparation time based on the obtained identification information of the ONU 20 (step S202). When the ONU identification unit 15a determines that the ONU 20 requires a transmission preparation time (step S202-YES), the ONU identification unit 15a associates the acquired identification information of the ONU 20 with the transmission preparation time information included in the ONU information, and transmits the information. It is registered in the preparation time database 19 (step S203).
 図9は、第2の実施形態におけるOLT10aが行う上り帯域制御処理の流れを示すフローチャートである。
 動的帯域割当部17aは、以下の第1の条件を満たすか否かを判定する(ステップS301)。
FIG. 9 is a flowchart showing the flow of upstream band control processing performed by the OLT 10a in the second embodiment.
The dynamic band allocation unit 17a determines whether or not the following first condition is satisfied (step S301).
(第1の条件)
DG (n)last onu=RG (n+1)first onu
(First condition)
DG (n) last onu = RG (n+1) first onu
 DG (n)last onuは、n回目のDBA(Dynamic Bandwidth Assignment)周期の最後に上りデータの送信許可量を通知したONU20の識別情報を表す。RG (n+1)first onuは、(n+1)回目のDBA周期の最初のReport GrantのONU20の識別情報を表す。すなわち、動的帯域割当部17aは、n回目のDBA周期の最後に上りデータの送信許可量を通知したONU20の識別情報と、(n+1)回目のDBA周期の最初のReport GrantのONU20の識別情報とが同じであるか否かを判定する。 DG (n) last onu represents the identification information of the ONU 20 that notified the permitted amount of uplink data transmission at the end of the n-th DBA (Dynamic Bandwidth Assignment) cycle. RG (n+1) first onu represents the identification information of the ONU 20 of the first Report Grant in the (n+1)th DBA cycle. That is, the dynamic bandwidth allocation unit 17a provides the identification information of the ONU 20 that notified the transmission permission amount of uplink data at the end of the n-th DBA cycle, and the identification information of the ONU 20 that received the first Report Grant in the (n+1)-th DBA cycle. are the same.
 動的帯域割当部17aは、第1の条件を満たさないと判定した場合(ステップS301-NO)、図9の処理を終了する。
 一方、動的帯域割当部17aは、第1の条件を満たすと判定した場合(ステップS301-YES)、以下の第2の条件を満たすか否かを判定する(ステップS302)。
When the dynamic band allocation unit 17a determines that the first condition is not satisfied (step S301-NO), it ends the processing of FIG.
On the other hand, when determining that the first condition is satisfied (step S301-YES), the dynamic bandwidth allocation unit 17a determines whether or not the following second condition is satisfied (step S302).
(第2の条件)
(RG(n+1)first onu_start)-[(DG(n)last onu_start)+(DG(n)last onu_length)]≧送信準備時間(DG (n)last onu)
(Second condition)
(RG(n+1) first onu _start) - [(DG(n) last onu _start) + (DG(n) last onu _length)] ≥ transmission preparation time (DG (n) last onu )
 RG(n+1)first onu_startは、(n+1)回目のDBA周期の最初のReport Grantの開始時間を表す。DG(n)last onu_startは、n回目のDBA周期の最後のData Grantの開始時間を表す。DG(n)last onu_lengthは、n回目のDBA周期の最後のData Grantの時間の長さを表す。送信準備時間(DG (n)last onu)は、取得されたONU20の識別情報に該当するONU20の送信準備期間を表す。(DG(n)last onu_start)+(DG(n)last onu_length)は、n回目のDBA周期の最後のDATA Grantの送信完了時間を表す。 RG(n+1) first onu_start represents the start time of the first Report Grant of the (n+1)th DBA cycle. DG(n) last onu_start represents the start time of the last Data Grant of the n-th DBA cycle. DG(n) last onu_length represents the time length of the last Data Grant of the n-th DBA cycle. The transmission preparation time (DG (n) last onu ) represents the transmission preparation period of the ONU 20 corresponding to the acquired identification information of the ONU 20 . (DG(n) last onu_start )+(DG(n) last onu_length ) represents the transmission completion time of the last DATA Grant in the n-th DBA cycle.
