WO2023112732A1 - Robot system and coordinate registration method - Google Patents

Robot system and coordinate registration method Download PDF

Info

Publication number
WO2023112732A1
WO2023112732A1 PCT/JP2022/044651 JP2022044651W WO2023112732A1 WO 2023112732 A1 WO2023112732 A1 WO 2023112732A1 JP 2022044651 W JP2022044651 W JP 2022044651W WO 2023112732 A1 WO2023112732 A1 WO 2023112732A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
coordinates
patient
jig device
robot system
Prior art date
Application number
PCT/JP2022/044651
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 鈴木
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023112732A1 publication Critical patent/WO2023112732A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present disclosure relates to a robot system and coordinate integration method.
  • Patent Literature 1 discloses a method of detecting an optical marker fixed to a surgical instrument with a camera.
  • Patent Document 1 For example, if there is an obstacle between the optical marker and the camera, the optical marker cannot be accurately detected due to occlusion. Integration of coordinates with high precision becomes difficult.
  • One aspect of the present disclosure provides a robot system and coordinate integration method capable of improving coordinate integration accuracy.
  • a robot system includes a robot device that supports a surgical tool to be inserted into a patient's body, and a jig device that aligns the robot device with surrounding objects of the robot device.
  • a coordinate integration method includes aligning a robot device that supports a surgical tool to be inserted into a patient's body with a surrounding object of the robot device using a jig device; Integrating the coordinates of the robotic device and the coordinates of the surroundings based on the results.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a robot system 1 according to an embodiment
  • FIG. FIG. 2 is a diagram showing an example of a schematic configuration of a robot R1
  • FIG. 4 is a diagram showing an example of arrangement of angle sensors 8.
  • FIG. FIG. 4 is a diagram schematically showing an example of transmission of braking force by the transmission 7.
  • FIG. 5 is a diagram showing an example of alignment and coordinate integration using the jig device 14
  • 4 is a flow chart showing an example of coordinate integration work procedures (coordinate integration method, registration method). It is a figure which shows the example of surgical assistance.
  • a navigation function is expected for surgical assistance. It is important to accurately integrate the coordinate system of spatial coordinates (hereinafter also simply referred to as "coordinates") between the patient and each device.
  • coordinates For example, when informing the operator of an affected area that is difficult to visually recognize on the monitor by image guidance, the coordinates of a camera such as a microscope, the coordinates of a tissue imaging device such as OCT or CT, and the tip of the arm (tip of the manipulator) Coordinates, patient coordinates, preoperative image data coordinates, etc. may be relevant.
  • Patent Document 1 Since each coordinate exists independently, it is necessary to accurately grasp each other's relative coordinates.
  • the detection of an optical marker as disclosed in Patent Document 1 has problems such as detection resolution and occlusion. For example, it is difficult to detect with high accuracy on the order of submillimeters and integrate coordinates.
  • the practical accuracy including operational errors of optical navigation devices used in neurosurgery and orthopedics is on the millimeter scale, which is difficult to apply.
  • Patent Document 1 discloses an image guidance support system for spinal surgery in orthopedics.
  • An optical marker set for position coordinate detection is fixed to the patient's bone, and the optical marker set is fixed near the distal end of the robotic surgical tool.
  • Two sets of optical markers are detected simultaneously by the same camera, the coordinates relative to the camera coordinates are detected, and the relative coordinates between the patient and the surgical tool are calculated.
  • a navigation system with a similar system configuration is used in a plurality of image guidance support devices including robot systems.
  • the problem is that if there is an obstacle between the optical marker and the camera, occlusion may prevent highly accurate detection.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a robot system 1 according to an embodiment.
  • the robot system 1 is used for surgery.
  • FIG. 1 schematically shows the layout of the operating room when viewed from above. An operation is performed on a patient 13 lying supine on a bed B.
  • FIG. In the following, a case where the surgery is ophthalmic surgery will be described as an example.
  • the eyeball of the patient 13 to be operated on is referred to as eyeball E and is illustrated.
  • An operator (physician or the like) is referred to as a user U and illustrated.
  • the robot system 1 includes a robot device 2, a monitor 3, a robot R3, a coordinate integration device 9, and a microscope 11. Describing the microscope 11 and the monitor 3 first, the microscope 11 observes the operative field.
  • the field of view of the microscope 11 can include the eyeball E, the surgical tool T inside the eyeball E, and the like.
  • the monitor 3 displays an observation image (operative field image) of the microscope 11 .
  • the user U observes the operative field by looking at the observation image of the microscope 11 displayed on the monitor 3 or looking directly at the eyepiece of the microscope 11 .
  • Surgery proceeds through operations using visual feedback of the relative positional relationship between the surgical tool T reflected in the surgical field and the robot device 2 at hand.
  • the OCT probe 12, the surgical tool table TB, and the assistant A are also exemplified in the operating room.
  • the OCT probe 12 is used for acquiring OCT images.
  • the assistant A performs operations related to the operating tool extraction TO.
  • the robot device 2 is a robot placed near the patient (patient-side robot) and includes two robots connected in series.
  • the first robot is shown as robot R1.
  • a second robot is shown and referred to as robot R2.
  • the robot R1 is connected to the operating table (bed B) so as to be positioned farther from the patient 13 than the robot R2.
  • Robot R2 is supported by robot R1 so that it is positioned closer to patient 13 than robot R1.
  • the robot device 2 can also be called a support arm device or the like.
  • a tip portion (tip portion of the arm) of the robot R2 is referred to as a tip portion R2a and illustrated.
  • Robot R2 and robot R1 are mechanically fixed to have known coordinates relative to each other.
  • the robot R1 is configured to be operated by the user U by directly applying force.
  • Robot R1 does not include actuators, motors, force sensors, and the like.
  • the operation of the robot R1 by the user U is also referred to as manual operation of the robot R1.
  • the user U manually operates the robot R1 by holding and moving the robot R1.
  • the robot R1 has 3 or more degrees of freedom.
  • robot R1 is a 6-axis stabilizer with 3 translational and 3 rotational degrees of freedom. By giving the robot R1 a large number of degrees of freedom, it becomes easy to move the robot R1 to an arbitrary position or take an arbitrary posture. Since the robot R1 is manually operated by the user U as described above, the robot R1 can also be called a human-cooperative six-axis stabilizer. Since the robot R1 can be downsized as described later, the robot R1 can also be called a human-cooperative compact precision 6-axis stabilizer.
  • the robot R2 is configured so that the user U can operate it without directly applying force.
  • the robot R2 is configured including actuators and the like.
  • the robot R2 is configured to actively move according to the amount of displacement of the robot R3 provided at a position distant from the robot R2.
  • the user U remotely controls the robot R2 by operating the robot R3.
  • the robot R2 supports the surgical tool T.
  • the surgical instrument T is inserted into the patient's body, the eyeball E in this example.
  • the robot R2 supports the surgical tool T so that the surgical tool T has a remote center of motion (RCM).
  • RCM remote center of motion
  • robot R2 has a parallel linkage and its pivot point (pivot position) is the remote center of motion RCM.
  • Robot R2 has one or more degrees of freedom.
  • robot R2 has three degrees of freedom and is pivotable.
  • the robot R2 moves the surgical tool T within the eyeball E with the remote motion center RCM as the center of rotation.
  • the robot R2 Since the robot R2 is moved by precision actuators, etc., it can be operated with higher precision (for example, about 10 ⁇ m) than the manually operated robot R1. In this sense, the robot R1 can be called a coarse motion robot, and the robot R2 can also be called a fine motion robot. A drape for covering the clean area may be fixed to the robot R1.
  • Robot R2 is configured to be remotely controllable.
  • the user U remotely controls the robot R2 by operating the robot R3, as described above.
  • the robot R2 and the robot R3 are bilaterally controlled using, for example, two-way communication so that the amounts of displacement and forces in each correspond.
  • a relative positional relationship may be scaled between the robots R2 and R3.
  • motion scaling may be used so that the physical displacement of robot R2 is smaller than the physical displacement of robot R3. Fine remote control of the robot R2 via the robot R3 becomes possible, making remote surgery easier.
  • the user U who operates the robot R1 of the robot device 2 and the user U who operates the robot R3 may be the same or different.
  • FIG. 2 is a diagram showing an example of the schematic configuration of the robot R1.
  • Robot R1 includes a base portion 4 , a distal end portion 5 , a locking mechanism 6 and a transmission 7 .
  • the base portion 4 includes a translation mechanism 41 so as to have translational degrees of freedom.
  • the translational degrees of freedom are three translational degrees of freedom.
  • the translation mechanism 41 is a parallel link mechanism having three translational degrees of freedom in the vertical direction (Z-axis direction) and horizontal direction (XY plane direction).
  • the base portion 4 includes a counterweight 42 in its lower portion.
  • the counterweight 42 improves the balance of the robot R1, thereby providing a self-weight compensation function to the robot R1.
  • a self weight compensation function is provided so that all the axes of the robot device 2 can keep their positions.
  • the distal end 5 supports the robot R1 (Fig. 1).
  • Distal end 5 includes a rotation mechanism 51 so as to have rotational freedom.
  • the rotational degrees of freedom are 3 rotational degrees of freedom.
  • Examples of the rotating mechanism 51 are a gimbal mechanism, a ball joint mechanism, and the like.
  • the robot R2 may be detachably attached to the distal end portion 5 (for example, the rotating mechanism 51). By attaching and detaching different robots R2 to and from the same robot R1, the robot R1 can be repeatedly used (reused), while the robot R2 can be made disposable.
  • the lock mechanism 6 is provided on the base portion 4 and generates a braking force so as to lock each joint that controls the degree of freedom of the robot R1.
  • Each joint and the lock mechanism 6 may correspond to each other on a one-to-one basis.
  • Each joint can be individually locked (lock ON) or unlocked (lock OFF).
  • the lock mechanism 6 includes, for example, an electromagnetic brake.
  • the electromagnetic brake may lock the joint when current is applied and unlock the joint when current is not applied. By turning off the power of the lock mechanism 6, the joint is locked.
  • the power of the locking mechanism 6 is manually turned on or off by the user U, for example.
  • the lock mechanism 6 may have a spindle that rotates according to the angle of the joint.
  • An angle sensor (potentiometer, encoder, etc.) may be fixed in series with the support shaft. Such an angle sensor enables joint angle detection. Since there is no need to attach the angle sensor directly to the joint, the advantages of miniaturization and weight reduction can be obtained, and the number of electrical wiring can be reduced.
  • the position and orientation of the distal end portion 5 from the base portion 4 are calculated by solving the kinematics using the detection result of the angle sensor (for example, by forward kinematics calculation). It is possible to calculate the coordinates of the distal end R2a of the robot R2 and the surgical tool T with respect to the reference position of the coordinates of the robot device 2 (e.g., corresponding to MechanicalGND in FIG. 5, which will be described later).
  • FIG. 3 is a diagram showing an example of the arrangement of the angle sensor 8.
  • the angle sensor 8 is mounted in series with the output shaft of the lock mechanism 6 .
  • a wire rope for example, corresponding to a wire rope of a wire transmission, which is an example of the transmission 7 described later
  • Rotational torque is transmitted to the output shaft of the lock mechanism 6 in accordance with the displacement of the wire rope, and the rotational torque is applied to the rotational shaft of the coaxially connected angle sensor to detect the displacement.
  • each lock mechanism 6 may be performed by the user U, for example, by pedal operation or the like, or may be performed automatically.
  • the locking and unlocking of the translational movement of the base part 4 and the locking and unlocking of the rotational movement of the distal end part 5 can be controlled separately.
  • the lock mechanism 6 that is locked also serves as a torque limiter that passively moves when the user U strongly pushes the robot R1 manually. For example, it is possible to switch from robotic surgery to manual surgery in an emergency.
  • the transmission 7 is provided on the base portion 4 and transmits the braking force from the lock mechanism 6 to the corresponding joints. Description will also be made with reference to FIG.
  • FIG. 4 is a diagram schematically showing an example of transmission of braking force by the transmission 7.
  • FIG. Some joints of the translational mechanism 41 (FIG. 2) of the base part 4 are directly provided with the locking mechanism 6, so transmission of the braking force by the transmission 7 is unnecessary.
  • a lock mechanism 6 is exemplified as a lock mechanism 6a and a lock mechanism 6f.
  • the braking force of the lock mechanism 6 is transmitted via the transmission 7 to joints that are not directly provided with the lock mechanism 6 .
  • Such a lock mechanism 6 is exemplified as a lock mechanism 6b.
  • the lock mechanism 6a may be attached directly, or may be attached via a speed reducer (or a speed increaser).
  • the locking mechanism 6 is not directly provided at the joint of the distal end portion 5 , and the braking force of the locking mechanism 6 is transmitted via the transmission 7 .
  • Joints 52c to 52e are exemplified as the joints of the distal end portion 5 .
  • lock mechanisms 6c to 6e are exemplified. Braking forces of the lock mechanisms 6c to 6e are transmitted to the joints 52b to 52e via the transmissions 7b to 7e.
  • the base portion 4 can be translated.
  • the user U can, for example, directly hold the distal end 5 and move or rotate it.
  • the transmission 7 does not include a driving force transmission system using gears. Accordingly, the overall size and weight of the robot R1 can be reduced.
  • the transmission 7 uses wires, wire ropes, belts, steel belts, hydraulics, pneumatics, dielectric elastomers, shape memory alloys, etc. to transmit the braking force from the locking mechanism 6 to the joints.
  • the transmission 7 is a wire transmission that uses a wire to transmit the braking force from the locking mechanism 6 to the joint.
  • a wire rope is fixed to the joint, and the joint is connected to the lock mechanism 6 via the wire rope.
  • a wire drive system allows switching between locking and unlocking of three translational axes and three rotational axes.
  • the user U manually operates the robot R1 by gripping the base portion 4 of the robot R1 and translating it, or gripping the distal end portion 5 of the robot R1 and rotating it. .
  • the user U can move the robot R2 (FIG. 1) supported by the distal end portion 5, and thus the surgical tool T connected to the robot R2, to an arbitrary position or make it stationary.
  • the robot device 2 As the robot device 2 is made lighter and smaller, it becomes easier to handle the robot device 2, including manual operation of the robot R1.
