WO2023153139A1 - Projector, and measuring device - Google Patents

Projector, and measuring device Download PDF

Info

Publication number
WO2023153139A1
WO2023153139A1 PCT/JP2023/000814 JP2023000814W WO2023153139A1 WO 2023153139 A1 WO2023153139 A1 WO 2023153139A1 JP 2023000814 W JP2023000814 W JP 2023000814W WO 2023153139 A1 WO2023153139 A1 WO 2023153139A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser light
light sources
laser
control device
Prior art date
Application number
PCT/JP2023/000814
Other languages
French (fr)
Japanese (ja)
Inventor
和也 本橋
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2023153139A1 publication Critical patent/WO2023153139A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present disclosure relates to projectors and measuring devices.
  • LiDAR Light Detection and Ranging
  • a projector irradiator
  • irradiation light irradiation light
  • light beam laser light
  • return light reflected light
  • the laser light emitted from the LiDAR projector may be harmful to the human body due to its small emission area and high energy density.
  • JIS Japanese Industrial Standards
  • JIS C 6802 stipulate the "radiation safety standards for laser products" (JIS C 6802). must be designed to meet the conditions specified in
  • WO 2005/010000 is designed to flexibly adjust the balance between the parameters of a laser source (illumination range for eye safety, repetition rate, duty cycle, pulse power, reference to operating temperature, etc.).
  • the LIDAR system operates a laser source of a laser scanner that emits a first laser pulse from a plurality of angular regions to a specific angular region, performs LIDAR measurements based on the reflection of the first laser pulses, and performs a LIDAR measurement based on the LIDAR measurements. to selectively activate the laser source of the laser scanner to emit a second laser pulse in a particular angular region.
  • Flash LiDAR does not include mechanical components such as motors and MEMS (Micro Electro Mechanical Systems), and is a leading LiDAR in fields where durability is required, such as when used for in-vehicle purposes to realize AD and ADAS. considered as a candidate.
  • mechanical components such as motors and MEMS (Micro Electro Mechanical Systems)
  • MEMS Micro Electro Mechanical Systems
  • the entire light source 60 for example, when all the light emitting elements 601) of the light source are controlled to light up at the same time, as shown in FIG. more likely to exceed the threshold (safety value, upper limit value, allowable value, etc.) based on
  • the threshold safety value, upper limit value, allowable value, etc.
  • long-distance measurement such as when measuring a vehicle in the opposite lane in the distance, it is necessary to irradiate a high-intensity laser beam, and it is required to reduce the effects on the human body. Note that FIG.
  • 6B is a graph showing the above control, in which the horizontal axis is time and the vertical axis is the light emission intensity of the light emitting element 601, and the amount of light emitted (energy of the light emitted) and the amount of exposure (energy to which a person is exposed) are different.
  • the size is shown schematically.
  • FIG. 601 for example, an addressable VCSEL (Vertical Cavity Surface Emitting Laser) array.
  • the light projection target areas 61a to 61d of the individual light emitting elements 601a to 601d are set to be different, and the individual light emitting elements 601a to 601d are turned on sequentially (turned on at different times). It is possible to irradiate the entire area 61 with laser light and reduce the influence on the human body.
  • the above method inevitably increases the number of times the light-emitting elements 601a to 601d are turned on/off (the number of times they are turned on and off). It becomes difficult to secure the scanning speed for the entire areas 61a to 61d.
  • Patent Document 1 discloses adjusting the balance with other parameters considering the irradiation range for ensuring eye safety as a parameter of the laser light source. However, Patent Literature 1 does not particularly describe a method for preventing frame rate reduction.
  • the present disclosure has been made in view of such a background, and an object thereof is to provide a projector and a measurement device that can prevent a frame rate from dropping while reducing the effects of laser light on the human body.
  • a projector includes: a light emitting unit having a plurality of laser light sources that can be individually controlled to be turned on/off; a control device for controlling lighting/extinguishing of each of the laser light sources; with The control device controls two of the laser light sources such that the total amount of energy of the laser light that may enter the human eye when the laser light sources are turned on at the same time is equal to or less than a preset threshold value. The above combinations are lit at the same time.
  • FIG. 1 is a diagram illustrating a schematic configuration of a measuring device.
  • FIG. 2 is a plan view of a surface emitting element array shown as an example of a light emitting section.
  • FIG. 3A is a schematic diagram showing a configuration example of a light projector used for explaining control of a surface emitting element by a light projection control device.
  • FIG. 3B is a graph showing an example of control of the light emitting unit by the light projection control device.
  • FIG. 4A is a schematic diagram showing an example of a combination of surface emitting elements that are lit at the same time.
  • FIG. 4B is a schematic diagram showing an example of a combination of surface emitting elements that are lit at the same time.
  • FIG. 4A is a schematic diagram showing an example of a combination of surface emitting elements that are lit at the same time.
  • FIG. 4C is a schematic diagram showing an example of a combination of surface emitting elements that are lit at the same time.
  • FIG. 5A is a diagram for explaining a method of calculating an angle at which the surface emitting element sees the aperture stop in the case of "measurement condition 1".
  • FIG. 5B is a diagram illustrating a method of calculating the angle at which the surface emitting element looks into the aperture stop in the case of "measurement condition 3".
  • FIG. 6A is a schematic diagram showing a configuration example of a light projector used for explaining control of light emitting elements.
  • FIG. 6B is a graph showing an example of light source control.
  • FIG. 7A is a schematic diagram showing a configuration example of a light projector used for explaining control of light emitting elements.
  • FIG. 7B is a graph showing an example of light source control.
  • FIG. 1 illustrates a schematic configuration (block diagram) of a measuring device 100 shown as one embodiment.
  • the measurement device 100 is, for example, a flash LiDAR (Flash Light Detection and Ranging, Laser Imaging) installed in a vehicle equipped with AD (Autonomous Driving) or ADAS (Advanced Driver Assistance System). Detection and Ranging).
  • a flash LiDAR Flash Light Detection and Ranging, Laser Imaging
  • AD Autonomous Driving
  • ADAS Advanced Driver Assistance System
  • the measurement apparatus 100 measures the time (hereinafter referred to as “TOF” (hereinafter referred to as “TOF” (The distance to the object 50 is measured by measuring the Time Of Flight).
  • the light beam (irradiation light) that the measurement apparatus 100 irradiates toward the object 50 is referred to as "projected light", and the light that is reflected by the object 50 and returns. is called “reflected light”.
  • the measuring device 100 assists the detection of people, vehicles, objects, etc., as well as ensuring the safety of the driver of the vehicle and people around the vehicle, and the damage caused to objects around while driving the vehicle. Provide various information useful for reducing
  • the measuring apparatus 100 includes a light emitting unit 111, a light projection control device 112 (an example of a control device), a current source 113, a light projecting optical system 114, a light receiving optical system 115, a light receiving unit 116, a TOF measurement A device 117 , an arithmetic device 150 and a communication I/F 160 are included.
  • the light emitting unit 111, the light projection control device 112, the current source 113, and the light projection optical system 114 constitute a "projector" that generates projection light.
  • the light receiving optical system 115 and the light receiving unit 116 constitute a "light receiver” that receives the reflected light.
  • the light emitting unit 111 includes a plurality of surface emitting laser light sources (for example, VCSEL (Vertical Cavity Surface Emitting Laser)) arranged one-dimensionally or two-dimensionally on a substrate (semiconductor substrate, ceramic substrate, etc.). )).
  • the light emitting unit 111 can be configured using a surface light emitting element array (addressable VCSEL array) capable of independently controlling on/off of each surface light emitting element 10 .
  • the surface emitting element 10 generates a light beam (laser light) that serves as projection light.
  • FIG. 2 is a plan view of a surface emitting element array shown as an example of the light emitting section 111.
  • the surface emitting element array has a plurality of surface emitting elements 10 arranged in a square lattice on one surface of the substrate 22 .
  • each of the plurality of surface emitting elements 10 is provided with its emitting direction (optical axis) directed in a direction (+z direction in FIG. 2) perpendicular to the x direction and y direction in FIG.
  • a plurality of current supply lines 23 for supplying a current (driving current) for causing the surface emitting elements 10 to emit light from a current source 113 (see FIG. 1) are electrically connected to the surface emitting element array. .
  • the arrangement form of the surface emitting elements 10 in the surface emitting element array is not necessarily limited to that illustrated in FIG. may be Further, the surface emitting elements 10 do not necessarily have to be two-dimensionally arranged on the substrate 22 and may be one-dimensionally arranged on the substrate 22 .
  • the light projection control device 112 generates a control signal for controlling the current source 113 that supplies the drive current for the surface light emitting element 10 of the light emitting unit 111, and inputs it to the current source 113, whereby the current The current (driving current) supplied from the source 113 to the surface emitting element 10 is controlled.
  • the light projection control device 112 outputs a signal indicating the timing at which the surface light emitting element 10 emits light (the timing at which the projected light is emitted from the surface light emitting element 10; hereinafter referred to as “projection timing”). to enter.
  • the light projection control device 112 periodically and repeatedly causes the surface light emitting elements 10 to emit light by, for example, periodically repeating ON/OFF control of the electric current flowing through each of the surface emitting elements 10 .
  • the current source 113 supplies the surface emitting element 10 with a current corresponding to the control signal input from the light projection control device 112 .
  • the current source 113 supplies, for example, a periodic square-wave current to the surface emitting elements 10 for turning on and off the current flowing through each of the surface emitting elements 10 .
  • the projection optical system 114 adjusts the light distribution of the projected light, for example, by applying an optical effect (refraction, scattering, diffraction, etc.) to the projected light emitted from the light emitting unit 111 .
  • the projection optical system 114 can be configured using optical components such as various lenses such as a collimator lens, a diffraction grating, and a reflector (mirror).
  • the light-receiving optical system 115 collects the reflected light returning from the object 50 onto the light-receiving unit 116 .
  • the light receiving optical system 115 can be configured using, for example, various lenses such as a condenser lens, various filters such as a wavelength filter, and optical components such as a reflector (mirror).
