WO2023115365A1 - Communicating selection of user equipment for user equipment cooperation - Google Patents

Communicating selection of user equipment for user equipment cooperation Download PDF

Info

Publication number
WO2023115365A1
WO2023115365A1 PCT/CN2021/140315 CN2021140315W WO2023115365A1 WO 2023115365 A1 WO2023115365 A1 WO 2023115365A1 CN 2021140315 W CN2021140315 W CN 2021140315W WO 2023115365 A1 WO2023115365 A1 WO 2023115365A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooperation
base station
communications
values
ues
Prior art date
Application number
PCT/CN2021/140315
Other languages
French (fr)
Inventor
Luanxia YANG
Aleksandar Damnjanovic
Jing Sun
Xiaoxia Zhang
Changlong Xu
Fang Yuan
Tao Luo
Jelena Damnjanovic
Rajat Prakash
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/140315 priority Critical patent/WO2023115365A1/en
Publication of WO2023115365A1 publication Critical patent/WO2023115365A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for communicating selection of user equipment for user equipment cooperation.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs.
  • a UE may communicate with a base station via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the base station to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the base station.
  • New Radio which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • Some aspects described herein relate to a method of wireless communication performed by a first user equipment (UE) .
  • the method may include obtaining, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs.
  • Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a first UE.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to obtain, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs.
  • the set of instructions when executed by one or more processors of the UE, may cause the UE to receive, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station; or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station.
  • the apparatus may include means for transmitting, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the apparatus is to begin or continue UE cooperation between the apparatus and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE; or the apparatus is to end the UE cooperation between the apparatus and the second UE for communications between the second UE and the base station.
  • the apparatus may include means for transmitting, to a second UE, one or more values associated with one or more parameters.
  • the apparatus may include means for receiving, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the apparatus is to begin or continue UE cooperation to distribute, between the apparatus and the second UE, communications between the apparatus and a base station; or the apparatus is to end the UE cooperation between the apparatus and the second UE for communications between the apparatus and the base station.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) .
  • RF radio frequency
  • aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of UE cooperation, in accordance with the present disclosure.
  • Fig. 4 is a diagram illustrating an example associated with communicating selection of UE for UE cooperation, in accordance with the present disclosure.
  • Figs. 5 and 6 are diagrams illustrating example processes associated with communicating selection of UE for UE cooperation, in accordance with the present disclosure.
  • Fig. 7 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples.
  • the wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities.
  • UE user equipment
  • a base station 110 is an entity that communicates with UEs 120.
  • a base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) .
  • Each base station 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
  • a base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) .
  • CSG closed subscriber group
  • a base station 110 for a macro cell may be referred to as a macro base station.
  • a base station 110 for a pico cell may be referred to as a pico base station.
  • a base station 110 for a femto cell may be referred to as a femto base station or an in-home base station.
  • the BS 110a may be a macro base station for a macro cell 102a
  • the BS 110b may be a pico base station for a pico cell 102b
  • the BS 110c may be a femto base station for a femto cell 102c.
  • a base station may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) .
  • the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the BS 110d e.g., a relay base station
  • the BS 110a e.g., a macro base station
  • a base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100.
  • macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio)
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • the UE 120 may include a communication manager 140.
  • the communication manager 140 may obtain, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs; and transmit, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE, or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the base station 110 via the communication unit 294.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 3-7) .
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with communicating selection of UE for UE cooperation, as described in more detail elsewhere herein.
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 3 is a diagram illustrating an example of UE cooperation, in accordance with the present disclosure.
  • a UE 305 may communicate with a TRP 310 (e.g., a base station 110 or co-located with a base station 110) .
  • the UE 305 may communicate with the TRP 310 via a wireless communication network, such as network 100.
  • the UE 305 may be, or be similar to, the UE 120 described above in connection with Figs. 1 and 2.
  • the UE 305 may include a first antenna panel 315, a second antenna panel 320, and a third antenna panel 325. In some cases, the UE 305 may include additional antenna panels not illustrated in Fig. 3 or fewer antenna panels than are illustrated in Fig. 3.
  • the TRP 310 may communicate with the UE 305 via the antenna panels 315, 320, and/or 325. For example, the TRP 310 may communicate with the UE via the first antenna panel 315 and the second antenna panel 320.
  • a TRP 310 and/or a TRP 335 may be a distributed unit (DU) of a distributed radio access network (RAN) .
  • a TRP 310 and/or a TRP 335 may correspond to a base station 110 as described above in connection with Fig. 1.
  • different TRPs 310 and/or 335 may be included in different base stations 110.
  • multiple TRPs 310 and/or 335 may be included in a single base station 110.
  • a TRP 310 and/or a TRP 335 may be referred to as a cell, an antenna panel, an antenna array, or an array.
  • a TRP 310 and/or a TRP 335 may be connected to a single access node controller or to multiple access node controllers.
  • a dynamic configuration of split logical functions may be present within an architecture of a distributed RAN.
  • a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and/or a MAC layer may be configured to terminate at an access node controller or at a TRP 310 and/or a TRP 335.
  • multiple TRPs 310 and/or 335 may transmit communications (e.g., the same communication or different communications) in the same transmission time interval (TTI) (e.g., a slot, a mini-slot, a subframe, or a symbol) or different TTIs using different quasi co-location (QCL) relationships (e.g., different spatial parameters, different TCI states, different precoding parameters, and/or different beamforming parameters) .
  • TTI transmission time interval
  • QCL quasi co-location
  • a TCI state may be used to indicate one or more QCL relationships.
  • a TRP 310 and/or a TRP 335 may be configured to individually (e.g., using dynamic selection) or jointly (e.g., using joint transmission with one or more other TRPs 310 and/or 335) serve traffic to the UE 305.
  • the interface may have a smaller delay and/or higher capacity when the TRPs 310 and/or 335 are co-located at the same base station 110 (e.g., when the TRPs 310 and/or 335 are different antenna arrays or panels of the same base station 110) , and may have a larger delay and/or lower capacity (as compared to co-location) when the TRPs 310 and/or 335 are located at different base stations 110.
  • the different TRPs 310 and/or 335 may communicate with the UE 305 using different QCL relationships (e.g., different TCI states) , different DMRS ports, and/or different layers (e.g., of a multi-layer communication) .
  • the antenna panels 315, 320, and/or 325 of the UE 305 may share computational and/or communication resources 330.
  • a TCI state may be associated with any TRP and/or antenna panel.
  • a TCI for a PDCCH and/or a corresponding CORESET can also be applicable for any PDSCH associated with any of two antenna panels (e.g., the antenna panel 315 and the antenna panel 320) .
  • a spatial relation indication for a physical uplink shared channel and/or a corresponding sounding reference signal can be selected from any downlink channel state information reference signal (CSI-RS) associated with any of two antenna panels (e.g., the antenna panel 315 and the antenna panel 320) .
  • CSI-RS downlink channel state information reference signal
  • a UE may communicate with TRPs 310 and/or 335 using UE cooperation.
  • at least one wireless communication device separate (e.g., another UE 120) from the UE may include at least one antenna panel that may be shared with the UE for communication. In this way, rather than communicating using co-located antenna panels, a UE may communicate using distributed antenna panels.
  • a cooperative UE may be capable of providing UE cooperation for multiple UEs that are targets of UE cooperation (e.g., “target UEs” ) .
  • the cooperative UE may communicate with multiple target UEs via sidelink and communicate with a base station on behalf of the target UEs when performing UE cooperation.
  • the target UEs served by the cooperative UE for UE cooperation may not be the best UEs for the cooperative UE to provide UE cooperation.
  • cooperative UE capabilities, cooperative UE availability may lead to inefficient use of the cooperative UE by target UEs. For example, signal quality may decrease, communications may be dropped, and higher quality connections with other target UEs may be under-served.
  • the cooperative UE may enable more efficient UE cooperation with higher performance than may otherwise be experienced without taking into account changing parameters associated with UEs available for UE cooperation. This may lead to better UE and/or network performance, less dropped and/or low quality network communications, among other examples, which may conserve both UE and network resources by reducing disruptions, failed communications, and/or the like in UE cooperation.
  • one or more of the target UEs may transmit, and the cooperative UE may obtain, one or more parameters associated with UE cooperation between the cooperative UE and at least one of the target UEs.
  • some parameters may be accessible to the cooperative UE (e.g., without the need for the target UE to provide the parameter) , such as parameters specific to the cooperative UE.
  • the one or more parameters may include, for at least one of the target UEs, at least one of: a first link quality parameter indicating quality of a sidelink link between the cooperative UE and a target UE, a second link quality parameter indicating quality of a link between the cooperative UE and a base station, a mobility parameter indicating whether the cooperative UE and/or target UE is moving, a beam separation parameter indicating a measure of separation associated with one or more beams of the target UE and one or more beams of the cooperative UE, a load parameter indicating a measure of a communications load associated with the target UE, an availability parameter indicating one or more periods of time for which the cooperative UE is available for the UE cooperation, and/or a priority parameter indicating a priority associated with the target UE.
  • a first link quality parameter indicating quality of a sidelink link between the cooperative UE and a target UE
  • a second link quality parameter indicating quality of a link between the cooperative UE and a base station
  • the cooperative UE may transmit, and a target UE may receive, UE cooperation data indicating the cooperative UE is to begin or continue UE cooperation between the cooperative UE and the target UE.
  • the UE cooperation may include the cooperative UE performing at least one of: transmitting, to a base station, uplink communications from the target UE to the base station, or receiving, from the base station, downlink communications from the base station to the target UE; and/or, the UE cooperation data may indicate the cooperative UE is to end the UE cooperation between the cooperative UE and the target UE for communications between the target UE and the base station.
  • the cooperative UE may transmit UE cooperation data to inform target UEs whether the cooperative UE will be made available to the target UEs for UE cooperation.