  • the robot R1 of the robot device 2 may have a size that can be held and operated by the user U with one hand, for example, a palm size of 20 cm or less.
  • the robot R1 is even smaller than the robot R2, and may have a size of, for example, a tennis ball of 7 cm or less.
  • the robot R1 which is a coarse motion robot
  • the scale of coarse motion is also small, and vibration noise is reduced.
  • the resonant frequency corresponding to vibration noise is inversely proportional to mass.
  • the mass As the scale of coarse motion becomes smaller, the mass also becomes smaller and thus the resonance frequency increases. Vibration noise is relatively small.
  • the link length is shortened, the swing width due to vibration is relatively reduced.
  • the user U can easily move the robot device 2 by manually operating the robot R1.
  • the robot R1 since the robot R1 does not have a motor or a force sensor, it is possible to reduce the risk of runaway or failure.
  • the entire robot device 2 (entire robot arm) can be made smaller and lighter, the force required for the user U to hold and move it can be reduced. For example, it becomes easier to operate.
  • a braking force from the lock mechanism 6 provided on the base portion 4 is transmitted through the transmission 7 .
  • the configuration of the distal end portion 5, that is, the configuration of the patient side around the surgical field can be simplified. This reduces the risk of interference with the surgical tool T during surgery and obstruction of the field of view of the microscope 11, and can reduce the size of the clean area, which is highly advantageous in terms of operation.
  • a similar effect can be obtained by providing the transmission 7 on the base portion 4 as well.
  • Locking and unlocking by the lock mechanism 6 can be actively switched. This reduces the need for the user U to spend a lot of time moving the insertion point of the surgical tool T, which is often required during surgery.
  • the locking mechanism 6 is provided on the base part 4 away from the patient, not on the distal end part 5 located near the patient.
  • the distal end 5 can be made compact, thereby avoiding problems such as interference with other surgical instruments T, occlusions obstructing the surgical field, and contact with the patient.
  • the coordinate integration device 9 integrates (registers) the coordinates of the robot device 2 (for example, the tip portion R2a thereof) and the surrounding objects of the robot device 2 .
  • Examples of surrounding objects are a microscope 11, an OCT apparatus such as an OCT probe 12, a CT apparatus (not shown), an MRI (Magnetic Resonance Imaging) apparatus, an ultrasound apparatus, a patient 13, and the like.
  • the coordinate integration device 9 may be realized by running software on a general-purpose computer, or may be realized by dedicated hardware.
  • the coordinate integration device 9 acquires necessary information from other elements of the robot system 1 through communication or the like.
  • FIG. 5 is a diagram showing an example of alignment and coordinate integration using the jig device 14.
  • the robot apparatus 2 includes a robot R1 fixed to an arc-shaped rail provided on a pedestal near the patient's head, and a robot R2 fixed near the patient's eyeball E. is arranged to be located in A hand portion of the user U operating the robot R1 is schematically illustrated.
  • the robot device 2 is provided with a jig device 14 .
  • the jig device 14 may be a component of the robot device 2 or may not be a component of the robot device 2 .
  • the jig device 14 is fixed to the distal end 5 of the robot R1 of the robotic device 2 .
  • a jig device 14 is used to align the robot device 2 with its surroundings.
  • One or more corresponding jig devices 15 corresponding to the jig device 14 are fixed to the surrounding object.
  • the jig device 14 aligns the robot device 2 with the surrounding objects by contacting the corresponding jig device 15 .
  • the jig device 14 and the corresponding jig device 15 may contact in various manners. Examples of contact include contact by fitting, contact by screw fixing, point contact, attraction contact by a magnet, and the like. In the example shown in FIG. 5, a snug contact is used.
  • the jig device 14 and the corresponding jig device 15 have a convex shape and a concave shape that can be fitted to each other.
  • the jig device 14 includes a probe that is inserted into the corresponding jig device 15 .
  • a corresponding jig device 15-1 As the corresponding jig device 15, a corresponding jig device 15-1, a corresponding jig device 15-2, and a corresponding jig device 15-3 are illustrated.
  • a corresponding jig device 15 - 1 is fixed to the microscope 11 .
  • the corresponding jig device 15-2 is fixed to (the pedestal of) the OCT probe 12.
  • the corresponding jig device 15-3 is the corresponding jig device 15 fixed to the patient 13, and is fixed to the rail in this example.
  • Corresponding jig assembly 15 may be fixed relative to the surroundings in a variety of ways. Examples of fixation include fixation by adhesion, fixation by sticking, and screw fixation. Incidentally, the fixing of the jig device 14 to the robot device 2 may be the same.
  • Coordinates of the robot device 2 and its surroundings are referred to as coordinates P.
  • the coordinates P of the robot R1 of the robot device 2 are shown as coordinates PR1 .
  • the coordinates P of robot R2 are shown as coordinates PR2 .
  • the coordinates P of the microscope 11 are shown as coordinates PMS .
  • the coordinate P of the OCT probe 12 is illustrated as coordinate P OCT .
  • the coordinate P of the patient 13 is illustrated as the coordinate P patient .
  • the user U manually operates the robot R1 so as to align (for example, insert) the jig device 14 with the corresponding jig device 15 .
  • the robotic device 2 can be aligned with its surroundings.
  • the coordinate integration device 9 (FIG. 1) integrates the coordinates based on the result of alignment by the jig device 14 described above.
  • the coordinate integrating device 9 calculates the coordinate P R1 of the robot R1 of the robot device 2 and the coordinate P Integrate R2 with the microscope 11 coordinates PMS . From the joint angle of the robot device 2 at that time, the position of the jig device 14 is calculated (ascertained), and from there, the position of the corresponding jig device 15-1 and thus the microscope 11 is calculated.
  • the coordinate integrating device 9 calculates the coordinates PR1 of the robot R1 of the robot device 2 and the coordinates PR1 of the robot R2 based on the joint angles of the robot device 2 when the jig device 14 is aligned with the corresponding jig device 15-2. , and the coordinates P OCT of the OCT probe 12 are integrated. In addition, the coordinate integration device 9 calculates the coordinates PR1 of the robot R1 of the robot device 2 and the coordinates PR1 of the robot R2 based on the joint angles of the robot device 2 when the jig device 14 is aligned with the corresponding jig device 15-3. Integrate the coordinate P R2 with the coordinate P patient of the patient 13 .
  • the reference position (base seating surface, etc.) of the robot device 2 is schematically shown as Mechanical GND.
  • the coordinates integrated by the coordinate integration device 9 may be coordinates based on the reference position of the robot device 2, for example.
  • the coordinate integration accuracy is determined by the position detection accuracy, that is, the resolution of the angle sensor. For example, highly accurate detection on the order of submillimeters is possible.
  • the coordinates P R1 of the robot R1 are obtained by a function R R1 ( ⁇ ) with ⁇ as an argument and the coordinates P GND (eg by multiplying them).
  • the coordinate P R2 of the robot R2 is calculated based on the function R R2 ( ⁇ ) having ⁇ as an argument and the coordinate P R1 of the robot R1.
  • the coordinate P MS of the microscope 11 is calculated based on the function R R1 ( ⁇ 0 ) and the coordinate P R1 . be done.
  • the coordinate P OCT of the OCT probe 12 is calculated based on the function R R1 ( ⁇ 1) and the coordinate P R1 . be done.
  • the coordinate P patient of the patient 13 is calculated based on the function R R1 ( ⁇ 2 ) and the coordinate P R1 . be done.
  • the microscope 11 is an OCT-integrated surgical microscope incorporating an OCT function
  • the coordinates of the microscope 11 and the coordinates of the OCT are integrated in advance, so coordinate integration by the corresponding jig device 15-2 is omitted.
  • the corresponding jig device 15-2 may be omitted.
  • coordinate integration by the corresponding jig device 15-3 may be omitted. In that case, the corresponding jig device 15-3 may be omitted.
  • FIG. 6 is a flow chart showing an example of a coordinate integration work procedure (coordinate integration method, registration method). This operation is performed, for example, with the positions of the microscope 11, the OCT probe 12, and the patient 13 fixed before the start of surgery.
  • step S1 the jig device 14 is used to align the robot device 2 with the surrounding objects.
  • the user U manually moves the robot R1 so that the jig device 14 is aligned with the corresponding jig device 15 fixed to the surrounding object (for example, the corresponding jig device 15-1 fixed to the microscope 11).
  • Manipulate the jig device 14 is used to align the robot device 2 with the surrounding objects.
  • step S2 the coordinates of the robot device 2 and the coordinates of surrounding objects are integrated.
  • the coordinate integrating device 9 calculates the coordinates P R1 of the robot R1 of the robot device 2 and the coordinates P R2 , the coordinates P MC of the microscope 11, the coordinates P OCT of the OCT probe 12 (OCT apparatus), and the coordinates P patient of the patient 13 are integrated.
  • the coordinates of the robot device 2 and the coordinates of its surroundings are integrated as described above.
  • the jig device 14 and the corresponding jig device 15 need only have a simple configuration like an insertion jig. Simpler and more accurate coordinate integration is possible than with optical markers. It is possible to perform image guidance in surgical procedures that require operation accuracy on the order of submillimeters, which has been difficult in the past.
  • FIG. 7 is a diagram showing an example of surgical assistance.
  • An OCT image in cataract surgery is displayed on the monitor 3, and the position of the surgical tool T is navigated. Specifically, in the OCT image, the movable region of the surgical tool T is restricted (surgical tool movable range restriction).
  • a virtual wall W is displayed that limits the movable range of the distal end of the surgical tool T with the remote motion center indicated by the arrow cursor as the pivot point. The operation of moving the surgical tool T across the virtual wall W is suppressed.
  • Such navigation becomes possible by integrating the coordinates of the robot R2 of the robot device 2 and the supported surgical tool T, and the coordinates of the OCT probe 12 .
  • the coordinate integration device 9 may integrate the coordinates of the surrounding objects (microscope 11, OCT probe 12, patient 13, etc.) and optionally also the coordinates of the preoperative image data. For example, it can be used for comparative display of a preoperative image and an intraoperative image during surgery.
  • the robot system 1 includes the robot device 2 and the jig device 14 .
  • the robot device 2 supports a surgical tool T that is inserted into the patient's 13 body (for example, the eyeball E).
  • the jig device 14 is used to align the robot device 2 with the surroundings of the robot device.
  • the surroundings include at least one of the microscope 11, OCT device (OCT probe 12), CT device, MRI device, ultrasound device, and patient 13.
  • OCT probe 12 OCT probe 12
  • CT device CT device
  • MRI device MRI device
  • ultrasound device and patient 13.
  • patient 13 patient 13.
  • the jig device 14 may align the robot device 2 by coming into contact with the corresponding jig device 15 fixed to the surrounding object.
  • the contact between the jig device 14 and the corresponding jig device 15 may include at least one of fitting contact, screw fixing contact, point contact, and magnet attraction contact.
  • the fixation of the corresponding jig device 15 to the surroundings may include at least one of adhesion fixation, sticking fixation, and screw fixation.
  • the robot device 2 can be aligned with surrounding objects.
  • the robot system 1 performs coordinate integration for integrating the coordinates of the robot device 2 and the coordinates of the surrounding objects based on the result of alignment by the jig device 14.
  • device 9 may be provided.
  • the integrated coordinates may be coordinates based on the reference position (MechanicalGND) of the robot device 2 .
  • the coordinate integration device 9 may also integrate the coordinates of the preoperative image data.
  • such a coordinate integration device 9 can integrate the coordinates of the robot device 2 and the coordinates of the surrounding object, and optionally also the coordinates of the preoperative image data.
  • the robot device 2 includes a robot R1 (first robot) including a base portion 4 and a distal end portion 5, and a distal end portion 5 of the robot R1. and a robot R2 (second robot) that is supported and supports the surgical instrument T, and the robot R1 may be configured to be operated by the user U by directly applying force to the robot R1. The user U can easily move the robot device 2 by manually operating the robot R1.
  • the locus integration method (registration method) described with reference to FIG. 7 etc. is also one of the disclosed techniques.
  • the coordinate integration method uses the jig device 14 to align the robot device 2 supporting the surgical tool T to be inserted into the body of the patient 13 (for example, the eyeball E) with the surroundings of the robot device 2 (step S1) and integrating the coordinates of the robot device 2 and the coordinates of the surroundings based on the alignment result (step S2).
  • Such a coordinate integration method can also improve the accuracy of target integration as described above.
  • the robot system 1 is an ophthalmic surgery support robot system, and includes a robot arm (robot device 2) supporting a surgical tool T, a sensor (angle sensor 8) for detecting the rotation angle of the robot arm joint, and a robot arm distal end sensor. and a fixture component (fixture device 14) located at the end (distal end 5 of robot R1).
  • the robot arm is passively (manually) operated, and includes jig parts (jig device 14) and peripheral equipment (microscope 11, OCT equipment such as OCT probe 12, surgical tools attached to patient 13, etc.).
  • the parts (corresponding jig device 15) are made to correspond. Methods of handling jig parts include fitting, fixing with screws, point contact, attraction with magnets, and the like.
  • the coordinate system at the distal end (distal end 5) with the proximal end as a reference (mechanical GND) is detected using the detected joint angles.
  • a jig component (corresponding jig device 15) is attached to the device on the peripheral side by a fixing method such as gluing, sticking, screw fixing, or the like, at an arbitrary position.
  • the present technology can also take the following configuration.
  • a robotic device that supports a surgical instrument to be inserted into a patient's body; a jig device for aligning the robot device with a surrounding object of the robot device; comprising robot system.
  • the surroundings are microscope, OCT device, CT equipment, MRI equipment, an ultrasonic device, and comprising at least one of the patient
  • the robot system according to (1) (3)
  • the jig device aligns the robot device by contacting a corresponding jig device fixed to the surrounding object.
  • the contact between the jig device and the corresponding jig device contact by mating, contact by screw fixing, point contact, and at least one of magnetic attraction contact; The robot system according to (3).
  • the robotic device is a first robot including a base and a distal end; a second robot supported by the distal end of the first robot and supporting the surgical instrument; with The first robot is configured to be operated by a user by directly applying force to the first robot.
  • the robot system according to any one of (1) to (8).
  • the surgical instrument is inserted into the patient's eyeball, The robot system according to any one of (1) to (9).
  • Robotic System 2 Robotic Apparatus 3 Monitor 4 Base 41 Translation Mechanism 42 Counterweight 5 Distal End 51 Rotation Mechanism 6 Locking Mechanism 7 Transmission 8 Angle Sensor 9 Coordinate Integration Device 11 Microscope 12 OCT Probe 13 Patient 14 Jig Apparatus 15 Support Jig device A Assistant B Bed E Eye ball R1 Robot R2 Robot R3 Robot T Surgical tool U User TB Surgical tool table TO Pull out surgical tool

