WO2023120090A1 - Method for manufacturing carbon-fiber-reinforced molding material and molded article - Google Patents

Method for manufacturing carbon-fiber-reinforced molding material and molded article Download PDF

Info

Publication number
WO2023120090A1
WO2023120090A1 PCT/JP2022/044317 JP2022044317W WO2023120090A1 WO 2023120090 A1 WO2023120090 A1 WO 2023120090A1 JP 2022044317 W JP2022044317 W JP 2022044317W WO 2023120090 A1 WO2023120090 A1 WO 2023120090A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding material
carbon fiber
foreign matter
reinforced molding
fiber reinforced
Prior art date
Application number
PCT/JP2022/044317
Other languages
French (fr)
Japanese (ja)
Inventor
幹起彦 中野
晋 野嶋
一迅 人見
健一 濱田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2023120090A1 publication Critical patent/WO2023120090A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter

Definitions

  • the present invention relates to a method for manufacturing a carbon fiber reinforced molding material and a molded product.
  • Fiber-reinforced resin composite materials in which thermosetting resins such as epoxy resins and unsaturated polyester resins are reinforced with carbon fiber as the reinforcing fiber, are attracting attention for their excellent heat resistance and mechanical strength while being lightweight. Its use in various structural applications, including bodies and various members, is expanding.
  • an autoclave method in which a material called prepreg is heated and cured in a pressurized autoclave, a sheet molding compound (SMC), and a bulk molding compound (BMC) are used to perform hot compression molding.
  • SMC sheet molding compound
  • BMC bulk molding compound
  • Heat compression molding is generally performed by forming a molding material in a mold at 110 to 180° C. under pressure of 1 to 20 MPa, and maintaining these molding conditions for a predetermined time to produce a molded product.
  • the steel used in the above molds is a strong and hard steel material, if foreign matter, especially metal, is included in the molding material, the molding material is molded under high pressure, and the foreign matter can damage the mold significantly. there is a problem
  • problems such as poor appearance and the inability to sufficiently exhibit the properties of the obtained molded product occur.
  • an electromagnetic induction type foreign matter detection device As a device for detecting such metal foreign matter, for example, an electromagnetic induction type foreign matter detection device is known (see Patent Document 1).
  • an electromagnetic induction type foreign matter detection device is known (see Patent Document 1).
  • the carbon fiber which is conductive, distorts the magnetic field.
  • metal foreign matter was mixed in. Therefore, there is a demand for a method of accurately detecting foreign matter such as metal in a carbon fiber reinforced molding material in the process of manufacturing a molded product and efficiently manufacturing the carbon fiber reinforced molding material and the molded product.
  • the problem to be solved by the present invention is to provide a method for accurately detecting metallic foreign matter in a carbon fiber reinforced molding material and efficiently manufacturing a carbon fiber reinforced molding material and a molded product.
  • the present inventors have found that a carbon fiber reinforced molding material and a molded product can be efficiently obtained by a method for manufacturing a carbon fiber reinforced molding material, which includes a step of inspecting with a specific foreign matter detection method, and have completed the present invention. bottom.
  • a method for manufacturing a carbon fiber reinforced molding material and a molded product which includes a step of inspecting the presence or absence of foreign matter in the molding material by an X-ray irradiation type foreign matter detection method.
  • the molded article obtained by the carbon fiber reinforced molding material and the method for producing the molded article of the present invention is lightweight but has excellent heat resistance and mechanical strength. It can be suitably used for housing equipment members, sports members, light vehicle members, construction and civil engineering members, housings of OA equipment, and the like.
  • the method for producing a carbon fiber reinforced molding material of the present invention includes a step of inspecting the presence or absence of foreign matter in the molding material by an X-ray irradiation type foreign matter detection method.
  • the X-ray irradiation type foreign matter detection method is a method of irradiating and photographing a carbon fiber reinforced molding material with X-rays and detecting foreign matter such as metal from the difference in the amount of X-rays transmitted.
  • the detection method foreign matter such as metal mixed in the carbon fiber reinforced molding material can be detected as a white shadow without detecting the conductive carbon fiber as a metal.
  • the detection method By including the step of inspecting the presence or absence of foreign matter such as metal inside by the detection method, it is possible to efficiently manufacture a molded product without causing problems such as damage to the mold.
  • the form of the carbon fiber reinforced molding material is not particularly limited as long as it contains a resin and carbon fibers.
  • Dispersed sheet molding compounds hereinafter abbreviated as "SMC”
  • BMC bulk molding compounds
  • thermosetting resins such as vinyl ester resin, vinyl urethane resin, unsaturated polyester resin, acrylic resin, epoxy resin, phenol resin, melamine resin, furan resin; polyamide resin, polyethylene terephthalate resin, polybutylene.
  • Thermoplastic resins such as terephthalate resins, polycarbonate resins, urethane resins, polypropylene resins, polyethylene resins, polystyrene resins, acrylic resins, polybutadiene resins, polyisoprene resins and those modified by copolymerization thereof can be used. These resins can be used alone or in combination of two or more.
  • thermosetting resins are preferable from the viewpoint of heat resistance and high elastic modulus, and vinyl ester resins and unsaturated polyester resins are more preferable from the viewpoints of rapid curing and low viscosity.
  • carbon fibers such as polyacrylonitrile-based, pitch-based, and rayon-based carbon fibers can be used.
  • polyacrylonitrile-based carbon fibers are preferable because high-strength carbon fibers can be easily obtained.
  • the number of filaments in the fiber bundle used as the carbon fiber is preferably 1,000 to 60,000 because the resin impregnation property and the mechanical properties of the molded product are further improved.
  • the carbon fibers may be in the form of aggregates, woven fabrics, or non-woven fabrics. Also, a fiber bundle in which fibers are aligned in one direction may be used, and a sheet-like or woven fabric-like shape in which fiber bundles are arranged may be used. Moreover, it may have a three-dimensional shape in which a fiber aggregate has a thickness.
  • the carbon fiber has excellent mechanical properties and improves the moldability of complex three-dimensional objects and objects with different thicknesses, so it is cut to 2.5 to 50 mm and included in the molding material. preferable.
  • the content of the carbon fiber in the carbon fiber composite material is preferably in the range of 25 to 80% by mass, more preferably 35 to 70% by mass, because the mechanical properties of the resulting molded product are further improved. preferable. If the carbon fiber content is low, a high-strength molded product may not be obtained. A strong molded product may not be obtained.
  • the carbon fiber composite material contains a resin and carbon fibers, but other components include, for example, unsaturated monomers, polymerization initiators, polymerization inhibitors, curing accelerators, fillers, low shrinkage agents, release agents, thickeners, viscosity reducers, pigments, antioxidants, plasticizers, flame retardants, antibacterial agents, UV stabilizers, reinforcing agents, photocuring agents, and the like.
  • the unsaturated monomer examples include benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, phenoxypolyethylene glycol (meth)acrylate, polyethylene glycol (meth)acrylate alkyl ether, polypropylene glycol (meth)acrylate alkyl ether, 2-ethylhexyl methacrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, isotridecyl (meth) acrylate, n-stearyl (meth) acrylate, tetrahydrofurfuryl methacrylate, isobornyl (meth) acrylate, dicyclopentenyloxyethyl (meth) Monofunctional (meth)acrylate compounds such as acrylates and dicyclopentanyl methacrylate; ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,4-butanediol
  • (Meth)acrylate compounds diallyl phthalate, divinylbenzene, styrene, and the like. Phenoxyethyl methacrylate is more preferred. These unsaturated monomers may be used alone or in combination of two or more.
  • the polymerization initiator is not particularly limited, but is preferably an organic peroxide. Examples include diacyl peroxide compounds, peroxyester compounds, hydroperoxide compounds, ketone peroxide compounds, alkyl perester compounds, percarbonate compounds, Examples include peroxyketal and the like, which can be appropriately selected according to the molding conditions. These polymerization initiators can be used alone or in combination of two or more.
  • polymerization inhibitor examples include hydroquinone, trimethylhydroquinone, pt-butylcatechol, t-butylhydroquinone, trihydroquinone, p-benzoquinone, naphthoquinone, hydroquinone monomethyl ether, phenothiazine, copper naphthenate, copper chloride, and piperidine derivatives. etc. These polymerization inhibitors can be used alone or in combination of two or more.
  • curing accelerator examples include metal soaps such as cobalt naphthenate, cobalt octenoate, vanadyl octenoate, copper naphthenate and barium naphthenate; and metal chelates such as vanadyl acetylacetate, cobalt acetylacetate and iron acetylacetonate. compound.
  • N,N-dimethylamino-p-benzaldehyde N,N-dimethylaniline, N,N-diethylaniline, N,N-dimethyl-p-toluidine, N-ethyl-m-toluidine, triethanol amine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, diethanolaniline and the like.