  • the light receiving unit 116 can be configured using a photodetector such as a SPAD (Single Photon Avalanche Diode), a photodiode, or a balanced photodetector, for example.
  • the light receiving unit 116 photoelectrically converts the reflected light incident from the light receiving optical system 115 to generate a current (hereinafter referred to as “light receiving current”) corresponding to the intensity of the reflected light.
  • the light receiving unit 116 inputs a signal indicating the timing of receiving the reflected light (hereinafter referred to as “light receiving timing”) and the generated light receiving current to the TOF measuring device 117 .
  • the TOF measurement device 117 obtains the TOF based on the signal indicating the light projection timing input from the light emission control device 112 and the signal indicating the light reception timing input from the light receiving unit 116 .
  • the TOF measurement device 117 can be configured using, for example, a time measurement IC (Integrated Circuit) equipped with a TDC (Time to Digital Converter) circuit.
  • the TOF measuring device 117 inputs the obtained TOF and the received light current input from the light receiving unit 116 to the arithmetic device 150 .
  • Arithmetic device 150 uses, for example, a processor (CPU (Central Processing Unit), MPU (Micro Processing Unit), ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), etc.) can be configured.
  • the calculation device 150 generates information used for various measurements such as detection of the target object 50 and distance measurement based on the received light current and the TOF input from the TOF measurement device 117 .
  • the information is, for example, a histogram used in Time Correlated Single Photon Counting, a distance to each point (point) of the object 50, a point cloud (point group information: point cloud) etc.
  • the computing device 150 also controls the light projection control device 112 and the light receiving section 116 .
  • the calculation device 150 controls the light projection control device 112 and the light receiving unit 116, thereby adjusting the light projection timing and the light reception timing so that the processing related to the generation of the histogram is speeded up or optimized. Control.
  • the information generated by the computing device 150 is provided (transmitted) to devices that use the information (hereinafter referred to as “various devices 40”) via a communication I/F 160 (I/F: Interface). .
  • Various utilization devices 40 create an environment map by point cloud, self-location estimation (SLAM (Simultaneous Localization and Mapping)) using a scan matching algorithm (NDT (Normal Distribution Transform), ICP (Iterative Closest Point), etc.) etc.
  • SLAM Simultaneous Localization and Mapping
  • NDT Normal Distribution Transform
  • ICP Iterative Closest Point
  • the light projection control device 112 controls the surface light emitting element 10 so that the total amount of laser light energy that may enter the human eye is equal to or less than a preset threshold value (safety value, upper limit value, allowable value, etc.).
  • the current sources 113 are controlled to illuminate two or more combinations simultaneously. This reduces the effect (exposure dose) on the human body when the laser light is accidentally irradiated on the human body, and the measurement device 100 and the projector comply with the radiation safety standards (IEC: International Electrotechnical Commission) for laser products. 60825-1 of Japanese Industrial Standards (JIS: Japanese Industrial Standards) "Radiation Safety Standards for Laser Products" (JIS C 6802), etc.). Also, by simultaneously turning on two or more of the above combinations, it is possible to prevent a decrease in the frame rate (scanning speed of the light projection target area).
  • FIG. 3A is a schematic diagram showing a configuration example of a light projector used for explaining control of the surface light emitting element 10 by the light projection control device 112.
  • FIG. The reference numerals in FIG. 3A correspond to the reference numerals attached to FIG.
  • the case where the light emitting section 111 has four surface light emitting elements 10a to 10d arranged one-dimensionally at equal intervals on the substrate is illustrated. It is assumed that the surface emitting elements 10a to 10d all have common specifications (for example, they are all products of the same model number).
  • the laser light emitted from the surface emitting element 10a out of the four surface emitting elements 10a to 10d is emitted from the surface emitting element 10b to the light projection area 51a via the light projecting optical system 114.
  • the laser light emitted from the surface emitting element 10c is emitted from the surface light emitting element 10d to the light emitting area 51c via the light emitting optical system 114.
  • the emitted laser light is distributed to the light projection area 51d via the light projection optical system 114, respectively.
  • each of two adjacent surface emitting elements 10 (any combination of surface emitting elements 10a and 10b, surface emitting elements 10b and surface emitting elements 10c, surface emitting elements 10c and surface emitting elements 10d)
  • the two laser beams distributed toward the projection target area by the projection optical system 114 may enter the human eye at the same time and have a harmful effect on the human body. be. Therefore, the light projection control device 112 reduces the effect of the laser light on the human body by controlling the adjacent surface emitting elements 10 not to light at the same time, so that the measuring device 100 (projector) complies with the radiation safety standards for laser products. make it fulfill
  • FIG. 3B is a graph illustrating the above control.
  • the horizontal axis is time and the vertical axis is the light emission intensity of the surface light emitting element 10, and shows an example of the amount of projected light (energy of projected light) and the amount of exposure (energy to which a person is exposed).
  • the combination of the surface emitting elements 10a and 10c is lit at the same time, and then the combination of the surface emitting elements 10b and 10d is lit at the same time.
  • the exposure dose at each lighting timing is 1/2 of the exposure dose (FIG. 6B) in the method shown in FIG. 6A. In this case, the time required for one frame is half the time (FIG. 7B) in the method shown in FIG. scan speed) can be increased.
  • every other combination of surface light emitting elements 10 is lighted at the same time. You may make it light simultaneously every 2 or more. Also, any combination of two or more surface emitting elements 10 that are not adjacent to each other may be lit at the same time.
  • the plurality of surface emitting elements 10 constituting the light emitting section 111 are classified into a plurality of groups each having a plurality of adjacent surface emitting elements 10 as elements, and the surface emitting elements 10 belonging to two adjacent groups are simultaneously lit. You can choose not to let it happen. However, in this case, the total amount of energy of the laser light that may enter the human eye when all the surface emitting elements 10 in one group are turned on at the same time is set to a preset threshold value (safety value, upper limit value, permissible value, etc.).
  • a preset threshold value safety value, upper limit value, permissible value, etc.
  • FIGS. 4A to 4C are diagrams showing examples of combinations of surface emitting elements 10 that are simultaneously lit.
  • 4A shows the case where every other surface light emitting element 10 is lit at the same time
  • FIG. 4B shows the case where every two surface light emitting elements 10 are simultaneously lit
  • FIG. This is a case where the surface light-emitting elements 10 are turned on at the same time every other group in units of groups having surface light-emitting elements 10 (groups having two surface light-emitting elements 10 in this example).
  • the combination of the surface light emitting elements 10 to be simultaneously lit among the surface light emitting elements 10 constituting the light emitting unit 111 depends on, for example, the arrangement interval of the surface light emitting elements 10, the surface light emitting element 10 Arrangement form of the elements 10 (for example, an orthorhombic lattice, a triangular lattice, a square lattice, a rectangular lattice, a hexagonal lattice, etc.), light beams emitted from the surface emitting elements 10 or the light beams emitted from the light emitting optical system 114 It is determined by considering the beam divergence angle (beam divergence angle, pitch) after passing through and the viewing angle of the human eye (viewing angle determined according to the aperture stop of the pupil).
  • the beam divergence angle beam divergence angle, pitch
  • the surface emitting element 10a and the surface emitting element 10c are turned on at the same time in the configuration shown in FIG.
  • the light projection control device 112 is preset with the total energy of laser light that may enter the human eye when each of them is turned on at the same time.
  • the current source 113 is controlled so that a combination of two or more of the surface emitting elements 10 that are equal to or less than the threshold value (safety value, upper limit value, allowable value, etc.) is simultaneously turned on.
  • the threshold value safety value, upper limit value, allowable value, etc.
  • the light emission control device 112 controls the light emission unit 111 to have the plurality of light emitting units 111 so that the exposure dose to the human body when looking into the observation device is equal to or less than a preset threshold value.
  • a laser light source to be turned on at the same time is selected from among the laser light sources.
  • the light projection control device 112 controls the number of laser light sources included in the light emitting unit 111 so that the radiation dose to the human body when looking into it with the naked eye is equal to or less than a preset threshold value.
  • the laser light sources to be turned on at the same time are selected. Therefore, the influence (exposure dose) of the laser beam on the human body can be reduced, the measurement device 100 (projector) can meet the radiation safety standards for laser products, and the frame rate (scanning of the area to be projected) can be reduced. speed) can be prevented.
  • the present disclosure is not limited to the above embodiments, and includes various modifications.
  • the above-described embodiment describes the configuration in detail in order to explain the present disclosure in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
  • a light-emitting unit having a plurality of laser light sources that can be individually controlled to be turned on/off; a control device for controlling lighting/extinguishing of each of the laser light sources; with The control device controls two of the laser light sources such that the total amount of energy of the laser light that may enter the human eye when the laser light sources are turned on at the same time is equal to or less than a preset threshold value.
  • a floodlight that illuminates a combination of the above at the same time.
  • the control device selects the plurality of laser light sources to be turned on at the same time so that the exposure dose to the human body when looking into the observation device is equal to or less than a preset threshold. floodlight.
  • the projector according to (1), wherein the laser light sources of the plurality of groups are turned on at the same time.
  • the light emitting unit is a surface emitting element array having a structure in which the surface emitting elements that are the laser light sources are arranged one-dimensionally or two-dimensionally; Floodlight as described.
  • a measuring device configured using the projector according to any one of (1) to (7), the light projector; a light receiver that receives reflected light of the light projected from the light projector; with A measuring device that measures a distance to a detection target based on the light reception result of the light receiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

