WO2023095950A1 - Device for cardiac quantitative analysis and self-diagnosis using artificial intelligence technology - Google Patents

Device for cardiac quantitative analysis and self-diagnosis using artificial intelligence technology Download PDF

Info

Publication number
WO2023095950A1
WO2023095950A1 PCT/KR2021/017539 KR2021017539W WO2023095950A1 WO 2023095950 A1 WO2023095950 A1 WO 2023095950A1 KR 2021017539 W KR2021017539 W KR 2021017539W WO 2023095950 A1 WO2023095950 A1 WO 2023095950A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart
self
quantitative analysis
artificial intelligence
wall thickness
Prior art date
Application number
PCT/KR2021/017539
Other languages
French (fr)
Korean (ko)
Inventor
이준호
최관용
이정민
Original Assignee
이준호
최관용
이정민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이준호, 최관용, 이정민 filed Critical 이준호
Publication of WO2023095950A1 publication Critical patent/WO2023095950A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to a self-diagnosis technology for the heart, and a device for quantitative analysis and self-diagnosis of the heart using artificial intelligence technology for self-diagnosis of the heart by measuring the wall thickness of the myocardium using ultrasound and applying the measurement result to an artificial intelligence model. It is about.
  • the heart is an essential organ that supplies blood to the entire body through myocardial contraction.
  • Myocardium is supplied with an energy source through blood vessels called coronary arteries. If essential energy sources are not supplied due to coronary artery stenosis, myocardial infarction may occur and death may occur.
  • the heart has two ventricles, the left ventricle and the right ventricle, to supply blood to the body.
  • the left ventricle plays an important role in delivering oxygenated blood from the lungs to the capillaries through contraction.
  • the heart beats approximately 60 times per minute with a period of 1 second.
  • the atria and ventricles repeatedly relax and contract, and during diastole (the process of filling the ventricles), the volume of the atria and ventricles is maximized, and during systole (the process of sending blood from the ventricles to the whole body). ) the volume of the atrium and ventricle is minimal.
  • ejection fraction, left ventricle wall thickness, left ventricular wall motion, etc. are used as the left ventricular function measurement values of the heart.
  • echocardiography is widely used to analyze the function of the left ventricle of the heart. Since echocardiography uses ultrasound waves, it is completely harmless to the human body and has high accuracy in analyzing left ventricular function.
  • the technical problem to be achieved by the present invention is to measure the wall thickness of each of the 17 regions of the left ventricle using ultrasound, and apply the measured results to an artificial intelligence model to help the user diagnose the condition of the heart by himself. Its purpose is to provide a heart quantitative analysis and self-diagnosis device using intelligent technology.
  • an apparatus for quantitative analysis and self-diagnosis of the heart using artificial intelligence technology includes a communication unit that receives an ultrasound image of the myocardium of the heart captured by an ultrasound probe and a preset myocardium based on the ultrasound image. It is divided into regions to measure the wall thickness for the maximum diastole and maximum systole of the left ventricle for each region, quantitatively analyze the wall motion of the left ventricle based on the information on the measured wall thickness, and analyze the quantitative analysis result with artificial intelligence. It includes a control unit that diagnoses the state of the heart by applying it to the model.
  • the apparatus may further include a sensor unit for measuring an electrocardiogram of the heart, and the control unit determines a maximum diastolic period and a maximum systolic period of the left ventricle by using at least one of an image analysis of an ultrasound image and an electrocardiogram analysis.
  • control unit measures the maximum diastolic left ventricular wall thickness (EDT) and maximum systolic left ventricular wall thickness (EST), calculates a difference between the maximum diastolic left ventricular wall thickness and the maximum systolic left ventricular wall thickness, and determines the maximum systolic left ventricular wall thickness as After dividing by the difference value, it is characterized in that quantitative analysis is performed by percentage.
  • EDT maximum diastolic left ventricular wall thickness
  • EST maximum systolic left ventricular wall thickness
  • control unit may learn the artificial intelligence model based on the diagnosed result.
  • the controller may further include an output unit for outputting information related to the diagnosis, and the control unit outputs a guide description for assisting operation of the ultrasound probe to a portion of the output unit so that an ultrasound image capable of measuring a wall thickness of each region is received. It is characterized by doing
  • the method for quantitative analysis and self-diagnosis of the heart using artificial intelligence technology includes the steps of receiving an ultrasound image in which the myocardium of the heart is photographed by an ultrasound probe in the device for quantitative analysis and self-diagnosis of the heart, and the device for quantitative analysis and self-diagnosis of the heart. dividing the myocardium into preset regions based on the ultrasound image and measuring the wall thickness of the left ventricle for each region during maximum diastole and maximum systole; Quantitatively analyzing the wall motion of the left ventricle based on the information, and diagnosing a state of the heart by applying the quantitatively analyzed result to an artificial intelligence model by the device for quantitatively analyzing and self-diagnosing the heart.
  • the cardiac quantitative analysis and self-diagnosis device using the artificial intelligence technology of the present invention guides even a novice to easily measure the wall thickness of the left ventricle using ultrasound.
  • the user can check the condition of the heart by himself even without professional knowledge.
  • FIG. 1 is a configuration diagram illustrating a system for quantitative cardiac analysis and self-diagnosis according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an apparatus for quantitative cardiac analysis and self-diagnosis according to an embodiment of the present invention.
  • 3 is a diagram for explaining how the myocardium of the heart is divided into 17 regions.
  • FIG. 4 is a diagram for explaining the functions of a device for quantitative cardiac analysis and self-diagnosis according to an embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the screen output of the heart quantitative analysis and self-diagnosis device according to an embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the configuration of an artificial neural network according to an embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a node performing an operation to which a weight is applied according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method for quantitative cardiac analysis and self-diagnosis according to an embodiment of the present invention.
