WO2023149570A1 - Biological tissue analysis method and device for detecting abnormality of biological tissue - Google Patents

Biological tissue analysis method and device for detecting abnormality of biological tissue Download PDF

Info

Publication number
WO2023149570A1
WO2023149570A1 PCT/JP2023/003730 JP2023003730W WO2023149570A1 WO 2023149570 A1 WO2023149570 A1 WO 2023149570A1 JP 2023003730 W JP2023003730 W JP 2023003730W WO 2023149570 A1 WO2023149570 A1 WO 2023149570A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
blood vessel
light emitting
emitting elements
receiving element
Prior art date
Application number
PCT/JP2023/003730
Other languages
French (fr)
Japanese (ja)
Inventor
高伸 八木
茂 根本
浩司 山口
Original Assignee
株式会社根本杏林堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社根本杏林堂 filed Critical 株式会社根本杏林堂
Publication of WO2023149570A1 publication Critical patent/WO2023149570A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body

Definitions

  • the present invention relates to a method for analyzing biological tissue and an apparatus for detecting abnormalities in biological tissue.
  • the administration of drug solutions, etc. into the patient's blood vessels is performed by inserting a needle into the cutaneous vein on the back of the hand or the forearm, and injecting the drug solution, etc. into the vein through the needle.
  • a leakage detection system using an optical semiconductor element is used to determine whether or not a drug solution or the like has leaked out of a blood vessel.
  • an optical measurement unit is arranged in a blood vessel into which an infusion solution is injected, light of a predetermined wavelength is irradiated toward the blood vessel, and the intensity of reflected light from the blood vessel is detected.
  • An infusion monitoring device is disclosed that determines whether the infusion is leaking out of the blood vessel based on the intensity value.
  • the injection of the anticancer drug which is a drug solution
  • the blood vessel must be performed over a relatively long time of about 1 to 2 hours.
  • anticancer drugs are highly toxic to normal cells, and extravasation of anticancer drugs is extremely dangerous, so visual observation is required at regular time intervals (15 minutes).
  • the characteristic line Base LINE, see FIG. 3 of Patent Document 1
  • the characteristic line that indicates the intensity of the reflected light may swell, causing extravasation. It may be difficult to determine whether the drug solution has leaked into the living tissue of the patient.
  • An object of the present invention is to provide a method for analyzing biological tissue.
  • the present invention provides a method for analyzing a biological tissue, which comprises causing at least one first light-emitting element provided in a first sensor to emit light to emit a first light in the vicinity of a first blood vessel. irradiating a biological tissue and receiving scattered light scattered by the first biological tissue with a first light receiving element provided in the first sensor; and at least one second sensor provided in the second sensor.
  • Light is received by a second light receiving element provided, and a change is detected by comparing a first measured value received by the first light receiving element and a second measured value received by the second light receiving element. and detecting an abnormality occurring in the first biological tissue based on the change.
  • a method for analyzing biological tissue can be provided.
  • FIG. 3 is a perspective view of the sensor head 15 of the leakage detection sensor 10 as seen from the contact surface 14 side.
  • FIG. 2 is a plan view showing the arrangement of light emitting elements 11 and light receiving elements 12 mounted on a sensor head 15.
  • FIG. 4 is a model diagram showing the principle of leak detection by the leak detection sensor 10.
  • FIG. FIG. 2 is a model diagram showing the arrangement of light-emitting elements 11 and light-receiving elements 12 with respect to an irradiation target; It is a photograph which shows the test apparatus performed using a pig skin model. It is a photograph which shows the test apparatus performed using a pig skin model.
  • 4 is a diagram showing output characteristics of the light receiving element 12 measured using a pig skin model; FIG.
  • FIG. 4 is a diagram showing output characteristics of a light receiving element 12 when the blood vessel 1 is in a normal state
  • FIG. 1 is a schematic diagram showing a state of a blood vessel 1
  • FIG. 4 is a diagram showing output characteristics of a light receiving element 12 when a blood vessel 1 expands from a normal state
  • FIG. 1 is a schematic diagram showing a state of a blood vessel 1
  • FIG. FIG. 2 is a model diagram showing an example of veins on the back of the hand and the arrangement of each leakage detection sensor
  • FIG. 4 is a model diagram showing an example of veins in the forearm and the arrangement of each leakage detection sensor
  • FIG. 4 is a plan view showing the configuration of the first leakage detection sensor 10M
  • FIG. 10M is a schematic diagram showing a state of a blood vessel 1
  • FIG. 4 is a diagram showing output characteristics of a light receiving element 12 when a blood vessel 1 expands from a normal state
  • FIG. 1 is a schematic diagram showing a state of
  • FIG. 11 is a plan view showing the configuration of a second leakage detection sensor 10R; It is a diagram showing a measurement result on the back of the hand in the embodiment. It is a diagram showing the measurement result in the forearm in the embodiment.
  • FIG. 4 is a diagram showing measurement results on the back of the hand in an example.
  • FIG. 4 is a diagram showing the measurement results of the forearm in the example. It is a figure which shows an application example typically.
  • FIG. 1A is a perspective view of the sensor head 15 of the leakage detection sensor 10 used in the present invention, viewed from the contact surface 14 side.
  • FIG. 1B is a plan view showing the arrangement of the light emitting element 11 and the light receiving element 12 mounted on the sensor head 15.
  • the sensor head 15 is used by being fixed in close contact with the patient during drug injection, and has four light-emitting elements 11 and one light-receiving element 12 .
  • the light-emitting element 11 is an element that emits light of a predetermined wavelength when a voltage is applied.
  • a light-emitting diode that emits infrared rays can be used.
  • the light-receiving element 12 is an element that receives at least light of a wavelength emitted by the light-emitting element 11 and converts the light-receiving energy into electric energy, and an electric output is obtained from the converted electric energy.
  • a phototransistor can be used as the light receiving element 12 .
  • the leakage detection sensor 10 is provided with four light emitting elements 11 and one light receiving element 12.
  • the light emitting element 11 and the light receiving element 12 are mounted on the substrate 13 and fixed inside the sensor head 15 .
  • the light-receiving element 12 is mounted at a position corresponding to the center of the contact surface 14 of the sensor head 15, and the four light-emitting elements 11 surround the light-receiving element 12 at equal distances from the light-receiving element 12 at equal angular intervals.
  • the center of the light-emitting region of all the light-emitting elements 11 and the center of the light-receiving region of the light-receiving element 12 are aligned. Since the present embodiment has four light emitting elements 11, these light emitting elements 11 are arranged at intervals of 90 degrees around the light receiving element 12.
  • FIG. 2A is a model diagram showing the principle of detection of leakage of a chemical or the like by the leakage detection sensor 10.
  • FIG. FIG. 2B is a model diagram showing the arrangement of the light-emitting element 11 and the light-receiving element 12 that irradiate the vicinity of the blood vessel 1, the blood vessel 1, and the living tissue 2 in the vicinity thereof.
  • an injection needle 4 needle
  • the injection needle 4 is punctured into a vein in either the patient's forearm or the back of the hand, but may be punctured in a vein at another site.
  • the sensor head 15 is fixed to the patient using an adhesive sheet or the like so that the center of the sensor head 15 is positioned almost directly above the punctured tip of the injection needle 4 .
  • FIG. 2A also shows a blister 6 caused by leakage of a drug solution (for example, an anticancer drug) from the injection needle 4.
  • a drug solution for example, an anticancer drug
  • 3A and 3B are photographs showing an experimental apparatus for detecting leakage using a pig skin model as a dummy sample.
  • FIG. 4 is a diagram showing output characteristics of the light receiving element 12 measured using a pig skin model.
  • an injection needle 4 is pierced into the pig skin 5 , a leakage detection sensor 10 is arranged directly above the injection needle 4 , water is injected into the pig skin 5 through the injection needle 4 , and blisters 6 are artificially formed. It is made possible to form The formed blister 6 is regarded as the liquid medicine leaked from the injection needle 4 in this pig skin model. Then, the leakage detection sensor 10 is driven to cause the light emitting element 11 to emit light, the light receiving element 12 detects the scattered light from the surrounding tissues including the blister 6, and the output value is measured.
  • the pig skin 5 used in the experiment is pig abdominal skin and has a thickness of 2 mm for the epidermis and 2 mm for the subcutaneous layer.
  • a 23G winged needle
  • the puncture position of the injection needle 4 is directly below the leak detection sensor 10 .
  • Water is injected in increments of 0.2 ml for a total of 3 ml of water.
  • the water used is physiological saline.
  • FIG. 4 shows plots A to C, which are three measurement results of the light receiving element 12.
  • Plot A is the result when it is estimated that the blister 6 was formed at the farthest point from the light receiving element 12. It is a characteristic in which the output value of the light receiving element 12 is described.
  • Plot C is a characteristic describing the output value of the light receiving element 12 when it is estimated that the bubble 6 is formed at the point closest to the light receiving element 12 (for example, immediately below the light receiving element 12).
  • Plot B is an intermediate characteristic between plots A and C.
  • the output value of the light receiving element 12 attenuates as the injection amount of water corresponding to the leak amount of the chemical solution increases. Also, when the bubble 6 is close to the light receiving element 12, the output value of the light receiving element 12 is greatly attenuated. That is, when the light receiving element 12 is located near the blister 6, it can be said that the sensitivity for detecting leakage of the chemical solution is higher. Then, for example, when the output value of the light receiving element 12 drops to 0.7 V (the cutoff value), it can be estimated that there was a leak of 2 ml or more in plot A, while 0.5 ml in plot B and 0.5 ml in plot C It can be estimated that there was a leak of 0.25ml. Since the flow rate of anticancer drug injection is 1 to 3 ml/min, it can be said that leakage can be detected in about 1 minute after the drug begins to leak.
  • the experiment using the pig skin model confirmed that the leak detection sensor 10 could detect the blister 6 corresponding to the leak in the skin. Furthermore, it was confirmed that the leakage amount can be estimated by the leakage detection sensor 10 from the plot characteristics and the measurement time by setting the predetermined output value as the cutoff value as described above.
  • FIG. 5A is a diagram showing output characteristics of light receiving element 12 when blood vessel 1 is in a normal state.
  • FIG. 5B is a schematic diagram showing the state of the blood vessel 1.
  • FIG. Administration of the contrast agent takes a relatively short time (about 15 seconds to 1 minute), but administration of the anticancer agent takes a relatively long time. Assuming the time during which the cancer drug is administered, it is a relatively long time of 1200 seconds (20 minutes).
  • the left vertical axis is the sensor internal temperature [° C.] of the leakage detection sensor 10 and the right vertical axis is the sensor output [V] of the light receiving element 12 .
  • the output value of the light-receiving element 12 may have a sharp spike-like rise in a constant period of about 200 seconds to about 400 seconds. This spike-like steep rising lasts for about 1 minute, and is presumed to be of biological origin. Assuming that the output value of the light receiving element 12 is 0.8 V and that the output value of the light receiving element 12 is 0.8 V, the output value of the light receiving element 12 is within a range of ⁇ 0.02 V with respect to the baseline BL1. is periodically fluctuating. It should be noted that the internal temperature of the leak detection sensor 10 was substantially constant during the experiment, and the blood vessel 1 was in a normal state, not dilated and not contracted, as shown in FIG. 5B.