  • These curing accelerators can be used alone or in combination of two or more.
  • the fillers include inorganic compounds and organic compounds, which can be used to adjust physical properties such as strength, elastic modulus, impact strength, and fatigue durability of molded products.
  • Examples of the inorganic compound include calcium carbonate, magnesium carbonate, barium sulfate, mica, talc, kaolin, clay, celite, asbestos, barite, baryta, silica, silica sand, dolomite limestone, gypsum, aluminum fine powder, hollow balloons, Alumina, glass powder, aluminum hydroxide, cold water stone, zirconium oxide, antimony trioxide, titanium oxide, molybdenum dioxide, iron powder and the like.
  • Examples of the organic compound include powders of natural polysaccharides such as cellulose and chitin, powders of synthetic resins, and the like, and powders of synthetic resins include hard resins, soft rubbers, elastomers, polymers (copolymers), and the like. Particles having a multi-layered structure such as organic powders and core-shell type particles can be used. Specific examples include particles of butadiene rubber and/or acrylic rubber, urethane rubber, silicon rubber, polyimide resin powder, fluororesin powder, phenol resin powder, and the like. These fillers can be used alone or in combination of two or more.
  • release agent examples include zinc stearate, calcium stearate, paraffin wax, polyethylene wax, and carnauba wax. Paraffin wax, polyethylene wax, carnauba wax and the like are preferred. These release agents can be used alone or in combination of two or more.
  • thickener examples include metal oxides such as magnesium oxide and calcium oxide; metal hydroxides such as magnesium hydroxide and calcium hydroxide; acrylic resin fine particles; It can be appropriately selected depending on the handleability of the reinforced molding material. These thickeners can be used alone or in combination of two or more.
  • the manufacturing method of the molding material of the present invention includes a step of inspecting the presence or absence of foreign matter in the carbon fiber reinforced molding material by an X-ray irradiation type foreign matter detection method.
  • the vinyl ester resin, the unsaturated monomer, the thermoplastic resin, the polyisocyanate, and the polymerization initiator are Each component such as is mixed and dispersed, and the resulting resin composition is applied to the carrier film placed above and below so that it has a uniform thickness, and the carbon fiber is placed on the carrier film placed above and below. It is sandwiched with a resin composition, then the whole is passed between impregnated rolls, and pressure is applied to impregnate the carbon fiber with the resin composition.
  • Examples include a method of taking it off or folding it in a zigzag manner. Furthermore, it is preferable to perform aging at a temperature of 25 to 60° C. after this.
  • the carrier film a polyethylene film, a polypropylene film, a laminate film of polyethylene and polypropylene, polyethylene terephthalate, nylon, or the like can be used.
  • the X-ray irradiation type metal detection inspection may be performed before molding, and may be performed after the aging process.
  • a mixer such as an ordinary mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder is used to mix a resin, an unsaturated monomer, A method of mixing and dispersing each component such as a thickener and a polymerization initiator, and mixing and dispersing carbon fibers in the obtained resin composition, and the like can be mentioned.
  • the BMC After mixing and dispersing the resin composition and the carbon fiber to obtain BMC, the BMC can be processed into a rod shape, a plate shape, or the like, passed through an X-ray irradiation type foreign matter detection inspection process, and aged.
  • SMC Like SMC, it is preferably aged at a temperature of 25-60°C. After the aging process, it can be processed into a rod shape, a plate shape, or the like before molding, and subjected to an X-ray irradiation type foreign matter inspection.
  • a predetermined amount of molding material such as SMC and BMC is weighed, put into a mold preheated to 110 to 180 ° C., the mold is clamped with a compression molding machine, and the molding material is applied.
  • a manufacturing method is used in which the molding material is hardened by molding and maintaining a molding pressure of 0.1 to 30 MPa, and then the molded article is taken out to obtain a molded article.
  • a mold temperature of 120 to 160 ° C. in the mold and a molding pressure of 1 to 15 MPa for 1 to 2 minutes per 1 mm of the thickness of the molded product are preferable.
  • the molding conditions are more preferably a mold temperature of 140 to 160° C. and a molding pressure of 1 to 15 MPa for 30 to 90 seconds per 1 mm of the thickness of the molded product.
  • Molded articles obtained from the fiber-reinforced molding material of the present invention are lightweight, yet have excellent heat resistance and mechanical strength. It can be suitably used for light vehicle members, construction and civil engineering members, housings of OA equipment, and the like.
  • the hydroxyl value is the amount of potassium hydroxide required to neutralize the acetic acid generated when 1 g of a resin sample is reacted at a specified temperature and time using an acetylating agent based on the specified method of JIS K-0070. Milligrams (mgKOH/g) were measured.
  • the temperature was raised to 90° C. under mixed gas flow. 0.25 part by mass of 2-methylimidazole was added thereto, the temperature was raised to 110° C., and the reaction was carried out for 10 hours. After cooling to around 60° C., the reaction vessel was taken out to obtain a vinyl ester resin (1) having a hydroxyl value of 206 mgKOH/g.
  • the resin composition (1) obtained above was applied to a polyethylene-polypropylene laminate film in an amount of 0.5 kg/m 2 , and a carbon fiber roving ("T700SC” manufactured by Toray Industries, Inc.) was applied thereon. -12000-50C”) cut to 25 mm (hereinafter abbreviated as carbon fiber (F-1)) is cut in the air so that the thickness is uniform without fiber directionality and the carbon fiber content is 50% by mass. It is uniformly dropped from the carbon fiber, similarly, the resin composition (X-1) is similarly applied to 0.5 kg/m 2 by sandwiching it with a film, impregnating the carbon fiber with the resin, and then standing for 24 hours in a 45 ° C. constant temperature machine. to obtain a carbon fiber reinforced molding material (X-1) (SMC). The basis weight of this carbon fiber reinforced molding material (X-1) was 2 kg/m 2 .
  • a stainless steel round washer (thickness: 0.8 mm, outer diameter: 10 mm, inner diameter: 4.6 mm) was used as the metal foreign matter (1).
  • Example 1 The carbon fiber reinforced molding material (X-1) obtained above was peeled off from the film, cut into 210 mm ⁇ 210 mm, and placed on top of 4 sheets of metal foreign matter (1). "WORK-LEADER 90-S” manufactured by K.K. The metallic foreign matter (1) appeared white, confirming the presence of the metallic foreign matter. Next, the metal foreign matter (1) on the 210 mm square carbon fiber reinforced molding material was removed, and X-ray photography was performed in the same manner as above. No white object was confirmed, and it was possible to determine that there was no metallic foreign matter.
  • the conveyed 210 mm square carbon fiber reinforced molding material did not contain any metallic foreign matter, and the 210 mm square carbon fiber reinforced molding material was set in the center of a 30 ⁇ 30 cm 2 flat plate mold and pressed. Molding was carried out at a mold temperature of 150° C., a pressing time of 5 minutes, and a pressing pressure of 10 MPa to obtain a flat molded article having a thickness of about 3 mm.
  • Example 2 In the same manner as in Example 1, except that the carbon fiber reinforced molding material (X-1) used in Example 1 was changed to the carbon fiber reinforced molding material (X-2), metal foreign matter was detected and molding was determined. gone. Only when the metallic foreign matter (1) was present on the carbon fiber reinforced molding material (X-2), the metallic foreign matter (1) appeared white and was detected. Furthermore, the product from which the metal foreign matter (1) was removed was molded in the same manner as in Example 1, and the flexural strength and flexural modulus of the molded product were evaluated. The bending strength was 300 MPa and the bending elastic modulus was 21 GPa.
  • Comparative example 2 In the same manner as in Comparative Example 1, except that the carbon fiber reinforced molding material (X-1) used in Comparative Example 1 was changed to the carbon fiber reinforced molding material (X-2), metal foreign matter was detected and molding was determined. gone. As in Comparative Example 1, it was determined that the metal foreign matter was present even though the metal foreign matter was removed. Therefore, it was determined that the metal foreign matter might damage the mold, and the carbon fiber reinforced molding material could be molded. It was not possible to obtain a molded product.
  • Table 1 shows the evaluation results of Examples 1 and 2 and Comparative Examples 1 and 2.
  • Comparative Examples 1 and 2 are examples in which an electromagnetic induction type foreign matter detector is used instead of the X-ray irradiation type foreign matter detector. No molded product was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Provided are: a method for accurately detecting impurities such as metal in a carbon-fiber-reinforced molding material to efficiently produce a carbon-fiber-reinforced molding material and a molded article; and a carbon-fiber-reinforced molding material and a molded article obtained by this method. The method for producing a carbon-fiber-reinforce molding material is characterized by comprising a step for inspecting a molding material for the presence of impurities such as metal using an impurity detection method based on X-ray irradiation. The production method is for a molded article characterized by being obtained by hot compression molding the carbon-fiber-reinforced molding material obtained from the aforementioned production method.