This projector comprises a light emitting unit (111) provided with a plurality of laser light sources capable of being controlled to be turned on/off individually, and a control device for controlling the turning on/off of each laser light source, wherein the control device simultaneously turns on a combination of two or more laser light sources with which a total energy of laser light that may enter an eye of a person when the laser light sources are each turned on simultaneously is at most equal to a predetermined threshold.

Description

投光器、及び測定装置Projector and measuring device
 本開示は、投光器、及び測定装置に関する。 The present disclosure relates to projectors and measuring devices.
 AD(Autonomous Driving:自動運転)やADAS(Advanced Driver Assistance System:先進運転支援システム)の進展に伴い、周囲環境の把握や自己位置推定に用いる測定装置の一つとしてLiDAR(Light Detection and Ranging)と称する。)の研究/開発が進められている。LiDARは、投光光(照射光、光ビーム(レーザ光))を対象物に照射する投光器(照射器)と、投光光が測定対象物に反射して戻ってくる反射光(戻り光)を受光する受光器とを備え、投光器が投光光を出射したタイミングと受光器が反射光を受光したタイミングとの差(レーザ光の飛行時間。以下、「TOF」(Time Of Flight)と称する。)に基づき対象物までの距離を取得する。 With the progress of AD (Autonomous Driving) and ADAS (Advanced Driver Assistance System), LiDAR (Light Detection and Ranging) is one of the measuring devices used for understanding the surrounding environment and estimating self-location. called. ) are being researched/developed. LiDAR consists of a projector (irradiator) that irradiates an object with projected light (irradiation light, light beam (laser light)) and reflected light (return light) that returns the projected light to the object to be measured. The difference between the timing when the projector emits the projected light and the timing when the receiver receives the reflected light (time of flight of the laser beam. Hereinafter referred to as "TOF" (Time Of Flight) ) to get the distance to the object.
 LiDARの投光器から照射されるレーザ光は、発光面積が小さくエネルギー密度が高いため人体に有害となる場合がある。我が国では日本工業規格(JIS:Japanese Industrial Standards)に「レーザ製品の放射安全基準」が定められており(JIS C 6802)、LiDARは、投光器から照射(投光)されるレーザ光が、上記規格において定められた条件を満たすように設計する必要がある。 The laser light emitted from the LiDAR projector may be harmful to the human body due to its small emission area and high energy density. In Japan, the Japanese Industrial Standards (JIS) stipulate the "radiation safety standards for laser products" (JIS C 6802). must be designed to meet the conditions specified in
 特許文献1は、レーザ光源のパラメータ(目の安全性のための照射範囲、繰り返しレート、デューティサイクル、パルス電力、動作温度への参照等)間のバランスを柔軟に調整することを目的として構成されたLIDARシステムを開示している。LIDARシステムは、複数の角度領域から、第1レーザパルスを特定の角度領域に放射するレーザスキャナのレーザ光源を作動させ、第1レーザパルスの反射に基づきLIDAR測定を行い、LIDAR測定に基づきレーザスキャナのスキャンパラメータを変更し、第2レーザパルスを特定の角度領域に放射するレーザスキャナのレーザ光源の選択的作動を行う。 WO 2005/010000 is designed to flexibly adjust the balance between the parameters of a laser source (illumination range for eye safety, repetition rate, duty cycle, pulse power, reference to operating temperature, etc.). discloses a LIDAR system. The LIDAR system operates a laser source of a laser scanner that emits a first laser pulse from a plurality of angular regions to a specific angular region, performs LIDAR measurements based on the reflection of the first laser pulses, and performs a LIDAR measurement based on the LIDAR measurements. to selectively activate the laser source of the laser scanner to emit a second laser pulse in a particular angular region.
日本国特表2020-509389号公報Japanese special table 2020-509389
 LiDARの種別の一つとして、フラッシュLiDAR(Flash LiDAR)がある。フラッシュLiDARは、モータやMEMS(Micro Electro Mechanical Systems)といった機械的な構成を含まず、ADやADASの実現のために車載目的で利用される場合等、耐久性が要求される分野におけるLiDARの有力候補として注目されている。 One type of LiDAR is flash LiDAR. Flash LiDAR does not include mechanical components such as motors and MEMS (Micro Electro Mechanical Systems), and is a leading LiDAR in fields where durability is required, such as when used for in-vehicle purposes to realize AD and ADAS. considered as a candidate.
 ところで、例えば、図6Aに例示するように、フラッシュLiDARの光源60を発光させ投光対象エリア61(FOV(Field Of View))の全体に同時にレーザ光を照射しようとして光源60の全体(例えば、光源の全ての発光素子601)を同時に点灯させる制御を行った場合、図6Bに例示するように、人の目に入射する可能性のあるレーザ光の強度(出力、光密度)が上記規格に基づく閾値(安全値、上限値、許容値等)を超える可能性が高くなる。また、対向車線の遠方に存在する車両を測定する場合等、長距離の測定が必要な場合は強度の高いレーザ光を照射する必要があり、人体への影響を低減することが求められる。尚、図6Bは、上記制御を示すグラフであり、横軸を時間、縦軸を発光素子601の発光強度として、投光量(投光光のエネルギー)と被曝量(人が被爆するエネルギー)の大きさを模式的に示したものである。 By the way, for example, as illustrated in FIG. 6A, the entire light source 60 (for example, When all the light emitting elements 601) of the light source are controlled to light up at the same time, as shown in FIG. more likely to exceed the threshold (safety value, upper limit value, allowable value, etc.) based on In addition, when long-distance measurement is required, such as when measuring a vehicle in the opposite lane in the distance, it is necessary to irradiate a high-intensity laser beam, and it is required to reduce the effects on the human body. Note that FIG. 6B is a graph showing the above control, in which the horizontal axis is time and the vertical axis is the light emission intensity of the light emitting element 601, and the amount of light emitted (energy of the light emitted) and the amount of exposure (energy to which a person is exposed) are different. The size is shown schematically.
 上記の課題を解決する方法の一つとして、例えば、図7Aに例示するように、光源60として個別に点灯/消灯の制御(オンオフ制御)が可能な複数(同図では4つ)の発光素子601を備えたもの(例えば、アドレッサブルVCSEL(Vertical Cavity Surface Emitting Laser)アレイ)を用いることが考えられる。この場合、個々の発光素子601a~601dの投光対象エリア61a~61dが異なるように設定し、個々の発光素子601a~601dを夫々順次点灯(時間をずらして点灯)させることで、投光対象エリア61の全体にレーザ光を照射することができるとともに人体への影響を低減することができる。 As one of the methods for solving the above problems, for example, as illustrated in FIG. 601 (for example, an addressable VCSEL (Vertical Cavity Surface Emitting Laser) array). In this case, the light projection target areas 61a to 61d of the individual light emitting elements 601a to 601d are set to be different, and the individual light emitting elements 601a to 601d are turned on sequentially (turned on at different times). It is possible to irradiate the entire area 61 with laser light and reduce the influence on the human body.
 しかし上記の方法では発光素子601a~601dの点灯/消灯回数(オンオフ回数)が必然的に増加するため、図7Bに例示するように、図6Aに例示した方法に比べてフレームレート(投光対象エリア61a~61d全体のスキャンスピード)の確保が難しくなる。 However, the above method inevitably increases the number of times the light-emitting elements 601a to 601d are turned on/off (the number of times they are turned on and off). It becomes difficult to secure the scanning speed for the entire areas 61a to 61d.
 特許文献1は、目の安全性確保のための照射範囲をレーザ光源のパラメータとして考慮して他のパラメータとのバランスを調整することを開示している。しかし、特許文献1は、フレームレートの低下を防ぐ方法については特に記載されていない。 Patent Document 1 discloses adjusting the balance with other parameters considering the irradiation range for ensuring eye safety as a parameter of the laser light source. However, Patent Literature 1 does not particularly describe a method for preventing frame rate reduction.
 本開示はこのような背景に鑑みてなされたものであり、レーザ光による人体への影響を低減しつつ、フレームレートの低下を防ぐことが可能な、投光器、及び測定装置を提供することを目的とする。 The present disclosure has been made in view of such a background, and an object thereof is to provide a projector and a measurement device that can prevent a frame rate from dropping while reducing the effects of laser light on the human body. and
 上記目的を達成するための本開示の一態様に係る投光器は、
 個別に点灯/消灯を制御可能な複数のレーザ光源を備えた発光部と、
 前記レーザ光源の夫々の点灯/消灯を制御する制御装置と、
 を備え、
 前記制御装置は、前記レーザ光源の夫々を同時に点灯させた際に人の目に入射する可能性のあるレーザ光のエネルギーの総量が予め設定された閾値以下となるような前記レーザ光源の2つ以上の組合せを同時に点灯させる。
In order to achieve the above object, a projector according to an aspect of the present disclosure includes:
a light emitting unit having a plurality of laser light sources that can be individually controlled to be turned on/off;
a control device for controlling lighting/extinguishing of each of the laser light sources;
with
The control device controls two of the laser light sources such that the total amount of energy of the laser light that may enter the human eye when the laser light sources are turned on at the same time is equal to or less than a preset threshold value. The above combinations are lit at the same time.
 その他、本願が開示する課題、及びその解決方法は、本開示を実施するための形態の欄、及び図面により明らかにされる。 In addition, the problems disclosed by the present application and their solutions will be clarified by the section of the form for carrying out the present disclosure and the drawings.
 本開示によれば、レーザ光による人体への影響を低減しつつ、フレームレート(スキャンスピード)の低下を防ぐことができる。 According to the present disclosure, it is possible to prevent a decrease in frame rate (scan speed) while reducing the effects of laser light on the human body.
図1は、測定装置の概略的な構成を説明する図である。FIG. 1 is a diagram illustrating a schematic configuration of a measuring device. 図2は、発光部の一例として示す面発光素子アレイの平面図である。FIG. 2 is a plan view of a surface emitting element array shown as an example of a light emitting section. 図3Aは、投光制御装置による面発光素子の制御の説明に用いる投光器の構成例を示す模式図である。FIG. 3A is a schematic diagram showing a configuration example of a light projector used for explaining control of a surface emitting element by a light projection control device. 図3Bは、投光制御装置による発光部の制御の一例を示すグラフである。FIG. 3B is a graph showing an example of control of the light emitting unit by the light projection control device. 図4Aは、同時に点灯させる面発光素子の組合せの例を示す模式図である。FIG. 4A is a schematic diagram showing an example of a combination of surface emitting elements that are lit at the same time. 図4Bは、同時に点灯させる面発光素子の組合せの例を示す模式図である。FIG. 4B is a schematic diagram showing an example of a combination of surface emitting elements that are lit at the same time. 図4Cは、同時に点灯させる面発光素子の組合せの例を示す模式図である。FIG. 4C is a schematic diagram showing an example of a combination of surface emitting elements that are lit at the same time. 図5Aは、「測定条件1」の場合における、面発光素子が開口絞りを見込む角の算出方法を説明する図である。FIG. 5A is a diagram for explaining a method of calculating an angle at which the surface emitting element sees the aperture stop in the case of "measurement condition 1". 図5Bは、「測定条件3」の場合における、面発光素子が開口絞りを見込む角の算出方法を説明する図である。FIG. 5B is a diagram illustrating a method of calculating the angle at which the surface emitting element looks into the aperture stop in the case of "measurement condition 3". 図6Aは、発光素子の制御の説明に用いる投光器の構成例を示す模式図である。FIG. 6A is a schematic diagram showing a configuration example of a light projector used for explaining control of light emitting elements. 図6Bは、光源の制御の一例を示すグラフである。FIG. 6B is a graph showing an example of light source control. 図7Aは、発光素子の制御の説明に用いる投光器の構成例を示す模式図である。FIG. 7A is a schematic diagram showing a configuration example of a light projector used for explaining control of light emitting elements. 図7Bは、光源の制御の一例を示すグラフである。FIG. 7B is a graph showing an example of light source control.