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

A robot system (1) comprises: a robot device (2) that supports an instrument (T) to be inserted into the body of a patient (13); and a jig device (14) for positioning the robot device (2) at a peripheral object of the robot device (2).

Description

ロボットシステム及び座標統合方法Robot system and coordinate integration method
 本開示は、ロボットシステム及び座標統合方法に関する。 The present disclosure relates to a robot system and coordinate integration method.
 手術用のロボットを用いる場合、ロボットの座標(座標系)と患者の座標とを統合する必要がある。例えば特許文献1は、術具に固定された光学式マーカをカメラで検出する手法を開示する。 When using a surgical robot, it is necessary to integrate the coordinates (coordinate system) of the robot and the coordinates of the patient. For example, Patent Literature 1 discloses a method of detecting an optical marker fixed to a surgical instrument with a camera.
特開2020-075108号公報Japanese Patent Application Laid-Open No. 2020-075108
 特許文献1の手法では、例えば、光学式マーカとカメラとの間に障害物があると、オクルージョンのために光学式マーカの検出が正確に行えない。高精度での座標の統合が困難になる。 With the method of Patent Document 1, for example, if there is an obstacle between the optical marker and the camera, the optical marker cannot be accurately detected due to occlusion. Integration of coordinates with high precision becomes difficult.
 本開示の一側面は、座標統合精度を向上させることが可能なロボットシステム及び座標統合方法を提供する。 One aspect of the present disclosure provides a robot system and coordinate integration method capable of improving coordinate integration accuracy.
 本開示の一側面に係るロボットシステムは、患者の体内に挿入される術具を支持するロボット装置と、ロボット装置を、ロボット装置の周囲物に位置合わせするための治具装置と、を備える。 A robot system according to one aspect of the present disclosure includes a robot device that supports a surgical tool to be inserted into a patient's body, and a jig device that aligns the robot device with surrounding objects of the robot device.
 本開示の一側面に係る座標統合方法は、治具装置を用いて、患者の体内に挿入される術具を支持するロボット装置を、ロボット装置の周囲物に位置合わせすることと、位置合わせの結果に基づいて、ロボット装置の座標と、周囲物の座標とを統合することと、を含む。 A coordinate integration method according to one aspect of the present disclosure includes aligning a robot device that supports a surgical tool to be inserted into a patient's body with a surrounding object of the robot device using a jig device; Integrating the coordinates of the robotic device and the coordinates of the surroundings based on the results.
実施形態に係るロボットシステム1の概略構成の例を示す図である。1 is a diagram showing an example of a schematic configuration of a robot system 1 according to an embodiment; FIG. ロボットR1の概略構成の例を示す図である。FIG. 2 is a diagram showing an example of a schematic configuration of a robot R1; FIG. 角度センサ8の配置の例を示す図である。4 is a diagram showing an example of arrangement of angle sensors 8. FIG. 図4は、トランスミッション7による制動力の伝達の例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of transmission of braking force by the transmission 7. As shown in FIG. 治具装置14を用いた位置合わせ及び座標統合の例を示す図である。FIG. 5 is a diagram showing an example of alignment and coordinate integration using the jig device 14; 座標統合の作業の手順(座標統合方法、レジストレーション方法)の例を示すフローチャートである。4 is a flow chart showing an example of coordinate integration work procedures (coordinate integration method, registration method). 手術支援の例を示す図である。It is a figure which shows the example of surgical assistance.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の要素には同一の符号を付することにより重複する説明を省略する。 Below, embodiments of the present disclosure will be described in detail based on the drawings. In addition, in each of the following embodiments, the same reference numerals are given to the same elements to omit redundant description.
 以下に示す項目順序に従って本開示を説明する。
  0.序
  1.実施形態
  2.変形例
  3.効果の例
The present disclosure will be described according to the order of items shown below.
0. Introduction 1. Embodiment 2. Modification 3. Example of effect
0.序
 手術ロボットシステムにおいて、手術支援のためにナビゲーション機能が期待される。患者や各装置の間で、空間座標の座標系(以下、単に「座標」ともいう。)を正確に統合することが重要である。例えば、モニタ上の視認が困難な患部を術者に画像誘導で知らせる場合には、顕微鏡等のカメラの座標、OCTやCT等の組織撮像装置の座標、アームの先端部(マニピュレータの手先)の座標、患者の座標、術前画像データの座標等が関連し得る。
0. Introduction In the surgical robot system, a navigation function is expected for surgical assistance. It is important to accurately integrate the coordinate system of spatial coordinates (hereinafter also simply referred to as "coordinates") between the patient and each device. For example, when informing the operator of an affected area that is difficult to visually recognize on the monitor by image guidance, the coordinates of a camera such as a microscope, the coordinates of a tissue imaging device such as OCT or CT, and the tip of the arm (tip of the manipulator) Coordinates, patient coordinates, preoperative image data coordinates, etc. may be relevant.
 各座標が独立に存在するため、互いの相対座標の正確な把握が必要になる。特許文献1のような光学式マーカの検出では、検出分解能やオクルージョンといった問題があり、例えばサブミリオーダーの高精度での検出及び座標の統合は難しい。脳神経外科や整形外科で使われている光学的ナビゲーション装置の運用上の誤差を含める実際的な精度はmmスケールであり、適用は難しい。 Since each coordinate exists independently, it is necessary to accurately grasp each other's relative coordinates. The detection of an optical marker as disclosed in Patent Document 1 has problems such as detection resolution and occlusion. For example, it is difficult to detect with high accuracy on the order of submillimeters and integrate coordinates. The practical accuracy including operational errors of optical navigation devices used in neurosurgery and orthopedics is on the millimeter scale, which is difficult to apply.
 特許文献1には、整形外科における脊椎手術用の画像誘導支援システムが開示される。患者の骨に位置座標検出のための光学式マーカセットが固定され、ロボット術具の遠位端近傍に光学式マーカセットが固定されている。同一のカメラによって同時に二つの光学式マーカセットを検出し、カメラ座標に対する相対的な座標を検出し、患者と術具との間の相対的な座標が算出される。同様なシステム構成によるナビゲーションシステムは、ロボットシステムを含む複数の画像誘導支援装置で用いられる。 Patent Document 1 discloses an image guidance support system for spinal surgery in orthopedics. An optical marker set for position coordinate detection is fixed to the patient's bone, and the optical marker set is fixed near the distal end of the robotic surgical tool. Two sets of optical markers are detected simultaneously by the same camera, the coordinates relative to the camera coordinates are detected, and the relative coordinates between the patient and the surgical tool are calculated. A navigation system with a similar system configuration is used in a plurality of image guidance support devices including robot systems.
 光学式マーカとは別に電磁マーカを用いる方法もある。カメラの代わりに磁場を発生させる装置が必要になるが、各々のマーカセットの位置検出原理は異なるが、基本的な座標統合のアルゴリズム(レジストレーションのアルゴリズム)は同等である。 There is also a method using an electromagnetic marker in addition to the optical marker. Although a device that generates a magnetic field is required instead of a camera, the position detection principle of each marker set is different, but the basic coordinate integration algorithm (registration algorithm) is the same.
 課題として、光学式マーカとカメラとの間に障害物があると、オクルージョンにより、高精度な検出ができなくなることがある。カメラの撮像画像の中に光学式マーカと誤認識する物体があると使用できない問題もある。カメラ分解能、マーカの製造精度、レンズ歪み等の理由により、例えばサブミリオーダーといった高精度の検出は困難である。例えばこのような課題が、開示される技術によって対処され得る。 The problem is that if there is an obstacle between the optical marker and the camera, occlusion may prevent highly accurate detection. There is also a problem that it cannot be used if there is an object that is mistakenly recognized as an optical marker in the captured image of the camera. For reasons such as camera resolution, marker manufacturing accuracy, and lens distortion, it is difficult to achieve high-precision detection such as on the order of submillimeters. For example, such issues may be addressed by the disclosed technology.
1.実施形態
 図1は、実施形態に係るロボットシステム1の概略構成の例を示す図である。ロボットシステム1は、手術に用いられる。図1には、手術室を上方からみたときのレイアウトが模式的に示される。ベッドB上に仰向けに横たわっている患者13の手術が行われる。以下では、手術が眼科手術である場合を例に挙げて説明する。手術対象の患者13の眼球を、眼球Eと称し図示する。術者(医師等)を、ユーザUと称し図示する。
1. Embodiment FIG. 1 is a diagram showing an example of a schematic configuration of a robot system 1 according to an embodiment. The robot system 1 is used for surgery. FIG. 1 schematically shows the layout of the operating room when viewed from above. An operation is performed on a patient 13 lying supine on a bed B. FIG. In the following, a case where the surgery is ophthalmic surgery will be described as an example. The eyeball of the patient 13 to be operated on is referred to as eyeball E and is illustrated. An operator (physician or the like) is referred to as a user U and illustrated.
 ロボットシステム1は、ロボット装置2と、モニタ3と、ロボットR3と、座標統合装置9と、顕微鏡11とを含む。先に顕微鏡11及びモニタ3について述べると、顕微鏡11は、術野を観察する。顕微鏡11の視野は、眼球E及び眼球E内の術具T等を含み得る。モニタ3は、顕微鏡11の観察画像(術野画像)を表示する。ユーザUは、モニタ3に表示された顕微鏡11の観察画像を見たり、顕微鏡11の接眼レンズを直視したりすることにより、術野を観察する。術野に映る術具Tと手元のロボット装置2との相対的な位置関係のビジュアルフィードバックを利用した操作により、手術が進められる。 The robot system 1 includes a robot device 2, a monitor 3, a robot R3, a coordinate integration device 9, and a microscope 11. Describing the microscope 11 and the monitor 3 first, the microscope 11 observes the operative field. The field of view of the microscope 11 can include the eyeball E, the surgical tool T inside the eyeball E, and the like. The monitor 3 displays an observation image (operative field image) of the microscope 11 . The user U observes the operative field by looking at the observation image of the microscope 11 displayed on the monitor 3 or looking directly at the eyepiece of the microscope 11 . Surgery proceeds through operations using visual feedback of the relative positional relationship between the surgical tool T reflected in the surgical field and the robot device 2 at hand.
 他にも、図1に示される例では、手術室内に、OCTプローブ12、術具台TB及び助手Aも例示される。OCTプローブ12は、OCT画像の取得に用いられる。助手Aは、術具出しTOに関する作業等を行う。 In addition, in the example shown in FIG. 1, the OCT probe 12, the surgical tool table TB, and the assistant A are also exemplified in the operating room. The OCT probe 12 is used for acquiring OCT images. The assistant A performs operations related to the operating tool extraction TO.
 ロボット装置2は、患者の近くに配置されるロボット(患者側のロボット)であり、互いに直列に連結された2つのロボットを含んで構成される。第1のロボットを、ロボットR1と称し図示する。第2のロボットを、ロボットR2と称し図示する。ロボットR1は、ロボットR2よりも患者13の遠くに位置するように、手術台(ベッドB)に連結される。ロボットR2は、ロボットR1よりも患者13の近くに位置するように、ロボットR1によって支持される。ロボット装置2は、支持アーム装置等とも呼べる。ロボットR2の先端部(アームの先端部)を、先端部R2aと称し図示する。ロボットR2とロボットR1とは、互いに既知の座標になるように機械的に固定される。 The robot device 2 is a robot placed near the patient (patient-side robot) and includes two robots connected in series. The first robot is shown as robot R1. A second robot is shown and referred to as robot R2. The robot R1 is connected to the operating table (bed B) so as to be positioned farther from the patient 13 than the robot R2. Robot R2 is supported by robot R1 so that it is positioned closer to patient 13 than robot R1. The robot device 2 can also be called a support arm device or the like. A tip portion (tip portion of the arm) of the robot R2 is referred to as a tip portion R2a and illustrated. Robot R2 and robot R1 are mechanically fixed to have known coordinates relative to each other.
 ロボットR1は、ユーザUが直接的に力を加えて操作するように構成される。ロボットR1は、アクチュエータ、モータ、力センサ等を含まない。ユーザUによるロボットR1の操作を、ロボットR1の手動操作ともいう。例えば、ユーザUは、ロボットR1を把持して動かすことによって、ロボットR1を手動操作する。 The robot R1 is configured to be operated by the user U by directly applying force. Robot R1 does not include actuators, motors, force sensors, and the like. The operation of the robot R1 by the user U is also referred to as manual operation of the robot R1. For example, the user U manually operates the robot R1 by holding and moving the robot R1.
 ロボットR1は、3以上の自由度を有する。例えば、ロボットR1は、並進3自由度及び回転3自由度を有する6軸スタビライザである。多くの自由度をロボットR1に持たせることで、ロボットR1を任意の位置に移動させたり、任意の姿勢にしたりすることが容易になる。上述のようにユーザUによって手動操作されるので、ロボットR1は、人協調型6軸スタビライザと呼ぶこともできる。後述のように小型化が可能であるので、ロボットR1は、人協調型小型精密6軸スタビライザと呼ぶこともできる。 The robot R1 has 3 or more degrees of freedom. For example, robot R1 is a 6-axis stabilizer with 3 translational and 3 rotational degrees of freedom. By giving the robot R1 a large number of degrees of freedom, it becomes easy to move the robot R1 to an arbitrary position or take an arbitrary posture. Since the robot R1 is manually operated by the user U as described above, the robot R1 can also be called a human-cooperative six-axis stabilizer. Since the robot R1 can be downsized as described later, the robot R1 can also be called a human-cooperative compact precision 6-axis stabilizer.
 ロボットR2は、ユーザUが直接的に力を加えずとも操作できるように構成される。ロボットR2は、アクチュエータ等を含んで構成される。例えば、ロボットR2は、ロボットR2から離れた位置に設けられたロボットR3の変位量に応じて能動的に動くように構成される。ユーザUは、ロボットR3を操作することによって、ロボットR2を遠隔操作する。 The robot R2 is configured so that the user U can operate it without directly applying force. The robot R2 is configured including actuators and the like. For example, the robot R2 is configured to actively move according to the amount of displacement of the robot R3 provided at a position distant from the robot R2. The user U remotely controls the robot R2 by operating the robot R3.
 ロボットR2は、術具Tを支持する。術具Tは、患者の体内、この例では眼球E内に挿入される。ロボットR2は、術具Tに遠隔運動中心(RCM:Remote Center of Motion)を有するように、術具Tを支持する。この例では、ロボットR2は、平行リンク機構を備え、そのピボット点(ピボット位置)が遠隔運動中心RCMになる。 The robot R2 supports the surgical tool T. The surgical instrument T is inserted into the patient's body, the eyeball E in this example. The robot R2 supports the surgical tool T so that the surgical tool T has a remote center of motion (RCM). In this example, robot R2 has a parallel linkage and its pivot point (pivot position) is the remote center of motion RCM.
 ロボットR2は、1以上の自由度を有する。例えば、ロボットR2は、3自由度を有し、また、ピボット移動可能である。ロボットR2は、遠隔運動中心RCMを回転中心として、眼球E内で術具Tを移動させる。 "Robot R2 has one or more degrees of freedom." For example, robot R2 has three degrees of freedom and is pivotable. The robot R2 moves the surgical tool T within the eyeball E with the remote motion center RCM as the center of rotation.
 ロボットR2は、精密なアクチュエータ等によって動くので、手動操作されるロボットR1よりも、高精度な(例えば10μm程度の)操作が可能である。この意味において、ロボットR1は粗動ロボットと呼べ、ロボットR2は微動ロボットとも呼べる。なお、ロボットR1には、清潔領域をカバーするためのドレープが固定されてもよい。 Since the robot R2 is moved by precision actuators, etc., it can be operated with higher precision (for example, about 10 μm) than the manually operated robot R1. In this sense, the robot R1 can be called a coarse motion robot, and the robot R2 can also be called a fine motion robot. A drape for covering the clean area may be fixed to the robot R1.
 ロボットR2は、遠隔操作可能に構成される。図1に示される例では、上述のように、ユーザUは、ロボットR3を操作することによって、ロボットR2を遠隔操作する。ロボットR2及びロボットR3は、例えば、双方向通信を利用して、それぞれにおける変位量や力が対応するようにバイラテラル制御される。 Robot R2 is configured to be remotely controllable. In the example shown in FIG. 1, the user U remotely controls the robot R2 by operating the robot R3, as described above. The robot R2 and the robot R3 are bilaterally controlled using, for example, two-way communication so that the amounts of displacement and forces in each correspond.
