WO2023120257A1 - Composite material inspection device, composite material inspection method, composite material inspection program, and recording medium - Google Patents

Composite material inspection device, composite material inspection method, composite material inspection program, and recording medium Download PDF

Info

Publication number
WO2023120257A1
WO2023120257A1 PCT/JP2022/045554 JP2022045554W WO2023120257A1 WO 2023120257 A1 WO2023120257 A1 WO 2023120257A1 JP 2022045554 W JP2022045554 W JP 2022045554W WO 2023120257 A1 WO2023120257 A1 WO 2023120257A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
composite material
mechanical property
inspection
inspection device
Prior art date
Application number
PCT/JP2022/045554
Other languages
French (fr)
Japanese (ja)
Inventor
伸吾 岡本
香織 谷上
千緒 峰尾
武 大木
Original Assignee
国立大学法人愛媛大学
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人愛媛大学, 帝人株式会社 filed Critical 国立大学法人愛媛大学
Publication of WO2023120257A1 publication Critical patent/WO2023120257A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details

Definitions

  • the present invention relates to an inspection device, an inspection method, an inspection program, and a recording medium for composite materials containing reinforcing fibers.
  • a composite material containing carbon fibers as reinforcing fibers can reinforce the fragility of the matrix resin with high-strength fibers. For this reason, it is widely used as a lightweight material with excellent mechanical properties.
  • ultrasonic inspection is performed to inspect defective products during the manufacturing of composite materials.
  • the following inspection is performed in the process of impregnating carbon fibers with a thermoplastic resin.
  • an ultrasonic wave transmitter and a wave receiver having directivity are placed facing each other at a certain distance from an object to be inspected (composite material in which carbon fiber is impregnated with thermoplastic resin).
  • Patent Literatures 2 and 3 disclose devices that automatically perform high-precision searches in order to efficiently sort blood, feathers, and the like in the production process of processed foods.
  • An object of the present invention is to provide a composite material inspection apparatus, an inspection method, an inspection program, and a recording medium that can estimate the mechanical properties of a composite material and be useful for evaluating the composite material without measuring the mechanical properties.
  • An inspection apparatus is a machine generated by machine learning based on the mechanical property information and the non-destructive test information of the first composite material containing reinforcing fibers, in which the mechanical property information and the non-destructive test information are known.
  • a physical property estimation model Accessible to a model storage unit for storing a mechanical property estimation model for estimating mechanical property information of the second composite material with input of non-destructive inspection information of a second composite material containing reinforcing fibers whose mechanical property information is unknown.
  • the processor acquires non-destructive inspection information of the second composite material, inputs the non-destructive inspection information into the mechanical property estimation model, and extracts the mechanical property information of the second composite material from the mechanical property estimation model. It acquires and outputs based on the mechanical physical property information.
  • the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information is over 0 Hz.
  • the mechanical property information and the non-destructive test information are known, and the mechanical property information and the non-destructive test information of the first composite material containing reinforcing fibers are machine-learned.
  • generating a mechanical property estimation model for estimating mechanical property information of the second composite material by inputting non-destructive test information of the second composite material containing reinforcing fibers whose information is unknown; obtaining destructive test information; inputting the obtained non-destructive test information to the mechanical property estimation model; obtaining mechanical property information of the second composite material from the mechanical property estimation model; and providing an output based on the information.
  • the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information is over 0 Hz.
  • the inspection program of one aspect of the present invention performs machine learning of the mechanical property information and the nondestructive test information of the first composite material containing reinforcing fibers, for which the mechanical property information and the nondestructive test information are known, to obtain the mechanical property information.
  • the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information is over 0 Hz.
  • the present invention it is possible to estimate the mechanical properties of a composite material only from non-destructive inspection information without measuring the mechanical properties, and use this information to evaluate the composite material. According to the present invention, it is possible to instantaneously infer mechanical property information, which cannot be inferred from non-destructive inspection information no matter how hard a person tries, with high accuracy. As a result, waste loss in the production of composite materials can be reduced, and high-quality composite materials can be provided at low cost.
  • FIG. 2 is a block diagram showing a configuration example of an inspection device; A flowchart of learning processing. The figure which shows the example of the neural network which outputs three reaction values.
  • FIG. 4 is a diagram showing arithmetic processing between units of a neural network; Flowchart of inference processing. Discrimination surface and distribution of response values when RBF is used as the activation function. Discrimination surface and distribution of response values when sigmoid function is used as activation function.
  • the figure which shows a vibration inspection image The figure which shows a vibration inspection image.
  • the figure which shows a vibration inspection image The figure which shows a vibration inspection image.
  • the figure which shows a vibration inspection image The figure which shows a vibration inspection image.
  • the figure which shows a vibration inspection image The figure which shows a vibration inspection image.
  • An inspection system including an inspection apparatus that is one embodiment of the present invention will be described below, but the present invention is not limited to this.
  • the inspection system of the present embodiment uses a composite material (second composite material) containing reinforcing fibers whose mechanical property information is unknown as an object to be inspected, and estimates the mechanical property information of this second composite material without actually measuring it. It is.
  • the mechanical physical property information of a composite material is information indicating the mechanical physical properties of the composite material, for example, information regarding fracture or elasticity such as strength of the composite material. Examples of mechanical property information include information on breaking strength such as tensile strength or bending strength, and information on elastic modulus related to each of breaking strength, compressive strength, shear strength, and the like.
  • Information on the elastic modulus may be the elastic modulus (e.g., tensile modulus or flexural modulus) itself, or the rank of elastic modulus (e.g., tensile elastic modulus or flexural modulus) (hereinafter referred to as mechanical described as physical property rank).
  • Information about the elastic modulus includes information indicating that the elastic modulus (or its rank) corresponds to a defective product, information indicating that the elastic modulus (or its rank) corresponds to a non-defective product, and information indicating that the elastic modulus (or its rank) corresponds to a non-defective product. It is preferable to further include any of the information indicating that it was difficult to guess.
  • Information on the breaking strength may be the breaking strength (e.g., tensile strength or yield strength) itself, or the rank when the breaking strength (e.g., tensile strength or yield strength) is classified (hereinafter referred to as the mechanical property rank) description).
  • Information on the breaking strength includes information indicating that the breaking strength (or its rank) corresponds to defective products, information indicating that the breaking strength (or its rank) corresponds to non-defective products, and information indicating that the breaking strength (or its rank) corresponds to non-defective products. It is preferable to further include any of the information indicating that it was difficult to guess.
  • a computer included in the inspection system acquires non-destructive inspection information of the second composite material, inputs this non-destructive inspection information into the mechanical property estimation model generated in advance and stored in the model storage unit, Inference is performed by this mechanical property estimation model, and information on the mechanical properties of the second composite material that is inferred, or information on the difficulty of inference is output.
  • the estimated mechanical property information of the second composite material includes, for example, a mechanical property rank, information indicating whether the product is non-defective or defective, and the like.
  • Methods for outputting information include displaying information on a display unit, transmitting the information as a message from a speaker, and printing the information on a printer.
  • the nondestructive inspection information is preferably vibration characteristic information.
  • Vibration characteristics are information about the composite material itself, such as displacement, acceleration, and natural frequency, obtained by vibrating the composite material in a fixed or non-fixed state.
  • the vibration characteristic information may be numerical data such as a natural frequency, or an inspection image using a wavelet image.
  • inspection images for example, the wavelet images shown in FIGS. 8A to 8D can be exemplified.
  • the wavelet image is obtained by measuring the time change of the displacement of a predetermined point on the composite material when the composite material is vibrated, wavelet transforming the vibration, and then representing the vibration frequency on the vertical axis, the time on the horizontal axis, and the time on the horizontal axis. It is a two-dimensional image showing the amplitude of vibration in terms of brightness and hue.
  • the mechanical property estimation model uses machine learning (supervised learning or unsupervised learning deep It is a model that estimates mechanical property information by inputting non-destructive inspection information generated by letting it run (including learning).
  • a neural network, a support vector machine, or the like, for example, is used as the mechanical property estimation model.
  • the computer of the inspection system constitutes the inspection equipment.
  • This computer may include a processor, a storage unit consisting of a device capable of storing information such as a hard disk device or SSD (Solid State Drive), RAM (Random Access Memory) and ROM (Read Only Memory). good.
  • This processor executes an inspection program stored in a ROM to acquire nondestructive inspection information of a composite material of an object to be inspected, input the acquired nondestructive inspection information into a mechanical property estimation model, and obtain a mechanical property estimation model. It performs processing such as acquisition of mechanical property information from the machine and output based on the acquired mechanical property information.
  • the storage medium for storing the inspection program is not limited to ROM, and a known storage medium can be used, but a non-temporary storage medium is preferable, such as a hard disk device or SSD (Solid State Drive). may be used.
  • a storage medium may also be referred to as a recording medium.
  • the inspection program may be stored in a server (cloud) on the network, and the processor may download the program from the server and execute the program.
  • Non-destructive testing information for composite materials typically determines whether defects, voids, or foreign objects are present within the composite material, and if so, to what extent and to what extent. used for However, even if there are many defects, voids, or foreign matter inside the composite material, the mechanical properties may be good depending on the distribution state of the defects, voids, or foreign matter. In such a case, if the non-destructive inspection information is visually checked and it is determined that the product is defective because there are many defects, voids, or foreign substances, the composite material that should have been a good product will be discarded. As a result, production efficiency will decrease. On the other hand, the opposite is also possible. In other words, even if the non-destructive inspection information is visually confirmed and the product is determined to be good because there are few defects, voids, or foreign matter, the mechanical properties may be in a state corresponding to a defective product.
  • the present inventors found that there is a correlation between nondestructive inspection information and mechanical physical property information, and obtained a large number of measured data of nondestructive inspection information and mechanical physical property information,
  • machine learning to models such as neural networks or support vector machines
  • Obtaining mechanical property information from non-destructive inspection information has not been considered in the past. For this reason, it was not easy for those skilled in the art to build a machine learning model that takes non-destructive inspection information as input and outputs machine physical property information.
  • a detailed example of the inspection system will be described below. Note that an example in which the mechanical property estimation model is a neural network will be described below.
  • the type of reinforcing fiber used in the present invention can be appropriately selected according to the application of the composite material a (second composite material with unknown mechanical property information) to be inspected, and is not particularly limited. not something.
  • Either inorganic fibers or organic fibers can be suitably used as the reinforcing fibers.
  • the inorganic fibers include carbon fibers, activated carbon fibers, graphite fibers, glass fibers, tungsten carbide fibers, silicon carbide fibers (silicon carbide fibers), ceramic fibers, alumina fibers, natural mineral fibers (basalt fibers, etc.), and boron fibers. , boron nitride fibers, boron carbide fibers, and metal fibers.
  • the carbon fiber When using carbon fiber as the fiber, the carbon fiber generally includes polyacrylonitrile (PAN)-based carbon fiber, petroleum/coal pitch-based carbon fiber, rayon-based carbon fiber, cellulose-based carbon fiber, lignin-based carbon fiber, phenol-based Carbon fibers, vapor-grown carbon fibers, and the like are known, and any of these carbon fibers can be suitably used in the present invention.
  • PAN polyacrylonitrile
  • the form of the reinforcing fiber is not particularly limited, but the continuous fiber that the present inventors carried out as a specific example will be described below.
  • the present invention is not limited to continuous fibers.
  • a continuous fiber means a reinforcing fiber obtained by aligning a reinforcing fiber bundle in a continuous state without cutting the reinforcing fiber into short fibers.
  • the continuous fiber is preferably a fiber having a length of 1 m or more. It is used as a prepreg impregnated with uncured resin.
  • composite material a is reinforced with reinforcing fibers.
  • the present invention is not limited to the composite material a described below.
  • the composite material a is preferably a molded body after molding, and may be a molded body using a thermoplastic resin or a molded body using a thermosetting prepreg.
  • a prepreg is a sheet of continuous carbon fibers arranged in one direction (unidirectional prepreg), a substrate made of carbon fibers such as a carbon fiber fabric impregnated with a thermosetting resin, or a thermosetting resin. It is an intermediate molding material impregnated with a part of resin and the remaining part is arranged on at least one surface.
  • the unidirectional material refers to a material in which continuous reinforcing fibers with a length of 100 mm or more are aligned in one direction inside the composite material a.
  • a laminate of a plurality of continuous reinforcing fibers may be used.
  • the mechanical properties are less affected by fiber orientation. Therefore, it is possible to improve the accuracy of estimating mechanical property information using a model, which will be described later.
  • the composite material contains reinforcing fibers and a matrix resin as essential components, and other components as optional components.
  • Vr (t2 ⁇ t1)/t2 ⁇ 100
  • Formula (A) t1 (Wf/Df+Wm/Dm+Wz/Dz)/Area (mm 2 )
  • Dm density of matrix resin (mg/mm 3 )
  • Dz Density of other components (mg/mm 3 )
  • Wf mass of reinforcing fiber (mg)
  • Wm Mass of matrix resin (mg)
  • Wz mass of other components (mg)
  • the porosity Vr is more preferably 5% or less, still more preferably 3% or less. If the porosity is within the range, the accuracy of mechanical property prediction of the present invention is improved.
  • composite material a can be prepared as follows.
  • Material Reinforcing fiber Carbon fiber “Tenax (registered trademark)” STS40-24K (tensile strength 4,300 MPa, tensile modulus 240 GPa, number of filaments 24,000, fineness 1,600 tex, elongation 1.8%, density 1 .78 g/cm 3 , manufactured by Teijin Limited)
  • Base material resin Thermosetting resin composition with epoxy resin as the main component
  • a unidirectional prepreg was prepared by a hot-melt method as follows. First, a coater was used to apply the above thermosetting resin composition onto release paper to prepare a resin film. Next, the carbon fiber bundles are sent out from the creel, passed through a comb, and after aligning the pitch between the carbon fiber bundles, are widened through a fiber opening bar to form a sheet having a fiber basis weight per unit area of 100 g/m 2 . aligned in one direction. After that, the above resin films were superimposed on both sides of the carbon fiber, heated and pressurized to impregnate with the thermosetting resin composition, and wound up with a winder to produce a unidirectional prepreg. The resulting unidirectional prepreg had a resin content of 30 wt. %.
  • the present inventors measured the tensile elastic modulus and tensile strength of the composite material a as described below.
  • the above CFRP molded body was processed into a test piece shape (length 250 mm ⁇ width 15 mm) by a water jet, and a tab made of glass fiber reinforced resin matrix composite material was adhered. Based on ASTM D3039 method, a 0° direction tensile test was performed using a universal testing machine at a test speed of 2 mm/min to calculate the tensile modulus and tensile strength of the CFRP molded body (composite material a).
  • the nondestructive inspection information is preferably vibration characteristic information.
  • the vibration inspection method used to acquire the vibration characteristic information any inspection method that detects internal defects, voids, or foreign matter in the molded body region without destroying the molded body region may be used.
  • the finite element method FEA
  • the vibration characteristic information an image obtained by converting the information obtained by the vibration inspection or the finite element method is preferably used, and it is particularly preferable that the converted image is a wavelet image.
  • FIGS. 8A to 8D Specific wavelet images are shown in FIGS. 8A to 8D.
  • vibration measurements were performed with impulse excitation under free-free boundary conditions.
  • a hole of ⁇ 2 mm was made in the molded body, and a nylon line (22-8231 manufactured by Takagi Tsugyo Co., Ltd.) was passed through the hole and suspended from a beam to obtain a free-free boundary condition.
  • An acceleration pickup sensor (356A01 made by PCB PIEZOTRONICS) was installed in the area of the compact, and vibration was applied using an impulse hammer (GK-3100 made by Ono Sokki).
  • a real-time acoustic vibration analysis system (DS-3000 manufactured by Ono Sokki Co., Ltd.) was used for data measurement and analysis. At this time, the sampling frequency was set to 2000 Hz.
  • FIG. 8A and 8B are wavelet images of defect-free compact areas
  • Figures 8C and 8D are wavelet images of defective compact areas.
  • 8A to 8D are images obtained by binarizing the two-dimensional image obtained by analyzing the vibration, and indicate that the more the white portion, the greater the amplitude of the vibration at that frequency.
  • a portion indicated by reference numeral 803 in FIG. 8C and reference numeral 804 in FIG. 8D has a spherical pattern, and it can be seen that vibration of about 450 Hz was intermittently generated.
  • 8C and 804 in FIG. 8D are clearly different from 801 in FIG. 8A and 802 in FIG. 8B.
  • Vibration damping of vibration characteristics The image preferably contains vibration damping information.
  • Vibration damping is a vibration phenomenon in which the amplitude decreases over time in time history data of vibration. For example, looking at the pattern 801 in FIG. 8A and the pattern 802 in FIG. 8B, the length of the white pattern in the vertical direction at about 450 Hz in FIGS. is seen to be attenuating. At this time, the speed at which the vibration of about 450 Hz is damped is faster at reference numeral 801 in FIG. 8A than at reference numeral 802 in FIG. 8B. 8A-8D, the faster the vibration at about 450 Hz damped, the smaller the tensile modulus and tensile strength. It should be noted that FIGS. 8A-8D are merely examples. The frequency at which vibration damping occurs differs depending on the shape and natural frequency of the test piece. In addition, mechanical properties other than tensile modulus and tensile strength do not necessarily decrease as vibration damping speed increases.
  • the non-destructive inspection information in the present invention may be acoustic property information.