Description

炭素繊維強化成形材料及び成形品の製造方法CARBON FIBER REINFORCED MOLDING MATERIAL AND METHOD FOR MANUFACTURING MOLDED PRODUCT
 本発明は、炭素繊維強化成形材料及び成形品の製造方法に関する。 The present invention relates to a method for manufacturing a carbon fiber reinforced molding material and a molded product.
 炭素繊維を強化繊維としてエポキシ樹脂や不飽和ポリエステル樹脂等の熱硬化性樹脂を強化した繊維強化樹脂複合材料は、軽量でありながら耐熱性や機械強度に優れる特徴が注目され、自動車や航空機の筐体或いは各種部材をはじめ、様々な構造体用途での利用が拡大している。この繊維強化樹脂複合材料の成形方法としては、プリプレグと呼ばれる材料を加圧可能なオートクレーブで加熱し硬化させるオートクレーブ法、シートモールディングコンパウンド(SMC)、バルクモールディングコンパウンド(BMC)を用いて、加熱圧縮成形させる方法等が知られている。 Fiber-reinforced resin composite materials, in which thermosetting resins such as epoxy resins and unsaturated polyester resins are reinforced with carbon fiber as the reinforcing fiber, are attracting attention for their excellent heat resistance and mechanical strength while being lightweight. Its use in various structural applications, including bodies and various members, is expanding. As a method for molding this fiber-reinforced resin composite material, an autoclave method in which a material called prepreg is heated and cured in a pressurized autoclave, a sheet molding compound (SMC), and a bulk molding compound (BMC) are used to perform hot compression molding. There are known methods for
 加熱圧縮成形は、一般に、110~180℃の金型内で、1~20MPaの圧力にて成形材料を賦型し、所定の時間これら成形条件を保持することで成形品を製造するものである。上記金型に使用される鋼は強く、硬い鋼材であるものの、成形材料中に異物、特に金属が異物として含まれた場合、成形材料を高圧で成形するため、異物により金型が著しく損傷してしまう問題がある。また金属以外の異物が含まれている場合、外観不良や、得られた成形品の特性が十分に発揮できない等の問題が発生する。 Heat compression molding is generally performed by forming a molding material in a mold at 110 to 180° C. under pressure of 1 to 20 MPa, and maintaining these molding conditions for a predetermined time to produce a molded product. . Although the steel used in the above molds is a strong and hard steel material, if foreign matter, especially metal, is included in the molding material, the molding material is molded under high pressure, and the foreign matter can damage the mold significantly. there is a problem In addition, when foreign matter other than metal is contained, problems such as poor appearance and the inability to sufficiently exhibit the properties of the obtained molded product occur.
 このような金属異物を検出する装置としては、例えば、電磁誘導式異物検出装置が知られている(特許文献1参照。)。しかしながら、炭素繊維強化成形材料中の金属異物を電磁誘導式の金属探知機で調査した場合、導電性である炭素繊維が磁界を歪ませてしまい、金属異物が含まれていないにも係わらず、金属異物が混入していると誤審されてしまう問題があった。そこで、成形品製造工程において、炭素繊維強化成形材料中の金属等の異物を正確に検出し、効率的に炭素繊維強化成形材料及び成形品を製造する方法が求められていた。 As a device for detecting such metal foreign matter, for example, an electromagnetic induction type foreign matter detection device is known (see Patent Document 1). However, when metallic foreign matter in the carbon fiber reinforced molding material is investigated with an electromagnetic induction metal detector, the carbon fiber, which is conductive, distorts the magnetic field. There was a problem of misjudgment that metal foreign matter was mixed in. Therefore, there is a demand for a method of accurately detecting foreign matter such as metal in a carbon fiber reinforced molding material in the process of manufacturing a molded product and efficiently manufacturing the carbon fiber reinforced molding material and the molded product.
特開昭63-45584号公報JP-A-63-45584
 本発明が解決しようとする課題は、炭素繊維強化成形材料中の金属異物を正確に検出し、効率的に炭素繊維強化成形材料及び成形品を製造する方法を提供することである。 The problem to be solved by the present invention is to provide a method for accurately detecting metallic foreign matter in a carbon fiber reinforced molding material and efficiently manufacturing a carbon fiber reinforced molding material and a molded product.
 本発明者等は、特定の異物探知方法で検査する工程を備えた炭素繊維強化成形材料の製造方法により、効率的に炭素繊維強化成形材料及び成形品を得られることを見出し、本発明を完成した。 The present inventors have found that a carbon fiber reinforced molding material and a molded product can be efficiently obtained by a method for manufacturing a carbon fiber reinforced molding material, which includes a step of inspecting with a specific foreign matter detection method, and have completed the present invention. bottom.
 すなわち、成形材料中の異物の有無をX線照射式異物探知方法で検査する工程を含むことを特徴とする炭素繊維強化成形材料及び成形品の製造方法に関する。 That is, it relates to a method for manufacturing a carbon fiber reinforced molding material and a molded product, which includes a step of inspecting the presence or absence of foreign matter in the molding material by an X-ray irradiation type foreign matter detection method.
 本発明の炭素繊維強化成形材料及び成形品の製造方法により得られる成形品は、軽量でありながら耐熱性や機械強度に優れることから、自動車部材、鉄道車両部材、航空宇宙機部材、船舶部材、住宅設備部材、スポーツ部材、軽車両部材、建築土木部材、OA機器等の筐体等に好適に用いることができる。 The molded article obtained by the carbon fiber reinforced molding material and the method for producing the molded article of the present invention is lightweight but has excellent heat resistance and mechanical strength. It can be suitably used for housing equipment members, sports members, light vehicle members, construction and civil engineering members, housings of OA equipment, and the like.
 本発明の炭素繊維強化成形材料の製造方法は、成形材料中の異物の有無をX線照射式異物探知方法で検査する工程を含むものである。 The method for producing a carbon fiber reinforced molding material of the present invention includes a step of inspecting the presence or absence of foreign matter in the molding material by an X-ray irradiation type foreign matter detection method.
 前記X線照射式異物探知方法とは、炭素繊維強化成形材料にX線を照射、撮影し、X線の透過量の差異から金属等の異物を検知する方法である。 The X-ray irradiation type foreign matter detection method is a method of irradiating and photographing a carbon fiber reinforced molding material with X-rays and detecting foreign matter such as metal from the difference in the amount of X-rays transmitted.
 前記探知方法によれば、導電性を有する炭素繊維を金属として検知することなく、炭素繊維強化成形材料中に混入した金属等の異物を白い影として検知することができるため、炭素繊維強化成形材料中の金属等の異物の有無を前記探知方法で検査する工程を含むことで、金型の破損等の不具合を生じることなく、効率的に成形品を製造できる。 According to the detection method, foreign matter such as metal mixed in the carbon fiber reinforced molding material can be detected as a white shadow without detecting the conductive carbon fiber as a metal. By including the step of inspecting the presence or absence of foreign matter such as metal inside by the detection method, it is possible to efficiently manufacture a molded product without causing problems such as damage to the mold.
 前記炭素繊維強化成形材料の形態としては、樹脂及び炭素繊維を含有するものであれば、特に限定されないが、生産性及びデザイン多様性に優れることから、炭素繊維を裁断し、樹脂組成物中に分散させたシートモールディングコンパウンド(以下、「SMC」と略記する。)、バルクモールディングコンパウンド(以下、「BMC」と略記する。)が好ましい。 The form of the carbon fiber reinforced molding material is not particularly limited as long as it contains a resin and carbon fibers. Dispersed sheet molding compounds (hereinafter abbreviated as "SMC") and bulk molding compounds (hereinafter abbreviated as "BMC") are preferred.
 前記樹脂としては、例えば、ビニルエステル樹脂、ビニルウレタン樹脂、不飽和ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、フラン樹脂等の熱硬化性樹脂;ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、ウレタン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリブタジエン樹脂、ポリイソプレン樹脂およびこれらを共重合により変性させたもの等の熱可塑性樹脂などが挙げられる。これらの樹脂は、単独で用いることも2種以上併用することもできる。これらの中でも、耐熱性、高弾性率等の観点から熱硬化性樹脂が好ましく、速硬化性、低粘度の観点からビニルエステル樹脂、不飽和ポリエステル樹脂がより好ましい。 Examples of the resin include thermosetting resins such as vinyl ester resin, vinyl urethane resin, unsaturated polyester resin, acrylic resin, epoxy resin, phenol resin, melamine resin, furan resin; polyamide resin, polyethylene terephthalate resin, polybutylene. Thermoplastic resins such as terephthalate resins, polycarbonate resins, urethane resins, polypropylene resins, polyethylene resins, polystyrene resins, acrylic resins, polybutadiene resins, polyisoprene resins and those modified by copolymerization thereof can be used. These resins can be used alone or in combination of two or more. Among these resins, thermosetting resins are preferable from the viewpoint of heat resistance and high elastic modulus, and vinyl ester resins and unsaturated polyester resins are more preferable from the viewpoints of rapid curing and low viscosity.
 前記炭素繊維としては、ポリアクリロニトリル系、ピッチ系、レーヨン系等の各種のものが使用できるが、これらの中でも、容易に高強度の炭素繊維が得られることから、ポリアクリロニトリル系のものが好ましい。 Various types of carbon fibers such as polyacrylonitrile-based, pitch-based, and rayon-based carbon fibers can be used. Among these, polyacrylonitrile-based carbon fibers are preferable because high-strength carbon fibers can be easily obtained.