 ロボットR2とロボットR3との間で、相対的な位置関係のスケーリングが行われてよい。例えばロボットR2の物理的な変位量がロボットR3の物理的な変位量よりも小さくなるように、モーションスケーリング(Motion Scaling)が用いられてよい。ロボットR3を介したロボットR2の微細な遠隔操作が可能になり、遠隔手術が行い易くなる。 A relative positional relationship may be scaled between the robots R2 and R3. For example, motion scaling may be used so that the physical displacement of robot R2 is smaller than the physical displacement of robot R3. Fine remote control of the robot R2 via the robot R3 becomes possible, making remote surgery easier.
 なお、ロボット装置2のロボットR1を操作するユーザUと、ロボットR3を操作するユーザUとは、同じであってもよいし、異なっていてもよい。 The user U who operates the robot R1 of the robot device 2 and the user U who operates the robot R3 may be the same or different.
 図2は、ロボットR1の概略構成の例を示す図である。ロボットR1は、ベース部4と、遠位端部5と、ロック機構6と、トランスミッション7とを含む。 FIG. 2 is a diagram showing an example of the schematic configuration of the robot R1. Robot R1 includes a base portion 4 , a distal end portion 5 , a locking mechanism 6 and a transmission 7 .
 ベース部4は、並進自由度を有するように、並進機構41を含む。この例では、並進自由度は、並進3自由度である。並進機構41は、鉛直方向(Z軸方向)及び水平方向(XY平面方向)の並進3自由度を有する平行リンク機構である。 The base portion 4 includes a translation mechanism 41 so as to have translational degrees of freedom. In this example, the translational degrees of freedom are three translational degrees of freedom. The translation mechanism 41 is a parallel link mechanism having three translational degrees of freedom in the vertical direction (Z-axis direction) and horizontal direction (XY plane direction).
 ベース部4は、下方部分にカウンターウェイト42を含む。カウンターウェイト42は、ロボットR1のバランスを向上させ、それによって自重補償機能をロボットR1に与える。例えば、ロボット装置2のすべての軸がその場をキープできるような自重補償機能が与えられる。 The base portion 4 includes a counterweight 42 in its lower portion. The counterweight 42 improves the balance of the robot R1, thereby providing a self-weight compensation function to the robot R1. For example, a self weight compensation function is provided so that all the axes of the robot device 2 can keep their positions.
 遠位端部5は、ロボットR1(図1)を支持する。遠位端部5は、回転自由度を有するように、回転機構51を含む。この例では、回転自由度は、回転3自由度である。回転機構51の例は、ジンバル機構、ボールジョイント機構等である。 The distal end 5 supports the robot R1 (Fig. 1). Distal end 5 includes a rotation mechanism 51 so as to have rotational freedom. In this example, the rotational degrees of freedom are 3 rotational degrees of freedom. Examples of the rotating mechanism 51 are a gimbal mechanism, a ball joint mechanism, and the like.
 ロボットR2は、遠位端部5(例えば回転機構51)に対して着脱可能に取り付けられてよい。同じロボットR1に対して異なるロボットR2を着脱することで、ロボットR1を繰り返し用いる(再利用する)ことができ、一方で、ロボットR2をディスポ―サブルにすることができる。 The robot R2 may be detachably attached to the distal end portion 5 (for example, the rotating mechanism 51). By attaching and detaching different robots R2 to and from the same robot R1, the robot R1 can be repeatedly used (reused), while the robot R2 can be made disposable.
 ロック機構6は、ベース部4に設けられ、ロボットR1の自由度を司る各関節をロックするように、制動力を発生する。各関節と、ロック機構6とは、一対一に対応してよい。各関節を個別にロック(ロックON)したりアンロック(ロックOFF)したりすることができる。ロック機構6は、例えば電磁ブレーキを含んで構成される。電磁ブレーキは、電流が供給されているときに関節をロックし、電流が流れていないときに関節をアンロックしてよい。ロック機構6の電源をオフにすることで、関節がロックされる。ロック機構6の電源は、例えばユーザUが手動でオン又はオフにする。 The lock mechanism 6 is provided on the base portion 4 and generates a braking force so as to lock each joint that controls the degree of freedom of the robot R1. Each joint and the lock mechanism 6 may correspond to each other on a one-to-one basis. Each joint can be individually locked (lock ON) or unlocked (lock OFF). The lock mechanism 6 includes, for example, an electromagnetic brake. The electromagnetic brake may lock the joint when current is applied and unlock the joint when current is not applied. By turning off the power of the lock mechanism 6, the joint is locked. The power of the locking mechanism 6 is manually turned on or off by the user U, for example.
 ロック機構6は、関節の角度に応じて回転する支軸を有してよい。支軸に対して、直列に角度センサ(ポテンショメータ、エンコーダ等)が固定されてよい。このような角度センサにより、関節角度の検出が可能になる。関節に直接角度センサを取り付ける必要がない分、小型化、軽量化のメリットが得られ、また、電気配線の数量の低減等も可能になる。角度センサの検出結果を利用して運動力学を解くことで(例えば順運動学による計算により)、ベース部4からの遠位端部5の位置、姿勢が算出される。ロボット装置2の座標の基準位置(例えば後述の図5のMechanicalGNDに相当)に対するロボットR2の先端部R2aや術具Tの座標を計算することができる。 The lock mechanism 6 may have a spindle that rotates according to the angle of the joint. An angle sensor (potentiometer, encoder, etc.) may be fixed in series with the support shaft. Such an angle sensor enables joint angle detection. Since there is no need to attach the angle sensor directly to the joint, the advantages of miniaturization and weight reduction can be obtained, and the number of electrical wiring can be reduced. The position and orientation of the distal end portion 5 from the base portion 4 are calculated by solving the kinematics using the detection result of the angle sensor (for example, by forward kinematics calculation). It is possible to calculate the coordinates of the distal end R2a of the robot R2 and the surgical tool T with respect to the reference position of the coordinates of the robot device 2 (e.g., corresponding to MechanicalGND in FIG. 5, which will be described later).
 図3は、角度センサ8の配置の例を示す図である。角度センサ8は、ロック機構6の出力軸に対して直列に装着される。関節角度が変化すると、関節に装着されたプーリーを介してワイヤロープ(例えば後述のトランスミッション7の一例であるワイヤトランスミッションのワイヤロープに相当)が変位する。ワイヤロープの変位に応じて、ロック機構6の出力軸に対して回転トルクが伝達され、同軸に連結された角度センサの回転軸に回転トルクが加わり、変位が検出される。 FIG. 3 is a diagram showing an example of the arrangement of the angle sensor 8. FIG. The angle sensor 8 is mounted in series with the output shaft of the lock mechanism 6 . When the joint angle changes, a wire rope (for example, corresponding to a wire rope of a wire transmission, which is an example of the transmission 7 described later) is displaced via a pulley attached to the joint. Rotational torque is transmitted to the output shaft of the lock mechanism 6 in accordance with the displacement of the wire rope, and the rotational torque is applied to the rotational shaft of the coaxially connected angle sensor to detect the displacement.
 図2に戻り、各ロック機構6の個別制御が可能である。ロック機構6の制御は、ユーザUが例えばペダル操作等により行ってもよいし、自動で行われてもよい。ベース部4の並進移動のロック及びアンロック、並びに遠位端部5の回転移動のロック及びアンロックを別々に制御することができる。 Returning to FIG. 2, individual control of each lock mechanism 6 is possible. The control of the lock mechanism 6 may be performed by the user U, for example, by pedal operation or the like, or may be performed automatically. The locking and unlocking of the translational movement of the base part 4 and the locking and unlocking of the rotational movement of the distal end part 5 can be controlled separately.
 ロック機構6の電源がオフのときには、ロック機構6によるロックがオンの状態になる。突然の停電が発生した時等でも、ロボット装置2が暴走するリスクが低減又は回避される。ロックがオンになっているロック機構6は、ユーザUがロボットR1を手動で強く推した時に受動的に動くトルクリミッタ的な役割も兼ねる。例えば、緊急時にロボット手術から手技に切り替えることができる。 When the power of the lock mechanism 6 is off, the lock by the lock mechanism 6 is on. Even when a sudden power failure occurs, the risk of the robot device 2 running out of control is reduced or avoided. The lock mechanism 6 that is locked also serves as a torque limiter that passively moves when the user U strongly pushes the robot R1 manually. For example, it is possible to switch from robotic surgery to manual surgery in an emergency.
 トランスミッション7は、ベース部4に設けられ、ロック機構6からの制動力を、対応する関節に伝達する。図4も参照して説明する。 The transmission 7 is provided on the base portion 4 and transmits the braking force from the lock mechanism 6 to the corresponding joints. Description will also be made with reference to FIG.
 図4は、トランスミッション7による制動力の伝達の例を模式的に示す図である。ベース部4の並進機構41(図2)のいくつかの関節にはロック機構6が直接設けられ、従ってトランスミッション7による制動力の伝達は不要である。そのようなロック機構6が、ロック機構6a及びロック機構6fとして例示される。並進機構41の関節のうち、ロック機構6が直接には設けられない関節には、ロック機構6の制動力が、トランスミッション7を介して伝達される。そのようなロック機構6が、ロック機構6bとして例示される。ロック機構6aは直接的に取り付けられてもよいし、減速機(又は増速機)を介して取り付けられてもよい。 FIG. 4 is a diagram schematically showing an example of transmission of braking force by the transmission 7. FIG. Some joints of the translational mechanism 41 (FIG. 2) of the base part 4 are directly provided with the locking mechanism 6, so transmission of the braking force by the transmission 7 is unnecessary. Such a lock mechanism 6 is exemplified as a lock mechanism 6a and a lock mechanism 6f. Among the joints of the translation mechanism 41 , the braking force of the lock mechanism 6 is transmitted via the transmission 7 to joints that are not directly provided with the lock mechanism 6 . Such a lock mechanism 6 is exemplified as a lock mechanism 6b. The lock mechanism 6a may be attached directly, or may be attached via a speed reducer (or a speed increaser).
 遠位端部5の関節には、ロック機構6は直接には設けられず、ロック機構6の制動力は、トランスミッション7を介して伝達される。遠位端部5の関節として、関節52c~関節52eが例示される。対応するロック機構6として、ロック機構6c~ロック機構6eが例示される。ロック機構6c~ロック機構6eの制動力が、トランスミッション7b~トランスミッション7eを介して、関節52b~関節52eに伝達される。 The locking mechanism 6 is not directly provided at the joint of the distal end portion 5 , and the braking force of the locking mechanism 6 is transmitted via the transmission 7 . Joints 52c to 52e are exemplified as the joints of the distal end portion 5 . As the corresponding lock mechanisms 6, lock mechanisms 6c to 6e are exemplified. Braking forces of the lock mechanisms 6c to 6e are transmitted to the joints 52b to 52e via the transmissions 7b to 7e.
 例えば、ロック機構6c~ロック機構6eによるロックをオンにし、ロック機構6a、ロック機構6b及びロック機構6fによるロックをオフにすることで、遠位端部5の回転移動をロックしつつ、ベース部4を並進移動させることができる。ユーザUは、例えば遠位端部5を直接的に保持して移動させたり回転させたりすることができる。 For example, by turning on the locking by the locking mechanisms 6c to 6e and turning off the locking by the locking mechanisms 6a, 6b, and 6f, while locking the rotational movement of the distal end portion 5, the base portion 4 can be translated. The user U can, for example, directly hold the distal end 5 and move or rotate it.
 トランスミッション7は、歯車による駆動力伝達系は含まない。その分、ロボットR1全体を小型化、軽量化することができる。例えば、トランスミッション7は、ワイヤ、ワイヤロープ、ベルト、スチールベルト、油圧、空圧、誘電エラストマー、形状記憶合金等を用いて、ロック機構6からの制動力を関節に伝達する。図4に示される例では、トランスミッション7は、ワイヤを用いてロック機構6からの制動力を関節に伝達するワイヤトランスミッションである。関節にワイヤロープが固定され、ワイヤロープを介して、関節がロック機構6に連結される。ワイヤ駆動方式で、並進3軸と回転3軸のロック及びアンロックの切り替えることができる。 The transmission 7 does not include a driving force transmission system using gears. Accordingly, the overall size and weight of the robot R1 can be reduced. For example, the transmission 7 uses wires, wire ropes, belts, steel belts, hydraulics, pneumatics, dielectric elastomers, shape memory alloys, etc. to transmit the braking force from the locking mechanism 6 to the joints. In the example shown in FIG. 4, the transmission 7 is a wire transmission that uses a wire to transmit the braking force from the locking mechanism 6 to the joint. A wire rope is fixed to the joint, and the joint is connected to the lock mechanism 6 via the wire rope. A wire drive system allows switching between locking and unlocking of three translational axes and three rotational axes.
 図2に戻り、ユーザUは、ロボットR1のベース部4を把持して並進移動させたり、ロボットR1の遠位端部5を把持して回転移動させたりすることにより、ロボットR1を手動操作する。これにより、ユーザUは、遠位端部5に支持されたロボットR2(図1)、ひいてはロボットR2に接続された術具Tを、任意の位置に移動させたり静止させたりすることができる。 Returning to FIG. 2, the user U manually operates the robot R1 by gripping the base portion 4 of the robot R1 and translating it, or gripping the distal end portion 5 of the robot R1 and rotating it. . As a result, the user U can move the robot R2 (FIG. 1) supported by the distal end portion 5, and thus the surgical tool T connected to the robot R2, to an arbitrary position or make it stationary.
 ロボット装置2の軽量化、小型化が図られている分、ロボットR1の手動操作をはじめとしたロボット装置2の扱いが容易になる。例えば、ロボット装置2のロボットR1は、ユーザUが片手で把持して操作できる程度のサイズ、例えば20cm以下の手のひらサイズを有し得る。ロボットR1は、ロボットR2よりもさらに小型化されており、例えば7cm以下のテニスボール程度のサイズを有し得る。 As the robot device 2 is made lighter and smaller, it becomes easier to handle the robot device 2, including manual operation of the robot R1. For example, the robot R1 of the robot device 2 may have a size that can be held and operated by the user U with one hand, for example, a palm size of 20 cm or less. The robot R1 is even smaller than the robot R2, and may have a size of, for example, a tennis ball of 7 cm or less.
 粗動ロボットであるロボットR1が小さいので、粗動のスケールも小さくり、振動ノイズが低減される。振動ノイズに対応する共振周波数は、質量に反比例することが知られている。粗動のスケールが小さくなると、質量も小さくなるので、共振周波数は大きくなる。振動ノイズは相対的に小さくなる。また、リンク長が短くなることにより、振動による揺れ幅が相対的に小さくなる。 Since the robot R1, which is a coarse motion robot, is small, the scale of coarse motion is also small, and vibration noise is reduced. It is known that the resonant frequency corresponding to vibration noise is inversely proportional to mass. As the scale of coarse motion becomes smaller, the mass also becomes smaller and thus the resonance frequency increases. Vibration noise is relatively small. In addition, since the link length is shortened, the swing width due to vibration is relatively reduced.
 以上で説明したロボット装置2によれば、ユーザUがロボットR1を手動操作することで、ロボット装置2を容易に動かすことができる。より具体的ないくつかの利点について説明する。例えば、ロボットR1がモータや力センサを備えていないので、暴走リスクや故障リスクを低減することができる。 According to the robot device 2 described above, the user U can easily move the robot device 2 by manually operating the robot R1. Some more specific advantages are described. For example, since the robot R1 does not have a motor or a force sensor, it is possible to reduce the risk of runaway or failure.
 ロボット装置2全体(ロボットアーム全体)を小型化、軽量化できるので、ユーザUが手で持って動かす際に要する力を軽減できる。例えば操作が軽くなる。 Since the entire robot device 2 (entire robot arm) can be made smaller and lighter, the force required for the user U to hold and move it can be reduced. For example, it becomes easier to operate.
 ベース部4に設けられたロック機構6からの制動力が、トランスミッション7を介して伝達される。ロック機構6がベース部4に設けられることで、遠位端部5の構成すなわち術野周辺の患者側の構成を簡素化することができる。手術時の術具Tとの干渉や顕微鏡11の視野の阻害リスクを低減し、清潔領域を小型に抑えることできるため運用上メリットが高い。トランスミッション7もベース部4に設けられることによっても、同様の効果が得られる。 A braking force from the lock mechanism 6 provided on the base portion 4 is transmitted through the transmission 7 . By providing the locking mechanism 6 in the base portion 4, the configuration of the distal end portion 5, that is, the configuration of the patient side around the surgical field can be simplified. This reduces the risk of interference with the surgical tool T during surgery and obstruction of the field of view of the microscope 11, and can reduce the size of the clean area, which is highly advantageous in terms of operation. A similar effect can be obtained by providing the transmission 7 on the base portion 4 as well.
