WO2023135713A1 - Aircraft, load landing method, and terrestrial vehicle - Google Patents

Aircraft, load landing method, and terrestrial vehicle Download PDF

Info

Publication number
WO2023135713A1
WO2023135713A1 PCT/JP2022/000973 JP2022000973W WO2023135713A1 WO 2023135713 A1 WO2023135713 A1 WO 2023135713A1 JP 2022000973 W JP2022000973 W JP 2022000973W WO 2023135713 A1 WO2023135713 A1 WO 2023135713A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounted object
aircraft
mounting portion
auxiliary mechanism
holding
Prior art date
Application number
PCT/JP2022/000973
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木陽一
Original Assignee
株式会社エアロネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアロネクスト filed Critical 株式会社エアロネクスト
Priority to PCT/JP2022/000973 priority Critical patent/WO2023135713A1/en
Publication of WO2023135713A1 publication Critical patent/WO2023135713A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D9/00Equipment for handling freight; Equipment for facilitating passenger embarkation or the like

Definitions

  • the present disclosure relates to an aircraft, an arrival method, and a ground mobile.
  • flying objects such as drones and unmanned aerial vehicles (UAVs).
  • UAVs unmanned aerial vehicles
  • Items that require immediate delivery include highly urgent items such as medical equipment and medical specimens, and meals purchased by end users.
  • Most of these are transported using four-wheeled vehicles and two-wheeled vehicles.
  • the time required for transportation by land varies greatly depending on the presence or absence of paved roads and traffic conditions. Especially in mountains and remote islands, it is difficult to access in a straight line by vehicle, so there are cases where it takes a long time to transport.
  • Patent Document 1 discloses an aircraft capable of delivering cargo to a predetermined location using an air route by automatically flying and detaching the payload.
  • Patent Document 1 dropping from the sky can maintain the posture of the load depending on the position of the center of gravity of the load while it is falling, but it is difficult to control the posture of the load due to rebounding after contact with the ground, and it is possible to contact the ground. There is a possibility that the package will be impacted, and the shape of the package will be lost, mixed up, or damaged. In particular, it is desirable to avoid shocks as much as possible, such as pre-cooked food, where the quality of taste and appearance is impaired by crumbling or mixing products, and medical equipment and precision equipment. With regard to objects, such a method may not be suitable as a method for separating the load.
  • the cargo in order to prevent the cargo from collapsing or being damaged, the cargo is detached so that the payload mounted on the aircraft is close to the landing surface, and the impact that occurs on the payload during detachment is within a predetermined impact range. It can be released as follows. This can reduce the impact on the load during unloading and improve the quality of delivery. However, in the detachment operation to reduce impact, smooth detachment cannot be performed due to the bias of the center of gravity of the load, and there are cases where tilting of the load cannot be prevented or the detachment cannot be completed.
  • the present disclosure provides a flying object or the like that can reduce the impact at the time of disconnection of a mounted object, and can prevent the case of disconnection failure and incomplete disconnection.
  • a mounting portion that holds a mounted object, and a force applied to the mounted object in a separation direction when the mounted object is separated from the mounted object to move the mounted object during separation. and an auxiliary mechanism for assisting.
  • a method for landing a payload using an aircraft including a mounting portion for holding the payload, wherein an assistance provided to the aircraft during landing or hovering of the aircraft.
  • a landing method is provided in which a force is applied to the mounted object in a separation direction using a mechanism to move the mounted object to separate it from the aircraft.
  • a mounting portion for holding a mounted object, and a force applied to the mounted object in a separation direction when the mounted object is separated from the mounted object to separate the mounted object. and an auxiliary mechanism for assisting movement.
  • FIG. 1 is a conceptual side view of an aircraft equipped with an auxiliary mechanism according to the present invention
  • FIG. FIG. 2 is a side view of the aircraft of FIG. 1 during cruising
  • 2 is a top view of the aircraft of FIG. 1
  • FIG. 2 is a side view of the aircraft of FIG. 1 in a landing state
  • FIG. FIG. 5 is a side view of the aircraft of FIG. 4 when the payload is lowered
  • 5 is a front view of the aircraft of FIG. 4
  • FIG. FIG. 6 is a front view of the aircraft of FIG. 5
  • FIG. 2 is a functional block diagram of the aircraft of FIG. 1
  • 1 is a side view of an example implementation of a mounting portion of an aircraft according to the present invention
  • FIG. 10 is a partial front view of the mounting portion of FIG. 9;
  • FIG. 2 is a front view of a mounting portion provided in the aircraft according to the present invention;
  • FIG. 12 is a front view of the mounting portion of FIG. 11 when the mounted object is lowered;
  • FIG. 12 is a front view of the mounting portion of FIG. 11 when the mounted object is released;
  • FIG. 12 is a front view of the mounting portion of FIG. 11 after releasing the mounted object;
  • FIG. 12 is a front view of the mounting portion of FIG. 11 after releasing the mounted object;
  • 1 is a front view of an example of the configuration of a mounting portion of an aircraft according to the present invention, at the time of landing;
  • FIG. FIG. 17 is a front view of the mounting portion of FIG. 16 when the mounted object is released;
  • FIG. 17 is a front view of the mounting portion of FIG. 16 after releasing the mounted object;
  • FIG. 4 is a side view of a mounting with an auxiliary mechanism according to the invention;
  • 20 is a front view of the mounting portion of FIG. 19;
  • FIG. FIG. 20 is a top view of the mounting portion of FIG. 19;
  • FIG. 22 is a view when the auxiliary mechanism of FIG. 21 is attached and detached;
  • 1 is a side view of an aircraft without auxiliary mechanisms;
  • FIG. FIG. 24 is a view when the aircraft of FIG. 23 has successfully detached the payload;
  • FIG. 24 is a diagram when the aircraft of FIG. 23 fails to separate the payload;
  • 1 is a side view of an aircraft without auxiliary mechanisms;
  • FIG. FIG. 27 is a top view when the aircraft of FIG.
  • FIG. 10 is a top view of the flying object equipped with the auxiliary mechanism when the payload is detached.
  • FIG. 2 is a side view of an aircraft equipped with an auxiliary mechanism;
  • FIG. 30 is a view when the auxiliary mechanism of the aircraft of FIG. 29 acts on the payload;
  • FIG. 10 is a diagram of an aircraft equipped with an auxiliary mechanism when the auxiliary mechanism acts on a payload;
  • FIG. 2 is a conceptual side view of a moving body equipped with an auxiliary mechanism according to the present invention;
  • FIG. 33 is a diagram when the moving body of FIG. 32 separates the mounted object;
  • An embodiment of the present invention has the following configuration.
  • (Item 1) a mounting portion for holding a mounted object; an auxiliary mechanism for applying a force in a separating direction to the mounted object when separating the mounted object from the mounting portion to assist the movement of the mounted object during separation;
  • Air vehicle with (Item 2)
  • the aircraft according to item 1 The mounting section has a holding section that holds the bottom surface of the mounted object, The mounted object is separated from the mounting portion by releasing the holding of the bottom surface of the mounted object by the holding portion and moving the mounted object downward, Airplane.
  • (Item 3) The aircraft according to items 1 and 2, The auxiliary mechanism assists the movement of the mounted object by a reaction force obtained by elastic deformation. Airplane.
  • An aircraft characterized by: (Item 6) A method for landing a load using an aircraft having a mounting portion for holding the load, At the time of landing or hovering of the flying object, an auxiliary mechanism provided on the flying object is used to apply a force to the mounted object in a detachment direction to move the mounted object, thereby separating the mounted object from the flying object. , delivery method. (Item 7) a mounting portion for holding a mounted object; an auxiliary mechanism for applying a force in a separating direction to the mounted object when separating the mounted object from the mounting portion to assist the movement of the mounted object during separation; A ground vehicle comprising a
  • the term “separate” means that the mounted object is released from the holding by the flying object or the mounting portion provided in the flying object, the mounted object can be mechanically separated from the flying object or the mounting portion, and the mounted object is placed on the ground. It means a state in which the load is not locked when placed on the load or moved in the take-out direction.
  • an auxiliary mechanism (hereinafter collectively referred to as an auxiliary mechanism 60) for assisting the separation of the mounted object 10 according to the present invention is attached to the aircraft 100 or the mounting section 20 provided in the aircraft 100. provided in connection.
  • the flying object 100 can fly with the mounting portion 20 holding or placing the mounted object 10, and can detach the mounted object 10 at a predetermined timing.
  • the flying object 100 holding the payload 10 takes off from the takeoff point and delivers the cargo to the destination.
  • the flying object that reaches the destination completes the delivery by separating the load 10.
  • the flying object 100 from which the payload 10 has been detached moves to another destination (for example, a delivery destination of another package, a physical distribution center, a warehouse, etc.).
  • the aircraft 100 may be in a landed state or in a state in which it continues to fly.
  • the flying object 100 used in the present embodiment is any flying object (eg, multicopter, helicopter, fixed-wing aircraft, etc.).
  • a multicopter having a plurality of rotor blades will be described.
  • an air vehicle 100 has a flight section including a plurality of rotors comprising at least a propeller 110 and a motor 111, motor mounts for supporting the rotors, a frame 120, and other elements for flight.
  • an energy source for example, secondary battery, fuel cell, fossil fuel, etc.
  • Such energy may be used not only for the flight of the aircraft 100 but also for the operation of the auxiliary mechanism 60 and the like.
  • the illustrated flying object 100 is drawn in a simplified manner in order to facilitate the description of the structure of the present invention, and for example, detailed configurations such as a control unit are not illustrated.
  • the flying object 100 advances in the direction of arrow D (-Y direction) in the drawing (details will be described later).
  • Forward/backward direction +Y direction and -Y direction
  • Vertical direction or vertical direction
  • Left/right direction or horizontal direction
  • the propeller 110 rotates by receiving the output from the motor 111 . Rotation of the propeller 110 generates a propulsive force for taking off, moving, and landing the aircraft 100 from the starting point.
  • the propeller 110 can rotate rightward, stop, and rotate leftward.
  • the propeller 110 of the flying object of the present invention has one or more blades. Any number of blades (rotors) may be used (eg, 1, 2, 3, 4, or more blades). Also, the vane shape can be any shape, such as flat, curved, twisted, tapered, or combinations thereof. It should be noted that the shape of the wing can be changed (for example, stretched, folded, bent, etc.). The vanes may be symmetrical (having identical upper and lower surfaces) or asymmetrical (having differently shaped upper and lower surfaces). The airfoil, wing, or airfoil can be formed into a geometry suitable for generating dynamic aerodynamic forces (eg, lift, thrust) as the airfoil is moved through the air. The geometry of the blades can be selected to optimize the dynamic air properties of the blades, such as increasing lift and thrust and reducing drag.
  • the geometry of the blades can be selected to optimize the dynamic air properties of the blades, such as increasing lift and thrust and reducing drag.
  • the propellers provided in the flying object 100 of the present invention may have fixed pitch, variable pitch, or a mixture of fixed pitch and variable pitch, but are not limited to this.
  • the motor 111 causes rotation of the propeller 110, and for example the drive unit can include an electric motor or an engine.
  • the vanes are drivable by a motor and rotate about the axis of rotation of the motor (eg, the longitudinal axis of the motor).
  • All the blades can rotate in the same direction, and they can also rotate independently. Some of the vanes rotate in one direction and others rotate in the other direction. The blades can all rotate at the same speed, or they can each rotate at different speeds. The number of rotations can be determined automatically or manually based on the dimensions (eg, size, weight) and control conditions (speed, direction of movement, etc.) of the moving body.
  • the flying object 100 determines the number of rotations of each motor and the flight angle according to the wind speed and direction using the flight controller 1001, ESC 112, transmitter/receiver (propo) 1006, and the like. As a result, the flying object can move such as ascending/descending, accelerating/decelerating, and changing direction.
  • the flying object 100 can fly autonomously according to the route and rules set in advance or during the flight, and can fly by maneuvering using the transmitter/receiver (propo) 1006 .
  • a light controller 1001 is a so-called processing unit.
  • a processing unit may have one or more processors, such as a programmable processor (eg, central processing unit (CPU)).
  • the processing unit has a memory (not shown) and can access the memory.
  • the memory stores logic, code, and/or program instructions executable by the processing unit to perform one or more steps.
  • the memory may include, for example, removable media or external storage devices such as SD cards and random access memory (RAM).
  • Data acquired from sensors 1002 may be communicated directly to and stored in memory. For example, still image/moving image data captured by a camera or the like is recorded in a built-in memory or an external memory.
  • the processing unit includes a control module configured to control the state of the rotorcraft.
  • the control module may adjust the spatial orientation, velocity, and/or acceleration of a rotorcraft having six degrees of freedom (translational motions x, y, and z, and rotational motions ⁇ x , ⁇ y , and ⁇ z ). control the propulsion mechanism (motor, etc.) of the rotorcraft.
  • the control module can control one or more of the state of the payload, sensors.
  • the processing unit can communicate with a transceiver 1005 configured to send and/or receive data from one or more external devices (eg, terminals, displays, or other remote controllers).
  • Transceiver 1006 may use any suitable means of communication, such as wired or wireless communication.
  • the transceiver 1005 utilizes one or more of a local area network (LAN), a wide area network (WAN), infrared, wireless, WiFi, point-to-point (P2P) networks, telecommunications networks, cloud communications, etc. can do.
  • the transmitting/receiving unit 1005 transmits and/or receives one or more of data obtained by the sensors 1002, processing results generated by the processing unit, predetermined control data, user commands from a terminal or a remote controller, and the like. can be done.
  • Sensors 1002 may include inertial sensors (acceleration sensors, gyro sensors), GPS sensors, proximity sensors (eg lidar), or vision/image sensors (eg cameras).
  • inertial sensors acceleration sensors, gyro sensors, GPS sensors, proximity sensors (eg lidar), or vision/image sensors (eg cameras).
  • the plane of rotation of the propeller 110 provided in the flying object 100 according to the embodiment of the present invention is tilted forward as illustrated in FIG.
  • the forward-leaning plane of rotation of propeller 110 produces upward lift and forward thrust, which propels vehicle 100 .
  • the flying object 100 includes a motor, a propeller, a frame, and the like, and may include a main body that can contain a processing unit, a battery, and the like mounted on the flight section in the flight section that generates lift and thrust.
  • the main body optimizes the shape of the aircraft 100 during cruising, which is expected to be maintained for a long time while the aircraft 100 is moving, and improves the flight speed, thereby effectively shortening the flight time. It is possible to
  • the main body has an outer skin that is strong enough to withstand flight, takeoff and landing.
  • plastics, FRP, and the like are suitable as materials for the outer skin because of their rigidity and waterproofness. These materials may be the same materials as the frame 120 (including the arms) included in the flight section, or may be different materials.