  • the sampling frequency refers to the frequency of taking samples per unit time in sampling, which is the processing required to convert analog waveforms such as voice into digital data. In order to correctly sample a certain waveform, it is necessary to sample at a frequency that is at least twice the bandwidth of the frequency component of the waveform.
  • the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information of the second composite material is over 0 Hz.
  • the lower limit is preferably 50 Hz or higher, more preferably 250 Hz or higher, even more preferably 5,000 Hz or higher, and even more preferably 10,000 Hz or higher.
  • the upper limit is preferably 50,000 Hz or less, more preferably 40,000 Hz or less, and even more preferably 30,000 Hz or less. Therefore, the sampling frequency is preferably 50 Hz or more and 50,000 Hz or less, more preferably 250 Hz or more and 50,000 Hz or less, further preferably 5,000 Hz or more and 40,000 Hz or less, and 10,000 Hz or more. 30,000 Hz or less is even more preferable.
  • the sampling frequency is preferably at least twice the frequency at which vibration damping occurs.
  • the sampling frequency for obtaining the vibration characteristics of the second composite material is preferably twice or more the natural frequency of the primary mode described later, and more than twice the natural frequency of the secondary mode. preferable.
  • the natural frequency of the primary mode of the first composite material and the second composite material is preferably between 0 Hz and 1000 Hz or less. Within this range, for example, when the molded body is assembled in an automobile, comfort is improved without resonating with vibrations from the outside or from the engine room. More preferably, the primary mode natural frequency of the first composite material and the second composite material is more than 0 Hz and 500 Hz or less.
  • the natural frequency of the primary mode of the first composite material and the second composite material is preferably more than 0 Hz and 20,000 Hz or less, and more than 0 Hz and 10,000 Hz or less. It is more preferable to have
  • the mechanical property information or non-destructive inspection information of the first composite material is preferably obtained by the finite element method.
  • the finite element method is one of numerical analysis techniques, and can numerically obtain approximate solutions of differential equations that are difficult to solve analytically.
  • Actual measurement of mechanical properties or non-destructive testing preferably vibration characteristics or acoustic characteristics information
  • an analysis model that applies material parameters identified in advance by comparing actual measurements and analyses, to the shape of the first composite material.
  • input data Data converted into a format that can be input to the input layer of the neural network is hereinafter referred to as input data.
  • the non-destructive test information sample of the sample of the first composite material a (hereinafter referred to as the composite material sample b) and the machine obtained by actual measurement from the composite material sample b Physical property information (hereinafter referred to as a mechanical physical property information sample) is acquired as second input data, and neural network learning is performed using this second input data.
  • the non-destructive inspection information of the composite material a is input to the neural network as the first input data, and the mechanical property information of the composite material a is estimated based on the reaction values in the output layer from the neural network. . Based on the estimated mechanical property information, the composite material a may be sorted into non-defective products and non-defective products.
  • non-destructive inspection information preferably vibration inspection images or acoustic property images
  • various image processing may be performed on the vibration test image so that detection of the vibration test image is facilitated.
  • the vibration inspection image is one type of vibration characteristic information.
  • FIG. 1 is a block diagram showing a configuration example of an inspection apparatus 1.
  • the inspection apparatus 1 performs image processing, generation of input data, neural network learning, and estimation of machine physical property information using the neural network.
  • the inspection apparatus 1 is an information processing apparatus such as a computer that includes one or more processors such as a CPU (Central Processing Unit), a storage unit, and a communication unit, and runs an OS (operating system) and applications. be.
  • the inspection device 1 may be a physical computer, a virtual machine (VM), a container, or a combination thereof.
  • the structure of the processor is, more specifically, an electric circuit combining circuit elements such as semiconductor elements.
  • the inspection apparatus 1 includes an image storage unit 11 that stores nondestructive inspection information and nondestructive inspection information samples, a processing unit 12 that processes the nondestructive inspection information and nondestructive inspection information samples, an input data generation unit 13, and a learning unit.
  • a data storage unit 14 , a learning unit 15 , a model storage unit 16 , an estimation unit 17 , a display unit 18 and an operation unit 19 are provided.
  • the processing unit 12, the input data generating unit 13, the learning unit 15, and the estimating unit 17 are functional blocks implemented by the processor of the inspection apparatus 1 executing programs. This program includes an inspection program for composite materials.
  • the image storage unit 11 is preferably a storage area for storing vibration inspection images (or acoustic characteristic images).
  • the image memory portion 11 is a volatile memory such as SRAM (Static Random Access Memory) and DRAM (Dynamic RANDOM ACCESSS MEMORY). MagNetroResistive Random Access Memory)
  • a non-volatile memory such as FeRAM (Ferroelectric Random Access Memory) may also be used.
  • the processing unit 12 preferably performs image processing on the vibration inspection image (or the acoustic characteristic image), and stores the image after the image processing in the image storage unit 11 .
  • image processing include generating an image by extracting the luminance of each color of red, green, and blue (RGB) in pixels in the image, and subtracting the luminance of green (G) from the luminance of red (R) in each pixel. generation of an image obtained by converting to the HSV color space, generation of an image in which only the red component is extracted, and the like, but other types of image processing may be performed.
  • the processing unit 12 may also perform image enlargement, reduction, cropping, noise removal, rotation, inversion, color depth change, contrast adjustment, brightness adjustment, sharpness adjustment, color correction, and the like.
  • the input data generation unit 13 generates input data to be input to the input layer of the neural network from the nondestructive inspection information or nondestructive inspection information samples stored in the image storage unit 11 .
  • the later-described learning is performed using the vibration test image, it is preferable to cut out a desired portion from the vibration test image or remove an extra portion from the vibration test image to obtain the second input data.
  • the input data generation unit 13 saves the input data in the learning data storage unit 14 .
  • the input data is transferred to the estimation unit 17 .
  • the input data generation unit 13 may generate input data using, for example, an image (non-destructive inspection information sample) captured by an external device or system.
  • the learning data storage unit 14 is a storage area that stores a plurality of input data used for neural network learning.
  • the input data stored in the learning data storage unit 14 is used as learning data for the learning unit 15 .
  • Input data (second input data) used as learning data is stored in association with a mechanical property information sample obtained by measuring the composite material sample b from which the input data is obtained.
  • this mechanical property information sample includes information indicating that the mechanical property value corresponds to a non-defective product, and information indicating that the mechanical property value corresponds to a defective product. and information indicating that it is difficult to estimate mechanical property values.
  • the correspondence of the mechanical property information sample to the second input data obtained from the composite material sample b is the mechanical property value of the composite material sample b (for example, the elastic modulus ) can be directly input by the user operating the operation unit 19 .
  • the inspection apparatus 1 sorts the mechanical property values into mechanical property ranks.
  • the tensile modulus can be classified into the following mechanical property ranks.
  • Mechanical property rank 1 Tensile modulus of composite material is 30 GPa or more
  • Mechanical property rank 2 Tensile modulus of composite material is 25 to 30 GPa
  • Mechanical property rank 3 Tensile modulus of composite material is 25 GPa or less
  • This mechanical property rank may be output in units of 3 GPa or 1 GPa instead of 5 GPa as described above.
  • the mechanical property rank can be automatically labeled by a program or script instead of the user operation. good.
  • the mechanical property rank labeling may be performed before or after converting the nondestructive test information sample obtained from the composite material sample b into the second input data.
  • the learning unit 15 uses the input data (second input data) stored in the learning data storage unit 14 to perform neural network learning.
  • the learning unit 15 stores the learned neural network in the model storage unit 16 .
  • the learning unit 15 can learn, for example, a three-layer neural network consisting of an input layer, a hidden layer, and an output layer. Real-time response performance during inspection of the composite material a can be ensured by learning the three-layer neural network.
  • the number of units included in each of the input layer, hidden layer, and output layer is not particularly limited. The number of units included in each layer can be determined based on required response performance, inference target, discrimination performance, and the like.
  • the three-layer neural network is just an example, and this does not preclude the use of multi-layer neural networks with more layers.
  • various types of neural networks such as convolutional neural networks can be used.
  • the model storage unit 16 is a storage area that stores the neural network learned by the learning unit 15.
  • a plurality of neural networks may be stored in the model storage unit 16 according to the type of the composite material a to be inspected. Since the model storage unit 16 is set so that it can be referred to by the estimation unit 17, the estimation unit 17 uses the neural network stored in the model storage unit 16 to inspect the composite material a (estimate mechanical property information). be able to.
  • the model storage unit 16 may be a volatile memory such as RAM or DRAM, or a non-volatile memory such as NAND flash memory, MRAM or FeRAM. Note that the model storage unit 16 may be located at a location accessible by the processor of the inspection apparatus 1 and may not be built in the inspection apparatus 1 . For example, the model storage unit 16 may be a storage externally attached to the inspection device 1 or a network storage connected to a network accessible from the inspection device 1 .
  • the estimation unit 17 uses the neural network stored in the model storage unit 16 to estimate the mechanical property information of the composite material a.
  • the estimation unit 17 estimates the mechanical property rank of the composite material a based on the reaction values output from the units of the output layer. Examples of units in the output layer include a unit with mechanical property rank 1, a unit with mechanical property rank 2, a unit with mechanical property rank 3, and a unit that is difficult to guess, but other types of units may be prepared. . For example, there is a possibility that a large amount of foreign matter or the like is mixed in a product with a low estimated mechanical property rank.
  • the mechanical property rank of the composite material a may be estimated using the difference or ratio of the reaction values of a plurality of units.
  • the display unit 18 is a display that displays images and text.
  • the display unit 18 may display a photographed image, an image after image processing, or an estimation result by the estimation unit 17 .
  • the operation unit 19 is a device that provides means for operating the inspection device 1 by the user.
  • the operation unit 19 is, for example, a keyboard, mouse, buttons, switches, voice recognition device, etc., but is not limited to these.
  • FIG. 2 is a flowchart of learning processing.
  • Non-destructive information samples include, for example, vibration information obtained by vibration inspection of composite material samples.
  • Composite material samples from which non-destructive inspection information is acquired include those with high and low mechanical property ranks.
  • a nondestructive test information sample that makes it difficult to guess the mechanical property information of the composite material sample may be prepared. Examples of difficult-to-guess nondestructive test information samples include images in which the composite material sample b is not sufficiently captured, composite material sample b image is not clear.
  • the processor of the inspection apparatus 1 generates second input data from each acquired nondestructive inspection information sample (step S201).
  • the processor of the inspection apparatus 1 acquires mechanical property information samples for each of the plurality of composite material samples b, and stores the acquired mechanical property information samples in association with the respective second input data (step S203 ).
  • step S203 may be performed before step S202. In this case, even after each nondestructive inspection information sample is converted to the second input data, the mechanical property information sample associated with the nondestructive inspection information sample is taken over to the second input data. good.
  • the processor of the inspection device 1 starts learning by the neural network based on the second input data (step S204).
  • FIG. 3 shows an example of a neural network that outputs three response values.
  • a neural network 301 in FIG. 3 is a neural network having three layers: an input layer 302 , a hidden layer 303 and an output layer 304 .
  • the output layer 304 includes units 311, 312, 313 that infer mechanical property ranks. Although there are three units 311, 312, and 313 in FIG. 3, the number can be increased or decreased as appropriate according to the rank of mechanical properties.
  • a value input to an input layer is propagated through a hidden layer and an output layer to obtain a reaction value of the output layer.
  • step S205 when the second input data is input to the neural network, a hidden Neural network parameters and structures, such as the number of layers 303, the number of units included in each of the input layer 302 and hidden layer 303, and the coupling coefficients between units included in each of the input layer 302 and hidden layer 303, are adjusted. be. In this way, a mechanical physical property estimation model is generated and stored in the model storage unit 16 .
  • FIG. 4 shows arithmetic processing between units of the neural network.
  • FIG. 4 shows the units of the (m ⁇ 1)-th layer and the units of the m-th layer.
  • the reaction value of unit number k of the (m-1)-th layer is a k m-1
  • the reaction value of unit number j of the m-th layer a j m can be obtained using the following equation (2).
  • W jk m is a weight and indicates the strength of coupling between units.
  • b j m is the bias.
  • f((7) is the activation function.
  • Equation (3) is the normal distribution function.
  • Equation (3) is the average value and indicates the central position of the bell-shaped peak drawn by the normal distribution function.
  • is the standard deviation and indicates the width of the peak.
  • Equation (3) depends only on the distance from the center of the peak, the Gaussian function (normal distribution function) can be said to be a kind of radial basis function (RBF).
  • a Gaussian function (normal distribution function) is an example, and other RBFs may be used.
  • Equation (4) below is a sigmoid function.
  • the sigmoid function asymptotically approaches 1.0 in the limit of x ⁇ . Also, it asymptotically approaches 0.0 at the limit of x ⁇ . That is, the sigmoid function takes values in the range (0.0, 1.0).
  • the weight Wjk which is the strength of the connection between units, is adjusted so that a correct output is obtained.
  • a correct output (reaction value of a unit in the output layer) expected when inputting input data labeled with a certain mechanical property rank in a neural network is also called a teacher signal. For example, if input data labeled with a mechanical property rank of 311 is input to the neural network 301, the reaction value of the unit 311 is 1, the reaction value of the unit 312 is 0, and the reaction value of the unit 313 is 0 in the teacher signal. .
  • the reaction value of the unit 311 is 0, the reaction value of the unit 312 is 1, and the reaction value of the unit 313 is 0 in the teacher signal.
  • the adjustment of the weights Wjk can be performed using a back propagation method (Back Propagation Method).
  • the weights Wjk are adjusted in order from the output layer so that the deviation between the output of the neural network 310 and the teacher signal becomes small. Equation (5) below shows the improved backpropagation method.
  • Equation (3) shows the value adjustment process performed for the parameter ⁇ .
  • Equation (7) shows the value adjustment process performed for the parameter ⁇ .
  • t is the number of times of learning
  • is a learning constant
  • ⁇ k is a generalization error
  • Oj is a response value of unit number j
  • is a sensitivity constant
  • is a vibration constant.
  • ⁇ W jk , ⁇ jk , and ⁇ jk indicate respective correction amounts of weights W jk , ⁇ , and ⁇ .
  • the modified back propagation method is used as an example to describe the process of adjusting the weights W jk and parameters, but a general back propagation method may be used instead.
  • the backpropagation method includes both the improved backpropagation method and the general backpropagation method.
  • the number of times the weights Wjk and parameters are adjusted by the backpropagation method may be one time or a plurality of times, and is not particularly limited. In general, it can be determined whether or not to repeat adjustment of the weights Wjk and parameters by the back propagation method based on the estimation accuracy of the mechanical property rank when using test data. Repeated adjustment of the weight Wjk and parameters may improve the accuracy of estimating the mechanical property rank.
  • the values of the weights W jk , the parameters ⁇ and ⁇ can be adjusted in step S205. Once the values of the weights W jk , parameters ⁇ , and ⁇ are adjusted, it is possible to perform an inference process using a neural network.
  • FIG. 5 is a flowchart for explaining the operation of estimating mechanical property information by the inspection device 1 that operates according to the composite material inspection program.
  • the processor of the inspection apparatus 1 acquires non-destructive inspection information of the composite material a (preferably captures a vibration inspection image or an acoustic property image) (step S501).
  • the vibration test image or acoustic property image
  • the processor of the inspection device 1 generates first input data from the nondestructive inspection information (step S502).
  • the first input data has N elements equal to the number of units in the input layer of the neural network, and is in a format that can be input to the neural network.
  • the processor of the inspection device 1 inputs the first input data to the neural network (step S503).
  • the first input data is transmitted in order of the input layer, the hidden layer, and the output layer.
  • the processor of the inspection device 1 estimates the mechanical property rank based on the reaction values in the output layer of the neural network (step S504).
  • FIG. 6 shows an example of a discriminant space when using a Gaussian function as an activation function. If a radial basis function (RBF) such as a Gaussian function is used as the activation function, the identification surface that divides the identification space into regions for each rank of mechanical properties becomes a closed surface. Further, by adding a height direction index to each category of the mechanical property rank, it is possible to localize the area related to each category in the identification space.
  • RBF radial basis function
  • Fig. 7 shows an example of the discriminant space when using the sigmoid function as the activation function. If the activation function is a sigmoid function, the identification surface is an open surface.
  • the learning process of the neural network described above corresponds to the process of learning a discriminative curved surface in the discriminative space. Although only the mechanical property rank 311 and the mechanical property rank 312 are shown in the regions in FIGS. 6 and 7, there may be distributions of three or more mechanical property ranks.
  • the mechanical property information of the composite material a can be estimated from the non-destructive inspection information (preferably vibration inspection image or acoustic property image) of the composite material a.
  • a neural network is used to determine what a human can judge by looking at an image or a measurement object. It's just a substitute. In other words, in these inventions, since the object to be inspected is the photographed food, humans can easily determine the presence or absence of foreign matter in the food.
  • the mechanical property information is a numerical value or a rank based on this
  • the non-destructive inspection information preferably vibration inspection image or acoustic property image
  • the non-destructive inspection information is a visualization or numerical representation of the internal state of the composite material.
  • the inspection apparatus 1 of the present embodiment it is possible to instantaneously infer mechanical property information that cannot be inferred no matter how hard a skilled worker tries, without actually measuring it.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