 以下、本開示を実施するための形態について図面を参照しつつ説明する。尚、以下の説明において、同一の又は類似する構成について共通の符号を付して重複した説明を省略することがある。 Embodiments for carrying out the present disclosure will be described below with reference to the drawings. In the following description, the same or similar configurations may be denoted by common reference numerals, and redundant description may be omitted.
 図1に、一実施形態として示す測定装置100の概略的な構成(ブロック図)を例示している。測定装置100は、例えば、AD(Autonomous Driving:自動運転システム)やADAS(Advanced Driver Assistance System:先進運転支援システム)が実装される車両等に搭載されるフラッシュLiDAR(Flash Light Detection and Ranging、Laser Imaging Detection and Ranging)である。 FIG. 1 illustrates a schematic configuration (block diagram) of a measuring device 100 shown as one embodiment. The measurement device 100 is, for example, a flash LiDAR (Flash Light Detection and Ranging, Laser Imaging) installed in a vehicle equipped with AD (Autonomous Driving) or ADAS (Advanced Driver Assistance System). Detection and Ranging).
 測定装置100は、測定エリアに向けて照射(投光)した光ビームが対象物50で反射し、その反射光(戻り光、散乱光)が戻ってくるまでの時間(以下、「TOF」(Time Of Flight)と称する。)を測定することにより、対象物50までの距離を測定する。 The measurement apparatus 100 measures the time (hereinafter referred to as “TOF” (hereinafter referred to as “TOF” ( The distance to the object 50 is measured by measuring the Time Of Flight).
 以下の説明において、測定装置100が対象物50に向けて照射する光ビーム(照射光)のことを「投光光」と、また、投光光が対象物50に反射して戻ってくる光のことを「反射光」と称する。 In the following description, the light beam (irradiation light) that the measurement apparatus 100 irradiates toward the object 50 is referred to as "projected light", and the light that is reflected by the object 50 and returns. is called "reflected light".
 測定装置100は、例えば、人、車両、物体等の検出を補助するとともに、車両の運転者や車両の周囲に存在する者の安全確保や、車両の運転中に周囲に存在する物体に与える損傷を低減するために有用な各種の情報を提供する。 For example, the measuring device 100 assists the detection of people, vehicles, objects, etc., as well as ensuring the safety of the driver of the vehicle and people around the vehicle, and the damage caused to objects around while driving the vehicle. Provide various information useful for reducing
 図1に例示するように、測定装置100は、発光部111、投光制御装置112(制御装置の一例)、電流源113、投光光学系114、受光光学系115、受光部116、TOF測定装置117、演算装置150、及び通信I/F160を含む。このうち、発光部111、投光制御装置112、電流源113、及び投光光学系114は、投光光を生成する「投光器」を構成する。また、受光光学系115及び受光部116は、反射光を受光する「受光器」を構成する。 As illustrated in FIG. 1, the measuring apparatus 100 includes a light emitting unit 111, a light projection control device 112 (an example of a control device), a current source 113, a light projecting optical system 114, a light receiving optical system 115, a light receiving unit 116, a TOF measurement A device 117 , an arithmetic device 150 and a communication I/F 160 are included. Among them, the light emitting unit 111, the light projection control device 112, the current source 113, and the light projection optical system 114 constitute a "projector" that generates projection light. The light receiving optical system 115 and the light receiving unit 116 constitute a "light receiver" that receives the reflected light.
 発光部111は、一次元的又は二次元的に基板(半導体基板、セラミック基板等)に配置された複数の面発光タイプのレーザ光源(例えば、VCSEL(Vertical Cavity Surface Emitting Laser)。以下、「面発光素子10」と称する。))を有する。発光部111は、個々の面発光素子10を独立してオンオフ制御することが可能な面発光素子アレイ(アドレッサブルVCSELアレイ)を用いて構成されうる。面発光素子10は、投光光となる光ビーム(レーザ光)を生成する。 The light emitting unit 111 includes a plurality of surface emitting laser light sources (for example, VCSEL (Vertical Cavity Surface Emitting Laser)) arranged one-dimensionally or two-dimensionally on a substrate (semiconductor substrate, ceramic substrate, etc.). )). The light emitting unit 111 can be configured using a surface light emitting element array (addressable VCSEL array) capable of independently controlling on/off of each surface light emitting element 10 . The surface emitting element 10 generates a light beam (laser light) that serves as projection light.
 図2は、発光部111の一例として示す面発光素子アレイの平面図である。当該面発光素子アレイは、基板22の一方の面に正方格子状に配列された複数の面発光素子10を有する。図2において、複数の面発光素子10は、いずれもその放出方向(光軸)を図2におけるx方向及びy方向に対して垂直方向(図2における+z方向)に向けて設けられている。当該面発光素子アレイには、面発光素子10を発光させるための電流(駆動電流)を電流源113(図1参照)から供給するための複数の電流供給線23が電気的に接続されている。 FIG. 2 is a plan view of a surface emitting element array shown as an example of the light emitting section 111. FIG. The surface emitting element array has a plurality of surface emitting elements 10 arranged in a square lattice on one surface of the substrate 22 . In FIG. 2, each of the plurality of surface emitting elements 10 is provided with its emitting direction (optical axis) directed in a direction (+z direction in FIG. 2) perpendicular to the x direction and y direction in FIG. A plurality of current supply lines 23 for supplying a current (driving current) for causing the surface emitting elements 10 to emit light from a current source 113 (see FIG. 1) are electrically connected to the surface emitting element array. .
 尚、面発光素子アレイにおける面発光素子10の配置形態は図2に例示するものに必ずしも限定されず、例えば、斜方格子状、三角格子状、正方格子状、矩形格子状、六角格子状等であってもよい。また、面発光素子10は必ずしも基板22上に二次元的に配列されるものでなくてもよく、基板22上に一次元的に配列されていてもよい。 The arrangement form of the surface emitting elements 10 in the surface emitting element array is not necessarily limited to that illustrated in FIG. may be Further, the surface emitting elements 10 do not necessarily have to be two-dimensionally arranged on the substrate 22 and may be one-dimensionally arranged on the substrate 22 .
 図1に戻り、投光制御装置112は、発光部111の面発光素子10の駆動電流を供給する電流源113を制御するための制御信号を生成して電流源113に入力することにより、電流源113から面発光素子10に供給される電流(駆動電流)を制御する。また、投光制御装置112は、面発光素子10が発光したタイミング(投光光が面発光素子10から出射したタイミング。以下、「投光タイミング」と称する。)を示す信号をTOF測定装置117に入力する。投光制御装置112は、例えば、面発光素子10の夫々に流す電流のオンオフを周期的に繰り返す制御を行うことにより、面発光素子10を周期的に繰り返し発光させる。 Returning to FIG. 1, the light projection control device 112 generates a control signal for controlling the current source 113 that supplies the drive current for the surface light emitting element 10 of the light emitting unit 111, and inputs it to the current source 113, whereby the current The current (driving current) supplied from the source 113 to the surface emitting element 10 is controlled. In addition, the light projection control device 112 outputs a signal indicating the timing at which the surface light emitting element 10 emits light (the timing at which the projected light is emitted from the surface light emitting element 10; hereinafter referred to as “projection timing”). to enter. The light projection control device 112 periodically and repeatedly causes the surface light emitting elements 10 to emit light by, for example, periodically repeating ON/OFF control of the electric current flowing through each of the surface emitting elements 10 .
 電流源113は、投光制御装置112から入力される制御信号に応じた電流を面発光素子10に供給する。電流源113は、例えば、面発光素子10の夫々に流す電流をオンオフするための周期的な方形波の電流を面発光素子10に供給する。 The current source 113 supplies the surface emitting element 10 with a current corresponding to the control signal input from the light projection control device 112 . The current source 113 supplies, for example, a periodic square-wave current to the surface emitting elements 10 for turning on and off the current flowing through each of the surface emitting elements 10 .
 投光光学系114は、例えば、発光部111から出射する投光光に光学的な作用(屈折、散乱、回折等)を与えることにより投光光の配光を調節する。投光光学系114は、例えば、コリメートレンズ等の各種レンズ、回折格子、反射鏡(ミラー)等の光学部品を用いて構成されうる。 The projection optical system 114 adjusts the light distribution of the projected light, for example, by applying an optical effect (refraction, scattering, diffraction, etc.) to the projected light emitted from the light emitting unit 111 . The projection optical system 114 can be configured using optical components such as various lenses such as a collimator lens, a diffraction grating, and a reflector (mirror).
 受光光学系115は、対象物50から戻ってくる反射光を受光部116に集光する。受光光学系115は、例えば、集光レンズ等の各種レンズ、波長フィルタ等の各種フィルタ、反射鏡(ミラー)等の光学部品を用いて構成されうる。 The light-receiving optical system 115 collects the reflected light returning from the object 50 onto the light-receiving unit 116 . The light receiving optical system 115 can be configured using, for example, various lenses such as a condenser lens, various filters such as a wavelength filter, and optical components such as a reflector (mirror).
 受光部116は、例えば、SPAD(Single Photon Avalanche Diode)、フォトダイオード、バランス型光検出器等の光検出器を用いて構成されうる。受光部116は、受光光学系115から入射する反射光を光電変換することにより、反射光の強度に応じた電流(以下、「受光電流」と称する。)を生成する。受光部116は、反射光を受光したタイミング(以下、「受光タイミング」と称する。)を示す信号、及び生成した受光電流を、TOF測定装置117に入力する。 The light receiving unit 116 can be configured using a photodetector such as a SPAD (Single Photon Avalanche Diode), a photodiode, or a balanced photodetector, for example. The light receiving unit 116 photoelectrically converts the reflected light incident from the light receiving optical system 115 to generate a current (hereinafter referred to as “light receiving current”) corresponding to the intensity of the reflected light. The light receiving unit 116 inputs a signal indicating the timing of receiving the reflected light (hereinafter referred to as “light receiving timing”) and the generated light receiving current to the TOF measuring device 117 .
