WO2023111478A1 - Silicone composition which is cross-linkable by irradiation - Google Patents

Silicone composition which is cross-linkable by irradiation Download PDF

Info

Publication number
WO2023111478A1
WO2023111478A1 PCT/FR2022/052391 FR2022052391W WO2023111478A1 WO 2023111478 A1 WO2023111478 A1 WO 2023111478A1 FR 2022052391 W FR2022052391 W FR 2022052391W WO 2023111478 A1 WO2023111478 A1 WO 2023111478A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone composition
compound
silicone
composition
radiation
Prior art date
Application number
PCT/FR2022/052391
Other languages
French (fr)
Inventor
Perrine Theil
Etienne Fleury
Marc BARON
Original Assignee
Elkem Silicones France Sas
Institut National Des Sciences Appliquees De Lyon
Centre National De La Recherche Scientifique
Universite Claude Bernard Lyon 1
Universite Jean Monnet Saint Etienne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Silicones France Sas, Institut National Des Sciences Appliquees De Lyon, Centre National De La Recherche Scientifique, Universite Claude Bernard Lyon 1, Universite Jean Monnet Saint Etienne filed Critical Elkem Silicones France Sas
Publication of WO2023111478A1 publication Critical patent/WO2023111478A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Definitions

  • the present invention relates to a crosslinkable silicone composition X by polyaddition reactions to form a silicone elastomer.
  • the subject of the present invention is a silicone composition X which can be crosslinked by irradiation, and comprising at least one compound D selected from retinol, retinal, retinoic acid, carboxylic acid esters of retinol, carotenes, and their mixtures.
  • Silicone compositions that can be crosslinked by polyaddition reactions are generally thermally crosslinked in the presence of a platinum catalyst, in particular the Karstedt catalyst.
  • a platinum catalyst in particular the Karstedt catalyst.
  • compositions which can be crosslinked by irradiation have been developed.
  • This type of composition which can be crosslinked by irradiation is in particular very useful for “coating” type applications, where a support is covered with a silicone coating.
  • this type of process has advantages because it consumes less energy than the thermal process, which saves money. This is especially true when the irradiation is carried out by UV-LED systems.
  • Patent application WO9525734 describes photoactive organoplatinic complexes for crosslinking by hydrosilylation of organopolysiloxane SiH and SiVi. These photoactive organoplatinic complexes are prepared by reacting a photosensitive ligand with the Karstedt complex.
  • the systems described in this application do not make it possible to obtain both good reactivity under UV (rapid crosslinking under irradiation), and good stability of the composition without irradiation (long gel time without irradiation).
  • Patent EP0398701 describes silicone compositions comprising a compound having aliphatic unsaturation, a compound containing at least one hydrogen atom bonded to silicon, and a platinum(II) catalyst having p-diketonate ligands, such as Pt (acetylacetonate)2. These compositions are crosslinkable by actinic irradiation. However, these catalysts may exhibit low activity due to limited solubility in silicones.
  • the present invention aims to satisfy at least one of the following objectives.
  • One of the objectives of the invention is to provide a composition that can be crosslinked under UV irradiation, and in particular UV-LED.
  • Another object of the invention is to provide a composition that can be crosslinked under irradiation with good reactivity.
  • Another object of the invention is to provide a composition that can be crosslinked under irradiation with good stability when it is not irradiated (long gel time without irradiation).
  • a radiation-crosslinkable silicone X composition comprising: a. at least one organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon; b. at least one organopolysiloxane B having, per molecule, at least two SiH units; vs. a catalytically effective amount of at least one hydrosilylation catalyst C, preferably a platinum-based hydrosilylation catalyst; and D. at least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
  • the fact of using a compound D as defined makes it possible to increase the reactivity of the silicone composition X under irradiation, and in particular under UV-LED irradiation.
  • the silicone composition X therefore crosslinks more rapidly.
  • compound D makes it possible to stabilize the silicone composition X before irradiation.
  • compound D can be chosen from natural products, which is advantageous.
  • the present invention also relates to a process for preparing a coating on a support, comprising the following steps:
  • the present invention also relates to a coated support obtainable by said method.
  • the present invention also relates to the use of the silicone composition X for the preparation of silicone elastomers.
  • the present invention also relates to a premix for a silicone composition
  • a premix for a silicone composition comprising:
  • At least one organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon
  • At least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
  • silicone composition crosslinkable by irradiation means a silicone composition comprising at least one organopolysiloxane capable of curing by electronic or photonic irradiation.
  • electronic irradiations we can cite exposure to an electron beam.
  • photon irradiations mention may be made of exposure to UV radiation or exposure to gamma rays.
  • the irradiation is carried out by exposure to radiation with a wavelength of between 100 nm and 450 nm, or between 200 nm and 405 nm.
  • UV means ultraviolet.
  • Ultraviolet radiation is defined as electromagnetic radiation whose wavelength is between about 100 nm and about 405 nm, i.e. below the visible light spectrum.
  • textile is a generic term encompassing all textile structures. Textiles can be made of yarns, fibers, filaments and/or other materials. They include in particular flexible fabrics, whether woven, glued, knitted, braided, felt, needled, sewn, or made by another method of manufacture.
  • yarn we mean for example a continuous multifilament object, a continuous yarn obtained by assembling several yarns or a continuous yarn of fibers, obtained from a single type of fiber, or from a mixture of fibers.
  • fiber is meant, for example, a short or long fiber, a fiber intended to be worked in spinning or for the manufacture of nonwoven articles or a tow intended to be cut to form short fibers.
  • the textile may well consist of yarns, fibers and/or filaments which have undergone one or more treatment steps before the production of the textile surface, such as, for example, steps of texturing, drawing, drawing-texturing, sizing, relaxation, heat setting, twisting, setting, crimping, washing and/or dyeing.
  • the subject of the present invention is a silicone composition X that can be crosslinked by irradiation, comprising: a. at least one organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon; b. at least one organopolysiloxane B having, per molecule, at least two SiH units; vs. a catalytically effective amount of at least one hydrosilylation catalyst C; and D. at least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
  • the organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon may in particular comprise:
  • Y is C2-C12 alkenyl, preferably vinyl
  • R 1 c SiO(4- C )/2 in which R 1 has the same meaning as above and c 0, 1, 2 or 3.
  • R 1 groups may be identical to or different from each other.
  • organopolysiloxanes A may have a linear structure, essentially consisting of "D" siloxyl units chosen from the group consisting of the siloxyl units Y2SiC>2/2, YR 1 SiC>2/2 and R 1 2SiC>2/2 , and terminal “M” siloxyl units chosen from the group consisting of the siloxyl units YR 1 2SiOi/2, Y2R 1 SiOi/2 and R 1 3 SiOi/2.
  • the symbols Y and R 1 are as described above.
  • terminal “M” units mention may be made of the trimethylsiloxy, dimethylphenylsiloxy, dimethylvinylsiloxy or dimethylhexenylsiloxy groups.
  • D units mention may be made of dimethylsiloxy, methylphenylsiloxy, diphenylsiloxy, methylvinylsiloxy, methylbutenylsiloxy, methylhexenylsiloxy, methyldecenylsiloxy or methyldecadienylsiloxy groups.
  • organopolysiloxanes which may be organopolysiloxanes A according to the invention are:
  • the organopolysiloxane A contains terminal dimethylvinylsilyl units and even more preferably the organopolysiloxane A is a poly(dimethylsiloxane) with dimethylvinylsilyl ends.
  • a silicone oil generally has a viscosity of between 1 mPa.s and 2,000,000 mPa.s.
  • said organopolysiloxanes A are oils with a dynamic viscosity of between 20 mPa.s and 300,000 mPa.s, preferably between 100 mPa.s and 200,000 mPa.s at 25° C., and more preferably between 600 mPa.s and 150,000 mPa.s.
  • the organopolysiloxanes A may also contain “T” siloxyl units (R 1 SiC>3/2) and/or “Q” siloxyl units (SiC/2).
  • R 1 are as described above.
  • the organopolysiloxanes A then have a branched structure. Examples of branched organopolysiloxanes which can be organopolysiloxanes A according to the invention are:
  • the silicone composition X does not comprise branched organopolysiloxanes or resins comprising C2-C12 alkenyl units.
  • the organopolysiloxane compound A has a mass content of alkenyl unit of between 0.001% and 30%, preferably between 0.01% and 10%, preferably between 0.02 and 5%.
  • the silicone composition X preferably comprises from 50% to 95% of organopolysiloxane A, more preferably from 60% to 87% by weight of organopolysiloxane A, and even more preferably from 70% to 85% by weight of organopolysiloxane A relative to the total weight of the silicone composition X.
  • the silicone composition X may comprise a single organopolysiloxane A or a mixture of several organopolysiloxanes A having, for example, different viscosities and/or different structures.
  • the organopolysiloxane B is an organohydrogenpolysiloxane compound comprising per molecule at least two, and preferably at least three, hydrogenosilyl functions or Si—H units.
  • the organohydrogenpolysiloxane B can advantageously be an organopolysiloxane comprising at least two, preferably at least three, siloxyl units of the following formula: HdR 2 e SiO(4-de)/2 in which: - the R 2 radicals, which are identical or different, represent a monovalent radical having from 1 to 12 carbon atoms,
  • R 2 can represent a monovalent radical chosen from the group consisting of alkyl groups having 1 to 8 carbon atoms, optionally substituted by at least one halogen atom such as chlorine or fluorine, cycloalkyl groups having 3 with 8 carbon atoms and aryl groups having 6 to 12 carbon atoms.
  • R 2 can advantageously be chosen from the group consisting of methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl.
  • the symbol d is preferably equal to 1.
  • the organohydrogenpolysiloxane B can have a linear, branched or cyclic structure.
  • the degree of polymerization is preferably greater than or equal to 2. Generally, it is less than 5000.
  • siloxyl units chosen from the units of the following formulas D: R 2 2SiC>2/2 or D': R 2 HSiC>2/2, and terminal siloxyl units chosen from the units of the following formulas M: R 2 aSiOi/2 or M': R 2 2HSiOi/2 where R 2 has the same meaning as above.
  • organohydrogenpolysiloxanes which may be organopolysiloxanes B according to the invention comprising at least two hydrogen atoms bonded to a silicon atom are:
  • organohydrogenpolysiloxane B has a branched structure
  • it is preferably chosen from the group consisting of silicone resins of the following formulas:
  • T siloxyl unit of formula R 2 aSiOi/2
  • Q siloxyl unit of formula SiC /2, where R 2 has the same meaning as above.
  • the organohydrogenpolysiloxane compound B has a mass content of hydrogenosilyl Si—H functions of between 0.2% and 91%, more preferably between 3% and 80%.
  • the molar ratio of the hydrogenosilyl Si-H functions to the alkene functions can advantageously be between 0.2 and 20, preferably between 0.5 and 15, more preferably between 0.5 and 10, and even more preferably between 0.5 and 5.
  • the viscosity of the organohydrogenpolysiloxane B is between 1 mPa.s and 5000 mPa.s, more preferably between 1 mPa.s and 2000 mPa.s and even more preferably between 5 mPa.s and 1000 mPa. .s.
  • the silicone composition X preferably comprises from 0.1% to 10% of organohydrogenpolysiloxane B, and more preferably from 0.5% to 5% by weight, relative to the total weight of the silicone composition X.
  • the silicone composition X may comprise a single organohydrogenpolysiloxane B or a mixture of several organohydrogenpolysiloxanes B having, for example, different viscosities and/or different structures.
  • the silicone composition X may comprise a mixture:
  • Catalyst C is a hydrosilylation reaction catalyst.
  • Hydrosilylation reaction catalysts are well known.
  • platinum and rhodium compounds are used.
  • the quantity by weight of catalyst C calculated by weight of platinum metal, is generally between 1 and 400 ppm, preferably between 2 and 200 ppm, and more preferably between 5 and 100 ppm, based on the total weight of the silicone composition X.
  • Compound D is selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
  • carboxylic acid esters of retinol mention may be made of C 1 to C acid esters, preferably C 1 to C 6 acid esters, in particular formates, acetates and propionates.
  • the C1-C6 group can be a linear or branched alkyl group.
  • compound D is selected from carotenes.
  • Carotenes are unsaturated compounds generally having 40 carbon atoms. Examples of carotenes include the following carotenes: ⁇ -carotene, 0-carotene, ⁇ -carotene, 5-carotene, ⁇ -carotene, ⁇ -carotene and lycopene.
  • compound D is of formula (I) in which R is selected from -CH2OH, -CHO, -COOH, -OCOR', and the following groups: with R′ corresponding to a Ci to Cis alkyl group, preferably Ci to Ce, and more preferably R′ is a methyl.
  • R is the following group in this case, compound D is ⁇ -carotene.
  • the silicone composition X may comprise a compound D or a mixture of several compounds D.
  • Certain compounds D are well known for being natural pigments, for example ⁇ -carotene. Due to the use of these compounds D, the silicone composition X may optionally be colored. However, it was found that the silicone elastomer obtained after crosslinking of silicone composition X was colorless. The use of compounds D according to the invention is therefore not an obstacle to the preparation of coatings or articles in transparent silicone elastomers.
  • the molar ratio between the platinum contained in the catalyst C (platinum-metal) and the compound D is between 1:1 and 1:250, preferably between 1:5 and 1:200, and more preferably between 1 :10 to 1:100. According to a particular embodiment, the molar ratio between the platinum contained in catalyst C and compound D is 1:25.
  • the crosslinkable silicone composition X may comprise between 2 and 10000 ppm of compound D, preferably between 5 and 1000 ppm, relative to the total weight of the silicone composition X.
  • the silicone composition X according to the invention contains a crosslinking inhibitor E.
  • Crosslinking inhibitors are designed to slow down the crosslinking reaction and are also called retarders.