  • FIG. 1 is a configuration diagram illustrating a system for quantitative cardiac analysis and self-diagnosis according to an embodiment of the present invention.
  • the heart quantitative analysis and self-diagnosis system 300 helps beginners to take an ultrasound image of the heart by themselves and automatically diagnoses the state of the heart using the captured image information.
  • the heart quantitative analysis and self-diagnosis system 300 diagnoses conditions using an artificial intelligence model, thereby providing an accurate diagnosis to the user.
  • the heart quantitative analysis and self-diagnosis system 300 includes a heart quantitative analysis and self-diagnosis device 100 (hereinafter referred to as 'device') and an ultrasound probe 200.
  • the device 100 communicates with the ultrasound probe 200, and for this purpose, a program (or application) supporting interworking with the ultrasound probe 200 is installed.
  • the device 100 may perform self-diagnosis of the heart according to the present invention through an installed program.
  • the device 100 measures the wall thickness of the left ventricle based on an ultrasound image of the myocardium of the heart captured by the ultrasound probe 200 .
  • the wall thickness of the left ventricle means the distance between the left ventricle inner membrane and the left ventricle outer membrane.
  • the apparatus 100 divides the myocardium into preset regions and measures the wall thickness of the left ventricle for each region. There may be 17 preset areas.
  • the device 100 quantitatively analyzes wall motion of the left ventricle based on the measured wall thickness information.
  • the device 100 analyzes the wall motion of the left ventricle using the maximal diastole and maximal systole of the left ventricle.
  • the device 100 may determine the maximum diastolic period and the maximum systolic period through image analysis such as the maximum and minimum sizes of the left ventricle, or may determine the maximum diastolic period and maximum systolic period using information on the electrocardiogram, but is not limited thereto.
  • the device 100 diagnoses the condition of the heart by applying the result of quantitative analysis to an artificial intelligence model.
  • the artificial intelligence model may be various artificial intelligence models such as an artificial neural network (ANN), machine learning, and deep learning.
  • Device 100 may be a computing system including a smart phone, smart watch, desktop, laptop, tablet PC, handheld PC, or the like.
  • the ultrasound probe 200 transmits and receives data through communication with the device 100 .
  • the ultrasonic probe 200 is installed with a program (or application) supporting interworking with the device 100 .
  • the ultrasound probe 200 generates ultrasound waves to image a heart, and generates an ultrasound image of the imaged heart.
  • the ultrasound probe 200 transmits the generated ultrasound image to the device 100 in real time.
  • the ultrasound probe 200 may be portable, and preferably may be a wireless probe.
  • a communication network 350 may be established between the device 100 and the ultrasound probe 200 .
  • the communication network 350 may support wired/wireless communication, preferably short-distance wireless communication, but is not limited thereto.
  • FIG. 2 is a block diagram for explaining a heart quantitative analysis and self-diagnosis device according to an embodiment of the present invention
  • FIG. 3 is a diagram for explaining how the myocardium of the heart is divided into 17 regions
  • FIG. It is a diagram for explaining the functions of the device for quantitative analysis and self-diagnosis of the heart according to an embodiment of the present invention
  • FIG. 5 is a diagram for explaining the screen output of the device for quantitative analysis and self-diagnosis of the heart according to an embodiment of the present invention.
  • 6 is a diagram for explaining the configuration of an artificial neural network according to an embodiment of the present invention
  • FIG. 7 is a diagram for explaining a node performing an operation to which weights are applied according to an embodiment of the present invention.
  • the apparatus 100 measures the wall thickness of 17 regions of the left ventricle using sound waves, and applies the measured results to an artificial intelligence model to diagnose the state of the heart by the user himself. help you do it
  • the device 100 includes a communication unit 10 and a control unit 40, and may further include an input unit 20, a sensor unit 30, an output unit 50, and a storage unit 60.
  • the communication unit 10 performs communication with the ultrasonic probe 200 .
  • the communication unit 10 receives an ultrasound image from the ultrasound probe 200 in real time.
  • the ultrasound image may be an image of the myocardium of the heart.
  • the input unit 20 receives a user input for driving the device 100 .
  • the input unit 20 supports various input methods such as voice input, touch input, and keypad input, and may include a microphone, a touch screen, a keypad, and a mouse for this purpose.
  • voice input touch input
  • keypad input may include a microphone, a touch screen, a keypad, and a mouse for this purpose.
  • the input unit 20 is implemented as a touch screen, the input unit 20 and the output unit 50 may be implemented in one configuration.
  • the sensor unit 30 measures the electrocardiogram of the heart.
  • the sensor unit 30 may implement an electrocardiogram sensor in a wearable form, preferably in a wristwatch form, but is not limited thereto.
  • the controller 40 performs overall control of the device 100 .
  • the control unit 40 controls the output unit 50 to output the ultrasound image received from the communication unit 10 in real time.
  • the controller 40 controls the region for measuring the wall thickness of the left ventricle for each region to be performed later as a specific mark (color, section, point, etc.) 42, and measures the wall thickness of the left ventricle in the correct direction.
  • a guide description assisting the operation of the ultrasound probe 200 is controlled to be output on a part 44 of the output screen.
  • the guide description may be in the form of a compass, or may be in the form of indicating a direction or rotation of at least one of the X-axis, Y-axis, Z-axis, roll, pitch, and yaw.
  • the controller 40 divides the myocardium into 17 predetermined regions based on the received ultrasound image, and measures the wall thickness of the left ventricle for each region.