An inspection device (1) comprises a storage unit (16) for storing a mechanical property inference model that is generated by machine learning based on mechanical property information and nondestructive inspection information of a first composite material including reinforcement fibers, the mechanical property information and the nondestructive inspection information being known, and that is for use in inferring, through reception as input of nondestructive inspection information of a second composite material which includes reinforcement fibers and has unknown mechanical property information, the mechanical property information of the second composite material. The inspection device acquires the nondestructive inspection information of the second composite material, inputs said nondestructive inspection information to the mechanical property inference model, acquires the mechanical property information of the second composite material from the mechanical property inference model, and performs output based on said mechanical property information.

Description

複合材料の検査装置、複合材料の検査方法、複合材料の検査プログラムおよび記録媒体Composite material inspection device, composite material inspection method, composite material inspection program and recording medium
 本発明は、強化繊維を含む複合材料の検査装置、検査方法、検査プログラムおよび記録媒体に関する。 The present invention relates to an inspection device, an inspection method, an inspection program, and a recording medium for composite materials containing reinforcing fibers.
 強化繊維として炭素繊維を含む複合材料は、マトリックス樹脂の脆弱性を強度の高い繊維によって補強することができる。このため、軽量、高機械特性の優れた材料として広く採用されている。
 従来、強化繊維を含む複合材料の生産工程では、複合材料の製造時の不良品を検査するための超音波検査が行われている。例えば、特許文献1では、熱可塑性樹脂を炭素繊維へ含浸させる工程において、次のような検査が行われる。まず、被検査物(熱可塑性樹脂を炭素繊維へ含浸させた複合材料)に一定の距離を隔てて指向性を有する超音波送波器と受波器を対向させる。そして、一方の超音波送波器から超音波を発射し、被検査物をその対向した受波器で超音波を受け、信号処理回路によりその超音波の伝播時間を測定し、これらにより被検査物の内部欠陥を非接触で検出する。ここでの超音波を用いた検査のデータは画像に変換されることで、当該画像に基づき、被検査物の合否判定を行うことができる。
 特許文献2、3には、加工食品の生産工程で効率的に血合いや羽などの選別を行うため、高精度の検索を自動的に行う装置が開示されている。
A composite material containing carbon fibers as reinforcing fibers can reinforce the fragility of the matrix resin with high-strength fibers. For this reason, it is widely used as a lightweight material with excellent mechanical properties.
Conventionally, in the production process of composite materials containing reinforcing fibers, ultrasonic inspection is performed to inspect defective products during the manufacturing of composite materials. For example, in Patent Document 1, the following inspection is performed in the process of impregnating carbon fibers with a thermoplastic resin. First, an ultrasonic wave transmitter and a wave receiver having directivity are placed facing each other at a certain distance from an object to be inspected (composite material in which carbon fiber is impregnated with thermoplastic resin). Then, an ultrasonic wave is emitted from one of the ultrasonic wave transmitters, the ultrasonic wave is received by the opposing wave receiver on the object to be inspected, and the propagation time of the ultrasonic wave is measured by the signal processing circuit. Detect internal defects of objects without contact. The data of the inspection using the ultrasonic wave here is converted into an image, and it is possible to determine whether the object to be inspected is pass/fail based on the image.
Patent Literatures 2 and 3 disclose devices that automatically perform high-precision searches in order to efficiently sort blood, feathers, and the like in the production process of processed foods.
日本国特開2019-158459号公報Japanese Patent Application Laid-Open No. 2019-158459 国際公開第2019/151393号WO2019/151393 国際公開第2019/151394号WO2019/151394
 近年、原材料価格や人件費の高騰などもあり、高い品質を維持しながら生産コストを抑えることが課題となっており、強化繊維を含む複合材料に対し、低コスト且つ高精度な検査を実現することが求められている。
 特許文献1に記載の超音波検査による複合材料の選別作業は、得られた画像の目視検査に頼っている。このため、複合材料の状態を詳細に把握することは難しい。特に、画像を目視して行う合否判定では、客観的な評価基準を設けるのが難しく、何をもって材料の合否基準を算出するのかが定まりにくい。
 また、特許文献2、3に記載の食品検査システムは、人間が硬骨の位置を探すための装置であり、複合材料の検査を行う技術とは異なる。この食品検査システムは、あくまで画像や測定対象物の良否を人間が見れば判断できるものを、ニューラルネットワークに代替させているに過ぎない。
In recent years, due to rising raw material prices and labor costs, it has become a challenge to keep production costs down while maintaining high quality. is required.
The sorting of composite materials by ultrasonic inspection described in US Pat. Therefore, it is difficult to grasp the state of the composite material in detail. In particular, it is difficult to establish an objective evaluation standard in pass/fail judgment performed by visually observing an image, and it is difficult to determine what is used to calculate the pass/fail criterion for a material.
Moreover, the food inspection systems described in Patent Documents 2 and 3 are devices for humans to locate bones, and are different from techniques for inspecting composite materials. This food inspection system merely substitutes a neural network for the quality of an image or an object to be measured, which can be judged by humans.
 本発明は、機械物性を測定することなく、複合材料の機械物性を推測して複合材料の評価に役立てることのできる複合材料の検査装置、検査方法、検査プログラムおよび記録媒体を提供することを目的とする。 An object of the present invention is to provide a composite material inspection apparatus, an inspection method, an inspection program, and a recording medium that can estimate the mechanical properties of a composite material and be useful for evaluating the composite material without measuring the mechanical properties. and
 上記目的は以下の各態様によって解決できる。
 本発明の一態様の検査装置は、機械物性情報及び非破壊検査情報が既知の、強化繊維を含む第一複合材料の当該機械物性情報及び当該非破壊検査情報に基づく機械学習によって生成された機械物性推測モデルであって、
 機械物性情報が未知の、強化繊維を含む第二複合材料の非破壊検査情報を入力として前記第二複合材料の機械物性情報を推測する機械物性推測モデルを記憶する、モデル記憶部にアクセス可能なプロセッサを備え、
 前記プロセッサは、前記第二複合材料の非破壊検査情報を取得し、当該非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから当該第二複合材料の機械物性情報を取得し、当該機械物性情報に基づく出力を行うものである。ただし、前記非破壊検査情報は、振動特性情報又は音響特性情報であって、前記非破壊検査情報を取得する際のサンプリング周波数は0Hz超である。
The above object can be solved by the following aspects.
An inspection apparatus according to one aspect of the present invention is a machine generated by machine learning based on the mechanical property information and the non-destructive test information of the first composite material containing reinforcing fibers, in which the mechanical property information and the non-destructive test information are known. A physical property estimation model,
Accessible to a model storage unit for storing a mechanical property estimation model for estimating mechanical property information of the second composite material with input of non-destructive inspection information of a second composite material containing reinforcing fibers whose mechanical property information is unknown. with a processor
The processor acquires non-destructive inspection information of the second composite material, inputs the non-destructive inspection information into the mechanical property estimation model, and extracts the mechanical property information of the second composite material from the mechanical property estimation model. It acquires and outputs based on the mechanical physical property information. However, the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information is over 0 Hz.
 本発明の一態様の検査方法は、機械物性情報及び非破壊検査情報が既知の、強化繊維を含む第一複合材料の当該機械物性情報及び当該非破壊検査情報を機械学習させることで、機械物性情報が未知の、強化繊維を含む第二複合材料の非破壊検査情報を入力として前記第二複合材料の機械物性情報を推測する機械物性推測モデルを生成するステップと、前記第二複合材料の非破壊検査情報を取得するステップと、前記取得した前記非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから前記第二複合材料の機械物性情報を取得し、当該機械物性情報に基づく出力を行うステップと、を備えるものである。ただし、前記非破壊検査情報は、振動特性情報又は音響特性情報であって、前記非破壊検査情報を取得する際のサンプリング周波数は0Hz超である。 In the inspection method of one aspect of the present invention, the mechanical property information and the non-destructive test information are known, and the mechanical property information and the non-destructive test information of the first composite material containing reinforcing fibers are machine-learned. generating a mechanical property estimation model for estimating mechanical property information of the second composite material by inputting non-destructive test information of the second composite material containing reinforcing fibers whose information is unknown; obtaining destructive test information; inputting the obtained non-destructive test information to the mechanical property estimation model; obtaining mechanical property information of the second composite material from the mechanical property estimation model; and providing an output based on the information. However, the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information is over 0 Hz.
 本発明の一態様の検査プログラムは機械物性情報及び非破壊検査情報が既知の、強化繊維を含む第一複合材料の当該機械物性情報及び当該非破壊検査情報を機械学習させることで、機械物性情報が未知の、強化繊維を含む第二複合材料の非破壊検査情報を入力として前記第二複合材料の機械物性情報を推測する機械物性推測モデルを生成するステップと、前記第二複合材料の非破壊検査情報を取得するステップと、前記取得した前記非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから前記第二複合材料の機械物性情報を取得し、当該機械物性情報に基づく出力を行うステップと、をプロセッサに実行させるものである。ただし、前記非破壊検査情報は、振動特性情報又は音響特性情報であって、前記非破壊検査情報を取得する際のサンプリング周波数は0Hz超である。 The inspection program of one aspect of the present invention performs machine learning of the mechanical property information and the nondestructive test information of the first composite material containing reinforcing fibers, for which the mechanical property information and the nondestructive test information are known, to obtain the mechanical property information. generating a mechanical property estimation model for estimating mechanical property information of the second composite material using as input non-destructive test information of a second composite material containing reinforcing fibers, for which is unknown; obtaining inspection information; inputting the obtained non-destructive inspection information to the mechanical property estimation model; obtaining mechanical property information of the second composite material from the mechanical property estimation model; and outputting an output based on the processor. However, the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information is over 0 Hz.
 本発明によれば、機械物性を測定することなく、非破壊検査情報のみによって複合材料の機械物性を推測して複合材料の評価に役立てることができる。本発明によれば、非破壊検査情報からでは人がどのように頑張っても推測することが出来ない機械物性情報を、高い精度にて瞬時に推測することができる。これにより、複合材料の生産における廃棄ロスを低減し、高品質な複合材料を低コストで提供できる。 According to the present invention, it is possible to estimate the mechanical properties of a composite material only from non-destructive inspection information without measuring the mechanical properties, and use this information to evaluate the composite material. According to the present invention, it is possible to instantaneously infer mechanical property information, which cannot be inferred from non-destructive inspection information no matter how hard a person tries, with high accuracy. As a result, waste loss in the production of composite materials can be reduced, and high-quality composite materials can be provided at low cost.
検査装置の構成例を示すブロック図。FIG. 2 is a block diagram showing a configuration example of an inspection device; 学習処理のフローチャート。A flowchart of learning processing. 3つの反応値を出力するニューラルネットワークの例を示す図。The figure which shows the example of the neural network which outputs three reaction values. ニューラルネットワークのユニット間の演算処理を示す図。FIG. 4 is a diagram showing arithmetic processing between units of a neural network; 推測処理のフローチャート。Flowchart of inference processing. 活性化関数にRBFを使ったときの識別曲面と反応値の分布。Discrimination surface and distribution of response values when RBF is used as the activation function. 活性化関数にシグモイド関数を使ったときの識別曲面と反応値の分布。Discrimination surface and distribution of response values when sigmoid function is used as activation function. 振動検査画像を示す図。The figure which shows a vibration inspection image. 振動検査画像を示す図。The figure which shows a vibration inspection image. 振動検査画像を示す図。The figure which shows a vibration inspection image. 振動検査画像を示す図。The figure which shows a vibration inspection image.
 以下に、本発明の一実施形態である検査装置を含む検査システムについて説明するが、本発明はこれに制限されるものではない。 An inspection system including an inspection apparatus that is one embodiment of the present invention will be described below, but the present invention is not limited to this.
[検査システムの概略]
 本実施形態の検査システムは、機械物性情報が未知の強化繊維を含む複合材料(第二複合材料)を被検査物とし、この第二複合材料の機械物性情報を、実測することなく、推測するものである。
 複合材料の機械物性情報とは、複合材料の機械的な物性を示す情報であり、例えば、複合材料の強度などの破壊又は弾性に関する情報である。機械物性情報としては、引張強度又は曲げ強度などの破壊強度に関する情報や、破壊強度、圧縮強度、又はせん断強度等のそれぞれに関連する弾性率に関する情報が例示できる。
[Overview of inspection system]
The inspection system of the present embodiment uses a composite material (second composite material) containing reinforcing fibers whose mechanical property information is unknown as an object to be inspected, and estimates the mechanical property information of this second composite material without actually measuring it. It is.
The mechanical physical property information of a composite material is information indicating the mechanical physical properties of the composite material, for example, information regarding fracture or elasticity such as strength of the composite material. Examples of mechanical property information include information on breaking strength such as tensile strength or bending strength, and information on elastic modulus related to each of breaking strength, compressive strength, shear strength, and the like.
 弾性率に関する情報は、弾性率(例えば引張弾性率又は曲げ弾性率)そのものであってもよいし、弾性率(例えば引張弾性率又は曲げ弾性率)をランク分けした場合のそのランク(以下、機械物性ランクと記載)であってもよい。弾性率に関する情報には、弾性率(又はそのランク)が不良品に該当することを示す情報、弾性率(又はそのランク)が良品に該当することを示す情報、弾性率(又はそのランク)が推測困難であったことを示す情報のいずれかが更に含まれるようにするとよい。 Information on the elastic modulus may be the elastic modulus (e.g., tensile modulus or flexural modulus) itself, or the rank of elastic modulus (e.g., tensile elastic modulus or flexural modulus) (hereinafter referred to as mechanical described as physical property rank). Information about the elastic modulus includes information indicating that the elastic modulus (or its rank) corresponds to a defective product, information indicating that the elastic modulus (or its rank) corresponds to a non-defective product, and information indicating that the elastic modulus (or its rank) corresponds to a non-defective product. It is preferable to further include any of the information indicating that it was difficult to guess.