  • Crosslinking inhibitors are well known in the prior art. Mention may be made, for example, of the cyclic polymethylvinylsiloxanes and the acetylenic alcohols described in US Pat. No. 3,923,705, the acetylenic alcohols described in US Pat. No. 3,445,420, the heterocyclic amines described in US Pat. US Patent 4,256,870, the olefinic siloxanes described in US Patent 3,989,667, and the dialkyl ethynedicarboxylates described in US Patent 4,347,346.
  • hydrazines triazoles, phosphines, mercaptans, nitrogenous organic compounds, acetylenic alcohols, silylated acetylenic alcohols, maleates, fumarates, unsaturated ethylenic or aromatic amides, unsaturated ethylenic isocyanates, olefinic siloxanes, unsaturated hydrocarbon monoesters and diesters, conjugated ene-ynes , THE hydroperoxides, nitriles and diaziridines.
  • the crosslinking inhibitor E is preferably chosen from 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl-cyclotetrasiloxane, 1-ethynyl-1-cyclohexanol (ECH), 3-methyl -1-butyn-3-ol, 2-methyl-3-butyn-2-ol, 3-butyn-1-ol, 3-butyn-2-ol, propargyl alcohol, 2-phenyl- 2-propyn-1-ol, 3,5-dimethyl-1-hexyn-3-ol, 1-ethynylcyclopentanol, 1-phenyl-2-propynol, 3-methyl-1-penten-4-yn- 3-ol, 3-methyl-1-dodecyne-3-ol, 3,7,11-trimethyl-1-dodecyne-3-ol, diphenyl-1,1-propyne-2-ol-1, 3,6-diethyl-1-nonyne-3-
  • Acetylenic alcohols are highly preferred E crosslinking inhibitors according to the invention, and most particularly 1-ethynyl-1-cyclohexanol (ECH).
  • the silicone composition X comprises between 1 and 1000 ppm of crosslinking inhibitor E, preferably between 2 and 50 ppm, relative to the total weight of the silicone composition X.
  • the crosslinkable silicone composition X may comprise a filler F.
  • the silicone composition X comprises between 5 and 20% by weight of filler F relative to the total weight of the silicone composition X.
  • the composition silicone X comprises between 8 and 15% by weight of filler F.
  • the optionally provided filler F is preferably mineral.
  • the filler F can be a very finely divided product whose mean particle diameter is less than 0.1 ⁇ m.
  • the filler F may in particular be siliceous.
  • siliceous materials they can play the role of reinforcing or semi-reinforcing filler.
  • the reinforcing siliceous fillers are chosen from colloidal silicas, combustion and precipitation silica powders or mixtures thereof. These powders have an average particle size generally less than 0.1 ⁇ m (micrometers) and a BET specific surface greater than 30 m 2 /g, preferably between 30 and 350 m 2 /g.
  • siliceous fillers such as diatomaceous earth or crushed quartz can also be used. These silicas can be incorporated as such or after having been treated with organosilicon compounds usually used for this purpose.
  • organosilicon compounds usually used for this purpose.
  • these compounds are methylpolysiloxanes such as hexamethyldisiloxane, octamethylcyclotetrasiloxane, methylpolysilazanes such as hexamethyldisilazane, hexamethylcyclotrisilazane, tetramethyldivinyldisilazane, chlorosilanes such as dimethyldichlorosilane, trimethylchlorosilane, methylvinyldichlorosilane, dimethylvinylchlorosilane ilane, alkoxysilanes such as dimethyldimethoxysilane, dimethylvinylethoxysilane, trimethylmethoxysilane, and mixtures
  • non-siliceous mineral materials can act as a semi-reinforcing or filling mineral filler.
  • these non-siliceous fillers which can be used alone or as a mixture are calcium carbonate, optionally treated in surface with an organic acid or with an ester of an organic acid, calcined clay, titanium oxide of the rutile type, oxides of iron, zinc, chromium, zirconium, magnesium, the various forms of alumina (hydrated or not), boron nitride, lithopone, barium metaborate, barium sulphate and glass microbeads.
  • These fillers are coarser with generally an average particle diameter greater than 0.1 ⁇ m and a specific surface generally less than 30 m 2 /g. These fillers may have been surface-modified by treatment with the various organosilicon compounds usually employed for this purpose.
  • the filler F is silica, and even more preferably combustion silica.
  • the silica has a BET specific surface of between 75 and 410 m 2 /g.
  • the silicone composition X may comprise a photoinitiator.
  • the silicone composition X can also comprise other functional additives that are usual in silicone compositions.
  • functional additives that are usual in silicone compositions.
  • families of usual functional additives mention may be made of: adhesion promoters, adhesion modulators, silicone resins, additives for increasing consistency, additives for heat resistance, oil resistance or fire resistance , for example metal oxides, virucides, bactericides, anti-abrasion additives, and pigments (organic or mineral).
  • the silicone composition X according to the invention comprises, based on the total weight of the silicone composition X:
  • organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon
  • organopolysiloxane B having, per molecule, at least two SiH units
  • a compound D selected from retinol, retinal, retinoic acid, carboxylic acid esters of retinol, carotenes, and mixtures thereof, and
  • a crosslinking inhibitor E optionally, from 1 to 1000 ppm, preferably from 2 and 50 ppm, of a crosslinking inhibitor E.
  • the silicone composition X can be prepared by mixing all of the different components as described above.
  • the silicone composition X according to the invention can be prepared from a two-component system characterized in that it comes in two separate parts intended to be mixed to form said silicone composition. X, and in that one of the parts comprises the catalyst C and does not comprise the organopolysiloxane B, while the other part comprises the organopolysiloxane B and does not comprise the catalyst C.
  • the silicone composition X according to the invention may be a single-component system.
  • the present invention also relates to a premix for a silicone composition
  • a premix for a silicone composition comprising:
  • At least one organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon
  • At least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
  • the invention also relates to a method for preparing a coating on a support, comprising the following steps:
  • the application of the silicone composition X can be carried out by continuously or discontinuously depositing the said silicone composition X on at least one face of the said support.
  • the deposition can typically be done by transfer, by lick roller or by spraying using a nozzle, a doctor blade, a rotating frame or a reverse roller (or "reverse roll” according to Anglo-Saxon terminology).
  • the thickness of the layer of silicone composition X deposited on the support may be between 0.1 mm and 0.8 mm, preferably between 0.3 mm and 0.6 mm and even more preferably between 0.4 mm and 0.5mm.
  • the crosslinking step of the process according to the invention is carried out by UV radiation with a wavelength of between 100 nm and 405 nm.
  • the radiation is ultraviolet light with a wavelength less than or equal to 405 nanometers.
  • the radiation is ultraviolet light with a wavelength greater than 100 nanometers.
  • LIV radiation can be emitted by doped or undoped mercury vapor lamps whose emission spectrum extends from 100 nm to 405 nm.
  • Light sources such as light-emitting diodes, better known by the acronym “LED” (Light-Emitting Diodes) which deliver point UV or visible light can also be used.
  • the crosslinking of said silicone composition X is carried out by irradiation with UV radiation, the source of which is a UV-LED lamp.
  • Said UV-LED lamp can emit radiation of wavelength 365 nm, 385 nm, 395 nm or 405 nm.
  • the UV-LED lamp is a lamp emitting at 395 nm.
  • the power of the UV-LED lamp is preferably between 2 W/m 2 and 200,000 W/m 2 .
  • the irradiation of the silicone composition X is carried out continuously, by scrolling the support under the UV-LED lamp.
  • the running speed and the number of passages can be defined so that the total irradiation of the silicone composition takes place for a period of between 1 s and 60 s, more preferably between 2 s and 40 s, and so even more preferred between 3 s and 15 s.
  • the energy received by the silicone composition X by irradiation is preferably between 1 J/m 2 and 1200 J/cm 2 , more preferably between 5 J/m 2 and 5 J/cm 2 .
  • the crosslinking step is implemented without inerting. However, it is not excluded to proceed under an inert atmosphere, for example under nitrogen, under argon or under oxygen-depleted air.
  • the crosslinking step is carried out at a temperature between 15° C. and 60° C., more preferably between 20° C. and 40° C., and even more preferably at room temperature, i.e. typically about 25°C.
  • any type of support can be used, in particular textile supports.
  • textile supports we can mention:
  • textiles of plant origin such as cotton, linen, hemp, jute, coconut, cellulosic fibers from paper
  • textiles of animal origin such as wool, hair, leather and silks
  • - artificial textiles such as: cellulosic textiles, such as cellulose or its derivatives; and proteinaceous textiles of animal or plant origin;
  • polyester such as polyester, polyamide, polymallic alcohols, polyvinyl chloride, polyacrylonitrile, polyolefins, acrylonitrile, (meth)acrylate-butadiene-styrene copolymers and polyurethane.
  • the synthetic textiles obtained by polymerization or polycondensation may in particular comprise in their matrix different types of additives, such as pigments, delustrants, mattifiers, catalysts, heat and/or light stabilizers, anti-static agents , flame retardants, anti-bacterial, anti-fungal, and/or anti-mite agents.
  • additives such as pigments, delustrants, mattifiers, catalysts, heat and/or light stabilizers, anti-static agents , flame retardants, anti-bacterial, anti-fungal, and/or anti-mite agents.
  • the textile support used in the method of the present invention may consist of one or more textiles, identical or different, assembled in various ways.
  • the textile can be mono- or multi-layer(s).
  • the textile support can for example consist of a multilayer structure that can be produced by different assembly means, such as mechanical means such as sewing, welding, or point or continuous bonding.
  • the textile support can, in addition to the coating process according to the present invention, undergo one or more other subsequent treatments, also called finishing or finishing treatment. These other treatments can be carried out before, after and/or during said coating process of the invention.
  • Other subsequent treatments include: dyeing, printing, laminating, coating, assembly with other materials or textile surfaces, washing, degreasing, preforming or fixing.
  • the support is an openwork and/or elastic textile support.
  • a textile is said to be "openwork" when it includes free spaces not made up of textile.
  • Said free spaces (which may be designated as pores, voids, cells, holes, interstices or orifices) may be evenly distributed or not on the textile. These free spaces can be created in particular during the development of the textile.
  • the smallest of the dimensions of these free spaces it is preferable for the smallest of the dimensions of these free spaces to be less than 5 mm, in particular less than 1 mm.
  • a textile is said to be “elastic” when it has a degree of elasticity greater than 5%, preferably greater than 15%.
  • the elasticity rate of a textile can go up to typically 500%.
  • the elasticity rate represents the percentage of elongation of the textile when it is stretched to the maximum.
  • the elongation can be only longitudinal, only transverse, or longitudinal and transverse.
  • the textile support can be lace or an elastic band.
  • the present invention also relates to a coated support obtainable by said method.
  • coated textile supports thus obtained, as such or transformed into textile articles, can be used in many applications, such as, for example, in the field of clothing, in particular lingerie such as lace for tops of stockings. or bras, and sportswear, and hygiene items, such as compression bandages or bandages
  • the present invention also relates to the use of the silicone composition X for the preparation of silicone elastomers.
  • composition X according to the invention in the field of electronics, for example for the preparation of conformal coatings (“conformal coatings” according to the Anglo-Saxon terminology) of printed circuits. , and for the filling (“potting” according to the Anglo-Saxon terminology) of microcircuits and electronic components such as IGBTs.
  • composition X for the preparation of articles in silicone elastomer by an additive manufacturing process.
  • Additive manufacturing processes are also known as 3D printing processes. This description typically includes the designation ASTM F2792-12a, “Standard Terminology for Additive Manufacturing Technologies.”
  • a "3D printer” is defined as “a machine used for 3D printing” and “3D printing” is defined as "the manufacture of objects through the deposition of a material at the using a printhead, nozzle or other printer technology”.
  • additive manufacturing is defined as a process of joining materials to manufacture objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methods. Synonyms associated with 3D printing and encompassed by 3D printing include additive manufacturing, additive processes, additive techniques, and layer manufacturing. Additive manufacturing (AM) can also be called rapid prototyping (RP). As used herein, “3D printing” is interchangeable with “additive manufacturing” and vice versa.
  • the irradiation of the layers of silicone compositions X as the printing progresses allows the rapid gelation of at least part of the composition during production and thus each layer retains its shape without the printed structure collapsing. .
  • the silicone compositions X according to the invention can be used for 3D printing processes implementing in-vessel photopolymerization (Digital Light Processing, stereolithography), material extrusion, material deposition, or inkjet, by adapting the viscosity of the silicone composition X to the technology used.
  • in-vessel photopolymerization Digital Light Processing, stereolithography
  • material extrusion material extrusion
  • material deposition material deposition
  • inkjet inkjet
  • A poly(dimethylsiloxane) with dimethylvinylsilyl ends, viscosity » WO mPa.s, containing about 2% by weight of Si-vinyl function
  • E1 1-ethynyl-1-cyclohexanol (ECH)
  • the various compounds were mixed in a glass bottle equipped with a magnetic stirrer.
  • the gel time is measured without irradiation. It corresponds to the setting time of the system (the bar magnet can no longer agitate the system).
  • UV LED lamp marketed by the company UWAVE with a wavelength of 395 nm, a power of 12 W/cm 2 , and an irradiation source-sample distance of 4 cm
  • Example 1 A silicone composition according to the invention comprising a compound D was tested, under UV irradiation or not, and compared with commercial catalytic systems, some of which are known to be active under UV. The results are shown in Table 1.
  • Example 2 The impact of the amount of compound D in compositions not comprising a crosslinking inhibitor was evaluated.
  • the catalyst used is catalyst C1 (5 ppm of Pt). The results are shown in Table 2.
  • Example 3 The impact of the amount of compound D in compositions comprising a crosslinking inhibitor was also evaluated.
  • the catalyst used is catalyst C1 (5 ppm of Pt). The results are shown in Table 3.