  • the 17 regions are divided into basal, mid, and apical based on the short axis and long axis of the heart, and the divided regions are It means an area divided into 17 parts.
  • each region is connected to blood vessels of the heart, and in detail, the first region, the second region, the seventh region, the eighth region, the thirteenth region, and the fourteenth region are connected to LAD (left anterior descending a.), The third region, the ninth region, and the fifteenth region are connected to left circumflex a.
  • the fourth region and the tenth region are connected to LCX and right coronary a. (RCA), and the fifth region, The sixth region, the eleventh region, the twelfth region, and the sixteenth region are connected to the RCA.
  • the controller 40 measures the maximum diastolic left ventricular wall thickness (EDT) and maximum systolic left ventricular wall thickness (EST) for each region.
  • EDT maximum diastolic left ventricular wall thickness
  • EST maximum systolic left ventricular wall thickness
  • the controller 40 determines the maximum diastolic period and maximum systolic period of the left ventricle by using at least one of image analysis of an ultrasound image and electrocardiogram analysis, and measures the thickness at the determined time point.
  • control unit 40 analyzes the ultrasound image to detect when the left ventricle is at its maximum or minimum, measures the wall thickness at the detected time point ( FIG. 3A ), or uses the information on the electrocardiogram to determine the maximum diastolic and maximum diastolic phases.
  • the wall thickness can be measured by detecting the systole and measuring the wall thickness at the detected time point ( FIG. 3B ), or by using both of the above methods.
  • the controller 40 quantitatively analyzes the wall motion of the left ventricle based on the measured wall thickness information.
  • the wall motion means the change rate of the wall thickness.
  • the controller 40 may perform quantitative analysis by calculating a difference between the maximum diastolic left ventricular wall thickness and the maximum systolic left ventricular wall thickness, dividing the maximum systolic left ventricular wall thickness by the calculated difference value, and then calculating a percentage (%). That is, the control unit 40 may perform quantitative analysis as shown in [Equation 1].
  • EDT is the maximum diastolic left ventricular wall thickness
  • EST is the maximum systolic left ventricular wall thickness
  • the control unit 40 diagnoses the condition of the heart by applying the result of the quantitative analysis to the artificial intelligence model.
  • the artificial intelligence model may be various artificial intelligence models such as artificial neural networks, machine learning, and deep learning.
  • FIG. 6 illustrates an artificial neural network, which is an example of an artificial intelligence model, and as shown, the artificial neural network includes a plurality of layers. These plurality of layers include an input layer (IL), a hidden layer (HL1 to HLk), and an output layer (OL).
  • IL input layer
  • HL1 to HLk hidden layer
  • OL output layer
  • each of the plurality of layers includes one or more nodes.
  • the input layer IL may include n input nodes i1 to in
  • the output layer OL may include one output node v.
  • the first hidden layer HL1 includes a number of nodes h11 to h1a
  • the second hidden layer HL2 includes b nodes h21 to h2b
  • the kth hidden layer (HLk) may include c nodes (hk1 to hkc).
  • Each of the nodes of the plurality of layers performs an operation.
  • a plurality of nodes of different layers are connected by a channel (shown as a dotted line) having a weight (w: weight).
  • w weight
  • the calculation result of any one node is input to the node of the next layer after applying the parameters of the artificial neural network including the weight (w) or threshold (b). This connection relationship will be described based on nodes.
  • FIG. 7 shows an example of a node h according to an embodiment of the present invention.
  • the node of FIG. 7 is described as one of the hidden nodes h, it can be commonly applied to all nodes included in the artificial intelligence model.
  • the operation of this node (h) is performed according to the following [Equation 2].
  • function F means an activation function.
  • the parameter b is a threshold, and the threshold b is in [Equation 2] It serves to prevent the corresponding node from being activated when the value of is smaller than the threshold.
  • the node h receives a value obtained by multiplying the three inputs x1, x2, and x3 by weights w1, w2, and w3, sums them all, and substitutes the summed value into a transfer function to calculate an output.
  • the activation function F is 'sgn()' and the threshold is 0.01, the output is calculated as follows through the operation according to [Equation 2].
  • each of the plurality of nodes for the plurality of layers generated from the artificial neural network receives a value obtained by applying weights w1, w2, w3 and threshold b, which are parameters of the artificial neural network, to node values x1, x2, and x3 of the previous layer, Calculate the output value OUT by performing the operation by the activation function F.
  • the calculated output value OUT becomes an input to a node of the next layer. That is, any one node of any one layer of the artificial intelligence model receives a value obtained by applying a weight or threshold to the output of the node of the previous layer, performs an operation by the activation function F, and transfers the operation result to the next layer. .
  • the overall calculation of the artificial intelligence model is performed as follows. First, the results of quantitative analysis are used as input data for the artificial intelligence model.
  • the input data may be converted into an input feature vector and then input.
  • the input feature vector IV has a plurality of element values iv1 to ivn corresponding to a plurality of input nodes i1 to in of the input layer IL of the artificial intelligence model.
  • the plurality of first hidden nodes h11 to h1a of the first hidden layer HL1 Each applies weights and thresholds to a plurality of element values iv1 to ivn of a plurality of input nodes (i1 to in), and performs an operation according to an activation function for each of the plurality of element values of the input feature vector to which the weights and thresholds are applied.
  • a plurality of first hidden node values are calculated.
  • each of the plurality of second hidden nodes h21 to h2b of the second hidden layer HL2 applies a weight and a threshold value to each of the plurality of first hidden node values of the plurality of first hidden nodes h11 to h1a, and the weight and calculating a plurality of second hidden node values by performing an operation according to an activation function for each of the plurality of first hidden node values to which the threshold value is applied.
  • a previous node value is transmitted with a weight applied, and a current node value is calculated through an operation.