  • the motor mount, frame 120, and main body included in the flight section may be configured by connecting the respective parts, or may be integrally molded using a monocoque structure or integral molding. Good (for example, the motor mount and the frame 120 are integrally molded, the motor mount, the frame 120 and the main body are all integrally molded, etc.). By integrating the parts, it is possible to smooth the joints of each part, so it can be expected to reduce drag and improve fuel efficiency of flying objects such as blended wing bodies and lifting bodies.
  • the shape of the flying object 100 may have directivity.
  • the shape with directivity is, for example, a streamlined main body that has little drag when the flying object 100 is cruising in no wind, a substantially wing-shaped main body, or the like.
  • the flying object 100 includes a mounting section 20 capable of holding or placing a load or the like (hereinafter collectively referred to as a mounted object 10) to be transported to a destination.
  • the mounting portion 20 may be fixedly connected to the flight portion 140 or independently displaceable via a connection portion 22, such as a pivot axis or a gimbal having one or more degrees of freedom, as shown in FIGS. can be connected as well.
  • a connection portion 22 such as a pivot axis or a gimbal having one or more degrees of freedom, as shown in FIGS. can be connected as well.
  • the mounted object 10 is connected so as to be able to maintain a predetermined attitude (for example, horizontal).
  • the connecting portion 22 may be provided between the flying portion 140 and the mounting portion 20, or the connecting portion 22 may be provided between the mounting portion 20 and the mounted object 10. may be provided. That is, the connecting portion 22 can be provided at any position between the flight portion 140 and the mounted object 10 .
  • the position and direction of the rotating shaft 50 used to displace the mounting portion 20 or the mounted object 10 are determined, for example, by the attitude of the aircraft 100 during flight. If the main propulsion direction is the front-back direction, the flight part will tilt in the front-back direction. It is possible to maintain the posture of the object. Further, two or more rotating shafts may be provided in order to accommodate inclination in other axial directions (roll, yaw).
  • the displacement of the mounting portion 20 or the mounted object 10 may be performed by passive control that maintains the attitude by the weight of the object that should maintain the attitude, or by active control that uses a motor, servo, or the like to control the attitude.
  • Active control is desirable for more precise attitude control, but the addition of a mechanism leads to an increase in weight and the like, so the control method can be appropriately determined according to the purpose.
  • the mounting section 20 is made of a material having strength enough to withstand flight, takeoff and landing while holding the mounted object 10 .
  • resin, FRP, etc. are rigid and lightweight, and are therefore suitable as the constituent material of the mounting portion 20 .
  • metal is used as the material for the mounting portion 20, it is preferable to use a material with a low specific gravity such as aluminum or magnesium. As a result, it is possible to prevent an increase in weight while improving the strength.
  • These materials may be the same material as the frame 120 included in the flying portion 140, or may be different materials.
  • the motor mount (not shown) and the frame 120 included in the flying section 140 may be configured by connecting the respective parts, or may be integrally molded using a monocoque structure or integral molding. good too.
  • the motor mount and frame 120 may be integrally molded.
  • the flying object 100 carrying the payload 10 lands or hovers after reaching the destination point, and detaches the payload 10 .
  • landing legs 130 provided in the flying object 100 preferably prevent the payload 10 from being impacted by direct contact with the landing surface 200 when the flying object lands.
  • the landing leg 130 is preferably configured to be longer downward (-Z direction) than the payload 10, at least in a side view of the landing state on a plane.
  • the landing leg 130 may further include a shock absorbing device 131 such as a damper.
  • the aircraft 100 has a mounting portion 20 that can hold the mounted object 10 so as not to drop it at an unintended timing such as during flight or during takeoff and landing.
  • the mounting section 20 includes a holding section 21 capable of releasing the mounted object 10 from the aircraft at a predetermined timing.
  • FIGS. 1 to 7 illustrate a method in which the flying object 100 carrying the payload 10 lands after it reaches the sky above the destination point, and the payload is detached.
  • the mounting section 20 descends while holding the payload 10 and then releases the payload 10 .
  • the impact applied to the mounted object or the inclination of the mounted object is controlled to be within a predetermined range.
  • the surface with which the released payload 10 comes into contact (hereinafter collectively referred to as landing surface 200) has a flat shape such as a landing pad of a landing facility or a port, and does not cause the released payload to lose its posture or tilt. is desirable.
  • Any method for holding the mounted object 10 may be used as long as the holding and detachment of the mounted object 10 can be easily performed.
  • a method of holding the mounted object 10 by supporting the mounted object 10 from the bottom surface by the holding portion 21 may be used, or as shown in FIGS. A method of holding from
  • FIGS. 9 and 10 show enlarged views of configuration examples of the mounting portion 20 when the bottom surface of the mounted object 10 is held.
  • the holding portion 21 that supports the bottom surface of the mounted object 10 can be raised and lowered by rotating a motor 40 connected to a fully threaded rod 41 . Further, after the load 10 reaches the landing surface 200, the holding portions 21 are rotated outward in the left and right directions (+-X directions) by the hinge 23 provided in the center in the vertical direction, thereby lifting the load 10. can be released.
  • the release by the hinge 23 can be achieved, for example, by using a hinge (generally called a spring hinge) that opens when the hinge moves downward from the cover portion 24 by using a spring reaction force, or by using a servo that moves outward in the left-right direction. It is possible to pull it open by providing a rod that connects with etc.
  • a servo 30 and a horn 31 shown in FIG. 9 are connected to the cover portion 24 via a rod 32, and when the servo 30 operates, the cover portion 24 and the mounted object 10 rotate about the connecting portion 22. and controls the attitude of the mounted object 10 .
  • a holding portion 26 may be provided to prevent the mounted object 10 from shifting in the front-rear direction during flight of the aircraft 100 .
  • the pressing portion 26 is a member (for example, a projection integral with the covering portion, a plate material, a roller mechanism, a cushioning material, etc.) provided inward from a cover or the like (hereinafter collectively referred to as a covering portion) that covers the holding portion 21 and the mounted object. is.
  • a covering portion a cover or the like
  • the holding portion 26 is provided at a position where the mounted object 10 is not intended at least during flight. It is desirable that the height is such that the movement of the mounted object 10 is suppressed and the movement of the mounted object 10 is not restricted when the mounted object 10 is completely lowered by the mounting portion 21 .
  • the holding part 26 can keep the clearance between the load 10 and the covering part when the aircraft 100 takes off again while suppressing the unintended movement of the load 10 during flight.
  • Figures 11 to 15 are conceptual diagrams showing the flow from landing of the aircraft equipped with the mechanism in Figure 9 to releasing the payload and taking off again. 11-15 are drawn in a simplified manner to facilitate the description of the unloading structure, and elements such as landing gear 130 and frame 120 of the vehicle are not shown.
  • the landing surface 200 and the payload 10 are separated from each other when the aircraft has landed.
  • the mounted object 10 and the holding portion 21 that supports it from the bottom surface are connected to a fully threaded rod 41 via a guide, and are lowered by the rotation of the motor 40 as shown in FIG.
  • the position of the hinge 23 using a spring hinge that tends to open laterally outward falls below the cover portion 24 .
  • the hinge 23, which has lost the cover portion 24 to hold down, is pushed open outward as shown in FIG.
  • the loading section can be extracted without the holding section 21 or the like touching the load 10 released on the landing surface. After taking off and securing a sufficient distance from the mounted object, as shown in FIGS. It is closed by being pressed.
  • the holding part 21 may be provided with a roller 25, a slipping agent, etc. at the end part in order to prevent the holding part 21 from being caught when the flying object staggers and touches the mounted object 10 at the time of re-takeoff.
  • the holder 21 is raised and lowered by a motor, a servo, or the like, sent out by a gear or belt, a string-shaped member or belt-shaped member is hoisted or lowered, and a damper or the like is used to limit the speed. descent due to its own weight.
  • a motor, a servo, or the like sent out by a gear or belt
  • a string-shaped member or belt-shaped member is hoisted or lowered
  • a damper or the like is used to limit the speed. descent due to its own weight.
  • any method that can achieve the task of lowering and releasing the payload so that the impact applied to the payload is within a predetermined impact range when the aircraft has landed is sufficient. do not have.
  • the movement of the mounted object is not limited to the vertical direction, and horizontal and oblique movement in the left-right direction and the front-rear direction may be performed as necessary.
  • the lowering method and speed of the holding part 21 and the position (height etc.) at which the load 10 is released are determined based on various conditions such as the type, size and weight of the load 10 and the material of the landing surface 200. It can be determined that the impact on the object has a predetermined magnitude. For example, in order to reduce the impact, it is desirable to lower the descent speed when lowering the load and to set the release position to a position close to the landing surface 200 . In this case, the speed of the entire unloading can be slowed down.
  • the mounting portion 20 may or may not have a lifting function. As illustrated in FIGS. 23 and 24, when the flying object 100 lands or hovers, the mounting object 10 does not descend, etc., and the holding unit 21 stops holding the mounting object 10 and releases the mounting object 10. can be separated. At this time, if the separation position (height) of the load is far from the loading surface 200, the impact given to the load does not fall within a predetermined impact range, which may lead to collapse of the load. Therefore, it is desirable to determine the length of the landing leg 40 and the position of the mounting portion 20 so as to provide an appropriate uncoupling position.
  • the mounted object 10 tends to tilt to the heavier side, which may affect the detachment accuracy, especially when the mounted object 10 is detached in the vertical direction.
  • the weight is extremely light, even a slight impact or friction may change the posture of the mounted object, which may affect the separation accuracy. For example, as shown in Figs. 23 and 25, when separating downward using the weight of the mounted object, the slanted object may get caught in the opening, etc., and the separation may not be performed smoothly. sell.
  • the moving direction of the mounted object 10 accompanying the detachment is the front, rear, left, and right of the flying object, for example, as illustrated in FIGS. It may clog the disconnection port and make disconnection difficult.
  • the clearance between the mounting portion 20 and the mounted object 10 is small, there is a possibility that the movement will be inconvenient.
  • the mounting section 20 includes an auxiliary mechanism 60 for assisting the movement of the mounting section 10 in the separating direction.
  • the auxiliary mechanism 60 assists the separation of the mounted object 10 from the mounting portion 20 by applying a predetermined force to the mounted object 10 when the mounted object 10 is separated.
  • the auxiliary mechanism 60 can expand the allowable range of the center-of-gravity position and the weight that allow the mounted object 10 to be smoothly detached.
  • the auxiliary mechanism 60 may apply force to the mounted object 10 using, for example, reaction force based on elastic deformation of the rubber band 61.
  • one end of the auxiliary mechanism 60 connected to the mounting portion 20 is partly or wholly formed of a rubber band, and the mounted object 10 contacts the auxiliary mechanism 60, thereby causing a shock as shown in FIGS. 13 and 29.
  • a force is applied to push the mounted object 10 in the detachment direction.
  • the rubber band 61 tries to return to its original shape, so the auxiliary mechanism 60 pushes the mounted object 10 in the detachment direction. generate power. This assists in separating the mounted object 10 . If the mounted object 10 is light, it is possible to push out the mounted object 10 in the separation direction by applying an appropriate force from the rubber band 61 . Also, when the mounted object 10 tends to incline in the separation direction due to the deviation of the center of gravity, as shown in FIG. Since the force is applied to the point, an action to return the inclination of the mounted object is generated.
  • FIG. 19 to 22 show one specific configuration example of the auxiliary mechanism 60 using the rubber band 61.
  • FIG. The configuration of the auxiliary mechanism 60 and the method for assisting separation are not limited to the above configurations and methods as long as they can apply a predetermined force in the separation direction to the load 10 to be unloaded.
  • the same or similar effects can be obtained by using the elasticity of elastic materials other than rubber bands, the power of motors, servos, cylinders, etc., and the pressure such as air pressure, oil pressure, and water pressure.
  • the timing and strength of force can be adjusted, but the weight of the auxiliary mechanism 60 may increase compared to the case where a rubber band or the like is used. Therefore, it is desirable to select a configuration suitable for the auxiliary mechanism according to the application, taking various trade-offs into consideration.
  • the contact area of the portion that applies force to the mounted object 10 is a line or a surface (for example, FIG. 28 and FIG. 28). Figure 31).
  • the area of the action portion is small, two or more points are used.
  • the auxiliary mechanism 60 When the auxiliary mechanism 60 includes a band- or string-shaped member, for example, the member may be temporarily split so that the load 10 can be placed from above. For example, as shown in FIGS. 21 and 22, by dividing a rubber band 61 into two and providing a detachable part 62 such as a buckle whose ends can be detached from each other, the load 10 can be placed and supported. Attachment of the mechanism 60 becomes simple.
  • the separation can be simplified by using the auxiliary mechanism 60 according to the present disclosure.
  • the auxiliary mechanism 60 even when the mounted object is separated from the rear of the aircraft, jamming or the like may occur due to the direction of the mounted object being shifted due to the impact or the touch of a human hand. be. Even in such a case, it is possible to reduce clogging or the like that may occur during separation of the mounted object 10 by performing separation using the auxiliary mechanism 60 according to the present invention as shown in FIG.
  • the control of the flight of the aircraft 100 and the detachment operation of the mounting section 10, and the control of the accompanying operation of the auxiliary mechanism 60 may be executed by programs incorporated in part or wholly different control devices. It may be executed by a program possessed by a control unit provided in 100 . In addition, in preparation for cases where autonomous control becomes difficult, it is preferable that the control of the above operations can also be executed by remote control using a radio or a control system.
  • the auxiliary mechanism 60 may be provided not only in the flying object 100 but also in a ground moving object 300 such as a UGV (Unmanned Ground Vehicle) having a mounting portion 20.
  • a ground moving object 300 such as a UGV (Unmanned Ground Vehicle) having a mounting portion 20.
  • the configuration of the aircraft in each embodiment can be implemented by combining multiple aircraft. It is desirable to consider a suitable configuration according to the cost of manufacturing the flying object and the environment and characteristics of the place where the flying object is operated.