  • FIG. 6A is a diagram showing output characteristics of the light receiving element 12 when the blood vessel 1 expands from its normal state.
  • FIG. 6B is a schematic diagram showing the state of the blood vessel 1.
  • FIG. The vertical axis and horizontal axis in FIG. 6A are the same as in FIG. 5A.
  • the output value of the light-receiving element 12 shows a sharp spike-like rise with a duration of about 1 minute. Then, if this spike-like rise is excluded and the output value of the light receiving element 12 of 0.8 V is used as a reference baseline BL1, the output value of the light receiving element 12 is As indicated by the arrow, the whole is shifted downward from the baseline BL1. This deviation is hereinafter referred to as "drift”. Then, the output value of 0.76 V is set as a new baseline BL2, and the voltage fluctuates periodically within a range of about ⁇ 0.02 V with respect to this baseline BL2. It should be noted that the internal temperature of the leak detection sensor 10 is substantially constant during the experiment.
  • the blood vessel 1 expands from the normal state in FIG. 5B and has a larger cross-sectional area. That is, at the beginning of the experiment, the blood vessel 1 was in a normal state, but it can be inferred that the blood vessel 1 dilated during the passage of about 400 seconds. , is presumed to have drifted as indicated by the arrows. It is presumed that this dilation of the blood vessel 1 is caused by poor blood circulation due to posture maintenance. If the baseline BL1 of the output value of the light receiving element 12 changes to the baseline BL2 due to the dynamic change of the blood vessel 1, it is difficult to use the sensor output value to detect leakage. However, according to the present invention, leakage of the drug solution from the biological tissue 2 including dynamic changes can be detected accurately by the method described below.
  • FIG. 7A is a model diagram showing an example of veins on the back of the hand and the arrangement of the first leak detection sensor 10M (first sensor) and the second leak detection sensor 10R (second sensor).
  • FIG. 7B is a model diagram showing an example of veins in the forearm and the arrangement of the first leakage detection sensor 10M and the second leakage detection sensor 10R.
  • Administration of the anticancer drug is performed through the injection needle 4 which is punctured by the injection needle 4 into the first blood vessel 1a which is, for example, one of the veins in the back of the hand or the forearm.
  • the first leakage detection sensor 10M is arranged directly above the first blood vessel 1a downstream of the position where the injection needle 4 is punctured, and is located near the first blood vessel 1a. Tissue 2a is irradiated.
  • a second leakage detection sensor 10R is placed directly above a second blood vessel 1b different from the first blood vessel 1a, and irradiates a second living tissue 2b in the vicinity of the second blood vessel 1b. That is, two leak detection sensors 10 are used to measure light scatter in each vein. Experiments in which anticancer drugs are actually administered to healthy subjects are highly risky and unrealistic. Therefore, by processing the drift of the output value of the leak detection sensor 10 due to dilation or contraction of the vein without administering the drug solution, the leakage of the drug solution can be detected by the leak detection sensor 10 in a developmental manner. .
  • FIGS. 8A and 8B show the configurations of the first leakage detection sensor 10M and the second leakage detection sensor 10R, respectively.
  • the first leak detection sensor 10M includes two light emitting elements 11Ma that are arranged to face each other and form a first pair, two light emitting elements 11Mb that are arranged to face each other and form a second pair, and one light receiving element 12M.
  • the second leakage detection sensor 10R includes two light emitting elements 11Ra that are arranged to face each other and form a first pair, two light emitting elements 11Rb that are arranged to face each other and form a second pair, and one light emitting element 11Rb. It has a light receiving element 12R.
  • both the first blood vessel 1a in which the first leakage detection sensor 10M is arranged and the second blood vessel 1b in which the second leakage detection sensor 10R is arranged have the same diameter.
  • Both the location where the first leakage detection sensor 10M is arranged and the location where the second leakage detection sensor 10R is arranged should preferably have a substantially straight vein, and should not be located near a bifurcation of the vein.
  • the first leak detection sensor 10M is placed directly above the first blood vessel 1a
  • the second leak detection sensor 10R is placed directly above the second blood vessel 1b. 2 leak detection sensor 10R.
  • the two light emitting elements 11Ma and the two light emitting elements 11Mb are all caused to emit light at the same timing.
  • the two light emitting elements 11Ra and the two light emitting elements 11Rb are caused to emit light at the same timing.
  • at least one light emitting element 11Ma first light emitting element
  • at least one light emitting element 11Ra may emit light.
  • FIG. 9 is a diagram showing the results of measurement by arranging the first leak detection sensor 10M and the second leak detection sensor 10R on the back of the hand in the embodiment. The characteristics of the output value Main of the first leak detection sensor 10M, the output value Ref of the second leak detection sensor 10R, and the difference value Diff obtained by subtracting the output value Ref from the output value Main are shown.
  • Fig. 9 also shows the measurement results for the stationary state, intermittent movement, and continuous movement of the hand.
  • the output value Main and the output value Ref decrease (drift) over time as indicated by the arrows. This drift is presumed to be due to venous dilation as described above.
  • the characteristic of the difference value Diff is within the range of ⁇ 0.05 V even after time passes.
  • the characteristic of the difference value Diff is within the range of ⁇ 0.05 V even after the passage of time.
  • the characteristic of the difference value Diff does not fall within the range of ⁇ 0.05V.
  • FIG. 10 is a diagram showing the results of measurement by arranging the first leak detection sensor 10M and the second leak detection sensor 10R on the forearm in the embodiment. The characteristics of the output value Main of the first leak detection sensor 10M, the output value Ref of the second leak detection sensor 10R, and the difference value Diff obtained by subtracting the output value Ref from the output value Main are shown.
  • Fig. 10 shows the measurement results in the static state, intermittent motion, and continuous motion.
  • the output value Main and the output value Ref decrease (drift) over time as indicated by the arrows. This drift is presumed to be due to venous dilation as described above.
  • the characteristic of the difference value Diff is within the range of ⁇ 0.05 V even after time passes.
  • the characteristic of the difference value Diff is within the range of ⁇ 0.05 V even after the passage of time. Furthermore, even when the finger is intermittently or continuously moved, the characteristic of the difference value Diff is within the range of ⁇ 0.05V. This is because, for example, when the hand is clenched, the change in the inner diameter of the blood vessel is considered to have little effect on the forearm.
  • two leakage detection sensors measure the scattered light of the living tissue 2 around the veins for two different veins. It was then shown that biologically derived data noise, such as venous dilatation, can be eliminated by the two leak detection sensors.
  • the output value from the first leakage detection sensor 10M arranged directly above the first blood vessel 1a It is assumed that Main is attenuated (see FIG. 4).
  • the output value Ref from the second leakage detection sensor 10R arranged directly above the second blood vessel 1b different from the first blood vessel 1a does not attenuate.
  • the difference value Diff obtained by subtracting the output value Ref from the output value Main deviates from the range of ⁇ 0.05V. As described above, it is possible to detect leakage of the chemical solution.
  • the method for analyzing biological tissue including dynamic changes causes at least one light-emitting element 11Ma (first light-emitting element) provided in the first leakage detection sensor 10M to emit light to generate the first irradiates the first living tissue 2a in the vicinity of the blood vessel 1a.
  • Scattered light scattered by the first living tissue 2a is received by the light receiving element 12M (first light receiving element) provided in the first leak detection sensor 10M.
  • at least one light-emitting element 11Ra (second light-emitting element) provided in the second leakage detection sensor 10R is caused to emit light so that a second blood vessel 1b near a second blood vessel 1b different from the first blood vessel 1a is detected. of the living tissue 2b.
  • the change may be obtained from, for example, a difference value, a ratio value, or a correlation value between the output value Main received by the light receiving element 12M and the output value Ref received by the light receiving element 12R.
  • Abnormality of the first living tissue 2a means that, for example, a drug solution is leaking around the first blood vessel 1a. Further, according to the embodiments of the present invention, it is possible to provide a method for analyzing biological tissue.
  • the two light-emitting elements 11Rb (second group of light-emitting elements) forming the second pair emit light
  • the light-receiving element 12R receives the light, and outputs an output value Rb.
  • the received light energy is averaged by the following formula.
  • Average value Rave (Ra+Rb)/2
  • FIG. 11 is a diagram showing the measurement results obtained by arranging the first leakage detection sensor 10M and the second leakage detection sensor 10R on the back of the hand in the example.
  • the characteristics of the difference value Diff with Rave subtracted are shown.
  • the reference lines (baselines) of the output value Ma, the output value Mb, the output value Ra, and the output value Rb do not decrease over time. Although dilation occurs in the veins as described above, drift due to dilation is eliminated in the example.
  • the characteristic of the difference value Diff is within the range of ⁇ 0.05 V even after time passes.
  • FIG. 12 is a diagram showing the measurement results obtained by arranging the first leak detection sensor 10M and the second leak detection sensor 10R on the forearm in the example.
  • the characteristics of the difference value Diff with Rave subtracted are shown.
  • the reference lines (baselines) of the output value Ma, the output value Mb, the output value Ra, and the output value Rb do not decrease over time. Although dilation occurs in the veins as described above, drift due to dilation is eliminated in the example.
  • the characteristic of the difference value Diff is within the range of ⁇ 0.05 V even after time passes.
  • All of the two light emitting elements 11Ma and the two light emitting elements 11Mb may be driven at the same time, or may be driven with different light emission timings, or a combination of these, simultaneous driving and driving with different light emission timings. and may be repeated alternately. By driving all the light emitting elements 11 at the same time, a large amount of light can be obtained, so leakage from a deeper part than the body surface can also be detected.
  • FIG. 13 is a diagram schematically showing an apparatus 100 to which the analysis method according to the embodiment or example of the present invention is applied.
  • a device 100 for notifying an abnormality occurring in a living tissue 2 includes at least one first light emitting element 11Ma that irradiates the vicinity of a first blood vessel 1a, and receives scattered light scattered in the vicinity of the first blood vessel 1a.
  • a first leakage detection sensor 10M is provided, which is composed of a first light receiving element 12M.
  • an abnormality occurring in the vicinity of the first blood vessel 1a is detected.
  • the detection is performed by analyzing each output value from the first leakage detection sensor 10M and the second leakage detection sensor 10R in the control means 101.
  • the analyzed result can be displayed on a display or the like, which is a well-known notification means 102, or notified by a buzzer or light.
  • the device 100 for detecting abnormalities in the living tissue 2 can be provided.
  • the present invention has been described by the representative embodiments and examples, but the present invention is not limited to the above-described embodiments and examples, and can be arbitrarily changed within the scope of the technical idea of the present invention. be able to.