 破壊強度に関する情報は、破壊強度(例えば引張強度、又は降伏強度)そのものであってもよいし、破壊強度(例えば引張強度又は降伏強度)をランク分けした場合のそのランク(以下、機械物性ランクと記載)であってもよい。破壊強度に関する情報には、破壊強度(又はそのランク)が不良品に該当することを示す情報、破壊強度(又はそのランク)が良品に該当することを示す情報、破壊強度(又はそのランク)が推測困難であったことを示す情報のいずれかが更に含まれるようにするとよい。 Information on the breaking strength may be the breaking strength (e.g., tensile strength or yield strength) itself, or the rank when the breaking strength (e.g., tensile strength or yield strength) is classified (hereinafter referred to as the mechanical property rank) description). Information on the breaking strength includes information indicating that the breaking strength (or its rank) corresponds to defective products, information indicating that the breaking strength (or its rank) corresponds to non-defective products, and information indicating that the breaking strength (or its rank) corresponds to non-defective products. It is preferable to further include any of the information indicating that it was difficult to guess.
 検査システムに含まれるコンピュータは、第二複合材料の非破壊検査情報を取得し、この非破壊検査情報を、事前に生成してモデル記憶部に記憶しておいた機械物性推測モデルに入力し、この機械物性推測モデルによって推論を行い、推測される第二複合材料の機械物性情報、または、推測困難であることの情報を出力する。推測される第二複合材料の機械物性情報としては、例えば機械物性ランク、良品又は不良品であることの情報等が挙げられる。情報を出力する方法としては、表示部に情報を表示する、スピーカから該情報をメッセージとして流す、プリンタに該情報を印刷させる、等が挙げられる。 A computer included in the inspection system acquires non-destructive inspection information of the second composite material, inputs this non-destructive inspection information into the mechanical property estimation model generated in advance and stored in the model storage unit, Inference is performed by this mechanical property estimation model, and information on the mechanical properties of the second composite material that is inferred, or information on the difficulty of inference is output. The estimated mechanical property information of the second composite material includes, for example, a mechanical property rank, information indicating whether the product is non-defective or defective, and the like. Methods for outputting information include displaying information on a display unit, transmitting the information as a message from a speaker, and printing the information on a printer.
 本発明において、非破壊検査情報は振動特性情報であることが好ましい。振動特性とは、複合材料を固定状態または非固定状態で加振させることで得られる、変位や加速度、固有振動数といった複合材料自体の情報である。振動特性情報としては、固有振動数等の数値データでも良いし、ウェーブレット画像を利用した検査画像であっても良い。検査画像として、例えば図8A~図8Dのウェーブレット画像を例示できる。ここで、ウェーブレット画像は、複合材料を加振したときの複合材料上の所定の点の変位の時間変化を測定し、振動をウェーブレット変換した後、振動の周波数を縦軸、時間を横軸、振動の振幅を輝度や色相で示した二次元画像である。 In the present invention, the nondestructive inspection information is preferably vibration characteristic information. Vibration characteristics are information about the composite material itself, such as displacement, acceleration, and natural frequency, obtained by vibrating the composite material in a fixed or non-fixed state. The vibration characteristic information may be numerical data such as a natural frequency, or an inspection image using a wavelet image. As inspection images, for example, the wavelet images shown in FIGS. 8A to 8D can be exemplified. Here, the wavelet image is obtained by measuring the time change of the displacement of a predetermined point on the composite material when the composite material is vibrated, wavelet transforming the vibration, and then representing the vibration frequency on the vertical axis, the time on the horizontal axis, and the time on the horizontal axis. It is a two-dimensional image showing the amplitude of vibration in terms of brightness and hue.
 機械物性推測モデルは、機械物性情報及び非破壊検査情報のデータが既知の、強化繊維を含む複合材料(第一複合材料)、の当該データを機械学習(教師あり学習、又は教師無し学習のディープラーニングを含む)させることで生成された、非破壊検査情報を入力として機械物性情報を推測するモデルである。機械物性推測モデルは、例えばニューラルネットワーク又はサポートベクターマシン等が用いられる。 The mechanical property estimation model uses machine learning (supervised learning or unsupervised learning deep It is a model that estimates mechanical property information by inputting non-destructive inspection information generated by letting it run (including learning). A neural network, a support vector machine, or the like, for example, is used as the mechanical property estimation model.
 検査システムのコンピュータは、検査装置を構成する。このコンピュータは、プロセッサと、ハードディスク装置又はSSD(Solid State Drive)等の情報を記憶可能な装置からなる記憶部と、RAM(Random Access Memory)及びROM(Read Only Memory)と、を備えていてもよい。このプロセッサは、ROMに記憶された検査プログラムを実行することにより、被検査物の複合材料の非破壊検査情報の取得、取得した非破壊検査情報の機械物性推測モデルへの入力、機械物性推測モデルからの機械物性情報の取得、取得した機械物性情報に基づく出力、等の処理を行う。検査プログラムを格納する記憶媒体としてはROMに限定されるものではなく、公知の記憶媒体を用いることができるが、非一時的な記憶媒体であると好ましく、ハードディスク装置又はSSD(Solid State Drive)などが用いられてもよい。記憶媒体は記録媒体と称されることもある。また、検査プログラムはネットワーク上のサーバ(クラウド)に記憶され、プロセッサは、そのサーバからプログラムをダウンロードしてそのプログラムを実行してもよい。 The computer of the inspection system constitutes the inspection equipment. This computer may include a processor, a storage unit consisting of a device capable of storing information such as a hard disk device or SSD (Solid State Drive), RAM (Random Access Memory) and ROM (Read Only Memory). good. This processor executes an inspection program stored in a ROM to acquire nondestructive inspection information of a composite material of an object to be inspected, input the acquired nondestructive inspection information into a mechanical property estimation model, and obtain a mechanical property estimation model. It performs processing such as acquisition of mechanical property information from the machine and output based on the acquired mechanical property information. The storage medium for storing the inspection program is not limited to ROM, and a known storage medium can be used, but a non-temporary storage medium is preferable, such as a hard disk device or SSD (Solid State Drive). may be used. A storage medium may also be referred to as a recording medium. Alternatively, the inspection program may be stored in a server (cloud) on the network, and the processor may download the program from the server and execute the program.
 複合材料の非破壊検査情報は、通常、複合材料の内部に欠陥、空隙、又は異物が存在しているか、存在している場合にはどの存在度合がどの程度であるか、といったことを判断するために用いられる。しかし、複合材料の内部に欠陥、空隙、又は異物が多く存在していても、欠陥、空隙、又は異物の分布状態によっては、機械物性が良好となっている場合もある。このような場合、非破壊検査情報を目視にて確認して、欠陥、空隙、又は異物が多いから不良品であると判断してしまうと、良品であったはずの複合材料を破棄することになってしまい、生産効率が下がることになる。一方、その逆もあり得る。つまり、非破壊検査情報を目視にて確認して、欠陥、空隙、又は異物が少ないから良品であると判断しても、機械物性は不良品に該当する状態となっている場合がある。 Non-destructive testing information for composite materials typically determines whether defects, voids, or foreign objects are present within the composite material, and if so, to what extent and to what extent. used for However, even if there are many defects, voids, or foreign matter inside the composite material, the mechanical properties may be good depending on the distribution state of the defects, voids, or foreign matter. In such a case, if the non-destructive inspection information is visually checked and it is determined that the product is defective because there are many defects, voids, or foreign substances, the composite material that should have been a good product will be discarded. As a result, production efficiency will decrease. On the other hand, the opposite is also possible. In other words, even if the non-destructive inspection information is visually confirmed and the product is determined to be good because there are few defects, voids, or foreign matter, the mechanical properties may be in a state corresponding to a defective product.
 本発明者らは、上記の観点に基づき検証を行った結果、非破壊検査情報と機械物性情報には相関性があることを見出し、非破壊検査情報及び機械物性情報の多数の実測データを、ニューラルネットワーク又はサポートベクターマシン等のモデルに機械学習させることで、複合材料の非破壊検査情報から、高い確度で、その複合材料の機械物性情報を推測することに成功した。非破壊検査情報から機械物性情報を求めることは従来考えられていない。このため、非破壊検査情報を入力として機械物性情報を出力する機械学習モデルを構築することは、当業者にとって容易なことではなかった。
 以下、検査システムの詳細例について説明する。なお、以下では、機械物性推測モデルがニューラルネットワークである例について説明する。
As a result of verification based on the above viewpoints, the present inventors found that there is a correlation between nondestructive inspection information and mechanical physical property information, and obtained a large number of measured data of nondestructive inspection information and mechanical physical property information, By applying machine learning to models such as neural networks or support vector machines, we succeeded in inferring mechanical property information of composite materials with high accuracy from non-destructive inspection information of composite materials. Obtaining mechanical property information from non-destructive inspection information has not been considered in the past. For this reason, it was not easy for those skilled in the art to build a machine learning model that takes non-destructive inspection information as input and outputs machine physical property information.
A detailed example of the inspection system will be described below. Note that an example in which the mechanical property estimation model is a neural network will be described below.
[強化繊維]
 本発明に用いられる強化繊維の種類は、被検査物である複合材料a(機械物性情報が未知の第二複合材料)の用途等に応じて適宜選択することができるものであり、特に限定されるものではない。強化繊維としては、無機繊維又は有機繊維のいずれであっても好適に用いることができる。
 上記無機繊維としては、例えば、炭素繊維、活性炭繊維、黒鉛繊維、ガラス繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、アルミナ繊維、天然鉱物繊維(玄武岩繊維など)、ボロン繊維、窒化ホウ素繊維、炭化ホウ素繊維、及び金属繊維等を挙げることができる。
[Reinforcing fiber]
The type of reinforcing fiber used in the present invention can be appropriately selected according to the application of the composite material a (second composite material with unknown mechanical property information) to be inspected, and is not particularly limited. not something. Either inorganic fibers or organic fibers can be suitably used as the reinforcing fibers.
Examples of the inorganic fibers include carbon fibers, activated carbon fibers, graphite fibers, glass fibers, tungsten carbide fibers, silicon carbide fibers (silicon carbide fibers), ceramic fibers, alumina fibers, natural mineral fibers (basalt fibers, etc.), and boron fibers. , boron nitride fibers, boron carbide fibers, and metal fibers.
[炭素繊維]
 繊維として炭素繊維を用いる場合、炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。
[Carbon fiber]
When using carbon fiber as the fiber, the carbon fiber generally includes polyacrylonitrile (PAN)-based carbon fiber, petroleum/coal pitch-based carbon fiber, rayon-based carbon fiber, cellulose-based carbon fiber, lignin-based carbon fiber, phenol-based Carbon fibers, vapor-grown carbon fibers, and the like are known, and any of these carbon fibers can be suitably used in the present invention.
[強化繊維の形態]
 本発明において、強化繊維の形態に特に限定は無いが、以下、本発明者らが具体例として行った、連続繊維について説明する。ただし、本発明は連続繊維に限定されるものではない。
 連続繊維とは、強化繊維を短繊維の状態に切断することなく、強化繊維束を連続した状態で引き揃えた強化繊維を意味する。力学特性に優れる複合材料aを得る目的からは、連続強化繊維を用いることが好ましい。より具体的には、連続繊維とは好ましくは長さが1m以上の繊維のことで、織物や編み物等の織布に加工した後樹脂をハンドレイアップなどで含浸させて用いたり、連続繊維に未硬化の樹脂を含浸させたプリプレグとして用いられたりする。
[Form of reinforcing fiber]
In the present invention, the form of the reinforcing fiber is not particularly limited, but the continuous fiber that the present inventors carried out as a specific example will be described below. However, the present invention is not limited to continuous fibers.
A continuous fiber means a reinforcing fiber obtained by aligning a reinforcing fiber bundle in a continuous state without cutting the reinforcing fiber into short fibers. For the purpose of obtaining a composite material a having excellent mechanical properties, it is preferable to use continuous reinforcing fibers. More specifically, the continuous fiber is preferably a fiber having a length of 1 m or more. It is used as a prepreg impregnated with uncured resin.
[複合材料a]
 複合材料aは、強化繊維で強化されたものである。以下、本発明らが行った実施態様の一例を説明するが、本発明は下記に記載の複合材料aに限定されない。
[Composite material a]
The composite material a is reinforced with reinforcing fibers. Hereinafter, an example of the embodiment performed by the present inventors will be described, but the present invention is not limited to the composite material a described below.
1.成形体
 複合材料aは、成形後の成形体であることが好ましく、熱可塑性樹脂を用いた成形体であっても良いし、熱硬化性のプリプレグを用いた成形体であっても良い。プリプレグとは、連続した炭素繊維を一方向に並べシート状にしたもの(一方向プリプレグ)や炭素繊維織物などの炭素繊維から成る基材に熱硬化性樹脂を含浸させたもの、または熱硬化性樹脂の一部を含浸させ、残りの部分を少なくとも片方の表面に配置した成形中間材料である。
1. Molded Body The composite material a is preferably a molded body after molding, and may be a molded body using a thermoplastic resin or a molded body using a thermosetting prepreg. A prepreg is a sheet of continuous carbon fibers arranged in one direction (unidirectional prepreg), a substrate made of carbon fibers such as a carbon fiber fabric impregnated with a thermosetting resin, or a thermosetting resin. It is an intermediate molding material impregnated with a part of resin and the remaining part is arranged on at least one surface.
2.一方向性材料
 複合材料aは、一方向性材料であることが好ましい。一方向性材料とは、長さ100mm以上の連続した強化繊維が複合材料aの内部に一方向にそろえて配置されているものをいう。一方向性材料としては、複数の連続強化繊維を積層したものであっても良い。特に、複合材料aが一方向性材料であって、熱硬化性のプリプレグを用いた複合材料である場合、繊維配向による機械物性への影響が少ない。このため、後述のモデルによる機械物性情報の推測の精度を高めることができる。
2. Unidirectional Material Composite material a is preferably a unidirectional material. The unidirectional material refers to a material in which continuous reinforcing fibers with a length of 100 mm or more are aligned in one direction inside the composite material a. As the unidirectional material, a laminate of a plurality of continuous reinforcing fibers may be used. In particular, when the composite material a is a unidirectional material and is a composite material using a thermosetting prepreg, the mechanical properties are less affected by fiber orientation. Therefore, it is possible to improve the accuracy of estimating mechanical property information using a model, which will be described later.
[好ましい複合材料]
 前記複合材料は必須成分として強化繊維とマトリクス樹脂とを含み、任意成分としてその他の成分を含み、下記式(A)(B)で求められる複合材料の空孔率Vrが10%以下である。
 
 Vr=(t2-t1)/t2×100 ・・・ 式(A)
 t1=(Wf/Df+Wm/Dm+Wz/Dz)÷面積(mm) ・・・ 式(B)
 
t1:複合材料の理論厚み(mm)
t2:複合材料の実測厚み(mm)
Df:強化繊維の密度(mg/mm
Dm:マトリクス樹脂の密度(mg/mm
Dz:その他の成分の密度 (mg/mm
Wf:強化繊維の質量(mg)
Wm:マトリクス樹脂の質量(mg)
Wz:その他の成分の質量(mg)
 空孔率Vrは5%以下がより好ましく、3%以下が更に好ましい。空孔率が当該範囲内であれば、本発明の機械物性予測の精度が向上する。
[Preferred composite material]
The composite material contains reinforcing fibers and a matrix resin as essential components, and other components as optional components.