 すなわち、動的帯域割当部17aは、(n+1)回目のDBA周期の最初のReport Grantの開始時間から、n回目のDBA周期の最後のDATA Grantの送信完了時間を減算した時間が、取得されたONU20の識別情報に該当するONU20の送信準備期間以上であるか否かを判定する。 That is, the dynamic bandwidth allocation unit 17a acquires the time obtained by subtracting the transmission completion time of the last DATA Grant in the n-th DBA cycle from the start time of the first Report Grant in the (n+1)-th DBA cycle. It is determined whether or not the transmission preparation period of the ONU 20 corresponding to the identification information of the ONU 20 is longer than the transmission preparation period.
 動的帯域割当部17aは、第2の条件を満たさないと判定した場合(ステップS302-NO)、図9の処理を終了する。
 一方、動的帯域割当部17aは、第2の条件を満たすと判定した場合(ステップS302-YES)、n回目のDBA周期のData Grantの時間の長さから、ONU20の送信準備期間を減算した値を、当該ONU20におけるn回目のDBA周期のData Grantの時間の長さとして割り当てる(ステップS303)。これにより、動的帯域割当部17aは、光信号の送信元であるONU20に割り当てる上り帯域を決定する。さらに動的帯域割当部17aは、上りデータの送信開始時刻を決定する。動的帯域割当部17aは、ONU20に割り当てた上り帯域である送信許可量の情報及び上りデータの送信開始時刻の情報をMPCP処理部18に出力する。
When the dynamic band allocation unit 17a determines that the second condition is not satisfied (step S302-NO), it ends the processing of FIG.
On the other hand, when the dynamic bandwidth allocation unit 17a determines that the second condition is satisfied (step S302-YES), the dynamic bandwidth allocation unit 17a subtracts the transmission preparation period of the ONU 20 from the length of time of the Data Grant in the n-th DBA cycle. A value is assigned as the length of time of the Data Grant for the n-th DBA cycle in the ONU 20 (step S303). As a result, the dynamic band allocation unit 17a determines the upstream band to be allocated to the ONU 20, which is the source of the optical signal. Furthermore, the dynamic band allocation unit 17a determines the transmission start time of uplink data. The dynamic bandwidth allocation unit 17 a outputs information on the transmission permission amount, which is the upstream bandwidth allocated to the ONU 20 , and information on the transmission start time of the upstream data to the MPCP processing unit 18 .
 MPCP処理部18は、動的帯域割当部17により決定された送信許可量の情報と上りデータの送信開始時刻の情報とを含むGATEフレームを生成する。MPCP処理部18は、生成したGATEフレームをMAC処理部13に出力する。MAC処理部13は、GATEフレームを下位通信部11に出力する。下位通信部11は、GATEフレームを光信号に変換してONU20に送信する。 The MPCP processing unit 18 generates a GATE frame containing information on the permitted transmission amount determined by the dynamic band allocation unit 17 and information on the transmission start time of uplink data. The MPCP processing unit 18 outputs the generated GATE frame to the MAC processing unit 13 . The MAC processing unit 13 outputs the GATE frame to the lower communication unit 11 . The lower communication unit 11 converts the GATE frame into an optical signal and transmits the optical signal to the ONU 20 .
