WO2023127731A1 - Spectacle lens and method for manufacturing spectacle lens - Google Patents

Spectacle lens and method for manufacturing spectacle lens Download PDF

Info

Publication number
WO2023127731A1
WO2023127731A1 PCT/JP2022/047656 JP2022047656W WO2023127731A1 WO 2023127731 A1 WO2023127731 A1 WO 2023127731A1 JP 2022047656 W JP2022047656 W JP 2022047656W WO 2023127731 A1 WO2023127731 A1 WO 2023127731A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
refractive index
spectacle
lens portion
spectacle lens
Prior art date
Application number
PCT/JP2022/047656
Other languages
French (fr)
Japanese (ja)
Inventor
好徳 吉田
Original Assignee
株式会社ニコン・エシロール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン・エシロール filed Critical 株式会社ニコン・エシロール
Publication of WO2023127731A1 publication Critical patent/WO2023127731A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • B29D11/00346Production of lenses with markings or patterns having nanosize structures or features, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length

Definitions

  • the present invention relates to a spectacle lens and a method for manufacturing a spectacle lens.
  • This application claims priority based on Japanese Patent Application No. 2021-212736 filed on December 27, 2021, the contents of which are incorporated herein.
  • a first aspect of the spectacle lens of the present invention includes: a first lens portion which is a concave lens made of at least a first material; a lens portion, wherein the first material has a first refractive index and the second material has a second refractive index greater than the first refractive index, the first lens portion comprising: It has a plurality of first unit elements made of at least the first material, the plurality of first unit elements are integral, and the second lens portion comprises a plurality of second lenses made of at least the second material. It has two unit elements, and the plurality of second unit elements are integral.
  • a second aspect of the spectacle lens of the present invention includes: a first lens portion which is a concave lens made of at least a first material; a lens portion, wherein the first material has a first refractive index and the second material has a second refractive index less than the first refractive index, the first lens portion comprising: It has a plurality of first unit elements made of at least the first material, the plurality of first unit elements are integral, and the second lens portion comprises a plurality of second lenses made of at least the second material. It has two unit elements, and the plurality of second unit elements are integral.
  • a first aspect of the spectacle lens manufacturing method of the present invention includes: a first lens portion that is a concave lens made of at least a first material; and a convex lens that is disposed within the first lens portion and made of at least a second material. a second lens portion, wherein the first material has a first refractive index, and the second material has a second refractive index greater than the first refractive index; Manufactured according to the law.
  • a second aspect of the spectacle lens manufacturing method of the present invention comprises: a first lens portion which is a concave lens made of at least a first material; and a concave lens placed in the first lens portion and made of at least a second material. a second lens portion, wherein the first material has a first refractive index and the second material has a second refractive index smaller than the first refractive index; Manufactured according to the law.
  • An inkjet 3D printer can be used as the layered manufacturing method.
  • FIG. 1 is a perspective view of spectacles provided with spectacle lenses according to an embodiment of the present invention
  • FIG. It is a front view of the said spectacle lens.
  • 3 is a cross-sectional view taken along a cutting line A1-A1 in FIG. 2
  • FIG. It is a perspective view which shows typically the 3D printer used for manufacturing the said spectacle lens.
  • It is sectional drawing which shows the state in which the inkjet head in the said 3D printer sprays ink. It is a sectional view showing the state where the ink-jet head in the above-mentioned 3D printer smoothes and hardens ink.
  • FIG. 2 is a cross-sectional view of a main part of the spectacle lens
  • 1 is a cross-sectional view of a patient's eye
  • FIG. 10 is a front view of a spectacle lens in a first modified example of one embodiment of the present invention
  • FIG. 11 is a front view of a spectacle lens in a second modified example of one embodiment of the present invention
  • spectacles 1 include a spectacle frame 10 and a pair of spectacle lenses 20 and 30 of the present embodiment.
  • the spectacle frame 10 is a frame with a known configuration.
  • the spectacle frame 10 is formed symmetrically with respect to the reference plane.
  • the spectacle frame 10 has a pair of rims 11 , a bridge 12 , a pair of nose pads 13 , a pair of hinges 14 and a pair of temples 15 . 1, one nose pad 13 and one hinge 14 are not shown.
  • Each rim 11 is ring-shaped.
  • the pair of rims 11 are arranged apart from each other along an orthogonal plane orthogonal to the reference plane.
  • a spectacle lens 20,30 Within each rim 11 is mounted a spectacle lens 20,30.
  • the bridges 12 are rod-shaped and extend along orthogonal planes.
  • a bridge 12 is arranged between a pair of limbs 11 .
  • a portion of the outer periphery of each rim 11 is fixed to each end of the bridge 12 .
  • Each nose pad 13 is provided near the portion of each rim 11 where the bridge 12 is provided. The nose pad 13 contacts the upper part of the nose of the user of the spectacles 1 .
  • Each hinge 14 has a first wing and a second wing, not shown.
  • the second blade is rotatable relative to the first blade.
  • the first blade is fixed to another portion of the outer peripheral edge of each rim 11 .
  • Each hinge 14 is arranged to sandwich spectacle lenses 20 and 30 with the bridge 12 .
  • Each temple 15 is formed in a bar shape and extends in a direction crossing each rim 11 (spectacle lenses 20, 30).
  • a first end of each temple 15 is secured to a second wing of each hinge 14 .
  • the hinge 14 allows the temple 15 to open and close relative to the rim 11 (rotate around the hinge 14).
  • a second end opposite the first end of each temple 15 is placed over each ear of the user.
  • the spectacle lenses 20 and 30 of the present embodiment can be used to correct myopia of the patient using the spectacles 1 .
  • the configuration of the spectacle lenses 20 and 30 is appropriately determined according to the patient's myopia condition.
  • the spectacle lenses 20, 30 are similar in construction to correct myopia in both eyes of the patient. Therefore, the spectacle lens 20 will be described below.
  • the spectacle lens 20 is the spectacle lens of the present embodiment, and the spectacle lens 30 has the second lens portion 32 described later.
  • the spectacle lens 20A includes a first lens portion 21 and a plurality of second lens portions 22.
  • the spectacle lens 20A shown in FIGS. 2 and 3 is in a state before processing the spectacle lens 20 to match the shape of the rim 11 of the spectacle frame 10 (before edging). In FIG. 2 and below, a portion of the cross section is not hatched.
  • the first lens unit 21 is a concave meniscus lens (concave lens).
  • the first lens portion 21 has a circular shape when viewed along the optical axis C1 of the first lens portion 21 .
  • the concave lens is not limited to a concave meniscus lens, and may be a biconcave lens, a plano-concave lens, or the like.
  • the first lens portion 21 is made of a first material having a first refractive index.
  • the refractive index shown below is a refractive index at the time of measuring with a mercury e-line (546.07 nm).
  • Each second lens portion 22 is a so-called microlens for the first lens portion 21 .
  • each second lens portion 22 is a biconvex lens (convex lens).
  • Each second lens portion 22 is formed of a second material having a second refractive index greater than the first refractive index.
  • the difference in refractive index between the first refractive index and the second refractive index is preferably 0.0001 (1/10000) or more, more preferably 0.001 (1/1000) or more.
  • the difference between the first refractive index and the second refractive index can preferably be 0.01 or more.
  • the difference between the first refractive index and the second refractive index can preferably be 0.1 or more.
  • the plurality of second lens units 22 are arranged inside the first lens unit 21 .
  • the plurality of second lens portions 22 are not exposed to the outside of the first lens portion 21 . There is no unevenness due to the plurality of second lens portions 22 on the outer surface of the first lens portion 21 facing the direction of the optical axis C1 or the inner surface facing opposite to the optical axis C1.
  • the plurality of second lens portions 22 are arranged in a first annular region R1 centered on the optical axis C1. .
  • the second lens portion 22 is not arranged near the optical axis C1.
  • the plurality of second lens portions 22 are spaced apart from each other and arranged so that each second lens portion 22 is positioned at the center of each hexagonal element that constitutes the honeycomb structure. Since the outer surface of the first lens portion 21 facing the direction of the optical axis C1 does not have unevenness due to the plurality of second lens portions 22, a coating layer or the like can be easily provided on these outer surfaces. Moreover, the same applies to the inner surface side.
  • the convex lens is not limited to a biconvex lens, and may be a plano-convex lens, a convex meniscus lens, or the like. One may be sufficient as the number of the 2nd lens parts 22 with which 20 A of spectacle lenses are provided.
  • the first lens part 21 and the plurality of second lens parts 22 are formed using a resin material that is transparent and hardened by energy ray irradiation or heat.
  • the energy ray is not particularly limited, but includes, for example, light.
  • light preferably ultraviolet light can be used.
  • irradiating ultraviolet rays will be described as an example, but embodiments of the present invention are not limited to ultraviolet rays.
  • an ultraviolet curable material which is a resin material that is cured by ultraviolet rays, is used for the first material and the second material.
  • a UV-curable material contains a polymerizable compound and a photopolymerization initiator.
  • the polymerizable compound is not particularly limited as long as a cured product having the first refractive index or the second refractive index can be obtained by polymerization.
  • the polymerizable compound is, for example, a radical polymerizable compound capable of radical polymerization.
  • Examples of radically polymerizable compounds include (meth)acrylic monomers having a (meth)acryloyl group.
  • (Meth)acrylic monomers include ethoxylated bisphenol A di(meth)acrylate, propoxylated bisphenol A di(meth)acrylate, ethoxylated bisphenol F di(meth)acrylate, 9,9-bis[4-(2-acryloyl) oxyethoxy)phenyl]fluorene, 2,2,4-trimethylhexamethylenebis(2-carbamoyloxyethyl)dimethacrylate, isobornyl (meth)acrylate, 4-(meth)acryloylmorpholine, dicyclopentanyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, lauryl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethylene glycol (meth)acrylate,
  • the type and content of the radical polymerizable compound in the ultraviolet curable material can be appropriately selected according to the viscosity of the ultraviolet curable material and the refractive index after curing.
  • polymerizable compound a radically polymerizable compound is exemplified, but a cationically polymerizable compound such as an oxetane resin having an oxetane ring may also be used as the polymerizable compound.
  • the photopolymerization initiator is not particularly limited as long as it generates radicals at the wavelength of the irradiated light (here, the wavelength of ultraviolet rays).
  • photopolymerization initiators include benzoin, benzoin methyl ether, benzoin butyl ether, benzophenol, acetophenone, 4,4'-dichlorobenzophenone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropane-1- on, benzyl methyl ketal, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 2-isopropylthiooxanthone, bis(2,4,6- trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenyl-phosphine oxide and the like.
  • a photocationic polymerizing agent that generates an acid at the wavelength of the light to be irradiated can preferably be used.
  • photocationic polymerization agents include aromatic sulfonium salts, aromatic iodonium salts, aromatic diazonium salts, and aromatic ammonium salts.
  • the ultraviolet curable material may contain components other than the polymerizable compound and the photopolymerization initiator.
  • Other components include coupling agents such as silane coupling agents (eg, 3-acryloxypropyltrimethoxysilane), rubber agents, ion trapping agents, ion exchange agents, leveling agents, plasticizers, antifoaming agents, and the like. agents.
  • An example of the refractive index of the first lens portion 21 made of an ultraviolet curable material is 1.50 to 1.70.
  • the refractive index of the UV curable material can be increased.
  • Inorganic nanoparticles with a refractive index between 2.1 and 3 can be selected from ZrO2, TiO2, BaTiO3, or ZnS, although other inorganic compounds may also be used.
  • the ultraviolet curable material that is the second material may further contain the inorganic nanoparticles.
  • the refractive index can be increased up to about 1.9.
  • an example of the refractive index of the second lens portion 22 formed by adding inorganic nanoparticles to an ultraviolet curable material is 1.60 or more.
  • the ultraviolet curable material of the first material may contain the inorganic nanoparticles.
  • a refractive index of 1.50 to 1.70 or more can also be obtained by introducing, for example, sulfur element, bromine element, or a cyclic compound, as a method other than the introduction of the nanoparticles.
  • the spectacle lens 20A configured as described above is manufactured by the layered manufacturing method.
  • a 3D printer three-dimensional printer
  • an inkjet method material injection method
  • J826 manufactured by Stratasys
  • an example of a 3D printer will be described using an inkjet type 3D printer as an example.
  • the 3D printer 100 has a Z movement mechanism 101, a stage 102, an inkjet head 103, and an XY movement mechanism (not shown).
  • the Z movement mechanism 101 has a main body 101a and a support member 101b.
  • a drive motor, a linear guide, and the like are incorporated in a housing (not shown).
  • the support member 101b is arranged above the main body 101a. When the drive motor is driven, the support member 101b moves in the direction Z with respect to the housing of the main body 101a by being guided by the linear guide.
  • the Z movement mechanism 101 is arranged so that the direction Z extends along the vertical direction.
  • the stage 102 is flat.
  • the stage 102 is arranged above the support member 101b and fixed to the support member 101b.
  • the stage 102 supports the spectacle lens 20A and the like from below the spectacle lens 20A.
  • the inkjet head 103 has a main body 106, a plurality of nozzles 107, a roller 108, and a UV lamp 109.
  • a housing incorporates a plurality of ink cartridges, a control circuit for controlling a plurality of nozzles 107, and the like.
  • a plurality of ink cartridges contain ink I for manufacturing the lens portions 21 and 22, respectively.
  • One of the plurality of inks I is an ink IA having a first refractive index when cured for manufacturing the first lens portion 21 .
  • Another one of the plurality of inks I is an ink IB having a second refractive index when cured for manufacturing the plurality of second lens portions 22 .
  • a plurality of nozzles 107 and UV lamps 109 are fixed to the bottom surface of the body 106 .
  • the plurality of nozzles 107 includes nozzles 107A for spraying ink IA and nozzles 107B for spraying ink IB. Each nozzle 107 sprays each ink I downward.
  • the UV lamp 109 emits UV downward.
  • the first layer 25 and the second layer 26 are parts of the spectacle lens 20A that are made in the process of manufacturing the spectacle lens 20A.
  • the first layer 25 is formed of a first material having a first refractive index and a second material having a second refractive index.
  • the second layer 26 is also similar to the first layer 25 .
  • a first layer 25 is placed on the stage 102 .
  • a second layer 26 is laminated on the first layer 25 .
  • the XY moving mechanism is configured similarly to the Z moving mechanism 101 .
  • the XY moving mechanism moves the inkjet head 103 in directions X and Y that are perpendicular to the direction Z and perpendicular to each other.
  • the direction X, the direction Y, and the direction Z may be directions that intersect each other.
  • Direction X and direction Y are directions along the horizontal plane.
  • the 3D printer 100 configured as described above operates, for example, as follows. As shown in FIG. 5, droplets of ink I are sprayed onto the second layer 26 from a plurality of nozzles 107 while moving the inkjet head 103 to one side in the Y direction by, for example, an XY moving mechanism. At this time, the ink IA is sprayed onto the position where the first lens portion 21 is to be manufactured. Ink IB is sprayed onto positions where the plurality of second lens portions 22 are to be manufactured.
  • the Z moving mechanism 101 moves the stage 102 upward. While moving the inkjet head 103 to the other side opposite to the one side in the direction Y by the XY moving mechanism, the roller 108 is brought into contact with the upper surface of the inks IA and IB, and the inks IA and IB are smoothed by the roller 108 . When UV is irradiated from the UV lamp 109, the inks IA and IB are cured. In the third layer 27 on the second layer 26, portions corresponding to the first lens portion 21 and the plurality of second lens portions 22 are manufactured. Layers 25, 26, 27 are stacked in direction Z. FIG. After layer 27 is formed, stage 102 is lowered to stack the next layer.
  • the first unit element 21a is made of a first material. That is, the first unit element 21a is a portion of the first lens portion 21 formed by curing one droplet of the ink IA sprayed from the nozzle 107A.
  • the second unit element 22a is manufactured by one droplet of the ink IB sprayed from the nozzle 107B and curing of the droplet.
  • the second unit element 22a is made of a second material. That is, the second unit element 22a is a portion of the second lens portion 22 formed by curing one droplet of the ink IB sprayed from the nozzle 107B.