Abstract

The present invention relates to a silicone composition X which is cross-linkable by polyaddition reactions to form a silicone elastomer. In particular, the present invention relates to a silicone composition X which is cross-linkable by irradiation, comprising at least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.

Description

Composition silicone réticulable par irradiation Silicone composition crosslinkable by irradiation
Domaine technique Technical area
[0001] La présente invention a pour objet une composition silicone X réticulable par des réactions de polyaddition pour former un élastomère silicone. En particulier, la présente invention a pour objet une composition silicone X réticulable par irradiation, et comprenant au moins un composé D sélectionné parmi le rétinol, le rétinal, l’acide rétinoïque, les esters d’acide carboxylique de rétinol, les carotènes, et leurs mélanges. The present invention relates to a crosslinkable silicone composition X by polyaddition reactions to form a silicone elastomer. In particular, the subject of the present invention is a silicone composition X which can be crosslinked by irradiation, and comprising at least one compound D selected from retinol, retinal, retinoic acid, carboxylic acid esters of retinol, carotenes, and their mixtures.
Arrière-plan technologique Technology background
[0002] Les compositions silicones réticulables par des réactions de polyaddition sont généralement réticulées thermiquement en présence d’un catalyseur au platine, en particulier le catalyseur de Karstedt. Cependant, depuis plusieurs années, des compositions réticulables par irradiation ont été développées. Ce type de composition réticulable par irradiation est notamment très utile pour des applications de type « coating », où un support est recouvert d’un revêtement silicone. De plus, ce type de procédé présente des avantages car il est moins énergivore que le procédé thermique, ce qui permet de réaliser des économies. C’est particulièrement vrai lorsque l’irradiation est effectuée par des systèmes UV-LED. [0002] Silicone compositions that can be crosslinked by polyaddition reactions are generally thermally crosslinked in the presence of a platinum catalyst, in particular the Karstedt catalyst. However, for several years, compositions which can be crosslinked by irradiation have been developed. This type of composition which can be crosslinked by irradiation is in particular very useful for “coating” type applications, where a support is covered with a silicone coating. In addition, this type of process has advantages because it consumes less energy than the thermal process, which saves money. This is especially true when the irradiation is carried out by UV-LED systems.
[0003] La demande de brevet WO9525734 décrit des complexes organoplatiniques photoactifs pour la réticulation par hydrosilylation d’organopolysiloxane SiH et SiVi. Ces complexes organoplatiniques photoactifs sont préparés en faisant réagir un ligand photosensible sur le complexe de Karstedt. Toutefois, les systèmes décrits dans cette demande ne permettent pas d’obtenir à la fois une bonne réactivité sous UV (réticulation rapide sous irradiation), et une bonne stabilité de la composition sans irradiation (temps de gel long sans irradiation). [0003] Patent application WO9525734 describes photoactive organoplatinic complexes for crosslinking by hydrosilylation of organopolysiloxane SiH and SiVi. These photoactive organoplatinic complexes are prepared by reacting a photosensitive ligand with the Karstedt complex. However, the systems described in this application do not make it possible to obtain both good reactivity under UV (rapid crosslinking under irradiation), and good stability of the composition without irradiation (long gel time without irradiation).
[0004] Le document EP0398701 décrit des compositions silicones comprenant un composé ayant une insaturation aliphatique, un composé contenant au moins un atome d'hydrogène lié au silicium, et un catalyseur de platine(ll) ayant des ligands p-dicétonate, comme le Pt(acétylacétonate)2. Ces compositions sont réticulables par irradiation actinique. Néanmoins, ces catalyseurs peuvent présentés une faible activité à cause d’une solubilité limitée dans les silicones. Document EP0398701 describes silicone compositions comprising a compound having aliphatic unsaturation, a compound containing at least one hydrogen atom bonded to silicon, and a platinum(II) catalyst having p-diketonate ligands, such as Pt (acetylacetonate)2. These compositions are crosslinkable by actinic irradiation. However, these catalysts may exhibit low activity due to limited solubility in silicones.
[0005] Il est également connu d’utiliser comme photocatalyseur le complexe MesPt(MeCp) (complexe de platine triméthyl(méthylcyclopentadiényl)) pour des réactions d’hydrosilylation. Cependant l’utilisation de ce catalyseur présente des inconvénients car il est volatil, cher et très toxique. [0006] Par ailleurs, les systèmes décrits ci-dessus ne sont pas forcément utilisables lorsque l’irradiation est effectuée par des systèmes LIV-LED. En effet, le fait de travailler avec une source de lumière monochromatique comme les LED nécessite une conception plus précise du système photocatalytique afin de maximiser l'efficacité de l'absorption des photons, et donc la réactivité du système. [0005] It is also known to use the MesPt(MeCp) complex (platinum trimethyl(methylcyclopentadienyl) complex) as a photocatalyst for hydrosilylation reactions. However, the use of this catalyst has drawbacks because it is volatile, expensive and very toxic. Furthermore, the systems described above are not necessarily usable when the irradiation is carried out by LIV-LED systems. Indeed, working with a monochromatic light source such as LEDs requires a more precise design of the photocatalytic system in order to maximize the efficiency of photon absorption, and therefore the reactivity of the system.
[0007] Il est donc nécessaire de développer des systèmes photocatalytiques pouvant parer à ces désavantages. [0007] It is therefore necessary to develop photocatalytic systems that can overcome these disadvantages.
[0008] Dans ce contexte, la présente invention vise à satisfaire au moins l’un des objectifs suivants. L’un des objectifs de l’invention est la fourniture d’une composition réticulable sous irradiation UV, et notamment UV-LED. In this context, the present invention aims to satisfy at least one of the following objectives. One of the objectives of the invention is to provide a composition that can be crosslinked under UV irradiation, and in particular UV-LED.
[0009] Un autre objectif de l’invention est la fourniture d’une composition réticulable sous irradiation ayant une bonne réactivité. Another object of the invention is to provide a composition that can be crosslinked under irradiation with good reactivity.
[0010] Un autre objectif de l’invention est la fourniture d’une composition réticulable sous irradiation ayant une bonne stabilité lorsqu’elle n’est pas irradiée (temps de gel long sans irradiation). Another object of the invention is to provide a composition that can be crosslinked under irradiation with good stability when it is not irradiated (long gel time without irradiation).
Brève description de l’invention Brief description of the invention
[0011] Ces objectifs, parmi d’autres, sont atteints par la présente invention qui concerne en premier lieu une composition silicone X réticulable par irradiation comprenant : a. au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C12 liés au silicium; b. au moins un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH ; c. une quantité catalytiquement efficace d’au moins un catalyseur d’hydrosilylation C, de préférence un catalyseur d’hydrosilylation à base de platine ; et d. au moins un composé D sélectionné parmi le rétinol, le rétinal, l’acide rétinoïque, les esters d’acide carboxylique de rétinol, les carotènes, et leurs mélanges. [0011] These objectives, among others, are achieved by the present invention which firstly relates to a radiation-crosslinkable silicone X composition comprising: a. at least one organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon; b. at least one organopolysiloxane B having, per molecule, at least two SiH units; vs. a catalytically effective amount of at least one hydrosilylation catalyst C, preferably a platinum-based hydrosilylation catalyst; and D. at least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
[0012] Le fait d’utiliser un composé D tel que défini permet d’augmenter la réactivité de la composition silicone X sous irradiation, et en particulier sous irradiation UV-LED. La composition silicone X réticule donc plus rapidement. De plus, le composé D permet de stabiliser la composition silicone X avant irradiation. Ainsi, il est possible de garder la composition silicone X non réticulée pendant plusieurs heures, lorsque la composition n’est pas soumise à une irradiation. De plus, le composé D peut être choisi parmi des produits naturels, ce qui est avantageux. [0013] La présente invention a également pour objet un procédé de préparation d’un revêtement sur un support, comprenant les étapes suivantes : [0012] The fact of using a compound D as defined makes it possible to increase the reactivity of the silicone composition X under irradiation, and in particular under UV-LED irradiation. The silicone composition X therefore crosslinks more rapidly. In addition, compound D makes it possible to stabilize the silicone composition X before irradiation. Thus, it is possible to keep the silicone composition X uncrosslinked for several hours, when the composition is not subjected to irradiation. In addition, compound D can be chosen from natural products, which is advantageous. The present invention also relates to a process for preparing a coating on a support, comprising the following steps:
- application d’une composition silicone X sur un support, de préférence un support textile, et - application of a silicone composition X on a support, preferably a textile support, and
- réticulation de ladite composition par irradiation électronique ou photonique, de préférence par exposition à un faisceau d’électrons, par exposition à des rayons gamma, ou par exposition à un rayonnement de longueur d’onde comprise entre 100 nm et 450 nm, notamment à un rayonnement LIV. - crosslinking of said composition by electron or photon irradiation, preferably by exposure to an electron beam, by exposure to gamma rays, or by exposure to radiation with a wavelength of between 100 nm and 450 nm, in particular at LIV radiation.
[0014] La présente invention a également pour objet un support revêtu susceptible d’être obtenu selon ledit procédé. The present invention also relates to a coated support obtainable by said method.
[0015] La présente invention a également pour objet l’utilisation de la composition silicone X pour la préparation d’élastomères silicones. The present invention also relates to the use of the silicone composition X for the preparation of silicone elastomers.
[0016] La présente invention a également pour objet un prémélange pour composition silicone comprenant : The present invention also relates to a premix for a silicone composition comprising:
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C12 liés au silicium, - at least one organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon,
- au moins un catalyseur d’hydrosilylation C, et - at least one hydrosilylation catalyst C, and
- au moins un composé D sélectionné parmi le rétinol, le rétinal, l’acide rétinoïque, les esters d’acide carboxylique de rétinol, les carotènes, et leurs mélanges. - at least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
Définitions Definitions
[0017] Dans la présente demande, on entend par « composition silicone réticulable par irradiation », une composition silicone comprenant au moins un organopolysiloxane capable de durcir par irradiation électronique ou photonique. Parmi les irradiations électroniques, on peut citer les expositions à un faisceau d’électrons (electron beam). Parmi les irradiations photoniques, on peut citer les expositions à un rayonnement UV ou les expositions à des rayons gamma. De préférence, l’irradiation est faite par exposition à un rayonnement de longueur d’onde comprise entre 100 nm et 450 nm, ou entre 200 nm et 405 nm. In the present application, the term "silicone composition crosslinkable by irradiation" means a silicone composition comprising at least one organopolysiloxane capable of curing by electronic or photonic irradiation. Among the electronic irradiations, we can cite exposure to an electron beam. Among the photon irradiations, mention may be made of exposure to UV radiation or exposure to gamma rays. Preferably, the irradiation is carried out by exposure to radiation with a wavelength of between 100 nm and 450 nm, or between 200 nm and 405 nm.
[0018] Dans le présent texte, « UV » signifie ultra-violet. Un rayonnement ultra-violet est défini comme un rayonnement électromagnétique dont la longueur d’onde est comprise entre environ 100 nm et environ 405 nm, soit en deçà du spectre de la lumière visible. [0018] In the present text, “UV” means ultraviolet. Ultraviolet radiation is defined as electromagnetic radiation whose wavelength is between about 100 nm and about 405 nm, i.e. below the visible light spectrum.
[0019] De plus, dans le présent texte, « LED » est l’abrégé bien connu de l’homme du métier pour « diode électroluminescente » (également DEL en français). [0020] Sauf indication contraire, toutes les viscosités des huiles silicones dont il est question dans le présent exposé correspondent à une grandeur de viscosité dynamique à 25°C dite « Newtonienne », c’est-à-dire la viscosité dynamique qui est mesurée, de manière connue en soi, avec un viscosimètre Brookfield à un gradient de vitesse de cisaillement suffisamment faible pour que la viscosité mesurée soit indépendante du gradient de vitesse. [0019] In addition, in the present text, “LED” is the well-known abbreviation to those skilled in the art for “electroluminescent diode” (also DEL in French). [0020] Unless otherwise indicated, all the viscosities of the silicone oils referred to in this presentation correspond to a dynamic viscosity magnitude at 25° C. called "Newtonian", that is to say the dynamic viscosity which is measured , in a manner known per se, with a Brookfield viscometer at a sufficiently low shear rate gradient for the measured viscosity to be independent of the rate gradient.
[0021] Dans la présente description, le terme « textile » est un terme générique englobant toutes les structures textiles. Les textiles peuvent être constitués par des fils, fibres, filaments et/ou autres matières. Ils comprennent notamment les étoffes souples, qu’elles soient tissées, collées, tricotées, tressées, en feutre, aiguilletées, cousues, ou réalisées par un autre mode de fabrication. Par « fil », on entend par exemple un objet multifilamentaire continu, un fil continu obtenu par assemblage de plusieurs fils ou un filé de fibres continu, obtenu à partir d’un unique type de fibres, ou d’un mélange de fibres. Par « fibre », on entend par exemple une fibre courte ou longue, une fibre destinée à être travaillée en filature ou pour la fabrication d’articles non tissés ou un câble destiné à être coupés pour former des fibres courtes. Le textile peut parfaitement être constitué de fils, fibres et/ou filaments ayant subi une ou plusieurs étapes de traitements avant la réalisation de la surface textile, tels que par exemple des étapes de texturation, d’étirage, d’étirage- texturation, d’ensimage, de relaxation, de thermofixation, de torsion, de fixation, de frisage, de lavage et/ou de teinture. In the present description, the term "textile" is a generic term encompassing all textile structures. Textiles can be made of yarns, fibers, filaments and/or other materials. They include in particular flexible fabrics, whether woven, glued, knitted, braided, felt, needled, sewn, or made by another method of manufacture. By “yarn”, we mean for example a continuous multifilament object, a continuous yarn obtained by assembling several yarns or a continuous yarn of fibers, obtained from a single type of fiber, or from a mixture of fibers. By "fiber" is meant, for example, a short or long fiber, a fiber intended to be worked in spinning or for the manufacture of nonwoven articles or a tow intended to be cut to form short fibers. The textile may well consist of yarns, fibers and/or filaments which have undergone one or more treatment steps before the production of the textile surface, such as, for example, steps of texturing, drawing, drawing-texturing, sizing, relaxation, heat setting, twisting, setting, crimping, washing and/or dyeing.