 また、前記炭素繊維として使用される繊維束のフィラメント数は、樹脂含浸性及び成形品の機械的物性がより向上することから、1,000~60,000が好ましい。 In addition, the number of filaments in the fiber bundle used as the carbon fiber is preferably 1,000 to 60,000 because the resin impregnation property and the mechanical properties of the molded product are further improved.
前記炭素繊維としては、集合体であってもよく、織布状であっても、不織布状であってもかまわない。また、繊維を一方方向に整列した繊維束でもよく、繊維束を並べたシート状、織物状であってもよい。また、繊維の集合体に厚みを持たせた立体形状であってもよい。 The carbon fibers may be in the form of aggregates, woven fabrics, or non-woven fabrics. Also, a fiber bundle in which fibers are aligned in one direction may be used, and a sheet-like or woven fabric-like shape in which fiber bundles are arranged may be used. Moreover, it may have a three-dimensional shape in which a fiber aggregate has a thickness.
 前記炭素繊維は、機械的物性に優れ、複雑な3次元形状物や厚みの異なる物などの成形性がより向上することから、2.5~50mmに裁断され、成形材料中に含まれることが好ましい。 The carbon fiber has excellent mechanical properties and improves the moldability of complex three-dimensional objects and objects with different thicknesses, so it is cut to 2.5 to 50 mm and included in the molding material. preferable.
 前記炭素繊維複合材料中の、前記炭素繊維の含有率は、得られる成形品の機械的物性がより向上することから、25~80質量%の範囲が好ましく、35~70質量%の範囲がより好ましい。炭素繊維含有率が低いと、高強度な成形品が得られない可能性があり、炭素繊維含有率が高いと、繊維への樹脂含浸性が不十分で、成形品に膨れが生じ、やはり高強度な成形品が得られない可能性がある。 The content of the carbon fiber in the carbon fiber composite material is preferably in the range of 25 to 80% by mass, more preferably 35 to 70% by mass, because the mechanical properties of the resulting molded product are further improved. preferable. If the carbon fiber content is low, a high-strength molded product may not be obtained. A strong molded product may not be obtained.
 前記炭素繊維複合材料は、樹脂及び炭素繊維を含有するものであるが、これら以外の成分として、例えば、不飽和単量体、重合開始剤、重合禁止剤、硬化促進剤、充填剤、低収縮剤、離型剤、増粘剤、減粘剤、顔料、酸化防止剤、可塑剤、難燃剤、抗菌剤、紫外線安定剤、補強材、光硬化剤等を含有することができる。 The carbon fiber composite material contains a resin and carbon fibers, but other components include, for example, unsaturated monomers, polymerization initiators, polymerization inhibitors, curing accelerators, fillers, low shrinkage agents, release agents, thickeners, viscosity reducers, pigments, antioxidants, plasticizers, flame retardants, antibacterial agents, UV stabilizers, reinforcing agents, photocuring agents, and the like.
 前記不飽和単量体としては、例えば、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートアルキルエーテル、ポリプロピレングリコール(メタ)アクリレートアルキルエーテル、2-エチルヘキシルメタクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソトリデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、テトラヒドロフルフリルメタクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルメタクリレート等の単官能(メタ)アクリレート化合物;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、1,4-シクロヘキサンジメタノールジ(メタ)アクリレート等のジ(メタ)アクリレート化合物;ジアリルフタレート、ジビニルベンゼン、スチレンなどが挙げられるが、これらの中でも、より高強度の成形材料が得られることから、芳香族を有する不飽和単量体が好ましく、ベンジルメタクリレート、フェノキシエチルメタクリレートがより好ましい。なお、これらの不飽和単量体は単独で用いることも、2種以上併用することもできる。 Examples of the unsaturated monomer include benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, phenoxypolyethylene glycol (meth)acrylate, polyethylene glycol (meth)acrylate alkyl ether, polypropylene glycol (meth)acrylate alkyl ether, 2-ethylhexyl methacrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, isotridecyl (meth) acrylate, n-stearyl (meth) acrylate, tetrahydrofurfuryl methacrylate, isobornyl (meth) acrylate, dicyclopentenyloxyethyl (meth) Monofunctional (meth)acrylate compounds such as acrylates and dicyclopentanyl methacrylate; ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,3-butane Diol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, bisphenol di(meth)acrylate, 1,4-cyclohexanedimethanol di(meth)acrylate, etc. (Meth)acrylate compounds; diallyl phthalate, divinylbenzene, styrene, and the like. Phenoxyethyl methacrylate is more preferred. These unsaturated monomers may be used alone or in combination of two or more.
 前記重合開始剤としては、特に限定されないが、有機過酸化物が好ましく、例えば、ジアシルパーオキサイド化合物、パーオキシエステル化合物、ハイドロパーオキサイド化合物、ケトンパーオキサイド化合物、アルキルパーエステル化合物、パーカーボネート化合物、パーオキシケタール等が挙げられ、成形条件に応じて適宜選択できる。なお、これらの重合開始剤は、単独で用いることも2種以上併用することもできる。 The polymerization initiator is not particularly limited, but is preferably an organic peroxide. Examples include diacyl peroxide compounds, peroxyester compounds, hydroperoxide compounds, ketone peroxide compounds, alkyl perester compounds, percarbonate compounds, Examples include peroxyketal and the like, which can be appropriately selected according to the molding conditions. These polymerization initiators can be used alone or in combination of two or more.
 前記重合禁止剤としては、例えば、ハイドロキノン、トリメチルハイドロキノン、p-t-ブチルカテコール、t-ブチルハイドロキノン、トルハイドロキノン、p-ベンゾキノン、ナフトキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、ナフテン酸銅、塩化銅、ピペリジン誘導体等が挙げられる。これらの重合禁止剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the polymerization inhibitor include hydroquinone, trimethylhydroquinone, pt-butylcatechol, t-butylhydroquinone, trihydroquinone, p-benzoquinone, naphthoquinone, hydroquinone monomethyl ether, phenothiazine, copper naphthenate, copper chloride, and piperidine derivatives. etc. These polymerization inhibitors can be used alone or in combination of two or more.
 前記硬化促進剤としては、例えば、ナフテン酸コバルト、オクテン酸コバルト、オクテン酸バナジル、ナフテン酸銅、ナフテン酸バリウム等の金属石鹸類、バナジルアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート化合物が挙げられる。またアミン類として、N,N-ジメチルアミノ-p-ベンズアルデヒド、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジメチル-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニルモルホリン、ピペリジン、ジエタノールアニリン等が挙げられる。これらの硬化促進剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the curing accelerator include metal soaps such as cobalt naphthenate, cobalt octenoate, vanadyl octenoate, copper naphthenate and barium naphthenate; and metal chelates such as vanadyl acetylacetate, cobalt acetylacetate and iron acetylacetonate. compound. As amines, N,N-dimethylamino-p-benzaldehyde, N,N-dimethylaniline, N,N-diethylaniline, N,N-dimethyl-p-toluidine, N-ethyl-m-toluidine, triethanol amine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, diethanolaniline and the like. These curing accelerators can be used alone or in combination of two or more.
 前記充填剤としては、無機化合物、有機化合物があり、成形品の強度、弾性率、衝撃強度、疲労耐久性等の物性を調整するために使用できる。 The fillers include inorganic compounds and organic compounds, which can be used to adjust physical properties such as strength, elastic modulus, impact strength, and fatigue durability of molded products.
 前記無機化合物としては、例えば、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、マイカ、タルク、カオリン、クレー、セライト、アスベスト、バーライト、バライタ、シリカ、ケイ砂、ドロマイト石灰石、石こう、アルミニウム微粉、中空バルーン、アルミナ、ガラス粉、水酸化アルミニウム、寒水石、酸化ジルコニウム、三酸化アンチモン、酸化チタン、二酸化モリブデン、鉄粉等が挙げられる。 Examples of the inorganic compound include calcium carbonate, magnesium carbonate, barium sulfate, mica, talc, kaolin, clay, celite, asbestos, barite, baryta, silica, silica sand, dolomite limestone, gypsum, aluminum fine powder, hollow balloons, Alumina, glass powder, aluminum hydroxide, cold water stone, zirconium oxide, antimony trioxide, titanium oxide, molybdenum dioxide, iron powder and the like.
 前記有機化合物としては、セルロース、キチン等の天然多糖類粉末や、合成樹脂粉末等があり、合成樹脂粉末としては、硬質樹脂、軟質ゴム、エラストマーまたは重合体(共重合体)などから構成される有機物の粉体やコアシェル型などの多層構造を有する粒子を使用できる。具体的には、ブタジエンゴムおよび/またはアクリルゴム、ウレタンゴム、シリコンゴム等からなる粒子、ポリイミド樹脂粉末、フッ素樹脂粉末、フェノール樹脂粉末などが挙げられる。これらの充填剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the organic compound include powders of natural polysaccharides such as cellulose and chitin, powders of synthetic resins, and the like, and powders of synthetic resins include hard resins, soft rubbers, elastomers, polymers (copolymers), and the like. Particles having a multi-layered structure such as organic powders and core-shell type particles can be used. Specific examples include particles of butadiene rubber and/or acrylic rubber, urethane rubber, silicon rubber, polyimide resin powder, fluororesin powder, phenol resin powder, and the like. These fillers can be used alone or in combination of two or more.