Abstract

[Problem] To provide an aircraft or the like capable of reducing impact at the time when a loaded object is detached and preventing cases of defects and incompletion of the detachment. [Solution] Provided is an aircraft 100 comprising a loading unit 20 which holds a loaded object 10, and an assist mechanism 60 which applies a force to the loaded object 10 toward a detachment direction when the loaded object 10 is to be detached from the loading unit 20 to thereby assist in moving the loaded object 10 during detachment.

Description

飛行体、着荷方法及び地上移動体Aircraft, landing method and ground mobile
 本開示は、飛行体、着荷方法及び地上移動体に関する。 The present disclosure relates to an aircraft, an arrival method, and a ground mobile.
 近年、ドローン(Drone)や無人航空機(UAV:Unmanned Aerial Vehicle)などの飛行体(以下、「飛行体」と総称する)を用いたサービスの実用化に向けた研究や実証実験が進められている。飛行体の自律飛行システムまたは遠隔操作飛行システムによる宅配サービスの開発においては、ECサイトにおける商品の注文から受け取りまでの速度向上や、離島などへの即時配送の実現などについて、早期の実用化が望まれる他、運搬の品質向上が求められている。 In recent years, research and demonstration experiments are progressing toward the practical use of services using flying objects (hereinafter collectively referred to as "flying objects") such as drones and unmanned aerial vehicles (UAVs). . In the development of a home delivery service using an autonomous flight system or a remote-controlled flight system, it is desirable to put it into practical use at an early stage in terms of speeding up the process from ordering to receiving products on e-commerce sites and realization of immediate delivery to remote islands. In addition, there is a need to improve the quality of transportation.
 特に即時性を求められる配送品として、医療機器および医療検体等の緊急性の高い物品や、エンドユーザーが購入する食事などが挙げられる。現在これらの多くは四輪車や二輪車を利用して運搬されている。陸路での運搬は、舗装路の有無や交通状況により所要時間が大きく異なる。特に、山中や離島などは車両による直線距離でのアクセスが困難であることから、運搬に長い時間を要するケースがある。 Items that require immediate delivery include highly urgent items such as medical equipment and medical specimens, and meals purchased by end users. Currently, most of these are transported using four-wheeled vehicles and two-wheeled vehicles. The time required for transportation by land varies greatly depending on the presence or absence of paved roads and traffic conditions. Especially in mountains and remote islands, it is difficult to access in a straight line by vehicle, so there are cases where it takes a long time to transport.
 特許文献1においては、荷物の搭載が可能な飛行体が自動で飛行および搭載物の切り離しを行うことで、所定の場所への空路を利用した宅配が可能な飛行体が開示されている。 Patent Document 1 discloses an aircraft capable of delivering cargo to a predetermined location using an air route by automatically flying and detaching the payload.
米国特許第9536216号明細書U.S. Pat. No. 9,536,216
 特許文献1における上空からの投下は、落下中は荷物の重心位置により姿勢を維持可能だが、地面と接触した後の跳ね返りなどにより荷物の姿勢を制御することは困難となるほか、地面に接触した際に衝撃を受け、荷物の形が崩れる、混ざる、破損するなどの可能性がある。特に、調理済みの食品のように、商品が崩れたり混ざったりすることで味や見た目などの品質が損なわれる搭載物や、医療機器や精密機器のようにできる限り衝撃を避けることが望まれる搭載物については、荷物の切り離し方法として、かかる方法が好適でない場合がある。 In Patent Document 1, dropping from the sky can maintain the posture of the load depending on the position of the center of gravity of the load while it is falling, but it is difficult to control the posture of the load due to rebounding after contact with the ground, and it is possible to contact the ground. There is a possibility that the package will be impacted, and the shape of the package will be lost, mixed up, or damaged. In particular, it is desirable to avoid shocks as much as possible, such as pre-cooked food, where the quality of taste and appearance is impaired by crumbling or mixing products, and medical equipment and precision equipment. With regard to objects, such a method may not be suitable as a method for separating the load.
 そこで、荷物の崩れや破損を防ぐため、飛行体が搭載する搭載物と着荷面とが近い位置となるように切り離しを行い、切り離し時に搭載物に発生する衝撃が所定の衝撃の範囲内となるように解放することが挙げられる。これにより、荷下ろし時に搭載物に与える衝撃を減少させ、配送の品質を向上しうる。しかし、衝撃を減少させる切り離しの動作においては、搭載物の重心の偏り等が原因でスムーズな切り離しが行えず、搭載物の傾きを防止できなかったり、切り離しが完了できなかったりする場合がある。 Therefore, in order to prevent the cargo from collapsing or being damaged, the cargo is detached so that the payload mounted on the aircraft is close to the landing surface, and the impact that occurs on the payload during detachment is within a predetermined impact range. It can be released as follows. This can reduce the impact on the load during unloading and improve the quality of delivery. However, in the detachment operation to reduce impact, smooth detachment cannot be performed due to the bias of the center of gravity of the load, and there are cases where tilting of the load cannot be prevented or the detachment cannot be completed.
 そこで、本開示は、搭載物切り離し時の衝撃を減少させるとともに、切り離しの不具合や未完了となるケースを防ぐことが可能となる飛行体等を提供する。 Therefore, the present disclosure provides a flying object or the like that can reduce the impact at the time of disconnection of a mounted object, and can prevent the case of disconnection failure and incomplete disconnection.
 本開示によれば、搭載物を保持する搭載部と、前記搭載物を前記搭載部から切り離す際に前記搭載物に対して切り離し方向に向けて力を付与して切り離しにおける前記搭載物の移動を補助する補助機構と、を備える飛行体が提供される。 According to the present disclosure, there is provided a mounting portion that holds a mounted object, and a force applied to the mounted object in a separation direction when the mounted object is separated from the mounted object to move the mounted object during separation. and an auxiliary mechanism for assisting.
 また、本開示によれば、搭載物を保持する搭載部を備える飛行体を用いた前記搭載物の着荷方法であって、前記飛行体の着陸時またはホバリング時において、前記飛行体に設けられる補助機構を用いて前記搭載物に対して切り離し方向に向けて力を付与して前記搭載物を移動させて前記飛行体から切り離す、着荷方法が提供される。 Further, according to the present disclosure, there is provided a method for landing a payload using an aircraft including a mounting portion for holding the payload, wherein an assistance provided to the aircraft during landing or hovering of the aircraft. A landing method is provided in which a force is applied to the mounted object in a separation direction using a mechanism to move the mounted object to separate it from the aircraft.
 また、本開示によれば、搭載物を保持する搭載部と、前記搭載物を前記搭載部から切り離す際に前記搭載物に対して切り離し方向に向けて力を付与して切り離しにおける前記搭載物の移動を補助する補助機構と、を備える地上移動体が提供される。 Further, according to the present disclosure, there is provided a mounting portion for holding a mounted object, and a force applied to the mounted object in a separation direction when the mounted object is separated from the mounted object to separate the mounted object. and an auxiliary mechanism for assisting movement.
 本開示によれば、搭載物切り離し時の衝撃を減少させるとともに、切り離しの不具合や未完了となるケースを防ぐことができる。 According to the present disclosure, it is possible to reduce the impact at the time of detaching the mounted object, and to prevent a case where the detachment is unsuccessful or incomplete.
本発明による補助機構を備える飛行体を側面から見た概念図である。1 is a conceptual side view of an aircraft equipped with an auxiliary mechanism according to the present invention; FIG. 図1の飛行体の巡航時の側面図である。FIG. 2 is a side view of the aircraft of FIG. 1 during cruising; 図1の飛行体の上面図である。2 is a top view of the aircraft of FIG. 1; FIG. 図1の飛行体の着陸状態の側面図である。2 is a side view of the aircraft of FIG. 1 in a landing state; FIG. 図4の飛行体が搭載物を降下させたときの側面図である。FIG. 5 is a side view of the aircraft of FIG. 4 when the payload is lowered; 図4の飛行体の正面図である。5 is a front view of the aircraft of FIG. 4; FIG. 図5の飛行体の正面図である。FIG. 6 is a front view of the aircraft of FIG. 5; 図1の飛行体の機能ブロック図である。FIG. 2 is a functional block diagram of the aircraft of FIG. 1; 本発明による飛行体の搭載部の実施の一例の側面図である。1 is a side view of an example implementation of a mounting portion of an aircraft according to the present invention; FIG. 図9の搭載部の一部正面図である。FIG. 10 is a partial front view of the mounting portion of FIG. 9; 本発明による飛行体が備える搭載部の正面図である。FIG. 2 is a front view of a mounting portion provided in the aircraft according to the present invention; 図11の搭載部の搭載物降下時の正面図である。FIG. 12 is a front view of the mounting portion of FIG. 11 when the mounted object is lowered; 図11の搭載部の搭載物解放時の正面図である。FIG. 12 is a front view of the mounting portion of FIG. 11 when the mounted object is released; 図11の搭載部の搭載物解放後の正面図である。FIG. 12 is a front view of the mounting portion of FIG. 11 after releasing the mounted object; 図11の搭載部の搭載物解放後の正面図である。FIG. 12 is a front view of the mounting portion of FIG. 11 after releasing the mounted object; 本発明による飛行体の搭載部構成例の、着陸時の正面図である。1 is a front view of an example of the configuration of a mounting portion of an aircraft according to the present invention, at the time of landing; FIG. 図16の搭載部の搭載物解放時の正面図である。FIG. 17 is a front view of the mounting portion of FIG. 16 when the mounted object is released; 図16の搭載部の搭載物解放後の正面図である。FIG. 17 is a front view of the mounting portion of FIG. 16 after releasing the mounted object; 本発明による補助機構を備える搭載部の側面図である。FIG. 4 is a side view of a mounting with an auxiliary mechanism according to the invention; 図19の搭載部の正面図である。20 is a front view of the mounting portion of FIG. 19; FIG. 図19の搭載部の上面図である。FIG. 20 is a top view of the mounting portion of FIG. 19; 図21の補助機構が着脱するときの図である。FIG. 22 is a view when the auxiliary mechanism of FIG. 21 is attached and detached; 補助機構を持たない飛行体の側面図である。1 is a side view of an aircraft without auxiliary mechanisms; FIG. 図23の飛行体が搭載物の切り離しに成功した時の図である。FIG. 24 is a view when the aircraft of FIG. 23 has successfully detached the payload; 図23の飛行体が搭載物の切り離しに失敗した時の図である。FIG. 24 is a diagram when the aircraft of FIG. 23 fails to separate the payload; 補助機構を持たない飛行体の側面図である。1 is a side view of an aircraft without auxiliary mechanisms; FIG. 図26の飛行体が搭載物の切り離しに失敗した時の上面図である。FIG. 27 is a top view when the aircraft of FIG. 26 fails to separate the payload; 補助機構を備える飛行体が搭載物の切り離しを行う時の上面図である。FIG. 10 is a top view of the flying object equipped with the auxiliary mechanism when the payload is detached. 補助機構を備える飛行体の側面図である。FIG. 2 is a side view of an aircraft equipped with an auxiliary mechanism; 図29の飛行体が備える補助機構が搭載物に作用する時の図である。FIG. 30 is a view when the auxiliary mechanism of the aircraft of FIG. 29 acts on the payload; 補助機構を備える飛行体において補助機構が搭載物に作用する時の図である。FIG. 10 is a diagram of an aircraft equipped with an auxiliary mechanism when the auxiliary mechanism acts on a payload; 本発明による補助機構を備える移動体を側面から見た概念図である。FIG. 2 is a conceptual side view of a moving body equipped with an auxiliary mechanism according to the present invention; 図32の移動体が搭載物を切り離すときの図である。FIG. 33 is a diagram when the moving body of FIG. 32 separates the mounted object;
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態は、以下のような構成を備える。
 (項目1)
 搭載物を保持する搭載部と、
 前記搭載物を前記搭載部から切り離す際に前記搭載物に対して切り離し方向に向けて力を付与して切り離しにおける前記搭載物の移動を補助する補助機構と、
を備える飛行体。
 (項目2)
 項目1に記載の飛行体であって、
 前記搭載部は、前記搭載物の底面を保持する保持部を有し、
 前記搭載物は、前記保持部による前記搭載物の底面の保持が解放され前記搭載物が下方向に移動することで前記搭載部から切り離される、
飛行体。
 (項目3)
 項目1及び項目2に記載の飛行体であって、
 前記補助機構は、弾性変形により得られる反力により前記搭載物の移動を補助する、
 飛行体。
 (項目4)
 項目3に記載の飛行体であって、
 前記補助機構は、前記搭載部の前記搭載物を収容する空間の上部に架け渡されて設けられる、飛行体。
 (項目5)
 項目1及び項目2に記載の飛行体であって、
 前記補助機構は、モータ動力により得られる力により前記搭載物の移動を補助する、
 ことを特徴とする飛行体。
 (項目6)
 搭載物を保持する搭載部を備える飛行体を用いた前記搭載物の着荷方法であって、
 前記飛行体の着陸時またはホバリング時において、前記飛行体に設けられる補助機構を用いて前記搭載物に対して切り離し方向に向けて力を付与して移動させて前記搭載物を前記飛行体から切り離す、
着荷方法。
 (項目7)
 搭載物を保持する搭載部と、
 前記搭載物を前記搭載部から切り離す際に前記搭載物に対して切り離し方向に向けて力を付与して切り離しにおける前記搭載物の移動を補助する補助機構と、
を備える地上移動体。
The contents of the embodiments of the present invention are listed and explained. An embodiment of the present invention has the following configuration.
(Item 1)
a mounting portion for holding a mounted object;