[0022] Dans la présente demande, tous les % et les ppm sont indiqués en poids, sauf mention contraire. [0022] In the present application, all % and ppm are given by weight, unless otherwise stated.
Description détaillée detailed description
[0023] Composition silicone X réticulable [0023] Cross-linkable X-silicone composition
[0024] La présente invention a pour objet une composition silicone X réticulable par irradiation comprenant : a. au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C12 liés au silicium; b. au moins un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH ; c. une quantité catalytiquement efficace d’au moins un catalyseur d’hydrosilylation C ; et d. au moins un composé D sélectionné parmi le rétinol, le rétinal, l’acide rétinoïque, les esters d’acide carboxylique de rétinol, les carotènes, et leurs mélanges. [0025] L’organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C12 liés au silicium, peut notamment comprendre : The subject of the present invention is a silicone composition X that can be crosslinked by irradiation, comprising: a. at least one organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon; b. at least one organopolysiloxane B having, per molecule, at least two SiH units; vs. a catalytically effective amount of at least one hydrosilylation catalyst C; and D. at least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof. The organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon, may in particular comprise:
- au moins deux motifs siloxyle de formule suivante : YaR1bSiO(4-a-b)/2 dans laquelle : - at least two siloxyl units of the following formula: Y a R 1 bSiO(4- a -b)/2 in which:
Y est un alcényle en C2-C12, de préférence vinyle, Y is C2-C12 alkenyl, preferably vinyl,
R1 est un groupe hydrocarboné monovalent ayant de 1 à 12 atomes de carbone, de préférence choisi parmi les groupes alkyles ayant de 1 à 8 atomes de carbone tels que les groupes méthyle, éthyle, propyle, éventuellement substitués par au moins un atome d’halogène tel que le chlore ou le fluor, les groupes cycloalkyles ayant de 3 à 8 atomes de carbone et les groupes aryle ayant de 6 à 12 atomes de carbone, et a=1 ou 2, b=0, 1 ou 2 et la somme a+b=1 , 2 ou 3 ; et R 1 is a monovalent hydrocarbon group having from 1 to 12 carbon atoms, preferably chosen from alkyl groups having from 1 to 8 carbon atoms such as methyl, ethyl, propyl groups, optionally substituted by at least one atom of halogen such as chlorine or fluorine, cycloalkyl groups having 3 to 8 carbon atoms and aryl groups having 6 to 12 carbon atoms, and a=1 or 2, b=0, 1 or 2 and the sum a+b=1, 2 or 3; And
- éventuellement d’autres motifs de formule suivante : R1 cSiO(4-C)/2 dans laquelle R1 a la même signification que ci-dessus et c = 0, 1 , 2 ou 3. - optionally other units of the following formula: R 1 c SiO(4- C )/2 in which R 1 has the same meaning as above and c = 0, 1, 2 or 3.
[0026] Il est entendu dans les formules ci-dessus que, si plusieurs groupes R1 sont présents, ils peuvent être identiques ou différents les uns des autres. It is understood in the formulas above that, if several R 1 groups are present, they may be identical to or different from each other.
[0027] Ces organopolysiloxanes A peuvent présenter une structure linéaire, essentiellement constitués de motifs siloxyles « D » choisis parmi le groupe constitué par les motifs siloxyles Y2SiC>2/2, YR1SiC>2/2 et R12SiC>2/2, et de motifs siloxyles « M » terminaux choisis parmi le groupe constitué par les motifs siloxyles YR12SiOi/2, Y2R1SiOi/2 et R1 3SiOi/2. Les symboles Y et R1 sont tels que décrits ci-dessus. These organopolysiloxanes A may have a linear structure, essentially consisting of "D" siloxyl units chosen from the group consisting of the siloxyl units Y2SiC>2/2, YR 1 SiC>2/2 and R 1 2SiC>2/2 , and terminal “M” siloxyl units chosen from the group consisting of the siloxyl units YR 1 2SiOi/2, Y2R 1 SiOi/2 and R 1 3 SiOi/2. The symbols Y and R 1 are as described above.
[0028] A titre d’exemples de motifs « M » terminaux, on peut citer les groupes triméthylsiloxy, diméthylphénylsiloxy, diméthylvinylsiloxy ou diméthylhexènylsiloxy. As examples of terminal “M” units, mention may be made of the trimethylsiloxy, dimethylphenylsiloxy, dimethylvinylsiloxy or dimethylhexenylsiloxy groups.
[0029] A titre d’exemples de motifs « D », on peut citer les groupes diméthylsiloxy, méthylphénylsiloxy, diphénylsiloxy, méthylvinylsiloxy, méthylbutènylsiloxy, méthylhexènylsiloxy, méthyldécènylsiloxy ou méthyldécadiènylsiloxy. As examples of “D” units, mention may be made of dimethylsiloxy, methylphenylsiloxy, diphenylsiloxy, methylvinylsiloxy, methylbutenylsiloxy, methylhexenylsiloxy, methyldecenylsiloxy or methyldecadienylsiloxy groups.
[0030] Des exemples d’organopolysiloxanes pouvant être des organopolysiloxanes A selon l’invention sont : Examples of organopolysiloxanes which may be organopolysiloxanes A according to the invention are:
- un poly(diméthylsiloxane) à extrémités diméthylvinylsilyles ; - a poly(dimethylsiloxane) with dimethylvinylsilyl ends;
- un poly(diméthylsiloxane-co-méthylphénylsiloxane) à extrémités diméthyl-vinylsilyles ;- a poly(dimethylsiloxane-co-methylphenylsiloxane) with dimethyl-vinylsilyl ends;
- un poly(diméthylsiloxane-co-méthylvinylsiloxane) à extrémités diméthyl-vinylsilyles ; - a poly(dimethylsiloxane-co-methylvinylsiloxane) with dimethyl-vinylsilyl ends;
- un poly(diméthylsiloxane-co-méthylvinylsiloxane) à extrémités triméthyl-silyles ; et- a poly(dimethylsiloxane-co-methylvinylsiloxane) with trimethyl-silyl ends; And
- un poly(méthylvinylsiloxane) cyclique. - a cyclic poly(methylvinylsiloxane).
[0031] Dans la forme la plus recommandée, l’organopolysiloxane A contient des motifs diméthylvinylsilyles terminaux et encore plus préférentiellement l’organopolysiloxane A est un poly(diméthylsiloxane) à extrémités diméthylvinylsilyles. [0032] Une huile silicone a généralement une viscosité comprise entre 1 mPa.s et 2.000.000 mPa.s. De préférence, lesdits organopolysiloxanes A sont des huiles de viscosité dynamique comprise entre 20 mPa.s et 300.000 mPa.s, de préférence entre 100 mPa.s et 200.000 mPa.s à 25°C, et plus préférentiellement entre 600 mPa.s et 150.000 mPa.s. In the most recommended form, the organopolysiloxane A contains terminal dimethylvinylsilyl units and even more preferably the organopolysiloxane A is a poly(dimethylsiloxane) with dimethylvinylsilyl ends. A silicone oil generally has a viscosity of between 1 mPa.s and 2,000,000 mPa.s. Preferably, said organopolysiloxanes A are oils with a dynamic viscosity of between 20 mPa.s and 300,000 mPa.s, preferably between 100 mPa.s and 200,000 mPa.s at 25° C., and more preferably between 600 mPa.s and 150,000 mPa.s.
[0033] Optionnellement, les organopolysiloxanes A peuvent en outre contenir des motifs siloxyles « T » (R1SiC>3/2) et/ou des motifs siloxyles « Q » (SiC /2). Les symboles R1 sont tels que décrits ci-dessus. Les organopolysiloxanes A présentent alors une structure branchée. Des exemples d’organopolysiloxanes branchés pouvant être des organopolysiloxanes A selon l’invention sont : Optionally, the organopolysiloxanes A may also contain “T” siloxyl units (R 1 SiC>3/2) and/or “Q” siloxyl units (SiC/2). The symbols R 1 are as described above. The organopolysiloxanes A then have a branched structure. Examples of branched organopolysiloxanes which can be organopolysiloxanes A according to the invention are:
- un poly(diméthylsiloxane)(méthylsiloxane) à extrémités triméthylsilyles et diméthyl- vinylsilyles, constituée de motifs « M » triméthylsiloxy, « M » diméthylvinylsiloxy, « D » diméthylsiloxy et « T » méthylsiloxy ; - a poly(dimethylsiloxane)(methylsiloxane) with trimethylsilyl and dimethylvinylsilyl ends, consisting of “M” trimethylsiloxy, “M” dimethylvinylsiloxy, “D” dimethylsiloxy and “T” methylsiloxy units;
- une résine constituée de motifs « M » triméthylsiloxy, « M » diméthylvinylsiloxy et « Q » ; et - a resin consisting of “M” trimethylsiloxy, “M” dimethylvinylsiloxy and “Q” units; And
- une résine constituée de motifs « M » triméthylsiloxy, « D » méthylvinylsiloxy et « Q ». - a resin consisting of “M” trimethylsiloxy, “D” methylvinylsiloxy and “Q” units.
[0034] Toutefois, selon un mode de réalisation, la composition silicone X ne comprend pas d’organopolysiloxanes branchés ou résines comprenant des motifs alcényles en C2-C12. However, according to one embodiment, the silicone composition X does not comprise branched organopolysiloxanes or resins comprising C2-C12 alkenyl units.
[0035] De préférence, le composé organopolysiloxane A a une teneur massique en motif alcényle comprise entre 0,001 % et 30%, de préférence entre 0,01 % et 10%, de préférence entre 0,02 et 5%. Preferably, the organopolysiloxane compound A has a mass content of alkenyl unit of between 0.001% and 30%, preferably between 0.01% and 10%, preferably between 0.02 and 5%.
[0036] La composition silicone X comprend de préférence de 50% à 95% d’organopolysiloxane A, plus préférentiellement de 60% à 87% en poids d’organopolysiloxane A, et encore plus préférentiellement de 70% à 85% en poids d’organopolysiloxane A par rapport au poids total de la composition silicone X. The silicone composition X preferably comprises from 50% to 95% of organopolysiloxane A, more preferably from 60% to 87% by weight of organopolysiloxane A, and even more preferably from 70% to 85% by weight of organopolysiloxane A relative to the total weight of the silicone composition X.
[0037] La composition silicone X peut comprendre un seul organopolysiloxane A ou un mélange de plusieurs organopolysiloxanes A ayant par exemple des viscosités différentes et/ou des structures différentes. The silicone composition X may comprise a single organopolysiloxane A or a mixture of several organopolysiloxanes A having, for example, different viscosities and/or different structures.
[0038] L’organopolysiloxane B est un composé organohydrogénopolysiloxane comprenant par molécule au moins deux, et de préférence au moins trois, fonctions hydrogénosilyles ou motifs Si-H. The organopolysiloxane B is an organohydrogenpolysiloxane compound comprising per molecule at least two, and preferably at least three, hydrogenosilyl functions or Si—H units.
[0039] L’organohydrogénopolysiloxane B peut avantageusement être un organopolysiloxane comprenant au moins deux, de préférence au moins trois, motifs siloxyles de formule suivante : HdR2 eSiO(4-d-e)/2 dans laquelle : - les radicaux R2, identiques ou différents, représentent un radical monovalent ayant de 1 à 12 atomes de carbone, The organohydrogenpolysiloxane B can advantageously be an organopolysiloxane comprising at least two, preferably at least three, siloxyl units of the following formula: HdR 2 e SiO(4-de)/2 in which: - the R 2 radicals, which are identical or different, represent a monovalent radical having from 1 to 12 carbon atoms,
- d=1 ou 2, e=0, 1 ou 2 et d+e=1 , 2 ou 3 ; et éventuellement d’autres motifs de formule suivante : R2fSiO<4-f)/2 dans laquelle R2 a la même signification que ci-dessus, et f = 0, 1 , 2, ou 3. - d=1 or 2, e=0, 1 or 2 and d+e=1, 2 or 3; and optionally other units of the following formula: R 2 fSiO<4-f)/2 in which R 2 has the same meaning as above, and f = 0, 1, 2, or 3.
[0040] Il est entendu dans les formules ci-dessus que, si plusieurs groupes R2 sont présents, ils peuvent être identiques ou différents les uns des autres. Préférentiellement, R2 peut représenter un radical monovalent choisi dans le groupe constitué par les groupes alkyles ayant 1 à 8 atomes de carbone, éventuellement substitué par au moins un atome d’halogène tel que le chlore ou le fluor, les groupes cycloalkyles ayant de 3 à 8 atomes de carbone et les groupes aryles ayant de 6 à 12 atomes de carbone. R2 peut avantageusement être choisi dans le groupe constitué par le méthyle, l’éthyle, le propyle, le 3,3,3-trifluoropropyle, le xylyle, le tolyle et le phényle. It is understood in the formulas above that, if several R 2 groups are present, they may be identical to or different from each other. Preferably, R 2 can represent a monovalent radical chosen from the group consisting of alkyl groups having 1 to 8 carbon atoms, optionally substituted by at least one halogen atom such as chlorine or fluorine, cycloalkyl groups having 3 with 8 carbon atoms and aryl groups having 6 to 12 carbon atoms. R 2 can advantageously be chosen from the group consisting of methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl.
[0041] Dans la formule ci-dessus, le symbole d est préférentiellement égal à 1. In the above formula, the symbol d is preferably equal to 1.
[0042] L’organohydrogénopolysiloxane B peut présenter une structure linéaire, ramifiée, ou cyclique. Le degré de polymérisation est de préférence supérieur ou égal à 2. Généralement, il est inférieur à 5000. The organohydrogenpolysiloxane B can have a linear, branched or cyclic structure. The degree of polymerization is preferably greater than or equal to 2. Generally, it is less than 5000.
[0043] Lorsqu’il s’agit de polymères linéaires, ceux-ci sont essentiellement constitués de motifs siloxyles choisis parmi les motifs de formules suivantes D : R22SiC>2/2 ou D’ : R2HSiC>2/2, et de motifs siloxyles terminaux choisis parmi les motifs de formules suivantes M : R2aSiOi/2 ou M’ : R22HSiOi/2 où R2 a la même signification que ci-dessus. When it comes to linear polymers, these essentially consist of siloxyl units chosen from the units of the following formulas D: R 2 2SiC>2/2 or D': R 2 HSiC>2/2, and terminal siloxyl units chosen from the units of the following formulas M: R 2 aSiOi/2 or M': R 2 2HSiOi/2 where R 2 has the same meaning as above.
[0044] Des exemples d’organohydrogénopolysiloxanes pouvant être des organopolysiloxanes B selon l’invention comprenant au moins deux atomes d’hydrogène liés à un atome de silicium sont : Examples of organohydrogenpolysiloxanes which may be organopolysiloxanes B according to the invention comprising at least two hydrogen atoms bonded to a silicon atom are:
- un poly(diméthylsiloxane) à extrémités hydrogénodiméthylsilyles ; - a poly(dimethylsiloxane) with hydrogendimethylsilyl ends;
- un poly(diméthylsiloxane-co-méthylhydrogénosiloxane) à extrémités triméthyl-silyles ;- a poly(dimethylsiloxane-co-methylhydrogenosiloxane) with trimethyl-silyl ends;
- un poly(diméthylsiloxane-co-méthylhydrogénosiloxane) à extrémités hydrogénodiméthylsilyles ; - a poly(dimethylsiloxane-co-methylhydrogenosiloxane) with hydrogendimethylsilyl ends;
- un poly(méthylhydrogénosiloxane) à extrémités triméthylsilyles ; et - a poly(methylhydrogenosiloxane) with trimethylsilyl ends; And
- un poly(méthylhydrogénosiloxane) cyclique. - a cyclic poly(methylhydrogensiloxane).
[0045] Lorsque l’organohydrogénopolysiloxane B présente une structure ramifiée, il est choisi de préférence parmi le groupe constitué par les résines silicones de formules suivantes : When the organohydrogenpolysiloxane B has a branched structure, it is preferably chosen from the group consisting of silicone resins of the following formulas:
- M’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par les groupes M, - MM’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des motifs M, - M'Q where the hydrogen atoms bonded to silicon atoms are carried by the M groups, - MM'Q where the hydrogen atoms bonded to silicon atoms are carried by part of the M units,
- MD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par les groupes D, - MD'Q where the hydrogen atoms bonded to silicon atoms are carried by the D groups,
- MDD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des groupes D, - MDD’Q where the hydrogen atoms bonded to silicon atoms are carried by part of the D groups,
- MM’TQ où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des motifs M, - MM'TQ where the hydrogen atoms bonded to silicon atoms are carried by part of the M units,
- MM’DD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des motifs M et D, - MM'DD'Q where the hydrogen atoms bonded to silicon atoms are carried by part of the M and D patterns,
- et leurs mélanges, avec M, M’, D et D’ tels que définis précédemment, T : motif siloxyle de formule R2aSiOi/2 et Q : motif siloxyle de formule SiC /2, où R2 a la même signification que ci-dessus. - and mixtures thereof, with M, M', D and D' as defined above, T: siloxyl unit of formula R 2 aSiOi/2 and Q: siloxyl unit of formula SiC /2, where R 2 has the same meaning as above.