  • first layer 25 and the second layer 26 are composed of at least one of the first unit element 21a and the second unit element 22a.
  • the first lens portion 21 has a plurality of first unit elements 21a.
  • the multiple first unit elements 21a are integral.
  • the second lens portion 22 has a plurality of second unit elements 22a.
  • the multiple second unit elements 22a are integral.
  • the size of one second unit element 22a can preferably be made as small as possible.
  • the size of one first unit element 21a is the same as that of the second unit element 22a.
  • the plurality of second lens portions 22 are arranged within the first lens portion 21, and the outer surface of each second lens portion 22 cannot be polished after the spectacle lens 20A is manufactured. For this reason as well, the size of one second unit element 22a can preferably be made as small as possible.
  • a method of forming one first unit element using both droplets includes a method of unevenly distributing ink IA and ink IB in one first unit element, or a method of mixing ink IA and ink IB.
  • a possible method is to configure one first unit element by using That is, at least a part of the plurality of first unit elements may be composed of the first material and a third material having a third refractive index different from the first refractive index but smaller than the second refractive index.
  • the first lens portion (first unit element) is made of the first material and the third material (at least the first material).
  • the second lens portion (at least part of the plurality of second unit elements) may also be made of a material (at least the second material) having a refractive index higher than the first refractive index in addition to the second material. .
  • the arrangement of the second lens portion 22, and the spectacle lens 20A are viewed in the direction along the optical axis C1, a plurality of lenses arranged per unit area in the first annular region R1
  • the number of the second lens units 22 (hereinafter referred to as the arrangement density of the second lens units 22) can be set arbitrarily. With such a configuration, it is possible to increase the degree of freedom in designing the spectacle lens 20A.
  • the first unit element and the second unit element are defined as follows.
  • the three-dimensional shape of each lens portion is equally divided for each xyz axis.
  • the x-axis is divided by the length ⁇ x
  • the y-axis is divided by the length ⁇ y
  • the z-axis is divided by the length ⁇ z to obtain the three-dimensional shape of each lens part.
  • the first unit element is an element having a unit length divided for each axis for configuring the first lens portion.
  • the first unit element is an element having a length ⁇ x along the x-axis, a length ⁇ y along the y-axis, and a length ⁇ z along the z-axis.
  • the second unit element is an element having a unit length divided for each axis for configuring the second lens portion.
  • the lengths of ⁇ x, ⁇ y, and ⁇ z may not be the same.
  • the unit elements (the first unit element and the second unit element) may be spherical with a diameter of ⁇ l. In this case, the unit elements may be arranged in parallel, arranged in a cubic lattice, or arranged in a close-packed structure, for example. If the 3D printer is inkjet, each unit element is formed by curing one droplet of ink.
  • the first unit element and the second unit element are defined as follows.
  • the spectacle lens 20A is composed of a plurality of layers stacked in a predetermined stacking direction such as the vertical direction.
  • a portion formed of the first material included in each layer is the first unit element.
  • a portion formed of the second material included in each layer is the second unit element.
  • a first lens portion is configured by having a plurality of first unit elements stacked in the stacking direction.
  • a plurality of first unit elements are integrated to form a first lens portion.
  • the second lens portion is configured by having a plurality of second unit elements stacked in the stacking direction.
  • a plurality of second unit elements are integrated to form a second lens portion.
  • the spectacle lens 30 includes a first lens portion 31 and a plurality of second lens portions 32 configured in the same manner as the first lens portion 21 and the plurality of second lens portions 22 of the spectacle lens 20. Prepare.
  • the plurality of second lens portions 32 are arranged in the annular first annular region R2.
  • the spectacle lens 30 before being processed to match the shape of the spectacle frame 10 is hereinafter referred to as a spectacle lens 30A.
  • a method for manufacturing the spectacle lens 20A configured as described above includes, for example, manufacturing the spectacle lens 20A with the 3D printer 100 (by the layered manufacturing method).
  • the spectacle lens 30A is similar to the spectacle lens 20A.
  • FIG. 8 shows a cross-sectional view of the eyeball P2 of the patient P1.
  • This patient P1 is myopic and has an elongated eyeball P2.
  • Reference P4 is the crystalline lens of the eyeball P2.
  • a spectacle lens 20A is arranged on the near side (in front of the patient P1) with respect to the eyeball P2.
  • Parallel light passing through the first lens portion 21, which is a concave meniscus lens, is refracted and propagates.
  • Parallel light passing through the second lens portion 22, which is a biconvex lens travels so as to gather at one point.
  • the light M1 that passes through the first lens unit 21 and does not pass through the second lens unit 22 passes through the crystalline lens P4 and is focused (formed into an image) on the focal plane S1 located on the retina P3 of the eyeball P2.
  • the light M2 that has passed through the first lens unit 21 and the second lens unit 22 is focused on the focal plane S2 located on the front side of the retina P3, except on the optical axis C1. For this reason, it is thought that the retina P3 is brought to the near side in an attempt to focus, thereby suppressing the elongation of the eye axis.
  • the doctor measures the shape of the retina P3 (focal plane S1) of the patient P1 by OCT (Optical Coherence Tomography) or the like.
  • OCT Optical Coherence Tomography
  • the doctor creates prescriptions for the spectacle lenses 20A and 30A based on the measurement results.
  • the following prescription data is determined for the spectacle lens 20A based on the measurement results.
  • Part of the prescription data is the second refractive index, the shape of the plurality of second lens units 22 , the size of the plurality of second lens units 22 , and the arrangement of the plurality of second lens units 22 .
  • Another part of the prescription data is the arrangement density of the second lens units 22 .
  • the shape, distribution, and density of the second lens portion 22 can be preferably determined by the lens manufacturer (manufacturer) based on the eye condition of the patient P1 from the OCT data.
  • the arrangement density and the like of the second lens unit 22 are set based on the progress speed of the myopia of the patient P1, for example, the temporal change of the eye axis, the difference between the age of the patient P1 and the standard eye axial length, and the like.
  • the spectacle lens 30A is similar to the spectacle lens 20A.
  • the doctor sends OCT data and/or axial length data to the lens manufacturer in addition to the prescription data.
  • a lens manufacturer designs spectacle lenses 20A and 30A based on the prescription data.
  • spectacle lenses 20A and 30A are manufactured.
  • the spectacle lenses 20A and 30A are subjected to edging to manufacture the spectacle lenses 20 and 30. ⁇
  • the spectacle lenses 20 and 30 are attached to the pair of rims 11 of the spectacle frame 10 to manufacture the spectacles 1. - ⁇
  • a patient P1 uses spectacles 1 .
  • myopia of the patient P1 is corrected.
  • a patient P1 regularly sees a doctor.
  • the first to third steps are repeated as appropriate according to the progression of myopia of the patient P1.
  • the parallel light passing through the first lens portion 21, which is a concave lens is refracted and spreads, and the parallel light passing through the second lens portion 22, which is a convex lens. advances so as to gather more than the light before passing through the second lens portion 22 .
  • the first lens unit 21 makes it easier to focus on the retina P3 of the eyeball P2 whose eye axis has become longer due to myopia.
  • the light M2 that has passed through the first lens portion 21 and the second lens portion 22 is focused on the front side of the light M1 that has passed through the first lens portion 21 and has not passed through the second lens portion 22 .
  • the first lens portion 21 has a plurality of first unit elements 21a, and the plurality of first unit elements 21a are integrated.
  • the second lens portion 22 has a plurality of second unit elements 22a, and the plurality of second unit elements 22a are integrated. Therefore, for example, it is possible to form the first lens portion 21 by spraying the first material and forming the second lens portion 22 by spraying the second material, etc., using an inkjet 3D printer 100 or the like. can. Further, for example, the spectacle lens 20A in which the prescription data is changed according to the degree of progression of myopia of the patient P1 can be easily manufactured by the 3D printer 100 or the like even if it is custom-made.
  • At least part of the plurality of first unit elements may be composed of the first material and the third material.
  • the degree of freedom in designing the first unit element can be increased.
  • the multiple second lens portions 22 are arranged in the first annular region R1. Therefore, when the position of the spectacle lens 20A around the optical axis C1 with respect to the eyeball P2 changes, it is possible to suppress the change in the image visually recognized by the patient P1.
  • the image of light passing through the first annular region may appear cloudy depending on whether the light passes through the second lens portion. Therefore, the light passing through the optical axis C1 and passing through the center of the annular first annular region R1 can be visually recognized without clouding the image.
  • the parallel light that has passed through the first lens portion 21, which is a concave lens is refracted and spreads, and passes through the second lens portion 22, which is a convex lens.
  • the parallel light that has passed through travels so as to be more concentrated than the light that has not passed through the second lens section 22 .
  • the first lens unit 21 makes it easier to focus on the retina P3 of the eyeball P2 whose eye axis has become longer due to myopia.
  • the light M2 that has passed through the first lens portion 21 and the second lens portion 22 is focused on the front side of the light M1 that has passed through the first lens portion 21 and has not passed through the second lens portion 22 .
  • the spectacle lens 20A By manufacturing the spectacle lens 20A with the 3D printer 100, the custom-made spectacle lens 20A in which the shape of the second lens unit 22, its arrangement and density are changed according to the progress of myopia of the patient P1 can be easily manufactured. can be manufactured to
  • the spectacle lens 20A of the present embodiment can be variously modified in configuration as described below.
  • a plurality of fourth lens portions 41 may be provided.
  • Each of the plurality of fourth lens portions 41 is a biconvex lens (convex lens).
  • Each fourth lens portion 41 is made of a material having a fourth refractive index greater than the first refractive index.
  • the plurality of fourth lens units 41 are arranged inside the first lens unit 21 .
  • the plurality of fourth lens portions 41 are arranged in an annular second annular region R4 centered on the optical axis C1 when the spectacle lens 40A is viewed in a direction along the optical axis C1.
  • the second annular region R4 is spaced outward from the first annular region R1 (outside in the radial direction of the first lens portion 21). That is, a gap is formed between the first annular region R1 and the second annular region R4.
  • the second refractive index and the fourth refractive index may or may not be equal to each other.
  • the shape of the second lens portion 22 and the shape of the fourth lens portion 41 may or may not be equal to each other.
  • the number of the plurality of fourth lens portions 41 arranged per unit area in the second annular region R4 when the spectacle lens 40A is viewed in the direction along the optical axis C1 will be referred to as the arrangement of the fourth lens portions 41. called density.
  • the arrangement density of the second lens units 22 and the arrangement density of the fourth lens units 41 may or may not be equal to each other.
  • the spectacle lens 40A of the first modified example configured as described above can be easily manufactured even if it is made-to-order. Furthermore, the plurality of fourth lens portions 41 are arranged in the second annular region R4 when the spectacle lens 40A is viewed in the direction along the optical axis C1. Therefore, it is possible to obtain the effect of suppressing myopia progression over a wider range in the visual field of the patient P1.
  • the light that has passed through the gap between the first annular region R1 and the second annular region R4 can be visually recognized without clouding the image of the light.
  • the second refractive index and the fourth refractive index are equal to each other, and the shape of the second lens portion 22 and the shape of the fourth lens portion 41 may or may not be equal to each other.
  • the arrangement density of the second lens units 22 and the arrangement density of the fourth lens units 41 may or may not be equal to each other. Therefore, the extent to which the progression of myopia of the patient P1 is suppressed by the plurality of second lens units 22 and the extent to which the progression of myopia of the patient P1 is suppressed by the plurality of fourth lens units 41 are made equal over the entire retina P3, Alternatively, it can be varied depending on the range of the retina P3.
  • the number of fourth lens portions 41 included in the spectacle lens 40A may be one.
  • the second refractive index and the fourth refractive index may be different from each other.
  • the shape of the second lens portion 22 and the shape of the fourth lens portion 41 may be different from each other.
  • the arrangement density of the second lens units 22 and the arrangement density of the fourth lens units 41 may be different from each other.
  • a plurality of fifth lens portions 46 may be provided in addition to each configuration of the spectacle lens 40A of the first modified example.
  • Each of the plurality of fifth lens portions 46 is a biconvex lens (convex lens).
  • Each fifth lens portion 46 is formed of a material having a fifth refractive index greater than the first refractive index.
  • a plurality of fifth lens units 46 are arranged within the first lens unit 21 .
  • the plurality of fifth lens portions 46 are arranged in an annular third annular region R6 centered on the optical axis C1 when the spectacle lens 45A is viewed in the direction along the optical axis C1.
  • the third annular region R6 is arranged in the gap between the first annular region R1 and the second annular region R4.
  • the arrangement of the fifth lens portions 46 called density.
  • the fifth index is equal to the second index and the fourth index.
  • the shape of the fifth lens portion 46, the shape of the second lens portion 22, and the shape of the fourth lens portion 41 are equal to each other.
  • the arrangement density of the fifth lens sections 46 is smaller than the arrangement density of the second lens sections 22 and the arrangement density of the fourth lens sections 41 .
  • the spectacle lens 45A of the second modified example configured as described above can be easily manufactured even if it is made-to-order. Furthermore, the light that has passed through the third annular region R6 can also suppress myopia progression in the patient.
  • the arrangement density of the fifth lens section 46 is smaller than the arrangement density of the second lens section 22 and the arrangement density of the fourth lens section 41, the image formed by the light passing through the third annular region R6 is projected onto the first annular region. The image can be visually recognized with less cloudiness than the image formed by the light passing through R1 and the second annular region R4.
  • the number of the fifth lens portion 46 included in the spectacle lens 45A may be one.
  • the convex lenses in the fourth lens portion 41 and the fifth lens portion 46 are not limited to biconvex lenses, and may be plano-convex lenses, convex meniscus lenses, or the like.
  • the second lens portion may be a concave lens.
  • the second material forming the second lens portion has a second refractive index that is less than the first refractive index. Since the second refractive index is smaller than the first refractive index, parallel light that has passed through the second lens section, which is a concave lens, travels in a more concentrated manner than light that has not passed through the second lens section.
  • the second lens portion (second unit element) is made of a second material having a second refractive index smaller than the first refractive index.
  • This spectacle lens manufacturing method manufactures this spectacle lens with the 3D printer 100, for example.
  • the eyeglass lens and the eyeglass lens manufacturing method of the third modified example configured as described above can produce the same effects as the eyeglass lens 20A and the eyeglass lens manufacturing method of the present embodiment.
  • the second lens portion in this case may also be made of a material having a refractive index smaller than the first refractive index and different from the second refractive index, and the second material.
  • the plurality of second lens portions 22 may be arranged in portions of the first lens portion 21 other than the first annular region R1.
  • the number of annular regions in which lens portions are arranged may be three or more.
  • the plurality of second lens units arranged inside the first lens unit may be made of a material having a different refractive index for each second lens unit.
  • a spectacle lens having such a configuration can be realized by a 3D printer.
  • the spectacle lens may be a contact lens. Spectacle lenses and contact lenses are included in lenses for vision correction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Eyeglasses (AREA)