Vr=(t2−t1)/t2×100 Formula (A)
t1=(Wf/Df+Wm/Dm+Wz/Dz)/Area (mm 2 ) Formula (B)

t1: Theoretical thickness of composite material (mm)
t2: Measured thickness of composite material (mm)
Df: Density of reinforcing fiber (mg/mm 3 )
Dm: density of matrix resin (mg/mm 3 )
Dz: Density of other components (mg/mm 3 )
Wf: mass of reinforcing fiber (mg)
Wm: Mass of matrix resin (mg)
Wz: mass of other components (mg)
The porosity Vr is more preferably 5% or less, still more preferably 3% or less. If the porosity is within the range, the accuracy of mechanical property prediction of the present invention is improved.
[複合材料aの製造]
 例えば、複合材料aは以下のように準備できる。
1.材料
 ・強化繊維:炭素繊維“テナックス(登録商標)”STS40-24K(引張強度4,300MPa、引張弾性率240GPa、フィラメント数24,000本、繊度1,600tex、伸度1.8%、密度1.78g/cm、帝人(株)製)
 ・母材樹脂:エポキシ樹脂を主成分とした熱硬化性樹脂組成物
[Production of composite material a]
For example, composite material a can be prepared as follows.
1. Material Reinforcing fiber: Carbon fiber “Tenax (registered trademark)” STS40-24K (tensile strength 4,300 MPa, tensile modulus 240 GPa, number of filaments 24,000, fineness 1,600 tex, elongation 1.8%, density 1 .78 g/cm 3 , manufactured by Teijin Limited)
・Base material resin: Thermosetting resin composition with epoxy resin as the main component
2.一方向プリプレグの作成
 一方向プリプレグは次のようにホットメルト法により作製した。まず初めに、コーターを用いて上記熱硬化性樹脂組成物を離型紙上に塗布し、樹脂フィルムを作製した。次に、クリールから上記炭素繊維束を送り出し、コームに通過させ、炭素繊維束間のピッチを揃えた後、開繊バーを通して拡幅し、単位面積あたりの繊維目付が100g/mのシート状となるように一方向に整列させた。その後、上記樹脂フィルムを炭素繊維の両面から重ね、加熱加圧して熱硬化性樹脂組成物を含浸させ、ワインダーで巻き取り、一方向プリプレグを作製した。得られた一方向プリプレグの樹脂含有率は30wt.%とした。
2. Preparation of unidirectional prepreg A unidirectional prepreg was prepared by a hot-melt method as follows. First, a coater was used to apply the above thermosetting resin composition onto release paper to prepare a resin film. Next, the carbon fiber bundles are sent out from the creel, passed through a comb, and after aligning the pitch between the carbon fiber bundles, are widened through a fiber opening bar to form a sheet having a fiber basis weight per unit area of 100 g/m 2 . aligned in one direction. After that, the above resin films were superimposed on both sides of the carbon fiber, heated and pressurized to impregnate with the thermosetting resin composition, and wound up with a winder to produce a unidirectional prepreg. The resulting unidirectional prepreg had a resin content of 30 wt. %.
3.複合材料aの作成
 一方向プリプレグを人手により0°方向に11枚積層し、積層構成[011]のプリプレグ積層体を得た。上記プリプレグ積層体をバッグフィルム内に入れ、これをオートクレーブ内で昇温し、130℃にて120分間加熱し、硬化させて厚さ1mmのCFRP成形体(一方向炭素繊維強化熱硬化性樹脂複合材料である、複合材料a)を作製した。
3. Preparation of Composite Material a Eleven sheets of unidirectional prepreg were manually laminated in the direction of 0° to obtain a prepreg laminate having a lamination structure of [011] T . The prepreg laminate is placed in a bag film, heated in an autoclave, heated at 130 ° C. for 120 minutes, and cured to form a 1 mm thick CFRP molded body (unidirectional carbon fiber reinforced thermosetting resin composite A material, Composite a), was produced.
[引張弾性率、引張強度の測定]
 本発明の破壊強度、又は弾性率の具体例として、本発明者らは次に述べるように複合材料aの引張弾性率と引張強度を測定した。
 上記CFRP成形体をウォータージェットにより試験片形状(長さ250mm×幅15mm)に加工し、ガラス繊維強化樹脂基複合材料製のタブを接着した。ASTM D3039法に準拠し、万能試験機を用いて、試験速度2mm/minの条件にて0°方向引張試験を行い、CFRP成形体(複合材料a)の引張弾性率および引張強度を算出した。
[Measurement of tensile modulus and tensile strength]
As specific examples of the breaking strength or elastic modulus of the present invention, the present inventors measured the tensile elastic modulus and tensile strength of the composite material a as described below.
The above CFRP molded body was processed into a test piece shape (length 250 mm×width 15 mm) by a water jet, and a tab made of glass fiber reinforced resin matrix composite material was adhered. Based on ASTM D3039 method, a 0° direction tensile test was performed using a universal testing machine at a test speed of 2 mm/min to calculate the tensile modulus and tensile strength of the CFRP molded body (composite material a).
[振動特性情報]
 本発明において、非破壊検査情報は振動特性情報であることが好ましい。振動特性情報の取得に用いられる振動検査方法に特に限定は無く、成形体領域の内部欠陥、空隙、又は異物を、成形体領域を破壊することなく検出する検査方法であればよい。また、振動特性情報の取得には、有限要素法(FEA)を用いても良い。振動特性情報は、前記振動検査、又は有限要素法によって得られた情報を画像に変換したものが好ましく用いられ、変換後の画像がウェーブレット画像であることが特に好ましい。
[Vibration characteristic information]
In the present invention, the nondestructive inspection information is preferably vibration characteristic information. There is no particular limitation on the vibration inspection method used to acquire the vibration characteristic information, and any inspection method that detects internal defects, voids, or foreign matter in the molded body region without destroying the molded body region may be used. Also, the finite element method (FEA) may be used to acquire the vibration characteristic information. As the vibration characteristic information, an image obtained by converting the information obtained by the vibration inspection or the finite element method is preferably used, and it is particularly preferable that the converted image is a wavelet image.
 具体的なウェーブレット画像を図8A~図8Dに示す。この画像を取得するにあたり、振動測定は、フリー・フリー境界条件でインパルス加振により実施した。成形体にΦ2mmの穴を開け、この穴にナイロンテグス(高木綱業製22-8231)を通して梁から吊るすことでフリー・フリー境界条件とした。加速度ピックアップセンサー(PCB PIEZOTRONICS製 356A01)を成形体領域に設置し、インパルスハンマ(小野測器製GK-3100)を用いて加振した。データ計測および解析はリアルタイム音響振動解析システム(小野測器製DS-3000)を使用した。このとき、サンプリング周波数は2000Hzとした。 Specific wavelet images are shown in FIGS. 8A to 8D. To acquire this image, vibration measurements were performed with impulse excitation under free-free boundary conditions. A hole of Φ2 mm was made in the molded body, and a nylon line (22-8231 manufactured by Takagi Tsugyo Co., Ltd.) was passed through the hole and suspended from a beam to obtain a free-free boundary condition. An acceleration pickup sensor (356A01 made by PCB PIEZOTRONICS) was installed in the area of the compact, and vibration was applied using an impulse hammer (GK-3100 made by Ono Sokki). A real-time acoustic vibration analysis system (DS-3000 manufactured by Ono Sokki Co., Ltd.) was used for data measurement and analysis. At this time, the sampling frequency was set to 2000 Hz.
 得られた振動データを、ウェーブレット解析用ソフトウェア(ELMEC社製BIOMAS)を用いて解析し、振動の周波数を縦軸、時間を横軸、振動の振幅を輝度や色相で示したウェーブレット画像を得た。
 図8Aおよび図8Bは欠陥のない成形体領域のウェーブレット画像であり、図8Cおよび図8Dは欠陥のある成形体領域のウェーブレット画像である。なお、図8A~図8Dは、振動を解析して得た二次元画像を2値化した画像であり、白色の部分が多いほど、その周波数における振動の振幅が大きいことを示している。図8C中の符号803および図8D中の符号804の部分は球状の模様となっており、約450Hzの振動が断続的に発生していたことが分かる。図8C中の符号803および図8D中の符号804の部分は図8A中の801および図8B中の802の部分とは明らかに異なることが確認された。
The obtained vibration data was analyzed using wavelet analysis software (BIOMAS manufactured by ELMEC) to obtain a wavelet image showing vibration frequency on the vertical axis, time on the horizontal axis, and vibration amplitude on the luminance and hue. .
Figures 8A and 8B are wavelet images of defect-free compact areas, and Figures 8C and 8D are wavelet images of defective compact areas. 8A to 8D are images obtained by binarizing the two-dimensional image obtained by analyzing the vibration, and indicate that the more the white portion, the greater the amplitude of the vibration at that frequency. A portion indicated by reference numeral 803 in FIG. 8C and reference numeral 804 in FIG. 8D has a spherical pattern, and it can be seen that vibration of about 450 Hz was intermittently generated. 8C and 804 in FIG. 8D are clearly different from 801 in FIG. 8A and 802 in FIG. 8B.
[振動特性の振動減衰]
 画像は振動減衰の情報を含むことが好ましい。振動減衰とは、振動の時刻歴データにおいて、振幅が時間経過に伴い減少する振動現象である。例えば図8A中の符号801および図8B中の符号802の模様を見ると、図8Aおよび図8Bの約450Hzにおける白色の模様の縦軸方向の長さが時間経過とともに小さくなり、約450Hzの振動が減衰している様子が分かる。このとき、図8Aの符号801では図8Bの符号802に比べて、約450Hzの振動が減衰する速度が速い。図8A~図8Dの測定データを測定した成形体領域では、約450Hzの振動が減衰する速度が速いほど、引張弾性率および引張強度が小さかった。なお、図8A~図8Dはあくまで例に過ぎない。試験片の形状や固有振動数に応じて、振動減衰が生じる周波数は異なる。また、引張弾性率および引張強度以外の機械物性については、必ずしも振動が減衰する速度が速いほど小さくなるわけではない。
[Vibration damping of vibration characteristics]
The image preferably contains vibration damping information. Vibration damping is a vibration phenomenon in which the amplitude decreases over time in time history data of vibration. For example, looking at the pattern 801 in FIG. 8A and the pattern 802 in FIG. 8B, the length of the white pattern in the vertical direction at about 450 Hz in FIGS. is seen to be attenuating. At this time, the speed at which the vibration of about 450 Hz is damped is faster at reference numeral 801 in FIG. 8A than at reference numeral 802 in FIG. 8B. 8A-8D, the faster the vibration at about 450 Hz damped, the smaller the tensile modulus and tensile strength. It should be noted that FIGS. 8A-8D are merely examples. The frequency at which vibration damping occurs differs depending on the shape and natural frequency of the test piece. In addition, mechanical properties other than tensile modulus and tensile strength do not necessarily decrease as vibration damping speed increases.
[音響特性]
 本発明における非破壊検査情報は音響特性情報であっても良い。
[周波数]
1.サンプリング周波数
 一般に、サンプリング周波数は音声等のアナログ波形をデジタルデータにするために必要な処理であるサンプリングにおいて、単位時間あたりに標本を採る頻度のことを指す。ある波形を正しくサンプリングするためには、波形の有する周波数成分の帯域幅の2倍以上の周波数でサンプリングする必要がある。本発明において、非破壊検査情報は、振動特性情報又は音響特性情報であって、第二複合材料の非破壊検査情報を取得する際のサンプリング周波数は0Hz超である。
 下限値の好ましい値は50Hz以上であり、より好ましい値は250Hz以上、更に好ましくは5,000Hz以上、より一層好ましくは10,000Hz以上である。一方、上限値の好ましい値は50,000Hz以下であり、より好ましくは40,000Hz以下であり、更に好ましい値は30,000Hz以下である。
 したがって、サンプリング周波数は、50Hz以上50,000Hz以下であることが好ましく、250Hz以上50,000Hz以下であることがより好ましく、5,000Hz以上40,000Hz以下であることが更に好ましく、10,000Hz以上30,000Hz以下であることがより一層好ましい。
 別の観点では、サンプリング周波数は、上述した振動減衰が生じる周波数の2倍以上であることが好ましい。
 また、別の観点では、第二複合材料の振動特性を取得する際のサンプリング周波数は後述する一次モードの固有振動数の2倍以上が好ましく、二次モードの固有振動数の2倍以上が更に好ましい。
[Acoustic characteristics]
The non-destructive inspection information in the present invention may be acoustic property information.
[frequency]
1. Sampling Frequency In general, the sampling frequency refers to the frequency of taking samples per unit time in sampling, which is the processing required to convert analog waveforms such as voice into digital data. In order to correctly sample a certain waveform, it is necessary to sample at a frequency that is at least twice the bandwidth of the frequency component of the waveform. In the present invention, the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information of the second composite material is over 0 Hz.
The lower limit is preferably 50 Hz or higher, more preferably 250 Hz or higher, even more preferably 5,000 Hz or higher, and even more preferably 10,000 Hz or higher. On the other hand, the upper limit is preferably 50,000 Hz or less, more preferably 40,000 Hz or less, and even more preferably 30,000 Hz or less.
Therefore, the sampling frequency is preferably 50 Hz or more and 50,000 Hz or less, more preferably 250 Hz or more and 50,000 Hz or less, further preferably 5,000 Hz or more and 40,000 Hz or less, and 10,000 Hz or more. 30,000 Hz or less is even more preferable.
From another point of view, the sampling frequency is preferably at least twice the frequency at which vibration damping occurs.
From another point of view, the sampling frequency for obtaining the vibration characteristics of the second composite material is preferably twice or more the natural frequency of the primary mode described later, and more than twice the natural frequency of the secondary mode. preferable.
2.一次モードの固有振動数
 非破壊検査情報が振動特性情報であるとき、第一複合材料、及び第二複合材料の一次モードの固有振動数は0Hz超1000Hz以下の間であることが好ましい。この範囲であれば、例えば自動車に成形体を組付けた場合に、外部やエンジンルームからの振動と共振せずに快適性が高まる。より好ましい第一複合材料、及び第二複合材料の一次モードの固有振動数は0Hz超500Hz以下である。
 一方、非破壊検査情報が音響特性情報であるとき、第一複合材料、及び第二複合材料の一次モードの固有振動数は0Hz超20,000Hz以下であると好ましく、0Hz超10,000Hz以下であるとより好ましい。
2. Natural Frequency of Primary Mode When the non-destructive inspection information is vibration characteristic information, the natural frequency of the primary mode of the first composite material and the second composite material is preferably between 0 Hz and 1000 Hz or less. Within this range, for example, when the molded body is assembled in an automobile, comfort is improved without resonating with vibrations from the outside or from the engine room. More preferably, the primary mode natural frequency of the first composite material and the second composite material is more than 0 Hz and 500 Hz or less.
On the other hand, when the non-destructive inspection information is acoustic property information, the natural frequency of the primary mode of the first composite material and the second composite material is preferably more than 0 Hz and 20,000 Hz or less, and more than 0 Hz and 10,000 Hz or less. It is more preferable to have
[有限要素法]
 第一複合材料の機械物性情報または非破壊検査情報は有限要素法により得られたものが好ましい。ここで、有限要素法(Finite Element Method, FEM)とは、数値解析手法の一つであり、解析的に解くことが難しい微分方程式の近似解を数値的に得ることができる。第一複合材料の形状に、予め実測と解析との比較により同定した材料パラメータを適用させた解析モデルを作製することで、機械物性または非破壊検査(好ましくは振動特性又は音響特性情報)を実測しなくとも、有限要素法でこれらの情報を取得することができる。
[Finite element method]
The mechanical property information or non-destructive inspection information of the first composite material is preferably obtained by the finite element method. Here, the finite element method (FEM) is one of numerical analysis techniques, and can numerically obtain approximate solutions of differential equations that are difficult to solve analytically. Actual measurement of mechanical properties or non-destructive testing (preferably vibration characteristics or acoustic characteristics information) by creating an analysis model that applies material parameters identified in advance by comparing actual measurements and analyses, to the shape of the first composite material. These information can be obtained by the finite element method without
[検査システム]
 以下では、ニューラルネットワークの入力層へ入力可能な形式に変換されたデータを入力データと記載する。検査システムでは、第一複合材料aのサンプル(以下、複合材料サンプルbと記載)の非破壊検査情報(以下、非破壊検査情報サンプルと記載)と、複合材料サンプルbから実測して得た機械物性情報(以下、機械物性情報サンプルと記載)と、を取得して第2入力データとし、この第2入力データを使ってニューラルネットワークの学習を行う。ニューラルネットワークの学習が完了したら、複合材料aの非破壊検査情報を第1入力データとしてニューラルネットワークに入力し、ニューラルネットワークからの出力層における反応値に基づき、複合材料aの機械物性情報を推測する。推測された機械物性情報に基づき、複合材料aの良品と不良品の仕分けを行ってもよい。
[Inspection system]
Data converted into a format that can be input to the input layer of the neural network is hereinafter referred to as input data. In the inspection system, the non-destructive test information (hereinafter referred to as the non-destructive test information sample) of the sample of the first composite material a (hereinafter referred to as the composite material sample b) and the machine obtained by actual measurement from the composite material sample b Physical property information (hereinafter referred to as a mechanical physical property information sample) is acquired as second input data, and neural network learning is performed using this second input data. When the learning of the neural network is completed, the non-destructive inspection information of the composite material a is input to the neural network as the first input data, and the mechanical property information of the composite material a is estimated based on the reaction values in the output layer from the neural network. . Based on the estimated mechanical property information, the composite material a may be sorted into non-defective products and non-defective products.
 検査システムは効果的な学習や高い精度の推測を行うため、学習処理と推測処理に最適化された非破壊検査情報(好ましくは振動検査画像、又は音響特性画像)を使うことができる。例えば、振動検査画像の検出が容易になるよう、振動検査画像に各種画像処理を行ってもよい。なお、振動検査画像とは、振動特性情報の一つである。 In order for the inspection system to perform effective learning and high-precision inference, it is possible to use non-destructive inspection information (preferably vibration inspection images or acoustic property images) optimized for learning and inference processing. For example, various image processing may be performed on the vibration test image so that detection of the vibration test image is facilitated. Note that the vibration inspection image is one type of vibration characteristic information.
[検査装置]
 図1は検査装置1の構成例を示すブロック図である。検査装置1は、画像処理、入力データの生成、ニューラルネットワークの学習、ニューラルネットワークを使った機械物性情報の推測などを行う。検査装置1は、CPU(Central Processing Unit)等で構成された1つ又は複数のプロセッサと、記憶部と、通信部を備え、OS(オペレーティングシステム)とアプリケーションが動作する計算機などの情報処理装置である。検査装置1は、物理的な計算機であってもよいし、仮想計算機(Virtual Machine:VM)、コンテナ(container)またはこれらの組み合わせにより実現されるものであってもよい。プロセッサの構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
[Inspection device]
FIG. 1 is a block diagram showing a configuration example of an inspection apparatus 1. As shown in FIG. The inspection apparatus 1 performs image processing, generation of input data, neural network learning, and estimation of machine physical property information using the neural network. The inspection apparatus 1 is an information processing apparatus such as a computer that includes one or more processors such as a CPU (Central Processing Unit), a storage unit, and a communication unit, and runs an OS (operating system) and applications. be. The inspection device 1 may be a physical computer, a virtual machine (VM), a container, or a combination thereof. The structure of the processor is, more specifically, an electric circuit combining circuit elements such as semiconductor elements.