 ロック機構6によるロック及びアンロックを能動的に切り替えることができる。術中に度々行う必要がある術具Tの挿入点の移動にユーザUが多くの時間を費やす必要性が低減される。 Locking and unlocking by the lock mechanism 6 can be actively switched. This reduces the need for the user U to spend a lot of time moving the insertion point of the surgical tool T, which is often required during surgery.
 ロック機構6は、患者付近に位置する遠位端部5ではなく、患者から離れたベース部4に設けられる。遠位端部5をコンパクトにすることができ、それによって、例えば他の術具Tとの干渉、術野を遮るオクルージョンや患者との接触といった問題を防ぐことが出来る。 The locking mechanism 6 is provided on the base part 4 away from the patient, not on the distal end part 5 located near the patient. The distal end 5 can be made compact, thereby avoiding problems such as interference with other surgical instruments T, occlusions obstructing the surgical field, and contact with the patient.
 再び図1を参照して、座標統合装置9について説明する。座標統合装置9は、ロボット装置2(の例えば先端部R2a)と、ロボット装置2の周囲物の座標とを統合する(レジストレーションする)。周囲物の例は、顕微鏡11、OCTプローブ12のようなOCT装置、図示しないCT装置、MRI(Magnetic Resonance Imaging)装置、超音波装置、及び患者13等である。座標統合装置9は、例えば汎用のコンピュータ上でソフトウェアを動作させることで実現されてもよいし、専用のハードウェアで実現されてもよい。座標統合装置9は、ロボットシステム1の他の要素から、必要な情報を通信等によって取得する。 The coordinate integration device 9 will be described with reference to FIG. 1 again. The coordinate integration device 9 integrates (registers) the coordinates of the robot device 2 (for example, the tip portion R2a thereof) and the surrounding objects of the robot device 2 . Examples of surrounding objects are a microscope 11, an OCT apparatus such as an OCT probe 12, a CT apparatus (not shown), an MRI (Magnetic Resonance Imaging) apparatus, an ultrasound apparatus, a patient 13, and the like. The coordinate integration device 9 may be realized by running software on a general-purpose computer, or may be realized by dedicated hardware. The coordinate integration device 9 acquires necessary information from other elements of the robot system 1 through communication or the like.
 座標統合装置9による座標の統合のために、治具装置を用いた位置合わせが行われる。図5を参照して説明する。 For integration of coordinates by the coordinate integration device 9, alignment is performed using a jig device. Description will be made with reference to FIG.
 図5は、治具装置14を用いた位置合わせ及び座標統合の例を示す図である。例えば図5の(A)に示されるように、ロボット装置2は、ロボットR1が患者の頭部付近の台座に設けられた円弧形状を有するレールに固定され、ロボットR2が患者の眼球Eの近くに位置するように配置される。ロボットR1を操作するユーザUの手の部分が模式的に図示される。 FIG. 5 is a diagram showing an example of alignment and coordinate integration using the jig device 14. FIG. For example, as shown in FIG. 5A, the robot apparatus 2 includes a robot R1 fixed to an arc-shaped rail provided on a pedestal near the patient's head, and a robot R2 fixed near the patient's eyeball E. is arranged to be located in A hand portion of the user U operating the robot R1 is schematically illustrated.
 図5の(A)及び(B)に示されるように、ロボット装置2には、治具装置14が設けられる。治具装置14は、ロボット装置2の構成要素であってもよし、ロボット装置2の構成要素でなくてもよい。この例では、治具装置14は、ロボット装置2のロボットR1の遠位端部5に固定される。治具装置14は、ロボット装置2を、その周囲物に位置合わせするために用いられる。 As shown in FIGS. 5A and 5B, the robot device 2 is provided with a jig device 14 . The jig device 14 may be a component of the robot device 2 or may not be a component of the robot device 2 . In this example, the jig device 14 is fixed to the distal end 5 of the robot R1 of the robotic device 2 . A jig device 14 is used to align the robot device 2 with its surroundings.
 周囲物には、治具装置14に対応する1つ以上の対応治具装置15が固定される。治具装置14は、対応治具装置15と接触することで、ロボット装置2を周囲物に位置合わせする。 One or more corresponding jig devices 15 corresponding to the jig device 14 are fixed to the surrounding object. The jig device 14 aligns the robot device 2 with the surrounding objects by contacting the corresponding jig device 15 .
 治具装置14と対応治具装置15とは、さまざまな態様で接触してよい。接触の例は、篏合による接触、ネジ固定による接触、点接触、磁石による吸着接触等である。図5に示される例では、篏合による接触が用いられる。治具装置14及び対応治具装置15は、互いに篏合可能な凸形状及び凹形状を有する。例えば、治具装置14は、対応治具装置15に挿入されるプローブを含んで構成される。 The jig device 14 and the corresponding jig device 15 may contact in various manners. Examples of contact include contact by fitting, contact by screw fixing, point contact, attraction contact by a magnet, and the like. In the example shown in FIG. 5, a snug contact is used. The jig device 14 and the corresponding jig device 15 have a convex shape and a concave shape that can be fitted to each other. For example, the jig device 14 includes a probe that is inserted into the corresponding jig device 15 .
 図5の(A)には、対応治具装置15として、対応治具装置15-1、対応治具装置15-2及び対応治具装置15-3が例示される。対応治具装置15-1は、顕微鏡11に固定される。対応治具装置15-2は、OCTプローブ12(の台座)に固定される。対応治具装置15-3は、患者13に対して固定される対応治具装置15であり、この例ではレールに固定される。対応治具装置15は、さまざまな態様で周囲物に対して固定されてよい。固定の例は、接着による固定、貼り付けによる固定、ネジ固定等である。なお、治具装置14のロボット装置2への固定についても同様であってよい。 In (A) of FIG. 5, as the corresponding jig device 15, a corresponding jig device 15-1, a corresponding jig device 15-2, and a corresponding jig device 15-3 are illustrated. A corresponding jig device 15 - 1 is fixed to the microscope 11 . The corresponding jig device 15-2 is fixed to (the pedestal of) the OCT probe 12. As shown in FIG. The corresponding jig device 15-3 is the corresponding jig device 15 fixed to the patient 13, and is fixed to the rail in this example. Corresponding jig assembly 15 may be fixed relative to the surroundings in a variety of ways. Examples of fixation include fixation by adhesion, fixation by sticking, and screw fixation. Incidentally, the fixing of the jig device 14 to the robot device 2 may be the same.
 ロボット装置2やその周囲物の座標を、座標Pと称する。具体的に、ロボット装置2のロボットR1の座標Pを、座標PR1と称し図示する。ロボットR2の座標Pを、座標PR2と称し図示する。顕微鏡11の座標Pを、座標PMSと称し図示する。OCTプローブ12の座標Pを、座標POCTと称し図示する。患者13の座標Pを、座標Ppatientと称し図示する。 Coordinates of the robot device 2 and its surroundings are referred to as coordinates P. As shown in FIG. Specifically, the coordinates P of the robot R1 of the robot device 2 are shown as coordinates PR1 . The coordinates P of robot R2 are shown as coordinates PR2 . The coordinates P of the microscope 11 are shown as coordinates PMS . The coordinate P of the OCT probe 12 is illustrated as coordinate P OCT . The coordinate P of the patient 13 is illustrated as the coordinate P patient .
 ユーザUは、治具装置14を対応治具装置15に合わせる(例えば挿入する)ように、ロボットR1を手動操作する。ロボット装置2を、その周囲物に位置合わせすることができる。座標統合装置9(図1)は、上述の治具装置14による位置合わせの結果に基づいて、座標を統合する。 The user U manually operates the robot R1 so as to align (for example, insert) the jig device 14 with the corresponding jig device 15 . The robotic device 2 can be aligned with its surroundings. The coordinate integration device 9 (FIG. 1) integrates the coordinates based on the result of alignment by the jig device 14 described above.
 座標統合装置9は、治具装置14が対応治具装置15-1に合わされた状態でのロボット装置2の関節角度に基づいて、ロボット装置2のロボットR1の座標PR1やロボットR2の座標PR2と、顕微鏡11の座標PMSとを統合する。そのときのロボット装置2の関節角度から、治具装置14の位置が計算(把握)され、また、そこから対応治具装置15-1ひいては顕微鏡11の位置が計算される。 The coordinate integrating device 9 calculates the coordinate P R1 of the robot R1 of the robot device 2 and the coordinate P Integrate R2 with the microscope 11 coordinates PMS . From the joint angle of the robot device 2 at that time, the position of the jig device 14 is calculated (ascertained), and from there, the position of the corresponding jig device 15-1 and thus the microscope 11 is calculated.
 同様に、座標統合装置9は、治具装置14が対応治具装置15-2に合わされた状態でのロボット装置2の関節角度に基づいて、ロボット装置2のロボットR1の座標PR1やロボットR2の座標PR2と、OCTプローブ12の座標POCTとを統合する。また、座標統合装置9は、治具装置14が対応治具装置15-3に合わされた状態でのロボット装置2の関節角度に基づいて、ロボット装置2のロボットR1の座標PR1やロボットR2の座標PR2と、患者13の座標Ppatientとを統合する。 Similarly, the coordinate integrating device 9 calculates the coordinates PR1 of the robot R1 of the robot device 2 and the coordinates PR1 of the robot R2 based on the joint angles of the robot device 2 when the jig device 14 is aligned with the corresponding jig device 15-2. , and the coordinates P OCT of the OCT probe 12 are integrated. In addition, the coordinate integration device 9 calculates the coordinates PR1 of the robot R1 of the robot device 2 and the coordinates PR1 of the robot R2 based on the joint angles of the robot device 2 when the jig device 14 is aligned with the corresponding jig device 15-3. Integrate the coordinate P R2 with the coordinate P patient of the patient 13 .
 図5の(B)には、ロボット装置2の基準位置(ベース座面等)が、MechanicalGNDとして模式的に示される。座標統合装置9によって統合された座標は、例えば、ロボット装置2の基準位置を基準とする座標であってよい。座標統合精度は、位置検出精度、すなわち角度センサの分解能によって決定される。例えば、サブミリオーダーでの高精度な検出が可能である。 In (B) of FIG. 5, the reference position (base seating surface, etc.) of the robot device 2 is schematically shown as Mechanical GND. The coordinates integrated by the coordinate integration device 9 may be coordinates based on the reference position of the robot device 2, for example. The coordinate integration accuracy is determined by the position detection accuracy, that is, the resolution of the angle sensor. For example, highly accurate detection on the order of submillimeters is possible.
 先にも述べたように、角度センサによって検出された関節角度に基づく順運動学の計算により、ロボット装置2の基準位置に対するロボット装置2の各部(例えば先端部R2a等)さらには術具Tの座標を算出することができる。図5の(C)には、計算のいくつかの例が示される。 As described above, forward kinematics calculations based on the joint angles detected by the angle sensors allow each part of the robot device 2 (for example, the distal end portion R2a, etc.) and the surgical tool T to be positioned relative to the reference position of the robot device 2. Coordinates can be calculated. Some examples of calculations are shown in FIG. 5C.
 例えば、基準位置の座標(ベース面座標)を座標PGNDとし、ロボットR1の関節角度をθとすると、ロボットR1の座標PR1は、θを引数とする関数RR1(θ)と、座標PGNDとに基づいて(例えばそれらの乗算により)計算される。ロボットR2の関節角度をφとすると、ロボットR2の座標PR2は、φを引数とする関数RR2(φ)と、ロボットR1の座標PR1とに基づいて計算される。 For example, if the coordinates of the reference position (base plane coordinates) are the coordinates P GND and the joint angle of the robot R1 is θ, the coordinates P R1 of the robot R1 are obtained by a function R R1 (θ) with θ as an argument and the coordinates P GND (eg by multiplying them). Assuming that the joint angle of the robot R2 is φ, the coordinate P R2 of the robot R2 is calculated based on the function R R2 (φ) having φ as an argument and the coordinate P R1 of the robot R1.
 治具装置14を対応治具装置15-1に合わせたときの関節角度をφとすると、顕微鏡11の座標PMSは、関数RR1(φ)と、座標PR1とに基づいて計算される。治具装置14を対応治具装置15-2に合わせたときの関節角度をφとすると、OCTプローブ12の座標POCTは、関数RR1(φ1)と、座標PR1とに基づいて計算される。治具装置14を対応治具装置15-3に合わせたときの関節角度をφとすると、患者13の座標Ppatientは、関数RR1(φ)と、座標PR1とに基づいて計算される。 Assuming that the joint angle when the jig device 14 is aligned with the corresponding jig device 15-1 is φ 0 , the coordinate P MS of the microscope 11 is calculated based on the function R R10 ) and the coordinate P R1 . be done. Assuming that the joint angle when the jig device 14 is aligned with the corresponding jig device 15-2 is φ1 , the coordinate P OCT of the OCT probe 12 is calculated based on the function R R1 (φ1) and the coordinate P R1 . be done. Assuming that the joint angle when the jig device 14 is aligned with the corresponding jig device 15-3 is φ 2 , the coordinate P patient of the patient 13 is calculated based on the function R R12 ) and the coordinate P R1 . be done.
 なお、顕微鏡11が、OCT機能が組み入れられたOCT一体型手術顕微鏡の場合には、顕微鏡11の座標とOCTの座標が予め統合されているため、対応治具装置15-2による座標統合は省略されてよい。その場合は、対応治具装置15-2は無くてもよい。また、患者13の位置は、例えば顕微鏡11の観察画像からでも把握できるので、対応治具装置15-3による座標統合も省略されてよい。その場合は、対応治具装置15-3は無くてもよい。 If the microscope 11 is an OCT-integrated surgical microscope incorporating an OCT function, the coordinates of the microscope 11 and the coordinates of the OCT are integrated in advance, so coordinate integration by the corresponding jig device 15-2 is omitted. may be In that case, the corresponding jig device 15-2 may be omitted. In addition, since the position of the patient 13 can be grasped, for example, from the observation image of the microscope 11, coordinate integration by the corresponding jig device 15-3 may be omitted. In that case, the corresponding jig device 15-3 may be omitted.
 図6は、座標統合の作業の手順(座標統合方法、レジストレーション方法)の例を示すフローチャートである。この作業は、例えば、手術開始前に、顕微鏡11、OCTプローブ12及び患者13の位置が固定された状態で行われる。 FIG. 6 is a flow chart showing an example of a coordinate integration work procedure (coordinate integration method, registration method). This operation is performed, for example, with the positions of the microscope 11, the OCT probe 12, and the patient 13 fixed before the start of surgery.
 ステップS1において、治具装置14を用いて、ロボット装置2が周囲物に位置合わせされる。ユーザUは、治具装置14を、周囲物に対して固定された対応治具装置15(例えば顕微鏡11に対して固定された対応治具装置15-1)に合わせるように、ロボットR1を手動操作する。 In step S1, the jig device 14 is used to align the robot device 2 with the surrounding objects. The user U manually moves the robot R1 so that the jig device 14 is aligned with the corresponding jig device 15 fixed to the surrounding object (for example, the corresponding jig device 15-1 fixed to the microscope 11). Manipulate.
 ステップS2において、ロボット装置2の座標と、周囲物の座標とが統合される。座標統合装置9は、先のステップS1での位置合わせの結果(例えばその状態でのロボット装置2の関節角度等)に基づいて、ロボット装置2のロボットR1の座標PR1やロボットR2の座標PR2と、顕微鏡11の座標PMC、OCTプローブ12(OCT装置)の座標POCT、患者13の座標Ppatientとを統合する。 In step S2, the coordinates of the robot device 2 and the coordinates of surrounding objects are integrated. The coordinate integrating device 9 calculates the coordinates P R1 of the robot R1 of the robot device 2 and the coordinates P R2 , the coordinates P MC of the microscope 11, the coordinates P OCT of the OCT probe 12 (OCT apparatus), and the coordinates P patient of the patient 13 are integrated.
 例えば以上のようにして、ロボット装置2の座標とその周囲物の座標とが統合される。 For example, the coordinates of the robot device 2 and the coordinates of its surroundings are integrated as described above.
 特許文献1の手法では、撮像精度が高くとも(例えばOCTであれば5μm程度)、光学式マーカの検出精度がボトルネックとなるため、画像誘導精度に限界がある。本実施形態のように治具装置14等を用いることで、光学式マーカを検出する手法よりも、精度や再現性が高く、安定した座標統合が可能になる。 With the method of Patent Document 1, even if the imaging accuracy is high (for example, about 5 μm for OCT), the accuracy of optical marker detection is a bottleneck, so there is a limit to the accuracy of image guidance. By using the jig device 14 and the like as in the present embodiment, it is possible to achieve stable coordinate integration with higher precision and reproducibility than the method of detecting optical markers.
 また、光学式マーカを用いる場合には、カメラと装置の関係から光学式マーカを読み取り可能な位置を計画する等の困難な作業(マーカ登録作業)が必要になる。治具装置14等を用いる場合には、そのような作業は不要である。治具装置14を対応治具装置15に合わせる(例えばプローブ挿抜)という直感的な作業で、座標統合が可能になる。 Also, when using an optical marker, difficult work (marker registration work) such as planning the position where the optical marker can be read is required due to the relationship between the camera and the device. Such work is unnecessary when using the jig device 14 or the like. Coordinates can be integrated by an intuitive operation of aligning the jig device 14 with the corresponding jig device 15 (for example, inserting and removing a probe).