[0046] De préférence, le composé organohydrogénopolysiloxane B a une teneur massique en fonctions hydrogénosilyle Si-H comprise entre 0,2% et 91%, plus préférentiellement entre 3% et 80%. Preferably, the organohydrogenpolysiloxane compound B has a mass content of hydrogenosilyl Si—H functions of between 0.2% and 91%, more preferably between 3% and 80%.
[0047] En considérant l’ensemble de la composition silicone X, le ratio molaire des fonctions hydrogénosilyles Si-H sur les fonctions alcènes peut avantageusement être compris entre 0,2 et 20, de préférence entre 0,5 et 15, plus préférentiellement entre 0,5 et 10, et encore plus préférentiellement entre 0,5 et 5. Considering the whole of the silicone composition X, the molar ratio of the hydrogenosilyl Si-H functions to the alkene functions can advantageously be between 0.2 and 20, preferably between 0.5 and 15, more preferably between 0.5 and 10, and even more preferably between 0.5 and 5.
[0048] De préférence, la viscosité de l’organohydrogénopolysiloxane B est comprise entre 1 mPa.s et 5000 mPa.s, plus préférentiellement entre 1 mPa.s et 2000 mPa.s et encore plus préférentiellement entre 5 mPa.s et 1000 mPa.s. Preferably, the viscosity of the organohydrogenpolysiloxane B is between 1 mPa.s and 5000 mPa.s, more preferably between 1 mPa.s and 2000 mPa.s and even more preferably between 5 mPa.s and 1000 mPa. .s.
[0049] La composition silicone X comprend de préférence de 0,1 % à 10% d’organohydrogénopolysiloxane B, et plus préférentiellement de 0,5% à 5% en poids, par rapport au poids total de la composition silicone X. The silicone composition X preferably comprises from 0.1% to 10% of organohydrogenpolysiloxane B, and more preferably from 0.5% to 5% by weight, relative to the total weight of the silicone composition X.
[0050] La composition silicone X peut comprendre un seul organohydrogénopolysiloxane B ou un mélange de plusieurs organohydrogénopolysiloxanes B ayant par exemple des viscosités différentes et/ou des structures différentes. The silicone composition X may comprise a single organohydrogenpolysiloxane B or a mixture of several organohydrogenpolysiloxanes B having, for example, different viscosities and/or different structures.
[0051] Selon un mode de réalisation, la composition silicone X peut comprendre un mélange : According to one embodiment, the silicone composition X may comprise a mixture:
- d’au moins un organohydrogénopolysiloxane B tel que décrit ci-dessus comprenant deux fonctions SiH par molécule ; et - at least one organohydrogenpolysiloxane B as described above comprising two SiH functions per molecule; And
- d’au moins un organohydrogénopolysiloxane B tel que décrit ci-dessus comprenant au moins trois fonctions SiH par molécule. [0052] Le catalyseur C est un catalyseur de réaction d’hydrosilylation. Les catalyseurs de réaction d’hydrosilylation sont bien connus. On utilise, de préférence, les composés du platine et du rhodium. On peut, en particulier, utiliser les complexes du platine et d'un produit organique décrit dans les brevets US-A-3 159 601 , US A 3 159 602, US-A-3 220 972 et les brevets européens EP-A-0.057.459, EP A 0.188.978 et EP-A-0.190.530, les complexes du platine et d'organosiloxanes vinylés décrits dans les brevets US-A-3419593, US-A-3 715 334, US-A-3 377 432 et US A 3 814 730. Le catalyseur généralement préféré est le platine. Dans ce cas, la quantité pondérale de catalyseur C, calculée en poids de platine-métal, est généralement comprise entre 1 et 400 ppm, de préférence entre 2 et 200 ppm, et plus préférentiellement entre 5 et 100 ppm, basée sur le poids total de la composition silicone X. Dans ce cas, le catalyseur C peut être un catalyseur au platine, par exemple un catalyseur de Karstedt (Pt2[(Me2SiCH=CH2)2O]s). - at least one organohydrogenpolysiloxane B as described above comprising at least three SiH functions per molecule. Catalyst C is a hydrosilylation reaction catalyst. Hydrosilylation reaction catalysts are well known. Preferably, platinum and rhodium compounds are used. It is possible, in particular, to use the complexes of platinum and of an organic product described in patents US-A-3,159,601, US-A-3,159,602, US-A-3,220,972 and European patents EP-A- 0.057.459, EP A 0.188.978 and EP-A-0.190.530, the complexes of platinum and of vinylated organosiloxanes described in the patents US-A-3419593, US-A-3 715 334, US-A-3 377,432 and US-A-3,814,730. The generally preferred catalyst is platinum. In this case, the quantity by weight of catalyst C, calculated by weight of platinum metal, is generally between 1 and 400 ppm, preferably between 2 and 200 ppm, and more preferably between 5 and 100 ppm, based on the total weight of the silicone composition X. In this case, the catalyst C can be a platinum catalyst, for example a Karstedt catalyst (Pt2[(Me2SiCH=CH2)2O]s).
[0053] Le composé D est sélectionné parmi le rétinol, le rétinal, l’acide rétinoïque, les esters d’acide carboxylique de rétinol, les carotènes, et leurs mélanges. Compound D is selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
[0054] Parmi les esters d’acide carboxylique de rétinol, on peut citer les esters d’acide en Ci à C de préférence en Ci à Ce, notamment, les formates, les acétates, et les propionates. Le groupe en Ci à Cis peut être un groupe alkyle linéaire ou ramifié. Among the carboxylic acid esters of retinol, mention may be made of C 1 to C acid esters, preferably C 1 to C 6 acid esters, in particular formates, acetates and propionates. The C1-C6 group can be a linear or branched alkyl group.
[0055] Selon un mode de réalisation, le composé D est sélectionné parmi les carotènes. Les carotènes sont des composés insaturés ayant en général 40 atomes de carbone. Comme exemple de carotènes, on peut citer les carotènes suivants : a-carotène, 0- carotène, y-carotène, 5-carotène, £-carotène, Ç-carotène et le lycopène. According to one embodiment, compound D is selected from carotenes. Carotenes are unsaturated compounds generally having 40 carbon atoms. Examples of carotenes include the following carotenes: α-carotene, 0-carotene, γ-carotene, 5-carotene, β-carotene, ζ-carotene and lycopene.
[0056] Avantageusement, le composé D est de formule (I)
Figure imgf000010_0001
dans laquelle R est sélectionné parmi -CH2OH, -CHO, -COOH, -OCOR’, et les groupements suivants :
Figure imgf000010_0002
avec R’ correspondant à un groupement alkyle en Ci à Cis, de préférence en Ci à Ce, et plus préférentiellement R’ est un méthyle.
Advantageously, compound D is of formula (I)
Figure imgf000010_0001
in which R is selected from -CH2OH, -CHO, -COOH, -OCOR', and the following groups:
Figure imgf000010_0002
with R′ corresponding to a Ci to Cis alkyl group, preferably Ci to Ce, and more preferably R′ is a methyl.
De préférence, R est le groupement suivant
Figure imgf000011_0001
dans ce cas, le composé D est le P-carotène.
Preferably, R is the following group
Figure imgf000011_0001
in this case, compound D is β-carotene.
[0057] La composition silicone X peut comprendre un composé D ou un mélange de plusieurs composés D. The silicone composition X may comprise a compound D or a mixture of several compounds D.
[0058] Certains composés D sont bien connus pour être des pigments naturels, par exemple le P-carotène. En raison de l’utilisation de ces composés D, la composition silicone X peut éventuellement être colorée. Toutefois, il a été constaté que l’élastomère silicone obtenu après réticulation de la composition silicone X était incolore. L’utilisation de composés D selon l’invention n’est donc pas un frein à la préparation de revêtements ou d’articles en élastomères silicones transparents. Certain compounds D are well known for being natural pigments, for example β-carotene. Due to the use of these compounds D, the silicone composition X may optionally be colored. However, it was found that the silicone elastomer obtained after crosslinking of silicone composition X was colorless. The use of compounds D according to the invention is therefore not an obstacle to the preparation of coatings or articles in transparent silicone elastomers.
[0059] Le rapport molaire entre le platine contenu dans le catalyseur C (platine-métal) et le composé D est compris entre 1 :1 et 1 :250, de préférence entre 1 :5 et 1 :200, et plus préférentiellement entre 1 :10 à 1 :100. Selon un mode de réalisation particulier, le ratio molaire entre le platine contenu dans le catalyseur C et le composé D est de 1 :25. The molar ratio between the platinum contained in the catalyst C (platinum-metal) and the compound D is between 1:1 and 1:250, preferably between 1:5 and 1:200, and more preferably between 1 :10 to 1:100. According to a particular embodiment, the molar ratio between the platinum contained in catalyst C and compound D is 1:25.
[0060] La composition silicone réticulable X peut comprendre entre 2 et 10000 ppm de composé D, de préférence entre 5 et 1000 ppm, par rapport au poids total de la composition silicone X. The crosslinkable silicone composition X may comprise between 2 and 10000 ppm of compound D, preferably between 5 and 1000 ppm, relative to the total weight of the silicone composition X.
[0061] Avantageusement, la composition silicone X selon l’invention contient un inhibiteur de réticulation E. Les inhibiteurs de réticulation sont conçus pour ralentir la réaction de réticulation et sont également appelés retardateurs. Les inhibiteurs de réticulation sont bien connus dans l’art antérieur. On peut citer par exemple les polyméthylvinylsiloxanes cycliques et les alcools acétyléniques décrits dans le brevet US 3,923,705, les alcools acétyléniques décrits dans le brevet US 3,445,420, les amines hétérocycliques décrites dans le brevet US 3,188,299, le maléate de diallyle et autres di-alkylesters décrits dans le brevet US 4,256,870, les siloxanes oléfiniques décrits dans le brevet US 3,989,667, et les éthynedicarboxylates de dialkyle décrits dans le brevet US 4,347, 346. On peut également citer les classes d’inhibiteurs suivantes : les hydrazines, les triazoles, les phosphines, les mercaptans, les composés organiques azotés, les alcools acétyléniques, les alcools acétyléniques silylés, les maléates, les fumarates, les amides insaturées éthyléniques ou aromatiques, les isocyanates insaturés éthyléniques, les siloxanes oléfiniques, les monoesters et diesters hydrocarbonés insaturés, les ène-ynes conjugués, les hydroperoxydes, les nitriles et les diaziridines. L’inhibiteur de réticulation E est de préférence choisi parmi le 1 ,3,5,7-tétraméthyl-1 ,3,5,7-tétravinyl-cyclotétrasiloxane, le 1- éthynyl-1-cyclohexanol (ECH), le 3-méthyl-1-butyn-3-ol, le 2-méthyl-3-butyn-2-ol, le 3- butyn-1-ol, le 3-butyn-2-ol, l’alcool propargylique, le 2-phényl-2-propyn-1-ol, le 3,5-diméthyl- 1-hexyn-3-ol, le 1-éthynylcyclopentanol, le 1-phényl-2-propynol, le 3-méthyl-1-penten-4-yn- 3-ol, le 3-méthyl-1-dodécyne-3-ol, le 3,7,11-triméthyl-1-dodécyne-3-ol, le diphényl-1 , 1 - propyne-2-ol-1 , le 3,6-diéthyl-1-nonyne-3-ol, le 3-méthyl-1-pentadécyne-3-ol, et leurs mélanges. Les alcools acétyléniques sont des inhibiteurs de réticulation E très préférés selon l’invention, et tout particulièrement le 1-éthynyl-1-cyclohexanol (ECH). Selon un mode de réalisation, la composition silicone X comprend entre 1 et 1000 ppm d’inhibiteur de réticulation E, de préférence entre 2 et 50 ppm, par rapport au poids total de la composition silicone X. Advantageously, the silicone composition X according to the invention contains a crosslinking inhibitor E. Crosslinking inhibitors are designed to slow down the crosslinking reaction and are also called retarders. Crosslinking inhibitors are well known in the prior art. Mention may be made, for example, of the cyclic polymethylvinylsiloxanes and the acetylenic alcohols described in US Pat. No. 3,923,705, the acetylenic alcohols described in US Pat. No. 3,445,420, the heterocyclic amines described in US Pat. US Patent 4,256,870, the olefinic siloxanes described in US Patent 3,989,667, and the dialkyl ethynedicarboxylates described in US Patent 4,347,346. Mention may also be made of the following classes of inhibitors: hydrazines, triazoles, phosphines, mercaptans, nitrogenous organic compounds, acetylenic alcohols, silylated acetylenic alcohols, maleates, fumarates, unsaturated ethylenic or aromatic amides, unsaturated ethylenic isocyanates, olefinic siloxanes, unsaturated hydrocarbon monoesters and diesters, conjugated ene-ynes , THE hydroperoxides, nitriles and diaziridines. The crosslinking inhibitor E is preferably chosen from 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl-cyclotetrasiloxane, 1-ethynyl-1-cyclohexanol (ECH), 3-methyl -1-butyn-3-ol, 2-methyl-3-butyn-2-ol, 3-butyn-1-ol, 3-butyn-2-ol, propargyl alcohol, 2-phenyl- 2-propyn-1-ol, 3,5-dimethyl-1-hexyn-3-ol, 1-ethynylcyclopentanol, 1-phenyl-2-propynol, 3-methyl-1-penten-4-yn- 3-ol, 3-methyl-1-dodecyne-3-ol, 3,7,11-trimethyl-1-dodecyne-3-ol, diphenyl-1,1-propyne-2-ol-1, 3,6-diethyl-1-nonyne-3-ol, 3-methyl-1-pentadecyne-3-ol, and mixtures thereof. Acetylenic alcohols are highly preferred E crosslinking inhibitors according to the invention, and most particularly 1-ethynyl-1-cyclohexanol (ECH). According to one embodiment, the silicone composition X comprises between 1 and 1000 ppm of crosslinking inhibitor E, preferably between 2 and 50 ppm, relative to the total weight of the silicone composition X.
[0062] La composition silicone réticulable X peut comprendre une charge F. Selon un mode de réalisation, la composition silicone X comprend entre 5 et 20 % en poids de charge F par rapport au poids total de la composition silicone X. Avantageusement, la composition silicone X comprend entre 8 et 15 % en poids de charge F. The crosslinkable silicone composition X may comprise a filler F. According to one embodiment, the silicone composition X comprises between 5 and 20% by weight of filler F relative to the total weight of the silicone composition X. Advantageously, the composition silicone X comprises between 8 and 15% by weight of filler F.
[0063] La charge F éventuellement prévue est de préférence minérale. La charge F peut être un produit très finement divisé dont le diamètre particulaire moyen est inférieur à 0,1 pm. La charge F peut être notamment siliceuse. S’agissant des matières siliceuses, elles peuvent jouer le rôle de charge renforçante ou semi-renforçante. Les charges siliceuses renforçantes sont choisies parmi les silices colloïdales, les poudres de silice de combustion et de précipitation ou leurs mélanges. Ces poudres présentent une taille moyenne de particule généralement inférieure à 0,1 pm (micromètres) et une surface spécifique BET supérieure à 30 m2/g, de préférence comprise entre 30 et 350 m2/g. Les charges siliceuses semi-renforçantes telles que des terres de diatomées ou du quartz broyé, peuvent être également employées. Ces silices peuvent être incorporées telles quelles ou après avoir été traitées par des composés organosiliciques habituellement utilisés pour cet usage. Parmi ces composés figurent les méthylpolysiloxanes tels que l'hexaméthyldisiloxane, l'octaméthylcyclotétrasiloxane, des méthylpolysilazanes tels que l'hexaméthyldisilazane, l'hexaméthylcyclotrisilazane, le tétraméthyldivinyldisilazane, des chlorosilanes tels que le diméthyldichlorosilane, le triméthylchlorosilane, le méthylvinyldichlorosilane, le diméthylvinylchlorosilane, des alcoxysilanes tels que le diméthyldiméthoxysilane, le diméthylvinyléthoxysilane, le triméthylméthoxysilane, et leurs mélanges. En ce qui concerne les matières minérales non siliceuses, elles peuvent intervenir comme charge minérale semi-renforçante ou de bourrage. Des exemples de ces charges non siliceuses utilisables seules ou en mélange sont le carbonate de calcium, éventuellement traité en surface par un acide organique ou par un ester d'un acide organique, l'argile calcinée, l'oxyde de titane du type rutile, les oxydes de fer, de zinc, de chrome, de zirconium, de magnésium, les différentes formes d'alumine (hydratée ou non), le nitrure de bore, le lithopone, le métaborate de baryum, le sulfate de baryum et les microbilles de verre. Ces charges sont plus grossières avec généralement un diamètre particulaire moyen supérieur à 0,1 pm et une surface spécifique généralement inférieure à 30 m2/g. Ces charges peuvent avoir été modifiées en surface par traitement avec les divers composés organosiliciques habituellement employés pour cet usage. The optionally provided filler F is preferably mineral. The filler F can be a very finely divided product whose mean particle diameter is less than 0.1 μm. The filler F may in particular be siliceous. As regards siliceous materials, they can play the role of reinforcing or semi-reinforcing filler. The reinforcing siliceous fillers are chosen from colloidal silicas, combustion and precipitation silica powders or mixtures thereof. These powders have an average particle size generally less than 0.1 μm (micrometers) and a BET specific surface greater than 30 m 2 /g, preferably between 30 and 350 m 2 /g. Semi-reinforcing siliceous fillers such as diatomaceous earth or crushed quartz can also be used. These silicas can be incorporated as such or after having been treated with organosilicon compounds usually used for this purpose. Among these compounds are methylpolysiloxanes such as hexamethyldisiloxane, octamethylcyclotetrasiloxane, methylpolysilazanes such as hexamethyldisilazane, hexamethylcyclotrisilazane, tetramethyldivinyldisilazane, chlorosilanes such as dimethyldichlorosilane, trimethylchlorosilane, methylvinyldichlorosilane, dimethylvinylchlorosilane ilane, alkoxysilanes such as dimethyldimethoxysilane, dimethylvinylethoxysilane, trimethylmethoxysilane, and mixtures thereof. As regards the non-siliceous mineral materials, they can act as a semi-reinforcing or filling mineral filler. Examples of these non-siliceous fillers which can be used alone or as a mixture are calcium carbonate, optionally treated in surface with an organic acid or with an ester of an organic acid, calcined clay, titanium oxide of the rutile type, oxides of iron, zinc, chromium, zirconium, magnesium, the various forms of alumina (hydrated or not), boron nitride, lithopone, barium metaborate, barium sulphate and glass microbeads. These fillers are coarser with generally an average particle diameter greater than 0.1 μm and a specific surface generally less than 30 m 2 /g. These fillers may have been surface-modified by treatment with the various organosilicon compounds usually employed for this purpose.