  • a plurality of k-th hidden node values of the plurality of k-th hidden nodes (hk1 to hkc) of the k-th hidden layer (HLk) may be calculated.
  • the output value calculated by the output node v may be an estimated value of the driving control value.
  • the controller 40 estimates the diagnosis of the heart condition through the artificial neural network, but is not limited thereto and may estimate the diagnosis of the heart condition using various artificial intelligence models.
  • the control unit 40 generates diagnostic information tailored to the user based on the estimated diagnosis result. Diagnosis information is generated based on the user's personal information such as age, gender, and educational background, and refers to information summarized so that one can intuitively recognize where the heart is hurting just by checking the contents.
  • the control unit 40 transfers the diagnostic information to the output unit 50 and controls it to be output, and learns the diagnostic information at the same time. That is, the control unit 40 improves the accuracy of a diagnosis result to be performed later by learning an artificial intelligence model based on diagnosis information, which is a diagnosis result.
  • the output unit 50 outputs an ultrasound image 41, a quantitative analysis table 43, and diagnosed information.
  • the output unit 50 may display a region for measuring the wall thickness of the left ventricle with a specific display 42 and output a guide description 44 for assisting the operation of the ultrasound probe 200 on a portion of the screen.
  • the output unit 50 may be a display, such as a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), or an organic light-emitting diode (OLED). , a flexible display, and a 3D display.
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • the storage unit 60 stores programs or algorithms for driving the device 100 .
  • the storage unit 60 stores ultrasound images, electrocardiogram information, quantitatively analyzed information, and diagnosed information.
  • the storage unit 60 is a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (eg SD or XD memory, etc.), RAM (Random Access Memory, RAM), SRAM (Static Random Access Memory), ROM (Read-Only Memory, ROM), EEPROM (Electrically Erasable Programmable Read-Only Memory), PROM (Programmable Read-Only Memory), magnetic memory, It may include at least one storage medium of a magnetic disk and an optical disk.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Disclosed is a device for cardiac quantitative analysis and self-diagnosis using artificial intelligence technology. The device for cardiac quantitative analysis and self-diagnosis of the present invention comprises: a communication unit which receives an ultrasound image of the myocardium of the heart, captured by an ultrasound probe; and a control unit which divides the myocardium into predetermined regions on the basis of the ultrasound image to measure the maximal diastolic wall thickness and maximal systolic wall thickness of the left ventricle for each region, quantitatively analyzes the wall motions of the left ventricle on the basis of information on the measured wall thicknesses, and diagnoses the condition of the heart by applying the quantitative analysis results to an artificial intelligence model.

Description

인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치Cardiac quantitative analysis and self-diagnosis device using artificial intelligence technology
본 발명은 자가 심장 진단 기술에 관한 것으로, 초음파를 이용하여 심근의 벽두께를 측정하고, 측정한 결과를 인공지능 모델에 적용하여 심장을 자가 진단하는 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치에 관한 것이다.The present invention relates to a self-diagnosis technology for the heart, and a device for quantitative analysis and self-diagnosis of the heart using artificial intelligence technology for self-diagnosis of the heart by measuring the wall thickness of the myocardium using ultrasound and applying the measurement result to an artificial intelligence model. It is about.
심장은 심근의 수축을 통하여 전체에 혈액을 공급하는 필수적인 기관이다. 심근은 관상동맥이라는 혈관을 통해 에너지원을 공급받는데, 관상동맥협착으로 인하여 필수 에너지원을 공급받지 못할 경우 심근 경색이 발생하여 사망에 이를 수 있다.The heart is an essential organ that supplies blood to the entire body through myocardial contraction. Myocardium is supplied with an energy source through blood vessels called coronary arteries. If essential energy sources are not supplied due to coronary artery stenosis, myocardial infarction may occur and death may occur.
심장에는 채내에 혈액을 공급하기 위하여 좌심실과 우심실이라는 두 개의 심실이 존재한다. 좌심실은 수축을 통하여 폐에 산소가 채워진 혈액을 온모에 전달하는 중요한 역할을 담당한다.The heart has two ventricles, the left ventricle and the right ventricle, to supply blood to the body. The left ventricle plays an important role in delivering oxygenated blood from the lungs to the capillaries through contraction.
일반적으로 정상인의 경우, 심장은 1초를 주기로 하여 대략 분당 60회 뛴다. 심장 한 주기 동안 심방과 심실의 이완과 수축이 반복적으로 이뤄지고, 이완기일 때(혈액을 심실에 채우는 과정) 심방과 심실에 부피가 최대가 되고, 수축기일 때(심실에 있는 혈액을 온몸으로 보내는 과정) 심방과 심실의 부피가 최소가 된다. 이때 심장의 좌심실 기능 측정치로는 박출 계수, 좌심실 벽두께, 좌심실 벽 운동 등이 사용된다. In general, in the case of a normal person, the heart beats approximately 60 times per minute with a period of 1 second. During one heart cycle, the atria and ventricles repeatedly relax and contract, and during diastole (the process of filling the ventricles), the volume of the atria and ventricles is maximized, and during systole (the process of sending blood from the ventricles to the whole body). ) the volume of the atrium and ventricle is minimal. At this time, ejection fraction, left ventricle wall thickness, left ventricular wall motion, etc. are used as the left ventricular function measurement values of the heart.
한편 심장의 좌심실 기능 분석을 위해 심장 초음파가 많이 사용된다. 심장 초음파는 초음파를 이용하기 때문에 인체에 전혀 해가 없고, 좌심실 기능 분석에 있어서 정확도가 높다.On the other hand, echocardiography is widely used to analyze the function of the left ventricle of the heart. Since echocardiography uses ultrasound waves, it is completely harmless to the human body and has high accuracy in analyzing left ventricular function.