 治具装置14及び対応治具装置15は、挿入治具のようなシンプルな構成で足りる。光学式マーカを用いる場合よりも、簡便で正確な座標統合が可能になる。従来困難であったサブミリオーダーでの操作精度が必要とされる術式での画像誘導等が可能になる。 The jig device 14 and the corresponding jig device 15 need only have a simple configuration like an insertion jig. Simpler and more accurate coordinate integration is possible than with optical markers. It is possible to perform image guidance in surgical procedures that require operation accuracy on the order of submillimeters, which has been difficult in the past.
 統合された座標に基づくさまざまなアプリケーションが可能になる。例えば高精度での手術支援等が可能である。一例について、図7を参照して説明する。 Various applications based on integrated coordinates are possible. For example, it is possible to support surgery with high precision. An example will be described with reference to FIG.
 図7は、手術支援の例を示す図である。白内障の手術におけるOCT画像が、モニタ3に表示され、術具Tの位置がナビゲーションされる。具体的に、OCT画像において、術具Tの可動領域が制限される(術具可動域制約)。矢印カーソルで示される遠隔運動中心をピボット点とし、術具T先端の可動範囲を制限するバーチャルウォールWが表示される。バーチャルウォールWをまたぐ術具Tの移動操作が抑制される。このようなナビゲーションが、ロボット装置2のロボットR2及び支持される術具Tの座標や、OCTプローブ12の座標の統合によって可能になる。 FIG. 7 is a diagram showing an example of surgical assistance. An OCT image in cataract surgery is displayed on the monitor 3, and the position of the surgical tool T is navigated. Specifically, in the OCT image, the movable region of the surgical tool T is restricted (surgical tool movable range restriction). A virtual wall W is displayed that limits the movable range of the distal end of the surgical tool T with the remote motion center indicated by the arrow cursor as the pivot point. The operation of moving the surgical tool T across the virtual wall W is suppressed. Such navigation becomes possible by integrating the coordinates of the robot R2 of the robot device 2 and the supported surgical tool T, and the coordinates of the OCT probe 12 .
2.変形例
 開示される技術は、上記の実施形態に限定されない。例えば、座標統合装置9は、周囲物(顕微鏡11、OCTプローブ12、患者13等)の座標の他に、オプションとして、術前画像のデータの座標も統合してよい。例えば術中に術前画像及び術中画像を比較表示するといった用途に供することができる。
2. Modifications The technology disclosed is not limited to the above embodiments. For example, the coordinate integration device 9 may integrate the coordinates of the surrounding objects (microscope 11, OCT probe 12, patient 13, etc.) and optionally also the coordinates of the preoperative image data. For example, it can be used for comparative display of a preoperative image and an intraoperative image during surgery.
 上記実施形態では、手術が眼科手術である場合を例に挙げて説明した。ただし、開示される技術は、眼科手術以外の手術に適用されてもよい。 In the above embodiment, the case where the surgery is ophthalmic surgery has been described as an example. However, the technology disclosed may be applied to surgery other than ophthalmic surgery.
3.効果の例
 以上で説明した技術は、例えば次のように特定される。開示される技術の1つは、ロボットシステム1である。図1~図5等を参照して説明した様に、ロボットシステム1は、ロボット装置2と、治具装置14と、を備える。ロボット装置2は、患者13の体内(例えば眼球E)に挿入される術具Tを支持する。治具装置14は、ロボット装置2を、ロボット装置の周囲物に位置合わせするために用いられる。
3. Example of Effect The technology described above is specified as follows, for example. One of the disclosed technologies is the robot system 1 . As described with reference to FIGS. 1 to 5 and the like, the robot system 1 includes the robot device 2 and the jig device 14 . The robot device 2 supports a surgical tool T that is inserted into the patient's 13 body (for example, the eyeball E). The jig device 14 is used to align the robot device 2 with the surroundings of the robot device.
 上記のロボットシステム1によれば、治具装置14を用いることで、例えば特許文献1のように光学式マーカを検出する場合よりも、座標統合精度を向上させることができる。 According to the robot system 1 described above, by using the jig device 14, it is possible to improve the coordinate integration accuracy compared to the case of detecting an optical marker as in Patent Document 1, for example.
 図1及び図5等を参照して説明したように、周囲物は、顕微鏡11、OCT装置(OCTプローブ12)、CT装置、MRI装置、超音波装置、及び、患者13の少なくとも1つを含んでよい。例えばこのような周囲物の座標をロボット装置2の座標に統合することで、高精度な手術支援を実現することができる。 As described with reference to FIGS. 1 and 5, the surroundings include at least one of the microscope 11, OCT device (OCT probe 12), CT device, MRI device, ultrasound device, and patient 13. OK. For example, by integrating the coordinates of such surrounding objects with the coordinates of the robot apparatus 2, highly accurate surgical assistance can be realized.
 図5等を参照して説明したように、治具装置14は、周囲物に対して固定された対応治具装置15と接触することで、ロボット装置2を位置合わせしてよい。治具装置14と対応治具装置15との接触は、篏合による接触、ネジ固定による接触、点接触、及び、磁石による吸着接触の少なくとも1つを含んでよい。対応治具装置15の周囲物に対する固定は、接着による固定、貼り付けによる固定、及び、ネジ固定の少なくとも1つを含んでよい。例えばこのような治具装置14及び対応治具装置15を用いて、ロボット装置2を周囲物に位置合わせすることができる。 As described with reference to FIG. 5 and the like, the jig device 14 may align the robot device 2 by coming into contact with the corresponding jig device 15 fixed to the surrounding object. The contact between the jig device 14 and the corresponding jig device 15 may include at least one of fitting contact, screw fixing contact, point contact, and magnet attraction contact. The fixation of the corresponding jig device 15 to the surroundings may include at least one of adhesion fixation, sticking fixation, and screw fixation. For example, using such a jig device 14 and corresponding jig device 15, the robot device 2 can be aligned with surrounding objects.
 図1及び図5等を参照して説明したように、ロボットシステム1は、治具装置14による位置合わせの結果に基づいて、ロボット装置2の座標と、周囲物の座標とを統合する座標統合装置9、を備えてよい。統合された座標は、ロボット装置2の基準位置(MechanicalGND)を基準とする座標であってよい。座標統合装置9は、術前画像のデータの座標も統合してよい。例えばこのような座標統合装置9によって、ロボット装置2の座標と周囲物の座標とを統合し、さらにはオプションとして術前画像のデータの座標も統合することができる。 As described with reference to FIGS. 1 and 5, the robot system 1 performs coordinate integration for integrating the coordinates of the robot device 2 and the coordinates of the surrounding objects based on the result of alignment by the jig device 14. device 9 may be provided. The integrated coordinates may be coordinates based on the reference position (MechanicalGND) of the robot device 2 . The coordinate integration device 9 may also integrate the coordinates of the preoperative image data. For example, such a coordinate integration device 9 can integrate the coordinates of the robot device 2 and the coordinates of the surrounding object, and optionally also the coordinates of the preoperative image data.
 図1及び図2等を参照して説明したように、ロボット装置2は、ベース部4及び遠位端部5を含むロボットR1(第1のロボット)と、ロボットR1の遠位端部5に支持されるとともに、術具Tを支持するロボットR2(第2のロボット)と、を備え、ロボットR1は、ユーザUがロボットR1に直接的に力を加えて操作するように構成されてよい。ユーザUがロボットR1を手動操作することで、ロボット装置2を容易に動かすことができる。 As described with reference to FIGS. 1 and 2, the robot device 2 includes a robot R1 (first robot) including a base portion 4 and a distal end portion 5, and a distal end portion 5 of the robot R1. and a robot R2 (second robot) that is supported and supports the surgical instrument T, and the robot R1 may be configured to be operated by the user U by directly applying force to the robot R1. The user U can easily move the robot device 2 by manually operating the robot R1.
 図7等を参照して説明した座法統合方法(レジストレーション方法)も、開示される技術の1つである。座標統合方法は、治具装置14を用いて、患者13の体内(例えば眼球E)に挿入される術具Tを支持するロボット装置2を、ロボット装置2の周囲物に位置合わせすること(ステップS1)と、位置合わせの結果に基づいて、ロボット装置2の座標と、周囲物の座標とを統合すること(ステップS2)と、を含む。このような座標統合方法によっても、これまで説明したように、標統合精度を向上させることができる。 The locus integration method (registration method) described with reference to FIG. 7 etc. is also one of the disclosed techniques. The coordinate integration method uses the jig device 14 to align the robot device 2 supporting the surgical tool T to be inserted into the body of the patient 13 (for example, the eyeball E) with the surroundings of the robot device 2 (step S1) and integrating the coordinates of the robot device 2 and the coordinates of the surroundings based on the alignment result (step S2). Such a coordinate integration method can also improve the accuracy of target integration as described above.
 開示される技術は、以下のように特定することもできる。例えば、ロボットシステム1は眼科手術支援ロボットシステムであり、術具Tを支持したロボットアーム(ロボット装置2)と、ロボットアーム関節の回転角度を検出するセンサ(角度センサ8)と、ロボットアーム遠位端(ロボットR1の遠位端部5)に配置された治具部品(治具装置14)と、を備えてよい。 The disclosed technology can also be specified as follows. For example, the robot system 1 is an ophthalmic surgery support robot system, and includes a robot arm (robot device 2) supporting a surgical tool T, a sensor (angle sensor 8) for detecting the rotation angle of the robot arm joint, and a robot arm distal end sensor. and a fixture component (fixture device 14) located at the end (distal end 5 of robot R1).
 ロボットアームは受動的に(手動で)操作され、治具部品(治具装置14)とペリフェラル機器(顕微鏡11、OCTプローブ12等のOCT機器、患者13に取り付けられた術具等)の治具部品(対応治具装置15)とを対応させる。治具部品同士の対応方法には、嵌合、ネジ等による固定、点接触や磁石による吸着等がある。ロボットアームでは、近接端を基準(MechanicalGND)とした遠位端(遠位端部5)での座標系が、検出関節角度を用いて検出される。ペリフェラル側の機器には、任意の位置に対して、接着、貼り付け、ネジ固定等の固着方法によって治具部品(対応治具装置15)が取り付けられる。 The robot arm is passively (manually) operated, and includes jig parts (jig device 14) and peripheral equipment (microscope 11, OCT equipment such as OCT probe 12, surgical tools attached to patient 13, etc.). The parts (corresponding jig device 15) are made to correspond. Methods of handling jig parts include fitting, fixing with screws, point contact, attraction with magnets, and the like. In the robot arm, the coordinate system at the distal end (distal end 5) with the proximal end as a reference (mechanical GND) is detected using the detected joint angles. A jig component (corresponding jig device 15) is attached to the device on the peripheral side by a fixing method such as gluing, sticking, screw fixing, or the like, at an arbitrary position.
 なお、本開示に記載された効果は、あくまで例示であって、開示された内容に限定されない。他の効果があってもよい。 It should be noted that the effects described in this disclosure are merely examples and are not limited to the disclosed content. There may be other effects.
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。 Although the embodiments of the present disclosure have been described above, the technical scope of the present disclosure is not limited to the embodiments described above, and various modifications are possible without departing from the gist of the present disclosure. Moreover, you may combine the component over different embodiment and modifications suitably.
 なお、本技術は以下のような構成も取ることができる。
(1)
 患者の体内に挿入される術具を支持するロボット装置と、
 前記ロボット装置を、前記ロボット装置の周囲物に位置合わせするための治具装置と、
 を備える、
 ロボットシステム。
(2)
 前記周囲物は、
  顕微鏡、
  OCT装置、
  CT装置、
  MRI装置、
  超音波装置、及び、
  患者
 の少なくとも1つを含む、
 (1)に記載のロボットシステム。
(3)
 前記治具装置は、前記周囲物に対して固定された対応治具装置と接触することで、前記ロボット装置を前記位置合わせする、
 (1)又は(2)に記載のロボットシステム。
(4)
 前記治具装置と前記対応治具装置との前記接触は、
  篏合による接触、
  ネジ固定による接触、
  点接触、及び、
  磁石による吸着接触
 の少なくとも1つを含む、
 (3)に記載のロボットシステム。
(5)
 前記対応治具装置の前記周囲物に対する固定は、
  接着による固定、
  貼り付けによる固定、及び、
  ネジ固定
 の少なくとも1つを含む、
 (3)又は(4)に記載のロボットシステム。
(6)
 前記治具装置による前記位置合わせの結果に基づいて、前記ロボット装置の座標と、前記周囲物の座標とを統合する座標統合装置、
 を備える、
 (1)~(4)のいずれかに記載のロボットシステム。
(7)
 前記統合された座標は、前記ロボット装置の基準位置を基準とする座標である、
 (6)に記載のロボットシステム。
(8)
 前記座標統合装置は、術前画像のデータの座標も統合する、
 (6)又は(7)に記載のロボットシステム。
(9)
 前記ロボット装置は、
 ベース部及び遠位端部を含む第1のロボットと、
 前記第1のロボットの前記遠位端部に支持されるとともに、前記術具を支持する第2のロボットと、
 を備え、
 前記第1のロボットは、ユーザが前記第1のロボットに直接的に力を加えて操作するように構成される、
 (1)~(8)のいずれかに記載のロボットシステム。
(10)
 前記術具は、前記患者の眼球内に挿入される、
 (1)~(9)のいずれかに記載のロボットシステム。
(11)
 治具装置を用いて、患者の体内に挿入される術具を支持するロボット装置を、前記ロボット装置の周囲物に位置合わせすることと、
 位置合わせの結果に基づいて、前記ロボット装置の座標と、前記周囲物の座標とを統合することと、
 を含む、
 座標統合方法。
Note that the present technology can also take the following configuration.
(1)
a robotic device that supports a surgical instrument to be inserted into a patient's body;
a jig device for aligning the robot device with a surrounding object of the robot device;
comprising
robot system.
(2)
The surroundings are
microscope,
OCT device,
CT equipment,
MRI equipment,
an ultrasonic device, and
comprising at least one of the patient
The robot system according to (1).
(3)
The jig device aligns the robot device by contacting a corresponding jig device fixed to the surrounding object.
The robot system according to (1) or (2).
(4)
The contact between the jig device and the corresponding jig device
contact by mating,
contact by screw fixing,
point contact, and
at least one of magnetic attraction contact;
The robot system according to (3).
(5)
Fixing the corresponding jig device to the surrounding object,
fixing by gluing,
fixing by pasting, and
including at least one of screw fixing;
The robot system according to (3) or (4).
(6)
a coordinate integration device that integrates the coordinates of the robot device and the coordinates of the surrounding object based on the result of the alignment performed by the jig device;
comprising
The robot system according to any one of (1) to (4).
(7)
The integrated coordinates are coordinates based on a reference position of the robot device,
The robot system according to (6).
(8)
The coordinate integration device also integrates the coordinates of the preoperative image data.
The robot system according to (6) or (7).
(9)
The robotic device is
a first robot including a base and a distal end;
a second robot supported by the distal end of the first robot and supporting the surgical instrument;
with
The first robot is configured to be operated by a user by directly applying force to the first robot.
The robot system according to any one of (1) to (8).
(10)
The surgical instrument is inserted into the patient's eyeball,
The robot system according to any one of (1) to (9).
(11)
aligning a robotic device that supports a surgical tool to be inserted into a patient's body with a surrounding object of the robotic device using a jig device;
Integrating the coordinates of the robotic device and the coordinates of the surrounding object based on the alignment result;
including,
Coordinate integration method.
  1 ロボットシステム
  2 ロボット装置
  3 モニタ
  4 ベース部
 41 並進機構
 42 カウンターウェイト
  5 遠位端部
 51 回転機構
  6 ロック機構
  7 トランスミッション
  8 角度センサ
  9 座標統合装置
 11 顕微鏡
 12 OCTプローブ
 13 患者
 14 治具装置
 15 対応治具装置
  A 助手
  B ベッド
  E 眼球
 R1 ロボット
 R2 ロボット
 R3 ロボット
  T 術具
  U ユーザ
 TB 術具台
 TO 術具出し
1 Robotic System 2 Robotic Apparatus 3 Monitor 4 Base 41 Translation Mechanism 42 Counterweight 5 Distal End 51 Rotation Mechanism 6 Locking Mechanism 7 Transmission 8 Angle Sensor 9 Coordinate Integration Device 11 Microscope 12 OCT Probe 13 Patient 14 Jig Apparatus 15 Support Jig device A Assistant B Bed E Eye ball R1 Robot R2 Robot R3 Robot T Surgical tool U User TB Surgical tool table TO Pull out surgical tool