 前記離型剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、パラフィンワックス、ポリエチレンワックス、カルナバワックスなどが挙げられる。好ましくは、パラフィンワックス、ポリエチレンワックス、カルナバワックス等が挙げられる。これらの離型剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the release agent include zinc stearate, calcium stearate, paraffin wax, polyethylene wax, and carnauba wax. Paraffin wax, polyethylene wax, carnauba wax and the like are preferred. These release agents can be used alone or in combination of two or more.
 前記増粘剤としては、例えば、酸化マグネシウム、酸化カルシウム等の金属酸化物;水酸化マグネシウム、水酸化カルシウム等の金属水酸化物;アクリル樹脂系微粒子;ポリイソシアネートなどが挙げられ、本発明の繊維強化成形材料の取り扱い性によって適宜選択できる。これらの増粘剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the thickener include metal oxides such as magnesium oxide and calcium oxide; metal hydroxides such as magnesium hydroxide and calcium hydroxide; acrylic resin fine particles; It can be appropriately selected depending on the handleability of the reinforced molding material. These thickeners can be used alone or in combination of two or more.
 本発明の成形材料の製造方法は、炭素繊維強化成形材料中の異物の有無をX線照射式異物探知方法で検査する工程を含むものであるが、例えば、SMCの製造工程で検査する方法としては、通常のミキサー、インターミキサー、プラネタリーミキサー、ロール、ニーダー、押し出し機などの混合機を用いて、前記ビニルエステル樹脂、前記不飽和単量体、前記熱可塑性樹脂、前記ポリイソシアネート、前記重合開始剤等の各成分を混合・分散し、得られた樹脂組成物を上下に設置されたキャリアフィルムに均一な厚さになるように塗布し、前記炭素繊維を前記上下に設置されたキャリアフィルム上の樹脂組成物で挟み込み、次いで、全体を含浸ロールの間に通して、圧力を加えて前記炭素繊維に樹脂組成物を含浸させた後、X線照射式異物探知検査工程を経て、ロール状に巻き取る又はつづら折りに畳む方法等が挙げられる。さらに、この後に25~60℃の温度で熟成を行うことが好ましい。キャリアフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンとポリプロピレンのラミネートフィルム、ポリエチレンテレフタレート、ナイロン等を用いることができる。X線照射式金属探知検査は、成形前に行えばよく、熟成工程後に行うこともできる。 The manufacturing method of the molding material of the present invention includes a step of inspecting the presence or absence of foreign matter in the carbon fiber reinforced molding material by an X-ray irradiation type foreign matter detection method. The vinyl ester resin, the unsaturated monomer, the thermoplastic resin, the polyisocyanate, and the polymerization initiator are Each component such as is mixed and dispersed, and the resulting resin composition is applied to the carrier film placed above and below so that it has a uniform thickness, and the carbon fiber is placed on the carrier film placed above and below. It is sandwiched with a resin composition, then the whole is passed between impregnated rolls, and pressure is applied to impregnate the carbon fiber with the resin composition. Examples include a method of taking it off or folding it in a zigzag manner. Furthermore, it is preferable to perform aging at a temperature of 25 to 60° C. after this. As the carrier film, a polyethylene film, a polypropylene film, a laminate film of polyethylene and polypropylene, polyethylene terephthalate, nylon, or the like can be used. The X-ray irradiation type metal detection inspection may be performed before molding, and may be performed after the aging process.
 前記BMCの製造方法としては、前記SMCの製造方法と同様に、通常のミキサー、インターミキサー、プラネタリーミキサー、ロール、ニーダー、押し出し機などの混合機を用いて、樹脂、不飽和単量体、増粘剤、重合開始剤等の各成分を混合・分散し、得られた樹脂組成物に炭素繊維を混合・分散させる方法等が挙げられる。樹脂組成物と炭素繊維を混合・分散させ、BMCとした後、BMCを棒状、板状等に加工し、X線照射式異物探知検査工程を経て、熟成させることができる。SMCと同様に25~60℃の温度で熟成することが好ましい。熟成工程後、成形する前に棒状、板状等に加工し、X線照射式異物探検査を行うこともできる。 As for the method for producing the BMC, in the same manner as the method for producing the SMC, a mixer such as an ordinary mixer, an intermixer, a planetary mixer, a roll, a kneader, or an extruder is used to mix a resin, an unsaturated monomer, A method of mixing and dispersing each component such as a thickener and a polymerization initiator, and mixing and dispersing carbon fibers in the obtained resin composition, and the like can be mentioned. After mixing and dispersing the resin composition and the carbon fiber to obtain BMC, the BMC can be processed into a rod shape, a plate shape, or the like, passed through an X-ray irradiation type foreign matter detection inspection process, and aged. Like SMC, it is preferably aged at a temperature of 25-60°C. After the aging process, it can be processed into a rod shape, a plate shape, or the like before molding, and subjected to an X-ray irradiation type foreign matter inspection.
 前記加熱圧縮成形としては、例えば、SMC、BMC等の成形材料を所定量計量し、予め110~180℃に加熱した金型に投入し、圧縮成形機にて型締めを行い、成形材料を賦型させ、0.1~30MPaの成形圧力を保持することによって、成形材料を硬化させ、その後成形品を取り出し成形品を得る製造方法が用いられる。具体的な成形条件としては、金型内で金型温度120~160℃にて、成形品の厚さ1mm当たり1~2分間、1~15MPaの成形圧力を保持する成形条件が好ましく、生産性がより向上することから、金型温度140~160℃にて、成形品の厚さ1mm当たり30~90秒間、1~15MPaの成形圧力を保持する成形条件がより好ましい。 For the heat compression molding, for example, a predetermined amount of molding material such as SMC and BMC is weighed, put into a mold preheated to 110 to 180 ° C., the mold is clamped with a compression molding machine, and the molding material is applied. A manufacturing method is used in which the molding material is hardened by molding and maintaining a molding pressure of 0.1 to 30 MPa, and then the molded article is taken out to obtain a molded article. As a specific molding condition, a mold temperature of 120 to 160 ° C. in the mold and a molding pressure of 1 to 15 MPa for 1 to 2 minutes per 1 mm of the thickness of the molded product are preferable. is more improved, the molding conditions are more preferably a mold temperature of 140 to 160° C. and a molding pressure of 1 to 15 MPa for 30 to 90 seconds per 1 mm of the thickness of the molded product.
 本発明の繊維強化成形材料から得られる成形品は、軽量でありながら耐熱性や機械強度に優れることから、自動車部材、鉄道車両部材、航空宇宙機部材、船舶部材、住宅設備部材、スポーツ部材、軽車両部材、建築土木部材、OA機器等の筐体等に好適に用いることができる。 Molded articles obtained from the fiber-reinforced molding material of the present invention are lightweight, yet have excellent heat resistance and mechanical strength. It can be suitably used for light vehicle members, construction and civil engineering members, housings of OA equipment, and the like.
 以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、水酸基価は、樹脂試料1gをJIS K-0070の規定の方法に基づきアセチル化剤を用いて、規定温度及び時間で反応させた時に生成した酢酸を中和するのに要する水酸化カリウムのミリグラム数(mgKOH/g)を測定した。 The present invention will be described in more detail below with specific examples. The hydroxyl value is the amount of potassium hydroxide required to neutralize the acetic acid generated when 1 g of a resin sample is reacted at a specified temperature and time using an acetylating agent based on the specified method of JIS K-0070. Milligrams (mgKOH/g) were measured.
(製造例1:樹脂組成物(1)の製造)
 温度計、窒素導入管、撹拌機を設けた2Lフラスコに、エポキシ樹脂(DIC株式会社製「エピクロン850」、ビスフェノールA型エポキシ樹脂、エポキシ当量188)661質量部、ビスフェノールA 58.8質量部、及び2-メチルイミダゾール0.36質量部を仕込み、120℃に昇温して3時間反応させ、エポキシ当量を測定した。エポキシ当量が設定通り240になったことを確認後、60℃付近まで冷却した後、メタクリル酸253質量部、及びt-ブチルハイドロキノン0.28質量部を仕込み、窒素と空気とを1対1で混合したガス流通下で、90℃まで昇温した。ここに2-メチルイミダゾール0.25質量部を入れ、110℃に昇温して10時間反応させると、酸価が6以下になったので、反応を終了した。60℃付近まで冷却した後、反応容器より取り出し、水酸基価206mgKOH/gのビニルエステル樹脂(1)を得た。
 上記で得たビニルエステル樹脂(1)55質量部をフェノキシエチルメタクリレート45質量部に溶解させた樹脂溶液100質量部に、ポリイソシアネート(三井化学株式会社製「コスモネートLL」、以下、「ポリイソシアネート(1)」と略記する。)20質量部、及び重合開始剤(化薬アクゾ株式会社製「カヤカルボンAIC-75」、有機過酸化物、以下、「重合開始剤(1)」と略記する。)1部を混合し、樹脂組成物(1)を得た。
(Production Example 1: Production of resin composition (1))
A thermometer, a nitrogen inlet tube, a 2 L flask equipped with a stirrer, epoxy resin ("Epiclon 850" manufactured by DIC Corporation, bisphenol A type epoxy resin, epoxy equivalent 188) 661 parts by mass, bisphenol A 58.8 parts by mass, And 0.36 parts by mass of 2-methylimidazole were charged, heated to 120° C. and reacted for 3 hours to measure the epoxy equivalent. After confirming that the epoxy equivalent has reached 240 as set, after cooling to around 60 ° C., 253 parts by mass of methacrylic acid and 0.28 parts by mass of t-butyl hydroquinone are charged, and nitrogen and air are added at a ratio of 1:1. The temperature was raised to 90° C. under mixed gas flow. 0.25 part by mass of 2-methylimidazole was added thereto, the temperature was raised to 110° C., and the reaction was carried out for 10 hours. After cooling to around 60° C., the reaction vessel was taken out to obtain a vinyl ester resin (1) having a hydroxyl value of 206 mgKOH/g.