Abstract

A spectacle lens (20A) comprises: a first lens part (21) that is a concave lens formed by at least a first material; a second lens part (22) that is a convex lens disposed within the first lens part and formed by at least a second material. The first material has a first refractive index, and the second material has a second refractive index larger than the first refractive index. The first lens part has a plurality of first unit elements (21a) formed by at least the first material, and the plurality of first unit elements are united. The second lens part has a plurality of second unit elements (22a) formed by at least the second material, and the plurality of second unit elements are united.

Description

眼鏡レンズ及び眼鏡レンズの製造方法Spectacle lens and spectacle lens manufacturing method
 本発明は、眼鏡レンズ及び眼鏡レンズの製造方法に関する。
 本願は、2021年12月27日に出願された日本国特許出願2021-212736号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a spectacle lens and a method for manufacturing a spectacle lens.
This application claims priority based on Japanese Patent Application No. 2021-212736 filed on December 27, 2021, the contents of which are incorporated herein.
 従来、近視の進行を抑制する眼鏡レンズが知られている。 Conventionally, spectacle lenses that suppress the progression of myopia are known.
米国特許出願公開第2017/0131567号明細書U.S. Patent Application Publication No. 2017/0131567 国際公開第2019/189764号WO2019/189764 国際公開第2019/124352号WO2019/124352 国際公開第2020/069232号WO2020/069232
 本発明の眼鏡レンズの第1態様は、少なくとも第1材料で形成された凹レンズである第1レンズ部と;前記第1レンズ部内に配置され、少なくとも第2材料で形成された凸レンズである第2レンズ部と;を備え、前記第1材料は、第1屈折率を有し、前記第2材料は、前記第1屈折率よりも大きい第2屈折率を有し、前記第1レンズ部は、少なくとも前記第1材料で形成された複数の第1単位要素を有し、前記複数の第1単位要素は一体であり、前記第2レンズ部は、少なくとも前記第2材料で形成された複数の第2単位要素を有し、前記複数の第2単位要素は一体である。 A first aspect of the spectacle lens of the present invention includes: a first lens portion which is a concave lens made of at least a first material; a lens portion, wherein the first material has a first refractive index and the second material has a second refractive index greater than the first refractive index, the first lens portion comprising: It has a plurality of first unit elements made of at least the first material, the plurality of first unit elements are integral, and the second lens portion comprises a plurality of second lenses made of at least the second material. It has two unit elements, and the plurality of second unit elements are integral.
 本発明の眼鏡レンズの第2態様は、少なくとも第1材料で形成された凹レンズである第1レンズ部と;前記第1レンズ部内に配置され、少なくとも第2材料で形成された凹レンズである第2レンズ部と;を備え、前記第1材料は、第1屈折率を有し、前記第2材料は、前記第1屈折率よりも小さい第2屈折率を有し、前記第1レンズ部は、少なくとも前記第1材料で形成された複数の第1単位要素を有し、前記複数の第1単位要素は一体であり、前記第2レンズ部は、少なくとも前記第2材料で形成された複数の第2単位要素を有し、前記複数の第2単位要素は一体である。 A second aspect of the spectacle lens of the present invention includes: a first lens portion which is a concave lens made of at least a first material; a lens portion, wherein the first material has a first refractive index and the second material has a second refractive index less than the first refractive index, the first lens portion comprising: It has a plurality of first unit elements made of at least the first material, the plurality of first unit elements are integral, and the second lens portion comprises a plurality of second lenses made of at least the second material. It has two unit elements, and the plurality of second unit elements are integral.
 本発明の眼鏡レンズの製造方法の第1態様は、少なくとも第1材料で形成された凹レンズである第1レンズ部と;前記第1レンズ部内に配置され、少なくとも第2材料で形成された凸レンズである第2レンズ部と;を備え、前記第1材料は、第1屈折率を有し、前記第2材料は、前記第1屈折率よりも大きい第2屈折率を有する眼鏡レンズを、積層造形法により製造する。 A first aspect of the spectacle lens manufacturing method of the present invention includes: a first lens portion that is a concave lens made of at least a first material; and a convex lens that is disposed within the first lens portion and made of at least a second material. a second lens portion, wherein the first material has a first refractive index, and the second material has a second refractive index greater than the first refractive index; Manufactured according to the law.
 本発明の眼鏡レンズの製造方法の第2態様は、少なくとも第1材料で形成された凹レンズである第1レンズ部と;前記第1レンズ部内に配置され、少なくとも第2材料で形成された凹レンズである第2レンズ部と;を備え、前記第1材料は、第1屈折率を有し、前記第2材料は、前記第1屈折率よりも小さい第2屈折率を有する眼鏡レンズを、積層造形法により製造する。
 積層造形法として、インクジェット方式の3Dプリンタを用いることができる。
A second aspect of the spectacle lens manufacturing method of the present invention comprises: a first lens portion which is a concave lens made of at least a first material; and a concave lens placed in the first lens portion and made of at least a second material. a second lens portion, wherein the first material has a first refractive index and the second material has a second refractive index smaller than the first refractive index; Manufactured according to the law.
An inkjet 3D printer can be used as the layered manufacturing method.
本発明の一実施形態の眼鏡レンズを備える眼鏡の斜視図である。1 is a perspective view of spectacles provided with spectacle lenses according to an embodiment of the present invention; FIG. 上記眼鏡レンズの正面図である。It is a front view of the said spectacle lens. 図2中の切断線A1-A1の断面図である。3 is a cross-sectional view taken along a cutting line A1-A1 in FIG. 2; FIG. 上記眼鏡レンズを製造するのに用いられる3Dプリンタを模式的に示す斜視図である。It is a perspective view which shows typically the 3D printer used for manufacturing the said spectacle lens. 上記3Dプリンタにおけるインクジェットヘッドがインクを吹き付ける状態を示す断面図である。It is sectional drawing which shows the state in which the inkjet head in the said 3D printer sprays ink. 上記3Dプリンタにおけるインクジェットヘッドがインクをならして硬化させる状態を示す断面図である。It is a sectional view showing the state where the ink-jet head in the above-mentioned 3D printer smoothes and hardens ink. 上記眼鏡レンズの要部の断面図である。FIG. 2 is a cross-sectional view of a main part of the spectacle lens; 患者の眼球の断面図である。1 is a cross-sectional view of a patient's eye; FIG. 本発明の一実施形態の第1変形例における眼鏡レンズの正面図である。FIG. 10 is a front view of a spectacle lens in a first modified example of one embodiment of the present invention; 本発明の一実施形態の第2変形例における眼鏡レンズの正面図である。FIG. 11 is a front view of a spectacle lens in a second modified example of one embodiment of the present invention;
 以下、本発明に係る眼鏡レンズを備える眼鏡、及び眼鏡レンズの製造方法の一実施形態を、図1から図10を参照しながら説明する。
 図1に示すように、眼鏡1は、眼鏡フレーム10と、一対の本実施形態の眼鏡レンズ20,30と、を備える。
 眼鏡フレーム10は、公知の構成のフレームである。例えば、眼鏡フレーム10は、基準面に対して対称に形成される。眼鏡フレーム10は、一対のリム11と、ブリッジ12と、一対の鼻パッド13と、一対の丁番14と、一対のテンプル15と、を有する。
 なお、図1では、一方の鼻パッド13及び一方の丁番14は、示していない。
An embodiment of spectacles provided with spectacle lenses and a method for manufacturing spectacle lenses according to the present invention will be described below with reference to FIGS. 1 to 10 .
As shown in FIG. 1, spectacles 1 include a spectacle frame 10 and a pair of spectacle lenses 20 and 30 of the present embodiment.
The spectacle frame 10 is a frame with a known configuration. For example, the spectacle frame 10 is formed symmetrically with respect to the reference plane. The spectacle frame 10 has a pair of rims 11 , a bridge 12 , a pair of nose pads 13 , a pair of hinges 14 and a pair of temples 15 .
1, one nose pad 13 and one hinge 14 are not shown.
 各リム11は、リング状である。一対のリム11は、基準面に直交する直交面に沿って、互いに離間した状態に配置される。各リム11内には、眼鏡レンズ20,30が取付けられる。
 ブリッジ12は、棒状に形成され、直交面に沿って延びる。ブリッジ12は、一対のリム11の間に配置される。ブリッジ12の各端部には、各リム11における外周縁の一部が固定される。
 各鼻パッド13は、各リム11におけるブリッジ12が設けられた部分の近傍に設けられる。鼻パッド13は、眼鏡1の使用者の鼻における上側の部分に接触する。
Each rim 11 is ring-shaped. The pair of rims 11 are arranged apart from each other along an orthogonal plane orthogonal to the reference plane. Within each rim 11 is mounted a spectacle lens 20,30.
The bridges 12 are rod-shaped and extend along orthogonal planes. A bridge 12 is arranged between a pair of limbs 11 . A portion of the outer periphery of each rim 11 is fixed to each end of the bridge 12 .
Each nose pad 13 is provided near the portion of each rim 11 where the bridge 12 is provided. The nose pad 13 contacts the upper part of the nose of the user of the spectacles 1 .
 各丁番14は、図示はしないが、第1羽根と、第2羽根と、を有する。第2羽根は、第1羽根に対して相対的に回動できる。第1羽根は、各リム11における外周縁の他の一部に固定される。各丁番14は、ブリッジ12とともに眼鏡レンズ20,30を挟むように配置される。
 各テンプル15は、棒状に形成され、各リム11(眼鏡レンズ20,30)に交差する方向に延びる。各テンプル15の第1端部は、各丁番14の第2羽根に固定される。丁番14により、テンプル15はリム11に対して開閉(丁番14回りに回動)できる。各テンプル15における第1端部とは反対の第2端部は、使用者の各耳に掛けられる。
Each hinge 14 has a first wing and a second wing, not shown. The second blade is rotatable relative to the first blade. The first blade is fixed to another portion of the outer peripheral edge of each rim 11 . Each hinge 14 is arranged to sandwich spectacle lenses 20 and 30 with the bridge 12 .
Each temple 15 is formed in a bar shape and extends in a direction crossing each rim 11 (spectacle lenses 20, 30). A first end of each temple 15 is secured to a second wing of each hinge 14 . The hinge 14 allows the temple 15 to open and close relative to the rim 11 (rotate around the hinge 14). A second end opposite the first end of each temple 15 is placed over each ear of the user.
 後述するように、本実施形態の眼鏡レンズ20,30を用いて、眼鏡1を使用する患者の近視を矯正することができる。眼鏡レンズ20,30の構成は、患者の近視の状態に応じて、適宜決められる。この例では、患者の両目の近視を矯正するために、眼鏡レンズ20,30の構成は互いに同様である。このため以下では、眼鏡レンズ20について説明する。
 なお、例えば、患者における眼鏡レンズ20に対応する目の近視だけを矯正する場合には、眼鏡レンズ20だけ本実施形態の眼鏡レンズで、眼鏡レンズ30は、後述する第2レンズ部32を有さない一般的なレンズでもよい。
As will be described later, the spectacle lenses 20 and 30 of the present embodiment can be used to correct myopia of the patient using the spectacles 1 . The configuration of the spectacle lenses 20 and 30 is appropriately determined according to the patient's myopia condition. In this example, the spectacle lenses 20, 30 are similar in construction to correct myopia in both eyes of the patient. Therefore, the spectacle lens 20 will be described below.
For example, in the case of correcting only the myopia of the eye corresponding to the spectacle lens 20 of the patient, only the spectacle lens 20 is the spectacle lens of the present embodiment, and the spectacle lens 30 has the second lens portion 32 described later. Ordinary lenses that do not have
 図2及び図3に示すように、眼鏡レンズ20Aは、第1レンズ部21と、複数の第2レンズ部22と、を備える。なお、図2及び図3に示す眼鏡レンズ20Aは、眼鏡フレーム10のリム11の形状に合わせて眼鏡レンズ20を加工する前の状態(玉摺り加工前の状態)である。図2以下では、断面の一部にハッチングを付していない。
 第1レンズ部21は、凹メニスカスレンズ(凹レンズ)である。第1レンズ部21は、第1レンズ部21の光軸C1に沿う方向に見たときに、円形状である。なお、凹レンズは、凹メニスカスレンズに限定されず、両凹レンズ、平凹レンズ等でもよい。第1レンズ部21は、第1屈折率を有する第1材料で形成される。なお、以下に示す屈折率は、水銀e線(546.07nm)で測定した場合の屈折率である。
As shown in FIGS. 2 and 3, the spectacle lens 20A includes a first lens portion 21 and a plurality of second lens portions 22. As shown in FIGS. The spectacle lens 20A shown in FIGS. 2 and 3 is in a state before processing the spectacle lens 20 to match the shape of the rim 11 of the spectacle frame 10 (before edging). In FIG. 2 and below, a portion of the cross section is not hatched.
The first lens unit 21 is a concave meniscus lens (concave lens). The first lens portion 21 has a circular shape when viewed along the optical axis C1 of the first lens portion 21 . The concave lens is not limited to a concave meniscus lens, and may be a biconcave lens, a plano-concave lens, or the like. The first lens portion 21 is made of a first material having a first refractive index. In addition, the refractive index shown below is a refractive index at the time of measuring with a mercury e-line (546.07 nm).
 各第2レンズ部22は、第1レンズ部21に対する、いわゆる微小レンズである。この例では、各第2レンズ部22は両凸レンズ(凸レンズ)である。各第2レンズ部22は、第1屈折率よりも大きい第2屈折率を有する第2材料で形成される。第1屈折率と第2屈折率との屈折率の違いは、好ましくは0.0001(1/10000)以上にでき、より好ましくは0.001(1/1000)以上にできる。第1屈折率と第2屈折率との差は、好ましくは0.01以上にできる。第1屈折率と第2屈折率との差は、好ましくは0.1以上にできる。
 複数の第2レンズ部22は、第1レンズ部21内に配置される。すなわち、複数の第2レンズ部22は、第1レンズ部21の外部に露出しない。第1レンズ部21における光軸C1方向を向く外面もしくは、光軸C1に対して逆に向く内面に、複数の第2レンズ部22による凹凸は無い。
Each second lens portion 22 is a so-called microlens for the first lens portion 21 . In this example, each second lens portion 22 is a biconvex lens (convex lens). Each second lens portion 22 is formed of a second material having a second refractive index greater than the first refractive index. The difference in refractive index between the first refractive index and the second refractive index is preferably 0.0001 (1/10000) or more, more preferably 0.001 (1/1000) or more. The difference between the first refractive index and the second refractive index can preferably be 0.01 or more. The difference between the first refractive index and the second refractive index can preferably be 0.1 or more.
The plurality of second lens units 22 are arranged inside the first lens unit 21 . That is, the plurality of second lens portions 22 are not exposed to the outside of the first lens portion 21 . There is no unevenness due to the plurality of second lens portions 22 on the outer surface of the first lens portion 21 facing the direction of the optical axis C1 or the inner surface facing opposite to the optical axis C1.
 図2に示すように、複数の第2レンズ部22は、眼鏡レンズ20Aを光軸C1に沿う方向に見たときに、光軸C1を中心とする環状の第1環状領域R1に配置される。光軸C1の近傍には、第2レンズ部22は配置されない。複数の第2レンズ部22は、互いに離間するとともに、各第2レンズ部22が、ハニカム構造を構成する各六角形の要素の中心に位置するように配置される。
 第1レンズ部21における光軸C1方向を向く外面に複数の第2レンズ部22による凹凸は無いため、これらの外面にコーティング層等を容易に設けることができる。また、内面側についても同様である。
 なお、凸レンズは、両凸レンズに限定されず、平凸レンズ、凸メニスカスレンズ等でもよい。眼鏡レンズ20Aが備える第2レンズ部22の数は、1つでもよい。
As shown in FIG. 2, when the spectacle lens 20A is viewed in the direction along the optical axis C1, the plurality of second lens portions 22 are arranged in a first annular region R1 centered on the optical axis C1. . The second lens portion 22 is not arranged near the optical axis C1. The plurality of second lens portions 22 are spaced apart from each other and arranged so that each second lens portion 22 is positioned at the center of each hexagonal element that constitutes the honeycomb structure.
Since the outer surface of the first lens portion 21 facing the direction of the optical axis C1 does not have unevenness due to the plurality of second lens portions 22, a coating layer or the like can be easily provided on these outer surfaces. Moreover, the same applies to the inner surface side.
The convex lens is not limited to a biconvex lens, and may be a plano-convex lens, a convex meniscus lens, or the like. One may be sufficient as the number of the 2nd lens parts 22 with which 20 A of spectacle lenses are provided.
 例えば、第1レンズ部21及び複数の第2レンズ部22は、透明で、エネルギー線照射又は熱により硬化する樹脂材料を用いて形成される。エネルギー線としては、特に限定されないが、例えば、光等が挙げられる。エネルギー線として光を用いる場合は、好ましくは紫外線を用いることができる。以下、紫外線を照射する場合を例に挙げて説明するが、本発明の実施形態は紫外線に限定されない。なお、紫外線を照射して硬化する場合、第1材料及び第2材料には、紫外線で硬化する樹脂材料である紫外線硬化型材料を用いる。 For example, the first lens part 21 and the plurality of second lens parts 22 are formed using a resin material that is transparent and hardened by energy ray irradiation or heat. The energy ray is not particularly limited, but includes, for example, light. When light is used as the energy ray, preferably ultraviolet light can be used. Hereinafter, the case of irradiating ultraviolet rays will be described as an example, but embodiments of the present invention are not limited to ultraviolet rays. In addition, when curing is performed by irradiating ultraviolet rays, an ultraviolet curable material, which is a resin material that is cured by ultraviolet rays, is used for the first material and the second material.