an auxiliary mechanism for applying a force in a separating direction to the mounted object when separating the mounted object from the mounting portion to assist the movement of the mounted object during separation;
Air vehicle with
(Item 2)
The aircraft according to item 1,
The mounting section has a holding section that holds the bottom surface of the mounted object,
The mounted object is separated from the mounting portion by releasing the holding of the bottom surface of the mounted object by the holding portion and moving the mounted object downward,
Airplane.
(Item 3)
The aircraft according to items 1 and 2,
The auxiliary mechanism assists the movement of the mounted object by a reaction force obtained by elastic deformation.
Airplane.
(Item 4)
The aircraft according to item 3,
The flying object, wherein the auxiliary mechanism is provided so as to span over a space for accommodating the load of the mounting portion.
(Item 5)
The aircraft according to items 1 and 2,
The auxiliary mechanism assists the movement of the mounted object with a force obtained by motor power.
An aircraft characterized by:
(Item 6)
A method for landing a load using an aircraft having a mounting portion for holding the load,
At the time of landing or hovering of the flying object, an auxiliary mechanism provided on the flying object is used to apply a force to the mounted object in a detachment direction to move the mounted object, thereby separating the mounted object from the flying object. ,
delivery method.
(Item 7)
a mounting portion for holding a mounted object;
an auxiliary mechanism for applying a force in a separating direction to the mounted object when separating the mounted object from the mounting portion to assist the movement of the mounted object during separation;
A ground vehicle comprising a
<本発明による実施形態の詳細>
 以下、本開示の一実施形態による飛行体、方法、システム、プログラム等について、図面を参照しながら説明する。なお、本明細書において「切り離し」とは、搭載物が飛行体や飛行体が備える搭載部による保持が解放され、搭載物が飛行体や搭載部と機械的に分離可能となり、搭載物を地面に載置したり、取り出し方向に移動させるときに搭載物がロックされていない状態等を意味する。
<Details of embodiment according to the present invention>
Hereinafter, an aircraft, a method, a system, a program, etc. according to an embodiment of the present disclosure will be described with reference to the drawings. In this specification, the term “separate” means that the mounted object is released from the holding by the flying object or the mounting portion provided in the flying object, the mounted object can be mechanically separated from the flying object or the mounting portion, and the mounted object is placed on the ground. It means a state in which the load is not locked when placed on the load or moved in the take-out direction.
 <第1の実施の形態の詳細> <Details of the first embodiment>
 図1-図7に例示されるように、本発明による搭載物10の切り離しを補助する助機構(以下、補助機構60と総称する)は、飛行体100又は飛行体100が備える搭載部20に接続して設けられる。 As exemplified in FIGS. 1 to 7, an auxiliary mechanism (hereinafter collectively referred to as an auxiliary mechanism 60) for assisting the separation of the mounted object 10 according to the present invention is attached to the aircraft 100 or the mounting section 20 provided in the aircraft 100. provided in connection.
 飛行体100は、搭載部20が搭載物10を保持又は載置した状態で飛行が可能であり、所定のタイミングにおいて、搭載物10を切り離すことができる。 The flying object 100 can fly with the mounting portion 20 holding or placing the mounted object 10, and can detach the mounted object 10 at a predetermined timing.
 搭載物10を保持した飛行体100は、離陸地点から離陸を行い、目的地まで荷物を配送する。目的地に到達した飛行体は、搭載物10を切り離すことで、配送を完了する。搭載物10を切り離した飛行体100は、他の目的地(例えば、他の荷物の届け先や、物流拠点、倉庫等)に向かうために移動を行う。搭載物の切り離しを行う際、飛行体100は着陸した状態でもよいし、飛行を続けた状態でもよい。 The flying object 100 holding the payload 10 takes off from the takeoff point and delivers the cargo to the destination. The flying object that reaches the destination completes the delivery by separating the load 10. - 特許庁The flying object 100 from which the payload 10 has been detached moves to another destination (for example, a delivery destination of another package, a physical distribution center, a warehouse, etc.). When the payload is detached, the aircraft 100 may be in a landed state or in a state in which it continues to fly.
 本実施の形態に用いられる飛行体100は、任意の飛行体(例えば、マルチコプター、ヘリコプター、固定翼機等)である。以下の説明においては、複数の回転翼部を備えるマルチコプターを用いる場合について説明する。 The flying object 100 used in the present embodiment is any flying object (eg, multicopter, helicopter, fixed-wing aircraft, etc.). In the following description, a case of using a multicopter having a plurality of rotor blades will be described.
 図1に示されるように、飛行体100は飛行を行うために少なくともプロペラ110及びモータ111からなる複数の回転翼部や当該回転翼部を支えるモータマウントやフレーム120等の要素を含む飛行部を備えている。それらを動作させるためのエネルギー源(例えば、二次電池や燃料電池、化石燃料等)を搭載していることが望ましい。かかるエネルギーは、飛行体100の飛行だけでなく、補助機構60の動作等にも利用可能としても良い。 As shown in FIG. 1, an air vehicle 100 has a flight section including a plurality of rotors comprising at least a propeller 110 and a motor 111, motor mounts for supporting the rotors, a frame 120, and other elements for flight. I have. It is desirable to have an energy source (for example, secondary battery, fuel cell, fossil fuel, etc.) to operate them. Such energy may be used not only for the flight of the aircraft 100 but also for the operation of the auxiliary mechanism 60 and the like.
 なお、図示されている飛行体100は、本発明の構造の説明を容易にするため簡略化されて描かれており、例えば、制御部等の詳しい構成は図示していない。 It should be noted that the illustrated flying object 100 is drawn in a simplified manner in order to facilitate the description of the structure of the present invention, and for example, detailed configurations such as a control unit are not illustrated.
 飛行体100は図の矢印Dの方向(-Y方向)を前進方向としている(詳しくは後述する)。 The flying object 100 advances in the direction of arrow D (-Y direction) in the drawing (details will be described later).
 なお、以下の説明において、以下の定義に従って用語を使い分けることがある。前後方向:+Y方向及び-Y方向、上下方向(または鉛直方向):+Z方向及び-Z方向、左右方向(または水平方向):+X方向及び-X方向、進行方向(前方):-Y方向、後退方向(後方):+Y方向、上昇方向(上方):+Z方向、下降方向(下方):-Z方向 In addition, in the following explanation, terms may be used according to the following definitions. Forward/backward direction: +Y direction and -Y direction, Vertical direction (or vertical direction): +Z direction and -Z direction, Left/right direction (or horizontal direction): +X direction and -X direction, Forward direction (forward): -Y direction, Backward direction (backward): +Y direction, Upward direction (upward): +Z direction, Downward direction (downward): -Z direction
 プロペラ110は、モータ111からの出力を受けて回転する。プロペラ110が回転することによって、飛行体100を出発地から離陸させ、移動させ、目的地に着陸させるための推進力が発生する。なお、プロペラ110は、右方向への回転、停止及び左方向への回転が可能である。 The propeller 110 rotates by receiving the output from the motor 111 . Rotation of the propeller 110 generates a propulsive force for taking off, moving, and landing the aircraft 100 from the starting point. The propeller 110 can rotate rightward, stop, and rotate leftward.
 本発明の飛行体が備えるプロペラ110は、1以上の羽根を有している。任意の羽根(回転子)の数(例えば、1、2、3、4、またはそれ以上の羽根)でよい。また、羽根の形状は、平らな形状、曲がった形状、よじれた形状、テーパ形状、またはそれらの組み合わせ等の任意の形状が可能である。なお、羽根の形状は変化可能である(例えば、伸縮、折りたたみ、折り曲げ等)。羽根は対称的(同一の上部及び下部表面を有する)または非対称的(異なる形状の上部及び下部表面を有する)であってもよい。羽根はエアホイル、ウイング、または羽根が空中を移動される時に動的空気力(例えば、揚力、推力)を生成するために好適な幾何学形状に形成可能である。羽根の幾何学形状は、揚力及び推力を増加させ、抗力を削減する等の、羽根の動的空気特性を最適化するために適宜選択可能である。 The propeller 110 of the flying object of the present invention has one or more blades. Any number of blades (rotors) may be used (eg, 1, 2, 3, 4, or more blades). Also, the vane shape can be any shape, such as flat, curved, twisted, tapered, or combinations thereof. It should be noted that the shape of the wing can be changed (for example, stretched, folded, bent, etc.). The vanes may be symmetrical (having identical upper and lower surfaces) or asymmetrical (having differently shaped upper and lower surfaces). The airfoil, wing, or airfoil can be formed into a geometry suitable for generating dynamic aerodynamic forces (eg, lift, thrust) as the airfoil is moved through the air. The geometry of the blades can be selected to optimize the dynamic air properties of the blades, such as increasing lift and thrust and reducing drag.
 また、本発明の飛行体100が備えるプロペラは、固定ピッチ、可変ピッチ、また固定ピッチと可変ピッチの混合などが考えられるが、これに限らない。 In addition, the propellers provided in the flying object 100 of the present invention may have fixed pitch, variable pitch, or a mixture of fixed pitch and variable pitch, but are not limited to this.
 モータ111は、プロペラ110の回転を生じさせるものであり、例えば、駆動ユニットは、電気モータ又はエンジン等を含むことが可能である。羽根は、モータによって駆動可能であり、モータの回転軸(例えば、モータの長軸)の周りに回転する。 The motor 111 causes rotation of the propeller 110, and for example the drive unit can include an electric motor or an engine. The vanes are drivable by a motor and rotate about the axis of rotation of the motor (eg, the longitudinal axis of the motor).
 羽根は、すべて同一方向に回転可能であるし、独立して回転することも可能である。羽根のいくつかは一方の方向に回転し、他の羽根は他方方向に回転する。羽根は、同一回転数ですべて回転することも可能であり、夫々異なる回転数で回転することも可能である。回転数は移動体の寸法(例えば、大きさ、重さ)や制御状態(速さ、移動方向等)に基づいて自動又は手動により定めることができる。 All the blades can rotate in the same direction, and they can also rotate independently. Some of the vanes rotate in one direction and others rotate in the other direction. The blades can all rotate at the same speed, or they can each rotate at different speeds. The number of rotations can be determined automatically or manually based on the dimensions (eg, size, weight) and control conditions (speed, direction of movement, etc.) of the moving body.
 飛行体100は、フライトコントローラ1001やESC112、送受信機(プロポ)1006等により、風速と風向に応じて、各モータの回転数や、飛行角度を決定する。これにより、飛行体は上昇・下降したり、加速・減速したり、方向転換したりといった移動を行うことができる。 The flying object 100 determines the number of rotations of each motor and the flight angle according to the wind speed and direction using the flight controller 1001, ESC 112, transmitter/receiver (propo) 1006, and the like. As a result, the flying object can move such as ascending/descending, accelerating/decelerating, and changing direction.
 飛行体100は、事前または飛行中に設定されるルートやルールに準じた自律的な飛行や、送受信機(プロポ)1006を用いた操縦による飛行を行うことができる。 The flying object 100 can fly autonomously according to the route and rules set in advance or during the flight, and can fly by maneuvering using the transmitter/receiver (propo) 1006 .
 上述した飛行体100は、図8に示される機能ブロックの一部または全部を有している。なお、図8の機能ブロックは最低限の参考構成の一例である。ライトコントローラ1001は、所謂処理ユニットである。処理ユニットは、プログラマブルプロセッサ(例えば、中央処理ユニット(CPU))などの1つ以上のプロセッサを有することができる。処理ユニットは、図示しないメモリを有しており、当該メモリにアクセス可能である。メモリは、1つ以上のステップを行うために処理ユニットが実行可能であるロジック、コード、および/またはプログラム命令を記憶している。メモリは、例えば、SDカードやランダムアクセスメモリ(RAM)などの分離可能な媒体または外部の記憶装置を含んでいてもよい。センサ類1002から取得したデータは、メモリに直接に伝達されかつ記憶されてもよい。例えば、カメラ等で撮影した静止画・動画データが内蔵メモリ又は外部メモリに記録される。 The flying object 100 described above has some or all of the functional blocks shown in FIG. Note that the functional blocks in FIG. 8 are an example of a minimum reference configuration. A light controller 1001 is a so-called processing unit. A processing unit may have one or more processors, such as a programmable processor (eg, central processing unit (CPU)). The processing unit has a memory (not shown) and can access the memory. The memory stores logic, code, and/or program instructions executable by the processing unit to perform one or more steps. The memory may include, for example, removable media or external storage devices such as SD cards and random access memory (RAM). Data acquired from sensors 1002 may be communicated directly to and stored in memory. For example, still image/moving image data captured by a camera or the like is recorded in a built-in memory or an external memory.