Abstract

The present invention provides a biological tissue analysis method. The biological tissue analysis method comprises: causing at least one light-emitting element 11Ma provided to a first leak detection sensor 10M to emit light so as to irradiate a first biological tissue 2a in the vicinity of a first blood vessel 1a, and receiving scattered light that has been scattered by the first biological tissue 2a with a light-receiving element 12M provided to the first leak detection sensor 10M; causing at least one light-emitting element 11Ra provided to a second leak detection sensor 10R to emit light so as to irradiate a second biological tissue 2b in the vicinity of a second blood vessel 1b which differs from the first blood vessel 1a, and receiving scattered light that has been scattered by the second biological tissue 2b with a light-receiving element 12R provided to the second leak detection sensor 10R; comparing an output value Main for light reception by the light-receiving element 12M with an output value Ref for light reception by the light-receiving element 12R and calculating a difference value Diff; and detecting an abnormality occurring in the first biological tissue 2a on the basis of the difference value Diff.

Description

生体組織の解析方法及び生体組織の異常を検出する装置Method for analyzing biological tissue and apparatus for detecting abnormalities in biological tissue
 本発明は、生体組織の解析方法及び生体組織の異常を検出する装置に関する。 The present invention relates to a method for analyzing biological tissue and an apparatus for detecting abnormalities in biological tissue.
 患者の血管内への薬液等の投与は、手背の皮静脈や前腕の皮静脈に針を挿入し、針を介して静脈内に薬液等を注入することにより行われる。薬液等が血管外に漏出しているかどうかの判定は、光半導体素子を用いた漏出検出システムにより行われている。 The administration of drug solutions, etc. into the patient's blood vessels is performed by inserting a needle into the cutaneous vein on the back of the hand or the forearm, and injecting the drug solution, etc. into the vein through the needle. A leakage detection system using an optical semiconductor element is used to determine whether or not a drug solution or the like has leaked out of a blood vessel.
 特許文献1には、輸液が注入される血管に光学計測部を配置し、当該血管に向けて所定の波長の光を照射して、当該血管からの反射光の強度を検出し、検出された強度の値に基づいて、当該血管の外へ輸液が漏出しているか判断を行う輸液監視装置が開示されている。 In Patent Document 1, an optical measurement unit is arranged in a blood vessel into which an infusion solution is injected, light of a predetermined wavelength is irradiated toward the blood vessel, and the intensity of reflected light from the blood vessel is detected. An infusion monitoring device is disclosed that determines whether the infusion is leaking out of the blood vessel based on the intensity value.
特許第6449069号公報Japanese Patent No. 6449069
 薬液である抗がん剤の血管への投入は、約1~2時間という比較的長い時間をかけて行なわなければならない。更に、抗がん剤は通常の細胞に対して毒性が強く、抗がん剤の血管外漏出は非常に危険であるので、一定時間の間隔(15分)で目視することが必要である。しかしながら、特許文献1の輸液監視装置において血管外漏出の監視を長い時間続けると、反射光強度を示す特性線(Base LINE、特許文献1の図3参照)にうねりが生じることがあり、血管外の生体組織に薬液が漏出しているかどうか判断することが難しい場合がある。 The injection of the anticancer drug, which is a drug solution, into the blood vessel must be performed over a relatively long time of about 1 to 2 hours. Furthermore, anticancer drugs are highly toxic to normal cells, and extravasation of anticancer drugs is extremely dangerous, so visual observation is required at regular time intervals (15 minutes). However, if the infusion monitoring device of Patent Document 1 continues to monitor extravasation for a long period of time, the characteristic line (Base LINE, see FIG. 3 of Patent Document 1) that indicates the intensity of the reflected light may swell, causing extravasation. It may be difficult to determine whether the drug solution has leaked into the living tissue of the patient.
 本発明の目的は、生体組織の解析方法を提供することである。 An object of the present invention is to provide a method for analyzing biological tissue.
 上記目的を達成するための本発明は、生体組織の解析方法であって、第1のセンサに備えられた少なくとも一つの第1の発光素子を発光させて第1の血管の近傍の第1の生体組織を照射し、前記第1の生体組織で散乱した散乱光を前記第1のセンサに備えられた第1の受光素子で受光することと、第2のセンサに備えられた少なくとも一つの第2の発光素子を発光させて前記第1の血管とは異なる第2の血管の近傍の第2の生体組織を照射し、前記第2の生体組織で散乱した散乱光を前記第2のセンサに備えられた第2の受光素子で受光することと、前記第1の受光素子で受光した第1の測定値と前記第2の受光素子で受光した第2の測定値とを比較して変化を算出することと、前記変化に基づいて前記第1の生体組織で生じた異常を検出することと、を有することを特徴とする。  To achieve the above object, the present invention provides a method for analyzing a biological tissue, which comprises causing at least one first light-emitting element provided in a first sensor to emit light to emit a first light in the vicinity of a first blood vessel. irradiating a biological tissue and receiving scattered light scattered by the first biological tissue with a first light receiving element provided in the first sensor; and at least one second sensor provided in the second sensor. illuminating a second biological tissue in the vicinity of a second blood vessel different from the first blood vessel by emitting light from two light emitting elements, and scattering light scattered by the second biological tissue to the second sensor; Light is received by a second light receiving element provided, and a change is detected by comparing a first measured value received by the first light receiving element and a second measured value received by the second light receiving element. and detecting an abnormality occurring in the first biological tissue based on the change. 
 本発明によれば、生体組織の解析方法を提供することができる。 According to the present invention, a method for analyzing biological tissue can be provided.
漏出検出センサ10のセンサヘッド15を密着面14側から見た斜視図である。3 is a perspective view of the sensor head 15 of the leakage detection sensor 10 as seen from the contact surface 14 side. FIG. センサヘッド15に搭載される発光素子11、受光素子12の配置を示す平面図である。2 is a plan view showing the arrangement of light emitting elements 11 and light receiving elements 12 mounted on a sensor head 15. FIG. 漏出検出センサ10による漏出の検出原理を示すモデル図である。4 is a model diagram showing the principle of leak detection by the leak detection sensor 10. FIG. 照射対象に対する発光素子11、受光素子12の配置を示すモデル図である。FIG. 2 is a model diagram showing the arrangement of light-emitting elements 11 and light-receiving elements 12 with respect to an irradiation target; 豚皮膚モデルを用いて行う試験装置を示す写真である。It is a photograph which shows the test apparatus performed using a pig skin model. 豚皮膚モデルを用いて行う試験装置を示す写真である。It is a photograph which shows the test apparatus performed using a pig skin model. 豚皮膚モデルを用いて計測された受光素子12の出力特性を示す線図である。4 is a diagram showing output characteristics of the light receiving element 12 measured using a pig skin model; FIG. 血管1が通常の状態の場合における受光素子12の出力特性を示す線図である。4 is a diagram showing output characteristics of a light receiving element 12 when the blood vessel 1 is in a normal state; FIG. 血管1の状態を示す模式図である。1 is a schematic diagram showing a state of a blood vessel 1; FIG. 血管1が通常の状態から拡張していく場合における受光素子12の出力特性を示す線図である。4 is a diagram showing output characteristics of a light receiving element 12 when a blood vessel 1 expands from a normal state; FIG. 血管1の状態を示す模式図である。1 is a schematic diagram showing a state of a blood vessel 1; FIG. 手背における静脈の一例と各漏出検出センサの配置を示すモデル図である。FIG. 2 is a model diagram showing an example of veins on the back of the hand and the arrangement of each leakage detection sensor; 前腕における静脈の一例と各漏出検出センサの配置を示すモデル図である。FIG. 4 is a model diagram showing an example of veins in the forearm and the arrangement of each leakage detection sensor; 第1の漏出検出センサ10Mの構成を示す平面図である。FIG. 4 is a plan view showing the configuration of the first leakage detection sensor 10M; 第2の漏出検出センサ10Rの構成を示す平面図である。FIG. 11 is a plan view showing the configuration of a second leakage detection sensor 10R; 実施形態における手背での測定結果を示す線図である。It is a diagram showing a measurement result on the back of the hand in the embodiment. 実施形態における前腕での測定結果を示す線図である。It is a diagram showing the measurement result in the forearm in the embodiment. 実施例における手背での測定結果を示す線図である。FIG. 4 is a diagram showing measurement results on the back of the hand in an example. 実施例における前腕での測定結果を示す線図である。FIG. 4 is a diagram showing the measurement results of the forearm in the example. 応用例を模式的に示す図である。It is a figure which shows an application example typically.
 以下、図面を参照して本発明の実施形態を説明する。図1Aは、本発明で使用される漏出検出センサ10のセンサヘッド15を密着面14側から見た斜視図である。図1Bは、センサヘッド15に搭載される発光素子11、受光素子12の配置を示す平面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a perspective view of the sensor head 15 of the leakage detection sensor 10 used in the present invention, viewed from the contact surface 14 side. FIG. 1B is a plan view showing the arrangement of the light emitting element 11 and the light receiving element 12 mounted on the sensor head 15. FIG.
 センサヘッド15は、薬液注入の際、患者に密着させた状態で固定されて使用され、四つの発光素子11及び一つの受光素子12を有している。発光素子11は、電圧が印加されることによって所定の波長の光を射出する素子であり、発光素子11としては、例えば赤外線を射出する発光ダイオードを用いることができる。受光素子12は、少なくとも発光素子11が射出する波長の光を受光することによって、受光エネルギーを電気エネルギーに変換する素子であり、変換された電気エネルギーにより電気的出力が得られる。受光素子12としては、例えばフォトトランジスタを用いることができる。 The sensor head 15 is used by being fixed in close contact with the patient during drug injection, and has four light-emitting elements 11 and one light-receiving element 12 . The light-emitting element 11 is an element that emits light of a predetermined wavelength when a voltage is applied. As the light-emitting element 11, for example, a light-emitting diode that emits infrared rays can be used. The light-receiving element 12 is an element that receives at least light of a wavelength emitted by the light-emitting element 11 and converts the light-receiving energy into electric energy, and an electric output is obtained from the converted electric energy. For example, a phototransistor can be used as the light receiving element 12 .
 本実施形態では、漏出検出センサ10には四つの発光素子11及び一つの受光素子12が備えられている。これら発光素子11及び受光素子12は、基板13に実装されてセンサヘッド15内に固定されている。受光素子12は、センサヘッド15の密着面14の中心に相当する位置に実装され、四つの発光素子11は、受光素子12を、受光素子12から等距離でかつ等角度間隔で取り囲んだ位置に実装されている。このような配置により、すべての発光素子11による発光領域の中心と、受光素子12による受光領域の中心が一致する。本実施形態では四つの発光素子11を有するので、これら発光素子11が、受光素子12を中心に90度間隔で配置される。 In this embodiment, the leakage detection sensor 10 is provided with four light emitting elements 11 and one light receiving element 12. The light emitting element 11 and the light receiving element 12 are mounted on the substrate 13 and fixed inside the sensor head 15 . The light-receiving element 12 is mounted at a position corresponding to the center of the contact surface 14 of the sensor head 15, and the four light-emitting elements 11 surround the light-receiving element 12 at equal distances from the light-receiving element 12 at equal angular intervals. Implemented. With such an arrangement, the center of the light-emitting region of all the light-emitting elements 11 and the center of the light-receiving region of the light-receiving element 12 are aligned. Since the present embodiment has four light emitting elements 11, these light emitting elements 11 are arranged at intervals of 90 degrees around the light receiving element 12. FIG.