 紫外線硬化型材料は、重合性化合物と光重合開始剤とを含む。重合性化合物は、重合により上記第1屈折率又は第2屈折率を有する硬化物が得られるのであれば、特に限定されない。重合性化合物は、例えば、ラジカル重合可能なラジカル重合性化合物である。 A UV-curable material contains a polymerizable compound and a photopolymerization initiator. The polymerizable compound is not particularly limited as long as a cured product having the first refractive index or the second refractive index can be obtained by polymerization. The polymerizable compound is, for example, a radical polymerizable compound capable of radical polymerization.
 ラジカル重合性化合物としては、例えば、(メタ)アクリロイル基を有する(メタ)アクリルモノマーが挙げられる。(メタ)アクリルモノマーとしては、エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)ジメタクリレート、イソボルニル(メタ)アクリレート、4-(メタ)アクリロイルモルホリン、ジシクロペンタニル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレートなどが挙げられる。 Examples of radically polymerizable compounds include (meth)acrylic monomers having a (meth)acryloyl group. (Meth)acrylic monomers include ethoxylated bisphenol A di(meth)acrylate, propoxylated bisphenol A di(meth)acrylate, ethoxylated bisphenol F di(meth)acrylate, 9,9-bis[4-(2-acryloyl) oxyethoxy)phenyl]fluorene, 2,2,4-trimethylhexamethylenebis(2-carbamoyloxyethyl)dimethacrylate, isobornyl (meth)acrylate, 4-(meth)acryloylmorpholine, dicyclopentanyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, lauryl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethylene glycol (meth)acrylate, phenoxydiethylene glycol (meth)acrylate and the like.
 紫外線硬化型材料中のラジカル重合性化合物の種類及び含有量は、紫外線硬化型材料の粘度、硬化後の屈折率に応じて適宜選択することができる。 The type and content of the radical polymerizable compound in the ultraviolet curable material can be appropriately selected according to the viscosity of the ultraviolet curable material and the refractive index after curing.
 重合性化合物として、ラジカル重合性化合物を例に挙げたが、重合性化合物として、オキセタン環を有するオキセタン樹脂などカチオン重合可能なカチオン重合性化合物を用いてもよい。 As the polymerizable compound, a radically polymerizable compound is exemplified, but a cationically polymerizable compound such as an oxetane resin having an oxetane ring may also be used as the polymerizable compound.
 光重合開始剤としては、照射する光の波長(ここでは、紫外線の波長)でラジカルを発生するのであれば特に限定されない。光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ベンゾフェノール、アセトフェノン、4,4'-ジクロロベンゾフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-イソプロピルチオオキサントン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォシフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニル-フォスフィンオキサイド等が挙げられる。 The photopolymerization initiator is not particularly limited as long as it generates radicals at the wavelength of the irradiated light (here, the wavelength of ultraviolet rays). Examples of photopolymerization initiators include benzoin, benzoin methyl ether, benzoin butyl ether, benzophenol, acetophenone, 4,4'-dichlorobenzophenone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropane-1- on, benzyl methyl ketal, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 2-isopropylthiooxanthone, bis(2,4,6- trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenyl-phosphine oxide and the like.
 重合性化合物がカチオン重合性化合物の場合は、照射する光の波長で酸を発生する光カチオン重合剤を好ましくは用いることができる。光カチオン重合剤としては、例えば、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ジアゾニウム塩、芳香族アンモニウム塩等が挙げられる。 When the polymerizable compound is a cationic polymerizable compound, a photocationic polymerizing agent that generates an acid at the wavelength of the light to be irradiated can preferably be used. Examples of photocationic polymerization agents include aromatic sulfonium salts, aromatic iodonium salts, aromatic diazonium salts, and aromatic ammonium salts.
 紫外線硬化型材料は、重合性化合物及び光重合開始剤以外のその他の成分を含んでもよい。その他の成分としては、シランカップリング剤(例えば3-アクリロキシプロピルトリメトキシシラン)等のカップリング剤、ゴム剤、イオントラップ剤、イオン交換剤、レベリング剤、可塑剤、消泡剤等の添加剤が挙げられる。 The ultraviolet curable material may contain components other than the polymerizable compound and the photopolymerization initiator. Other components include coupling agents such as silane coupling agents (eg, 3-acryloxypropyltrimethoxysilane), rubber agents, ion trapping agents, ion exchange agents, leveling agents, plasticizers, antifoaming agents, and the like. agents.
 紫外線硬化型材料で形成された第1レンズ部21の屈折率の一例は、1.50~1.70である。 An example of the refractive index of the first lens portion 21 made of an ultraviolet curable material is 1.50 to 1.70.
 例えば、紫外線硬化型材料に無機(鉱物)ナノ粒子を導入することにより、紫外線硬化型材料の屈折率を増加させることができる。2.1~3の屈折率を有する無機ナノ粒子は、ZrO2、TiO2、BaTiO3、又はZnSから選択できるが、その他の無機化合物を用いても良い。
 例えば、第2材料となる紫外線硬化型材料がさらに、上記無機ナノ粒子を含有してもよい。無機ナノ粒子を含有することで、屈折率を1.9程度まで大きくすることができる。例えば、紫外線硬化型材料に無機ナノ粒子を添加して形成された第2レンズ部22の屈折率の一例は、1.60以上である。第1材料の紫外線硬化型材料が、上記無機ナノ粒子を含有してもよい。
 また、上記ナノ粒子の導入以外の方法として、例えば硫黄元素、臭素元素、環状化合物の導入によっても1.50~1.70以上の屈折率を得ることができる。
 後述する第3材料、第4屈折率を有する材料、第5レンズ部46を形成する材料等についても、同様である。
For example, by introducing inorganic (mineral) nanoparticles into a UV curable material, the refractive index of the UV curable material can be increased. Inorganic nanoparticles with a refractive index between 2.1 and 3 can be selected from ZrO2, TiO2, BaTiO3, or ZnS, although other inorganic compounds may also be used.
For example, the ultraviolet curable material that is the second material may further contain the inorganic nanoparticles. By containing inorganic nanoparticles, the refractive index can be increased up to about 1.9. For example, an example of the refractive index of the second lens portion 22 formed by adding inorganic nanoparticles to an ultraviolet curable material is 1.60 or more. The ultraviolet curable material of the first material may contain the inorganic nanoparticles.
A refractive index of 1.50 to 1.70 or more can also be obtained by introducing, for example, sulfur element, bromine element, or a cyclic compound, as a method other than the introduction of the nanoparticles.
The same applies to the third material, the material having the fourth refractive index, the material forming the fifth lens portion 46, and the like, which will be described later.
 例えば、以上のように構成された眼鏡レンズ20Aは、積層造形法により製造される。
 積層造形法として、インクジェット方式(材料噴射方式)等の3Dプリンタ(3次元プリンタ)を用いることができる。インクジェット方式の3Dプリンタとしては、例えば、J826(stratasys社製)が用いられる。
 ここで、3Dプリンタの一例について、3Dプリンタがインクジェット方式である場合を例にとって説明する。
For example, the spectacle lens 20A configured as described above is manufactured by the layered manufacturing method.
A 3D printer (three-dimensional printer) such as an inkjet method (material injection method) can be used as the layered manufacturing method. As an inkjet 3D printer, for example, J826 (manufactured by Stratasys) is used.
Here, an example of a 3D printer will be described using an inkjet type 3D printer as an example.
 図4に示すように、3Dプリンタ100は、Z移動機構101と、ステージ102と、インクジェットヘッド103と、XY移動機構(不図示)と、を有する。
 例えば、Z移動機構101は、本体101aと、支持部材101bと、を有する。
 本体101aでは、筐体(符号省略)に、図示しない駆動モータ及びリニアガイド等が内蔵される。
 支持部材101bは、本体101aよりも上方に配置される。
 駆動モータを駆動すると、リニアガイドに案内されることにより、本体101aの筐体に対して支持部材101bが方向Zに移動する。Z移動機構101は、方向Zが上下方向に沿うように配置される。
As shown in FIG. 4, the 3D printer 100 has a Z movement mechanism 101, a stage 102, an inkjet head 103, and an XY movement mechanism (not shown).
For example, the Z movement mechanism 101 has a main body 101a and a support member 101b.
In the main body 101a, a drive motor, a linear guide, and the like (not shown) are incorporated in a housing (not shown).
The support member 101b is arranged above the main body 101a.
When the drive motor is driven, the support member 101b moves in the direction Z with respect to the housing of the main body 101a by being guided by the linear guide. The Z movement mechanism 101 is arranged so that the direction Z extends along the vertical direction.
 ステージ102は、平板状である。ステージ102は、支持部材101bよりも上方に配置され、支持部材101bに固定される。ステージ102は、眼鏡レンズ20A等を、眼鏡レンズ20Aの下方から支持する。 The stage 102 is flat. The stage 102 is arranged above the support member 101b and fixed to the support member 101b. The stage 102 supports the spectacle lens 20A and the like from below the spectacle lens 20A.
 図5に示すように、インクジェットヘッド103は、本体106と、複数のノズル107と、ローラ108と、UVランプ109と、を有する。
 本体106では、筐体(符号省略)に、複数のインクカートリッジ、複数のノズル107を制御するための制御回路等が内蔵される。
 複数のインクカートリッジには、レンズ部21,22を製造するためのインクIがそれぞれ収容される。複数のインクIのうちの1つは、第1レンズ部21を製造するための、硬化したときに第1屈折率を有するインクIAである。複数のインクIのうちの他の1つは、複数の第2レンズ部22を製造するための、硬化したときに第2屈折率を有するインクIBである。
As shown in FIG. 5, the inkjet head 103 has a main body 106, a plurality of nozzles 107, a roller 108, and a UV lamp 109.
In the main body 106, a housing (reference numerals omitted) incorporates a plurality of ink cartridges, a control circuit for controlling a plurality of nozzles 107, and the like.
A plurality of ink cartridges contain ink I for manufacturing the lens portions 21 and 22, respectively. One of the plurality of inks I is an ink IA having a first refractive index when cured for manufacturing the first lens portion 21 . Another one of the plurality of inks I is an ink IB having a second refractive index when cured for manufacturing the plurality of second lens portions 22 .
 複数のノズル107及びUVランプ109は、本体106の下面に固定される。
 複数のノズル107は、インクIAを吹き付けるためのノズル107Aと、インクIBを吹き付けるためのノズル107Bと、を有する。各ノズル107は、各インクIを下方に向かって吹き付ける。
 UVランプ109は、下方に向かってUVを照射する。
A plurality of nozzles 107 and UV lamps 109 are fixed to the bottom surface of the body 106 .
The plurality of nozzles 107 includes nozzles 107A for spraying ink IA and nozzles 107B for spraying ink IB. Each nozzle 107 sprays each ink I downward.
The UV lamp 109 emits UV downward.
 第1層25及び第2層26は、眼鏡レンズ20Aを製造する過程で作られる眼鏡レンズ20Aの一部である。第1層25は、第1屈折率を有する第1材料、及び第2屈折率を有する第2材料で形成される。第2層26についても、第1層25と同様である。
 第1層25は、ステージ102上に配置される。第2層26は、第1層25上に積層される。
The first layer 25 and the second layer 26 are parts of the spectacle lens 20A that are made in the process of manufacturing the spectacle lens 20A. The first layer 25 is formed of a first material having a first refractive index and a second material having a second refractive index. The second layer 26 is also similar to the first layer 25 .
A first layer 25 is placed on the stage 102 . A second layer 26 is laminated on the first layer 25 .
 XY移動機構は、Z移動機構101と同様に構成される。XY移動機構は、インクジェットヘッド103を、方向Zに直交するとともに互いに直交する方向X及び方向Yに移動する。なお、方向X、方向Y、及び方向Zは、互いに交差する方向であってもよい。
 方向X及び方向Yは、それぞれ水平面に沿う方向である。
The XY moving mechanism is configured similarly to the Z moving mechanism 101 . The XY moving mechanism moves the inkjet head 103 in directions X and Y that are perpendicular to the direction Z and perpendicular to each other. Note that the direction X, the direction Y, and the direction Z may be directions that intersect each other.
Direction X and direction Y are directions along the horizontal plane.
 以上のように構成された3Dプリンタ100は、例えば以下のように動作する。
 図5に示すように、例えば、XY移動機構により、インクジェットヘッド103を方向Yの一方側に移動させながら、複数のノズル107からインクIの液滴を第2層26上に吹き付ける。この際に、第1レンズ部21を製造する位置に、インクIAを吹き付ける。
 複数の第2レンズ部22を製造する位置に、インクIBを吹き付ける。
The 3D printer 100 configured as described above operates, for example, as follows.
As shown in FIG. 5, droplets of ink I are sprayed onto the second layer 26 from a plurality of nozzles 107 while moving the inkjet head 103 to one side in the Y direction by, for example, an XY moving mechanism. At this time, the ink IA is sprayed onto the position where the first lens portion 21 is to be manufactured.
Ink IB is sprayed onto positions where the plurality of second lens portions 22 are to be manufactured.
 図6に示すように、Z移動機構101によりステージ102を上方に移動させる。XY移動機構により、インクジェットヘッド103を方向Yにおける一方側とは反対の他方側に移動させながら、インクIA,IBの上面にローラ108を接触させ、インクIA,IBをローラ108でならす。UVランプ109からUVを照射すると、インクIA,IBが硬化する。第2層26上の第3層27において、第1レンズ部21及び複数の第2レンズ部22に対応する部分が製造される。層25,26,27は、方向Zに積層される。層27を形成した後、ステージ102を下降させ、次の層を積層していく。
 ノズル107Aから吹き付けられたインクIAの1つの液滴、及びその液滴の硬化により、第1単位要素21aが製造される。第1単位要素21aは、第1材料で形成される。
 つまり、第1単位要素21aは、第1レンズ部21のうち、ノズル107Aから吹き付けられたインクIAの1つの液滴を硬化させることにより形成された部分である。
 ノズル107Bから吹き付けられたインクIBの1つの液滴、及びその液滴の硬化により、第2単位要素22aが製造される。第2単位要素22aは、第2材料で形成される。
 つまり、第2単位要素22aは、第2レンズ部22のうち、ノズル107Bから吹き付けられたインクIBの1つの液滴を硬化させることにより形成された部分である。
As shown in FIG. 6, the Z moving mechanism 101 moves the stage 102 upward. While moving the inkjet head 103 to the other side opposite to the one side in the direction Y by the XY moving mechanism, the roller 108 is brought into contact with the upper surface of the inks IA and IB, and the inks IA and IB are smoothed by the roller 108 . When UV is irradiated from the UV lamp 109, the inks IA and IB are cured. In the third layer 27 on the second layer 26, portions corresponding to the first lens portion 21 and the plurality of second lens portions 22 are manufactured. Layers 25, 26, 27 are stacked in direction Z. FIG. After layer 27 is formed, stage 102 is lowered to stack the next layer.
One droplet of the ink IA sprayed from the nozzle 107A and curing of the droplet produce the first unit element 21a. The first unit element 21a is made of a first material.
That is, the first unit element 21a is a portion of the first lens portion 21 formed by curing one droplet of the ink IA sprayed from the nozzle 107A.
The second unit element 22a is manufactured by one droplet of the ink IB sprayed from the nozzle 107B and curing of the droplet. The second unit element 22a is made of a second material.
That is, the second unit element 22a is a portion of the second lens portion 22 formed by curing one droplet of the ink IB sprayed from the nozzle 107B.
 図示はしないが、第1層25及び第2層26は、第1単位要素21a及び第2単位要素22aの少なくとも一方で構成される。 Although not shown, the first layer 25 and the second layer 26 are composed of at least one of the first unit element 21a and the second unit element 22a.
 図7中に、第2レンズ部22の理想的な形状の一例を、二点鎖線L1で示す。
 第1レンズ部21は、複数の第1単位要素21aを有する。複数の第1単位要素21aは、一体である。第2レンズ部22は、複数の第2単位要素22aを有する。複数の第2単位要素22aは、一体である。
 第2レンズ部22の外面を滑らかに形成するために、1つの第2単位要素22aの大きさは好ましくはできるだけ小さくすることができる。1つの第1単位要素21aの大きさについても、第2単位要素22aと同様である。
 特に、複数の第2レンズ部22は第1レンズ部21内に配置され、眼鏡レンズ20Aを製造した後には、各第2レンズ部22の外面を研磨できない。このためにも、1つの第2単位要素22aの大きさは好ましくはできるだけ小さくすることができる。
In FIG. 7, an example of an ideal shape of the second lens portion 22 is indicated by a chain double-dashed line L1.
The first lens portion 21 has a plurality of first unit elements 21a. The multiple first unit elements 21a are integral. The second lens portion 22 has a plurality of second unit elements 22a. The multiple second unit elements 22a are integral.