 処理ユニットは、回転翼機の状態を制御するように構成された制御モジュールを含んでいる。例えば、制御モジュールは、6自由度(並進運動x、y及びz、並びに回転運動θ、θ及びθ)を有する回転翼機の空間的配置、速度、および/または加速度を調整するために回転翼機の推進機構(モータ等)を制御する。制御モジュールは、搭載物、センサ類の状態のうちの1つ以上を制御することができる。 The processing unit includes a control module configured to control the state of the rotorcraft. For example, the control module may adjust the spatial orientation, velocity, and/or acceleration of a rotorcraft having six degrees of freedom (translational motions x, y, and z, and rotational motions θx , θy , and θz ). control the propulsion mechanism (motor, etc.) of the rotorcraft. The control module can control one or more of the state of the payload, sensors.
 処理ユニットは、1つ以上の外部のデバイス(例えば、端末、表示装置、または他の遠隔の制御器)からのデータを送信および/または受け取るように構成された送受信部1005と通信可能である。送受信機1006は、有線通信または無線通信などの任意の適当な通信手段を使用することができる。例えば、送受信部1005は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、電気通信ネットワーク、クラウド通信などのうちの1つ以上を利用することができる。送受信部1005は、センサ類1002で取得したデータ、処理ユニットが生成した処理結果、所定の制御データ、端末または遠隔の制御器からのユーザコマンドなどのうちの1つ以上を送信および/または受け取ることができる。 The processing unit can communicate with a transceiver 1005 configured to send and/or receive data from one or more external devices (eg, terminals, displays, or other remote controllers). Transceiver 1006 may use any suitable means of communication, such as wired or wireless communication. For example, the transceiver 1005 utilizes one or more of a local area network (LAN), a wide area network (WAN), infrared, wireless, WiFi, point-to-point (P2P) networks, telecommunications networks, cloud communications, etc. can do. The transmitting/receiving unit 1005 transmits and/or receives one or more of data obtained by the sensors 1002, processing results generated by the processing unit, predetermined control data, user commands from a terminal or a remote controller, and the like. can be done.
 本実施の形態によるセンサ類1002は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)、またはビジョン/イメージセンサ(例えば、カメラ)を含み得る。 Sensors 1002 according to the present embodiment may include inertial sensors (acceleration sensors, gyro sensors), GPS sensors, proximity sensors (eg lidar), or vision/image sensors (eg cameras).
 本発明の実施の形態における飛行体100が備えるプロペラ110の回転面は、図2に例示されるように、前傾した角度となる。前傾したプロペラ110の回転面により、上方への揚力と、進行方向への推力とが生み出され、これにより飛行体100が進行する。 The plane of rotation of the propeller 110 provided in the flying object 100 according to the embodiment of the present invention is tilted forward as illustrated in FIG. The forward-leaning plane of rotation of propeller 110 produces upward lift and forward thrust, which propels vehicle 100 .
 飛行体100は、モータ、プロペラ、フレーム等を備え、揚力及び推力を発生させる飛行部において、飛行部に搭載する処理ユニットやバッテリ等を内包可能な本体部を備えていてもよい。本体部は、飛行体100の移動中、長時間維持されることが期待される巡航時の飛行体100の姿勢における形状を最適化し、飛行速度を向上させることで、効率的に飛行時間を短縮することが可能である。 The flying object 100 includes a motor, a propeller, a frame, and the like, and may include a main body that can contain a processing unit, a battery, and the like mounted on the flight section in the flight section that generates lift and thrust. The main body optimizes the shape of the aircraft 100 during cruising, which is expected to be maintained for a long time while the aircraft 100 is moving, and improves the flight speed, thereby effectively shortening the flight time. It is possible to
 本体部は、飛行や離着陸に耐え得る強度を持つ外皮を備えていることが望ましい。例えば、プラスチック、FRP等は、剛性や防水性があるため、外皮の素材として好適である。これらの素材は、飛行部に含まれるフレーム120(アーム含む)と同
じ素材であってもよいし、異なる素材であってもよい。
It is desirable that the main body has an outer skin that is strong enough to withstand flight, takeoff and landing. For example, plastics, FRP, and the like are suitable as materials for the outer skin because of their rigidity and waterproofness. These materials may be the same materials as the frame 120 (including the arms) included in the flight section, or may be different materials.
 また、飛行部が備えるモータマウント、フレーム120、及び本体部は、夫々の部品を接続して構成してもよいし、モノコック構造や一体成形を利用して、一体となるように成形してもよい(例えば、モータマウントとフレーム120を一体に成形する、モータマウントとフレーム120と本体部すべてを一体に成形する、等)。部品を一体とすることで、各部品のつなぎ目を滑らかにすることが可能となるため、ブレンデッドウィングボディやリフティングボディといった飛行体が持つ、抗力の軽減や燃費の向上効果が期待できる。 Also, the motor mount, frame 120, and main body included in the flight section may be configured by connecting the respective parts, or may be integrally molded using a monocoque structure or integral molding. Good (for example, the motor mount and the frame 120 are integrally molded, the motor mount, the frame 120 and the main body are all integrally molded, etc.). By integrating the parts, it is possible to smooth the joints of each part, so it can be expected to reduce drag and improve fuel efficiency of flying objects such as blended wing bodies and lifting bodies.
 飛行体100の形状は指向性を持っていてもよい。指向性のある形状とは、例えば、飛行体100が無風下における巡航時の姿勢において抗力の少ない流線形の本体部や、略翼型の本体部等、飛行体の機首が風に正対した際に飛行効率を向上させる形状が挙げられる。 The shape of the flying object 100 may have directivity. The shape with directivity is, for example, a streamlined main body that has little drag when the flying object 100 is cruising in no wind, a substantially wing-shaped main body, or the like. A shape that improves flight efficiency when flying.
 飛行体100は、目的地へと運搬する荷物など(以下、搭載物10と総称する)を保持又は載置可能な搭載部20を備えている。搭載部20は、飛行部140と固定して接続される、もしくは、図1および図2に示されるように、回動軸や1以上の自由度を有するジンバルといった接続部22を介して独立変位可能に接続することもできる。これにより、飛行体100の姿勢にかかわらず、搭載物10を所定の姿勢(例えば水平)に保つことが可能となるように接続される。 The flying object 100 includes a mounting section 20 capable of holding or placing a load or the like (hereinafter collectively referred to as a mounted object 10) to be transported to a destination. The mounting portion 20 may be fixedly connected to the flight portion 140 or independently displaceable via a connection portion 22, such as a pivot axis or a gimbal having one or more degrees of freedom, as shown in FIGS. can be connected as well. As a result, regardless of the attitude of the aircraft 100, the mounted object 10 is connected so as to be able to maintain a predetermined attitude (for example, horizontal).
 また、搭載物10を所定の姿勢に保つ方法として、飛行部140と搭載部20との間に接続部22を設けてもよいし、搭載部20と搭載物10との間に接続部22を設けてもよい。すなわち、飛行部140と搭載物10が接続される間のいずれかの位置に接続部22を設けることもできる。 Further, as a method of maintaining the mounted object 10 in a predetermined posture, the connecting portion 22 may be provided between the flying portion 140 and the mounting portion 20, or the connecting portion 22 may be provided between the mounting portion 20 and the mounted object 10. may be provided. That is, the connecting portion 22 can be provided at any position between the flight portion 140 and the mounted object 10 .
 搭載部20もしくは搭載物10の変位に使用される回動軸50の位置や方向は、例えば、飛行体100の飛行時の姿勢により決定される。主要な推進方向が前後方向である飛行体であれば、飛行部は前後方向に傾くため、少なくともピッチ方向に回動可能な1軸を備えることで飛行時の飛行部の傾きをキャンセルし、搭載物の姿勢を保つことが可能となる。さらに他の軸方向(ロール、ヨー)への傾きに対応させる場合には、2軸以上の回動軸を設けてもよい。 The position and direction of the rotating shaft 50 used to displace the mounting portion 20 or the mounted object 10 are determined, for example, by the attitude of the aircraft 100 during flight. If the main propulsion direction is the front-back direction, the flight part will tilt in the front-back direction. It is possible to maintain the posture of the object. Further, two or more rotating shafts may be provided in order to accommodate inclination in other axial directions (roll, yaw).
 搭載部20もしくは搭載物10の変位は、夫々姿勢を保つべき物の自重により姿勢を保つパッシブ制御により行われてもよいし、モータやサーボ等を利用して姿勢を制御するアクティブ制御により行われてもよい。より精密に姿勢を制御する場合は、アクティブ制御を行うことが望ましいが、機構の追加による重量増加等につながるため、制御方法については目的に応じて適切に決定され得る。 The displacement of the mounting portion 20 or the mounted object 10 may be performed by passive control that maintains the attitude by the weight of the object that should maintain the attitude, or by active control that uses a motor, servo, or the like to control the attitude. may Active control is desirable for more precise attitude control, but the addition of a mechanism leads to an increase in weight and the like, so the control method can be appropriately determined according to the purpose.
 搭載部20は、搭載物10を保持したまま、飛行や離着陸に耐え得る強度を持つ素材を含んで構成されていることが好ましい。例えば、樹脂、FRP等は、剛性があり、軽量のため、搭載部20の構成素材として好適である。また、搭載部20の素材として金属を用いる場合には、アルミやマグネシウム等、比重の軽いものを用いることが好ましい。これにより、強度を向上させながらも重量増加を防ぐことができる。なお、これらの素材は、飛行部140に含まれるフレーム120と同じ素材であってもよいし、異なる素材であってもよい。 It is preferable that the mounting section 20 is made of a material having strength enough to withstand flight, takeoff and landing while holding the mounted object 10 . For example, resin, FRP, etc. are rigid and lightweight, and are therefore suitable as the constituent material of the mounting portion 20 . When metal is used as the material for the mounting portion 20, it is preferable to use a material with a low specific gravity such as aluminum or magnesium. As a result, it is possible to prevent an increase in weight while improving the strength. These materials may be the same material as the frame 120 included in the flying portion 140, or may be different materials.
 また、飛行部140が備えるモータマウント(不図示)およびフレーム120は、夫々の部品を接続して構成してもよいし、モノコック構造や一体成形を利用して、一体となるように成形してもよい。例えば、モータマウントとフレーム120は一体に成形されてもよい。部品を一体とすることで、各部品のつなぎ目を滑らかにすることが可能となるため、抗力の軽減や燃費が向上しうる。 Also, the motor mount (not shown) and the frame 120 included in the flying section 140 may be configured by connecting the respective parts, or may be integrally molded using a monocoque structure or integral molding. good too. For example, the motor mount and frame 120 may be integrally molded. By integrating the parts, it is possible to smooth the joints of each part, which can reduce drag and improve fuel efficiency.
 搭載物10を搭載した飛行体100は、目的地点上空に到達後、着陸又はホバリングを行い、搭載物10の切り離しを行う。着陸を行う飛行体100において、飛行体100が備える着陸脚130は、搭載物10が、飛行体の着陸時に着陸面200へ直接触れることによって衝撃を受けないようにすることが好ましい。この場合、例えば、着陸脚130は、少なくとも平面への着陸状態の側面視において、搭載物10より下方向(-Z方向)に長くなるよう構成されていることが好ましい。着陸脚130は、さらにダンパ等の衝撃吸収装置131を備えていてもよい。 The flying object 100 carrying the payload 10 lands or hovers after reaching the destination point, and detaches the payload 10 . In a flying object 100 that lands, landing legs 130 provided in the flying object 100 preferably prevent the payload 10 from being impacted by direct contact with the landing surface 200 when the flying object lands. In this case, for example, the landing leg 130 is preferably configured to be longer downward (-Z direction) than the payload 10, at least in a side view of the landing state on a plane. The landing leg 130 may further include a shock absorbing device 131 such as a damper.
 飛行体100は、飛行中や離着陸中など意図しないタイミングで搭載物10を落下させないように保持可能な搭載部20を備える。搭載部20は、所定のタイミングで搭載物10を飛行体から解放可能な保持部21を備えている。 The aircraft 100 has a mounting portion 20 that can hold the mounted object 10 so as not to drop it at an unintended timing such as during flight or during takeoff and landing. The mounting section 20 includes a holding section 21 capable of releasing the mounted object 10 from the aircraft at a predetermined timing.
 例えば、図1-図7においては、搭載物10を搭載した飛行体100が目的地点上空に到達後、着陸し、搭載物の切り離しを行う方法が例示されている。 For example, FIGS. 1 to 7 illustrate a method in which the flying object 100 carrying the payload 10 lands after it reaches the sky above the destination point, and the payload is detached.