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the one or more thresholds includes at least one dynamic threshold that is based at least in part on the one or more values for different UEs of the plurality of other UEs.
  • process 500 includes determining that at least one of the one or more values fails to satisfy a threshold of the one or more thresholds, and wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to end the UE cooperation.
  • process 500 includes determining that at least one of the one or more values satisfies a threshold of the one or more thresholds, and wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
  • the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation between the first UE and the second UE
  • the method further comprises transmitting, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other UE cooperation data indicating that the first UE is to end UE cooperation between the first UE and the third UE for communications between the third UE and the base station.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • process 600 may include transmitting, to a second UE, one or more values associated with one or more parameters (block 610) .
  • the UE e.g., using communication manager 140 and/or transmission component 704, depicted in Fig. 7
  • process 600 may include receiving, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station (block 620) .
  • the UE e.g., using communication manager 140 and/or reception component 702, depicted in Fig.
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the one or more parameters are associated with one or more thresholds, and wherein transmitting the one or more values comprises transmitting the one or more values based at least in part on the one or more values satisfying at least one of the one or more thresholds.
  • the one or more parameters include at least one of a first link quality parameter indicating quality of a sidelink link between the first UE and the second UE, a mobility parameter indicating whether the first UE is moving, a beam separation parameter indicating a location associated with one or more beams of the first UE, a load parameter indicating a measure of a communications load associated with the first UE, or a priority parameter indicating a priority associated with the first UE.
  • Fig. 7 is a diagram of an example apparatus 700 for wireless communication.
  • the apparatus 700 may be a UE, or a UE may include the apparatus 700.
  • the apparatus 700 includes a reception component 702 and a transmission component 704, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 700 may communicate with another apparatus 706 (such as a UE, a base station, or another wireless communication device) using the reception component 702 and the transmission component 704.
  • the apparatus 700 may include the communication manager 140.
  • the communication manager 140 may include a UE cooperation component 708, among other examples.
  • the apparatus 700 may be configured to perform one or more operations described herein in connection with Figs. 3 and 4. Additionally, or alternatively, the apparatus 700 may be configured to perform one or more processes described herein, such as process 500 of Fig. 5, process 600 of Fig. 6, or a combination thereof.
  • the apparatus 700 and/or one or more components shown in Fig. 7 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 7 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 702 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 706.
  • the reception component 702 may provide received communications to one or more other components of the apparatus 700.
  • the reception component 702 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 700.
  • the reception component 702 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 704 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 704 may be co-located with the reception component 702 in a transceiver.
  • the UE cooperation component 708 may obtain, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs.
  • the transmission component 704 may transmit, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE, or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
  • the reception component 702 may receive confirmation data indicating that the second UE received the UE cooperation data.
  • the transmission component 704 may transmit, to a second UE, one or more values associated with one or more parameters.
  • the reception component 702 may receive, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station.
  • Fig. 7 The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single component, or a single component shown in Fig. 7 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7.
  • a method of wireless communication performed by a first UE comprising: obtaining, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs; and transmitting, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE, or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
  • Aspect 2 The method of Aspect 1, wherein the one or more parameters are associated with one or more thresholds; and wherein transmitting the UE cooperation data comprises: transmitting the UE cooperation data further based at least in part on the one or more values satisfying at least one of the one or more thresholds.
  • Aspect 3 The method of Aspect 2, wherein the one or more thresholds includes at least one predefined threshold.
  • Aspect 4 The method of any of Aspects 2-3, wherein the one or more thresholds includes at least one dynamic threshold that is based at least in part on the one or more values for different UEs of the plurality of other UEs.
  • Aspect 5 The method of any of Aspects 2-4, further comprising: determining that at least one of the one or more values fails to satisfy a threshold of the one or more thresholds; and wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to end the UE cooperation.
  • Aspect 6 The method of any of Aspects 2-4, further comprising: determining that at least one of the one or more values satisfies a threshold of the one or more thresholds; and wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
  • Aspect 7 The method of any of Aspects 1-6, wherein the one or more parameters include, for each other UE of the plurality of other UEs, at least one of: a first link quality parameter indicating quality of a sidelink link between the first UE and the other UE, a second link quality parameter indicating quality of a link between the first UE and the base station, a mobility parameter indicating whether the first UE or other UE is moving, a beam separation parameter indicating a measure of separation associated with one or more beams of the other UE and one or more beams of the first UE, a load parameter indicating a measure of a communications load associated with the other UE, an availability parameter indicating one or more periods of time for which the first UE is available for the UE cooperation, or a priority parameter indicating a priority associated with the other UE.
  • a first link quality parameter indicating quality of a sidelink link between the first UE and the other UE
  • a second link quality parameter indicating quality of a link between the first
  • Aspect 8 The method of any of Aspects 1-7, wherein the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation between the first UE and the second UE; and the method further comprises: transmitting, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other UE cooperation data indicating that the first UE is to end UE cooperation between the first UE and the third UE for communications between the third UE and the base station.
  • Aspect 9 The method of any of Aspects 1-8, wherein the UE cooperation data indicates that the first UE is to end the UE cooperation between the first UE and the second UE; and the method further comprises: transmitting, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other UE cooperation data indicating that the first UE is to begin or continue UE cooperation between the first UE and the third UE, to at least one of: transmit, to a base station, uplink communications from the third UE to the base station, or receive, from the base station, downlink communications from the base station to the third UE.
  • Aspect 10 The method of Aspect 9, further comprising: receiving confirmation data indicating that the second UE received the UE cooperation data; and wherein transmitting the other UE cooperation data comprises: transmitting the other UE cooperation data based at least in part on receiving the confirmation data. wherein transmitting the other UE cooperation data comprises: transmitting the other UE cooperation data based at least in part on receiving the confirmation data.
  • a method of wireless communication performed by a first UE comprising: transmitting, to a second UE, one or more values associated with one or more parameters; and receiving, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station.
  • Aspect 12 The method of Aspect 11, wherein the one or more parameters are associated with one or more thresholds; and wherein transmitting the one or more values comprises: transmitting the one or more values based at least in part on the one or more values satisfying at least one of the one or more thresholds.
  • Aspect 13 The method of Aspect 12, wherein, based at least in part on at least one of the one or more values failing to satisfy a threshold of the one or more thresholds, the UE cooperation data indicates that the first UE is to end the UE cooperation.
  • Aspect 14 The method of any of Aspects 12-13, wherein, based at least in part on at least one of the one or more values satisfying a threshold of the one or more thresholds, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
  • Aspect 15 The method of any of Aspects 11-14, wherein the one or more parameters include at least one of: a first link quality parameter indicating quality of a sidelink link between the first UE and the second UE, a mobility parameter indicating whether the first UE is moving, a beam separation parameter indicating a location associated with one or more beams of the first UE, a load parameter indicating a measure of a communications load associated with the first UE, or a priority parameter indicating a priority associated with the first UE.
  • a first link quality parameter indicating quality of a sidelink link between the first UE and the second UE
  • a mobility parameter indicating whether the first UE is moving
  • a beam separation parameter indicating a location associated with one or more beams of the first UE
  • a load parameter indicating a measure of a communications load associated with the first UE
  • a priority parameter indicating a priority associated with the first UE.
  • Aspect 16 The method of any of Aspects 11-14, wherein the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation between the first UE and the second UE; and the method further comprises: using the UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and the base station.
  • Aspect 17 The method of any of Aspects 11-14, wherein the UE cooperation data indicates that the first UE is to end the UE cooperation between the first UE and the second UE; and the method further comprises: transmitting, to the second UE, confirmation data indicating that the first UE received the UE cooperation data; and ending, based at least in part on the UE cooperation data, the UE cooperation for subsequent communications between the first UE and the base station.
  • Aspect 18 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-10.
  • Aspect 19 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 11-17.
  • Aspect 20 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-10.
  • a device for wireless communication comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 11-17.
  • Aspect 22 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-10.
  • Aspect 23 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 11-17.
  • Aspect 24 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-10.
  • Aspect 25 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 11-17.
  • Aspect 26 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-10.
  • Aspect 27 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 11-17.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) .
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first user equipment (UE) may obtain, for other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and the other UEs. The UE may transmit, to a second UE and based on the one or more values, UE cooperation data indicating: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to: transmit, to a base station, uplink communications from the second UE to the base station, and/or receive, from the base station, downlink communications from the base station to the second UE, or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station. Numerous other aspects are described.