 検査装置1は、非破壊検査情報と非破壊検査情報サンプルを記憶する画像記憶部11と、非破壊検査情報と非破壊検査情報サンプルを処理する処理部12と、入力データ生成部13と、学習データ記憶部14と、学習部15と、モデル記憶部16と、推測部17と、表示部18と、操作部19とを備えている。処理部12、入力データ生成部13、学習部15、及び推測部17は、それぞれ、検査装置1のプロセッサがプログラムを実行することで実現される機能ブロックである。このプログラムには、複合材料の検査プログラムが含まれる。 The inspection apparatus 1 includes an image storage unit 11 that stores nondestructive inspection information and nondestructive inspection information samples, a processing unit 12 that processes the nondestructive inspection information and nondestructive inspection information samples, an input data generation unit 13, and a learning unit. A data storage unit 14 , a learning unit 15 , a model storage unit 16 , an estimation unit 17 , a display unit 18 and an operation unit 19 are provided. The processing unit 12, the input data generating unit 13, the learning unit 15, and the estimating unit 17 are functional blocks implemented by the processor of the inspection apparatus 1 executing programs. This program includes an inspection program for composite materials.
 画像記憶部11は、好ましくは振動検査画像(又は音響特性画像)を保存する記憶領域である。画像記憶部11は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)などの揮発性メモリでも、NAND型フラッシュメモリ、磁気抵抗メモリ(MRAM:Magnetroresistive Random Access Memory)、強誘電体メモリ(FeRAM:Ferroelectric Random Access Memory)などの不揮発性メモリでもよい。 The image storage unit 11 is preferably a storage area for storing vibration inspection images (or acoustic characteristic images). The image memory portion 11 is a volatile memory such as SRAM (Static Random Access Memory) and DRAM (Dynamic RANDOM ACCESSS MEMORY). MagNetroResistive Random Access Memory) A non-volatile memory such as FeRAM (Ferroelectric Random Access Memory) may also be used.
 処理部12は、好ましくは振動検査画像(又は音響特性画像)に対して画像処理を行い、画像処理が行われた後の画像を画像記憶部11に保存する。画像処理の例としては、画像中のピクセルにおける赤、緑、青(RGB)の各色の輝度をそれぞれ抽出した画像の生成、各ピクセルにおける赤(R)の輝度から緑(G)の輝度を減算した画像の生成、HSV色空間への変換後、赤の成分のみを抽出した画像の生成などが挙げられるが、他の種類の画像処理を行ってもよい。
 処理部12は、他に画像の拡大、縮小、切り取り、ノイズ除去、回転、反転、色深度の変更、コントラスト調整、明るさ調整、シャープネスの調整、色補正などを行ってもよい。
The processing unit 12 preferably performs image processing on the vibration inspection image (or the acoustic characteristic image), and stores the image after the image processing in the image storage unit 11 . Examples of image processing include generating an image by extracting the luminance of each color of red, green, and blue (RGB) in pixels in the image, and subtracting the luminance of green (G) from the luminance of red (R) in each pixel. generation of an image obtained by converting to the HSV color space, generation of an image in which only the red component is extracted, and the like, but other types of image processing may be performed.
The processing unit 12 may also perform image enlargement, reduction, cropping, noise removal, rotation, inversion, color depth change, contrast adjustment, brightness adjustment, sharpness adjustment, color correction, and the like.
 入力データ生成部13は、画像記憶部11に記憶された非破壊検査情報又は非破壊検査情報サンプルから、ニューラルネットワークの入力層に入力される、入力データを生成する。例えば、振動検査画像を用いて後述の学習を行う場合には、振動検査画像から所望の部位を切り取り、あるいは余分な部位を除去して第2入力データとするのが好ましい。 The input data generation unit 13 generates input data to be input to the input layer of the neural network from the nondestructive inspection information or nondestructive inspection information samples stored in the image storage unit 11 . For example, when the later-described learning is performed using the vibration test image, it is preferable to cut out a desired portion from the vibration test image or remove an extra portion from the vibration test image to obtain the second input data.
 検査装置1が学習処理を実行している場合、入力データ生成部13は入力データを学習データ記憶部14に保存する。検査装置1が複合材料aの検査を行っている場合、入力データは推測部17に転送される。
 なお、学習処理を行う際、入力データ生成部13は、例えば、外部の装置やシステムによって撮影された画像(非破壊検査情報サンプル)を使って入力データを生成してもよい。
When the inspection device 1 is executing the learning process, the input data generation unit 13 saves the input data in the learning data storage unit 14 . When the inspection device 1 is inspecting the composite material a, the input data is transferred to the estimation unit 17 .
Note that, when performing the learning process, the input data generation unit 13 may generate input data using, for example, an image (non-destructive inspection information sample) captured by an external device or system.
 学習データ記憶部14は、ニューラルネットワークの学習に用いられる複数の入力データを保存する記憶領域である。学習データ記憶部14に保存された入力データは、学習部15の学習データとして用いられる。学習データとして使われる入力データ(第2入力データ)には、その入力データの取得元である複合材料サンプルbから測定して得られた機械物性情報サンプルが対応付けて記憶される。この機械物性情報サンプルは、複合材料サンプルbの機械物性ランクと機械物性値(例えば弾性率)の少なくとも一方に加えて、機械物性値が良品に相当することを示す情報、機械物性値が不良品に相当することを示す情報、機械物性値の推測が困難であることを示す情報、等が含まれているとよい。 The learning data storage unit 14 is a storage area that stores a plurality of input data used for neural network learning. The input data stored in the learning data storage unit 14 is used as learning data for the learning unit 15 . Input data (second input data) used as learning data is stored in association with a mechanical property information sample obtained by measuring the composite material sample b from which the input data is obtained. In addition to at least one of the mechanical property rank and the mechanical property value (e.g., elastic modulus) of the composite material sample b, this mechanical property information sample includes information indicating that the mechanical property value corresponds to a non-defective product, and information indicating that the mechanical property value corresponds to a defective product. and information indicating that it is difficult to estimate mechanical property values.
 例えば、複合材料サンプルbから得た第2入力データへの機械物性情報サンプルの対応付け(以下、この対応付けをラベル付けとも記載する)は、その複合材料サンプルbの機械物性値(例えば弾性率)を、ユーザが操作部19を操作することによって、直接入力することができる。入力後、検査装置1は、機械物性値を機械物性ランクに区分けする。例えば、引張弾性率を以下の機械物性ランクに分けることができる。
 機械物性ランク1:複合材料の引張弾性率が30GPa以上
 機械物性ランク2:複合材料の引張弾性率が25~30GPa
 機械物性ランク3:複合材料の引張弾性率が25GPa以下
For example, the correspondence of the mechanical property information sample to the second input data obtained from the composite material sample b (hereinafter, this correspondence is also referred to as labeling) is the mechanical property value of the composite material sample b (for example, the elastic modulus ) can be directly input by the user operating the operation unit 19 . After the input, the inspection apparatus 1 sorts the mechanical property values into mechanical property ranks. For example, the tensile modulus can be classified into the following mechanical property ranks.
Mechanical property rank 1: Tensile modulus of composite material is 30 GPa or more Mechanical property rank 2: Tensile modulus of composite material is 25 to 30 GPa
Mechanical property rank 3: Tensile modulus of composite material is 25 GPa or less
 この機械物性ランクは、上記のような5GPaごとではなく、3GPaや、1GPa単位で機械物性ランクを出力しても良い。なお、複合材料サンプルbから得た第2入力データに対応する機械物性情報サンプルが既知なのであれば、プログラムやスクリプトなどによって、ユーザ操作ではなく、自動的に機械物性ランクのラベル付けを行ってもよい。機械物性ランクのラベル付けは、複合材料サンプルbから得た非破壊検査情報サンプルの第2入力データへの変換前に行ってもよいし、第2入力データへの変換後に行ってもよい。 This mechanical property rank may be output in units of 3 GPa or 1 GPa instead of 5 GPa as described above. In addition, if the mechanical property information sample corresponding to the second input data obtained from the composite material sample b is known, the mechanical property rank can be automatically labeled by a program or script instead of the user operation. good. The mechanical property rank labeling may be performed before or after converting the nondestructive test information sample obtained from the composite material sample b into the second input data.
 学習部15は、学習データ記憶部14に保存された入力データ(第2入力データ)を使い、ニューラルネットワークの学習を行う。学習部15は、学習したニューラルネットワークをモデル記憶部16に保存する。学習部15は、例えば入力層と、隠れ層と、出力層の3層のニューラルネットワークを学習することができる。3層のニューラルネットワークを学習することにより、複合材料aの検査時におけるリアルタイムの応答性能を確保することができる。入力層、隠れ層、出力層のそれぞれに含まれるユニット数については特に限定しない。各層に含まれるユニット数は、求められる応答性能、推測対象、識別性能などに基づいて決定することができる。 The learning unit 15 uses the input data (second input data) stored in the learning data storage unit 14 to perform neural network learning. The learning unit 15 stores the learned neural network in the model storage unit 16 . The learning unit 15 can learn, for example, a three-layer neural network consisting of an input layer, a hidden layer, and an output layer. Real-time response performance during inspection of the composite material a can be ensured by learning the three-layer neural network. The number of units included in each of the input layer, hidden layer, and output layer is not particularly limited. The number of units included in each layer can be determined based on required response performance, inference target, discrimination performance, and the like.
 なお、3層のニューラルネットワークは一例であり、これより層の数が多い多層のニューラルネットワークを用いることを妨げるものではない。多層のニューラルネットワークを用いる場合、畳み込みニューラルネットワークなど各種のニューラルネットワークを使うことができる。 It should be noted that the three-layer neural network is just an example, and this does not preclude the use of multi-layer neural networks with more layers. When using a multi-layered neural network, various types of neural networks such as convolutional neural networks can be used.
 モデル記憶部16は、学習部15により学習されたニューラルネットワークを保存する、記憶領域である。モデル記憶部16には、検査対象とする複合材料aの種類に応じて複数のニューラルネットワークを保存してもよい。モデル記憶部16は推測部17より参照可能に設定されているため、推測部17はモデル記憶部16に保存されているニューラルネットワークを使って複合材料aの検査(機械物性情報の推測)を行うことができる。モデル記憶部16は、RAM、DRAMなどの揮発性メモリでも、NAND型フラッシュメモリ、MRAM、FeRAMなどの不揮発性メモリでもよい。なお、モデル記憶部16は、検査装置1のプロセッサがアクセス可能な場所にあればよく、検査装置1に内蔵されたものでなくてもよい。例えば、モデル記憶部16は、検査装置1に外付けされたストレージであってもよいし、検査装置1からアクセス可能なネットワークに接続されているネットワークストレージであってもよい。 The model storage unit 16 is a storage area that stores the neural network learned by the learning unit 15. A plurality of neural networks may be stored in the model storage unit 16 according to the type of the composite material a to be inspected. Since the model storage unit 16 is set so that it can be referred to by the estimation unit 17, the estimation unit 17 uses the neural network stored in the model storage unit 16 to inspect the composite material a (estimate mechanical property information). be able to. The model storage unit 16 may be a volatile memory such as RAM or DRAM, or a non-volatile memory such as NAND flash memory, MRAM or FeRAM. Note that the model storage unit 16 may be located at a location accessible by the processor of the inspection apparatus 1 and may not be built in the inspection apparatus 1 . For example, the model storage unit 16 may be a storage externally attached to the inspection device 1 or a network storage connected to a network accessible from the inspection device 1 .
 推測部17は、モデル記憶部16に保存されたニューラルネットワークを使って、複合材料aの機械物性情報の推測を行う。推測部17は、出力層のユニットから出力される反応値に基づいて複合材料aの機械物性ランクを推測する。出力層のユニットの例としては、機械物性ランク1のユニット、機械物性ランク2のユニット、機械物性ランク3のユニット、推測困難のユニットなどがあるが、その他の種類のユニットを用意してもよい。例えば、推測された機械物性ランクが低いものには、異物などが多く混入している可能性がある。複数のユニットの反応値の差や比を使って複合材料aの機械物性ランクを推測してもよい。 The estimation unit 17 uses the neural network stored in the model storage unit 16 to estimate the mechanical property information of the composite material a. The estimation unit 17 estimates the mechanical property rank of the composite material a based on the reaction values output from the units of the output layer. Examples of units in the output layer include a unit with mechanical property rank 1, a unit with mechanical property rank 2, a unit with mechanical property rank 3, and a unit that is difficult to guess, but other types of units may be prepared. . For example, there is a possibility that a large amount of foreign matter or the like is mixed in a product with a low estimated mechanical property rank. The mechanical property rank of the composite material a may be estimated using the difference or ratio of the reaction values of a plurality of units.
 表示部18は、画像やテキストを表示するディスプレイである。表示部18には、撮影された画像や画像処理後の画像、推測部17による推測結果を表示してもよい。 The display unit 18 is a display that displays images and text. The display unit 18 may display a photographed image, an image after image processing, or an estimation result by the estimation unit 17 .
 操作部19は、利用者による検査装置1の操作手段を提供する装置である。操作部19は、例えば、キーボード、マウス、ボタン、スイッチ、音声認識装置などであるが、これに限られない。 The operation unit 19 is a device that provides means for operating the inspection device 1 by the user. The operation unit 19 is, for example, a keyboard, mouse, buttons, switches, voice recognition device, etc., but is not limited to these.
[学習処理]
 検査装置1による複合材料aの機械物性ランクの推測を行う前に、複合材料aと同一種類の複合材料サンプルbの非破壊検査情報サンプル及び機械物性情報サンプルを使って、ニューラルネットワークの学習を行う必要がある。図2は、学習処理のフローチャートである。
[Learning process]
Before estimating the mechanical property rank of the composite material a by the inspection device 1, the neural network is trained using the non-destructive inspection information sample and the mechanical property information sample of the composite material sample b of the same type as the composite material a. There is a need. FIG. 2 is a flowchart of learning processing.
 まず、検査装置1のプロセッサは、複数の複合材料サンプルbの各々の非破壊情報サンプルを取得する(ステップS201)。非破壊情報サンプルは、例えば、複合材料サンプルの振動検査で取得した振動の情報などが挙げられる。ここでの非破壊検査情報が取得される複合材料サンプルには、機械物性ランクの高いものや低いものが含まれるようにする。ニューラルネットワークの出力層に推測困難の反応値を出力するユニットを設ける場合には、複合材料サンプルの機械物性情報が推測困難な非破壊検査情報サンプルを用意してもよい。推測困難な非破壊検査情報サンプルの例としては、非破壊検査情報サンプルが画像の場合、複合材料サンプルbが充分に写っていない画像、照明や露光による明るさ調整が不適切で複合材料サンプルbが鮮明に写っていない画像などが挙げられる。 First, the processor of the inspection device 1 acquires a nondestructive information sample for each of the multiple composite material samples b (step S201). Non-destructive information samples include, for example, vibration information obtained by vibration inspection of composite material samples. Composite material samples from which non-destructive inspection information is acquired include those with high and low mechanical property ranks. When a unit that outputs a reaction value that is difficult to guess is provided in the output layer of the neural network, a nondestructive test information sample that makes it difficult to guess the mechanical property information of the composite material sample may be prepared. Examples of difficult-to-guess nondestructive test information samples include images in which the composite material sample b is not sufficiently captured, composite material sample b image is not clear.
 検査装置1のプロセッサは、取得した各非破壊検査情報サンプルから第2入力データを生成する(ステップS201)。次に、検査装置1のプロセッサは、この複数の複合材料サンプルbの各々の機械物性情報サンプルを取得し、取得した機械物性情報サンプルを、各第2入力データに対応付けて記憶する(ステップS203)。
 なお、ステップS203は、ステップS202の前に行ってもよい。この場合、各非破壊検査情報サンプルが第2入力データに変換された後も、当該非破壊検査情報サンプルに対応付けられた機械物性情報サンプルは、その第2入力データに引き継がれるものとすればよい。
The processor of the inspection apparatus 1 generates second input data from each acquired nondestructive inspection information sample (step S201). Next, the processor of the inspection apparatus 1 acquires mechanical property information samples for each of the plurality of composite material samples b, and stores the acquired mechanical property information samples in association with the respective second input data (step S203 ).
Note that step S203 may be performed before step S202. In this case, even after each nondestructive inspection information sample is converted to the second input data, the mechanical property information sample associated with the nondestructive inspection information sample is taken over to the second input data. good.
 次に、検査装置1のプロセッサは、第2入力データに基づき、ニューラルネットワークによる学習を開始させる(ステップS204)。 Next, the processor of the inspection device 1 starts learning by the neural network based on the second input data (step S204).
 図3は、3つの反応値を出力するニューラルネットワークの例を示している。図3のニューラルネットワーク301は入力層302、隠れ層303、出力層304の3層を有するニューラルネットワークである。出力層304は機械物性ランクを推測するユニット311、312、313を含む。ユニット311、312、313は図3では3個であるが、機械物性のランクに応じて適宜増減することができる。
 ニューラルネットワークでは、入力層に入力された値が、隠れ層、出力層と伝播され、出力層の反応値が得られる。ステップS205では、第2入力データをニューラルネットワークに入力した場合に、この第2入力データに対応付けられた機械物性情報サンプル又はこれに近い情報が高い確率でニューラルネットワークから出力されるように、隠れ層303の数、入力層302及び隠れ層303の各々に含まれるユニット数、入力層302及び隠れ層303の各々に含まれるユニット間の結合係数等の、ニューラルネットワークの各パラメータや構造が調整される。このようにして、機械物性推測モデルが生成されて、モデル記憶部16に記憶される。
FIG. 3 shows an example of a neural network that outputs three response values. A neural network 301 in FIG. 3 is a neural network having three layers: an input layer 302 , a hidden layer 303 and an output layer 304 . The output layer 304 includes units 311, 312, 313 that infer mechanical property ranks. Although there are three units 311, 312, and 313 in FIG. 3, the number can be increased or decreased as appropriate according to the rank of mechanical properties.
In a neural network, a value input to an input layer is propagated through a hidden layer and an output layer to obtain a reaction value of the output layer. In step S205, when the second input data is input to the neural network, a hidden Neural network parameters and structures, such as the number of layers 303, the number of units included in each of the input layer 302 and hidden layer 303, and the coupling coefficients between units included in each of the input layer 302 and hidden layer 303, are adjusted. be. In this way, a mechanical physical property estimation model is generated and stored in the model storage unit 16 .
 図4はニューラルネットワークのユニット間の演算処理を示している。図4には、第m-1層のユニットと、第m層のユニットが示されている。説明のため、図4にはニューラルネットワークの一部のユニットのみが示されているものとする。第m-1層におけるユニット番号はk=1、2、3・・・である。第m層におけるユニット番号はj=1、2、3・・・である。
 第m-1層のユニット番号kの反応値をa m-1とすると、第m層のユニット番号jの反応値a は、下記の式(2)を使って求められる。
FIG. 4 shows arithmetic processing between units of the neural network. FIG. 4 shows the units of the (m−1)-th layer and the units of the m-th layer. For the sake of explanation, it is assumed that only some units of the neural network are shown in FIG. The unit numbers in the (m-1)-th layer are k=1, 2, 3, . . . The unit numbers in the m-th layer are j=1, 2, 3, . . .
Assuming that the reaction value of unit number k of the (m-1)-th layer is a k m-1 , the reaction value of unit number j of the m-th layer a j m can be obtained using the following equation (2).
Figure JPOXMLDOC01-appb-M000001