 図4-図7に示されるように、飛行体100が着陸後、搭載部20は搭載物10を保持した状態で下降させた後、搭載物10を解放する。このとき、搭載物にかかる衝撃または搭載物の傾斜は、所定の範囲内となるよう制御される。また、解放された搭載物10が接する面(以下、着荷面200と総称する)は、着陸施設やポートの着陸パッドなど、平坦で、解放された搭載物が姿勢を崩したり、傾いたりしない形状であることが望ましい。 As shown in FIGS. 4 to 7, after the flying object 100 lands, the mounting section 20 descends while holding the payload 10 and then releases the payload 10 . At this time, the impact applied to the mounted object or the inclination of the mounted object is controlled to be within a predetermined range. The surface with which the released payload 10 comes into contact (hereinafter collectively referred to as landing surface 200) has a flat shape such as a landing pad of a landing facility or a port, and does not cause the released payload to lose its posture or tilt. is desirable.
 搭載物10の保持方法は、搭載物10の保持及び切り離しが簡便に行える方法であればよい。例えば、図1-図7に示されるように、保持部21により搭載物10を底面から支持することにより保持する方法でもよいし、図16-図18に示されるように、搭載物10の側面から保持する方法でもよい。 Any method for holding the mounted object 10 may be used as long as the holding and detachment of the mounted object 10 can be easily performed. For example, as shown in FIGS. 1 to 7, a method of holding the mounted object 10 by supporting the mounted object 10 from the bottom surface by the holding portion 21 may be used, or as shown in FIGS. A method of holding from
 図9および図10には、搭載物10の底面を保持した場合の搭載部20の構成例の拡大図が示されている。搭載物10の底面を支える保持部21は、全ねじ棒41に接続されたモータ40の回転による昇降が可能である。さらに、垂直方向中央に設けられたヒンジ23により、搭載物10が着荷面200に到達した後、保持部21を夫々左右方向(+-X方向)外側に向かって回動させ、搭載物10を解放することが可能となる。ヒンジ23による解放は、例えば、ばね反力を利用してヒンジがカバー部24より下方に移動した際開くヒンジ(一般に、ばね丁番やスプリング丁番と呼ばれる)を用いたり、左右方向外側にサーボ等と接続するロッドを設けることで引き開けたりすることが可能である。 FIGS. 9 and 10 show enlarged views of configuration examples of the mounting portion 20 when the bottom surface of the mounted object 10 is held. The holding portion 21 that supports the bottom surface of the mounted object 10 can be raised and lowered by rotating a motor 40 connected to a fully threaded rod 41 . Further, after the load 10 reaches the landing surface 200, the holding portions 21 are rotated outward in the left and right directions (+-X directions) by the hinge 23 provided in the center in the vertical direction, thereby lifting the load 10. can be released. The release by the hinge 23 can be achieved, for example, by using a hinge (generally called a spring hinge) that opens when the hinge moves downward from the cover portion 24 by using a spring reaction force, or by using a servo that moves outward in the left-right direction. It is possible to pull it open by providing a rod that connects with etc.
 なお、図9に示されるサーボ30及びホーン31は、ロッド32を介してカバー部24に接続され、サーボ30が動作することにより、接続部22を軸としてカバー部24および搭載物10が回動し、搭載物10の姿勢を制御する。 A servo 30 and a horn 31 shown in FIG. 9 are connected to the cover portion 24 via a rod 32, and when the servo 30 operates, the cover portion 24 and the mounted object 10 rotate about the connecting portion 22. and controls the attitude of the mounted object 10 .
 また、図9に示されるように、飛行体100の飛行中に搭載物10が前後方向にずれることを防ぐため、押さえ部26が設けられていてもよい。押さえ部26は、保持部21や搭載物を覆うカバー等(以下、覆い部と総称する)から内向きに設けられる部材(例えば、覆い部と一体の突起、板材、ローラー機構、クッション材など)である。搭載物10の滑りや揺動を防ぐためには、搭載物10と覆い部との間に、搭載物10が動く余地なく搭載されることが望ましい。しかし、搭載物10と覆い部との隙間が少ないほど、飛行体100が搭載物10を解放後に離陸する際、搭載物10に覆い部が接触して、衝撃を与える可能性が高まる。 Further, as shown in FIG. 9, a holding portion 26 may be provided to prevent the mounted object 10 from shifting in the front-rear direction during flight of the aircraft 100 . The pressing portion 26 is a member (for example, a projection integral with the covering portion, a plate material, a roller mechanism, a cushioning material, etc.) provided inward from a cover or the like (hereinafter collectively referred to as a covering portion) that covers the holding portion 21 and the mounted object. is. In order to prevent the mounted object 10 from slipping or swinging, it is desirable that the mounted object 10 is mounted between the mounted object 10 and the cover without any room for movement. However, the smaller the gap between the payload 10 and the cover, the more likely the cover will come into contact with the payload 10 and give an impact when the aircraft 100 takes off after releasing the payload 10 .
 風の影響を受ける屋外などでは、一度着陸した飛行体100を正確に鉛直上方に離陸させることは困難である。そこで飛行体100が斜め上方に離陸した場合の接触を防止するため、搭載物10と覆い部との間には、クリアランスが設けられることが望ましい。飛行中の搭載物10の揺動防止と、飛行体100の再離陸時の覆い部との接触防止を両立するため、押さえ部26を設ける位置は、少なくとも飛行中には搭載物10の意図しない動きを抑制し、且つ、搭載物10が搭載部21により下降を完了した時点では、搭載物10の動きを抑制しない高さであることが望ましい。押さえ部26により、飛行中の搭載物10の意図しない動きを抑えながら、飛行体100の再離陸時には、搭載物10と覆い部のクリアランスをとることができる。 It is difficult for the flying object 100 that has landed once to take off vertically upwards, such as outdoors, where it is affected by the wind. Therefore, in order to prevent contact when the aircraft 100 takes off obliquely upward, it is desirable to provide a clearance between the payload 10 and the cover. In order to prevent the mounted object 10 from swinging during flight and to prevent the flying object 100 from coming into contact with the covering portion when the flying object 100 takes off again, the holding portion 26 is provided at a position where the mounted object 10 is not intended at least during flight. It is desirable that the height is such that the movement of the mounted object 10 is suppressed and the movement of the mounted object 10 is not restricted when the mounted object 10 is completely lowered by the mounting portion 21 . The holding part 26 can keep the clearance between the load 10 and the covering part when the aircraft 100 takes off again while suppressing the unintended movement of the load 10 during flight.
 図11-図15において、図9の機構を備える飛行体着陸後から、搭載物の解放を行い、再度離陸するまでの流れを概念図で示している。図11-図15は、荷下ろしを行う構造の説明を容易にするため、簡略化されて描かれており、例えば、飛行体の着陸脚130やフレーム120等の要素は図示していない。  Figures 11 to 15 are conceptual diagrams showing the flow from landing of the aircraft equipped with the mechanism in Figure 9 to releasing the payload and taking off again. 11-15 are drawn in a simplified manner to facilitate the description of the unloading structure, and elements such as landing gear 130 and frame 120 of the vehicle are not shown.
 まず、図11に示されるように、飛行体が着陸した状態で、着荷面200と搭載物10の距離は離れている。搭載物10と、それを底面から支える保持部21と、は、全ねじ棒41にガイドを介して接続され、図12に示されるように、モータ40が回転することにより下降する。下降が続くと、左右方向外側に開こうとするばね丁番が用いられているヒンジ23の位置がカバー部24を下回る。すると、押さえつけるカバー部24を失ったヒンジ23は、図13に示されるように、外側へと押し開かれる。 First, as shown in FIG. 11, the landing surface 200 and the payload 10 are separated from each other when the aircraft has landed. The mounted object 10 and the holding portion 21 that supports it from the bottom surface are connected to a fully threaded rod 41 via a guide, and are lowered by the rotation of the motor 40 as shown in FIG. As the descent continues, the position of the hinge 23 using a spring hinge that tends to open laterally outward falls below the cover portion 24 . Then, the hinge 23, which has lost the cover portion 24 to hold down, is pushed open outward as shown in FIG.
 ヒンジ23が押し開かれた状態で、飛行体が再度離陸を行うことで、保持部21などが着荷面に解放された搭載物10に触れることなく搭載部を抜き取ることが可能となる。離陸し、搭載物との間に十分な距離を確保した後、図14及び図15に示されるように、保持部21はモータ40の回転により上昇し、開かれたヒンジ23は、カバー部に押さえつけられることで閉じられる。 By taking off again with the hinge 23 pushed open, the loading section can be extracted without the holding section 21 or the like touching the load 10 released on the landing surface. After taking off and securing a sufficient distance from the mounted object, as shown in FIGS. It is closed by being pressed.
 保持部21は、飛行体が再離陸の際にふらつくなどして搭載物10に触れてしまった場合のひっかかりを防ぐため、端部分にローラー25や、すべり剤等を設けてもよい。 The holding part 21 may be provided with a roller 25, a slipping agent, etc. at the end part in order to prevent the holding part 21 from being caught when the flying object staggers and touches the mounted object 10 at the time of re-takeoff.
 搭載物10を鉛直方向に昇降させる方法として、モータ、サーボ等による保持部21の昇降、ギアやベルトによる送り出し、紐状部材や帯状部材の巻き上げ・巻き下げ、ダンパ等により速度を制限した状態での自重による降下などが挙げられる。すなわち、飛行体が着陸した状態において、搭載物に与えられる衝撃が所定の衝撃の範囲内となるように下降および解放を行うという課題を達成し得るものであればよく、かかる方法はこの限りではない。また、昇降の際、搭載物の移動は鉛直方向のみに限られたものではなく、必要に応じて左右方向や前後方向への水平及び斜め移動を行ってもよい。 As a method for vertically moving the mounted object 10, the holder 21 is raised and lowered by a motor, a servo, or the like, sent out by a gear or belt, a string-shaped member or belt-shaped member is hoisted or lowered, and a damper or the like is used to limit the speed. descent due to its own weight. In other words, any method that can achieve the task of lowering and releasing the payload so that the impact applied to the payload is within a predetermined impact range when the aircraft has landed is sufficient. do not have. In addition, when lifting, the movement of the mounted object is not limited to the vertical direction, and horizontal and oblique movement in the left-right direction and the front-rear direction may be performed as necessary.
 保持部21の下降方法や速度、搭載物10が解放される位置(高さ等)は、搭載物10の種類、大きさ、重量や、着荷面200の素材等の様々な条件を踏まえ、搭載物へかかる衝撃が所定の大きさとなるよう決定され得る。例えば、より衝撃を小さくする場合には、搭載物を下降させる際の下降速度を遅く、且つ、解放位置を着荷面200に近い位置とすることが望ましい。この場合、荷下ろし全体の速度は低下しうる。 The lowering method and speed of the holding part 21 and the position (height etc.) at which the load 10 is released are determined based on various conditions such as the type, size and weight of the load 10 and the material of the landing surface 200. It can be determined that the impact on the object has a predetermined magnitude. For example, in order to reduce the impact, it is desirable to lower the descent speed when lowering the load and to set the release position to a position close to the landing surface 200 . In this case, the speed of the entire unloading can be slowed down.
 また、搭載部20は昇降機能を備えていても、備えていなくてもよい。図23及び図24に例示されるように、飛行体100の着陸またはホバリング時に、搭載物10の降下等を行わず、保持部21が搭載物10の保持をやめ、解放することで搭載物10の切り離しを行うことが出来る。この際、搭載物の切り離し位置(高さ)が着荷面200から大きく離れていると、搭載物に与えられる衝撃が所定の衝撃の範囲内とならず、荷崩れ等につながる場合がある。そのため、適切な切り離し位置となるよう着陸脚40の長さや搭載部20の位置を決定することが望ましい。 Also, the mounting portion 20 may or may not have a lifting function. As illustrated in FIGS. 23 and 24, when the flying object 100 lands or hovers, the mounting object 10 does not descend, etc., and the holding unit 21 stops holding the mounting object 10 and releases the mounting object 10. can be separated. At this time, if the separation position (height) of the load is far from the loading surface 200, the impact given to the load does not fall within a predetermined impact range, which may lead to collapse of the load. Therefore, it is desirable to determine the length of the landing leg 40 and the position of the mounting portion 20 so as to provide an appropriate uncoupling position.
 本実施形態において、搭載物10が、切り離し時に少なくとも鉛直下方を含む方向(飛行体下方)へと移動する場合、図23及び図24に例示されるように、搭載物10の重心位置が搭載物の中央付近にあり、且つ自重による落下に好適な重量であるとき、搭載部20からの切り離しはスムーズに行われる可能性が高い。しかし、実際の配送サービス提供時には、搭載物となる輸送箱等に内包される物品の位置によって重心が片寄ったり、搭載物が極端に軽量となったりするケースが存在する。 In this embodiment, when the mounted object 10 moves in a direction including at least the vertical downward direction (downward direction of the flying object) at the time of separation, as illustrated in FIGS. When it is in the vicinity of the center and has a weight suitable for dropping by its own weight, there is a high possibility that the separation from the mounting portion 20 will be performed smoothly. However, when actually providing a delivery service, there are cases in which the center of gravity of an article contained in a transport box or the like, which is a loaded item, is shifted depending on the position of the item, or the loaded item is extremely lightweight.