 次に、本実施形態の漏出検出センサ10の動作について説明する。図2Aは、漏出検出センサ10による薬液等の漏出の検出原理を示すモデル図である。図2Bは、血管1の近傍、該血管1とその近傍の生体組織2を照射する発光素子11、受光素子12の配置を示すモデル図である。センサヘッド15を被験者に固定するのに先立って、注入針4(針)が患者の血管1に穿刺される。なお、注入針4は患者の前腕又は手背の何れかの静脈に穿刺されるが、他の部位の静脈でもよい。注入針4を穿刺した後、センサヘッド15は、そのセンサヘッド15の中心が穿刺された注入針4の先端のほぼ真上に位置するように、粘着シート等を用いて患者に固定される。 Next, the operation of the leakage detection sensor 10 of this embodiment will be described. FIG. 2A is a model diagram showing the principle of detection of leakage of a chemical or the like by the leakage detection sensor 10. FIG. FIG. 2B is a model diagram showing the arrangement of the light-emitting element 11 and the light-receiving element 12 that irradiate the vicinity of the blood vessel 1, the blood vessel 1, and the living tissue 2 in the vicinity thereof. Prior to securing the sensor head 15 to the subject, an injection needle 4 (needle) is punctured into the patient's blood vessel 1 . The injection needle 4 is punctured into a vein in either the patient's forearm or the back of the hand, but may be punctured in a vein at another site. After the injection needle 4 is punctured, the sensor head 15 is fixed to the patient using an adhesive sheet or the like so that the center of the sensor head 15 is positioned almost directly above the punctured tip of the injection needle 4 .
 また、図2Aには、薬液(例えば、抗がん剤等)が注入針4から漏出して生じた水泡6が示されているが、薬液の漏出を検出する実験には、ダミーの試料が使用される。図3A、図3Bは、いずれもダミーの試料として豚皮膚モデルを用いて漏出を検出する実験装置を示す写真である。図4は、豚皮膚モデルを用いて計測された、受光素子12の出力特性を示す線図である。 FIG. 2A also shows a blister 6 caused by leakage of a drug solution (for example, an anticancer drug) from the injection needle 4. In an experiment for detecting leakage of a drug solution, a dummy sample was used. used. 3A and 3B are photographs showing an experimental apparatus for detecting leakage using a pig skin model as a dummy sample. FIG. 4 is a diagram showing output characteristics of the light receiving element 12 measured using a pig skin model.
 豚皮膚モデルは、豚皮膚5に注入針4を穿刺し、注入針4の直上に漏出検出センサ10を配置して、注入針4により水を豚皮膚5内に注入して人工的に水泡6を形成できるようにしたものである。形成された水泡6は、この豚皮膚モデルにおいて注入針4から漏出した薬液とみなす。そして、漏出検出センサ10を駆動して発光素子11を発光させ、水泡6を含む周辺の組織からの散乱光を受光素子12が検出し、その出力値を計測する。実験に使用する豚皮膚5は、豚の腹部の皮膚であってその厚さは表皮2mm、皮下2mmである。この二枚の豚皮膚5でサンドイッチ構造を構成する。注入針4は、23G(翼状針)を用いる。注入針4の穿刺位置は、漏出検出センサ10の直下とする。水は0.2mlずつ注入され、合計3mlの水を注入する。なお、使用する水は、生理食塩水である。 In the pig skin model, an injection needle 4 is pierced into the pig skin 5 , a leakage detection sensor 10 is arranged directly above the injection needle 4 , water is injected into the pig skin 5 through the injection needle 4 , and blisters 6 are artificially formed. It is made possible to form The formed blister 6 is regarded as the liquid medicine leaked from the injection needle 4 in this pig skin model. Then, the leakage detection sensor 10 is driven to cause the light emitting element 11 to emit light, the light receiving element 12 detects the scattered light from the surrounding tissues including the blister 6, and the output value is measured. The pig skin 5 used in the experiment is pig abdominal skin and has a thickness of 2 mm for the epidermis and 2 mm for the subcutaneous layer. These two pieces of pig skin 5 form a sandwich structure. A 23G (winged needle) is used as the injection needle 4 . The puncture position of the injection needle 4 is directly below the leak detection sensor 10 . Water is injected in increments of 0.2 ml for a total of 3 ml of water. The water used is physiological saline.
 まず、注入針4から水が0.2mlずつ注入され、それに伴い水泡6が大きくなる。この水泡6は、薬液の漏出を再現するものであり、その水泡6を含む周囲の組織に対して発光素子11が光を射出し、受光素子12が検知した値が計測される。図4には、受光素子12の三つの計測結果であるプロットA~Cが示されているが、プロットAは、受光素子12から最も離れた地点に水泡6が形成されたと推定される際の受光素子12の出力値を記した特性である。プロットCは、受光素子12に最も近い地点(例えば受光素子12の直下)に水泡6が形成されたと推定される際の受光素子12の出力値を記した特性である。プロットBは、プロットAとプロットCの中間の特性である。 First, 0.2 ml of water is injected from the injection needle 4 at a time, and the blister 6 grows accordingly. The blister 6 reproduces the leakage of the drug solution. The light emitting element 11 emits light to the surrounding tissue including the blister 6, and the value detected by the light receiving element 12 is measured. FIG. 4 shows plots A to C, which are three measurement results of the light receiving element 12. Plot A is the result when it is estimated that the blister 6 was formed at the farthest point from the light receiving element 12. It is a characteristic in which the output value of the light receiving element 12 is described. Plot C is a characteristic describing the output value of the light receiving element 12 when it is estimated that the bubble 6 is formed at the point closest to the light receiving element 12 (for example, immediately below the light receiving element 12). Plot B is an intermediate characteristic between plots A and C.
 図4に示すように、薬液の漏れ量に相当する水の注入量が増加すると受光素子12の出力値は減衰する。また、水泡6が受光素子12に近いと受光素子12の出力値は大きく減衰する。すなわち、受光素子12が水泡6の近くに位置していた場合の方が薬液の漏れを検出する感度が高いといえる。そして、例えば受光素子12の出力値が0.7Vに低下(カットオフ値とする。)したとき、プロットAでは2ml以上の漏出があったと推定でき、一方プロットBでは0.5ml、プロットCでは0.25mlの漏出があったと推定することができる。抗がん剤注入の流量は1~3ml/minであるので、薬剤が漏出し始めてから、約1分程度で漏出を検出することができるといえる。 As shown in FIG. 4, the output value of the light receiving element 12 attenuates as the injection amount of water corresponding to the leak amount of the chemical solution increases. Also, when the bubble 6 is close to the light receiving element 12, the output value of the light receiving element 12 is greatly attenuated. That is, when the light receiving element 12 is located near the blister 6, it can be said that the sensitivity for detecting leakage of the chemical solution is higher. Then, for example, when the output value of the light receiving element 12 drops to 0.7 V (the cutoff value), it can be estimated that there was a leak of 2 ml or more in plot A, while 0.5 ml in plot B and 0.5 ml in plot C It can be estimated that there was a leak of 0.25ml. Since the flow rate of anticancer drug injection is 1 to 3 ml/min, it can be said that leakage can be detected in about 1 minute after the drug begins to leak.
 以上、豚皮膚モデルを使用して行った実験では、皮膚内における漏れに相当する水泡6を漏出検出センサ10により検出できることが確かめられた。更に、上記のように所定の出力値をカットオフ値として定め、プロット特性と計測時間から漏出検出センサ10により漏れ量の推定をすることが可能なことが確かめられた。 As described above, the experiment using the pig skin model confirmed that the leak detection sensor 10 could detect the blister 6 corresponding to the leak in the skin. Furthermore, it was confirmed that the leakage amount can be estimated by the leakage detection sensor 10 from the plot characteristics and the measurement time by setting the predetermined output value as the cutoff value as described above.
 次に、漏出検出センサ10を健常者の、例えば手背の静脈の直上の皮膚に配置して、受光素子12の出力値を計測する実験を行った。図5Aは、血管1が通常の状態の場合における受光素子12の出力特性を示す線図である。図5Bは、血管1の状態を示す模式図である。造影剤の投与は比較的短い時間(15秒から1分程度)で行われるが、抗がん剤の投与は比較的長い時間をかけて行われるので、図5Aにおける横軸の時間は、抗がん剤が投与される時間を想定して、1200秒(20分)という比較的長い時間となっている。また左側の縦軸は漏出検出センサ10のセンサ内部温度[℃]、右側の縦軸は受光素子12のセンサ出力[V]である。 Next, an experiment was conducted in which the leakage detection sensor 10 was placed on the skin of a healthy subject, for example, just above the vein on the back of the hand, and the output value of the light receiving element 12 was measured. FIG. 5A is a diagram showing output characteristics of light receiving element 12 when blood vessel 1 is in a normal state. FIG. 5B is a schematic diagram showing the state of the blood vessel 1. FIG. Administration of the contrast agent takes a relatively short time (about 15 seconds to 1 minute), but administration of the anticancer agent takes a relatively long time. Assuming the time during which the cancer drug is administered, it is a relatively long time of 1200 seconds (20 minutes). The left vertical axis is the sensor internal temperature [° C.] of the leakage detection sensor 10 and the right vertical axis is the sensor output [V] of the light receiving element 12 .
 受光素子12の出力値は、約200秒から約400秒の一定周期において、スパイク状の急峻な立ち上りとなっていることがある。このスパイク状の急峻な立ち上りは、約1分間持続しているが、生体由来であると推測される。そして、このスパイク状の立ち上りを除外して、受光素子12の出力値0.8Vを基準のベースラインBL1とすると、受光素子12の出力値は、ベースラインBL1に対して±0.02Vの範囲で周期的に変動している。なお、実験の間、漏出検出センサ10の内部温度はほぼ一定であり、図5Bに示すように血管1は、拡張及び収縮していない通常の状態である。 The output value of the light-receiving element 12 may have a sharp spike-like rise in a constant period of about 200 seconds to about 400 seconds. This spike-like steep rising lasts for about 1 minute, and is presumed to be of biological origin. Assuming that the output value of the light receiving element 12 is 0.8 V and that the output value of the light receiving element 12 is 0.8 V, the output value of the light receiving element 12 is within a range of ±0.02 V with respect to the baseline BL1. is periodically fluctuating. It should be noted that the internal temperature of the leak detection sensor 10 was substantially constant during the experiment, and the blood vessel 1 was in a normal state, not dilated and not contracted, as shown in FIG. 5B.
 図6Aは、血管1が通常の状態から拡張していく場合における受光素子12の出力特性を示す線図である。図6Bは、血管1の状態を示す模式図である。図6Aにおける縦軸、横軸は図5Aと同様である。 FIG. 6A is a diagram showing output characteristics of the light receiving element 12 when the blood vessel 1 expands from its normal state. FIG. 6B is a schematic diagram showing the state of the blood vessel 1. FIG. The vertical axis and horizontal axis in FIG. 6A are the same as in FIG. 5A.
 血管1が通常の状態である場合と同様に、受光素子12の出力値には、持続時間が約1分間のスパイク状の急峻な立ち上りが見られる。そして、このスパイク状の立ち上りを除外し、受光素子12の出力値0.8Vを基準のベースラインBL1とすると、受光素子12の出力値は、実験開始から時間が約400秒経過する間に、矢印で示すように全体的にベースラインBL1よりも下方へずれている。このずれを、以下「ドリフト」とする。そして、出力値0.76Vを新たなベースラインBL2として、このベースラインBL2に対して約±0.02Vの範囲で周期的に変動している。なお、実験の間、漏出検出センサ10の内部温度はほぼ一定である。 As in the case where the blood vessel 1 is in a normal state, the output value of the light-receiving element 12 shows a sharp spike-like rise with a duration of about 1 minute. Then, if this spike-like rise is excluded and the output value of the light receiving element 12 of 0.8 V is used as a reference baseline BL1, the output value of the light receiving element 12 is As indicated by the arrow, the whole is shifted downward from the baseline BL1. This deviation is hereinafter referred to as "drift". Then, the output value of 0.76 V is set as a new baseline BL2, and the voltage fluctuates periodically within a range of about ±0.02 V with respect to this baseline BL2. It should be noted that the internal temperature of the leak detection sensor 10 is substantially constant during the experiment.
 図6Bに示すように、血管1は、図5Bの通常の状態から拡張し、断面積が大きくなっている。すなわち、実験開始時は、血管1が通常の状態であったが、時間が約400秒経過する間に血管1は拡張したものと推測でき、この拡張に伴って、受光素子12の出力値は、矢印で示すようにドリフトしたと推測される。この血管1の拡張は、姿勢維持による血行不良が起因していると推測される。このように血管1が動的に変化することにより、受光素子12の出力値のベースラインBL1がベースラインBL2に変化すると、センサ出力の値を漏出の検出として使用することが難しい。しかしながら、本発明では、以下に述べる方法によって動的変化を含む生体組織2における薬液の漏出を正確に検出することができる。 As shown in FIG. 6B, the blood vessel 1 expands from the normal state in FIG. 5B and has a larger cross-sectional area. That is, at the beginning of the experiment, the blood vessel 1 was in a normal state, but it can be inferred that the blood vessel 1 dilated during the passage of about 400 seconds. , is presumed to have drifted as indicated by the arrows. It is presumed that this dilation of the blood vessel 1 is caused by poor blood circulation due to posture maintenance. If the baseline BL1 of the output value of the light receiving element 12 changes to the baseline BL2 due to the dynamic change of the blood vessel 1, it is difficult to use the sensor output value to detect leakage. However, according to the present invention, leakage of the drug solution from the biological tissue 2 including dynamic changes can be detected accurately by the method described below.