하지만 이러한 심장 초음파는 전문성이 필요함에 따라 일반인 스스로 검사 및 진단하기에는 어려움이 있다.However, since such echocardiography requires expertise, it is difficult for the general public to examine and diagnose it by themselves.
본 발명이 이루고자 하는 기술적 과제는 초음파를 이용하여 좌심실의 17개 영역에 대한 벽두께를 각각 측정하고, 측정된 결과를 인공지능 모델에 적용하여 사용자 스스로 심장에 대한 상태를 진단할 수 있도록 도와주는 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치를 제공하는데 목적이 있다.The technical problem to be achieved by the present invention is to measure the wall thickness of each of the 17 regions of the left ventricle using ultrasound, and apply the measured results to an artificial intelligence model to help the user diagnose the condition of the heart by himself. Its purpose is to provide a heart quantitative analysis and self-diagnosis device using intelligent technology.
상기 목적을 달성하기 위해 본 발명에 따른 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치는 초음파 프로브에 의해 심장의 심근이 촬영된 초음파 영상을 수신하는 통신부 및 상기 초음파 영상을 기초로 심근을 기 설정된 영역으로 분할하여 각 영역별 좌심실의 최대이완기 및 최대수축기에 대한 벽두께를 측정하고, 상기 측정된 벽두께에 대한 정보를 기초로 좌심실의 벽운동을 정량 분석하며, 상기 정량 분석된 결과를 인공지능 모델에 적용하여 심장의 상태를 진단하는 제어부를 포함한다.In order to achieve the above object, an apparatus for quantitative analysis and self-diagnosis of the heart using artificial intelligence technology according to the present invention includes a communication unit that receives an ultrasound image of the myocardium of the heart captured by an ultrasound probe and a preset myocardium based on the ultrasound image. It is divided into regions to measure the wall thickness for the maximum diastole and maximum systole of the left ventricle for each region, quantitatively analyze the wall motion of the left ventricle based on the information on the measured wall thickness, and analyze the quantitative analysis result with artificial intelligence. It includes a control unit that diagnoses the state of the heart by applying it to the model.
또한 심장의 심전도를 측정하는 센서부를 더 포함하고, 상기 제어부는 초음파 영상의 영상 분석 및 심전도 분석 중 적어도 하나를 이용하여 상기 좌심실의 최대이완기 및 최대수축기를 결정하는 것을 특징으로 한다.The apparatus may further include a sensor unit for measuring an electrocardiogram of the heart, and the control unit determines a maximum diastolic period and a maximum systolic period of the left ventricle by using at least one of an image analysis of an ultrasound image and an electrocardiogram analysis.
또한 상기 제어부는 최대이완기 좌심실 벽두께(EDT)와 최대수축기 좌심실 벽두께(EST)를 측정하고, 최대이완기 좌심실 벽두께와 최대수축기 좌심실 벽두께 간의 차이값을 산출하며, 최대수축기 좌심실 벽두께를 상기 차이값으로 나눈 후, 백분율하여 정량 분석을 하는 것을 특징으로 한다.In addition, the control unit measures the maximum diastolic left ventricular wall thickness (EDT) and maximum systolic left ventricular wall thickness (EST), calculates a difference between the maximum diastolic left ventricular wall thickness and the maximum systolic left ventricular wall thickness, and determines the maximum systolic left ventricular wall thickness as After dividing by the difference value, it is characterized in that quantitative analysis is performed by percentage.
또한 상게 제어부는 상기 진단된 결과를 기반으로 상기 인공지능 모델을 학습시키는 것을 특징으로 한다.In addition, the control unit may learn the artificial intelligence model based on the diagnosed result.
또한 상기 진단과 관련된 내용을 출력하는 출력부를 더 포함하고, 상기 제어부는 각 영역별 벽두께에 대한 측정이 가능한 초음파 영상이 수신되도록 상기 초음파 프로브의 조작을 보조하는 가이드 설명을 상기 출력부의 일부에 출력시키는 것을 특징으로 한다.The controller may further include an output unit for outputting information related to the diagnosis, and the control unit outputs a guide description for assisting operation of the ultrasound probe to a portion of the output unit so that an ultrasound image capable of measuring a wall thickness of each region is received. It is characterized by doing
본 발명에 따른 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 방법은 심장 정량 분석 및 자가 진단 장치가 초음파 프로브에 의해 심장의 심근이 촬영된 초음파 영상을 수신하는 단계, 상기 심장 정량 분석 및 자가 진단 장치가 상기 초음파 영상을 기초로 심근을 기 설정된 영역으로 분할하여 각 영역별 좌심실의 최대이완기 및 최대수축기에 대한 벽두께를 측정하는 단계, 상기 심장 정량 분석 및 자가 진단 장치가 상기 측정된 벽두께에 대한 정보를 기초로 좌심실의 벽운동을 정량 분석하는 단계 및 상기 심장 정량 분석 및 자가 진단 장치가 상기 정량 분석된 결과를 인공지능 모델에 적용하여 심장의 상태를 진단하는 단계를 포함한다.The method for quantitative analysis and self-diagnosis of the heart using artificial intelligence technology according to the present invention includes the steps of receiving an ultrasound image in which the myocardium of the heart is photographed by an ultrasound probe in the device for quantitative analysis and self-diagnosis of the heart, and the device for quantitative analysis and self-diagnosis of the heart. dividing the myocardium into preset regions based on the ultrasound image and measuring the wall thickness of the left ventricle for each region during maximum diastole and maximum systole; Quantitatively analyzing the wall motion of the left ventricle based on the information, and diagnosing a state of the heart by applying the quantitatively analyzed result to an artificial intelligence model by the device for quantitatively analyzing and self-diagnosing the heart.