 TOF測定装置117は、投光制御装置112から入力される投光タイミングを示す信号と受光部116から入力される受光タイミングを示す信号とに基づき、TOFを求める。TOF測定装置117は、例えば、TDC(Time to Digital Converter)回路を搭載した時間測定IC(集積回路:Integrated Circuit)を用いて構成されうる。TOF測定装置117は、求めたTOFと受光部116から入力された受光電流を、演算装置150に入力する。 The TOF measurement device 117 obtains the TOF based on the signal indicating the light projection timing input from the light emission control device 112 and the signal indicating the light reception timing input from the light receiving unit 116 . The TOF measurement device 117 can be configured using, for example, a time measurement IC (Integrated Circuit) equipped with a TDC (Time to Digital Converter) circuit. The TOF measuring device 117 inputs the obtained TOF and the received light current input from the light receiving unit 116 to the arithmetic device 150 .
 演算装置150は、例えば、プロセッサ(CPU(Central Processing Unit)、MPU(Micro Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)等)を用いて構成されうる。演算装置150は、TOF測定装置117から入力される受光電流やTOFに基づき、対象物50の検出や測距等の各種測定に用いる情報を生成する。当該情報は、例えば、時間相関単一光子計数法(Time Correlated Single Photon Counting)で用いるヒストグラム(histogram)、対象物50の各点(ポイント)までの距離、ポイントクラウド(点群情報:point cloud)等である。また、演算装置150は、投光制御装置112や受光部116を制御する。演算装置150は、例えば、投光制御装置112や受光部116を制御することにより、上記のヒストグラムの生成にかかる処理が高速化もしくは最適化されるように、前述した投光タイミングや受光タイミングを制御する。演算装置150によって生成された情報は、通信I/F160(I/F:Interface)を介して当該情報を利用する装置(以下、「各種利用装置40」と称する。)に提供(送信)される。 Arithmetic device 150 uses, for example, a processor (CPU (Central Processing Unit), MPU (Micro Processing Unit), ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), etc.) can be configured. The calculation device 150 generates information used for various measurements such as detection of the target object 50 and distance measurement based on the received light current and the TOF input from the TOF measurement device 117 . The information is, for example, a histogram used in Time Correlated Single Photon Counting, a distance to each point (point) of the object 50, a point cloud (point group information: point cloud) etc. The computing device 150 also controls the light projection control device 112 and the light receiving section 116 . The calculation device 150, for example, controls the light projection control device 112 and the light receiving unit 116, thereby adjusting the light projection timing and the light reception timing so that the processing related to the generation of the histogram is speeded up or optimized. Control. The information generated by the computing device 150 is provided (transmitted) to devices that use the information (hereinafter referred to as “various devices 40”) via a communication I/F 160 (I/F: Interface). .
 各種利用装置40は、例えば、ポイントクラウドによる環境地図の作成、スキャンマッチングアルゴリズム(NDT(Normal Distributions Transform)、ICP(Iterative Closest Point)等)を用いた自己位置推定(SLAM(Simultaneous Localization and Mapping))等を行う。 Various utilization devices 40, for example, create an environment map by point cloud, self-location estimation (SLAM (Simultaneous Localization and Mapping)) using a scan matching algorithm (NDT (Normal Distribution Transform), ICP (Iterative Closest Point), etc.) etc.
<発光制御>
 投光制御装置112は、人の目に入射する可能性のあるレーザ光のエネルギーの総量が予め設定された閾値(安全値、上限値、許容値等)以下となるような面発光素子10の2つ以上の組合せを同時に点灯させるように、電流源113を制御する。これによりレーザ光が誤って人体に照射された際の人体への影響(被曝量)を低減し、測定装置100や投光器がレーザ製品についての放射安全基準(国際電気標準(IEC:International Electrotechnical Commission)の60825-1、日本工業規格(JIS:Japanese Industrial Standards)の「レーザ製品の放射安全基準」(JIS C 6802)等)を満たすようにすることができる。また、2つ以上の上記の組合せを同時に点灯させるようにすることで、フレームレート(投光対象エリアのスキャンスピード)の低下を防ぐことができる。
<Light emission control>
The light projection control device 112 controls the surface light emitting element 10 so that the total amount of laser light energy that may enter the human eye is equal to or less than a preset threshold value (safety value, upper limit value, allowable value, etc.). The current sources 113 are controlled to illuminate two or more combinations simultaneously. This reduces the effect (exposure dose) on the human body when the laser light is accidentally irradiated on the human body, and the measurement device 100 and the projector comply with the radiation safety standards (IEC: International Electrotechnical Commission) for laser products. 60825-1 of Japanese Industrial Standards (JIS: Japanese Industrial Standards) "Radiation Safety Standards for Laser Products" (JIS C 6802), etc.). Also, by simultaneously turning on two or more of the above combinations, it is possible to prevent a decrease in the frame rate (scanning speed of the light projection target area).
 図3Aは、投光制御装置112による面発光素子10の制御の説明に用いる投光器の構成例を示す模式図である。図3Aにおける符号は、図1に付した符号と対応している。図3Aに示す例では、説明の都合上、発光部111が基板上に一次元的に等間隔で配列された4つの面発光素子10a~10dを有している場合を例示している。面発光素子10a~10dは、いずれも共通の仕様(例えば、いずれも同一型番の製品)であるものとする。 FIG. 3A is a schematic diagram showing a configuration example of a light projector used for explaining control of the surface light emitting element 10 by the light projection control device 112. FIG. The reference numerals in FIG. 3A correspond to the reference numerals attached to FIG. In the example shown in FIG. 3A, for convenience of explanation, the case where the light emitting section 111 has four surface light emitting elements 10a to 10d arranged one-dimensionally at equal intervals on the substrate is illustrated. It is assumed that the surface emitting elements 10a to 10d all have common specifications (for example, they are all products of the same model number).
 図3Aに例示するように、4つの面発光素子10a~10dのうち、面発光素子10aから出射したレーザ光は、投光光学系114を介して投光エリア51aに、面発光素子10bから出射したレーザ光は、投光光学系114を介して投光エリア51bに、面発光素子10cから出射したレーザ光は、投光光学系114を介して投光エリア51cに、面発光素子10dから出射したレーザ光は、投光光学系114を介して投光エリア51dに、夫々配光される。 As illustrated in FIG. 3A, the laser light emitted from the surface emitting element 10a out of the four surface emitting elements 10a to 10d is emitted from the surface emitting element 10b to the light projection area 51a via the light projecting optical system 114. The laser light emitted from the surface emitting element 10c is emitted from the surface light emitting element 10d to the light emitting area 51c via the light emitting optical system 114. The emitted laser light is distributed to the light projection area 51d via the light projection optical system 114, respectively.
 ここで例えば、隣接する2つの面発光素子10(面発光素子10aと面発光素子10b、面発光素子10bと面発光素子10c、面発光素子10cと面発光素子10dのいずれかの組合せ)の夫々から同時にレーザ光を出射した場合、投光光学系114によって投光対象エリアに向けて配光される2つのレーザ光は、人の目に同時に入射して人体に有害な影響を与える可能性がある。そこで、投光制御装置112は、隣接する面発光素子10を同時に点灯させないように制御することによりレーザ光による人体への影響を低減し、測定装置100(投光器)がレーザ製品の放射安全基準を満たすようにする。 Here, for example, each of two adjacent surface emitting elements 10 (any combination of surface emitting elements 10a and 10b, surface emitting elements 10b and surface emitting elements 10c, surface emitting elements 10c and surface emitting elements 10d) , the two laser beams distributed toward the projection target area by the projection optical system 114 may enter the human eye at the same time and have a harmful effect on the human body. be. Therefore, the light projection control device 112 reduces the effect of the laser light on the human body by controlling the adjacent surface emitting elements 10 not to light at the same time, so that the measuring device 100 (projector) complies with the radiation safety standards for laser products. make it fulfill
 図3Bは、上記の制御を例示するグラフである。同グラフは、横軸を時間、縦軸を面発光素子10の発光強度として、投光量(投光光のエネルギー)と被曝量(人が被爆するエネルギー)の大きさを例示したものである。図3Bに例示するように、本例では、面発光素子10aと面発光素子10cの組合せを同時に点灯させ、その後、面発光素子10bと面発光素子10dの組合せを同時に点灯させている。図3Bから理解されるように、各点灯タイミングにおける被曝量は、図6Aに示した方法における被曝量(図6B)の1/2になる。また、この場合、1フレームに要する時間は、図7Aに示した方法における時間(図7B)の1/2の時間で済み、図7Aに示した方法に比べてフレームレート(投光対象エリアのスキャンスピード)を高めることができる。 FIG. 3B is a graph illustrating the above control. In this graph, the horizontal axis is time and the vertical axis is the light emission intensity of the surface light emitting element 10, and shows an example of the amount of projected light (energy of projected light) and the amount of exposure (energy to which a person is exposed). As illustrated in FIG. 3B, in this example, the combination of the surface emitting elements 10a and 10c is lit at the same time, and then the combination of the surface emitting elements 10b and 10d is lit at the same time. As understood from FIG. 3B, the exposure dose at each lighting timing is 1/2 of the exposure dose (FIG. 6B) in the method shown in FIG. 6A. In this case, the time required for one frame is half the time (FIG. 7B) in the method shown in FIG. scan speed) can be increased.
 尚、本例では、隣接する2つの面発光素子10を同時に点灯させないようにするために1つおきの面発光素子10の組合せを同時に点灯させるようにしているが、例えば、面発光素子10を2つ以上おきに同時に点灯させるようにしてもよい。また、隣接していない2つ以上の面発光素子10の任意の組合せを同時に点灯させるようにしてもよい。 In this example, in order not to light two adjacent surface light emitting elements 10 at the same time, every other combination of surface light emitting elements 10 is lighted at the same time. You may make it light simultaneously every 2 or more. Also, any combination of two or more surface emitting elements 10 that are not adjacent to each other may be lit at the same time.
 また、発光部111を構成する複数の面発光素子10を、夫々隣接する複数の面発光素子10を要素とする複数のグループに分類し、隣接する2つのグループに属する面発光素子10を同時に点灯させないようにしてもよい。但しこの場合、一つのグループの面発光素子10を全てを同時に点灯させた場合に人の目に入射する可能性のあるレーザ光のエネルギーの総量は予め設定された閾値(安全値、上限値、許容値等)以下であるものとする。 Further, the plurality of surface emitting elements 10 constituting the light emitting section 111 are classified into a plurality of groups each having a plurality of adjacent surface emitting elements 10 as elements, and the surface emitting elements 10 belonging to two adjacent groups are simultaneously lit. You can choose not to let it happen. However, in this case, the total amount of energy of the laser light that may enter the human eye when all the surface emitting elements 10 in one group are turned on at the same time is set to a preset threshold value (safety value, upper limit value, permissible value, etc.).