 図7Aは、手背における静脈の一例と第1の漏出検出センサ10M(第1のセンサ)、第2の漏出検出センサ10R(第2のセンサ)の配置を示すモデル図である。図7Bは、前腕における静脈の一例と第1の漏出検出センサ10M、第2の漏出検出センサ10Rの配置を示すモデル図である。抗がん剤の投与は、例えば手背又は前腕における何れかの静脈である第1の血管1aに注入針4が穿刺され、その注入針4を介して行われる。そして、本発明では、第1の漏出検出センサ10Mが、注入針4が穿刺される位置の下流において第1の血管1aの直上に配置され、第1の血管1aの近傍である第1の生体組織2aを照射する。同様に、第2の漏出検出センサ10Rが第1の血管1aとは異なる第2の血管1bの直上に配置され、第2の血管1bの近傍である第2の生体組織2bを照射する。すなわち、漏出検出センサ10を二つ使用して、各々の静脈の光の散乱を測定する。なお、健常者において抗がん剤を実際に投与する実験はリスクが高く現実的ではない。そこで、薬液等の投与を行わず、静脈の拡張又は収縮による漏出検出センサ10の出力値のドリフトを処理することによって、発展的に漏出検出センサ10により薬液の漏出を検出できることを以下に説明する。 FIG. 7A is a model diagram showing an example of veins on the back of the hand and the arrangement of the first leak detection sensor 10M (first sensor) and the second leak detection sensor 10R (second sensor). FIG. 7B is a model diagram showing an example of veins in the forearm and the arrangement of the first leakage detection sensor 10M and the second leakage detection sensor 10R. Administration of the anticancer drug is performed through the injection needle 4 which is punctured by the injection needle 4 into the first blood vessel 1a which is, for example, one of the veins in the back of the hand or the forearm. In the present invention, the first leakage detection sensor 10M is arranged directly above the first blood vessel 1a downstream of the position where the injection needle 4 is punctured, and is located near the first blood vessel 1a. Tissue 2a is irradiated. Similarly, a second leakage detection sensor 10R is placed directly above a second blood vessel 1b different from the first blood vessel 1a, and irradiates a second living tissue 2b in the vicinity of the second blood vessel 1b. That is, two leak detection sensors 10 are used to measure light scatter in each vein. Experiments in which anticancer drugs are actually administered to healthy subjects are highly risky and unrealistic. Therefore, by processing the drift of the output value of the leak detection sensor 10 due to dilation or contraction of the vein without administering the drug solution, the leakage of the drug solution can be detected by the leak detection sensor 10 in a developmental manner. .
 図8A、図8Bは、いずれも第1の漏出検出センサ10M及び第2の漏出検出センサ10Rの構成をそれぞれ示す。第1の漏出検出センサ10Mは、対向して配置され第1のペアを構成する二つの発光素子11Ma、対向して配置され第2のペアを構成する二つの発光素子11Mb及び一つの受光素子12Mを有する。同様に、第2の漏出検出センサ10Rは、対向して配置され第1のペアを構成する二つの発光素子11Ra、対向して配置され第2のペアを構成する二つの発光素子11Rb及び一つの受光素子12Rを有する。第1の漏出検出センサ10Mが配置される第1の血管1aと、第2の漏出検出センサ10Rが配置される第2の血管1bは、何れも同等の太さを有していることが望ましい。第1の漏出検出センサ10Mが配置される場所と、第2の漏出検出センサ10Rが配置される場所は、何れも静脈が略直線であることが望ましく、静脈の分岐部付近は望ましくない。 Both FIGS. 8A and 8B show the configurations of the first leakage detection sensor 10M and the second leakage detection sensor 10R, respectively. The first leak detection sensor 10M includes two light emitting elements 11Ma that are arranged to face each other and form a first pair, two light emitting elements 11Mb that are arranged to face each other and form a second pair, and one light receiving element 12M. have Similarly, the second leakage detection sensor 10R includes two light emitting elements 11Ra that are arranged to face each other and form a first pair, two light emitting elements 11Rb that are arranged to face each other and form a second pair, and one light emitting element 11Rb. It has a light receiving element 12R. It is desirable that both the first blood vessel 1a in which the first leakage detection sensor 10M is arranged and the second blood vessel 1b in which the second leakage detection sensor 10R is arranged have the same diameter. . Both the location where the first leakage detection sensor 10M is arranged and the location where the second leakage detection sensor 10R is arranged should preferably have a substantially straight vein, and should not be located near a bifurcation of the vein.
 上記のように、第1の漏出検出センサ10Mを第1の血管1aの直上、第2の漏出検出センサ10Rを第2の血管1bの直上に配置して、第1の漏出検出センサ10M、第2の漏出検出センサ10Rを駆動する。本実施形態においては、二つの発光素子11Maと二つの発光素子11Mbを全て同じタイミングで発光させている。同様に二つの発光素子11Raと二つの発光素子11Rbを全て同じタイミングで発光させている。なお、二つの発光素子11Maと二つの発光素子11Mbのうち、少なくとも一つの発光素子11Ma(第1の発光素子)を発光させる形態でもよい。同様に、二つの発光素子11Raと二つの発光素子11Rbのうち、少なくとも一つの発光素子11Ra(第2の発光素子)を発光させる形態でもよい。 As described above, the first leak detection sensor 10M is placed directly above the first blood vessel 1a, and the second leak detection sensor 10R is placed directly above the second blood vessel 1b. 2 leak detection sensor 10R. In this embodiment, the two light emitting elements 11Ma and the two light emitting elements 11Mb are all caused to emit light at the same timing. Similarly, the two light emitting elements 11Ra and the two light emitting elements 11Rb are caused to emit light at the same timing. It should be noted that, of the two light emitting elements 11Ma and the two light emitting elements 11Mb, at least one light emitting element 11Ma (first light emitting element) may emit light. Similarly, of the two light emitting elements 11Ra and the two light emitting elements 11Rb, at least one light emitting element 11Ra (second light emitting element) may emit light.
 図9は、実施形態において、手背に第1の漏出検出センサ10M、第2の漏出検出センサ10Rをそれぞれ配置して計測した結果を示す線図である。第1の漏出検出センサ10Mの出力値Mainと第2の漏出検出センサ10Rの出力値Ref、及び出力値Mainから出力値Refを差し引いた差分値Diffの特性が示されている。 FIG. 9 is a diagram showing the results of measurement by arranging the first leak detection sensor 10M and the second leak detection sensor 10R on the back of the hand in the embodiment. The characteristics of the output value Main of the first leak detection sensor 10M, the output value Ref of the second leak detection sensor 10R, and the difference value Diff obtained by subtracting the output value Ref from the output value Main are shown.
 また図9には、手の静止状態、断続運動、連続運動における測定結果が示されている。静止状態では、出力値Mainと出力値Refは、時間の経過と共に矢印で示すように低下(ドリフト)している。このドリフトは、上記のとおり静脈の拡張に起因すると推測される。一方、差分値Diffの特性は、時間が経過しても±0.05Vの範囲内に収まっている。 Fig. 9 also shows the measurement results for the stationary state, intermittent movement, and continuous movement of the hand. In the stationary state, the output value Main and the output value Ref decrease (drift) over time as indicated by the arrows. This drift is presumed to be due to venous dilation as described above. On the other hand, the characteristic of the difference value Diff is within the range of ±0.05 V even after time passes.
 また、手首を0~10cmの高さで断続的に運動させた場合、差分値Diffの特性は、時間が経過しても±0.05Vの範囲内に収まっている。一方、指を連続的に運動させた場合、差分値Diffの特性は、±0.05Vの範囲内には収まらない。すなわち、例えば手を握った場合、中指と親指に至る血管は伸長度が異なるため、内径の変化も異なるので、指先の運動には対応できていない。 In addition, when the wrist is intermittently moved at a height of 0 to 10 cm, the characteristic of the difference value Diff is within the range of ±0.05 V even after the passage of time. On the other hand, when the finger is continuously moved, the characteristic of the difference value Diff does not fall within the range of ±0.05V. For example, when a hand is clenched, since the blood vessels extending to the middle finger and the thumb have different elongation degrees, the change in the inner diameter is also different, so that the movement of the fingertips cannot be accommodated.
 図10は、実施形態において、前腕に第1の漏出検出センサ10M、第2の漏出検出センサ10Rを配置して計測した結果を示す線図である。第1の漏出検出センサ10Mの出力値Mainと第2の漏出検出センサ10Rの出力値Ref、及び出力値Mainから出力値Refを差し引いた差分値Diffの特性が示されている。 FIG. 10 is a diagram showing the results of measurement by arranging the first leak detection sensor 10M and the second leak detection sensor 10R on the forearm in the embodiment. The characteristics of the output value Main of the first leak detection sensor 10M, the output value Ref of the second leak detection sensor 10R, and the difference value Diff obtained by subtracting the output value Ref from the output value Main are shown.
 また図10には、静止状態、断続運動、連続運動における測定結果が示されている。静止状態では、出力値Mainと出力値Refは、時間の経過と共に矢印で示すように低下(ドリフト)している。このドリフトは、上記のとおり静脈の拡張に起因すると推測される。一方、差分値Diffの特性は、時間が経過しても±0.05Vの範囲内に収まっている。 In addition, Fig. 10 shows the measurement results in the static state, intermittent motion, and continuous motion. In the stationary state, the output value Main and the output value Ref decrease (drift) over time as indicated by the arrows. This drift is presumed to be due to venous dilation as described above. On the other hand, the characteristic of the difference value Diff is within the range of ±0.05 V even after time passes.
 また、前腕を0~45度の角度まで断続的に運動させた場合、差分値Diffの特性は、時間が経過しても±0.05Vの範囲内に収まっている。更に、指を断続的に又は連続的に運動させた場合でも、差分値Diffの特性は、±0.05Vの範囲内に収まっている。これは、例えば手を握った場合、血管の内径の変化の影響は前腕においては少ないと考えられる。 In addition, when the forearm is intermittently moved to an angle of 0 to 45 degrees, the characteristic of the difference value Diff is within the range of ±0.05 V even after the passage of time. Furthermore, even when the finger is intermittently or continuously moved, the characteristic of the difference value Diff is within the range of ±0.05V. This is because, for example, when the hand is clenched, the change in the inner diameter of the blood vessel is considered to have little effect on the forearm.
 本実施形態においては、異なる二つの静脈に対して、二つの漏出検出センサが静脈の周辺の生体組織2の散乱光を計測している。そして、静脈の拡張等の生体由来におけるデータのノイズを二つの漏出検出センサによって排除することができることが示された。 In this embodiment, two leakage detection sensors measure the scattered light of the living tissue 2 around the veins for two different veins. It was then shown that biologically derived data noise, such as venous dilatation, can be eliminated by the two leak detection sensors.
 より具体的には、第1の血管1aに注入針4により投薬し、その際に漏出が発生した場合、第1の血管1aの直上に配置された第1の漏出検出センサ10Mからの出力値Mainは減衰することが想定される(図4参照)。一方、第1の血管1aとは異なる第2の血管1bの直上に配置された第2の漏出検出センサ10Rからの出力値Refは減衰しない。そして、薬液の漏出が発生すると出力値Mainから出力値Refを差し引いた差分値Diffが±0.05Vの範囲を逸脱することが予想される。以上のようにして、薬液の漏出を検出することが可能になる。 More specifically, when medication is administered to the first blood vessel 1a by the infusion needle 4 and leakage occurs at that time, the output value from the first leakage detection sensor 10M arranged directly above the first blood vessel 1a It is assumed that Main is attenuated (see FIG. 4). On the other hand, the output value Ref from the second leakage detection sensor 10R arranged directly above the second blood vessel 1b different from the first blood vessel 1a does not attenuate. Then, when leakage of the chemical solution occurs, it is expected that the difference value Diff obtained by subtracting the output value Ref from the output value Main deviates from the range of ±0.05V. As described above, it is possible to detect leakage of the chemical solution.