Description

COMMUNICATING SELECTION OF USER EQUIPMENT FOR USER EQUIPMENT COOPERATION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for communicating selection of user equipment for user equipment cooperation.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs. A UE may communicate with a base station via downlink communications and uplink communications. “Downlink” (or “DL” ) refers to a communication link from the base station to the UE, and “uplink” (or “UL” ) refers to a communication link from the UE to the base station.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs to communicate on a municipal, national, regional, and/or global level. New Radio (NR) , which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using  orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
Some aspects described herein relate to a method of wireless communication performed by a first user equipment (UE) . The method may include obtaining, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs. The method may include transmitting, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE; or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
Some aspects described herein relate to a method of wireless communication performed by a first UE. The method may include transmitting, to a second UE, one or more values associated with one or more parameters. The method may include receiving, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station; or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station.
Some aspects described herein relate to a first UE for wireless communication. The first UE may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to obtain, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE  cooperation between the first UE and at least one of the plurality of other UEs. The one or more processors may be configured to transmit, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE; or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
Some aspects described herein relate to a first UE for wireless communication. The first UE may include a memory and one or more processors coupled to the memory. The one or more processors may be configured to transmit, to a second UE, one or more values associated with one or more parameters. The one or more processors may be configured to receive, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station; or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a first UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to obtain, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs. The set of instructions, when executed by one or more processors of the UE, may cause the UE to transmit, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE; or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
Some aspects described herein relate to a non-transitory computer-readable medium that stores a set of instructions for wireless communication by a UE. The set of instructions, when executed by one or more processors of the UE, may cause the UE to transmit, to a second UE, one or more values associated with one or more parameters. The set of instructions, when executed by one or more processors of the UE, may cause the UE to receive, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station; or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for obtaining, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the apparatus and at least one of the plurality of other UEs. The apparatus may include means for transmitting, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the apparatus is to begin or continue UE cooperation between the apparatus and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE; or the apparatus is to end the UE cooperation between the apparatus and the second UE for communications between the second UE and the base station.
Some aspects described herein relate to an apparatus for wireless communication. The apparatus may include means for transmitting, to a second UE, one or more values associated with one or more parameters. The apparatus may include means for receiving, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the apparatus is to begin or continue UE cooperation to distribute, between the apparatus and the second UE, communications between the apparatus and a base station; or the apparatus is to end the UE cooperation between the apparatus and the second UE for communications between the apparatus and the base station.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station,  wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages, will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
While aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios. Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements. For example, some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) . Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components. Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects. For example, transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
Fig. 3 is a diagram illustrating an example of UE cooperation, in accordance with the present disclosure.
Fig. 4 is a diagram illustrating an example associated with communicating selection of UE for UE cooperation, in accordance with the present disclosure.
Figs. 5 and 6 are diagrams illustrating example processes associated with communicating selection of UE for UE cooperation, in accordance with the present disclosure.
Fig. 7 is a diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. One skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the  disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples. The wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities. A base station 110 is an entity that communicates with UEs 120. A base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) . Each base station 110 may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively  large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) . A base station 110 for a macro cell may be referred to as a macro base station. A base station 110 for a pico cell may be referred to as a pico base station. A base station 110 for a femto cell may be referred to as a femto base station or an in-home base station. In the example shown in Fig. 1, the BS 110a may be a macro base station for a macro cell 102a, the BS 110b may be a pico base station for a pico cell 102b, and the BS 110c may be a femto base station for a femto cell 102c. A base station may support one or multiple (e.g., three) cells.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) . In some examples, the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
The wireless network 100 may include one or more relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) . A relay station may be a UE 120 that can relay transmissions for other UEs 120. In the example shown in Fig. 1, the BS 110d (e.g., a relay base station) may communicate with the BS 110a (e.g., a macro base station) and the UE 120d in order to facilitate communication between the BS 110a and the UE 120d. A base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
The wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100. For example, macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations,  femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110. The network controller 130 may communicate with the base stations 110 via a backhaul communication link. The base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile. A UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit. A UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, and/or any other suitable device that is configured to communicate via a wireless medium.
Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity. Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices. Some UEs 120 may be considered a Customer Premises Equipment. A UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components. In some examples, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks 100 may be deployed in a given geographic area. Each wireless network 100 may support a particular RAT and may operate on one or more frequencies. A RAT may be referred to as a radio technology, an air interface, or the like. A frequency may be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network. In such examples, a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2  characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz –71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above examples in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band. It is contemplated that the frequencies included in these operating bands (e.g., FR1, FR2, FR3, FR4, FR4-a, FR4-1, and/or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, the UE 120 may include a communication manager 140. As described in more detail elsewhere herein, the communication manager 140 may obtain, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs; and transmit, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE, or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station. In some aspects, the communication manager 140 may transmit, to a second UE, one or more values associated with one or more parameters; and receive, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, the first UE is to end the UE cooperation between the first UE and the second UE for communications between the  first UE and the base station. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. The base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ≥ 1) . The UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ≥ 1) .
At the base station 110, a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) . The transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120. The base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120. The transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. The transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t. For example, each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232. Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal. The modems 232a through 232t may transmit a set of downlink  signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
At the UE 120, a set of antennas 252 (shown as antennas 252a through 252r) may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r. For example, each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254. Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples. Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some examples, one or more components of the UE 120 may be included in a housing 284.
The network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292. The network controller 130 may include, for example, one or more devices in a core network. The network controller 130 may communicate with the base station 110 via the communication unit 294.
One or more antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one  or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280. The transmit processor 264 may generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110. In some examples, the modem 254 of the UE 120 may include a modulator and a demodulator. In some examples, the UE 120 includes a transceiver. The transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266. The transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 3-7) .
At the base station 110, the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240. The base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244. The base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications. In some examples, the modem 232 of the base station 110 may include a modulator and a demodulator. In some examples, the base station 110 includes a transceiver. The transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230. The transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 3-7) .
The controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with communicating selection of UE for UE cooperation, as described in more detail elsewhere herein. For example, the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein. The memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively. In some examples, the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein. In some examples, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, a first UE includes means for obtaining, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs; and/or means for transmitting, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: means for transmit, to a base station, uplink communications from the second UE to the base station, or means for receive, from the base station, downlink communications from the base station to the second UE, or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station. In some aspects, the first UE includes means for transmitting, to a second UE, one or more values associated with one or more parameters; and/or means for receiving, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, the first  UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station. The means for the first UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example of UE cooperation, in accordance with the present disclosure. As shown, a UE 305 may communicate with a TRP 310 (e.g., a base station 110 or co-located with a base station 110) . The UE 305 may communicate with the TRP 310 via a wireless communication network, such as network 100. The UE 305 may be, or be similar to, the UE 120 described above in connection with Figs. 1 and 2.
As shown, the UE 305 may include a first antenna panel 315, a second antenna panel 320, and a third antenna panel 325. In some cases, the UE 305 may include additional antenna panels not illustrated in Fig. 3 or fewer antenna panels than are illustrated in Fig. 3. The TRP 310 may communicate with the UE 305 via the  antenna panels  315, 320, and/or 325. For example, the TRP 310 may communicate with the UE via the first antenna panel 315 and the second antenna panel 320.
As shown, a set of communication resources 330 for different types of channels may be shared between the first antenna panel 315 and the second antenna panel 320. For example, transmission configuration indicator (TCI) states applied to a physical downlink control channel (PDCCH) can be selected from a TCI state pool from which TCI states are selected for a physical downlink shared channel (PDSCH) . For example, a medium access control (MAC) control element (MAC-CE) may be used to activate a TCI for a control resource set (CORESET) , and that TCI may be down- selected from a TCI state pool associated with the PDSCH. In that way, a TCI for a PDCCH and/or a CORESET can also be applicable to the PDSCH.
Similarly, in some cases, the UE 305 may communicate with a second TRP 335 as well as the first TRP 310. Such communication scenarios may be referred to as multiple-TRP (m-TRP) scenarios. In an m-TRP scenario, a TRP 310 and/or a TRP 335 may be a distributed unit (DU) of a distributed radio access network (RAN) . In some aspects, a TRP 310 and/or a TRP 335 may correspond to a base station 110 as described above in connection with Fig. 1. For example, different TRPs 310 and/or 335 may be included in different base stations 110. Additionally, or alternatively, multiple TRPs 310 and/or 335 may be included in a single base station 110. In some cases, a TRP 310 and/or a TRP 335 may be referred to as a cell, an antenna panel, an antenna array, or an array.
TRP 310 and/or a TRP 335 may be connected to a single access node controller or to multiple access node controllers. In some aspects, a dynamic configuration of split logical functions may be present within an architecture of a distributed RAN. For example, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and/or a MAC layer may be configured to terminate at an access node controller or at a TRP 310 and/or a TRP 335.
In some aspects, multiple TRPs 310 and/or 335 may transmit communications (e.g., the same communication or different communications) in the same transmission time interval (TTI) (e.g., a slot, a mini-slot, a subframe, or a symbol) or different TTIs using different quasi co-location (QCL) relationships (e.g., different spatial parameters, different TCI states, different precoding parameters, and/or different beamforming parameters) . In some aspects, a TCI state may be used to indicate one or more QCL relationships. A TRP 310 and/or a TRP 335 may be configured to individually (e.g., using dynamic selection) or jointly (e.g., using joint transmission with one or more other TRPs 310 and/or 335) serve traffic to the UE 305.
The multiple TRPs 310 and/or 335 may communicate with the same UE 305 in a coordinated manner (e.g., using coordinated multipoint transmissions) to improve reliability and/or increase throughput. The TRPs 310 and/or 335 may coordinate such communications via an interface between the TRPs 310 and/or 335 (e.g., a backhaul interface and/or an access node controller) . The interface may have a smaller delay and/or higher capacity when the TRPs 310 and/or 335 are co-located at the same base station 110 (e.g., when the TRPs 310 and/or 335 are different antenna arrays or panels  of the same base station 110) , and may have a larger delay and/or lower capacity (as compared to co-location) when the TRPs 310 and/or 335 are located at different base stations 110. The different TRPs 310 and/or 335 may communicate with the UE 305 using different QCL relationships (e.g., different TCI states) , different DMRS ports, and/or different layers (e.g., of a multi-layer communication) .
In some aspects, as with communication with the TRP 310 described above, the  antenna panels  315, 320, and/or 325 of the UE 305 may share computational and/or communication resources 330. In a single downlink control information (S-DCI) m-TRP scenario, a TCI state may be associated with any TRP and/or antenna panel. For example, in some aspects, a TCI for a PDCCH and/or a corresponding CORESET can also be applicable for any PDSCH associated with any of two antenna panels (e.g., the antenna panel 315 and the antenna panel 320) . In some cases, in an S-DCI based m-TRP scenario, a spatial relation indication for a physical uplink shared channel and/or a corresponding sounding reference signal (SRS) can be selected from any downlink channel state information reference signal (CSI-RS) associated with any of two antenna panels (e.g., the antenna panel 315 and the antenna panel 320) .
In some cases, a UE may communicate with TRPs 310 and/or 335 using UE cooperation. In a UE cooperation scenario, at least one wireless communication device separate (e.g., another UE 120) from the UE may include at least one antenna panel that may be shared with the UE for communication. In this way, rather than communicating using co-located antenna panels, a UE may communicate using distributed antenna panels.
For example, as shown in Fig. 3, a UE 340 may communicate with the TRP 310 and the TRP 335 using an antenna panel 345 of the UE 340, a cooperative panel 350 of a cooperative UE 355, and a cooperative panel 360 of a cooperative UE 365. In some cases, the UE 340, the cooperative UE 355 and/or the cooperative UE 365 may include additional antenna panels not illustrated in Fig. 3. The cooperative UE 355 and/or the cooperative UE 365 may include a vehicle, a UE associated with a vehicle, and/or a customer premises equipment, among other examples. In some aspects, multiple UEs (e.g., the UE 305 and the UE 340) may share the cooperative panel 350 and/or the cooperative panel 360. For example, as shown by solid arrows, the UE 340 may communicate with the TRP 310 using the antenna panel 345, the cooperative UE 355 may communicate with the TRP 310 using the cooperative panel 350, and the cooperative UE 365 may communicate with the TRP 335 using the cooperative panel  360. As shown by dashed arrows, the cooperative UE 355 may communicate with the UE 340 (e.g., using a sidelink communication) to relay communications between the UE 340 and the TRP 310. Similarly, the cooperative UE 365 may communicate with the UE 340 to relay communications between the UE 340 and the TRP 335. As is further shown in Fig. 3, the cooperative UE 355 may communicate with the cooperative UE 365 to relay communications between the UE 340 and the TRP 310, to relay communications between the UE 340 and the TRP 335, and/or to coordinate cooperative sharing configurations and/or resources, among other examples.
In some situations, a cooperative UE may be capable of providing UE cooperation for multiple UEs that are targets of UE cooperation (e.g., “target UEs” ) . The cooperative UE may communicate with multiple target UEs via sidelink and communicate with a base station on behalf of the target UEs when performing UE cooperation. As various UE conditions and/or network conditions change, however, the target UEs served by the cooperative UE for UE cooperation may not be the best UEs for the cooperative UE to provide UE cooperation. Over time, due to changes in signal strength, target UE and/or cooperative UE communication load, cooperative UE capabilities, cooperative UE availability, among other examples, may lead to inefficient use of the cooperative UE by target UEs. For example, signal quality may decrease, communications may be dropped, and higher quality connections with other target UEs may be under-served.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Some techniques and apparatuses described herein enable a cooperative UE to use parameters associated with the cooperative UE and multiple other UEs to determine a target UE for UE cooperation. The cooperative UE may, based at least in part on the parameters, transmit UE cooperation data that may enable the cooperative UE to begin, continue, or end UE cooperation with one or more other potential target UEs. This enables the cooperative UE to choose a target UE based on the parameters, enabling a higher quality pairing of target UE and cooperative UE to be used for UE cooperation. Based on further changes in the parameters, the cooperative UE may continue transmitting UE cooperation data and updating which target UE is served by the cooperative UE. By using the parameters to determine which target UE is served, the cooperative UE may enable more efficient UE cooperation with higher performance than may otherwise be experienced without taking into account changing parameters  associated with UEs available for UE cooperation. This may lead to better UE and/or network performance, less dropped and/or low quality network communications, among other examples, which may conserve both UE and network resources by reducing disruptions, failed communications, and/or the like in UE cooperation.
Fig. 4 is a diagram illustrating an example 400 associated with communicating selection of UE for UE cooperation, in accordance with the present disclosure. As shown in Fig. 4, a cooperative UE (e.g., UE 120) and a one or more target UEs (e.g., UE 120) may communicate with one another.
As shown by reference number 405, one or more of the target UEs may transmit, and the cooperative UE may obtain, one or more parameters associated with UE cooperation between the cooperative UE and at least one of the target UEs. For example, some parameters may be accessible to the cooperative UE (e.g., without the need for the target UE to provide the parameter) , such as parameters specific to the cooperative UE.
In some aspects, the one or more parameters may include, for at least one of the target UEs, at least one of: a first link quality parameter indicating quality of a sidelink link between the cooperative UE and a target UE, a second link quality parameter indicating quality of a link between the cooperative UE and a base station, a mobility parameter indicating whether the cooperative UE and/or target UE is moving, a beam separation parameter indicating a measure of separation associated with one or more beams of the target UE and one or more beams of the cooperative UE, a load parameter indicating a measure of a communications load associated with the target UE, an availability parameter indicating one or more periods of time for which the cooperative UE is available for the UE cooperation, and/or a priority parameter indicating a priority associated with the target UE.