 例えば重心が一方に片寄っている場合、搭載物10は重い方に傾きやすくなるため、特に搭載物10を上下方向へと切り離しを行う場合に、切り離しの精度に影響を及ぼしうる。また、逆に重量が極端に軽い場合には、僅かな衝撃や摩擦によって搭載物の姿勢が変化して切り離しの精度に影響を及ぼしうる。例えば、図23及び図25のように、搭載物の自重を利用して下方に切り離す場合、搭載物が斜めになったことにより開口部等につかえてしまい、切り離しがスムーズに行えなくなる場合がありうる。 For example, if the center of gravity is to one side, the mounted object 10 tends to tilt to the heavier side, which may affect the detachment accuracy, especially when the mounted object 10 is detached in the vertical direction. Conversely, if the weight is extremely light, even a slight impact or friction may change the posture of the mounted object, which may affect the separation accuracy. For example, as shown in Figs. 23 and 25, when separating downward using the weight of the mounted object, the slanted object may get caught in the opening, etc., and the separation may not be performed smoothly. sell.
 また、搭載物10の切り離しに伴う移動方向が飛行体の前後や左右である場合にも、例えば、図26及び図27に例示されるように、搭載物の姿勢が変化することで搭載物が切り離し口に詰まり、切り離しが困難となる可能性がある。また、人が手作業で搭載物を移動させるケースにおいては、搭載部20と搭載物10とのクリアランスが少ない場合に、移動に不便が生じる可能性がある。 Further, even when the moving direction of the mounted object 10 accompanying the detachment is the front, rear, left, and right of the flying object, for example, as illustrated in FIGS. It may clog the disconnection port and make disconnection difficult. Moreover, in the case where a person manually moves the mounted object, if the clearance between the mounting portion 20 and the mounted object 10 is small, there is a possibility that the movement will be inconvenient.
 そこで本実施形態による搭載部20は、搭載部10が切り離し方向へと移動する動作を補助する為の、補助機構60を備えている。補助機構60は、搭載物10の切り離し時、搭載物10に対して所定の力を加えることで、搭載物10の搭載部20からの切り離しを補助する。これによって、例えば補助機構60は、搭載物10のスムーズな切り離しが可能となる重心位置及び重量の許容範囲を拡大しうる。 Therefore, the mounting section 20 according to the present embodiment includes an auxiliary mechanism 60 for assisting the movement of the mounting section 10 in the separating direction. The auxiliary mechanism 60 assists the separation of the mounted object 10 from the mounting portion 20 by applying a predetermined force to the mounted object 10 when the mounted object 10 is separated. As a result, for example, the auxiliary mechanism 60 can expand the allowable range of the center-of-gravity position and the weight that allow the mounted object 10 to be smoothly detached.
 図19-図22、図29及び図30に例示されるように、補助機構60は、例えば、ゴムバンド61の弾性変形に基づく反力を利用して搭載物10に力を加えることとしてもよい。具体的には、搭載部20に対して片端が接続された補助機構60の一部または全部がゴムバンドによって構成され、搭載物10が補助機構60に接触して、図13や図29のように変形させられた状態で設けられることで、切り離し方向に向かって搭載物10が押される力が加えられる。 As exemplified in FIGS. 19-22, 29 and 30, the auxiliary mechanism 60 may apply force to the mounted object 10 using, for example, reaction force based on elastic deformation of the rubber band 61. . Specifically, one end of the auxiliary mechanism 60 connected to the mounting portion 20 is partly or wholly formed of a rubber band, and the mounted object 10 contacts the auxiliary mechanism 60, thereby causing a shock as shown in FIGS. 13 and 29. By being provided in a deformed state, a force is applied to push the mounted object 10 in the detachment direction.
 図29及び図30に例示されるように、切り離し方向に搭載物10が解放されるとき、ゴムバンド61は元の形状に戻ろうとするため、補助機構60は搭載物10を切り離し方向へと押す力を生む。これにより、搭載物10の切り離しを補助する。搭載物10が軽量な場合には、ゴムバンド61による適切な力が加わることで搭載物10を切り離し方向へと押し出すことが可能である。また、搭載物10が重心の偏りによって切り離し方向に対して自身が傾斜しようとする場合には、図30に示されるように、重心から離れた、より上側(切り離し方向と逆側)に存在する箇所へと力が加わる為、搭載物の傾斜を戻そうとする作用が生じる。 As illustrated in FIGS. 29 and 30, when the mounted object 10 is released in the detachment direction, the rubber band 61 tries to return to its original shape, so the auxiliary mechanism 60 pushes the mounted object 10 in the detachment direction. generate power. This assists in separating the mounted object 10 . If the mounted object 10 is light, it is possible to push out the mounted object 10 in the separation direction by applying an appropriate force from the rubber band 61 . Also, when the mounted object 10 tends to incline in the separation direction due to the deviation of the center of gravity, as shown in FIG. Since the force is applied to the point, an action to return the inclination of the mounted object is generated.
 図19-図22は、ゴムバンド61を用いた補助機構60の具体的な構成例の一つを示している。補助機構60の構成及び切り離しの補助方法は、荷下ろしされる搭載物10に対して、切り離し方向に向かって所定の力を加えることが出来ればよく、上記の構成及び方法に限らない。例えば、ゴムバンド以外の弾性物質が持つ弾性や、モータ、サーボ、シリンダ等の動力、また、気圧、油圧、水圧等の圧力等を用いることでも同等又は近い効果を得ることが可能である。モータ等を用いる場合、タイミングや力の強さが調節可能となるが、補助機構60の重量はゴムバンド等を用いる場合に比較して増加しうる。そのため、種々のトレードオフを考慮して補助機構の構成は用途に応じて好適なものを選択することが望ましい。 19 to 22 show one specific configuration example of the auxiliary mechanism 60 using the rubber band 61. FIG. The configuration of the auxiliary mechanism 60 and the method for assisting separation are not limited to the above configurations and methods as long as they can apply a predetermined force in the separation direction to the load 10 to be unloaded. For example, the same or similar effects can be obtained by using the elasticity of elastic materials other than rubber bands, the power of motors, servos, cylinders, etc., and the pressure such as air pressure, oil pressure, and water pressure. When a motor or the like is used, the timing and strength of force can be adjusted, but the weight of the auxiliary mechanism 60 may increase compared to the case where a rubber band or the like is used. Therefore, it is desirable to select a configuration suitable for the auxiliary mechanism according to the application, taking various trade-offs into consideration.
 補助機構の構成が異なる場合にあっても、例えば、搭載物10へと力を加える部分(以下、作用部と総称する)の接触領域は線または面であることが望ましい(例えば、図28及び図31)。作用部の面積が狭い場合には、2点以上の複数の点を用いる。作用部の面積を広くすることによって、搭載物10への補助機構60による力の作用の精度が向上し、より確実に搭載物10を切り離すことができる。 Even if the configuration of the auxiliary mechanism is different, for example, it is desirable that the contact area of the portion that applies force to the mounted object 10 (hereinafter collectively referred to as the action portion) is a line or a surface (for example, FIG. 28 and FIG. 28). Figure 31). When the area of the action portion is small, two or more points are used. By increasing the area of the acting portion, the precision of the force exerted by the auxiliary mechanism 60 on the mounted object 10 is improved, and the mounted object 10 can be separated more reliably.
 補助機構60がバンドや紐形状の部材を含むとき、例えば部材を一時的に分割可能とし、搭載物10を上方から載置することとしても良い。例えば、図21及び図22に示されるように、ゴムバンド61を2本に分割し、その端同士が着脱可能となるバックル等の着脱パーツ62を設けることで、搭載物10の載置及び補助機構60の取り付けが簡便となる。 When the auxiliary mechanism 60 includes a band- or string-shaped member, for example, the member may be temporarily split so that the load 10 can be placed from above. For example, as shown in FIGS. 21 and 22, by dividing a rubber band 61 into two and providing a detachable part 62 such as a buckle whose ends can be detached from each other, the load 10 can be placed and supported. Attachment of the mechanism 60 becomes simple.
 また、搭載物10切り離しに伴う移動方向が飛行体の前後や左右である場合にも、本開示による補助機構60を用いることで、切り離しを簡便にすることが出来る。例えば、図27に示されるように、飛行体後方に搭載物を切り離す場合にも、衝撃が加わったり、人の手が触れたりしたことによって搭載物の向きのずれによる詰まり等が発生する場合がある。このような場合にも、図28に示されるような、本発明による補助機構60を用いた切り離しを行うことで、搭載物10の切り離し等において生じうる詰まり等を減少させることが可能である。 Also, even when the movement direction associated with the separation of the mounted object 10 is the front, rear, left, and right of the aircraft, the separation can be simplified by using the auxiliary mechanism 60 according to the present disclosure. For example, as shown in FIG. 27, even when the mounted object is separated from the rear of the aircraft, jamming or the like may occur due to the direction of the mounted object being shifted due to the impact or the touch of a human hand. be. Even in such a case, it is possible to reduce clogging or the like that may occur during separation of the mounted object 10 by performing separation using the auxiliary mechanism 60 according to the present invention as shown in FIG.
 さらに、補助機構60による搭載物10の切り離しにおける移動距離を長くし、搭載物10の全てが搭載部20の外に出る状態まで移動させることで、人が飛行体100に近付いて手で荷物を引き出すなどの作業を省略可能とすることが期待できる。 Furthermore, by lengthening the moving distance of the separation of the mounted object 10 by the auxiliary mechanism 60 and moving the mounted object 10 to a state where all the mounted object 10 is out of the mounting section 20, a person can approach the flying object 100 and lift the load by hand. It can be expected that work such as drawing out can be omitted.
 飛行体100の飛行及び搭載部10の切り離し動作の制御と、それに伴う補助機構60の動作の制御は、夫々が一部または全部異なる制御装置に組み込まれるプログラムによって実行されてもよいし、飛行体100が備える制御部が有するプログラムによって実行されるものとしてもよい。その他、自律制御が困難となる場合等に備え、上記の動作の制御は、プロポや管制システムを用いた遠隔操作により実行することも可能とすることが好ましい。 The control of the flight of the aircraft 100 and the detachment operation of the mounting section 10, and the control of the accompanying operation of the auxiliary mechanism 60 may be executed by programs incorporated in part or wholly different control devices. It may be executed by a program possessed by a control unit provided in 100 . In addition, in preparation for cases where autonomous control becomes difficult, it is preferable that the control of the above operations can also be executed by remote control using a radio or a control system.
 また、補助機構60は、図32及び図33に例示されるように、飛行体100のみならず、UGV(Unmanned Ground Vehicle)等の搭載部20を備える地上移動体300に設けてもよい。補助機構60を設けることで、飛行体100に設ける場合と同様に、地上移動体300から切り離される搭載物10の切り離しの精度を向上させ、切り離し動作の自動化が可能となる。 Also, as illustrated in FIGS. 32 and 33, the auxiliary mechanism 60 may be provided not only in the flying object 100 but also in a ground moving object 300 such as a UGV (Unmanned Ground Vehicle) having a mounting portion 20. By providing the auxiliary mechanism 60, the separation accuracy of the mounted object 10 separated from the ground moving body 300 can be improved, and the separation operation can be automated, as in the case of providing the auxiliary mechanism 60 in the aircraft 100.
 各実施の形態における飛行体の構成は、複数の飛行体を組み合わせて実施することが可能である。飛行体の製造におけるコストや、飛行体が運用される場所の環境や特性に合わせて、適宜好適な構成を検討することが望ましい。 The configuration of the aircraft in each embodiment can be implemented by combining multiple aircraft. It is desirable to consider a suitable configuration according to the cost of manufacturing the flying object and the environment and characteristics of the place where the flying object is operated.
 上述した実施の形態は、本技術の理解を容易にするための例示に過ぎず、本開示を限定して解釈するためのものではない。本開示は、その趣旨を逸脱することなく、変更、改良することができると共に、本開示にはその均等物が含まれることは言うまでもない。 The above-described embodiments are merely examples for facilitating understanding of the present technology, and are not intended to limit and interpret the present disclosure. It goes without saying that this disclosure can be modified and improved without departing from its spirit, and that this disclosure includes equivalents thereof.
10   搭載物
20   搭載部
21   保持部
22   接続部
23   ヒンジ
24   カバー部
25   ローラー
40   モータ
41   全ねじ棒
50   回動軸
60   補助機構
61   ゴムバンド
62   着脱パーツ
100  飛行体
110a~110h  プロペラ
111a~111h  モータ
120  フレーム
130  着陸脚
131  ダンパ
140  飛行部
200  着陸面(着荷面)
300  地上移動体
1000  バッテリ
1001  フライトコントローラ
1002  センサ類
1003  ジンバル
1004  送受信部
1006  送受信機(プロポ)