 すなわち、本発明の実施形態の動的変化を含む生体組織の解析方法は、第1の漏出検出センサ10Mに備えられた少なくとも一つの発光素子11Ma(第1の発光素子)を発光させて第1の血管1aの近傍である第1の生体組織2aを照射する。そして、第1の生体組織2aで散乱した散乱光を第1の漏出検出センサ10Mに備えられた受光素子12M(第1の受光素子)で受光する。同様に、第2の漏出検出センサ10Rに備えられた少なくとも一つの発光素子11Ra(第2の発光素子)を発光させて第1の血管1aとは異なる第2の血管1bの近傍である第2の生体組織2bを照射する。そして、第2の生体組織2bで散乱した散乱光を第2の漏出検出センサ10Rに備えられた受光素子12R(第2の受光素子)で受光する。そして、受光素子12Mで受光した出力値Main(第1の測定値)から受光素子12Rで受光した出力値Ref(第2の測定値)を比較して差分値Diff(変化)を算出する。変化に基づいて、第1の生体組織2aで生じた異常を検出する。 That is, the method for analyzing biological tissue including dynamic changes according to the embodiment of the present invention causes at least one light-emitting element 11Ma (first light-emitting element) provided in the first leakage detection sensor 10M to emit light to generate the first irradiates the first living tissue 2a in the vicinity of the blood vessel 1a. Scattered light scattered by the first living tissue 2a is received by the light receiving element 12M (first light receiving element) provided in the first leak detection sensor 10M. Similarly, at least one light-emitting element 11Ra (second light-emitting element) provided in the second leakage detection sensor 10R is caused to emit light so that a second blood vessel 1b near a second blood vessel 1b different from the first blood vessel 1a is detected. of the living tissue 2b. Scattered light scattered by the second living tissue 2b is received by the light receiving element 12R (second light receiving element) provided in the second leak detection sensor 10R. Then, the output value Main (first measured value) received by the light receiving element 12M is compared with the output value Ref (second measured value) received by the light receiving element 12R to calculate the difference value Diff (change). An abnormality occurring in the first living tissue 2a is detected based on the change.
 当該変化は、例えば受光素子12Mで受光した出力値Mainと受光素子12Rで受光した出力値Refとの差分値、比率値又は相関値から求められてもよい。そして、第1の生体組織2aの異常は、第1の血管1aの周辺で例えば薬液が漏出していることを意味する。そして、本発明の実施形態によれば、生体組織の解析方法を提供することができる。 The change may be obtained from, for example, a difference value, a ratio value, or a correlation value between the output value Main received by the light receiving element 12M and the output value Ref received by the light receiving element 12R. Abnormality of the first living tissue 2a means that, for example, a drug solution is leaking around the first blood vessel 1a. Further, according to the embodiments of the present invention, it is possible to provide a method for analyzing biological tissue.
(実施例)
 次に本発明の実施例について説明する。本実施例においては、第1の漏出検出センサ10Mにおける第1のペアを構成する二つの発光素子11Ma(1群の発光素子)と第2のペアを構成する二つの発光素子11Mb(2群の発光素子)を異なるタイミングで発光させている。第2の漏出検出センサ10Rについても同様である。
(Example)
Examples of the present invention will now be described. In this embodiment, two light emitting elements 11Ma (one group of light emitting elements) forming a first pair and two light emitting elements 11Mb (two groups of light emitting elements) forming a second pair in the first leakage detection sensor 10M are used. light-emitting elements) are caused to emit light at different timings. The same is true for the second leakage detection sensor 10R.
 第1の漏出検出センサ10Mについて、まず第1のペアを構成する二つの発光素子11Maが発光し、受光素子12Mが受光して出力値Maを出力する。次に第2のペアを構成する二つの発光素子11Mbが発光し、受光素子12Mが受光して出力値Mbを出力する。そして、その受光エネルギーを以下に示す式で平均化する。
  平均値Mave=(Ma+Mb)/2
 同様に、第2の漏出検出センサ10Rについても、まず第1のペアを構成する二つの発光素子11Ra(1群の発光素子)が発光し、受光素子12Rが受光して出力値Raを出力する。次に第2のペアを構成する二つの発光素子11Rb(2群の発光素子)が発光し、受光素子12Rが受光して出力値Rbを出力する。そして、その受光エネルギーを以下に示す式で平均化する。
  平均値Rave=(Ra+Rb)/2
Regarding the first leak detection sensor 10M, first, the two light emitting elements 11Ma constituting the first pair emit light, the light receiving element 12M receives the light, and outputs the output value Ma. Next, the two light-emitting elements 11Mb forming the second pair emit light, the light-receiving element 12M receives the light, and outputs the output value Mb. Then, the received light energy is averaged by the following formula.
Average value Mave=(Ma+Mb)/2
Similarly, for the second leakage detection sensor 10R, first, the two light emitting elements 11Ra (one group of light emitting elements) forming the first pair emit light, the light receiving element 12R receives the light, and outputs the output value Ra. . Next, the two light-emitting elements 11Rb (second group of light-emitting elements) forming the second pair emit light, the light-receiving element 12R receives the light, and outputs an output value Rb. Then, the received light energy is averaged by the following formula.
Average value Rave=(Ra+Rb)/2
 図11は、実施例において、手背に第1の漏出検出センサ10M、第2の漏出検出センサ10Rをそれぞれ配置して、計測した結果を示す線図である。第1の漏出検出センサ10Mからの出力値Ma、出力値Mb及びその平均値Mave、第2の漏出検出センサ10Rからの出力値Ra、出力値Rb及びその平均値Rave、平均値Maveから平均値Raveを差し引いた差分値Diffの特性が示されている。図11において、出力値Ma、出力値Mb、出力値Ra、出力値Rbの基準線(ベースライン)は、時間が経過しても低下していない。上記のとおり静脈には拡張が起こるが、実施例では拡張によるドリフトが排除されている。そして、差分値Diffの特性は、時間が経過しても±0.05Vの範囲内に収まっている。 FIG. 11 is a diagram showing the measurement results obtained by arranging the first leakage detection sensor 10M and the second leakage detection sensor 10R on the back of the hand in the example. Output value Ma from first leak detection sensor 10M, output value Mb and its average value Mave, output value Ra from second leak detection sensor 10R, output value Rb and its average value Rave, average value from average value Mave The characteristics of the difference value Diff with Rave subtracted are shown. In FIG. 11, the reference lines (baselines) of the output value Ma, the output value Mb, the output value Ra, and the output value Rb do not decrease over time. Although dilation occurs in the veins as described above, drift due to dilation is eliminated in the example. The characteristic of the difference value Diff is within the range of ±0.05 V even after time passes.
 図12は、実施例において、前腕に第1の漏出検出センサ10M、第2の漏出検出センサ10Rをそれぞれ配置して、計測した結果を示す線図である。第1の漏出検出センサ10Mからの出力値Ma、出力値Mb及びその平均値Mave、第2の漏出検出センサ10Rからの出力値Ra、出力値Rb及びその平均値Rave、平均値Maveから平均値Raveを差し引いた差分値Diffの特性が示されている。図12において、出力値Ma、出力値Mb、出力値Ra、出力値Rbの基準線(ベースライン)は、時間が経過しても低下していない。上記のとおり静脈には拡張が起こるが、実施例では拡張によるドリフトが排除されている。そして、差分値Diffの特性は、時間が経過しても±0.05Vの範囲内に収まっている。 FIG. 12 is a diagram showing the measurement results obtained by arranging the first leak detection sensor 10M and the second leak detection sensor 10R on the forearm in the example. Output value Ma from first leak detection sensor 10M, output value Mb and its average value Mave, output value Ra from second leak detection sensor 10R, output value Rb and its average value Rave, average value from average value Mave The characteristics of the difference value Diff with Rave subtracted are shown. In FIG. 12, the reference lines (baselines) of the output value Ma, the output value Mb, the output value Ra, and the output value Rb do not decrease over time. Although dilation occurs in the veins as described above, drift due to dilation is eliminated in the example. The characteristic of the difference value Diff is within the range of ±0.05 V even after time passes.
 なお、二つの発光素子11Ma及び二つの発光素子11Mbの全てを同時に駆動してもよいし、発光タイミングをずらして駆動してもよいし、又はこれらを組み合わせ、同時駆動と発光タイミングをずらした駆動とを交互に繰り返してもよい。全ての発光素子11を同時に駆動することによって、大光量が得られるので、体表面からより深い部位での漏出も検出することができる。 All of the two light emitting elements 11Ma and the two light emitting elements 11Mb may be driven at the same time, or may be driven with different light emission timings, or a combination of these, simultaneous driving and driving with different light emission timings. and may be repeated alternately. By driving all the light emitting elements 11 at the same time, a large amount of light can be obtained, so leakage from a deeper part than the body surface can also be detected.
(応用例)
 本発明の実施形態又は実施例に係る解析方法を応用した装置100について、図13を用いて以下に説明する。図13は、本発明の実施形態又は実施例に係る解析方法を応用した装置100を模式的に示した図である。
(Application example)
A device 100 to which the analysis method according to the embodiment or example of the present invention is applied will be described below with reference to FIG. 13 . FIG. 13 is a diagram schematically showing an apparatus 100 to which the analysis method according to the embodiment or example of the present invention is applied.
 生体組織2に生じた異常を報知する装置100は、第1の血管1aの近傍を照射する少なくとも一つの第1の発光素子11Maと、第1の血管1aの近傍で散乱した散乱光を受光する第1の受光素子12Mとにより構成された第1の漏出検出センサ10Mを備える。更に、第1の血管1aとは異なる第2の血管1bの近傍を照射する少なくとも一つの第2の発光素子11Raと、第2の血管1bの近傍で散乱した散乱光を受光する第2の受光素子12Rとにより構成された第2の漏出検出センサ10Rを備える。また、制御手段101と周知の報知手段102を備える。 A device 100 for notifying an abnormality occurring in a living tissue 2 includes at least one first light emitting element 11Ma that irradiates the vicinity of a first blood vessel 1a, and receives scattered light scattered in the vicinity of the first blood vessel 1a. A first leakage detection sensor 10M is provided, which is composed of a first light receiving element 12M. Furthermore, at least one second light emitting element 11Ra for illuminating the vicinity of a second blood vessel 1b different from the first blood vessel 1a, and a second light receiving element for receiving scattered light scattered in the vicinity of the second blood vessel 1b. and a second leakage detection sensor 10R configured with an element 12R. It also has control means 101 and well-known notification means 102 .
 そして、本発明の実施形態又は実施例における生体組織2の解析方法を用いて、第1の血管1aの近傍で生じた異常を検出する。その検出は、制御手段101において第1の漏出検出センサ10Mと第2の漏出検出センサ10Rからの各出力値を解析することにより行われる。そして、解析された結果は、周知の報知手段102である、ディスプレイ等に表示すること又はブザー、ライトで報知することが可能である。このようにして、生体組織2の異常を検出する装置100を提供することができる。 Then, using the analysis method for the biological tissue 2 in the embodiment or example of the present invention, an abnormality occurring in the vicinity of the first blood vessel 1a is detected. The detection is performed by analyzing each output value from the first leakage detection sensor 10M and the second leakage detection sensor 10R in the control means 101. FIG. The analyzed result can be displayed on a display or the like, which is a well-known notification means 102, or notified by a buzzer or light. Thus, the device 100 for detecting abnormalities in the living tissue 2 can be provided.
 以上、本発明を代表的な実施形態及び実施例によって説明したが、本発明は上述した実施形態及び実施例に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更することができる。 As described above, the present invention has been described by the representative embodiments and examples, but the present invention is not limited to the above-described embodiments and examples, and can be arbitrarily changed within the scope of the technical idea of the present invention. be able to.
 この出願は2022年2月7日に出願された日本国特許出願第2022-17450号からの優先権を主張し、その全内容を引用してこの出願の一部とする。 This application claims priority from Japanese Patent Application No. 2022-17450 filed on February 7, 2022, and is incorporated herein by reference in its entirety.
1a     第1の血管
1b     第2の血管
2      生体組織
2a     第1の生体組織
2b     第2の生体組織
4      注入針(針)
10M    第1の漏出検出センサ(第1のセンサ)
10R    第2の漏出検出センサ(第2のセンサ)
11Ma   発光素子(第1の発光素子、1群の発光素子)
11Mb   発光素子(2群の発光素子)
11Ra   発光素子(第2の発光素子、1群の発光素子)
11Rb   発光素子(2群の発光素子)
12M    受光素子(第1の受光素子)
12R    受光素子(第2の受光素子)
100    装置
Diff   差分値(変化)
Main   出力値(第1の測定値)
Mave   平均値
Rave   平均値
Ref    出力値(第2の測定値)
1a first blood vessel 1b second blood vessel 2 biological tissue 2a first biological tissue 2b second biological tissue 4 injection needle (needle)
10M first leak detection sensor (first sensor)
10R Second leak detection sensor (second sensor)
11Ma light-emitting element (first light-emitting element, first group of light-emitting elements)
11 Mb light-emitting element (2 groups of light-emitting elements)
11Ra light emitting element (second light emitting element, first group of light emitting elements)
11Rb light emitting element (2 groups of light emitting elements)
12M light receiving element (first light receiving element)
12R light receiving element (second light receiving element)
100 Device Diff Difference value (change)
Main output value (first measured value)
Mave Average value Rave Average value Ref Output value (second measured value)