For example, the first link quality parameter and/or second link quality parameter may include one or more signal quality measurements, such as RSRP, RSSI, signal-to-interference-and-noise ratio (SINR) (e.g., synchronization signal block (SSB) based and/or CSI-RS based) , among other examples. Higher link quality may be preferred for higher quality UE cooperation. The mobility parameter may indicate a velocity or speed of the target UE, as an absolute value and/or relative to the cooperative UE and/or the base station. A mobility parameter may indicate that a target UE is not a good candidate in a situation where the target UE is moving too fast for reliable UE cooperation. The beam separation parameter may indicate a measure of  separation provided between one or more beams of the target UE and one or more beams of the cooperative UE. A higher beam separation may, in some situations, provide more spatial diversity for UE cooperation. An availability parameter may include periods of time during which the cooperative UE is communicating with one or more other devices, including monitoring paging occasions from one or more base stations. The load parameter may indicate a processor and/or communications load value (e.g., a percentage, absolute value, and/or the like) . The priority parameter may indicate one of a predetermined number of priority categories (e.g., ultra-reliable low latency communication (URLLC) , enhanced mobile broadband (EMBB) , or another set of categories) or a relative value or ranking, and/or the like.
In some aspects, the one or more parameters may be associated with one or more thresholds. For example, a link quality threshold may be a particular signal quality value (e.g., a particular RSRP value, RSSI value, and/or the like) ; a mobility parameter threshold may be binary (e.g., mobile or not) and/or a particular velocity value; a beam separation parameter threshold may be a particular absolute or angular distance; an availability parameter threshold may be a binary indication of availability or unavailability, or a particular length of time available; the load parameter threshold may be binary (e.g., high load or not) , tiered (e.g., various tiers of absolute load values) , absolute, and/or the like; and the priority parameter threshold may be binary (e.g., high priority or not) , tiered (e.g., tiers of communications priority, such as URLLC and EMBB) , a relative value (e.g., rankings relative to other target UEs) , or an absolute value. As described herein, the thresholds may be used to indicate target UE (s) to which the cooperative UE will make itself available for use in UE cooperation.
In some aspects, at least one of the one or more thresholds may be predefined and/or preconfigured. For example, some thresholds may be static and based on configuration. In some aspects, at least one of the one or more thresholds may be dynamic and be based at least in part on the values of one or more parameters. For example, a dynamic threshold may be periodically updated based on the one or more parameters of the target UEs and/or the cooperative UE changing over time. In a situation where the cooperative UE uses UE cooperation with the target UE with the highest sidelink RSSI, for example, a dynamic sidelink RSSI threshold may be set at the highest sidelink RSSI. In this situation, the dynamic threshold may increase or decrease based on changes in the sidelink RSSI of the target UE for which the cooperative UE is providing UE cooperation.
As shown by reference number 410, in some aspects, the cooperative UE may determine whether at least one of the one or more values fail to satisfy a threshold. The cooperative UE may use one or more thresholds to determine whether the cooperative UE should provide UE cooperation for one or more of the target UEs, as described herein.
As shown by reference number 415, the cooperative UE may transmit, and a target UE may receive, UE cooperation data indicating the cooperative UE is to begin or continue UE cooperation between the cooperative UE and the target UE. The UE cooperation may include the cooperative UE performing at least one of: transmitting, to a base station, uplink communications from the target UE to the base station, or receiving, from the base station, downlink communications from the base station to the target UE; and/or, the UE cooperation data may indicate the cooperative UE is to end the UE cooperation between the cooperative UE and the target UE for communications between the target UE and the base station. For example, as described herein, the cooperative UE may transmit UE cooperation data to inform target UEs whether the cooperative UE will be made available to the target UEs for UE cooperation.
As shown by reference number 420, the target UE may transmit, and the cooperative UE may receive, confirmation data indicating that the target UE received the UE cooperation data. The confirmation data may enable the cooperative UE to switch to another target UE for UE cooperation without impacting the original target UE.
As shown by reference number 425, the cooperative UE may transmit, and another target UE may receive, other UE cooperation data. For example, in a situation where the UE cooperative data indicates that the cooperative UE is to end UE cooperation with a first target UE, the other UE cooperation data may indicate that the cooperative UE is to begin UE cooperation with a second target UE. In some aspects, when switching from one target UE to another, the cooperative UE may first send UE cooperation data to the target UE being dropped, or for which UE cooperation is ending, before sending other UE cooperation data to the target UE to which the cooperative UE is switching for UE cooperation. In this situation, the cooperative UE may be provided with confirmation that the dropped target UE received the UE cooperation data, which may facilitate switching target UEs.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a first UE, in accordance with the present disclosure. Example process 500  is an example where the UE (e.g., UE 120) performs operations associated with communicating selection of UE for UE cooperation.
As shown in Fig. 5, in some aspects, process 500 may include obtaining, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs (block 510) . For example, the UE (e.g., using communication manager 140 and/or UE cooperation component 708, depicted in Fig. 7) may obtain, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include transmitting, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE, or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station (block 520) . For example, the UE (e.g., using communication manager 140 and/or transmission component 704, depicted in Fig. 7) may transmit, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE, or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the one or more parameters are associated with one or more thresholds, and wherein transmitting the UE cooperation data comprises transmitting the  UE cooperation data further based at least in part on the one or more values satisfying at least one of the one or more thresholds.
In a second aspect, alone or in combination with the first aspect, the one or more thresholds includes at least one predefined threshold.
In a third aspect, alone or in combination with one or more of the first and second aspects, the one or more thresholds includes at least one dynamic threshold that is based at least in part on the one or more values for different UEs of the plurality of other UEs.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 500 includes determining that at least one of the one or more values fails to satisfy a threshold of the one or more thresholds, and wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to end the UE cooperation.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 500 includes determining that at least one of the one or more values satisfies a threshold of the one or more thresholds, and wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the one or more parameters include, for each other UE of the plurality of other UEs, at least one of a first link quality parameter indicating quality of a sidelink link between the first UE and the other UE, a second link quality parameter indicating quality of a link between the first UE and the base station, a mobility parameter indicating whether the first UE or other UE is moving, a beam separation parameter indicating a measure of separation associated with one or more beams of the other UE and one or more beams of the first UE, a load parameter indicating a measure of a communications load associated with the other UE, an availability parameter indicating one or more periods of time for which the first UE is available for the UE cooperation, or a priority parameter indicating a priority associated with the other UE.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation between the first UE and the second UE, and the method further comprises transmitting, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other UE cooperation data indicating that  the first UE is to end UE cooperation between the first UE and the third UE for communications between the third UE and the base station.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the UE cooperation data indicates that the first UE is to end the UE cooperation between the first UE and the second UE, and the method further comprises transmitting, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other UE cooperation data indicating that the first UE is to begin or continue UE cooperation between the first UE and the third UE, to at least one of transmitting, to a base station, uplink communications from the third UE to the base station, or receiving, from the base station, downlink communications from the base station to the third UE.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 500 includes receiving confirmation data indicating that the second UE received the UE cooperation data, and wherein transmitting the other UE cooperation data comprises transmitting the other UE cooperation data based at least in part on receiving the confirmation data.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with the present disclosure. Example process 600 is an example where the UE (e.g., UE 120) performs operations associated with communicating selection of UE for UE cooperation.
As shown in Fig. 6, in some aspects, process 600 may include transmitting, to a second UE, one or more values associated with one or more parameters (block 610) . For example, the UE (e.g., using communication manager 140 and/or transmission component 704, depicted in Fig. 7) may transmit, to a second UE, one or more values associated with one or more parameters, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include receiving, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, the first UE is to end the UE  cooperation between the first UE and the second UE for communications between the first UE and the base station (block 620) . For example, the UE (e.g., using communication manager 140 and/or reception component 702, depicted in Fig. 7) may receive, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station, as described above.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the one or more parameters are associated with one or more thresholds, and wherein transmitting the one or more values comprises transmitting the one or more values based at least in part on the one or more values satisfying at least one of the one or more thresholds.
In a second aspect, alone or in combination with the first aspect, based at least in part on at least one of the one or more values failing to satisfy a threshold of the one or more thresholds, the UE cooperation data indicates that the first UE is to end the UE cooperation.