100 parts by mass of a resin solution obtained by dissolving 55 parts by mass of the vinyl ester resin (1) obtained above in 45 parts by mass of phenoxyethyl methacrylate was added with a polyisocyanate ("Cosmonate LL" manufactured by Mitsui Chemicals, Inc., hereinafter referred to as "polyisocyanate (1)".) 20 parts by mass, and a polymerization initiator (“Kayacarbon AIC-75” manufactured by Kayaku Akzo Co., Ltd., an organic peroxide, hereinafter abbreviated as “polymerization initiator (1)”). ) were mixed to obtain a resin composition (1).
(製造例1:炭素繊維強化成形材料(X-1)の製造) (Production Example 1: Production of carbon fiber reinforced molding material (X-1))
 上記で得られた樹脂組成物(1)を、ポリエチレンとポリプロピレンのラミネートフィルム上に塗布量が0.5kg/mとなるよう塗布し、この上に、炭素繊維ロービング(東レ株式会社製「T700SC-12000-50C」)を25mmにカットした炭素繊維(以下、炭素繊維(F-1)と略記する。)を繊維方向性が無く厚みが均一で炭素繊維含有率が50質量%になるよう空中から均一落下させ、同様に樹脂組成物(X-1)を0.5kg/mとなるよう塗布したフィルムで挟み込み炭素繊維に樹脂を含浸させた後、45℃恒温機中に24時間静置し、炭素繊維強化成形材料(X-1)(SMC)を得た。この炭素繊維強化成形材料(X-1)の目付け量は、2kg/mであった。 The resin composition (1) obtained above was applied to a polyethylene-polypropylene laminate film in an amount of 0.5 kg/m 2 , and a carbon fiber roving ("T700SC" manufactured by Toray Industries, Inc.) was applied thereon. -12000-50C”) cut to 25 mm (hereinafter abbreviated as carbon fiber (F-1)) is cut in the air so that the thickness is uniform without fiber directionality and the carbon fiber content is 50% by mass. It is uniformly dropped from the carbon fiber, similarly, the resin composition (X-1) is similarly applied to 0.5 kg/m 2 by sandwiching it with a film, impregnating the carbon fiber with the resin, and then standing for 24 hours in a 45 ° C. constant temperature machine. to obtain a carbon fiber reinforced molding material (X-1) (SMC). The basis weight of this carbon fiber reinforced molding material (X-1) was 2 kg/m 2 .
(製造例2:炭素繊維強化成形材料(X-2)の製造)
 製造例1の炭素繊維含有率を50質量%から40質量%に変更した以外は製造例1と同様に炭素繊維強化成形材料(X-2)を得た。
(Production Example 2: Production of carbon fiber reinforced molding material (X-2))
A carbon fiber reinforced molding material (X-2) was obtained in the same manner as in Production Example 1 except that the carbon fiber content in Production Example 1 was changed from 50% by mass to 40% by mass.
 ステンレス製丸ワッシャー(厚さ0.8mm、外径10mm、内径4.6mm)を金属異物(1)とした。 A stainless steel round washer (thickness: 0.8 mm, outer diameter: 10 mm, inner diameter: 4.6 mm) was used as the metal foreign matter (1).
(実施例1)
 上記で得られた炭素繊維強化成形材料(X-1)をフィルムから剥離し、210mm×210mmにカットしたものを4枚重ねた上に金属異物(1)を載せ、X線検査装置(ソフテックス株式会社製「WORK-LEADER 90-S」)にてX線撮影した(電圧50kV、電流50μA)。金属異物(1)が白く写り、金属異物があることを確認できた。
 次に、210mm角の炭素繊維強化成形材料の上の金属異物(1)を取り除き、上記と同様にX線撮影した。白い物体は確認されず、金属異物が無いと判断することができた。
 この結果から搬送した210mm角の炭素繊維強化成形材料には金属異物が含まれていないと判断し、30×30cmの平板金型の中央に210mm角の炭素繊維強化成形材料をセットし、プレス金型温度150℃、プレス時間5分間、プレス圧力10MPaで成形し、厚さ約3mmの平板状の成形品を得た。
(Example 1)
The carbon fiber reinforced molding material (X-1) obtained above was peeled off from the film, cut into 210 mm × 210 mm, and placed on top of 4 sheets of metal foreign matter (1). "WORK-LEADER 90-S" manufactured by K.K. The metallic foreign matter (1) appeared white, confirming the presence of the metallic foreign matter.
Next, the metal foreign matter (1) on the 210 mm square carbon fiber reinforced molding material was removed, and X-ray photography was performed in the same manner as above. No white object was confirmed, and it was possible to determine that there was no metallic foreign matter.
From this result, it was determined that the conveyed 210 mm square carbon fiber reinforced molding material did not contain any metallic foreign matter, and the 210 mm square carbon fiber reinforced molding material was set in the center of a 30 × 30 cm 2 flat plate mold and pressed. Molding was carried out at a mold temperature of 150° C., a pressing time of 5 minutes, and a pressing pressure of 10 MPa to obtain a flat molded article having a thickness of about 3 mm.
[曲げ強さ・曲げ弾性率の評価]
上記で得られた成形品から水平方向及び垂直方向にサンプル5本ずつ切り出し、JIS K7074に準拠し、3点曲げ試験を行い、曲げ強さ、曲げ弾性率を測定した。曲げ強さは350MPa、曲げ弾性率は25GPaであった。
[Evaluation of bending strength and bending elastic modulus]
Five samples were cut horizontally and vertically from each of the molded articles obtained above, and subjected to a three-point bending test according to JIS K7074 to measure bending strength and bending elastic modulus. The bending strength was 350 MPa and the bending elastic modulus was 25 GPa.
(実施例2)
 実施例1で用いた炭素繊維強化成形材料(X-1)を炭素繊維強化成形材料(X-2)に変更した以外は実施例1と同様にして、金属異物の探知及び成形可否の判断を行った。炭素繊維強化成形材料(X-2)の上に金属異物(1)がある場合にのみ、金属異物が白く写り、金属異物(1)を検出した。さらに、金属異物(1)を除去したものを、実施例1と同様に成形し、成形品の曲げ強さ及び曲げ弾性率を評価した。曲げ強さは300MPa、曲げ弾性率は21GPaであった。
(Example 2)
In the same manner as in Example 1, except that the carbon fiber reinforced molding material (X-1) used in Example 1 was changed to the carbon fiber reinforced molding material (X-2), metal foreign matter was detected and molding was determined. gone. Only when the metallic foreign matter (1) was present on the carbon fiber reinforced molding material (X-2), the metallic foreign matter (1) appeared white and was detected. Furthermore, the product from which the metal foreign matter (1) was removed was molded in the same manner as in Example 1, and the flexural strength and flexural modulus of the molded product were evaluated. The bending strength was 300 MPa and the bending elastic modulus was 21 GPa.
(比較例1)
 上記で得られた炭素繊維強化成形材料(X-1)をフィルムから剥離し、210mm×210mmにカットしたものを4枚重ねた上に金属異物(1)を載せ、金属探知機(日新電子工業株式会社製「LRG-150」、電磁誘導式)の搬送ベルトの上に置き、20m/minで搬送した。警報が鳴り、金属異物があると検出した。
次に、搬送した210mm角の炭素繊維強化成形材料の上の金属異物(1)を取り除き、金属探知機(日新電子工業株式会社製「LRG-150」、電磁誘導式)の搬送ベルトの上に置き、20m/minにて搬送した。警報が鳴り、金属異物があると検出した。
金属異物を除去したにも係わらず、金属異物があると判定されたため、金属異物により金型を破損する恐れがあると判断し、炭素繊維強化成形材料を成形することができず、成形品を得ることができなかった。
(Comparative example 1)
The carbon fiber reinforced molding material (X-1) obtained above was peeled off from the film, cut into 210 mm × 210 mm, and placed on top of 4 sheets of metal foreign matter (1), metal detector (Nissin Electronics) It was placed on a conveyor belt manufactured by Kogyo Co., Ltd. “LRG-150” (electromagnetic induction type) and conveyed at 20 m/min. An alarm sounded and it was detected that there was a metallic foreign object.
Next, the metal foreign matter (1) on the conveyed 210 mm square carbon fiber reinforced molding material is removed, and the conveying belt of the metal detector (Nissin Electronics Industry Co., Ltd. "LRG-150", electromagnetic induction type) and conveyed at 20 m/min. An alarm sounded and it was detected that there was a metallic foreign object.
Even though the metal foreign matter was removed, it was determined that the metal foreign matter was present. couldn't get.
(比較例2)
 比較例1で用いた炭素繊維強化成形材料(X-1)を炭素繊維強化成形材料(X-2)に変更した以外は比較例1と同様にして、金属異物の探知及び成形可否の判断を行った。
 比較例1同様に、金属異物を除去したにも係わらず、金属異物があると判定されたため、金属異物により金型を破損する恐れがあると判断し、炭素繊維強化成形材料を成形することができず、成形品を得ることができなかった。
(Comparative example 2)
In the same manner as in Comparative Example 1, except that the carbon fiber reinforced molding material (X-1) used in Comparative Example 1 was changed to the carbon fiber reinforced molding material (X-2), metal foreign matter was detected and molding was determined. gone.
As in Comparative Example 1, it was determined that the metal foreign matter was present even though the metal foreign matter was removed. Therefore, it was determined that the metal foreign matter might damage the mold, and the carbon fiber reinforced molding material could be molded. It was not possible to obtain a molded product.
 実施例1~2及び比較例1~2の評価結果を表1に示す。 Table 1 shows the evaluation results of Examples 1 and 2 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例1及び2の本発明の製造方法により、異物の有無を正確に判断し、成形品を効率的に得られることが確認された。 It was confirmed that the manufacturing method of the present invention in Examples 1 and 2 accurately determines the presence or absence of foreign matter and efficiently obtains a molded product.
一方、比較例1及び2の製造方法は、X線照射式の異物探知機の代わりに、電磁誘導式の異物探知機を使用した例であるが、金属異物の有無を正確に判断することができず、成形品を得られなかった。 On the other hand, the manufacturing methods of Comparative Examples 1 and 2 are examples in which an electromagnetic induction type foreign matter detector is used instead of the X-ray irradiation type foreign matter detector. No molded product was obtained.