본 발명의 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치는 초보자라도 초음파를 이용하여 좌심실의 벽두께를 손쉽게 측정하도록 가이드한다. The cardiac quantitative analysis and self-diagnosis device using the artificial intelligence technology of the present invention guides even a novice to easily measure the wall thickness of the left ventricle using ultrasound.
또한 측정된 좌심실의 벽두께에 대한 결과를 인공지능 모델에 적용하여 심장의 상태를 자동으로 진단함으로써, 사용자가 전문지식이 없더라도 스스로 심장에 대한 상태를 확인할 수 있다.In addition, by automatically diagnosing the condition of the heart by applying the result of the wall thickness of the measured left ventricle to the artificial intelligence model, the user can check the condition of the heart by himself even without professional knowledge.
도 1은 본 발명의 실시예에 따른 심장 정량 분석 및 자가 진단 시스템을 설명하기 위한 구성도이다.1 is a configuration diagram illustrating a system for quantitative cardiac analysis and self-diagnosis according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 심장 정량 분석 및 자가 진단 장치를 설명하기 위한 블록도이다.2 is a block diagram illustrating an apparatus for quantitative cardiac analysis and self-diagnosis according to an embodiment of the present invention.
도 3은 심장의 심근을 17개 영역으로 구분한 모습을 설명하기 위한 도면이다.3 is a diagram for explaining how the myocardium of the heart is divided into 17 regions.
도 4는 본 발명의 실시예에 따른 심장 정량 분석 및 자가 진단 장치의 기능을 설명하기 위한 도면이다.4 is a diagram for explaining the functions of a device for quantitative cardiac analysis and self-diagnosis according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 심장 정량 분석 및 자가 진단 장치의 화면 출력을 설명하기 위한 도면이다.5 is a diagram for explaining the screen output of the heart quantitative analysis and self-diagnosis device according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 인공신경망의 구성을 설명하기 위한 도면이다.6 is a diagram for explaining the configuration of an artificial neural network according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 가중치가 적용되는 연산을 수행하는 노드를 설명하기 위한 도면이다.7 is a diagram for explaining a node performing an operation to which a weight is applied according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 심장 정량 분석 및 자가 진단 방법을 설명하기 위한 순서도이다.8 is a flowchart illustrating a method for quantitative cardiac analysis and self-diagnosis according to an embodiment of the present invention.
이하 본 발명의 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의한다. 또한 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 당업자에게 자명하거나 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it should be noted that the same components have the same numerals as much as possible even if they are displayed on different drawings. In addition, in describing the present invention, if it is determined that a detailed description of a related known configuration or function is obvious to those skilled in the art or may obscure the gist of the present invention, the detailed description will be omitted.
도 1은 본 발명의 실시예에 따른 심장 정량 분석 및 자가 진단 시스템을 설명하기 위한 구성도이다.1 is a configuration diagram illustrating a system for quantitative cardiac analysis and self-diagnosis according to an embodiment of the present invention.
도 1을 참조하면, 심장 정량 분석 및 자가 진단 시스템(300)은 초보자가 스스로 심장의 초음파 영상을 촬영하도록 도와주고, 촬영된 영상 정보를 이용하여 자동으로 심장의 상태를 진단한다. 심장 정량 분석 및 자가 진단 시스템(300)은 인공지능 모델을 이용하여 상태를 진단함으로써, 정확한 진단을 사용자에게 제공할 수 있다. 심장 정량 분석 및 자가 진단 시스템(300)은 심장 정량 분석 및 자가 진단 장치(100)(이하 ‘장치’라고 함) 및 초음파 프로브(200)를 포함한다. Referring to FIG. 1 , the heart quantitative analysis and self-diagnosis system 300 helps beginners to take an ultrasound image of the heart by themselves and automatically diagnoses the state of the heart using the captured image information. The heart quantitative analysis and self-diagnosis system 300 diagnoses conditions using an artificial intelligence model, thereby providing an accurate diagnosis to the user. The heart quantitative analysis and self-diagnosis system 300 includes a heart quantitative analysis and self-diagnosis device 100 (hereinafter referred to as 'device') and an ultrasound probe 200.
장치(100)는 초음파 프로브(200)와 통신을 수행하며, 이를 위해 초음파 프로브(200)와의 연동을 지원하는 프로그램(또는 애플리케이션)을 설치한다. 장치(100)는 설치된 프로그램을 통해 본 발명에 따른 자가 심장 진단을 수행할 수 있다. The device 100 communicates with the ultrasound probe 200, and for this purpose, a program (or application) supporting interworking with the ultrasound probe 200 is installed. The device 100 may perform self-diagnosis of the heart according to the present invention through an installed program.