In a third aspect, alone or in combination with one or more of the first and second aspects, based at least in part on at least one of the one or more values satisfying a threshold of the one or more thresholds, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the one or more parameters include at least one of a first link quality parameter indicating quality of a sidelink link between the first UE and the second UE, a mobility parameter indicating whether the first UE is moving, a beam separation parameter indicating a location associated with one or more beams of the first UE, a load parameter indicating a measure of a communications load associated with the first UE, or a priority parameter indicating a priority associated with the first UE.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the UE cooperation data indicates that the first UE is to begin or continue  the UE cooperation between the first UE and the second UE, and the method further comprises using the UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and the base station.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the UE cooperation data indicates that the first UE is to end the UE cooperation between the first UE and the second UE, and the method further comprises transmitting, to the second UE, confirmation data indicating that the first UE received the UE cooperation data, and ending, based at least in part on the UE cooperation data, the UE cooperation for subsequent communications between the first UE and the base station.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
Fig. 7 is a diagram of an example apparatus 700 for wireless communication. The apparatus 700 may be a UE, or a UE may include the apparatus 700. In some aspects, the apparatus 700 includes a reception component 702 and a transmission component 704, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 700 may communicate with another apparatus 706 (such as a UE, a base station, or another wireless communication device) using the reception component 702 and the transmission component 704. As further shown, the apparatus 700 may include the communication manager 140. The communication manager 140 may include a UE cooperation component 708, among other examples.
In some aspects, the apparatus 700 may be configured to perform one or more operations described herein in connection with Figs. 3 and 4. Additionally, or alternatively, the apparatus 700 may be configured to perform one or more processes described herein, such as process 500 of Fig. 5, process 600 of Fig. 6, or a combination thereof. In some aspects, the apparatus 700 and/or one or more components shown in Fig. 7 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 7 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component  (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 702 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 706. The reception component 702 may provide received communications to one or more other components of the apparatus 700. In some aspects, the reception component 702 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 700. In some aspects, the reception component 702 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 704 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 706. In some aspects, one or more other components of the apparatus 700 may generate communications and may provide the generated communications to the transmission component 704 for transmission to the apparatus 706. In some aspects, the transmission component 704 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 706. In some aspects, the transmission component 704 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 704 may be co-located with the reception component 702 in a transceiver.
The UE cooperation component 708 may obtain, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs. The transmission component 704 may transmit, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at  least one of the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE, or the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
The reception component 702 may receive confirmation data indicating that the second UE received the UE cooperation data.
The transmission component 704 may transmit, to a second UE, one or more values associated with one or more parameters. The reception component 702 may receive, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station.
The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single component, or a single component shown in Fig. 7 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a first UE, comprising: obtaining, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs; and transmitting, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of: transmit, to a base station, uplink communications from the second UE to the base station, or receive, from the base station, downlink communications from the base station to the second UE, or the first  UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
Aspect 2: The method of Aspect 1, wherein the one or more parameters are associated with one or more thresholds; and wherein transmitting the UE cooperation data comprises: transmitting the UE cooperation data further based at least in part on the one or more values satisfying at least one of the one or more thresholds.
Aspect 3: The method of Aspect 2, wherein the one or more thresholds includes at least one predefined threshold.
Aspect 4: The method of any of Aspects 2-3, wherein the one or more thresholds includes at least one dynamic threshold that is based at least in part on the one or more values for different UEs of the plurality of other UEs.
Aspect 5: The method of any of Aspects 2-4, further comprising: determining that at least one of the one or more values fails to satisfy a threshold of the one or more thresholds; and wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to end the UE cooperation.
Aspect 6: The method of any of Aspects 2-4, further comprising: determining that at least one of the one or more values satisfies a threshold of the one or more thresholds; and wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
Aspect 7: The method of any of Aspects 1-6, wherein the one or more parameters include, for each other UE of the plurality of other UEs, at least one of: a first link quality parameter indicating quality of a sidelink link between the first UE and the other UE, a second link quality parameter indicating quality of a link between the first UE and the base station, a mobility parameter indicating whether the first UE or other UE is moving, a beam separation parameter indicating a measure of separation associated with one or more beams of the other UE and one or more beams of the first UE, a load parameter indicating a measure of a communications load associated with the other UE, an availability parameter indicating one or more periods of time for which the first UE is available for the UE cooperation, or a priority parameter indicating a priority associated with the other UE.
Aspect 8: The method of any of Aspects 1-7, wherein the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation between the first UE and the second UE; and the method further comprises: transmitting, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other  UE cooperation data indicating that the first UE is to end UE cooperation between the first UE and the third UE for communications between the third UE and the base station.
Aspect 9: The method of any of Aspects 1-8, wherein the UE cooperation data indicates that the first UE is to end the UE cooperation between the first UE and the second UE; and the method further comprises: transmitting, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other UE cooperation data indicating that the first UE is to begin or continue UE cooperation between the first UE and the third UE, to at least one of: transmit, to a base station, uplink communications from the third UE to the base station, or receive, from the base station, downlink communications from the base station to the third UE.
Aspect 10: The method of Aspect 9, further comprising: receiving confirmation data indicating that the second UE received the UE cooperation data; and wherein transmitting the other UE cooperation data comprises: transmitting the other UE cooperation data based at least in part on receiving the confirmation data. wherein transmitting the other UE cooperation data comprises: transmitting the other UE cooperation data based at least in part on receiving the confirmation data.
Aspect 11: A method of wireless communication performed by a first UE, comprising: transmitting, to a second UE, one or more values associated with one or more parameters; and receiving, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of: the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station.
Aspect 12: The method of Aspect 11, wherein the one or more parameters are associated with one or more thresholds; and wherein transmitting the one or more values comprises: transmitting the one or more values based at least in part on the one or more values satisfying at least one of the one or more thresholds.
Aspect 13: The method of Aspect 12, wherein, based at least in part on at least one of the one or more values failing to satisfy a threshold of the one or more thresholds, the UE cooperation data indicates that the first UE is to end the UE cooperation.
Aspect 14: The method of any of Aspects 12-13, wherein, based at least in part on at least one of the one or more values satisfying a threshold of the one or more thresholds, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
Aspect 15: The method of any of Aspects 11-14, wherein the one or more parameters include at least one of: a first link quality parameter indicating quality of a sidelink link between the first UE and the second UE, a mobility parameter indicating whether the first UE is moving, a beam separation parameter indicating a location associated with one or more beams of the first UE, a load parameter indicating a measure of a communications load associated with the first UE, or a priority parameter indicating a priority associated with the first UE.
Aspect 16: The method of any of Aspects 11-14, wherein the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation between the first UE and the second UE; and the method further comprises: using the UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and the base station.
Aspect 17: The method of any of Aspects 11-14, wherein the UE cooperation data indicates that the first UE is to end the UE cooperation between the first UE and the second UE; and the method further comprises: transmitting, to the second UE, confirmation data indicating that the first UE received the UE cooperation data; and ending, based at least in part on the UE cooperation data, the UE cooperation for subsequent communications between the first UE and the base station.
Aspect 18: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-10.
Aspect 19: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 11-17.
Aspect 20: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-10.
Aspect 21: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 11-17.
Aspect 22: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-10.
Aspect 23: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 11-17.
Aspect 24: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-10.
Aspect 25: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 11-17.
Aspect 26: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-10.
Aspect 27: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 11-17.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described  herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods are described herein without reference to specific software code, since those skilled in the art will understand that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. Many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. The disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a +a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) . Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used  herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (35)