In order to form the outer surface of the second lens portion 22 smoothly, the size of one second unit element 22a can preferably be made as small as possible. The size of one first unit element 21a is the same as that of the second unit element 22a.
In particular, the plurality of second lens portions 22 are arranged within the first lens portion 21, and the outer surface of each second lens portion 22 cannot be polished after the spectacle lens 20A is manufactured. For this reason as well, the size of one second unit element 22a can preferably be made as small as possible.
 さらに、ノズル107Aから吹き付けるインクIAの液滴、及びノズル107Bから吹き付けるインクIBの液滴の大きさを変え、両方の液滴を使用して、1つの第1単位要素を好ましくは形成することができる。それにより、二点鎖線L1で示す構造をより緻密に作ることができる。両方の液滴を使用して1つの第1単位要素を形成する方法には、1つの第1単位要素内に、インクIAとインクIBを偏在させる方法、または、インクIAとインクIBを混合して1つの第1単位要素を構成する方法がとり得る。
 すなわち、第1屈折率とは異なり、第2屈折率よりも小さい第3屈折率を有する第3材料、及び第1材料で、複数の第1単位要素の少なくとも一部を構成してもよい。この場合、第1レンズ部(第1単位要素)は第1材料及び第3材料(少なくとも第1材料)で形成される。第2レンズ部(複数の第2単位要素の少なくとも一部)についても、第2材料に加えて、第1屈折率よりも大きい屈折率を有する材料(少なくとも第2材料)で形成されてもよい。
Further, it is possible to change the size of droplets of ink IA sprayed from nozzle 107A and droplets of ink IB sprayed from nozzle 107B, and use both droplets to preferably form one first unit element. can. Thereby, the structure indicated by the two-dot chain line L1 can be made more densely. A method of forming one first unit element using both droplets includes a method of unevenly distributing ink IA and ink IB in one first unit element, or a method of mixing ink IA and ink IB. A possible method is to configure one first unit element by using
That is, at least a part of the plurality of first unit elements may be composed of the first material and a third material having a third refractive index different from the first refractive index but smaller than the second refractive index. In this case, the first lens portion (first unit element) is made of the first material and the third material (at least the first material). The second lens portion (at least part of the plurality of second unit elements) may also be made of a material (at least the second material) having a refractive index higher than the first refractive index in addition to the second material. .
 なお、第2レンズ部22の形状、第2レンズ部22の配置、及び眼鏡レンズ20Aを光軸C1に沿う方向に見たときの、第1環状領域R1における単位面積当たりに配置された複数の第2レンズ部22(以下では、第2レンズ部22の配置密度と言う)の数は、それぞれ任意に設定可能である。
 このように構成されているため、眼鏡レンズ20Aにおける設計の自由度を高めることができる。
In addition, when the shape of the second lens portion 22, the arrangement of the second lens portion 22, and the spectacle lens 20A are viewed in the direction along the optical axis C1, a plurality of lenses arranged per unit area in the first annular region R1 The number of the second lens units 22 (hereinafter referred to as the arrangement density of the second lens units 22) can be set arbitrarily.
With such a configuration, it is possible to increase the degree of freedom in designing the spectacle lens 20A.
 なお、眼鏡レンズ20Aを製造する3Dプリンタの種類がインクジェット方式である場合には、第1単位要素及び第2単位要素は以下のように規定される。
 xyzの直交座標系において、各レンズ部の3次元形状をxyzの各軸毎に等分割する。例えば、x軸に対して長さ△xで分割し、y軸に対して長さ△yで分割し、z軸に対して長さ△zで分割して、各レンズ部の3次元形状を形成する。
 その際に、第1単位要素は、第1レンズ部を構成するための、各軸ごとに分割された単位長さを有する要素である。すなわち、第1単位要素は、x軸方向に長さ△x、y軸方向に長さ△y、z軸方向に長さ△zを有する要素である。
 同様に、第2単位要素は、第2レンズ部を構成するための、各軸ごとに分割された単位長さを有する要素である。
In addition, when the type of 3D printer that manufactures the spectacle lens 20A is an inkjet system, the first unit element and the second unit element are defined as follows.
In the xyz orthogonal coordinate system, the three-dimensional shape of each lens portion is equally divided for each xyz axis. For example, the x-axis is divided by the length Δx, the y-axis is divided by the length Δy, and the z-axis is divided by the length Δz to obtain the three-dimensional shape of each lens part. Form.
At that time, the first unit element is an element having a unit length divided for each axis for configuring the first lens portion. That is, the first unit element is an element having a length Δx along the x-axis, a length Δy along the y-axis, and a length Δz along the z-axis.
Similarly, the second unit element is an element having a unit length divided for each axis for configuring the second lens portion.
 上記直交座標系において、Δx、Δy、Δzの長さは同一でなくてもよい。
 単位要素(第1単位要素及び第2単位要素)は、長さΔlを直径とした球状であるとしてもよい。この場合、単位要素は、例えば、並列に並んでもよいし、立方格子状に並んでもよいし、最密構造状に並んでいてもよい。
 3Dプリンタがインクジェット方式である場合には、各単位要素は、インクの1つの液滴を硬化させることにより形成される。
In the orthogonal coordinate system, the lengths of Δx, Δy, and Δz may not be the same.
The unit elements (the first unit element and the second unit element) may be spherical with a diameter of Δl. In this case, the unit elements may be arranged in parallel, arranged in a cubic lattice, or arranged in a close-packed structure, for example.
If the 3D printer is inkjet, each unit element is formed by curing one droplet of ink.
 眼鏡レンズ20Aを製造する3Dプリンタの種類が熱溶解積層方式、光造形方式、粉末焼結方式である場合には、第1単位要素及び第2単位要素は以下のように規定される。
 これらの方式では、眼鏡レンズ20Aは、上下方向等の所定の積層方向に重ねられた複数の層により構成される。各層に含まれる第1材料で形成された部分が、第1単位要素である。各層に含まれる第2材料で形成された部分が、第2単位要素である。
 積層方向に重ねられた複数の第1単位要素を有して、第1レンズ部が構成される。複数の第1単位要素が一体となって、第1レンズ部を構成する。同様に、積層方向に重ねられた複数の第2単位要素を有して、第2レンズ部が構成される。複数の第2単位要素が一体となって、第2レンズ部を構成する。
When the type of 3D printer that manufactures the spectacle lens 20A is the fused lamination method, stereolithography method, or powder sintering method, the first unit element and the second unit element are defined as follows.
In these methods, the spectacle lens 20A is composed of a plurality of layers stacked in a predetermined stacking direction such as the vertical direction. A portion formed of the first material included in each layer is the first unit element. A portion formed of the second material included in each layer is the second unit element.
A first lens portion is configured by having a plurality of first unit elements stacked in the stacking direction. A plurality of first unit elements are integrated to form a first lens portion. Similarly, the second lens portion is configured by having a plurality of second unit elements stacked in the stacking direction. A plurality of second unit elements are integrated to form a second lens portion.
 図1に示すように、眼鏡レンズ30は、眼鏡レンズ20の第1レンズ部21、複数の第2レンズ部22と同様に構成された、第1レンズ部31、複数の第2レンズ部32を備える。複数の第2レンズ部32は、環状の第1環状領域R2に配置される。図示はしないが、眼鏡フレーム10の形状に合わせて加工する前の眼鏡レンズ30を、以下では眼鏡レンズ30Aと言う。
 以上のように構成された眼鏡レンズ20Aを製造する眼鏡レンズの製造方法は、例えば、眼鏡レンズ20Aを、3Dプリンタ100で(積層造形法により)製造する。眼鏡レンズ30Aについても、眼鏡レンズ20Aと同様である。
As shown in FIG. 1, the spectacle lens 30 includes a first lens portion 31 and a plurality of second lens portions 32 configured in the same manner as the first lens portion 21 and the plurality of second lens portions 22 of the spectacle lens 20. Prepare. The plurality of second lens portions 32 are arranged in the annular first annular region R2. Although not shown, the spectacle lens 30 before being processed to match the shape of the spectacle frame 10 is hereinafter referred to as a spectacle lens 30A.
A method for manufacturing the spectacle lens 20A configured as described above includes, for example, manufacturing the spectacle lens 20A with the 3D printer 100 (by the layered manufacturing method). The spectacle lens 30A is similar to the spectacle lens 20A.
 次に、眼鏡1(眼鏡レンズ20A,30A)を用いて患者の近視を矯正する手順について説明する。
 図8に、患者P1の眼球P2の断面図を示す。この患者P1は近視であり、眼球P2の眼軸が長くなっている。符号P4は、眼球P2の水晶体である。
 眼球P2に対して手前側(患者P1の前方)に、眼鏡レンズ20Aが配置される。凹メニスカスレンズである第1レンズ部21を通った平行光は、屈折して広がるように進む。
 両凸レンズである第2レンズ部22を通った平行光は1点に集まるように進む。
 第1レンズ部21を通り第2レンズ部22を通らなかった光M1は、水晶体P4を通して、眼球P2の網膜P3上に位置する焦点面S1でピントが合う(結像する)。一方で、第1レンズ部21及び第2レンズ部22を通った光M2は、光軸C1上以外において、網膜P3よりも手前側に位置する焦点面S2でピントが合う。このため、ピントを合わせようとして網膜P3が手前側に位置させるような効果を生じさせ、眼軸が伸長することを抑制させると考えられている。
Next, a procedure for correcting myopia of a patient using the spectacles 1 (spectacle lenses 20A and 30A) will be described.
FIG. 8 shows a cross-sectional view of the eyeball P2 of the patient P1. This patient P1 is myopic and has an elongated eyeball P2. Reference P4 is the crystalline lens of the eyeball P2.
A spectacle lens 20A is arranged on the near side (in front of the patient P1) with respect to the eyeball P2. Parallel light passing through the first lens portion 21, which is a concave meniscus lens, is refracted and propagates.
Parallel light passing through the second lens portion 22, which is a biconvex lens, travels so as to gather at one point.
The light M1 that passes through the first lens unit 21 and does not pass through the second lens unit 22 passes through the crystalline lens P4 and is focused (formed into an image) on the focal plane S1 located on the retina P3 of the eyeball P2. On the other hand, the light M2 that has passed through the first lens unit 21 and the second lens unit 22 is focused on the focal plane S2 located on the front side of the retina P3, except on the optical axis C1. For this reason, it is thought that the retina P3 is brought to the near side in an attempt to focus, thereby suppressing the elongation of the eye axis.
 例えば、第1工程において、医師は、OCT(Optical Coherence Tomography:光干渉断層計)等により、患者P1の網膜P3(焦点面S1)の形状を測定する。
 次に、第2工程において、医師は、測定結果に基づいて、眼鏡レンズ20A,30Aの処方を作成する。具体的には、例えば、眼鏡レンズ20Aに対して、以下の処方データを測定結果に基づいて決める。
 処方データの一部は、第2屈折率、複数の第2レンズ部22の形状、複数の第2レンズ部22の大きさ、複数の第2レンズ部22の配置である。処方データの他の一部は、第2レンズ部22の配置密度である。
 または、上記OCTのデータから、レンズメーカー(製造業者)側で患者P1の眼の状態に基づき、第2レンズ部22の形状や分布や密度を決めることも好適に行うことができる。
 このとき、患者P1の近視の進行の速さ、例えば、眼軸の時間的変化、患者P1の年齢と標準眼軸長との差等に基づいて、第2レンズ部22の配置密度等を設定してもよい。
 眼鏡レンズ30Aも、眼鏡レンズ20Aと同様である。
For example, in the first step, the doctor measures the shape of the retina P3 (focal plane S1) of the patient P1 by OCT (Optical Coherence Tomography) or the like.
Next, in the second step, the doctor creates prescriptions for the spectacle lenses 20A and 30A based on the measurement results. Specifically, for example, the following prescription data is determined for the spectacle lens 20A based on the measurement results.
Part of the prescription data is the second refractive index, the shape of the plurality of second lens units 22 , the size of the plurality of second lens units 22 , and the arrangement of the plurality of second lens units 22 . Another part of the prescription data is the arrangement density of the second lens units 22 .
Alternatively, the shape, distribution, and density of the second lens portion 22 can be preferably determined by the lens manufacturer (manufacturer) based on the eye condition of the patient P1 from the OCT data.
At this time, the arrangement density and the like of the second lens unit 22 are set based on the progress speed of the myopia of the patient P1, for example, the temporal change of the eye axis, the difference between the age of the patient P1 and the standard eye axial length, and the like. You may
The spectacle lens 30A is similar to the spectacle lens 20A.
 次に、第3工程において、医師は、処方データに加え、OCTデータ及び/又は眼軸長データをレンズメーカーに送る。レンズメーカーは、処方データに基づいて眼鏡レンズ20A,30Aを設計する。3Dプリンタ100を用いて、眼鏡レンズ20A,30Aを製造する。眼鏡レンズ20A,30Aを玉摺り加工し、眼鏡レンズ20,30を製造する。
 眼鏡レンズ20,30を眼鏡フレーム10の一対のリム11に取付け、眼鏡1を製造する。
 患者P1は、眼鏡1を使用する。患者P1が眼鏡1を使用することにより、患者P1の近視が矯正される。
 患者P1は、定期的に医師の診察を受ける。患者P1の近視の進行に応じて、第1工程から第3工程を適宜繰り返す。
Next, in a third step, the doctor sends OCT data and/or axial length data to the lens manufacturer in addition to the prescription data. A lens manufacturer designs spectacle lenses 20A and 30A based on the prescription data. Using the 3D printer 100, spectacle lenses 20A and 30A are manufactured. The spectacle lenses 20A and 30A are subjected to edging to manufacture the spectacle lenses 20 and 30.例文帳に追加
The spectacle lenses 20 and 30 are attached to the pair of rims 11 of the spectacle frame 10 to manufacture the spectacles 1. - 特許庁
A patient P1 uses spectacles 1 . When the patient P1 uses the spectacles 1, myopia of the patient P1 is corrected.
A patient P1 regularly sees a doctor. The first to third steps are repeated as appropriate according to the progression of myopia of the patient P1.
 以上説明したように、本実施形態の眼鏡レンズ20Aでは、凹レンズである第1レンズ部21を通った平行光は屈折して広がるように進み、凸レンズである第2レンズ部22を通った平行光は、上記第2レンズ部22を通る前の光よりも集まるように進む。第1レンズ部21により、近視により眼軸が長くなった眼球P2の網膜P3上にピントを合わせやすくなる。また、第1レンズ部21及び第2レンズ部22を通った光M2は、第1レンズ部21を通り第2レンズ部22を通らなかった光M1よりも手前側でピントが合う。このため、ピントを合わせようとして網膜P3が手前側に位置させるような効果を生じさせ、眼軸が伸長することを抑制させると考えられている。
 そして、第1レンズ部21は複数の第1単位要素21aを有し、複数の第1単位要素21aは一体である。第2レンズ部22は複数の第2単位要素22aを有し、複数の第2単位要素22aは一体である。このため、例えば、インクジェット方式の3Dプリンタ100等により、第1材料を吹き付ける等して第1レンズ部21を構成するとともに、第2材料を吹き付ける等して第2レンズ部22を構成することができる。
 また、例えば、患者P1の近視の進行度合いに応じて処方データを変更した眼鏡レンズ20Aを、3Dプリンタ100等により受注生産(オーダーメイド)であっても容易に製造することができる。
As described above, in the spectacle lens 20A of the present embodiment, the parallel light passing through the first lens portion 21, which is a concave lens, is refracted and spreads, and the parallel light passing through the second lens portion 22, which is a convex lens. advances so as to gather more than the light before passing through the second lens portion 22 . The first lens unit 21 makes it easier to focus on the retina P3 of the eyeball P2 whose eye axis has become longer due to myopia. Also, the light M2 that has passed through the first lens portion 21 and the second lens portion 22 is focused on the front side of the light M1 that has passed through the first lens portion 21 and has not passed through the second lens portion 22 . For this reason, it is thought that the retina P3 is brought to the near side in an attempt to focus, thereby suppressing the elongation of the eye axis.
The first lens portion 21 has a plurality of first unit elements 21a, and the plurality of first unit elements 21a are integrated. The second lens portion 22 has a plurality of second unit elements 22a, and the plurality of second unit elements 22a are integrated. Therefore, for example, it is possible to form the first lens portion 21 by spraying the first material and forming the second lens portion 22 by spraying the second material, etc., using an inkjet 3D printer 100 or the like. can.
Further, for example, the spectacle lens 20A in which the prescription data is changed according to the degree of progression of myopia of the patient P1 can be easily manufactured by the 3D printer 100 or the like even if it is custom-made.
 複数の第1単位要素の少なくとも一部が、第1材料及び第3材料で構成される場合がある。この場合には、第1単位要素における設計の自由度を高めることができる。
 複数の第2レンズ部22は、第1環状領域R1に配置される。従って、眼球P2に対する眼鏡レンズ20Aの光軸C1周りの位置が変わったときに、患者P1が視認する像が変化するのを抑制することができる。
 一般的に、第1環状領域を通した光は、光が第2レンズ部を通ったか否かにより、像が曇ったように見える場合がある。このため、光軸C1上を通り、環状の第1環状領域R1の中心を通った光を、像が曇ることなく視認することができる。
At least part of the plurality of first unit elements may be composed of the first material and the third material. In this case, the degree of freedom in designing the first unit element can be increased.