 
Figure JPOXMLDOC01-appb-M000001

 
 ここで、Wjk は重みであり、ユニット間の結合の強さを示している。b はバイアスである。f(・・・)は活性化関数である。式(2)より、第m層における任意のユニットの反応値は、第m-1層にあるすべてのユニット(k=1、2、3・・・)の反応値を重み付け加算し、活性化関数の変数として入力したときの出力値であることがわかる。
 次に活性化関数の例について説明する。下記の式(3)は正規分布関数である。
Here, W jk m is a weight and indicates the strength of coupling between units. b j m is the bias. f(...) is the activation function. From equation (2), the reaction value of an arbitrary unit in the m-th layer is obtained by weighted addition of the reaction values of all units (k=1, 2, 3, . . . ) in the m−1-th layer and activating You can see that it is the output value when input as a variable of the function.
Next, examples of activation functions will be described. Equation (3) below is the normal distribution function.
Figure JPOXMLDOC01-appb-M000002

 
Figure JPOXMLDOC01-appb-M000002

 
 ここで、μは平均値であり、正規分布関数が描く釣鐘状のピークの中心位置を示している。σは標準偏差でありピークの幅を示している。式(3)の値は、ピークの中心からの距離のみに依存するため、ガウス関数(正規分布関数)は放射基底関数(radial basis function:RBF)の一種であるといえる。ガウス関数(正規分布関数)は一例であり、これ以外のRBFを使ってもよい。
 下記の式(4)はシグモイド関数である。シグモイド関数はx→∞の極限で1.0に漸近する。また、x→-∞の極限で0.0に漸近する。すなわち、シグモイド関数は(0.0,1.0)の範囲の値をとる。
Here, μ is the average value and indicates the central position of the bell-shaped peak drawn by the normal distribution function. σ is the standard deviation and indicates the width of the peak. Since the value of Equation (3) depends only on the distance from the center of the peak, the Gaussian function (normal distribution function) can be said to be a kind of radial basis function (RBF). A Gaussian function (normal distribution function) is an example, and other RBFs may be used.
Equation (4) below is a sigmoid function. The sigmoid function asymptotically approaches 1.0 in the limit of x→∞. Also, it asymptotically approaches 0.0 at the limit of x→−∞. That is, the sigmoid function takes values in the range (0.0, 1.0).
Figure JPOXMLDOC01-appb-M000003

 
Figure JPOXMLDOC01-appb-M000003

 
 なお、活性化関数としてガウス関数やシグモイド関数以外の関数を用いることを妨げるものではない。例えば、本発明者らは、畳み込み層ではRelu、出力層ではsoftmaxを用いた。 It should be noted that this does not preclude the use of functions other than the Gaussian function and the sigmoid function as the activation function. For example, we used Relu in the convolutional layer and softmax in the output layer.
 ニューラルネットワークの学習は、入力データを入力層に入力したら、正しい出力が得られるよう、ユニット間の結合の強さである重みWjkの調整を行う。ニューラルネットワークにおいてある機械物性ランクをラベル付けされた入力データを入力したときに期待される、正しい出力(出力層のユニットの反応値)は教師信号ともよばれる。
 例えば、機械物性ランクが311とラベル付けした入力データを、ニューラルネットワーク301に入力したら、教師信号ではユニット311の反応値が1、ユニット312の反応値が0、ユニット313の反応値が0となる。機械物性ランクが312とラベル付けされた入力データをニューラルネットワーク301に入力したら、教師信号ではユニット311の反応値が0、ユニット312の反応値が1、ユニット313の反応値が0となる。
 例えば、重みWjkの調整はバックプロパゲーション法(誤差逆伝播法:Back Propagation Method)を使って実行することができる。バックプロパゲーション法では、ニューラルネットワーク310の出力と教師信号のずれが小さくなるよう、出力層側から順番に、重みWjkを調整する。下記の式(5)は改良型バックプロパゲーション法を示している。
In neural network learning, after input data is input to the input layer, the weight Wjk , which is the strength of the connection between units, is adjusted so that a correct output is obtained. A correct output (reaction value of a unit in the output layer) expected when inputting input data labeled with a certain mechanical property rank in a neural network is also called a teacher signal.
For example, if input data labeled with a mechanical property rank of 311 is input to the neural network 301, the reaction value of the unit 311 is 1, the reaction value of the unit 312 is 0, and the reaction value of the unit 313 is 0 in the teacher signal. . When input data labeled with a mechanical property rank of 312 is input to the neural network 301, the reaction value of the unit 311 is 0, the reaction value of the unit 312 is 1, and the reaction value of the unit 313 is 0 in the teacher signal.
For example, the adjustment of the weights Wjk can be performed using a back propagation method (Back Propagation Method). In the backpropagation method, the weights Wjk are adjusted in order from the output layer so that the deviation between the output of the neural network 310 and the teacher signal becomes small. Equation (5) below shows the improved backpropagation method.
Figure JPOXMLDOC01-appb-M000004

 
Figure JPOXMLDOC01-appb-M000004

 
 なお、活性化関数としてガウス関数を用いた場合には重みWjkだけでなく、式(3)のσとμも、改良型バックプロパゲーション法におけるパラメータとして調整対象とする。パラメータσ、μの値を調整することにより、ニューラルネットワークの学習収束を補助する。下記の式(6)はパラメータσについて行われる値の調整処理を示している。 Note that when a Gaussian function is used as the activation function, not only the weight Wjk but also σ and μ in Equation (3) are subject to adjustment as parameters in the improved back propagation method. By adjusting the values of the parameters σ and μ, the learning convergence of the neural network is assisted. Equation (6) below shows the value adjustment process performed for the parameter σ.
Figure JPOXMLDOC01-appb-M000005

 
 
 下記の式(7)はパラメータμについて行われる値の調整処理を示している。
Figure JPOXMLDOC01-appb-M000005



Equation (7) below shows the value adjustment process performed for the parameter μ.
Figure JPOXMLDOC01-appb-M000006

 
Figure JPOXMLDOC01-appb-M000006

 
 ここで、tは学習回数、ηは学習定数、δは一般化誤差、Oはユニット番号jの反応値、αは感性定数、βは振動定数である。ΔWjk、Δσjk、Δμjkは重みWjk、σ、μのそれぞれの修正量を示す。 Here, t is the number of times of learning, η is a learning constant, δk is a generalization error, Oj is a response value of unit number j, α is a sensitivity constant, and β is a vibration constant. ΔW jk , Δσ jk , and Δμ jk indicate respective correction amounts of weights W jk , σ, and μ.
 ここでは、改良型バックプロパゲーション法を例に重みWjkやパラメータの調整処理を説明したが、代わりに一般のバックプロパゲーション法を使ってもよい。以降で単にバックプロパゲーション法と述べた場合、改良型バックプロパゲーション法と一般のバックプロパゲーション法の双方を含むものとする。
 バックプロパゲーション法による重みWjkやパラメータの調整回数は一回でもよいし、複数回でもよく、特に限定しない。一般に、テストデータを使ったときの機械物性ランクの推測精度に基づいてバックプロパゲーション法による重みWjkやパラメータの調整の繰り返しを行うのか否かを判断することができる。重みWjkやパラメータの調整を繰り返すと、機械物性ランクの推測精度が向上する場合がある。
 上述の方法を使うことにより、ステップS205において、重みWjk、パラメータσ、μの値を調整することができる。重みWjk、パラメータσ、μの値が調整されると、ニューラルネットワークを使った推測処理を行うことが可能となる。
Here, the modified back propagation method is used as an example to describe the process of adjusting the weights W jk and parameters, but a general back propagation method may be used instead. Hereinafter, when the backpropagation method is simply referred to, it includes both the improved backpropagation method and the general backpropagation method.
The number of times the weights Wjk and parameters are adjusted by the backpropagation method may be one time or a plurality of times, and is not particularly limited. In general, it can be determined whether or not to repeat adjustment of the weights Wjk and parameters by the back propagation method based on the estimation accuracy of the mechanical property rank when using test data. Repeated adjustment of the weight Wjk and parameters may improve the accuracy of estimating the mechanical property rank.
By using the method described above, the values of the weights W jk , the parameters σ and μ can be adjusted in step S205. Once the values of the weights W jk , parameters σ, and μ are adjusted, it is possible to perform an inference process using a neural network.
 図5は、複合材料の検査プログラムにしたがって動作する検査装置1による機械物性情報の推測動作を説明するためのフローチャートである。検査装置1のプロセッサは、複合材料aの非破壊検査情報を取得する(好ましくは振動検査画像又は音響特性画像を撮影する)(ステップS501)。振動検査画像(又は音響特性画像)を非破壊検査情報とする場合、ステップS501とステップS502との間に、振動検査画像(又は音響特性画像)に対し画像処理をするステップがあっても良い。 FIG. 5 is a flowchart for explaining the operation of estimating mechanical property information by the inspection device 1 that operates according to the composite material inspection program. The processor of the inspection apparatus 1 acquires non-destructive inspection information of the composite material a (preferably captures a vibration inspection image or an acoustic property image) (step S501). When the vibration test image (or acoustic property image) is used as non-destructive test information, there may be a step of performing image processing on the vibration test image (or acoustic property image) between steps S501 and S502.
 次に、検査装置1のプロセッサは、非破壊検査情報から第1入力データを生成する(ステップS502)。第1入力データはニューラルネットワークの入力層のユニット数に等しいN個の要素を有し、ニューラルネットワークへ入力可能な形式となっている。 Next, the processor of the inspection device 1 generates first input data from the nondestructive inspection information (step S502). The first input data has N elements equal to the number of units in the input layer of the neural network, and is in a format that can be input to the neural network.
 次に、検査装置1のプロセッサは、第1入力データをニューラルネットワークへ入力する(ステップS503)。第1入力データは入力層、隠れ層、出力層の順番に伝達される。検査装置1のプロセッサは、ニューラルネットワークの出力層における反応値に基づき、機械物性ランクの推測を行う(ステップS504)。 Next, the processor of the inspection device 1 inputs the first input data to the neural network (step S503). The first input data is transmitted in order of the input layer, the hidden layer, and the output layer. The processor of the inspection device 1 estimates the mechanical property rank based on the reaction values in the output layer of the neural network (step S504).
 ニューラルネットワークを使った推測処理は、第1入力データの識別空間内における位置を見つける処理と等価である。図6は、活性化関数にガウス関数を使ったときの識別空間の例を示している。活性化関数にガウス関数などの放射基底関数(radial basis function、RBF)を使うと、識別空間を機械物性のランクごとの領域に分ける識別曲面が閉曲面になる。また、機械物性ランクのそれぞれのカテゴリについて、高さ方向の指標を追加することにより、識別空間において各カテゴリに係る領域を局所化することができる。 The inference process using a neural network is equivalent to the process of finding the position of the first input data within the identification space. FIG. 6 shows an example of a discriminant space when using a Gaussian function as an activation function. If a radial basis function (RBF) such as a Gaussian function is used as the activation function, the identification surface that divides the identification space into regions for each rank of mechanical properties becomes a closed surface. Further, by adding a height direction index to each category of the mechanical property rank, it is possible to localize the area related to each category in the identification space.
 図7は、活性化関数にシグモイド関数を使ったときの識別空間の例を示している。活性化関数がシグモイド関数である場合、識別曲面は開曲面となる。なお、上述のニューラルネットワークの学習処理は、識別空間で識別曲面を学習する処理にあたる。図6、図7における領域には機械物性ランク311と機械物性ランク312のみ示しているが、3個以上の複数の機械物性ランクの分布があっても良い。 Fig. 7 shows an example of the discriminant space when using the sigmoid function as the activation function. If the activation function is a sigmoid function, the identification surface is an open surface. The learning process of the neural network described above corresponds to the process of learning a discriminative curved surface in the discriminative space. Although only the mechanical property rank 311 and the mechanical property rank 312 are shown in the regions in FIGS. 6 and 7, there may be distributions of three or more mechanical property ranks.
 以上のように、本実施形態の検査システムを用いれば、複合材料aの非破壊検査情報(好ましくは振動検査画像又は音響特性画像)から、その複合材料aの機械物性情報を推測できる。特許文献2(国際公開第2019/151393号)や特許文献3(国際公開第2019/151394号)に記載の発明では、あくまで画像や測定対象物を人間が見れば判断できるものを、ニューラルネットワークに代替させているに過ぎない。つまり、これら発明では、検査対象が写真撮影された食品であるため、その食品における異物などの有無を人間が容易に判断できる。
 一方、機械物性情報は、数値又はこれに準じたランク等であり、非破壊検査情報(好ましくは振動検査画像又は音響特性画像)は、複合材料の内部の状態を可視化又は数値化したものである。つまり、非破壊検査情報を熟練工が見ても、ここから機械物性情報を推測することはできない。
 例えば、人間がいくら頑張っても、図8A~図8Dの振動検査画像から、機械物性情報を推測できないことは明らかである。本実施形態の検査装置1を利用すれば、熟練工がどのように頑張っても推測することが出来ない機械物性情報を、実測することなく、瞬時に推測することができる。
As described above, by using the inspection system of this embodiment, the mechanical property information of the composite material a can be estimated from the non-destructive inspection information (preferably vibration inspection image or acoustic property image) of the composite material a. In the inventions described in Patent Document 2 (International Publication No. 2019/151393) and Patent Document 3 (International Publication No. 2019/151394), a neural network is used to determine what a human can judge by looking at an image or a measurement object. It's just a substitute. In other words, in these inventions, since the object to be inspected is the photographed food, humans can easily determine the presence or absence of foreign matter in the food.
On the other hand, the mechanical property information is a numerical value or a rank based on this, and the non-destructive inspection information (preferably vibration inspection image or acoustic property image) is a visualization or numerical representation of the internal state of the composite material. . In other words, even if a skilled worker sees the non-destructive inspection information, he cannot infer mechanical property information from it.
For example, no matter how hard humans try, it is clear that they cannot guess machine physical property information from the vibration inspection images of FIGS. 8A to 8D. By using the inspection apparatus 1 of the present embodiment, it is possible to instantaneously infer mechanical property information that cannot be inferred no matter how hard a skilled worker tries, without actually measuring it.
 本出願は、2021年12月24日付出願の日本国特願2021-210610号に基づく優先権を主張する。 This application claims priority based on Japanese Patent Application No. 2021-210610 filed on December 24, 2021.