 図4Aから図4Cは、同時に点灯させる面発光素子10の組合せの例を示す図である。図4Aは、面発光素子10を1つおきに同時に点灯させるようにした場合、図4Bは、面発光素子10を2つおきに同時に点灯させるようにした場合、図4Cは、2つ以上の面発光素子10を有するグループ(本例では2つの面発光素子10を有するグループ)を単位としてグループ一つおきに面発光素子10を同時に点灯させるようにした場合である。 4A to 4C are diagrams showing examples of combinations of surface emitting elements 10 that are simultaneously lit. 4A shows the case where every other surface light emitting element 10 is lit at the same time, FIG. 4B shows the case where every two surface light emitting elements 10 are simultaneously lit, and FIG. This is a case where the surface light-emitting elements 10 are turned on at the same time every other group in units of groups having surface light-emitting elements 10 (groups having two surface light-emitting elements 10 in this example).
 尚、発光部111(面発光素子アレイ)を構成する面発光素子10のうち同時に点灯させる面発光素子10の組合せをどのように選択するかは、例えば、面発光素子10の配置間隔、面発光素子10の配置形態(例えば、斜方格子状、三角格子状、正方格子状、矩形格子状、六角格子状等)、面発光素子10から出射する光ビームもしくは当該光ビームが投光光学系114を通過した後のビーム発散角(ビーム広がり角、ピッチ)、人の目の視角(瞳孔の開口絞りに応じて定まる視角)を考慮することにより決定する。 It should be noted that how to select the combination of the surface light emitting elements 10 to be simultaneously lit among the surface light emitting elements 10 constituting the light emitting unit 111 (surface light emitting element array) depends on, for example, the arrangement interval of the surface light emitting elements 10, the surface light emitting element 10 Arrangement form of the elements 10 (for example, an orthorhombic lattice, a triangular lattice, a square lattice, a rectangular lattice, a hexagonal lattice, etc.), light beams emitted from the surface emitting elements 10 or the light beams emitted from the light emitting optical system 114 It is determined by considering the beam divergence angle (beam divergence angle, pitch) after passing through and the viewing angle of the human eye (viewing angle determined according to the aperture stop of the pupil).
 例えば、レーザ光の波長が400nmから1400nmである場合、「JIS C 6802の「5.4測定光学系」の「表10」には、「測定条件1」(望遠鏡、双眼鏡等(以下、「観察機器」と称する。)によって危険性が増大するような平行ビームに適用)として、「2000mmの位置にある50mmの開口絞り」が、「測定条件3」(裸眼、低倍率の拡大鏡及び操作ビームに対する放射量の決定に適用)として、「100mmの位置にある7mmの開口絞り」が記載されている。 For example, when the wavelength of the laser light is from 400 nm to 1400 nm, "Measurement conditions 1" (telescope, binoculars, etc. (hereafter referred to as "observation equipment") is listed in "Table 10" of "5.4 Measurement optical system" of JIS C 6802. for collimated beams where the risk is increased by the applied to the determination of the volume), "7 mm aperture stop at 100 mm" is stated.
 この場合、上記の「測定条件1」では、図5Aに例示するように、面発光素子10(レーザ製品)が開口絞りを見込む角θは1.4゜(≒2*arctan(50/2/2000)となる。また、例えば、上記の「測定条件3」では、図5Bに例示するように、面発光素子10(レーザ製品)が開口絞りを見込む角θは4.0゜(≒2*arctan(7/2/100))となる。 In this case, under the above "measurement condition 1 ", as illustrated in FIG. In addition, for example, under the above "measurement condition 3", as illustrated in FIG. arctan(7/2/100)).
 このため、例えば、投光器を図3Aに示す構成において面発光素子10aと面発光素子10c(もしくは面発光素子10bと面発光素子10d)を同時に点灯させた場合に双方からのレーザ光が同時に人の目に入射しないようにするには、「測定条件1」では、面発光素子10から出射する光ビームもしくは当該光ビームが投光光学系114を通過した後のビーム発散角(ビーム広がり角)及びピッチが0.7゜(=1.4゜/2)以上であればよい。また、「測定条件3」では、面発光素子10から出射する光ビームもしくは当該光ビームが投光光学系114を通過した後のビーム発散角(ビーム広がり角)及びピッチが、2.0゜(=4.0゜/2)以上であればよい。 For this reason, for example, when the surface emitting element 10a and the surface emitting element 10c (or the surface emitting element 10b and the surface emitting element 10d) are turned on at the same time in the configuration shown in FIG. In order to prevent the light from entering the eye, under “measurement condition 1”, the light beam emitted from the surface emitting element 10 or the beam divergence angle (beam divergence angle) after the light beam has passed through the projection optical system 114 and The pitch should be 0.7° (=1.4°/2) or more. Further, in "measurement condition 3", the beam divergence angle (beam divergence angle) and the pitch after the light beam emitted from the surface emitting element 10 or the light beam passes through the projection optical system 114 is 2.0° (=4.0 °/2) or more.
 以上に説明したように、本実施形態の測定装置100において、投光制御装置112は、夫々を同時に点灯させた際に人の目に入射する可能性のあるレーザ光のエネルギー総量が予め設定された閾値(安全値、上限値、許容値等)以下となるような面発光素子10の2つ以上の組合せを同時に点灯させるように、電流源113を制御する。例えば、上記の「測定条件1」では、投光制御装置112は、観察機器を用いた覗き込みによる人体への被曝量が予め設定された閾値以下となるように、発光部111が有する複数のレーザ光源のうち同時に点灯させるレーザ光源を選択する。例えば、上記の「測定条件3」では、投光制御装置112は、裸眼による覗き込みによる人体への被曝量が予め設定された閾値以下となるように、発光部111が有する複数のレーザ光源のうち同時に点灯させるレーザ光源を選択する。このため、レーザ光による人体への影響(被曝量)を低減し、測定装置100(投光器)がレーザ製品の放射安全基準を満たすようにすることができるとともに、フレームレート(投光対象エリアのスキャンスピード)の低下を防ぐことができる。 As described above, in the measurement apparatus 100 of the present embodiment, the light projection control device 112 is preset with the total energy of laser light that may enter the human eye when each of them is turned on at the same time. The current source 113 is controlled so that a combination of two or more of the surface emitting elements 10 that are equal to or less than the threshold value (safety value, upper limit value, allowable value, etc.) is simultaneously turned on. For example, in the above "measurement condition 1", the light emission control device 112 controls the light emission unit 111 to have the plurality of light emitting units 111 so that the exposure dose to the human body when looking into the observation device is equal to or less than a preset threshold value. A laser light source to be turned on at the same time is selected from among the laser light sources. For example, in the above "measurement condition 3", the light projection control device 112 controls the number of laser light sources included in the light emitting unit 111 so that the radiation dose to the human body when looking into it with the naked eye is equal to or less than a preset threshold value. Among them, the laser light sources to be turned on at the same time are selected. Therefore, the influence (exposure dose) of the laser beam on the human body can be reduced, the measurement device 100 (projector) can meet the radiation safety standards for laser products, and the frame rate (scanning of the area to be projected) can be reduced. speed) can be prevented.
 以上、本開示の実施形態につき詳述したが、本開示は上記の実施形態に限定されるものではなく、様々な変形例が含まれる。また、上記の実施形態は本開示を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の実施形態の構成の一部について、他の構成に追加、削除、置換することが可能である。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure is not limited to the above embodiments, and includes various modifications. In addition, the above-described embodiment describes the configuration in detail in order to explain the present disclosure in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of the above embodiment with another configuration.
 以上説明したように、本明細書には次の事項が開示されている。
(1)個別に点灯/消灯を制御可能な複数のレーザ光源を備えた発光部と、
 前記レーザ光源の夫々の点灯/消灯を制御する制御装置と、
 を備え、
 前記制御装置は、前記レーザ光源の夫々を同時に点灯させた際に人の目に入射する可能性のあるレーザ光のエネルギーの総量が予め設定された閾値以下となるような前記レーザ光源の2つ以上の組合せを同時に点灯させる、投光器。
(2)前記制御装置は、観察機器を用いた覗き込みによる人体への被曝量が予め設定された閾値以下となるように、同時に点灯させる前記複数のレーザ光源を選択する、(1)に記載の投光器。
(3)前記制御装置は、裸眼による覗き込みによる人体への被曝量が予め設定された閾値以下となるように、同時に点灯させる前記複数のレーザ光源を選択する、(1)に記載の投光器。
(4)前記制御装置は、隣接する前記レーザ光源を同時に点灯させないように複数の前記レーザ光源を同時に点灯させる、(1)に記載の投光器。
(5)前記制御装置は、前記レーザ光源の一つ以上おきの組合せを同時に点灯させる、(4)に記載の投光器。
(6)前記発光部を構成する複数の前記レーザ光源を、隣接する複数の前記レーザ光源を要素とする複数のグループに分類し、隣接する2つの前記グループの面発光素子を同時に点灯させないように、複数の前記グループの前記レーザ光源を同時に点灯させる、(1)に記載の投光器。
(7)前記発光部は、前記レーザ光源である面発光素子を一次元的又は二次元的に配列した構造を有する面発光素子アレイである、(1)から(6)のいずれか一つに記載の投光器。
(8)(1)から(7)のいずれか一つに記載の投光器を用いて構成される測定装置であって、
 前記投光器と、
 前記投光器から投光された光の反射光を受光する受光器と、
 を備え、
 前記受光器の受光結果に基づき検知対象までの距離を計測する、測定装置。
As described above, this specification discloses the following matters.
(1) a light-emitting unit having a plurality of laser light sources that can be individually controlled to be turned on/off;
a control device for controlling lighting/extinguishing of each of the laser light sources;
with
The control device controls two of the laser light sources such that the total amount of energy of the laser light that may enter the human eye when the laser light sources are turned on at the same time is equal to or less than a preset threshold value. A floodlight that illuminates a combination of the above at the same time.
(2) According to (1), the control device selects the plurality of laser light sources to be turned on at the same time so that the exposure dose to the human body when looking into the observation device is equal to or less than a preset threshold. floodlight.
(3) The projector according to (1), wherein the control device selects the plurality of laser light sources to be lit simultaneously so that the exposure dose to the human body when looking into the laser with the naked eye is equal to or less than a preset threshold value.
(4) The light projector according to (1), wherein the control device simultaneously lights the plurality of laser light sources so that adjacent laser light sources are not lighted at the same time.
(5) The light projector according to (4), wherein the control device simultaneously lights every other combination of the laser light sources.
(6) Classify the plurality of laser light sources constituting the light emitting unit into a plurality of groups each having a plurality of adjacent laser light sources as elements, and prevent surface emitting elements of two adjacent groups from lighting at the same time. , the projector according to (1), wherein the laser light sources of the plurality of groups are turned on at the same time.
(7) any one of (1) to (6), wherein the light emitting unit is a surface emitting element array having a structure in which the surface emitting elements that are the laser light sources are arranged one-dimensionally or two-dimensionally; Floodlight as described.
(8) A measuring device configured using the projector according to any one of (1) to (7),
the light projector;
a light receiver that receives reflected light of the light projected from the light projector;
with
A measuring device that measures a distance to a detection target based on the light reception result of the light receiver.
 本出願は、2022年2月9日出願の日本国特許出願(特願2022-019000号)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2022-019000) filed on February 9, 2022, the contents of which are incorporated herein by reference.