The multiple second lens portions 22 are arranged in the first annular region R1. Therefore, when the position of the spectacle lens 20A around the optical axis C1 with respect to the eyeball P2 changes, it is possible to suppress the change in the image visually recognized by the patient P1.
In general, the image of light passing through the first annular region may appear cloudy depending on whether the light passes through the second lens portion. Therefore, the light passing through the optical axis C1 and passing through the center of the annular first annular region R1 can be visually recognized without clouding the image.
 また、本実施形態の眼鏡レンズ20Aの製造方法では、眼鏡レンズ20Aにおいて、凹レンズである第1レンズ部21を通った平行光は屈折して広がるように進み、凸レンズである第2レンズ部22を通った平行光は、上記第2レンズ部22を通る前の光より集まるように進む。第1レンズ部21により、近視により眼軸が長くなった眼球P2の網膜P3上にピントを合わせやすくなる。また、第1レンズ部21及び第2レンズ部22を通った光M2は、第1レンズ部21を通り第2レンズ部22を通らなかった光M1よりも手前側でピントが合う。このため、ピントを合わせようとして網膜P3が手前側に位置させるような効果を生じさせ、眼軸が伸長することを抑制すると考えられている。
 そして、眼鏡レンズ20Aを3Dプリンタ100で製造することにより、患者P1の近視の進行度合いに応じて第2レンズ部22の形状や、その配置や密度を変えたオーダーメイドの眼鏡レンズ20Aを、容易に製造することができる。
Further, in the method for manufacturing the spectacle lens 20A of the present embodiment, in the spectacle lens 20A, the parallel light that has passed through the first lens portion 21, which is a concave lens, is refracted and spreads, and passes through the second lens portion 22, which is a convex lens. The parallel light that has passed through travels so as to be more concentrated than the light that has not passed through the second lens section 22 . The first lens unit 21 makes it easier to focus on the retina P3 of the eyeball P2 whose eye axis has become longer due to myopia. Also, the light M2 that has passed through the first lens portion 21 and the second lens portion 22 is focused on the front side of the light M1 that has passed through the first lens portion 21 and has not passed through the second lens portion 22 . For this reason, it is thought that the retina P3 is brought to the near side in an attempt to focus, thereby suppressing the elongation of the eye axis.
By manufacturing the spectacle lens 20A with the 3D printer 100, the custom-made spectacle lens 20A in which the shape of the second lens unit 22, its arrangement and density are changed according to the progress of myopia of the patient P1 can be easily manufactured. can be manufactured to
 本実施形態の眼鏡レンズ20Aは、以下に説明するようにその構成を様々に変形させることができる。
 図9に示す第1変形例の眼鏡レンズ40Aのように、本実施形態の眼鏡レンズ20Aの各構成に加えて、複数の第4レンズ部41を備えてもよい。
 複数の第4レンズ部41は、それぞれ両凸レンズ(凸レンズ)である。各第4レンズ部41は、第1屈折率よりも大きい第4屈折率を有する材料で形成される。複数の第4レンズ部41は、第1レンズ部21内に配置される。
 複数の第4レンズ部41は、眼鏡レンズ40Aを光軸C1に沿う方向に見たときに、光軸C1を中心とする環状の第2環状領域R4に配置される。
 第2環状領域R4は、第1環状領域R1から外側(第1レンズ部21の径方向外側)に離間する。すなわち、第1環状領域R1と第2環状領域R4との間には、隙間が形成される。
The spectacle lens 20A of the present embodiment can be variously modified in configuration as described below.
Like the spectacle lens 40A of the first modified example shown in FIG. 9, in addition to each configuration of the spectacle lens 20A of the present embodiment, a plurality of fourth lens portions 41 may be provided.
Each of the plurality of fourth lens portions 41 is a biconvex lens (convex lens). Each fourth lens portion 41 is made of a material having a fourth refractive index greater than the first refractive index. The plurality of fourth lens units 41 are arranged inside the first lens unit 21 .
The plurality of fourth lens portions 41 are arranged in an annular second annular region R4 centered on the optical axis C1 when the spectacle lens 40A is viewed in a direction along the optical axis C1.
The second annular region R4 is spaced outward from the first annular region R1 (outside in the radial direction of the first lens portion 21). That is, a gap is formed between the first annular region R1 and the second annular region R4.
 第2屈折率及び第4屈折率は、互いに等しくても良いし、等しくなくても良い。第2レンズ部22の形状及び第4レンズ部41の形状は、互いに等しくても良いし、等しくなくても良い。
 以下では、眼鏡レンズ40Aを光軸C1に沿う方向に見たときの、第2環状領域R4における単位面積当たりに配置された複数の第4レンズ部41の数を、第4レンズ部41の配置密度と言う。第2レンズ部22の配置密度及び第4レンズ部41の配置密度は、互いに等しくても良いし、等しくなくても良い。
The second refractive index and the fourth refractive index may or may not be equal to each other. The shape of the second lens portion 22 and the shape of the fourth lens portion 41 may or may not be equal to each other.
In the following, the number of the plurality of fourth lens portions 41 arranged per unit area in the second annular region R4 when the spectacle lens 40A is viewed in the direction along the optical axis C1 will be referred to as the arrangement of the fourth lens portions 41. called density. The arrangement density of the second lens units 22 and the arrangement density of the fourth lens units 41 may or may not be equal to each other.
 以上のように構成された第1変形例の眼鏡レンズ40Aは、受注生産であっても容易に製造することができる。
 さらに、複数の第4レンズ部41は、眼鏡レンズ40Aを光軸C1に沿う方向に見たときに第2環状領域R4に配置される。このため、患者P1の視野におけるより広い範囲にわたって、近視進行を抑制する効果を得ることができる。第1環状領域R1と第2環状領域R4との間の隙間を通った光を、この光による像が曇ることなく視認することができる。
 第2屈折率及び第4屈折率は互いに等しく、第2レンズ部22の形状及び第4レンズ部41の形状は互いに等しくても良いし、等しくなくても良い。さらに、第2レンズ部22の配置密度及び第4レンズ部41の配置密度は、互いに等しくても良いし、等しくなくても良い。従って、複数の第2レンズ部22により患者P1の近視進行を抑制する程度と、複数の第4レンズ部41により患者P1の近視進行を抑制する程度とを、網膜P3全体にわたって同等にすること、もしくは網膜P3の範囲によって異ならせることができる。
The spectacle lens 40A of the first modified example configured as described above can be easily manufactured even if it is made-to-order.
Furthermore, the plurality of fourth lens portions 41 are arranged in the second annular region R4 when the spectacle lens 40A is viewed in the direction along the optical axis C1. Therefore, it is possible to obtain the effect of suppressing myopia progression over a wider range in the visual field of the patient P1. The light that has passed through the gap between the first annular region R1 and the second annular region R4 can be visually recognized without clouding the image of the light.
The second refractive index and the fourth refractive index are equal to each other, and the shape of the second lens portion 22 and the shape of the fourth lens portion 41 may or may not be equal to each other. Furthermore, the arrangement density of the second lens units 22 and the arrangement density of the fourth lens units 41 may or may not be equal to each other. Therefore, the extent to which the progression of myopia of the patient P1 is suppressed by the plurality of second lens units 22 and the extent to which the progression of myopia of the patient P1 is suppressed by the plurality of fourth lens units 41 are made equal over the entire retina P3, Alternatively, it can be varied depending on the range of the retina P3.
 なお、眼鏡レンズ40Aが備える第4レンズ部41の数は、1つでもよい。
 眼鏡レンズ40Aでは、第2屈折率及び第4屈折率は、互いに異なってもよい。第2レンズ部22の形状及び第4レンズ部41の形状は、互いに異なってもよい。第2レンズ部22の配置密度及び第4レンズ部41の配置密度は、互いに異なってもよい。
Note that the number of fourth lens portions 41 included in the spectacle lens 40A may be one.
In the spectacle lens 40A, the second refractive index and the fourth refractive index may be different from each other. The shape of the second lens portion 22 and the shape of the fourth lens portion 41 may be different from each other. The arrangement density of the second lens units 22 and the arrangement density of the fourth lens units 41 may be different from each other.
 図10に示す第2変形例の眼鏡レンズ45Aのように、第1変形例の眼鏡レンズ40Aの各構成に加えて、複数の第5レンズ部46を備えてもよい。
 複数の第5レンズ部46は、それぞれ両凸レンズ(凸レンズ)である。各第5レンズ部46は、第1屈折率よりも大きい第5屈折率を有する材料で形成される。複数の第5レンズ部46は、第1レンズ部21内に配置される。
 複数の第5レンズ部46は、眼鏡レンズ45Aを光軸C1に沿う方向に見たときに、光軸C1を中心とする環状の第3環状領域R6に配置される。
 第3環状領域R6は、第1環状領域R1と第2環状領域R4との間の隙間に配置される。
 以下では、眼鏡レンズ45Aを光軸C1に沿う方向に見たときの、第3環状領域R6における単位面積当たりに配置された複数の第5レンズ部46の数を、第5レンズ部46の配置密度と言う。
Like the spectacle lens 45A of the second modified example shown in FIG. 10, a plurality of fifth lens portions 46 may be provided in addition to each configuration of the spectacle lens 40A of the first modified example.
Each of the plurality of fifth lens portions 46 is a biconvex lens (convex lens). Each fifth lens portion 46 is formed of a material having a fifth refractive index greater than the first refractive index. A plurality of fifth lens units 46 are arranged within the first lens unit 21 .
The plurality of fifth lens portions 46 are arranged in an annular third annular region R6 centered on the optical axis C1 when the spectacle lens 45A is viewed in the direction along the optical axis C1.
The third annular region R6 is arranged in the gap between the first annular region R1 and the second annular region R4.
Below, the number of the plurality of fifth lens portions 46 arranged per unit area in the third annular region R6 when the spectacle lens 45A is viewed in the direction along the optical axis C1 will be referred to as the arrangement of the fifth lens portions 46. called density.
 例えば、第5屈折率は、第2屈折率及び第4屈折率に等しい。第5レンズ部46の形状、第2レンズ部22の形状、及び第4レンズ部41の形状は、互いに等しい。第5レンズ部46の配置密度は、第2レンズ部22の配置密度及び第4レンズ部41の配置密度よりもそれぞれ小さい。
 患者P1が視認する際に、第3環状領域R6を通った光による像は、第1環状領域R1及び第2環状領域R4を通った光による像よりも、それぞれ曇り難い。
For example, the fifth index is equal to the second index and the fourth index. The shape of the fifth lens portion 46, the shape of the second lens portion 22, and the shape of the fourth lens portion 41 are equal to each other. The arrangement density of the fifth lens sections 46 is smaller than the arrangement density of the second lens sections 22 and the arrangement density of the fourth lens sections 41 .
When viewed by the patient P1, the image formed by the light passing through the third annular region R6 is less likely to be clouded than the images formed by the light passing through the first annular region R1 and the second annular region R4.
 以上のように構成された第2変形例の眼鏡レンズ45Aは、受注生産であっても容易に製造することができる。
 さらに、第3環状領域R6を通った光によっても、患者の近視進行を抑制することができる。第5レンズ部46の配置密度が第2レンズ部22の配置密度及び第4レンズ部41の配置密度よりも小さい場合には、第3環状領域R6を通った光による像を、第1環状領域R1及び第2環状領域R4を通った光による像よりも曇りを抑えて視認することができる。
 なお、眼鏡レンズ45Aが備える第5レンズ部46の数は、1つでもよい。
 第4レンズ部41及び第5レンズ部46における凸レンズは、両凸レンズに限定されず、平凸レンズ、凸メニスカスレンズ等でもよい。
The spectacle lens 45A of the second modified example configured as described above can be easily manufactured even if it is made-to-order.
Furthermore, the light that has passed through the third annular region R6 can also suppress myopia progression in the patient. When the arrangement density of the fifth lens section 46 is smaller than the arrangement density of the second lens section 22 and the arrangement density of the fourth lens section 41, the image formed by the light passing through the third annular region R6 is projected onto the first annular region. The image can be visually recognized with less cloudiness than the image formed by the light passing through R1 and the second annular region R4.
Note that the number of the fifth lens portion 46 included in the spectacle lens 45A may be one.
The convex lenses in the fourth lens portion 41 and the fifth lens portion 46 are not limited to biconvex lenses, and may be plano-convex lenses, convex meniscus lenses, or the like.
 本実施形態の眼鏡レンズ20Aにおいて、第2レンズ部は、凹レンズであってもよい。
 この場合、第2レンズ部を形成する第2材料は、第1屈折率よりも小さい第2屈折率を有する。第2屈折率が第1屈折率よりも小さいため、凹レンズである第2レンズ部を通った平行光は、第2レンズ部を通る前の光よりも集まるように進む。
 この変形例の眼鏡レンズの場合、第2レンズ部(第2単位要素)は、第1屈折率よりも小さい第2屈折率を有する第2材料で形成される。すなわち、本実施形態の眼鏡レンズ20Aとは、第1レンズ部を形成する第1材料の屈折率、及び第2レンズ部を形成する第2材料の屈折率の大小関係が逆になる。
 この眼鏡レンズの製造方法は、例えば、この眼鏡レンズを、3Dプリンタ100で製造する。
In the spectacle lens 20A of this embodiment, the second lens portion may be a concave lens.
In this case, the second material forming the second lens portion has a second refractive index that is less than the first refractive index. Since the second refractive index is smaller than the first refractive index, parallel light that has passed through the second lens section, which is a concave lens, travels in a more concentrated manner than light that has not passed through the second lens section.
In the spectacle lens of this modification, the second lens portion (second unit element) is made of a second material having a second refractive index smaller than the first refractive index. That is, the magnitude relationship between the refractive index of the first material forming the first lens portion and the refractive index of the second material forming the second lens portion is opposite to that of the spectacle lens 20A of the present embodiment.
This spectacle lens manufacturing method manufactures this spectacle lens with the 3D printer 100, for example.
 以上のように構成された第3変形例の眼鏡レンズ及び眼鏡レンズの製造方法は、本実施形態の眼鏡レンズ20A及び眼鏡レンズの製造方法と同様の効果を奏することができる。
 なお、この場合の第2レンズ部も、第1屈折率よりも小さく、第2屈折率とは異なる屈折率を有する材料、及び第2材料で形成されてもよい。
The eyeglass lens and the eyeglass lens manufacturing method of the third modified example configured as described above can produce the same effects as the eyeglass lens 20A and the eyeglass lens manufacturing method of the present embodiment.
Note that the second lens portion in this case may also be made of a material having a refractive index smaller than the first refractive index and different from the second refractive index, and the second material.
 以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。
 例えば、複数の第2レンズ部22は、第1レンズ部21における第1環状領域R1以外の部分に配置されてもよい。レンズ部が配置される環状領域の数は、3つ以上でもよい。
 第1レンズ部内部に配置される複数の第2レンズ部の屈折率は、個々の第2レンズ部ごとに異なる屈折率の材料で構成されていても良い。かかる構成の眼鏡レンズは3Dプリンタによって実現することが可能である。
 眼鏡レンズはコンタクトレンズであってもよい。眼鏡レンズ及びコンタクトレンズは、視力矯正用レンズに含まれる。
As described above, one embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the configuration can be changed, combined, or deleted without departing from the scope of the present invention. etc. are also included.
For example, the plurality of second lens portions 22 may be arranged in portions of the first lens portion 21 other than the first annular region R1. The number of annular regions in which lens portions are arranged may be three or more.
The plurality of second lens units arranged inside the first lens unit may be made of a material having a different refractive index for each second lens unit. A spectacle lens having such a configuration can be realized by a 3D printer.
The spectacle lens may be a contact lens. Spectacle lenses and contact lenses are included in lenses for vision correction.
 20,20A,30,30A,40A,45A 眼鏡レンズ
 21,31 第1レンズ部
 21a 第1単位要素
 22,32 第2レンズ部
 22a 第2単位要素
 41 第4レンズ部
 46 第5レンズ部
 R1,R2 第1環状領域
 R4 第2環状領域
 R6 第3環状領域
20, 20A, 30, 30A, 40A, 45A eyeglass lens 21, 31 first lens portion 21a first unit element 22, 32 second lens portion 22a second unit element 41 fourth lens portion 46 fifth lens portion R1, R2 First annular region R4 Second annular region R6 Third annular region