Claims (18)

  1.  機械物性情報及び非破壊検査情報が既知の、強化繊維を含む第一複合材料の当該機械物性情報及び当該非破壊検査情報に基づく機械学習によって生成された機械物性推測モデルであって、
     機械物性情報が未知の、強化繊維を含む第二複合材料の非破壊検査情報を入力として前記第二複合材料の機械物性情報を推測する機械物性推測モデルを記憶する、モデル記憶部にアクセス可能なプロセッサを備え、
     前記プロセッサは、前記第二複合材料の非破壊検査情報を取得し、当該非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから当該第二複合材料の機械物性情報を取得し、当該機械物性情報に基づく出力を行い、
     前記非破壊検査情報は、振動特性情報又は音響特性情報であって、前記非破壊検査情報を取得する際のサンプリング周波数は0Hz超である、複合材料の検査装置。
    A mechanical property estimation model generated by machine learning based on the mechanical property information and the nondestructive test information of the first composite material containing reinforcing fibers, wherein the mechanical property information and the nondestructive test information are known,
    Accessible to a model storage unit for storing a mechanical property estimation model for estimating mechanical property information of the second composite material with input of non-destructive inspection information of a second composite material containing reinforcing fibers whose mechanical property information is unknown. with a processor
    The processor acquires non-destructive inspection information of the second composite material, inputs the non-destructive inspection information into the mechanical property estimation model, and extracts the mechanical property information of the second composite material from the mechanical property estimation model. Acquire, output based on the mechanical property information,
    The composite material inspection apparatus, wherein the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information is higher than 0 Hz.
  2.  請求項1に記載の検査装置であって、
     前記非破壊検査情報は、振動特性又は音響特性を示す画像又は数値データである検査装置。
    The inspection device according to claim 1,
    The inspection device, wherein the non-destructive inspection information is an image or numerical data indicating vibration characteristics or acoustic characteristics.
  3.  請求項1又は2に記載の検査装置であって、
     前記機械物性情報は、複合材料の弾性率、又は破壊強度に関する情報である検査装置。
    The inspection device according to claim 1 or 2,
    The inspection device, wherein the mechanical property information is information on the elastic modulus or breaking strength of the composite material.
  4.  請求項3に記載の検査装置であって、
     前記弾性率に関する情報は、弾性率、又は弾性率をランク分けした場合のランクを含み、
     前記破壊強度に関する情報は、破壊強度、又は破壊強度をランク分けした場合のランクを含む検査装置。
    The inspection device according to claim 3,
    The information on the elastic modulus includes the elastic modulus or the rank when the elastic modulus is ranked,
    The inspection device, wherein the information about the breaking strength includes the breaking strength or the rank when the breaking strength is ranked.
  5.  請求項4に記載の検査装置であって、
     前記弾性率、又は破壊強度に関する情報は、前記弾性率、又は破壊強度が推測困難であることを示す情報、前記弾性率、又は破壊強度が不良品に相当することを示す情報、及び、前記弾性率、又は破壊強度が良品に相当することを示す情報の少なくとも1つを含む検査装置。
    The inspection device according to claim 4,
    The information on the elastic modulus or breaking strength includes information indicating that the elastic modulus or breaking strength is difficult to estimate, information indicating that the elastic modulus or breaking strength corresponds to a defective product, and the elasticity inspection device including at least one of information indicating that the modulus or breaking strength corresponds to a good product.
  6.  請求項1から5のいずれか1項に記載の検査装置であって、
     前記強化繊維が炭素繊維である検査装置。
    The inspection device according to any one of claims 1 to 5,
    The inspection device, wherein the reinforcing fibers are carbon fibers.
  7.  請求項1から6のいずれか1項に記載の検査装置であって、
     前記第一複合材料及び前記第二複合材料は、それぞれ、熱硬化性マトリクス樹脂を含むプリプレグである検査装置。
    The inspection device according to any one of claims 1 to 6,
    The inspection device, wherein the first composite material and the second composite material are each a prepreg containing a thermosetting matrix resin.
  8.  請求項1から7のいずれか1項記載の検査装置であって、
     前記第一複合材料及び前記第二複合材料は、それぞれ、一方向性材料である検査装置。
    The inspection device according to any one of claims 1 to 7,
    The inspection device, wherein the first composite material and the second composite material are each unidirectional materials.
  9.  請求項1から8のいずれか1項記載の検査装置であって、
     前記第一複合材料の機械物性情報又は非破壊検査情報は、有限要素法により取得された情報を少なくとも1つ以上含む検査装置。
    The inspection device according to any one of claims 1 to 8,
    The inspection device, wherein the mechanical property information or non-destructive inspection information of the first composite material includes at least one piece of information obtained by a finite element method.
  10.  請求項2記載の検査装置であって、
     前記画像は振動減衰の波形を含む検査装置。
    The inspection device according to claim 2,
    The inspection device, wherein the image includes a vibration damping waveform.
  11.  請求項1から10のいずれか1項記載の検査装置であって、
     前記非破壊検査情報が振動特性情報である検査装置。
    The inspection device according to any one of claims 1 to 10,
    The inspection device, wherein the non-destructive inspection information is vibration characteristic information.
  12.  請求項11記載の検査装置であって、
     前記振動特性情報を取得する際のサンプリング周波数は250Hz以上50,000Hz以下である検査装置。
    The inspection device according to claim 11,
    The inspection apparatus, wherein the sampling frequency when acquiring the vibration characteristic information is 250 Hz or more and 50,000 Hz or less.
  13.  請求項11又は12記載の検査装置であって、
     前記第一複合材料及び前記第二複合材料の一次モードの固有振動数は、0Hz超1000Hz以下である検査装置。
    The inspection device according to claim 11 or 12,
    The inspection apparatus, wherein the first composite material and the second composite material have a primary mode natural frequency of more than 0 Hz and not more than 1000 Hz.
  14.  請求項1から10のいずれか1項記載の検査装置であって、
     前記非破壊検査情報が音響特性情報である検査装置。
    The inspection device according to any one of claims 1 to 10,
    The inspection device, wherein the non-destructive inspection information is acoustic property information.
  15.  請求項14記載の検査装置であって、
     前記第一複合材料及び前記第二複合材料の一次モードの固有振動数は、0Hz超20,000Hz以下である検査装置。
    The inspection device according to claim 14,
    The inspection apparatus, wherein the first composite material and the second composite material have primary mode natural frequencies of more than 0 Hz and 20,000 Hz or less.
  16.  機械物性情報及び非破壊検査情報が既知の、強化繊維を含む第一複合材料の当該機械物性情報及び当該非破壊検査情報を機械学習させることで、機械物性情報が未知の、強化繊維を含む第二複合材料の非破壊検査情報を入力として前記第二複合材料の機械物性情報を推測する機械物性推測モデルを生成するステップと、
     前記第二複合材料の非破壊検査情報を取得するステップと、
     前記取得した前記非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから前記第二複合材料の機械物性情報を取得し、当該機械物性情報に基づく出力を行うステップと、を備え、
     前記非破壊検査情報は、振動特性情報又は音響特性情報であって、前記非破壊検査情報を取得する際のサンプリング周波数は0Hz超である複合材料の検査方法。
    By machine learning the mechanical property information and the non-destructive test information of the first composite material containing reinforcing fibers for which the mechanical property information and non-destructive test information are known, the second containing reinforcing fibers for which the mechanical property information is unknown generating a mechanical property estimation model for estimating mechanical property information of the second composite material using non-destructive inspection information of the two composite materials as input;
    obtaining non-destructive inspection information of the second composite material;
    a step of inputting the acquired non-destructive inspection information into the mechanical property estimation model, acquiring mechanical property information of the second composite material from the mechanical property estimation model, and outputting based on the mechanical property information; with
    The composite material inspection method, wherein the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information is higher than 0 Hz.
  17.  機械物性情報及び非破壊検査情報が既知の、強化繊維を含む第一複合材料の当該機械物性情報及び当該非破壊検査情報を機械学習させることで、機械物性情報が未知の、強化繊維を含む第二複合材料の非破壊検査情報を入力として前記第二複合材料の機械物性情報を推測する機械物性推測モデルを生成するステップと、
     前記第二複合材料の非破壊検査情報を取得するステップと、
     前記取得した前記非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから前記第二複合材料の機械物性情報を取得し、当該機械物性情報に基づく出力を行うステップと、をプロセッサに実行させるプログラムであり、
     前記非破壊検査情報は、振動特性情報又は音響特性情報であって、前記非破壊検査情報を取得する際のサンプリング周波数は0Hz超である複合材料の検査プログラム。
    By machine learning the mechanical property information and the non-destructive test information of the first composite material containing reinforcing fibers for which the mechanical property information and non-destructive test information are known, the second containing reinforcing fibers for which the mechanical property information is unknown generating a mechanical property estimation model for estimating mechanical property information of the second composite material using non-destructive inspection information of the two composite materials as input;
    obtaining non-destructive inspection information of the second composite material;
    a step of inputting the acquired non-destructive inspection information into the mechanical property estimation model, acquiring mechanical property information of the second composite material from the mechanical property estimation model, and outputting based on the mechanical property information; is a program that causes the processor to execute
    The composite material inspection program, wherein the non-destructive inspection information is vibration characteristic information or acoustic characteristic information, and the sampling frequency when acquiring the non-destructive inspection information is higher than 0 Hz.
  18.  請求項17に記載の検査プログラムが格納された記録媒体。 A recording medium storing the inspection program according to claim 17.
PCT/JP2022/045554 2021-12-24 2022-12-09 Composite material inspection device, composite material inspection method, composite material inspection program, and recording medium WO2023120257A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-210610 2021-12-24
JP2021210610 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023120257A1 true WO2023120257A1 (en) 2023-06-29

Family

ID=86902371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045554 WO2023120257A1 (en) 2021-12-24 2022-12-09 Composite material inspection device, composite material inspection method, composite material inspection program, and recording medium

Country Status (1)

Country Link
WO (1) WO2023120257A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079989A (en) * 2009-10-08 2011-04-21 Mitsubishi Rayon Co Ltd Chain curable resin composition and fiber-reinforced composite material
US20200240139A1 (en) * 2019-01-28 2020-07-30 William E. Smith Pre-stressed sinusoidal member in assembly and applications
CN112060627A (en) * 2020-09-08 2020-12-11 武汉大学 Digital intelligent laying method and system for composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079989A (en) * 2009-10-08 2011-04-21 Mitsubishi Rayon Co Ltd Chain curable resin composition and fiber-reinforced composite material
US20200240139A1 (en) * 2019-01-28 2020-07-30 William E. Smith Pre-stressed sinusoidal member in assembly and applications
CN112060627A (en) * 2020-09-08 2020-12-11 武汉大学 Digital intelligent laying method and system for composite material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIURA, K ET AL.: "Examination of Learning Models and Inference of Manufacturing Methods of CFRP by Deep Learning Using Their Ultrasonic Images", SAMPE EUROPE CONFERENCE 2020 AMSTERDAM - NETHERLANDS; SEPTEMBER 30 - OCTOBER 1, 2020, 30 September 2020 (2020-09-30) - 1 October 2020 (2020-10-01), pages 1 - 9, XP009547235 *

Similar Documents

Publication Publication Date Title
Godin et al. Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers
Huguet et al. Use of acoustic emission to identify damage modes in glass fibre reinforced polyester
Oskouei et al. Unsupervised acoustic emission data clustering for the analysis of damage mechanisms in glass/polyester composites
Ramasso et al. Unsupervised consensus clustering of acoustic emission time-series for robust damage sequence estimation in composites
Pashmforoush et al. Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm
Al-Jumaili et al. Characterisation of fatigue damage in composites using an Acoustic Emission Parameter Correction Technique
Khan et al. Autonomous assessment of delamination in laminated composites using deep learning and data augmentation
JP7358648B2 (en) Molded body area inspection program, molded body area inspection method, molded body area inspection device
Yousefi et al. Damage evaluation of laminated composite material using a new acoustic emission Lamb-based and finite element techniques
Khan et al. Fault detection of composite beam by using the modal parameters and RBFNN technique
Qiu et al. Defect detection in FRP‐bonded structural system via phase‐based motion magnification technique
Liu et al. Cluster-based acoustic emission signal processing and loading rate effects study of nanoindentation on thin film stack structures
WO2022009596A1 (en) Device for inspecting composite material, method for inspecting composite material, and program for inspecting composite material
WO2023120257A1 (en) Composite material inspection device, composite material inspection method, composite material inspection program, and recording medium
Liu et al. Cross-scale data-based damage identification of CFRP laminates using acoustic emission and deep learning
Oliver et al. Wavelet transform-based damage identification in laminated composite beams based on modal and strain data
Lee et al. De-bonding detection on a CFRP laminated concrete beam using self sensing-based multi-scale actuated sensing with statistical pattern recognition
WO2023120256A1 (en) Molded body region inspection program, molded body region inspection method, molded body region inspection device, and recording medium
Fotouhi et al. The application of an acoustic emission technique in the delamination of laminated composites
Kari et al. Characterization of a cylindrical rod by inversion of acoustic scattering data
Mulligan et al. A data-driven method for predicting structural degradation using a piezoceramic array
Mahmod et al. Damage Detection of Impact-Induced Fiber Glass Laminated Composite (FGLC) Plates Via ANN Approach
Bashkov et al. Identification of Fatigue Damage Stages in Polymer Composite Materials by using Acoustic Emission: Approach and Perspectives
Viscardi et al. ANN tool for impact detection on composite panel for aerospace application
Highsmith et al. Quantitative Assessment of fiber fracture in damaged laminates using X-Ray radiography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910967

Country of ref document: EP

Kind code of ref document: A1