Claims (11)

  1.  患者の体内に挿入される術具を支持するロボット装置と、
     前記ロボット装置を、前記ロボット装置の周囲物に位置合わせするための治具装置と、
     を備える、
     ロボットシステム。
    a robotic device that supports a surgical instrument to be inserted into a patient's body;
    a jig device for aligning the robot device with a surrounding object of the robot device;
    comprising
    robot system.
  2.  前記周囲物は、
      顕微鏡、
      OCT装置、
      CT装置、
      MRI装置、
      超音波装置、及び、
      患者
     の少なくとも1つを含む、
     請求項1に記載のロボットシステム。
    The surroundings are
    microscope,
    OCT device,
    CT equipment,
    MRI equipment,
    an ultrasonic device, and
    comprising at least one of the patient
    The robot system according to claim 1.
  3.  前記治具装置は、前記周囲物に対して固定された対応治具装置と接触することで、前記ロボット装置を前記位置合わせする、
     請求項1に記載のロボットシステム。
    The jig device aligns the robot device by contacting a corresponding jig device fixed to the surrounding object.
    The robot system according to claim 1.
  4.  前記治具装置と前記対応治具装置との前記接触は、
      篏合による接触、
      ネジ固定による接触、
      点接触、及び、
      磁石による吸着接触
     の少なくとも1つを含む、
     請求項3に記載のロボットシステム。
    The contact between the jig device and the corresponding jig device
    contact by mating,
    contact by screw fixing,
    point contact, and
    at least one of magnetic attraction contact;
    The robot system according to claim 3.
  5.  前記対応治具装置の前記周囲物に対する固定は、
      接着による固定、
      貼り付けによる固定、及び、
      ネジ固定
     の少なくとも1つを含む、
     請求項3に記載のロボットシステム。
    Fixing the corresponding jig device to the surrounding object,
    fixing by gluing,
    fixing by pasting, and
    including at least one of screw fixing;
    The robot system according to claim 3.
  6.  前記治具装置による前記位置合わせの結果に基づいて、前記ロボット装置の座標と、前記周囲物の座標とを統合する座標統合装置、
     を備える、
     請求項1に記載のロボットシステム。
    a coordinate integration device that integrates the coordinates of the robot device and the coordinates of the surrounding object based on the result of the alignment performed by the jig device;
    comprising
    The robot system according to claim 1.
  7.  前記統合された座標は、前記ロボット装置の基準位置を基準とする座標である、
     請求項6に記載のロボットシステム。
    The integrated coordinates are coordinates based on a reference position of the robot device,
    The robot system according to claim 6.
  8.  前記座標統合装置は、術前画像のデータの座標も統合する、
     請求項6に記載のロボットシステム。
    The coordinate integration device also integrates the coordinates of the preoperative image data.
    The robot system according to claim 6.
  9.  前記ロボット装置は、
     ベース部及び遠位端部を含む第1のロボットと、
     前記第1のロボットの前記遠位端部に支持されるとともに、前記術具を支持する第2のロボットと、
     を備え、
     前記第1のロボットは、ユーザが前記第1のロボットに直接的に力を加えて操作するように構成される、
     請求項1に記載のロボットシステム。
    The robotic device is
    a first robot including a base and a distal end;
    a second robot supported by the distal end of the first robot and supporting the surgical instrument;
    with
    The first robot is configured to be operated by a user by directly applying force to the first robot.
    The robot system according to claim 1.
  10.  前記術具は、前記患者の眼球内に挿入される、
     請求項1に記載のロボットシステム。
    The surgical instrument is inserted into the patient's eyeball,
    The robot system according to claim 1.
  11.  治具装置を用いて、患者の体内に挿入される術具を支持するロボット装置を、前記ロボット装置の周囲物に位置合わせすることと、
     位置合わせの結果に基づいて、前記ロボット装置の座標と、前記周囲物の座標とを統合することと、
     を含む、
     座標統合方法。
    aligning a robotic device that supports a surgical tool to be inserted into a patient's body with a surrounding object of the robotic device using a jig device;
    Integrating the coordinates of the robotic device and the coordinates of the surrounding object based on the alignment result;
    including,
    Coordinate integration method.
PCT/JP2022/044651 2021-12-13 2022-12-05 Robot system and coordinate registration method WO2023112732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-201494 2021-12-13
JP2021201494 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023112732A1 true WO2023112732A1 (en) 2023-06-22