Claims (8)

  1.  少なくとも第1材料で形成された凹レンズである第1レンズ部と;
     前記第1レンズ部内に配置され、少なくとも第2材料で形成された凸レンズである第2レンズ部と;
     を備え、
     前記第1材料は、第1屈折率を有し、
     前記第2材料は、前記第1屈折率よりも大きい第2屈折率を有し、
     前記第1レンズ部は、少なくとも前記第1材料で形成された複数の第1単位要素を有し、
     前記複数の第1単位要素は一体であり、
     前記第2レンズ部は、少なくとも前記第2材料で形成された複数の第2単位要素を有し、
     前記複数の第2単位要素は一体である、
     眼鏡レンズ。
    a first lens portion which is a concave lens made of at least a first material;
    a second lens portion disposed within the first lens portion and being a convex lens made of at least a second material;
    with
    the first material has a first refractive index;
    the second material has a second refractive index greater than the first refractive index;
    The first lens portion has a plurality of first unit elements made of at least the first material,
    the plurality of first unit elements are integral,
    The second lens portion has a plurality of second unit elements made of at least the second material,
    The plurality of second unit elements are integral,
    spectacle lens.
  2.  前記複数の第1単位要素の少なくとも一部は、前記第1屈折率とは異なり、前記第2屈折率よりも小さい第3屈折率を有する第3材料、及び前記第1材料で形成されている、
     請求項1に記載の眼鏡レンズ。
    At least some of the plurality of first unit elements are formed of a third material having a third refractive index different from the first refractive index and smaller than the second refractive index, and the first material. ,
    The spectacle lens according to claim 1 .
  3.  前記第2レンズ部を複数備え、
     前記複数の第2レンズ部は、前記眼鏡レンズを前記第1レンズ部の光軸に沿う方向に見たときに、前記光軸を中心とする環状の第1環状領域に配置されている、
     請求項1又は2に記載の眼鏡レンズ。
    A plurality of the second lens parts are provided,
    When the spectacle lens is viewed in a direction along the optical axis of the first lens part, the plurality of second lens parts are arranged in a first annular region centered on the optical axis,
    The spectacle lens according to claim 1 or 2.
  4.  前記第1レンズ部内に配置され、前記第1屈折率よりも大きい第4屈折率を有する材料で形成された凸レンズである複数の第4レンズ部を備え、
     前記複数の第4レンズ部は、前記眼鏡レンズを前記光軸に沿う方向に見たときに、前記光軸を中心とし、前記第1環状領域から外側に離間する環状の第2環状領域に配置されている、
     請求項3に記載の眼鏡レンズ。
    A plurality of fourth lens units that are arranged in the first lens unit and are convex lenses formed of a material having a fourth refractive index larger than the first refractive index,
    The plurality of fourth lens portions are arranged in a second annular region centered on the optical axis and spaced outward from the first annular region when the spectacle lens is viewed in a direction along the optical axis. has been
    The spectacle lens according to claim 3.
  5.  前記第1レンズ部内に配置され、前記第1屈折率よりも大きい第5屈折率を有する材料で形成された凸レンズである複数の第5レンズ部を備え、
     前記複数の第5レンズ部は、前記眼鏡レンズを前記光軸に沿う方向に見たときに、前記光軸を中心とし、前記第1環状領域と前記第2環状領域との間に配置された環状の第3環状領域に配置される、
     請求項4に記載の眼鏡レンズ。
    A plurality of fifth lens units that are arranged in the first lens unit and are convex lenses made of a material having a fifth refractive index larger than the first refractive index,
    When the spectacle lens is viewed in a direction along the optical axis, the plurality of fifth lens portions are centered on the optical axis and arranged between the first annular area and the second annular area. disposed in the annular third annular region;
    The spectacle lens according to claim 4.
  6.  少なくとも第1材料で形成された凹レンズである第1レンズ部と;
     前記第1レンズ部内に配置され、少なくとも第2材料で形成された凹レンズである第2レンズ部と;
     を備え、
     前記第1材料は、第1屈折率を有し、
     前記第2材料は、前記第1屈折率よりも小さい第2屈折率を有し、
     前記第1レンズ部は、少なくとも前記第1材料で形成された複数の第1単位要素を有し、
     前記複数の第1単位要素は一体であり、
     前記第2レンズ部は、少なくとも前記第2材料で形成された複数の第2単位要素を有し、
     前記複数の第2単位要素は一体である、
     眼鏡レンズ。
    a first lens portion which is a concave lens made of at least a first material;
    a second lens portion disposed within the first lens portion and being a concave lens made of at least a second material;
    with
    the first material has a first refractive index;
    the second material has a second refractive index that is less than the first refractive index;
    The first lens portion has a plurality of first unit elements made of at least the first material,
    the plurality of first unit elements are integral,
    The second lens portion has a plurality of second unit elements made of at least the second material,
    The plurality of second unit elements are integral,
    spectacle lens.
  7.  少なくとも第1材料で形成された凹レンズである第1レンズ部と;
     前記第1レンズ部内に配置され、少なくとも第2材料で形成された凸レンズである第2レンズ部と;
     を備え、
     前記第1材料は、第1屈折率を有し、
     前記第2材料は、前記第1屈折率よりも大きい第2屈折率を有する眼鏡レンズを、積層造形法により製造する、
     眼鏡レンズの製造方法。
    a first lens portion which is a concave lens made of at least a first material;
    a second lens portion disposed within the first lens portion and being a convex lens made of at least a second material;
    with
    the first material has a first refractive index;
    The second material manufactures a spectacle lens having a second refractive index larger than the first refractive index by an additive manufacturing method,
    A method for manufacturing a spectacle lens.
  8.  少なくとも第1材料で形成された凹レンズである第1レンズ部と;
     前記第1レンズ部内に配置され、少なくとも第2材料で形成された凹レンズである第2レンズ部と;
     を備え、
     前記第1材料は、第1屈折率を有し、
     前記第2材料は、前記第1屈折率よりも小さい第2屈折率を有する眼鏡レンズを、積層造形法により製造する、
     眼鏡レンズの製造方法。
    a first lens portion which is a concave lens made of at least a first material;
    a second lens portion disposed within the first lens portion and being a concave lens made of at least a second material;
    with
    the first material has a first refractive index;
    The second material manufactures a spectacle lens having a second refractive index smaller than the first refractive index by an additive manufacturing method,
    A method for manufacturing a spectacle lens.
PCT/JP2022/047656 2021-12-27 2022-12-23 Spectacle lens and method for manufacturing spectacle lens WO2023127731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-212736 2021-12-27
JP2021212736 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127731A1 true WO2023127731A1 (en) 2023-07-06