장치(100)는 초음파 프로브(200)에 의해 심장의 심근이 촬영된 초음파 영상을 기초로 좌심실의 벽두께를 측정한다. 여기서 좌심실의 벽두께는 좌심실 내막과 좌심실 외막 사이의 거리를 의미한다. 장치(100)는 심근을 기 설정된 영역으로 분할하여 각 영역별 좌심실의 벽두께를 측정한다. 여기서 기 설정된 영역은 17개일 수 있다. 장치(100)는 측정된 벽두께에 대한 정보를 기초로 좌심실의 벽운동을 정량 분석한다. 장치(100)는 좌심실의 최대이완기 및 최대수축기를 이용하여 좌심실의 벽운동을 분석한다. 이때 장치(100)는 좌심실의 최대 크기, 최소 크기와 같은 영상 분석을 통해 최대이완기 및 최대수축기를 결정하거나, 심전도에 대한 정보를 이용하여 최대이완기 및 최대수축기를 결정할 수 있으나, 이에 한정하지 않는다. 장치(100)는 정량 분석된 결과를 인공지능 모델에 적용하여 심장의 상태를 진단한다. 여기서 인공지능 모델은 인공신경망(ANN), 기계학습(machine learning), 딥러닝(deep learning) 등과 같은 다양한 인공지능 모델일 수 있다. 장치(100)는 스마트폰, 스마트워치, 데스크톱, 랩톱, 태블릿 PC, 핸드헬드 PC 등을 포함하는 컴퓨팅 시스템일 수 있다.The device 100 measures the wall thickness of the left ventricle based on an ultrasound image of the myocardium of the heart captured by the ultrasound probe 200 . Here, the wall thickness of the left ventricle means the distance between the left ventricle inner membrane and the left ventricle outer membrane. The apparatus 100 divides the myocardium into preset regions and measures the wall thickness of the left ventricle for each region. There may be 17 preset areas. The device 100 quantitatively analyzes wall motion of the left ventricle based on the measured wall thickness information. The device 100 analyzes the wall motion of the left ventricle using the maximal diastole and maximal systole of the left ventricle. At this time, the device 100 may determine the maximum diastolic period and the maximum systolic period through image analysis such as the maximum and minimum sizes of the left ventricle, or may determine the maximum diastolic period and maximum systolic period using information on the electrocardiogram, but is not limited thereto. The device 100 diagnoses the condition of the heart by applying the result of quantitative analysis to an artificial intelligence model. Here, the artificial intelligence model may be various artificial intelligence models such as an artificial neural network (ANN), machine learning, and deep learning. Device 100 may be a computing system including a smart phone, smart watch, desktop, laptop, tablet PC, handheld PC, or the like.
초음파 프로브(200)는 장치(100)와 통신을 통해 데이터를 송수신한다. 이때 초음파 프로브(200)는 장치(100)와 연동을 지원하는 프로그램(또는 애플리케이션)이 설치된다. 초음파 프로브(200)는 초음파를 발생시켜 심장을 촬영하고, 촬영된 심장에 대한 초음파 영상을 생성한다. 초음파 프로브(200)는 생성된 초음파 영상을 실시간으로 장치(100)로 전송한다. 여기서 초음파 프로브(200)는 휴대가 가능하며, 바람직하게는 무선형 프로브일 수 있다.The ultrasound probe 200 transmits and receives data through communication with the device 100 . At this time, the ultrasonic probe 200 is installed with a program (or application) supporting interworking with the device 100 . The ultrasound probe 200 generates ultrasound waves to image a heart, and generates an ultrasound image of the imaged heart. The ultrasound probe 200 transmits the generated ultrasound image to the device 100 in real time. Here, the ultrasound probe 200 may be portable, and preferably may be a wireless probe.
한편 심장 정량 분석 및 자가 진단 시스템(300)은 장치(100) 및 초음파 프로브(200) 사이에 통신망(350)을 구축할 수 있다. 통신망(350)은 유무선 통신을 지원하고, 바람직하게는 근거리 무선통신을 지원할 수 있으나, 이에 한정하지 않는다.Meanwhile, in the heart quantitative analysis and self-diagnosis system 300 , a communication network 350 may be established between the device 100 and the ultrasound probe 200 . The communication network 350 may support wired/wireless communication, preferably short-distance wireless communication, but is not limited thereto.
도 2는 본 발명의 실시예에 따른 심장 정량 분석 및 자가 진단 장치를 설명하기 위한 블록도이고, 도 3은 심장의 심근을 17개 영역으로 구분한 모습을 설명하기 위한 도면이며, 도 4는 본 발명의 실시예에 따른 심장 정량 분석 및 자가 진단 장치의 기능을 설명하기 위한 도면이고, 도 5는 본 발명의 실시예에 따른 심장 정량 분석 및 자가 진단 장치의 화면 출력을 설명하기 위한 도면이며, 도 6은 본 발명의 실시예에 따른 인공신경망의 구성을 설명하기 위한 도면이고, 도 7은 본 발명의 실시예에 따른 가중치가 적용되는 연산을 수행하는 노드를 설명하기 위한 도면이다.FIG. 2 is a block diagram for explaining a heart quantitative analysis and self-diagnosis device according to an embodiment of the present invention, FIG. 3 is a diagram for explaining how the myocardium of the heart is divided into 17 regions, and FIG. It is a diagram for explaining the functions of the device for quantitative analysis and self-diagnosis of the heart according to an embodiment of the present invention, and FIG. 5 is a diagram for explaining the screen output of the device for quantitative analysis and self-diagnosis of the heart according to an embodiment of the present invention. 6 is a diagram for explaining the configuration of an artificial neural network according to an embodiment of the present invention, and FIG. 7 is a diagram for explaining a node performing an operation to which weights are applied according to an embodiment of the present invention.
도 1 내지 도 7을 참조하면, 장치(100)는 음파를 이용하여 좌심실의 17개 영역에 대한 벽두께를 각각 측정하고, 측정된 결과를 인공지능 모델에 적용하여 사용자 스스로 심장에 대한 상태를 진단할 수 있도록 도와준다. 장치(100)는 통신부(10) 및 제어부(40)를 포함하고, 입력부(20), 센서부(30), 출력부(50) 및 저장부(60)를 더 포함할 수 있다.1 to 7, the apparatus 100 measures the wall thickness of 17 regions of the left ventricle using sound waves, and applies the measured results to an artificial intelligence model to diagnose the state of the heart by the user himself. help you do it The device 100 includes a communication unit 10 and a control unit 40, and may further include an input unit 20, a sensor unit 30, an output unit 50, and a storage unit 60.