 以上のように構成された第2の実施形態における光アクセスシステム100によれば、送信予約キューを持たないONU20がOLT10に接続されている場合、必要に応じて上り送信許可量を送信するための時間から送信準備時間を減らす。これにより、送信予約キューを持たないONU20は、送信許可時間(送信継続時間)内に、上りデータの送信許可量の送信予約計算と、report計算とを行い、REPORTフレームを送信することができる。その結果、OLT10が次の上り送信許可を与えることができる。そのため、送信予約キューを持たないONU20が上り通信を行うことが可能になる。 According to the optical access system 100 of the second embodiment configured as described above, when the ONU 20 having no transmission reservation queue is connected to the OLT 10, the amount of upstream transmission permission is transmitted as necessary. Reduce send preparation time from time. As a result, the ONU 20 that does not have a transmission reservation queue can perform transmission reservation calculation of the transmission permission amount of uplink data and report calculation within the transmission permission time (transmission continuation time), and transmit the REPORT frame. As a result, the OLT 10 can grant permission for the next uplink transmission. Therefore, the ONU 20 that does not have a transmission reservation queue can perform upstream communication.
(第2の実施形態の変形例)
 上記のように、光アクセスシステム100において、送信予約キューを持つONU20と、送信予約キューを持たないONU20とが混在する場合、送信予約キューを持たないONU20の送信順序が、送信予約キューを持つONU20より前になるように優先して割り当てるように構成されてもよい。
(Modification of Second Embodiment)
As described above, in the optical access system 100, when the ONUs 20 having a reserved transmission queue and the ONUs 20 not having a reserved transmission queue coexist, the transmission order of the ONUs 20 not having a reserved transmission queue is the same as that of the ONUs 20 having a reserved transmission queue. It may be configured to preferentially allocate earlier.
(第1の実施形態及び第2の実施形態に共通する変形例)
 上述した光アクセスシステム100では、送信予約キューを持つONU20と、送信予約キューを持たないONU20とが混在する構成を示したが、光アクセスシステム100は、送信予約キューを持たないONU20だけを備えている場合にも適用できる。
(Modified Example Common to First and Second Embodiments)
The optical access system 100 described above has a configuration in which the ONUs 20 having a transmission reservation queue and the ONUs 20 not having a transmission reservation queue are mixed. It can also be applied if
 上述した実施形態におけるOLT10、10aの一部の機能をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。 A part of the functions of the OLTs 10 and 10a in the above-described embodiment may be realized by a computer. In that case, a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices. The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 Furthermore, "computer-readable recording medium" refers to a program that dynamically retains programs for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as FPGA.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design within the scope of the gist of the present invention.
 本発明は、送信予約キューを持たないONUを備える光アクセスシステムに適用できる。 The present invention can be applied to an optical access system having ONUs without transmission reservation queues.
10…OLT, 20-1~20-N…ONU, 30…光スプリッタ, 11…下位通信部, 12…上位通信部, 13…MAC処理部, 14…OAM処理部, 15…ONU識別部, 16…REPORT前GAPデータベース, 17…動的帯域割当部, 18…MPCP処理部, 19…送信準備時間データベース 10... OLT, 20-1 to 20-N... ONU, 30... optical splitter, 11... lower communication unit, 12... upper communication unit, 13... MAC processing unit, 14... OAM processing unit, 15... ONU identification unit, 16 ... GAP database before REPORT, 17 ... dynamic bandwidth allocation unit, 18 ... MPCP processing unit, 19 ... transmission preparation time database