  1. A first user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    obtain, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs; and
    transmit, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of:
    the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of:
    transmit, to a base station, uplink communications from the second UE to the base station, or
    receive, from the base station, downlink communications from the base station to the second UE, or
    the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
  2. The first UE of claim 1, wherein the one or more parameters are associated with one or more thresholds; and
    wherein the one or more processors, to transmit the UE cooperation data, are configured to:
    transmit the UE cooperation data further based at least in part on the one or more values satisfying at least one of the one or more thresholds.
  3. The first UE of claim 2, wherein the one or more thresholds includes at least one predefined threshold.
  4. The first UE of claim 2, wherein the one or more thresholds includes at least one dynamic threshold that is based at least in part on the one or more values for different UEs of the plurality of other UEs.
  5. The first UE of claim 2, wherein the one or more processors are further configured to:
    determine that at least one of the one or more values fails to satisfy a threshold of the one or more thresholds; and
    wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to end the UE cooperation.
  6. The first UE of claim 2, wherein the one or more processors are further configured to:
    determine that at least one of the one or more values satisfies a threshold of the one or more thresholds; and
    wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
  7. The first UE of claim 1, wherein the one or more parameters include, for each other UE of the plurality of other UEs, at least one of:
    a first link quality parameter indicating quality of a sidelink link between the first UE and the other UE,
    a second link quality parameter indicating quality of a link between the first UE and the base station,
    a mobility parameter indicating whether the first UE or other UE is moving,
    a beam separation parameter indicating a measure of separation associated with one or more beams of the other UE and one or more beams of the first UE,
    a load parameter indicating a measure of a communications load associated with the other UE,
    an availability parameter indicating one or more periods of time for which the first UE is available for the UE cooperation, or
    a priority parameter indicating a priority associated with the other UE.
  8. The first UE of claim 1, wherein the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation between the first UE and the second UE; and
    the one or more processors are further configured to:
    transmit, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other UE cooperation data indicating that the first UE is to end UE cooperation between the first UE and the third UE for communications between the third UE and the base station.
  9. The first UE of claim 1, wherein the UE cooperation data indicates that the first UE is to end the UE cooperation between the first UE and the second UE; and
    the one or more processors are further configured to:
    transmit, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other UE cooperation data indicating that the first UE is to begin or continue UE cooperation between the first UE and the third UE, to at least one of:
    transmit, to a base station, uplink communications from the third UE to the base station, or
    receive, from the base station, downlink communications from the base station to the third UE.
  10. The first UE of claim 9, wherein the one or more processors are further configured to:
    receive confirmation data indicating that the second UE received the UE cooperation data; and
    wherein the one or more processors, to transmit the other UE cooperation data, are configured to:
    transmit the other UE cooperation data based at least in part on receiving the confirmation data.
  11. A first UE for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit, to a second UE, one or more values associated with one or more parameters; and
    receive, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of:
    the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, or
    the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station.
  12. The first UE of claim 11, wherein the one or more parameters are associated with one or more thresholds; and
    wherein the one or more processors, to transmit the one or more values, are configured to:
    transmit the one or more values based at least in part on the one or more values satisfying at least one of the one or more thresholds.
  13. The first UE of claim 12, wherein, based at least in part on at least one of the one or more values failing to satisfy a threshold of the one or more thresholds, the UE cooperation data indicates that the first UE is to end the UE cooperation.
  14. The first UE of claim 12, wherein, based at least in part on at least one of the one or more values satisfying a threshold of the one or more thresholds, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
  15. The first UE of claim 11, wherein the one or more parameters include at least one of:
    a first link quality parameter indicating quality of a sidelink link between the first UE and the second UE,
    a mobility parameter indicating whether the first UE is moving,
    a beam separation parameter indicating a location associated with one or more beams of the first UE,
    a load parameter indicating a measure of a communications load associated with the first UE, or
    a priority parameter indicating a priority associated with the first UE.
  16. The first UE of claim 11, wherein the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation between the first UE and the second UE; and
    the one or more processors are further configured to:
    use the UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and the base station.
  17. The first UE of claim 11, wherein the UE cooperation data indicates that the first UE is to end the UE cooperation between the first UE and the second UE; and
    the one or more processors are further configured to:
    transmit, to the second UE, confirmation data indicating that the first UE received the UE cooperation data; and
    end, based at least in part on the UE cooperation data, the UE cooperation for subsequent communications between the first UE and the base station.
  18. A method of wireless communication performed by a first user equipment (UE) , comprising:
    obtaining, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs; and
    transmitting, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of:
    the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of:
    transmit, to a base station, uplink communications from the second UE to the base station, or
    receive, from the base station, downlink communications from the base station to the second UE, or
    the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
  19. The method of claim 18, wherein the one or more parameters are associated with one or more thresholds; and
    wherein transmitting the UE cooperation data comprises:
    transmitting the UE cooperation data further based at least in part on the one or more values satisfying at least one of the one or more thresholds.
  20. The method of claim 19, wherein the one or more thresholds includes at least one predefined threshold.
  21. The method of claim 19, wherein the one or more thresholds includes at least one dynamic threshold that is based at least in part on the one or more values for different UEs of the plurality of other UEs.
  22. The method of claim 19, further comprising:
    determining that at least one of the one or more values fails to satisfy a threshold of the one or more thresholds; and
    wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to end the UE cooperation.
  23. The method of claim 19, further comprising:
    determining that at least one of the one or more values satisfies a threshold of the one or more thresholds; and
    wherein, based at least in part on the determination, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
  24. The method of claim 18, wherein the one or more parameters include, for each other UE of the plurality of other UEs, at least one of:
    a first link quality parameter indicating quality of a sidelink link between the first UE and the other UE,
    a second link quality parameter indicating quality of a link between the first UE and the base station,
    a mobility parameter indicating whether the first UE or other UE is moving,
    a beam separation parameter indicating a measure of separation associated with one or more beams of the other UE and one or more beams of the first UE,
    a load parameter indicating a measure of a communications load associated with the other UE,
    an availability parameter indicating one or more periods of time for which the first UE is available for the UE cooperation, or
    a priority parameter indicating a priority associated with the other UE.
  25. The method of claim 18, wherein the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation between the first UE and the second UE; and
    the method further comprises:
    transmitting, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other UE cooperation data indicating that the first UE is to end UE cooperation between the first UE and the third UE for communications between the third UE and the base station.
  26. The method of claim 18, wherein the UE cooperation data indicates that the first UE is to end the UE cooperation between the first UE and the second UE; and
    the method further comprises:
    transmitting, to a third UE of the plurality of other UEs and based at least in part on the one or more parameters, other UE cooperation data indicating that the first UE is to begin or continue UE cooperation between the first UE and the third UE, to at least one of:
    transmit, to a base station, uplink communications from the third UE to the base station, or
    receive, from the base station, downlink communications from the base station to the third UE.
  27. The method of claim 26, further comprising:
    receiving confirmation data indicating that the second UE received the UE cooperation data; and
    wherein transmitting the other UE cooperation data comprises:
    transmitting the other UE cooperation data based at least in part on receiving the confirmation data.
  28. A method of wireless communication performed by a first user equipment (UE) , comprising:
    transmitting, to a second UE, one or more values associated with one or more parameters; and
    receiving, from the second UE and based at least in part on transmitting the one or more values, UE cooperation data indicating at least one of:
    the first UE is to begin or continue UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and a base station, or
    the first UE is to end the UE cooperation between the first UE and the second UE for communications between the first UE and the base station.
  29. The method of claim 28, wherein the one or more parameters are associated with one or more thresholds; and
    wherein transmitting the one or more values comprises:
    transmitting the one or more values based at least in part on the one or more values satisfying at least one of the one or more thresholds.
  30. The method of claim 29, wherein, based at least in part on at least one of the one or more values failing to satisfy a threshold of the one or more thresholds, the UE cooperation data indicates that the first UE is to end the UE cooperation.
  31. The method of claim 29, wherein, based at least in part on at least one of the one or more values satisfying a threshold of the one or more thresholds, the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation.
  32. The method of claim 28, wherein the one or more parameters include at least one of:
    a first link quality parameter indicating quality of a sidelink link between the first UE and the second UE,
    a mobility parameter indicating whether the first UE is moving,
    a beam separation parameter indicating a location associated with one or more beams of the first UE,
    a load parameter indicating a measure of a communications load associated with the first UE, or
    a priority parameter indicating a priority associated with the first UE.
  33. The method of claim 28, wherein the UE cooperation data indicates that the first UE is to begin or continue the UE cooperation between the first UE and the second UE; and
    the method further comprises:
    using the UE cooperation to distribute, between the first UE and the second UE, communications between the first UE and the base station.
  34. The method of claim 28, wherein the UE cooperation data indicates that the first UE is to end the UE cooperation between the first UE and the second UE; and
    the method further comprises:
    transmitting, to the second UE, confirmation data indicating that the first UE received the UE cooperation data; and
    ending, based at least in part on the UE cooperation data, the UE cooperation for subsequent communications between the first UE and the base station.
  35. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a first user equipment (UE) , cause the first UE to:
    obtain, for a plurality of other UEs, one or more values that correspond to one or more parameters associated with UE cooperation between the first UE and at least one of the plurality of other UEs; and
    transmit, to a second UE of the plurality of other UEs and based at least in part on the one or more values, UE cooperation data indicating at least one of:
    the first UE is to begin or continue UE cooperation between the first UE and the second UE, to at least one of:
    transmit, to a base station, uplink communications from the second UE to the base station, or
    receive, from the base station, downlink communications from the base station to the second UE, or
    the first UE is to end the UE cooperation between the first UE and the second UE for communications between the second UE and the base station.
PCT/CN2021/140315 2021-12-22 2021-12-22 Communicating selection of user equipment for user equipment cooperation WO2023115365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140315 WO2023115365A1 (en) 2021-12-22 2021-12-22 Communicating selection of user equipment for user equipment cooperation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140315 WO2023115365A1 (en) 2021-12-22 2021-12-22 Communicating selection of user equipment for user equipment cooperation