[0064] De préférence, la charge F est de la silice, et encore plus préférentiellement de la silice de combustion. Avantageusement, la silice a une surface spécifique BET comprise entre 75 et 410 m2/g. Preferably, the filler F is silica, and even more preferably combustion silica. Advantageously, the silica has a BET specific surface of between 75 and 410 m 2 /g.
[0065] Selon un mode de réalisation particulier, la composition silicone X peut comprendre un photoamorceur. According to one particular embodiment, the silicone composition X may comprise a photoinitiator.
[0066] La composition silicone X peut également comprendre d’autres additifs fonctionnels habituels dans les compositions silicones. Comme familles d’additifs fonctionnels usuels, on peut citer : les promoteurs d’adhérence, les modulateurs d’adhérence, les résines silicones, les additifs pour augmenter la consistance, les additifs de tenue thermique, de tenue aux huiles ou de tenue au feu, par exemple les oxydes métalliques, les virucides, les bactéricides, les additifs anti-abrasion, et les pigments (organiques ou minéraux). The silicone composition X can also comprise other functional additives that are usual in silicone compositions. As families of usual functional additives, mention may be made of: adhesion promoters, adhesion modulators, silicone resins, additives for increasing consistency, additives for heat resistance, oil resistance or fire resistance , for example metal oxides, virucides, bactericides, anti-abrasion additives, and pigments (organic or mineral).
[0067] Selon un mode de réalisation préféré, la composition silicone X selon l’invention comprend, basée sur le poids total de la composition silicone X : According to a preferred embodiment, the silicone composition X according to the invention comprises, based on the total weight of the silicone composition X:
- de 50% à 95%, de préférence de 60% à 87%, d’un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C12 liés au silicium, - from 50% to 95%, preferably from 60% to 87%, of an organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon,
- de 0,1% à 10%, de préférence de 0,5% à 5%, d’un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH, - from 0.1% to 10%, preferably from 0.5% to 5%, of an organopolysiloxane B having, per molecule, at least two SiH units,
- de 1 ppm à 400 ppm, de préférence de 2 ppm à 200 ppm, et plus préférentiellement de 5 à 100 ppm, d’un catalyseur d’hydrosilylation C (calculé en poids de métal), - from 1 ppm to 400 ppm, preferably from 2 ppm to 200 ppm, and more preferably from 5 to 100 ppm, of a hydrosilylation catalyst C (calculated by weight of metal),
- de 2 à 10000 ppm, de préférence de 5 et 1000 ppm, d’un composé D sélectionné parmi le rétinol, le rétinal, l’acide rétinoïque, les esters d’acide carboxylique de rétinol, les carotènes, et leurs mélanges, et - from 2 to 10,000 ppm, preferably from 5 and 1,000 ppm, of a compound D selected from retinol, retinal, retinoic acid, carboxylic acid esters of retinol, carotenes, and mixtures thereof, and
- éventuellement, de 1 à 1000 ppm, de préférence de 2 et 50 ppm, d’un inhibiteur de réticulation E. - optionally, from 1 to 1000 ppm, preferably from 2 and 50 ppm, of a crosslinking inhibitor E.
[0068] La composition silicone X peut être préparée par mélange de l’ensemble des différents composants tels que décrits ci-dessus. [0069] Selon un mode de réalisation, la composition silicone X selon l’invention peut être préparée à partir d’un système bi-composant caractérisé en ce qu’il se présente en deux parties distinctes destinées à être mélangées pour former ladite composition silicone X, et en ce que l’une des parties comprend le catalyseur C et ne comprend pas l’organopolysiloxane B, tandis que l’autre partie comprend l’organopolysiloxane B et ne comprend pas le catalyseur C. The silicone composition X can be prepared by mixing all of the different components as described above. According to one embodiment, the silicone composition X according to the invention can be prepared from a two-component system characterized in that it comes in two separate parts intended to be mixed to form said silicone composition. X, and in that one of the parts comprises the catalyst C and does not comprise the organopolysiloxane B, while the other part comprises the organopolysiloxane B and does not comprise the catalyst C.
[0070] Alternativement, la composition silicone X selon l’invention peut être un système monocomposant. Alternatively, the silicone composition X according to the invention may be a single-component system.
[0071] La présente invention a également pour objet un prémélange pour composition silicone comprenant : The present invention also relates to a premix for a silicone composition comprising:
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C12 liés au silicium, - at least one organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon,
- au moins un catalyseur d’hydrosilylation C, et - at least one hydrosilylation catalyst C, and
- au moins un composé D sélectionné parmi le rétinol, le rétinal, l’acide rétinoïque, les esters d’acide carboxylique de rétinol, les carotènes, et leurs mélanges. - at least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
[0072] Procédé de préparation d’un revêtement sur un support [0072] Process for preparing a coating on a support
[0073] L’ invention concerne également un procédé de préparation d’un revêtement sur un support, comprenant les étapes suivantes : The invention also relates to a method for preparing a coating on a support, comprising the following steps:
- application d’une composition silicone X sur un support, de préférence un support textile, et - application of a silicone composition X on a support, preferably a textile support, and
- réticulation de ladite composition par irradiation électronique ou photonique, de préférence par exposition à un faisceau d’électrons, par exposition à des rayons gamma, ou par exposition à un rayonnement de longueur d’onde comprise entre 100 nm et 450 nm, notamment à un rayonnement LIV - crosslinking of said composition by electron or photon irradiation, preferably by exposure to an electron beam, by exposure to gamma rays, or by exposure to radiation with a wavelength of between 100 nm and 450 nm, in particular at LIV radiation
[0074] L’application de la composition silicone X peut être effectuée en déposant de manière continue ou discontinue ladite composition silicone X sur au moins une face dudit support. The application of the silicone composition X can be carried out by continuously or discontinuously depositing the said silicone composition X on at least one face of the said support.
[0075] Le dépôt peut être fait typiquement par transfert, par rouleau lécheur ou par pulvérisation à l’aide d’une buse, d’une racle, d’un cadre rotatif ou d’un rouleau inverse (ou « reverse roll » selon la terminologie anglo-saxonne). L’épaisseur de la couche de la composition silicone X déposée sur le support peut être comprise entre 0,1 mm et 0,8 mm, de préférence entre 0,3 mm et 0,6 mm et plus préférentiellement encore entre 0,4 mm et 0,5 mm. The deposition can typically be done by transfer, by lick roller or by spraying using a nozzle, a doctor blade, a rotating frame or a reverse roller (or "reverse roll" according to Anglo-Saxon terminology). The thickness of the layer of silicone composition X deposited on the support may be between 0.1 mm and 0.8 mm, preferably between 0.3 mm and 0.6 mm and even more preferably between 0.4 mm and 0.5mm.
[0076] Selon un mode de réalisation, l’étape de réticulation du procédé selon l’invention est effectuée par rayonnement UV de longueur d’onde comprise entre 100 nm et 405 nm. Selon un mode préféré de l’invention, le rayonnement est de la lumière ultraviolette de longueur d’onde inférieure ou égale à 405 nanomètres. Selon un mode préféré de l’invention, le rayonnement est de la lumière ultraviolette de longueur d’onde supérieure à 100 nanomètres. According to one embodiment, the crosslinking step of the process according to the invention is carried out by UV radiation with a wavelength of between 100 nm and 405 nm. According a preferred mode of the invention, the radiation is ultraviolet light with a wavelength less than or equal to 405 nanometers. According to a preferred mode of the invention, the radiation is ultraviolet light with a wavelength greater than 100 nanometers.
[0077] Le rayonnement LIV peut être émis par des lampes à vapeur de mercure dopées ou non dont le spectre d’émission s’étend de 100 nm à 405 nm. Des sources lumineuses telles que des diodes électroluminescentes, plus connues sous l’acronyme « LED » (Light- Emitting Diodes) qui délivrent une lumière UV ou visible ponctuelle peuvent aussi être employées. LIV radiation can be emitted by doped or undoped mercury vapor lamps whose emission spectrum extends from 100 nm to 405 nm. Light sources such as light-emitting diodes, better known by the acronym “LED” (Light-Emitting Diodes) which deliver point UV or visible light can also be used.
[0078] Selon un mode de réalisation préférée, la réticulation de ladite composition silicone X est effectuée par irradiation avec un rayonnement UV dont la source est une lampe UV- LED. Ladite lampe UV-LED peut émettre un rayonnement de longueur d’onde 365 nm, 385 nm, 395 nm ou 405 nm. De préférence, la lampe UV-LED est une lampe émettant à 395 nm. According to a preferred embodiment, the crosslinking of said silicone composition X is carried out by irradiation with UV radiation, the source of which is a UV-LED lamp. Said UV-LED lamp can emit radiation of wavelength 365 nm, 385 nm, 395 nm or 405 nm. Preferably, the UV-LED lamp is a lamp emitting at 395 nm.
[0079] La puissance de la lampe UV-LED est de façon préférée comprise entre2 W/m2 et 200 000 W/m2. The power of the UV-LED lamp is preferably between 2 W/m 2 and 200,000 W/m 2 .
[0080] Selon un mode de réalisation préféré, l’irradiation de la composition silicone X est effectuée en continu, par défilement du support sous la lampe UV-LED. La vitesse de défilement et le nombre de passage peuvent être définis de sorte que l’irradiation totale de la composition silicone ait lieu pendant une durée comprise entre 1 s et 60 s, de façon plus préférée entre 2 s et 40 s, et de façon encore plus préférée entre 3 s et 15 s. Ainsi, l’énergie reçue par la composition silicone X par irradiation est de façon préférée comprise entre 1 J/m2 et 1200 J/cm2, de façon plus préférée entre5 J/m2 et 5 J/cm2. According to a preferred embodiment, the irradiation of the silicone composition X is carried out continuously, by scrolling the support under the UV-LED lamp. The running speed and the number of passages can be defined so that the total irradiation of the silicone composition takes place for a period of between 1 s and 60 s, more preferably between 2 s and 40 s, and so even more preferred between 3 s and 15 s. Thus, the energy received by the silicone composition X by irradiation is preferably between 1 J/m 2 and 1200 J/cm 2 , more preferably between 5 J/m 2 and 5 J/cm 2 .
[0081] Selon un mode de réalisation préféré, l’étape de réticulation est mise en oeuvre sans inertage. Toutefois, il n’est pas exclu de procéder sous atmosphère inerte, par exemple sous azote, sous argon ou sous air appauvri en oxygène. According to a preferred embodiment, the crosslinking step is implemented without inerting. However, it is not excluded to proceed under an inert atmosphere, for example under nitrogen, under argon or under oxygen-depleted air.
[0082] L’étape de réticulation est mise en oeuvre à une température comprise entre 15°C et 60°C, de façon plus préférée entre 20°C et 40°C, et de façon encore plus préférée à température ambiante, soit typiquement environ 25°C. The crosslinking step is carried out at a temperature between 15° C. and 60° C., more preferably between 20° C. and 40° C., and even more preferably at room temperature, i.e. typically about 25°C.
[0083] Selon l’invention, tout type de support peut être utilisé, en particulier, les supports textiles. A titre indicatif, parmi les supports textiles, on peut citer : According to the invention, any type of support can be used, in particular textile supports. As an indication, among the textile supports, we can mention:
- les textiles naturels, tels que : les textiles d’origine végétale, comme le coton, le lin, le chanvre, la jute, la coco, les fibres cellulosique du papier ; et les textiles d’origine animale, comme la laine, les poils, le cuir et les soies ; - natural textiles, such as: textiles of plant origin, such as cotton, linen, hemp, jute, coconut, cellulosic fibers from paper; and textiles of animal origin, such as wool, hair, leather and silks;
- les textiles artificiels, tels que : les textiles cellulosiques, comme la cellulose ou ses dérivés ; et les textiles protéiniques d’origine animale ou végétale ; et - artificial textiles, such as: cellulosic textiles, such as cellulose or its derivatives; and proteinaceous textiles of animal or plant origin; And
- les textiles synthétiques, tels que le polyester, le polyamide, les alcools polymalliques, le chlorure de polyvinyle, le polyacrylonitrile, les polyoléfines, l’acrylonitrile, les copolymères (méth)acrylate-butadiène-styrène et le polyuréthane. - synthetic textiles, such as polyester, polyamide, polymallic alcohols, polyvinyl chloride, polyacrylonitrile, polyolefins, acrylonitrile, (meth)acrylate-butadiene-styrene copolymers and polyurethane.
[0084] Les textiles synthétiques obtenus par polymérisation ou polycondensation peuvent notamment comprendre dans leur matrice différents types d’additifs, tels que des pigments, des délustrants, des matifiants, des catalyseurs, des stabilisants thermiques et/ou lumière, des agents anti-statiques, des ignifugeants, des agents anti-bactériens, anti-fongiques, et/ou anti-acariens. The synthetic textiles obtained by polymerization or polycondensation may in particular comprise in their matrix different types of additives, such as pigments, delustrants, mattifiers, catalysts, heat and/or light stabilizers, anti-static agents , flame retardants, anti-bacterial, anti-fungal, and/or anti-mite agents.
[0085] Comme type de surfaces textiles, on peut citer notamment les surfaces obtenues par entrecroisement rectiligne des fils ou tissus, les surfaces obtenues par entrelacement curviligne des fils ou tricots, les surfaces mixtilignes ou tulles, les surfaces non tissées et les surfaces composites. As type of textile surfaces, mention may be made in particular of surfaces obtained by rectilinear interlacing of yarns or fabrics, surfaces obtained by curvilinear interlacing of yarns or knits, mixed or tulle surfaces, nonwoven surfaces and composite surfaces.