Claims (4)

  1.  成形材料中の異物の有無をX線照射式異物探知方法で検査する工程を含むことを特徴とする炭素繊維強化成形材料の製造方法。 A method for manufacturing a carbon fiber reinforced molding material, characterized by including a step of inspecting the presence or absence of foreign matter in the molding material by an X-ray irradiation type foreign matter detection method.
  2.  前記異物が金属異物である請求項1記載の炭素繊維強化成形材料の製造方法。 The method for producing a carbon fiber reinforced molding material according to claim 1, wherein the foreign matter is a metal foreign matter.
  3.  前記炭素繊維強化成形材料が、熱硬化性樹脂及び炭素繊維を含有するものである請求項1又は2記載の炭素繊維強化成形材料の製造方法。 The method for producing a carbon fiber reinforced molding material according to claim 1 or 2, wherein the carbon fiber reinforced molding material contains a thermosetting resin and carbon fibers.
  4.  請求項1~3いずれか1記載の製造方法で得られた炭素繊維強化成形材料を加熱圧縮成形して得られることを特徴とする成形品の製造方法。 A method for producing a molded article characterized by being obtained by hot compression molding the carbon fiber reinforced molding material obtained by the production method according to any one of claims 1 to 3.
PCT/JP2022/044317 2021-12-21 2022-12-01 Method for manufacturing carbon-fiber-reinforced molding material and molded article WO2023120090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-206930 2021-12-21
JP2021206930 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023120090A1 true WO2023120090A1 (en) 2023-06-29