Claims (10)

  1.  生体組織の解析方法であって、
     第1のセンサに備えられた少なくとも一つの第1の発光素子を発光させて第1の血管の近傍の第1の生体組織を照射し、前記第1の生体組織で散乱した散乱光を前記第1のセンサに備えられた第1の受光素子で受光することと、
     第2のセンサに備えられた少なくとも一つの第2の発光素子を発光させて前記第1の血管とは異なる第2の血管の近傍の第2の生体組織を照射し、前記第2の生体組織で散乱した散乱光を前記第2のセンサに備えられた第2の受光素子で受光することと、
     前記第1の受光素子で受光した第1の測定値と前記第2の受光素子で受光した第2の測定値とを比較して変化を算出することと、
     前記変化に基づいて前記第1の生体組織の異常を検出することと、を有する解析方法。
    A biological tissue analysis method comprising:
    At least one first light-emitting element provided in the first sensor emits light to irradiate the first living tissue in the vicinity of the first blood vessel, and the scattered light scattered in the first living tissue is emitted to the first living tissue. receiving light with a first light receiving element provided in one sensor;
    At least one second light-emitting element provided in a second sensor is caused to emit light to irradiate a second biological tissue in the vicinity of a second blood vessel different from the first blood vessel, and the second biological tissue is irradiated with light. receiving the scattered light scattered by the second light receiving element provided in the second sensor;
    calculating a change by comparing a first measured value received by the first light receiving element and a second measured value received by the second light receiving element;
    and detecting an abnormality in the first biological tissue based on the change.
  2.  前記第1の発光素子は、前記第1の血管と前記第1の生体組織とを照射し、前記第2の発光素子は、前記第2の血管と前記第2の生体組織とを照射することを特徴とする、請求項1に記載の解析方法。 The first light emitting element illuminates the first blood vessel and the first living tissue, and the second light emitting element illuminates the second blood vessel and the second living tissue. The analysis method according to claim 1, characterized by:
  3.  前記変化は、前記第1の測定値と前記第2の測定値との差分値、比率値又は相関値から求められることを特徴とする、請求項1又は2に記載の解析方法。 The analysis method according to claim 1 or 2, wherein the change is obtained from a difference value, a ratio value, or a correlation value between the first measured value and the second measured value.
  4.  前記第1のセンサに備えられた前記第1の発光素子は、1群の発光素子と2群の発光素子とにより構成され、
     前記第2のセンサに備えられた前記第2の発光素子は、1群の発光素子と2群の発光素子とにより構成されることを特徴とする、請求項1乃至3の何れか1項に記載の解析方法。
    The first light emitting element provided in the first sensor is composed of one group of light emitting elements and two groups of light emitting elements,
    4. The method according to any one of claims 1 to 3, wherein the second light emitting element provided in the second sensor is composed of one group of light emitting elements and two groups of light emitting elements. Analysis method described.
  5.  前記第1の発光素子を構成する前記1群の発光素子と前記2群の発光素子とを交互に発光させて、前記第1の生体組織を照射し、
     前記第2の発光素子を構成する前記1群の発光素子と前記2群の発光素子とを交互に発光させて、前記第2の生体組織を照射することを特徴とする、請求項4に記載の解析方法。
    irradiating the first living tissue by alternately causing the first group of light emitting elements and the second group of light emitting elements constituting the first light emitting element to emit light;
    5. The method according to claim 4, wherein the first group of light emitting elements and the second group of light emitting elements constituting the second light emitting element are alternately caused to emit light to irradiate the second living tissue. analysis method.
  6.  前記第1の測定値は、前記第1のセンサにおける前記1群の発光素子の照射による散乱光の測定値と前記2群の発光素子の照射による散乱光の測定値との平均値であり、前記第2の測定値は、前記第2のセンサにおける前記1群の発光素子の照射による散乱光の測定値と前記2群の発光素子の照射による散乱光の測定値との平均値であることを特徴とする、請求項4又は5に記載の解析方法。 The first measured value is an average value of the measured value of the scattered light by the irradiation of the first group of light emitting elements and the measured value of the scattered light by the irradiation of the second group of light emitting elements in the first sensor, The second measured value is an average value of the measured value of the scattered light by the irradiation of the first group of light emitting elements and the measured value of the scattered light by the irradiation of the second group of light emitting elements in the second sensor. The analysis method according to claim 4 or 5, characterized by:
  7.  前記第1のセンサは、四つの発光素子を備えた前記第1の発光素子と前記第1の受光素子とにより構成され、
     前記第2のセンサは、四つの発光素子を備えた前記第2の発光素子と前記第2の受光素子とにより構成されることを特徴とする、請求項1乃至6の何れか1項に記載の解析方法。
    The first sensor is composed of the first light emitting element having four light emitting elements and the first light receiving element,
    The second sensor according to any one of claims 1 to 6, wherein the second sensor is composed of the second light-emitting element having four light-emitting elements and the second light-receiving element. analysis method.
  8.  前記第1の血管には、薬液を注入する針が穿刺されることを特徴とする、請求項1乃至7の何れか1項に記載の解析方法。 The analysis method according to any one of claims 1 to 7, characterized in that the first blood vessel is punctured by a needle for injecting a drug solution.
  9.  前記異常は、前記第1の血管の周辺で発生した前記薬液の漏出であることを特徴とする、請求項8に記載の解析方法。 The analysis method according to claim 8, wherein the abnormality is leakage of the drug solution that occurs around the first blood vessel.
  10.  第1の血管の近傍を照射する少なくとも一つの第1の発光素子と、前記第1の血管の近傍で散乱した散乱光を受光する第1の受光素子とにより構成された第1のセンサと、
     前記第1の血管とは異なる第2の血管の近傍を照射する少なくとも一つの第2の発光素子と、前記第2の血管の近傍で散乱した散乱光を受光する第2の受光素子とにより構成された第2のセンサと、を備える生体組織の異常を検出する装置であって、
     請求項1乃至9の何れか1項に記載の解析方法により、前記第1の血管の近傍で生じた異常を検出することを特徴とする、装置。
    a first sensor composed of at least one first light-emitting element that irradiates the vicinity of a first blood vessel and a first light-receiving element that receives scattered light scattered in the vicinity of the first blood vessel;
    At least one second light emitting element for illuminating the vicinity of a second blood vessel different from the first blood vessel, and a second light receiving element for receiving scattered light scattered in the vicinity of the second blood vessel. A device for detecting an abnormality in a biological tissue, comprising:
    10. An apparatus for detecting abnormalities occurring in the vicinity of said first blood vessel by the analysis method according to any one of claims 1 to 9.
PCT/JP2023/003730 2022-02-07 2023-02-06 Biological tissue analysis method and device for detecting abnormality of biological tissue WO2023149570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-017450 2022-02-07
JP2022017450 2022-02-07