 
10 Mounted object 20 Mounting part 21 Holding part 22 Connecting part 23 Hinge 24 Cover part 25 Roller 40 Motor 41 Fully threaded rod 50 Rotating shaft 60 Auxiliary mechanism 61 Rubber band 62 Detachable part 100 Aircraft 110a to 110h Propellers 111a to 111h Motor 120 Frame 130 Landing leg 131 Damper 140 Flying part 200 Landing surface (landing surface)
300 ground moving body 1000 battery 1001 flight controller 1002 sensors 1003 gimbal 1004 transmitter/receiver 1006 transmitter/receiver (propo)

Claims (7)

  1.  搭載物を保持する搭載部と、
     前記搭載物を前記搭載部から切り離す際に前記搭載物に対して切り離し方向に向けて力を付与して切り離しにおける前記搭載物の移動を補助する補助機構と、
    を備える飛行体。
    a mounting portion for holding a mounted object;
    an auxiliary mechanism for applying a force in a separating direction to the mounted object when separating the mounted object from the mounting portion to assist the movement of the mounted object during separation;
    Air vehicle with
  2.  請求項1に記載の飛行体であって、
     前記搭載部は、前記搭載物の底面を保持する保持部を有し、
     前記搭載物は、前記保持部による前記搭載物の底面の保持が解放され前記搭載物が下方向に移動することで前記搭載部から切り離される、
    飛行体。
    The aircraft according to claim 1,
    The mounting section has a holding section that holds the bottom surface of the mounted object,
    The mounted object is separated from the mounting portion by releasing the holding of the bottom surface of the mounted object by the holding portion and moving the mounted object downward,
    Airplane.
  3.  請求項1及び請求項2に記載の飛行体であって、
     前記補助機構は、弾性変形により得られる反力により前記搭載物の移動を補助する、
     飛行体。
    The aircraft according to claim 1 and claim 2,
    The auxiliary mechanism assists the movement of the mounted object by a reaction force obtained by elastic deformation.
    Airplane.
  4.  請求項3に記載の飛行体であって、
     前記補助機構は、前記搭載部の前記搭載物を収容する空間の上部に架け渡されて設けられる、飛行体。
    The aircraft according to claim 3,
    The flying object, wherein the auxiliary mechanism is provided so as to span over a space for accommodating the load of the mounting portion.
  5.  請求項1及び請求項2に記載の飛行体であって、
     前記補助機構は、モータ動力により得られる力により前記搭載物の移動を補助する、
     ことを特徴とする飛行体。
    The aircraft according to claim 1 and claim 2,
    The auxiliary mechanism assists the movement of the mounted object with a force obtained by motor power.
    An aircraft characterized by:
  6.  搭載物を保持する搭載部を備える飛行体を用いた前記搭載物の着荷方法であって、
     前記飛行体の着陸時またはホバリング時において、前記飛行体に設けられる補助機構を用いて前記搭載物に対して切り離し方向に向けて力を付与して移動させて前記搭載物を前記飛行体から切り離す、
    着荷方法。
    A method for landing a load using an aircraft having a mounting portion for holding the load,
    At the time of landing or hovering of the flying object, an auxiliary mechanism provided on the flying object is used to apply a force to the mounted object in a detachment direction to move the mounted object, thereby separating the mounted object from the flying object. ,
    delivery method.
  7.  搭載物を保持する搭載部と、
     前記搭載物を前記搭載部から切り離す際に前記搭載物に対して切り離し方向に向けて力を付与して切り離しにおける前記搭載物の移動を補助する補助機構と、
    を備える地上移動体。

     
    a mounting portion for holding a mounted object;
    an auxiliary mechanism for applying a force in a separating direction to the mounted object when separating the mounted object from the mounting portion to assist the movement of the mounted object during separation;
    A ground vehicle comprising a

PCT/JP2022/000973 2022-01-13 2022-01-13 Aircraft, load landing method, and terrestrial vehicle WO2023135713A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000973 WO2023135713A1 (en) 2022-01-13 2022-01-13 Aircraft, load landing method, and terrestrial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000973 WO2023135713A1 (en) 2022-01-13 2022-01-13 Aircraft, load landing method, and terrestrial vehicle

Publications (1)

Publication Number Publication Date
WO2023135713A1 true WO2023135713A1 (en) 2023-07-20

Family

ID=87278678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000973 WO2023135713A1 (en) 2022-01-13 2022-01-13 Aircraft, load landing method, and terrestrial vehicle

Country Status (1)

Country Link
WO (1) WO2023135713A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4612801Y1 (en) * 1967-03-06 1971-05-07
US20160318615A1 (en) * 2015-04-28 2016-11-03 SkyFallX, LLC Autonomous safety and recovery system for unmanned aerial vehicles
CN109279019A (en) * 2018-10-30 2019-01-29 佛山市神风航空科技有限公司 A kind of logistics unmanned plane
CN210133280U (en) * 2019-05-15 2020-03-10 长江大学 Commodity circulation unmanned aerial vehicle goods linkage
WO2020136752A1 (en) * 2018-12-26 2020-07-02 楽天株式会社 Unmanned aerial vehicle, alarm, aircraft and alarm release device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4612801Y1 (en) * 1967-03-06 1971-05-07
US20160318615A1 (en) * 2015-04-28 2016-11-03 SkyFallX, LLC Autonomous safety and recovery system for unmanned aerial vehicles
CN109279019A (en) * 2018-10-30 2019-01-29 佛山市神风航空科技有限公司 A kind of logistics unmanned plane
WO2020136752A1 (en) * 2018-12-26 2020-07-02 楽天株式会社 Unmanned aerial vehicle, alarm, aircraft and alarm release device
CN210133280U (en) * 2019-05-15 2020-03-10 长江大学 Commodity circulation unmanned aerial vehicle goods linkage

Similar Documents

Publication Publication Date Title
US20200354049A1 (en) Vertical take-off and landing vehicle
EP3587263A1 (en) Vertical take-off and landing unmanned aerial vehicle
TW201836925A (en) Unmanned aerial vehicle with monolithic wing and twin-rotor propulsion/lift modules
WO2018225112A1 (en) Aerial vehicle
JP2018203226A (en) Flight vehicle
JP2019182174A (en) Flight body
CN217320757U (en) Aircraft with a flight control device
JP6664820B1 (en) Flying object
JP2023174892A (en) Flying body and cargo conveyance method using the same
JP7390054B2 (en) mobile object
WO2022070254A1 (en) Aircraft
WO2023135713A1 (en) Aircraft, load landing method, and terrestrial vehicle
WO2021124573A1 (en) Takeoff/landing system
WO2022049764A1 (en) Flying vehicle
WO2021250746A1 (en) Rotorcraft and method for controlling orientation thereof
CN218258694U (en) Flying body
CN220640232U (en) Aircraft with a plurality of aircraft body
WO2022239595A1 (en) Position restriction device, load receiving system, and method for moving cargo
CN220948591U (en) Flying body
JP7376204B2 (en) flying object
JP7057020B2 (en) How to transport an air vehicle and luggage using it
JP6970479B1 (en) Flying object
JP6664821B2 (en) Flying object
WO2023089735A1 (en) Flying object provided with safety device
JP6671705B2 (en) Flying object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920238

Country of ref document: EP

Kind code of ref document: A1