Family

ID=86902093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044317 WO2023120090A1 (en) 2021-12-21 2022-12-01 Method for manufacturing carbon-fiber-reinforced molding material and molded article

Country Status (1)

Country Link
WO (1) WO2023120090A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424082A (en) * 1977-07-25 1979-02-23 Boeicho Gijutsu Kenkyu Honbuch Layer structure distinguishing method of molded composite material article
JP2010127702A (en) * 2008-11-26 2010-06-10 Kyocera Chemical Corp Automatic detection method of metal powder foreign body in insulating resin composition
JP2017181402A (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Inspection device
JP2019219254A (en) * 2018-06-19 2019-12-26 帝人株式会社 Composite material manufacturing method and method for inspecting denier unevenness
JP2020158635A (en) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 Manufacturing method of resin powder, encapsulant, semiconductor device and manufacturing method of semiconductor device
WO2020246447A1 (en) * 2019-06-05 2020-12-10 Dic株式会社 Method for manufacturing carbon-fiber-reinforced molding material and molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424082A (en) * 1977-07-25 1979-02-23 Boeicho Gijutsu Kenkyu Honbuch Layer structure distinguishing method of molded composite material article
JP2010127702A (en) * 2008-11-26 2010-06-10 Kyocera Chemical Corp Automatic detection method of metal powder foreign body in insulating resin composition
JP2017181402A (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Inspection device
JP2019219254A (en) * 2018-06-19 2019-12-26 帝人株式会社 Composite material manufacturing method and method for inspecting denier unevenness
JP2020158635A (en) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 Manufacturing method of resin powder, encapsulant, semiconductor device and manufacturing method of semiconductor device
WO2020246447A1 (en) * 2019-06-05 2020-12-10 Dic株式会社 Method for manufacturing carbon-fiber-reinforced molding material and molded article

Similar Documents

Publication Publication Date Title
CN109415524B (en) Fiber-reinforced molding material and molded article using same
CN108026300B (en) Prepreg and molded article
JP6260754B1 (en) Prepregs and molded products
JP6241583B1 (en) Fiber-reinforced molding material and molded product using the same
CN114746490A (en) Prepreg and molded article
EP3715405B1 (en) Fiber-reinforced molding material and molded article using same
JP6863539B1 (en) Manufacturing method of carbon fiber reinforced molding material and molded product
JP6772460B2 (en) Sheet molding compound and its molded products
JP7087358B2 (en) Fiber reinforced molding material and molded products using it
WO2023120090A1 (en) Method for manufacturing carbon-fiber-reinforced molding material and molded article
JP6150034B1 (en) Prepregs and molded products
JP7003583B2 (en) Fiber reinforced molding material and molded products using it
JP6579417B1 (en) Carbon fiber reinforced plastic molding resin composition, molding material, molded article and method for producing molded article
WO2020213414A1 (en) Fiber-reinforced molding material and molded article using the same
JP6966026B2 (en) Fiber reinforced molding material and molded products using it
JP7334570B2 (en) Molding material and method for manufacturing molded product
JP6354930B1 (en) VaRTM molding resin composition, molding material, molded article, and method for producing molded article
WO2023127389A1 (en) Fiber-reinforced composite material manufacturing method, fiber-reinforced composite material, and molded article manufacturing method
JP7136393B2 (en) Radical-curable resin composition, fiber-reinforced molding material, and molded article using the same
JP2010241845A (en) Prepreg and fiber-reinforced composite material obtained by curing the same
JPH03146528A (en) Method for molding fiber-reinforced plastic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910807

Country of ref document: EP

Kind code of ref document: A1