Publications (1)

Publication Number Publication Date
WO2023149570A1 true WO2023149570A1 (en) 2023-08-10

Family

ID=87552343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003730 WO2023149570A1 (en) 2022-02-07 2023-02-06 Biological tissue analysis method and device for detecting abnormality of biological tissue

Country Status (1)

Country Link
WO (1) WO2023149570A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030764A1 (en) * 2004-09-14 2006-03-23 Nemoto Kyorindo Co., Ltd. Leakage detector
WO2012133845A1 (en) * 2011-03-31 2012-10-04 株式会社根本杏林堂 Leakage detection sensor and drug infusion system
JP2019522553A (en) * 2016-06-24 2019-08-15 ジョージア テック リサーチ コーポレイション System and method for detecting IV infiltration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030764A1 (en) * 2004-09-14 2006-03-23 Nemoto Kyorindo Co., Ltd. Leakage detector
WO2012133845A1 (en) * 2011-03-31 2012-10-04 株式会社根本杏林堂 Leakage detection sensor and drug infusion system
JP2019522553A (en) * 2016-06-24 2019-08-15 ジョージア テック リサーチ コーポレイション System and method for detecting IV infiltration

Similar Documents

Publication Publication Date Title
US20230016823A1 (en) Cannula insertion detection
ES2432404T3 (en) Method and device for measuring substances
US7826890B1 (en) Optical detection of intravenous infiltration
Boucher et al. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy
US9326686B2 (en) System and method for mitigating the effects of tissue blood volume changes to aid in diagnosing infiltration or extravasation in animalia tissue
US20160302707A1 (en) Device, System and Method for Modular Analyte Monitoring
US20080221408A1 (en) System and methods for optical sensing and drug delivery using microneedles
JP6791826B2 (en) Geometry of transdermal sensor
WO2018201931A1 (en) Analyte monitoring and automatic medication delivery system
JP5716589B2 (en) Biological component measuring apparatus and biological component measuring method
WO2023149570A1 (en) Biological tissue analysis method and device for detecting abnormality of biological tissue
IL272683B2 (en) Systems and methods for mitigating the effects of tissue blood volume changes to aid in diagnosing infiltration or extravasation in animalia tissue
JP2003111750A (en) Non-invasion organism measuring instrument and saccharimeter using the same
Du et al. A novel device for non-invasive assessment of extravasation during injection by NIRS technology
Ichimori et al. Development of a highly responsive needle-type glucose sensor using polyimide for a wearable artificial endocrine pancreas
WO2009042562A1 (en) Self calibrating extravasation detection system
KR101725148B1 (en) Blood vessel detection apparatus and method for syringe
JP2001120521A (en) Cuff for measuring blood sugar level
WO2013146696A1 (en) Intravascular injection monitoring device and intravascular injection monitoring system using same
Dias et al. Statistical analysis using Bland-Altman agreement for technical methods of measuring blood glucose
CN110876624A (en) Analyte monitoring and automatic drug delivery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749886

Country of ref document: EP

Kind code of ref document: A1