Family

ID=86999159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047656 WO2023127731A1 (en) 2021-12-27 2022-12-23 Spectacle lens and method for manufacturing spectacle lens

Country Status (1)

Country Link
WO (1) WO2023127731A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170131567A1 (en) * 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens
WO2019124352A1 (en) * 2017-12-19 2019-06-27 ホヤ レンズ タイランド リミテッド Spectacle lens production method and spectacle lens
JP2019521397A (en) * 2016-07-19 2019-07-25 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Eyeglass lens and method of manufacturing the same
WO2020261213A1 (en) * 2019-06-28 2020-12-30 Brien Holden Vision Institute Limited Ophthalmic lenses and methods for correcting, slowing, reducing, and/or controlling the progression of myopia

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170131567A1 (en) * 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens
JP2019521397A (en) * 2016-07-19 2019-07-25 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Eyeglass lens and method of manufacturing the same
WO2019124352A1 (en) * 2017-12-19 2019-06-27 ホヤ レンズ タイランド リミテッド Spectacle lens production method and spectacle lens
WO2020261213A1 (en) * 2019-06-28 2020-12-30 Brien Holden Vision Institute Limited Ophthalmic lenses and methods for correcting, slowing, reducing, and/or controlling the progression of myopia

Similar Documents

Publication Publication Date Title
JP6861792B2 (en) Eyeglass lenses and their manufacturing methods
EP2878989B1 (en) Method for manufacturing a spectacle lens and spectacle lens
US9933632B2 (en) Eyewear lens production by multi-layer additive techniques
JP2019521397A5 (en)
JP6105205B2 (en) Optical lens
US11958305B2 (en) Method of producing a spectacle lens and product comprising a spectacle lens
CN104950470A (en) Ophthalmic lens and process for manufacturing such a lens
JP5137830B2 (en) Pixelated optical component with apodized walls, method of manufacturing the optical component, and use of the optical component in the manufacture of transparent optical elements
KR20160039155A (en) Additive manufacturing processes for transparent ophthalmic lens
CN113260901A (en) Glasses lens
CN110167746B (en) Spectacle lens and method for producing the same
WO2021059887A1 (en) Spectacle lens and method for manufacturing same
KR102424134B1 (en) Additive manufacturing method of ophthalmic lenses and ophthalmic lenses
WO2023127731A1 (en) Spectacle lens and method for manufacturing spectacle lens
CN116802044A (en) Method and machine for producing optical elements by additive manufacturing
WO2023127647A1 (en) Spectacle lens, device for manufacturing spectacle lens, and method for manufacturing spectacle lens
KR20240008836A (en) Improved method for coating optical articles containing optical elements
WO2020138134A1 (en) Optical member manufacturing method, and optical member
WO2023127648A1 (en) Spectacle lens and method for manufacturing spectacle lens
KR20230162771A (en) Manufacturing method and spectacle lenses of spectacle lenses
JP2023172208A (en) Spectacle lenses and spectacles
CN116802035A (en) Mold manufacturing method, optical member manufacturing method, and spectacle lens
KR20180011371A (en) Optical lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915954

Country of ref document: EP

Kind code of ref document: A1