Family

ID=86774300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044651 WO2023112732A1 (en) 2021-12-13 2022-12-05 Robot system and coordinate registration method

Country Status (1)

Country Link
WO (1) WO2023112732A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321027A (en) * 2005-05-20 2006-11-30 Hitachi Ltd Master slave type manipulator system and its operation input device
JP2008526422A (en) * 2005-01-13 2008-07-24 メイザー サージカル テクノロジーズ リミテッド Image guide robot system for keyhole neurosurgery
JP2010504151A (en) * 2006-09-19 2010-02-12 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク System, apparatus and method for surgery on hollow anatomically suspended organs
US20110125165A1 (en) * 2008-05-16 2011-05-26 The Johns Hopkins University System and method for macro-micro distal dexterity enhancement in micro-surgery of the eye

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526422A (en) * 2005-01-13 2008-07-24 メイザー サージカル テクノロジーズ リミテッド Image guide robot system for keyhole neurosurgery
JP2006321027A (en) * 2005-05-20 2006-11-30 Hitachi Ltd Master slave type manipulator system and its operation input device
JP2010504151A (en) * 2006-09-19 2010-02-12 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク System, apparatus and method for surgery on hollow anatomically suspended organs
US20110125165A1 (en) * 2008-05-16 2011-05-26 The Johns Hopkins University System and method for macro-micro distal dexterity enhancement in micro-surgery of the eye

Similar Documents

Publication Publication Date Title
US7625383B2 (en) Surgical manipulator
US7892243B2 (en) Surgical manipulator
CA2437286C (en) Microsurgical robot system
CN109419555B (en) Positioning arm for surgical navigation system
JP2020065644A (en) Surgery assistance apparatus, control method thereof and program
US20150057677A1 (en) Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system
CN113180836B (en) Input device, main operation device, and surgical robot
WO2017143204A1 (en) Robotic systems and methods for minimally invasive orthopedic surgeries
JP2020065904A (en) Surgery assistance apparatus
JP2020065910A (en) Surgery assistance apparatus
WO2023112732A1 (en) Robot system and coordinate registration method
WO2023112539A1 (en) Robot device and robot system
Iordachita et al. Steady-hand manipulator for retinal surgery
US11185376B2 (en) Robot for placement of spinal instrumentation
US20220175480A1 (en) Systems and methods for a kinematically-controlled remote center manipulator
Finke et al. Usability of a robotic surgical microscope
WO2023144842A1 (en) A console system for a multi-arm robotic surgical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907260

Country of ref document: EP

Kind code of ref document: A1