Claims (5)

  1.  光加入者線端局装置と、少なくとも送信予約キューを持たない1以上の光加入者線終端装置とを備える光アクセスシステムにおける前記光加入者線端局装置であって、
     前記1以上の光加入者線終端装置が、送信予約キューを持たない光加入者線終端装置であるか否かを識別する識別部と、
     前記1以上の光加入者線終端装置が、送信予約キューを持たない光加入者線終端装置である場合、前記1以上の光加入者線終端装置において送信予約計算とレポート計算とが間に合うように、帯域割当制御を行う帯域割当部と、
     前記帯域割当部において行われた帯域割当制御の結果を前記1以上の光加入者線終端装置に送信する通信部と、
     備える光加入者線端局装置。
    An optical subscriber line terminal in an optical access system comprising an optical subscriber line terminal and at least one optical subscriber line terminal having no transmission reservation queue,
    an identification unit for identifying whether the one or more optical subscriber line terminating units are optical subscriber line terminating units without a transmission reservation queue;
    When the one or more optical network units are optical network units that do not have a transmission reservation queue, the one or more optical network units are configured so that transmission reservation calculation and report calculation can be made in time. , a bandwidth allocation unit that performs bandwidth allocation control;
    a communication unit configured to transmit a result of band allocation control performed in the band allocation unit to the one or more optical subscriber line terminating units;
    optical subscriber line terminal equipment.
  2.  前記帯域割当部は、前記帯域割当制御として、帯域割り当て周期の間隔が、前記送信予約計算と前記レポート計算とに要する時間以上空くように、前記1以上の光加入者線終端装置の送信開始時刻を設定する、
     請求項1に記載の光加入者線端局装置。
    As the bandwidth allocation control, the bandwidth allocation unit controls the transmission start times of the one or more optical subscriber line terminating units so that the interval of the bandwidth allocation cycle is equal to or longer than the time required for the transmission reservation calculation and the report calculation. to set the
    2. The optical subscriber line terminal equipment according to claim 1.
  3.  前記帯域割当部は、前記帯域割当制御として、上りデータの送信許可量の送信完了時刻と、帯域割り当て周期における前記1以上の光加入者線終端装置の送信開始時刻との差が、前記送信予約計算と前記レポート計算とに要する時間よりも短い場合、前記上りデータの送信許可量の時間から前記送信準備時間を差し引いて、前記上りデータの送信許可量の時間に設定する、
     請求項1に記載の光加入者線端局装置。
    The bandwidth allocation unit controls, as the bandwidth allocation control, the difference between the transmission completion time of the permitted amount of uplink data and the transmission start time of the one or more optical subscriber line terminating units in the bandwidth allocation cycle to determine the transmission reservation. If the time required for calculation and the report calculation is shorter than the time required for the calculation and the report calculation, subtract the transmission preparation time from the time for the permitted amount of uplink data to be transmitted, and set the time to the permitted amount for transmission of uplink data.
    2. The optical subscriber line terminal equipment according to claim 1.
  4.  前記帯域割当部は、前記帯域割当制御として、上りデータの送信許可量の送信完了時刻と、帯域割り当て周期における前記1以上の光加入者線終端装置の送信開始時刻との差が、前記送信予約計算と前記レポート計算とに要する時間以上である場合、要求された前記上りデータの送信許可量に応じた時間を設定する、
     請求項3に記載の光加入者線端局装置。
    The bandwidth allocation unit controls, as the bandwidth allocation control, the difference between the transmission completion time of the permitted amount of uplink data and the transmission start time of the one or more optical subscriber line terminating units in the bandwidth allocation cycle to determine the transmission reservation. If the time required for the calculation and the report calculation is equal to or longer than the time required for the transmission of the requested uplink data, setting the time according to the transmission permission amount.
    4. The optical subscriber line terminal equipment according to claim 3.
  5.  光加入者線端局装置と、少なくとも送信予約キューを持たない1以上の光加入者線終端装置とを備える光アクセスシステムにおける帯域割当制御方法であって、
     前記1以上の光加入者線終端装置が、送信予約キューを持たない光加入者線終端装置であるか否かを識別し、
     前記1以上の光加入者線終端装置が、送信予約キューを持たない光加入者線終端装置である場合、前記1以上の光加入者線終端装置において送信予約計算とレポート計算とが間に合うように、帯域割当制御を行い、
     帯域割当制御の結果を前記1以上の光加入者線終端装置に送信する、
     帯域割当方法。
    A bandwidth allocation control method in an optical access system comprising an optical subscriber line terminal device and at least one optical subscriber line terminal device having no transmission reservation queue,
    identifying whether the one or more optical network units are optical network units that do not have a transmission reservation queue;
    When the one or more optical network units are optical network units that do not have a transmission reservation queue, the one or more optical network units are configured so that transmission reservation calculation and report calculation can be made in time. , performs bandwidth allocation control,
    transmitting a result of bandwidth allocation control to the one or more optical subscriber line terminating equipment;
    Bandwidth allocation method.
PCT/JP2022/007339 2022-02-22 2022-02-22 Optical line terminal and bandwidth allocation method WO2023162026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007339 WO2023162026A1 (en) 2022-02-22 2022-02-22 Optical line terminal and bandwidth allocation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007339 WO2023162026A1 (en) 2022-02-22 2022-02-22 Optical line terminal and bandwidth allocation method