[0086] Le support textile utilisé dans le procédé de la présente invention peut être constitué d’un ou plusieurs textiles, identiques ou différents, assemblés par diverses manières. Le textile peut être mono- ou multi-couche(s). Le support textile peut par exemple être constitué d’une structure multicouche pouvant être réalisé par différents moyens d’assemblage, tels que des moyens mécaniques comme la couture, le soudage, ou le collage par point ou continu. The textile support used in the method of the present invention may consist of one or more textiles, identical or different, assembled in various ways. The textile can be mono- or multi-layer(s). The textile support can for example consist of a multilayer structure that can be produced by different assembly means, such as mechanical means such as sewing, welding, or point or continuous bonding.
[0087] Le support textile peut, outre le procédé de revêtement selon la présente invention, subir un ou plusieurs autres traitements subséquents, également appelés traitement de finition ou d’ennoblissement. Ces autres traitements peuvent être effectués avant, après et/ou pendant ledit procédé de revêtement de l’invention. Comme autres traitements subséquents, on peut notamment citer : la teinture, l’impression, le contrecollage, l’enduction, l’assemblage avec d’autres matériaux ou surfaces textiles, le lavage, le dégraissage, le préformage ou le fixage. The textile support can, in addition to the coating process according to the present invention, undergo one or more other subsequent treatments, also called finishing or finishing treatment. These other treatments can be carried out before, after and/or during said coating process of the invention. Other subsequent treatments include: dyeing, printing, laminating, coating, assembly with other materials or textile surfaces, washing, degreasing, preforming or fixing.
[0088] Selon un mode de réalisation, le support est un support textile ajouré et/ou élastique. According to one embodiment, the support is an openwork and/or elastic textile support.
[0089] Un textile est dit « ajouré » lorsqu’il comprend des espaces libres non constitués de textile. Lesdits espaces libres (pouvant être désignés par pores, vides, alvéoles, trous, interstices ou orifices) peuvent être répartis régulièrement ou non sur le textile. Ces espaces libres peuvent notamment être créés lors de l’élaboration du textile. Pour que l’enduction de la composition silicone de l’invention soit efficace, il est préférable que la plus petite des dimensions de ces espaces libres soient inférieure à 5 mm, notamment inférieurs à 1 mm. A textile is said to be "openwork" when it includes free spaces not made up of textile. Said free spaces (which may be designated as pores, voids, cells, holes, interstices or orifices) may be evenly distributed or not on the textile. These free spaces can be created in particular during the development of the textile. For the coating of the silicone composition of the invention to be effective, it is preferable for the smallest of the dimensions of these free spaces to be less than 5 mm, in particular less than 1 mm.
[0090] Un textile est dit « élastique » lorsqu’il présente un taux d’élasticité supérieur à 5%, de préférence supérieur à 15%. Le taux d’élasticité d’un textile peut aller jusqu’à typiquement 500%. Le taux d’élasticité représente le pourcentage d’élongation du textile quand on l’étire au maximum. L’élongation peut être uniquement longitudinale, uniquement transversale, ou longitudinale et transversale. [0090] A textile is said to be “elastic” when it has a degree of elasticity greater than 5%, preferably greater than 15%. The elasticity rate of a textile can go up to typically 500%. The elasticity rate represents the percentage of elongation of the textile when it is stretched to the maximum. The elongation can be only longitudinal, only transverse, or longitudinal and transverse.
[0091] Le support textile peut être une dentelle ou une bande élastique. [0091] The textile support can be lace or an elastic band.
[0092] La présente invention a également pour objet un support revêtu susceptible d’être obtenu selon ledit procédé. The present invention also relates to a coated support obtainable by said method.
[0093] Les supports textiles revêtus ainsi obtenus, tels quels ou transformés en articles textiles, peuvent être utilisés dans de nombreuses applications, telles que, par exemple, dans le domaine de l’habillement, notamment la lingerie comme les dentelles de hauts de bas ou de soutien-gorge, et les vêtements de sport, et les articles d’hygiène, tels que des bandes de contention ou des pansements The coated textile supports thus obtained, as such or transformed into textile articles, can be used in many applications, such as, for example, in the field of clothing, in particular lingerie such as lace for tops of stockings. or bras, and sportswear, and hygiene items, such as compression bandages or bandages
[0094] Autres applications [0094] Other applications
[0095] La présente invention a également pour objet l’utilisation de la composition silicone X pour la préparation d’élastomères silicones. The present invention also relates to the use of the silicone composition X for the preparation of silicone elastomers.
[0096] L’ invention concerne également l’utilisation de la composition X selon l’invention dans le domaine de l’électronique, par exemple pour la préparation de revêtements enrobants (« conformal coatings » selon la terminologie anglo-saxonne) de circuits imprimés, et pour le remplissage (« potting » selon la terminologie anglo-saxonne) de microcircuits et de composants électroniques tels que les IGBT. The invention also relates to the use of composition X according to the invention in the field of electronics, for example for the preparation of conformal coatings (“conformal coatings” according to the Anglo-Saxon terminology) of printed circuits. , and for the filling (“potting” according to the Anglo-Saxon terminology) of microcircuits and electronic components such as IGBTs.
[0097] L’ invention concerne également l’utilisation de la composition X selon l’invention, pour la préparation d’articles en élastomère silicone par un procédé de fabrication additive. Les procédés de fabrication additive sont aussi connus comme des procédés d’impression 3D. Cette description comprend généralement la désignation ASTM F2792-12a, « Terminologie standard pour les technologies de fabrication additive ». Conformément à cette norme ASTM, une « imprimante 3D » est définie comme « une machine utilisée pour l’impression en 3D » et « impression 3D » est définie comme « la fabrication d’objets à travers le dépôt d’un matériau à l’aide d’une tête d’impression, d’une buse ou d’une autre technologie d’imprimante ». The invention also relates to the use of composition X according to the invention, for the preparation of articles in silicone elastomer by an additive manufacturing process. Additive manufacturing processes are also known as 3D printing processes. This description typically includes the designation ASTM F2792-12a, “Standard Terminology for Additive Manufacturing Technologies.” In accordance with this ASTM standard, a "3D printer" is defined as "a machine used for 3D printing" and "3D printing" is defined as "the manufacture of objects through the deposition of a material at the using a printhead, nozzle or other printer technology”.
[0098] La fabrication additive « AM » est définie comme un processus de jointure de matériaux pour fabriquer des objets à partir de données de modèle 3D, généralement couche sur couche, par opposition aux méthodes de fabrication soustractives. Les synonymes associés à l’impression 3D et englobés par l’impression 3D comprennent la fabrication additive, les processus additifs, les techniques additives et la fabrication de couches. La fabrication additive (AM) peut également être appelée prototypage rapide (RP). Tel qu’utilisé ici, « impression 3D » est interchangeable avec « fabrication additive » et vice versa. [0098] Additive manufacturing “AM” is defined as a process of joining materials to manufacture objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methods. Synonyms associated with 3D printing and encompassed by 3D printing include additive manufacturing, additive processes, additive techniques, and layer manufacturing. Additive manufacturing (AM) can also be called rapid prototyping (RP). As used herein, "3D printing" is interchangeable with "additive manufacturing" and vice versa.
[0099] L’irradiation des couches de compositions silicone X au fur et à mesure de l’impression permet la gélification rapide d’au moins une partie de la composition pendant la production et ainsi chaque couche conserve sa forme sans effondrement de la structure imprimée. The irradiation of the layers of silicone compositions X as the printing progresses allows the rapid gelation of at least part of the composition during production and thus each layer retains its shape without the printed structure collapsing. .
[0100] Avantageusement, les compositions silicone X selon l’invention peuvent être utilisées pour les procédés d’impression 3D mettant en oeuvre la photopolymérisation en cuve (Digital Light Processing, stéréolithographie), l’extrusion de matériau, le dépôt de matériau, ou le jet d’encre, en adaptant la viscosité de la composition silicone X à la technologie employée. [0100] Advantageously, the silicone compositions X according to the invention can be used for 3D printing processes implementing in-vessel photopolymerization (Digital Light Processing, stereolithography), material extrusion, material deposition, or inkjet, by adapting the viscosity of the silicone composition X to the technology used.
[0101] D’autres détails ou avantages de l’invention apparaîtront plus clairement au vu des exemples donnés ci-dessous uniquement à titre indicatif. [0101] Other details or advantages of the invention will appear more clearly in view of the examples given below for information purposes only.
Exemples Examples
[0102] Les compositions silicones décrites en exemple ci-dessous ont été obtenues à partir des matières premières suivantes : The silicone compositions described in the example below were obtained from the following raw materials:
A : poly(diméthylsiloxane) à extrémités diméthylvinylsilyles, viscosité » WO mPa.s, contenant environ 2% en poids de fonction Si-vinyle A: poly(dimethylsiloxane) with dimethylvinylsilyl ends, viscosity » WO mPa.s, containing about 2% by weight of Si-vinyl function
B : poly(méthylhydrogénosiloxane) à extrémités triméthylsilyles contenant 56% en poids de fonction SiH B: poly(methylhydrogenosiloxane) with trimethylsilyl ends containing 56% by weight of SiH function
C1 : catalyseur platine de Karstedt, contenant 10% en poids de platine-métal C1: Karstedt platinum catalyst, containing 10% by weight of platinum metal
C2 : Pt(acac)2 (solution à 0,1 % dans le dichlorométhane) C2: Pt(acac)2 (0.1% solution in dichloromethane)
C3 : MesPt(MeCp) C3: MyPt(MeCp)
D1 : p-carotène commercialisé par Sigma-Aldrich D1: p-carotene marketed by Sigma-Aldrich
E1 : 1-éthynyl-1-cyclohexanol (ECH) E1: 1-ethynyl-1-cyclohexanol (ECH)
[0103] Mode opératoire [0103] Operating mode
[0104] Les différents composés ont été mélangés dans un flacon en verre équipé d’un agitateur magnétique. Les quantités d’organopolysiloxanes A et B ont été ajustées de manière à ce que le rapport molaire SiH/SiVinyl = 1 ,1. The various compounds were mixed in a glass bottle equipped with a magnetic stirrer. The amounts of organopolysiloxanes A and B were adjusted so that the SiH/SiVinyl molar ratio = 1.1.
[0105] Le temps de gel est mesuré sans irradiation. Il correspond au temps de prise en masse du système (le barreau aimanté ne peut plus agiter le système). The gel time is measured without irradiation. It corresponds to the setting time of the system (the bar magnet can no longer agitate the system).
[0106] Pour les essais sous irradiation, un échantillon de formulation sous forme d’un film de faible épaisseur est placé sous la lampe UV. Le temps de gel correspond au temps de solidification de l’échantillon. Irradiation : Lampe UV LED commercialisée par la société UWAVE avec une longueur d’onde de 395 nm, une puissance 12 W/cm2, et une distance source irradiation-échantillon de 4 cm For the tests under irradiation, a formulation sample in the form of a thin film is placed under the UV lamp. The freezing time corresponds to the solidification time of the sample. Irradiation: UV LED lamp marketed by the company UWAVE with a wavelength of 395 nm, a power of 12 W/cm 2 , and an irradiation source-sample distance of 4 cm
[0107] Exemple 1 [0108] Une composition silicone selon l’invention comprenant un composé D a été testée, sous irradiation UV ou non, et comparée à des systèmes catalytiques commerciaux, dont certains sont connus pour être actifs sous UV. Les résultats sont présentés dans le tableau 1. [0107] Example 1 [0108] A silicone composition according to the invention comprising a compound D was tested, under UV irradiation or not, and compared with commercial catalytic systems, some of which are known to be active under UV. The results are shown in Table 1.
[0109] [Tableau 1]
Figure imgf000019_0001
[0110] Ces résultats montrent que la composition silicone selon l’invention possède d’excellentes propriétés (essai 1 ). En effet, le temps de gel sous UV est très bas, ce qui signifie que la réticulation est très rapide. De plus, la composition silicone selon l’invention est très stable, car le temps de gel sans irradiation est relativement élevé.
[0109] [Table 1]
Figure imgf000019_0001
These results show that the silicone composition according to the invention has excellent properties (test 1). Indeed, the gel time under UV is very low, which means that crosslinking is very fast. In addition, the silicone composition according to the invention is very stable, since the gel time without irradiation is relatively high.
[01111 Exemple 2 [0112] L’impact de la quantité de composé D dans des compositions ne comprenant pas d’inhibiteur de réticulation a été évalué. Le catalyseur utilisé est le catalyseur C1 (5 ppm de Pt). Les résultats sont présentés dans le tableau 2. [01111 Example 2 [0112] The impact of the amount of compound D in compositions not comprising a crosslinking inhibitor was evaluated. The catalyst used is catalyst C1 (5 ppm of Pt). The results are shown in Table 2.
[0113] [Tableau 2]
Figure imgf000020_0001
[0113] [Table 2]
Figure imgf000020_0001
[0114] Ces résultats montrent que le temps de gel sous LIV reste très bas, quelle que soit la quantité de composé D, et que l’ajout de composé D permet d’augmenter le temps de gel sans irradiation, et donc d’améliorer la stabilité de la composition. These results show that the gel time under LIV remains very low, regardless of the amount of compound D, and that the addition of compound D makes it possible to increase the gel time without irradiation, and therefore to improve the stability of the composition.
[0115] Exemple 3 [0116] L’impact de la quantité de composé D dans des compositions comprenant un inhibiteur de réticulation a également été évalué. Le catalyseur utilisé est le catalyseur C1 (5 ppm de Pt). Les résultats sont présentés dans le tableau 3. [0115] Example 3 [0116] The impact of the amount of compound D in compositions comprising a crosslinking inhibitor was also evaluated. The catalyst used is catalyst C1 (5 ppm of Pt). The results are shown in Table 3.
[0117] [Tableau 3]
Figure imgf000020_0002
[0117] [Table 3]
Figure imgf000020_0002
[0118] Ces résultats montrent que l’ajout de composé D dans une composition comprenant un inhibiteur de réticulation E permet de réduire le temps de gel sous UV, et d’augmenter le temps de gel sans irradiation afin d’atteindre un seuil tout à fait acceptable. [0119] Exemple 4 These results show that the addition of compound D in a composition comprising a crosslinking inhibitor E makes it possible to reduce the gel time under UV, and to increase the gel time without irradiation in order to reach a threshold completely fact acceptable. [0119] Example 4
[0120] Des essais sous défilement ont également été effectués. Une lampe ULINE™ (de la société UWAVE) montée sur un banc d’enduction a été utilisée avec les paramètres suivants : Longueur d’onde = 395 nm [0120] Tests under scrolling were also carried out. A ULINE™ lamp (from UWAVE) mounted on a coating bench was used with the following parameters: Wavelength = 395 nm
Vitesse de défilement = 2 m.min'1 Scroll speed = 2 m.min' 1
Puissance = 12 W/cm2 Power = 12 W/cm 2
Distance source irradiation-échantillon = 2 cm Irradiation source-sample distance = 2 cm
Une composition similaire à celle de l’essai 9, mais avec 15 ppm de Pt, a été testée. Il a été possible de réticuler cette composition après un seul passage. A composition similar to that of test 9, but with 15 ppm of Pt, was tested. It was possible to crosslink this composition after a single pass.