Claims (8)

  1.  個別に点灯/消灯を制御可能な複数のレーザ光源を備えた発光部と、
     前記レーザ光源の夫々の点灯/消灯を制御する制御装置と、
     を備え、
     前記制御装置は、前記レーザ光源の夫々を同時に点灯させた際に人の目に入射する可能性のあるレーザ光のエネルギーの総量が予め設定された閾値以下となるような前記レーザ光源の2つ以上の組合せを同時に点灯させる、投光器。
    a light emitting unit having a plurality of laser light sources that can be individually controlled to be turned on/off;
    a control device for controlling lighting/extinguishing of each of the laser light sources;
    with
    The control device controls two of the laser light sources such that the total amount of energy of the laser light that may enter the human eye when the laser light sources are turned on at the same time is equal to or less than a preset threshold value. A floodlight that illuminates a combination of the above at the same time.
  2.  前記制御装置は、観察機器を用いた覗き込みによる人体への被曝量が予め設定された閾値以下となるように、同時に点灯させる前記複数のレーザ光源を選択する、請求項1に記載の投光器。 The floodlight according to claim 1, wherein the control device selects the plurality of laser light sources to be lit simultaneously so that the exposure dose to the human body due to peering using the observation device is equal to or less than a preset threshold value.
  3.  前記制御装置は、裸眼による覗き込みによる人体への被曝量が予め設定された閾値以下となるように、同時に点灯させる前記複数のレーザ光源を選択する、請求項1に記載の投光器。 The floodlight according to claim 1, wherein the control device selects the plurality of laser light sources to be lit simultaneously so that the exposure dose to the human body when looking into the laser with the naked eye is equal to or less than a preset threshold value.
  4.  前記制御装置は、隣接する前記レーザ光源を同時に点灯させないように複数の前記レーザ光源を同時に点灯させる、請求項1に記載の投光器。 The floodlight according to claim 1, wherein said control device simultaneously turns on a plurality of said laser light sources so as not to turn on adjacent said laser light sources at the same time.
  5.  前記制御装置は、前記レーザ光源の一つ以上おきの組合せを同時に点灯させる、請求項4に記載の投光器。 5. The floodlight according to claim 4, wherein said control device simultaneously turns on at least every other combination of said laser light sources.
  6.  前記発光部を構成する複数の前記レーザ光源を、隣接する複数の前記レーザ光源を要素とする複数のグループに分類し、隣接する2つの前記グループの面発光素子を同時に点灯させないように、複数の前記グループの前記レーザ光源を同時に点灯させる、請求項1に記載の投光器。 The plurality of laser light sources constituting the light emitting unit are classified into a plurality of groups each having a plurality of adjacent laser light sources as elements, and the surface emitting elements of two adjacent groups are classified into a plurality of groups so as not to light up at the same time. 2. The light projector of claim 1, wherein the laser light sources of the group are illuminated simultaneously.
  7.  前記発光部は、前記レーザ光源である面発光素子を一次元的又は二次元的に配列した構造を有する面発光素子アレイである、請求項1または請求項2に記載の投光器。 The light projector according to claim 1 or 2, wherein the light emitting unit is a surface emitting element array having a structure in which the surface emitting elements that are the laser light sources are arranged one-dimensionally or two-dimensionally.
  8.  請求項1または請求項2に記載の投光器を用いて構成される測定装置であって、
     前記投光器と、
     前記投光器から投光された光の反射光を受光する受光器と、
     を備え、
     前記受光器の受光結果に基づき検知対象までの距離を計測する、測定装置。
    A measuring device configured using the projector according to claim 1 or claim 2,
    the light projector;
    a light receiver that receives reflected light of the light projected from the light projector;
    with
    A measuring device that measures a distance to a detection target based on the light reception result of the light receiver.
PCT/JP2023/000814 2022-02-09 2023-01-13 Projector, and measuring device WO2023153139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-019000 2022-02-09
JP2022019000A JP2023116280A (en) 2022-02-09 2022-02-09 Projector and measuring apparatus