Publications (1)

Publication Number Publication Date
WO2023162026A1 true WO2023162026A1 (en) 2023-08-31

Family

ID=87765161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007339 WO2023162026A1 (en) 2022-02-22 2022-02-22 Optical line terminal and bandwidth allocation method

Country Status (1)

Country Link
WO (1) WO2023162026A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201115A (en) * 2009-02-24 2009-09-03 Hitachi Communication Technologies Ltd Optical access system with encryption apparatus, and encryption method thereof
WO2017221874A1 (en) * 2016-06-20 2017-12-28 日本電信電話株式会社 Optical transmission device and bandwidth allocating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201115A (en) * 2009-02-24 2009-09-03 Hitachi Communication Technologies Ltd Optical access system with encryption apparatus, and encryption method thereof
WO2017221874A1 (en) * 2016-06-20 2017-12-28 日本電信電話株式会社 Optical transmission device and bandwidth allocating method

Similar Documents

Publication Publication Date Title
US7362975B2 (en) Bandwidth allocation device and dynamic bandwidth allocation method based on class of service in Ethernet Passive Optical Network
US10516923B2 (en) Dynamic bandwidth assignment method and apparatus, and passive optical network system
US8184977B2 (en) Optical line terminal capable of active bandwidth allocation for passive optical network system
JP4888515B2 (en) Dynamic bandwidth allocating apparatus and method and station apparatus of PON system
KR100547705B1 (en) Bandwidth Allocation Method for Voice Service of Gigabit Ethernet Passive Optical Subscriber Network
US8184976B2 (en) Passive optical network system and operating method thereof
KR100950337B1 (en) Apparatus and method efficient dynamic bandwidth allocation for TDMA based passive optical network
TWI725274B (en) Data communication system, optical line terminal and baseband unit
JP2007074234A (en) Transmission apparatus
JP2012518319A (en) Output separation for dynamic bandwidth allocation in passive optical networks
WO2015166791A1 (en) Station-side device, communication control method, and communication control program
KR20040038158A (en) Method for method for transmitting oam(operation, administration, and maintenance) packet data and ethernet passive optical network having control multiplexer therefor
JP2007074740A (en) Transmission apparatus
JP3643016B2 (en) Optical burst transmission / reception control system, master station apparatus, slave station apparatus and optical burst transmission / reception control method used therefor
KR100566294B1 (en) Dynamic bandwidth allocation method for gigabit ethernet passive optical network
JP2008289202A (en) Transmitter and network system
WO2023162026A1 (en) Optical line terminal and bandwidth allocation method
KR100884168B1 (en) Media access control scheduling method and EPON system using the method
WO2022269853A1 (en) Bandwidth allocation device, subscriber line termination device, and bandwidth allocation method
JP2007288629A (en) Transmission allocation method and device
CN112262551B (en) Subscriber line terminal station apparatus and band allocation method
KR102274590B1 (en) Apparatus and method for quality of service in passive optical network
KR20030040934A (en) MAC scheduling apparatus and method of OLT in PON
KR100686809B1 (en) Dynamic bandwidth allocation method and EPON system supporting the QoS mechanism
JP2023028714A (en) Buffer allocation device, subscriber line terminal device, buffer allocation method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928557

Country of ref document: EP

Kind code of ref document: A1