Claims

Revendications Claims
[Revendication 1] Composition silicone X réticulable par irradiation comprenant : a. au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C12 liés au silicium; b. au moins un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH ; c. une quantité catalytiquement efficace d’au moins un catalyseur d’hydrosilylation C, de préférence un catalyseur au platine ; et d. au moins un composé D sélectionné parmi le rétinol, le rétinal, l’acide rétinoïque, les esters d’acide carboxylique de rétinol, les carotènes, et leurs mélanges. [Claim 1] Radiation-curable silicone X composition comprising: a. at least one organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon; b. at least one organopolysiloxane B having, per molecule, at least two SiH units; vs. a catalytically effective amount of at least one hydrosilylation catalyst C, preferably a platinum catalyst; and D. at least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
[Revendication 2] Composition silicone X selon la revendication 1 , caractérisée en ce que le composé D est de formule (I)
Figure imgf000022_0001
dans laquelle R est sélectionné parmi -CH2OH, -CHO, -COOH, -OCOR’, et les groupements suivants :
Figure imgf000022_0002
avec R’ correspondant à un groupement alkyle en Ci à C , de préférence en Ci à Ce, et plus préférentiellement R’ est un méthyle.
[Claim 2] Silicone composition X according to claim 1, characterized in that compound D is of formula (I)
Figure imgf000022_0001
in which R is selected from -CH2OH, -CHO, -COOH, -OCOR', and the following groups:
Figure imgf000022_0002
with R′ corresponding to a C1 to C′ alkyl group, preferably C1 to C6 alkyl group, and more preferably R′ is a methyl.
[Revendication 3] Composition silicone X selon la revendication 1 ou 2, caractérisée en ce que le composé D est le P-carotène. [Claim 3] Silicone composition X according to claim 1 or 2, characterized in that compound D is β-carotene.
[Revendication 4] Composition silicone X selon l’une des revendications précédentes, caractérisée en ce que le rapport molaire entre le platine contenu dans le catalyseur C et le composé D est compris entre 1 :1 et 1 :250, de préférence entre 1 :5 et 1 :200, et plus préférentiellement entre 1 :10 à 1 :100. [Claim 4] Silicone composition X according to one of the preceding claims, characterized in that the molar ratio between the platinum contained in the catalyst C and the compound D is between 1:1 and 1:250, preferably between 1: 5 and 1:200, and more preferably between 1:10 and 1:100.
[Revendication 5] Composition silicone X selon l’une des revendications précédentes, caractérisée en ce qu’elle comprend 2 et 10000 ppm de composé D, de préférence entre 5 et 1000 ppm, par rapport au poids total de la composition silicone X. [Claim 5] Silicone composition X according to one of the preceding claims, characterized in that it comprises 2 and 10,000 ppm of compound D, preferably between 5 and 1,000 ppm, relative to the total weight of the silicone composition X.
[Revendication 6] Composition silicone X selon l’une des revendications précédentes, caractérisée en ce qu’elle est réticulable par exposition à un rayonnement de longueur d’onde comprise entre 100 nm et 450 nm, notamment à un rayonnement LIV. [Claim 6] Silicone composition X according to one of the preceding claims, characterized in that it is crosslinkable by exposure to radiation with a wavelength of between 100 nm and 450 nm, in particular to LIV radiation.
[Revendication 7] Composition silicone X selon l’une des revendications précédentes, caractérisée en ce qu’elle comprend, en outre, entre 1 et 1000 ppm d’un inhibiteur de réticulation E, de préférence entre 2 et 50 ppm, par rapport au poids total de la composition silicone X. [Claim 7] Silicone composition X according to one of the preceding claims, characterized in that it additionally comprises between 1 and 1000 ppm of a crosslinking inhibitor E, preferably between 2 and 50 ppm, relative to the total weight of the silicone composition X.
[Revendication 8] Procédé de préparation d’un revêtement sur un support, comprenant les étapes suivantes : [Claim 8] Process for preparing a coating on a support, comprising the following steps:
- application d’une composition silicone X selon l’une quelconque des revendications 1 à 7 sur un support, de préférence un support textile, et - application of a silicone composition X according to any one of claims 1 to 7 on a support, preferably a textile support, and
- réticulation de ladite composition par irradiation électronique ou photonique, de préférence par exposition à un faisceau d’électrons, par exposition à des rayons gamma, ou par exposition à un rayonnement de longueur d’onde comprise entre 100 nm et 450 nm, notamment à un rayonnement LIV. - crosslinking of said composition by electron or photon irradiation, preferably by exposure to an electron beam, by exposure to gamma rays, or by exposure to radiation with a wavelength of between 100 nm and 450 nm, in particular at LIV radiation.
[Revendication 9] Procédé selon la revendication 8, caractérisé en ce que la réticulation a lieu par exposition à un rayonnement LIV dont la source est une lampe LIV-LED. [Claim 9] Process according to Claim 8, characterized in that the crosslinking takes place by exposure to LIV radiation, the source of which is a LIV-LED lamp.
[Revendication 10] Support revêtu susceptible d’être obtenu selon le procédé selon la revendication 8 ou 9. [Claim 10] Coated support obtainable by the process according to claim 8 or 9.
[Revendication 11] Utilisation de la composition silicone X selon l’une quelconque des revendications 1 à 7, pour la préparation d’élastomères silicones. [Claim 11] Use of the silicone composition X according to any one of Claims 1 to 7, for the preparation of silicone elastomers.
[Revendication 12] Prémélange pour composition silicone comprenant : [Claim 12] Premix for a silicone composition comprising:
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C12 liés au silicium, - at least one organopolysiloxane A having, per molecule, at least two C2-C12 alkenyl groups bonded to silicon,
- au moins un catalyseur d’hydrosilylation C, et - at least one hydrosilylation catalyst C, and
- au moins un composé D sélectionné parmi le rétinol, le rétinal, l’acide rétinoïque, les esters d’acide carboxylique de rétinol, les carotènes, et leurs mélanges. - at least one compound D selected from retinol, retinal, retinoic acid, retinol carboxylic acid esters, carotenes, and mixtures thereof.
PCT/FR2022/052391 2021-12-17 2022-12-16 Silicone composition which is cross-linkable by irradiation WO2023111478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2113839 2021-12-17
FR2113839A FR3130816B1 (en) 2021-12-17 2021-12-17 Silicone composition crosslinkable by irradiation

Publications (1)

Publication Number Publication Date
WO2023111478A1 true WO2023111478A1 (en) 2023-06-22

Family

ID=80786155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/052391 WO2023111478A1 (en) 2021-12-17 2022-12-16 Silicone composition which is cross-linkable by irradiation

Country Status (2)

Country Link
FR (1) FR3130816B1 (en)
WO (1) WO2023111478A1 (en)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US346A (en) 1837-08-08 Improved mode of protecting the metallic sheathing of vessels
US4347A (en) 1845-12-31 Medicated bath
US3159602A (en) 1962-06-07 1964-12-01 Olin Mathieson Preparation of polymeric phosphates
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3188299A (en) 1963-02-28 1965-06-08 Gen Electric Preparation of stable mixtures of organosilicon compositions in the presence of a nitrogen-containing ligand
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
US3377432A (en) 1964-07-31 1968-04-09 Bell Telephone Labor Inc Telephone switching system
US3419593A (en) 1965-05-17 1968-12-31 Dow Corning Catalysts for the reaction of = sih with organic compounds containing aliphatic unsaturation
US3445420A (en) 1966-06-23 1969-05-20 Dow Corning Acetylenic inhibited platinum catalyzed organopolysiloxane composition
US3715334A (en) 1970-11-27 1973-02-06 Gen Electric Platinum-vinylsiloxanes
US3814730A (en) 1970-08-06 1974-06-04 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
US3923705A (en) 1974-10-30 1975-12-02 Dow Corning Method of preparing fire retardant siloxane foams and foams prepared therefrom
US3989667A (en) 1974-12-02 1976-11-02 Dow Corning Corporation Olefinic siloxanes as platinum inhibitors
US4256870A (en) 1979-05-17 1981-03-17 General Electric Company Solventless release compositions, methods and articles of manufacture
EP0057459A1 (en) 1981-02-02 1982-08-11 SWS Silicones Corporation Platinum-styrene complexes as catalysts for hydrosilation reactions and a process for preparing the same
EP0188978A1 (en) 1984-12-20 1986-07-30 Rhone-Poulenc Chimie Platinum-triene complex as a hydrosilylation catalyst and a process for its preparation
EP0190530A1 (en) 1984-12-20 1986-08-13 Rhone-Poulenc Chimie Platinum-alcenylcyclohexene complex as a hydrosilylation catalyst and process for its preparation
EP0398701A2 (en) 1989-05-19 1990-11-22 Minnesota Mining And Manufacturing Company Radiation activated hydrosilation reaction
WO1995025734A1 (en) 1994-03-18 1995-09-28 Rhone Poulenc Chimie Platinum complexes and light-activatable hydrosilylation catalysts containing same
JP2002356416A (en) * 2001-05-30 2002-12-13 Shiseido Co Ltd Water-in-oil type emulsified cosmetic for preventing rough skin
WO2007064687A1 (en) * 2005-12-02 2007-06-07 The Procter & Gamble Company Water in oil emulsion compositions containing siloxane elastomers
US20110077335A1 (en) * 2009-09-28 2011-03-31 Gc Corporation Adhesive agent for silicone rubber

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US346A (en) 1837-08-08 Improved mode of protecting the metallic sheathing of vessels
US4347A (en) 1845-12-31 Medicated bath
US3159602A (en) 1962-06-07 1964-12-01 Olin Mathieson Preparation of polymeric phosphates
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
US3188299A (en) 1963-02-28 1965-06-08 Gen Electric Preparation of stable mixtures of organosilicon compositions in the presence of a nitrogen-containing ligand
US3377432A (en) 1964-07-31 1968-04-09 Bell Telephone Labor Inc Telephone switching system
US3419593A (en) 1965-05-17 1968-12-31 Dow Corning Catalysts for the reaction of = sih with organic compounds containing aliphatic unsaturation
US3445420A (en) 1966-06-23 1969-05-20 Dow Corning Acetylenic inhibited platinum catalyzed organopolysiloxane composition
US3814730A (en) 1970-08-06 1974-06-04 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
US3715334A (en) 1970-11-27 1973-02-06 Gen Electric Platinum-vinylsiloxanes
US3923705A (en) 1974-10-30 1975-12-02 Dow Corning Method of preparing fire retardant siloxane foams and foams prepared therefrom
US3989667A (en) 1974-12-02 1976-11-02 Dow Corning Corporation Olefinic siloxanes as platinum inhibitors
US4256870A (en) 1979-05-17 1981-03-17 General Electric Company Solventless release compositions, methods and articles of manufacture
EP0057459A1 (en) 1981-02-02 1982-08-11 SWS Silicones Corporation Platinum-styrene complexes as catalysts for hydrosilation reactions and a process for preparing the same
EP0188978A1 (en) 1984-12-20 1986-07-30 Rhone-Poulenc Chimie Platinum-triene complex as a hydrosilylation catalyst and a process for its preparation
EP0190530A1 (en) 1984-12-20 1986-08-13 Rhone-Poulenc Chimie Platinum-alcenylcyclohexene complex as a hydrosilylation catalyst and process for its preparation
EP0398701A2 (en) 1989-05-19 1990-11-22 Minnesota Mining And Manufacturing Company Radiation activated hydrosilation reaction
WO1995025734A1 (en) 1994-03-18 1995-09-28 Rhone Poulenc Chimie Platinum complexes and light-activatable hydrosilylation catalysts containing same
JP2002356416A (en) * 2001-05-30 2002-12-13 Shiseido Co Ltd Water-in-oil type emulsified cosmetic for preventing rough skin
WO2007064687A1 (en) * 2005-12-02 2007-06-07 The Procter & Gamble Company Water in oil emulsion compositions containing siloxane elastomers
US20110077335A1 (en) * 2009-09-28 2011-03-31 Gc Corporation Adhesive agent for silicone rubber

Also Published As

Publication number Publication date
FR3130816A1 (en) 2023-06-23
FR3130816B1 (en) 2023-12-15

Similar Documents

Publication Publication Date Title
EP2437626B1 (en) Process for coating of a textile support
FR2719598A1 (en) Silicone elastomer composition and its applications, in particular for inflatable bag coating, intended for the protection of a vehicle occupant.
EP3131991B1 (en) Method for coating a flexible support with a silicone composition
EP1513667A1 (en) Method of treating the surface of an article comprising silicon which is cross-linked by polyaddition
EP1957585A1 (en) Anti-fouling polyaddition silicone varnish, application of said varnish to a support and support treated thus
EP2225314B1 (en) Silicone-self-adhesives, method for the production thereof, complexes using same and uses
EP3353253B1 (en) Silicone composition and process useful for improving the crease resistance and abrasion resistance of airbags, intended for protecting a vehicle occupant
EP3083855A1 (en) Novel photoactivatable system for inhibiting hydrosilylation
EP1711654B1 (en) Silicon composition and method for improving tearing and combing resistance of an airbag for protecting a vehicle user
JP2018531303A6 (en) Silicone compositions and methods useful for improving the wrinkle resistance and wear resistance of airbags for protecting vehicle occupants
WO2023111478A1 (en) Silicone composition which is cross-linkable by irradiation
WO2007112982A1 (en) Method of coating a textile surface
FR2862990A1 (en) Crosslinkable silicone composition for producing low-friction coatings on fibrous substrates, especially vehicle air-bags, comprising polyorganosiloxane, catalyst, polyamide resin particles and adhesion promoter
CA2368296C (en) Method and device for coating a support using a crosslinkable silicone composition
WO2023209140A1 (en) Irradiation-crosslinkable silicone composition comprising pt(octane-2,4-dione)2 as a catalyst
EP4189155A1 (en) Method for coating a textile medium
EP2122046A1 (en) Method for preparing a woven, knitted or non woven fibrous substrate coated on one or both sides with at least one layer of reinforced elastomeric silicon
FR2751979A1 (en) Silicone composition for coating fabric substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22850651

Country of ref document: EP

Kind code of ref document: A1