Publications (1)

Publication Number Publication Date
WO2023153139A1 true WO2023153139A1 (en) 2023-08-17

Family

ID=87564285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000814 WO2023153139A1 (en) 2022-02-09 2023-01-13 Projector, and measuring device

Country Status (2)

Country Link
JP (1) JP2023116280A (en)
WO (1) WO2023153139A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014838A2 (en) * 2012-07-15 2014-01-23 2R1Y Interactive illumination for gesture and/or object recognition
JP2017173298A (en) * 2016-03-16 2017-09-28 株式会社リコー Object detection device and mobile entity device
WO2019020395A1 (en) * 2017-07-24 2019-01-31 Lumileds Holding B.V. Vcsel assembly
JP2021120630A (en) * 2020-01-30 2021-08-19 ソニーセミコンダクタソリューションズ株式会社 Distance measuring device and distance measuring method
JP2021139918A (en) * 2017-03-13 2021-09-16 オプシス テック リミテッド Eye-safe scanning lidar system
JP2021173663A (en) * 2020-04-27 2021-11-01 ソニーセミコンダクタソリューションズ株式会社 Distance measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014838A2 (en) * 2012-07-15 2014-01-23 2R1Y Interactive illumination for gesture and/or object recognition
JP2017173298A (en) * 2016-03-16 2017-09-28 株式会社リコー Object detection device and mobile entity device
JP2021139918A (en) * 2017-03-13 2021-09-16 オプシス テック リミテッド Eye-safe scanning lidar system
WO2019020395A1 (en) * 2017-07-24 2019-01-31 Lumileds Holding B.V. Vcsel assembly
JP2021120630A (en) * 2020-01-30 2021-08-19 ソニーセミコンダクタソリューションズ株式会社 Distance measuring device and distance measuring method
JP2021173663A (en) * 2020-04-27 2021-11-01 ソニーセミコンダクタソリューションズ株式会社 Distance measuring device

Also Published As

Publication number Publication date
JP2023116280A (en) 2023-08-22

Similar Documents

Publication Publication Date Title
US10097741B2 (en) Camera for measuring depth image and method of measuring depth image using the same
US10612914B2 (en) Vehicle equipment with scanning system for contactless measurement
RU2672767C1 (en) Device for infrared laser lighting
US9909862B2 (en) Curved array of light-emitting elements for sweeping out an angular range
JP2021073473A (en) Eye-safe scanning lidar system
CN116430401A (en) Three-dimensional LIDAR system with target field of view
US10212785B2 (en) Staggered array of individually addressable light-emitting elements for sweeping out an angular range
JP6952200B2 (en) Light module for automobile floodlights
WO2023153139A1 (en) Projector, and measuring device
US9660410B2 (en) Laser lighting device and application thereof
JP2015519587A (en) Writing equipment
US20230028749A1 (en) Lidar with multi-range channels
US20230003843A1 (en) Transmission unit and lidar device with optical homogenizer
JP2023532676A (en) Projector for diffuse illumination and structured light
KR20220147901A (en) Camera apparatus
CN112684464A (en) Device and method for projecting laser line and optical detection distance measuring device
WO2021053909A1 (en) Projection optical system and radar device
CA3062696A1 (en) Array of independently-controllable laser diode bars for scanning a linear illumination pattern
WO2023153438A1 (en) Light projector, light receiver, and measurement device
WO2023153212A1 (en) Projector, and measuring device
US20230105824A1 (en) Distance measuring system
WO2023078986A1 (en) Eye safety for projectors
US20200150245A1 (en) Lidar device having increased transmission power while taking eye safety into consideration, and method for scanning a region to be scanned
JP2021063696A (en) Object information detector and object information detection method
JP2024017519A (en) Measuring device, light reception unit, and light projection unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752608

Country of ref document: EP

Kind code of ref document: A1