Publications (1)

Publication Number Publication Date
WO2023115365A1 true WO2023115365A1 (en) 2023-06-29

Family

ID=86901001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140315 WO2023115365A1 (en) 2021-12-22 2021-12-22 Communicating selection of user equipment for user equipment cooperation

Country Status (1)

Country Link
WO (1) WO2023115365A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210404A (en) * 2013-12-26 2015-12-30 华为技术有限公司 Method, apparatus and system for establishing cooperative communication
CN108702751A (en) * 2016-03-03 2018-10-23 华为技术有限公司 The system and method for establishing D2D communication sets
WO2020143833A1 (en) * 2019-01-11 2020-07-16 Huawei Technologies Co., Ltd. Transmission Pattern Indication and Selection for Sidelink Grant Free Transmission
CN112188622A (en) * 2019-07-03 2021-01-05 华为技术有限公司 Cooperative transmission method and communication device
CN112449436A (en) * 2019-09-02 2021-03-05 华为技术有限公司 Communication method and device
WO2021092925A1 (en) * 2019-11-15 2021-05-20 华为技术有限公司 Communication method and communication apparatus
CN113115450A (en) * 2021-01-15 2021-07-13 中兴通讯股份有限公司 Cooperative information transmission method, resource determination method, communication node and storage medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210404A (en) * 2013-12-26 2015-12-30 华为技术有限公司 Method, apparatus and system for establishing cooperative communication
CN108702751A (en) * 2016-03-03 2018-10-23 华为技术有限公司 The system and method for establishing D2D communication sets
WO2020143833A1 (en) * 2019-01-11 2020-07-16 Huawei Technologies Co., Ltd. Transmission Pattern Indication and Selection for Sidelink Grant Free Transmission
CN112188622A (en) * 2019-07-03 2021-01-05 华为技术有限公司 Cooperative transmission method and communication device
CN112449436A (en) * 2019-09-02 2021-03-05 华为技术有限公司 Communication method and device
WO2021092925A1 (en) * 2019-11-15 2021-05-20 华为技术有限公司 Communication method and communication apparatus
CN113115450A (en) * 2021-01-15 2021-07-13 中兴通讯股份有限公司 Cooperative information transmission method, resource determination method, communication node and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Further views on Rel-17 work area on NR sidelink enhancements for V2X and other use cases", 3GPP DRAFT; RP-191831, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, USA; 20190916 - 20190920, 9 September 2019 (2019-09-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 13, XP051782380 *

Similar Documents

Publication Publication Date Title
WO2022056514A1 (en) Relay switching for a remote user equipment
WO2023123187A1 (en) Quasi co-location configuration for energy harvest powered device
WO2023069815A1 (en) Capability compatibility for paging subgroup
WO2023115365A1 (en) Communicating selection of user equipment for user equipment cooperation
WO2023115368A1 (en) User equipment selection for user equipment cooperation
WO2023279232A1 (en) Beam indications for single transmit receive point and multiple transmit receive point communications
WO2023115386A1 (en) Availability handling for user equipment cooperation
WO2023137742A1 (en) Unified transmission configuration indicator indication for single downlink control information based multiple transmit receive point communications
WO2023065209A1 (en) Transmission reception point mode configuration
WO2024082165A1 (en) Active bandwidth part for beam application time in unified transmission configuration indication framework
WO2023201604A1 (en) Explicit beam failure detection reference signal activation and deactivation
US11792799B2 (en) Scheduling transmission with multiple transport blocks
WO2023050442A1 (en) Multiple transmission configuration indicator states for serving cells not configured for single frequency network transmissions
WO2022232972A1 (en) Resetting a beam based at least in part on a subcarrier spacing
US20230084678A1 (en) Transmission configuration indicator states for subbands
WO2023130312A1 (en) Aperiodic channel state information reporting for cross-carrier scheduling
WO2023050328A1 (en) Transmission configuration indicator state indications
WO2023141849A1 (en) Transmission configuration indicator for downlink control information
WO2023272735A1 (en) Selection of default path loss reference signal or default spatial relation
US20230143713A1 (en) Beam-based priority of semi-statically configured communications
WO2023035131A1 (en) Synchronization signal blocks from non-serving cells
WO2023133719A1 (en) Physical downlink shared channel default beam selection
WO2023130248A1 (en) Prioritizing high speed train (hst) cells over non-hst cells
US20220322171A1 (en) Handling of conditional handover and conditional primary secondary cell change
WO2023000293A1 (en) New radio and long term evolution vehicle-to-everything coexistence protection in adjacent channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968515

Country of ref document: EP

Kind code of ref document: A1