통신부(10)는 초음파 프로브(200)와의 통신을 수행한다. 통신부(10)는 초음파 프로브(200)로부터 실시간으로 초음파 영상을 수신한다. 여기서 초음파 영상은 심장의 심근을 촬영한 영상일 수 있다.The communication unit 10 performs communication with the ultrasonic probe 200 . The communication unit 10 receives an ultrasound image from the ultrasound probe 200 in real time. Here, the ultrasound image may be an image of the myocardium of the heart.
입력부(20)는 장치(100)를 구동하기 위한 사용자 입력을 입력받는다. 입력부(20)는 음성 입력, 터치 입력, 키패드 입력 등 다양한 입력방식을 지원하며, 이를 위해 마이크, 터치스크린, 키패드, 마우스 등을 포함할 수 있다. 여기서 입력부(20)가 터치스크린으로 구현되는 경우, 입력부(20)는 출력부(50)와 하나의 구성으로 구현될 수 있다.The input unit 20 receives a user input for driving the device 100 . The input unit 20 supports various input methods such as voice input, touch input, and keypad input, and may include a microphone, a touch screen, a keypad, and a mouse for this purpose. Here, when the input unit 20 is implemented as a touch screen, the input unit 20 and the output unit 50 may be implemented in one configuration.
센서부(30)는 심장의 심전도를 측정한다. 센서부(30)는 심전도 센서가 웨어러블 형태로 구현될 수 있으며, 바람직하게는 손목시계 형태로 구현될 수 있으나, 이에 한정하지 않는다.The sensor unit 30 measures the electrocardiogram of the heart. The sensor unit 30 may implement an electrocardiogram sensor in a wearable form, preferably in a wristwatch form, but is not limited thereto.
제어부(40)는 장치(100)의 전반적인 제어를 수행한다. 제어부(40)는 통신부(10)로부터 수신된 초음파 영상이 실시간으로 출력부(50)에서 출력되도록 제어한다. 이때 제어부(40)는 추후 수행되는 각 영역별 좌심실의 벽두께를 측정하는 영역을 특정 표시(색, 구획, 포인트 등)(42)로 나타나도록 제어하고, 좌심실의 벽두께를 올바른 방향으로 측정하도록 초음파 프로브(200)의 조작을 보조하는 가이드 설명을 출력되는 화면 중 일부(44)에 출력되도록 제어한다. 여기서 가이드 설명은 나침반 형태이거나, X축, Y축, Z축, 롤(roll), 피치(pitch), 요(yaw) 중 적어도 하나의 방향 또는 회전을 나타내는 형태일 수 있다. The controller 40 performs overall control of the device 100 . The control unit 40 controls the output unit 50 to output the ultrasound image received from the communication unit 10 in real time. At this time, the controller 40 controls the region for measuring the wall thickness of the left ventricle for each region to be performed later as a specific mark (color, section, point, etc.) 42, and measures the wall thickness of the left ventricle in the correct direction. A guide description assisting the operation of the ultrasound probe 200 is controlled to be output on a part 44 of the output screen. Here, the guide description may be in the form of a compass, or may be in the form of indicating a direction or rotation of at least one of the X-axis, Y-axis, Z-axis, roll, pitch, and yaw.
제어부(40)는 수신된 초음파 영상을 기초로 심근을 기 설정된 17개 영역으로 분할하여 각 영역별 좌심실의 벽두께를 측정한다. 여기서 17개 영역은 도 3에 도시된 바와 같이 심장의 단축(short axis)과 장축(long axis)을 기준으로 하부(basal), 중앙(mid), 상부(apical)로 구분하고, 구분한 영역을 17개로 분할한 영역을 의미한다. 이때 각 영역들은 심장의 혈관과 연결되며, 상세하게는 제1 영역, 제2 영역, 제7 영역, 제8 영역, 제13 영역, 제14 영역은 LAD(left anterior descending a.)에 연결되고, 제3 영역, 제9 영역, 제15 영역은 LCX(left circumflex a.) 및 LAD에 연결되며, 제4 영역, 제10 영역은 LCX 및 RCA(right coronary a.)에 연결되고, 제5 영역, 제6 영역, 제11 영역, 제12 영역, 제16 영역은 RCA에 연결된다. 제어부(40)는 좌심실의 벽두께를 측정할 때 각 영역별로 최대이완기 좌심실 벽두께(EDT)와 최대수축기 좌심실 벽두께(EST)를 측정한다. 상세하게는 제어부(40)는 초음파 영상의 영상 분석 및 심전도 분석 중 적어도 하나를 이용하여 좌심실의 최대이완기 및 최대수축기를 결정하고, 결정된 시점의 두께를 측정한다. 즉 제어부(40)는 초음파 영상을 영상 분석하여 좌심실이 최대일 때와 최소일 때를 검출하고, 검출된 시점의 벽두께를 측정하거나(도 3a), 심전도에 대한 정보를 이용하여 최대이완기 및 최대수축기를 검출하고, 검출된 시점의 벽두께를 측정하거나(도 3b), 상술된 두 방식을 모두 이용하여 벽두께를 측정할 수 있다.The controller 40 divides the myocardium into 17 predetermined regions based on the received ultrasound image, and measures the wall thickness of the left ventricle for each region. Here, as shown in FIG. 3, the 17 regions are divided into basal, mid, and apical based on the short axis and long axis of the heart, and the divided regions are It means an area divided into 17 parts. At this time, each region is connected to blood vessels of the heart, and in detail, the first region, the second region, the seventh region, the eighth region, the thirteenth region, and the fourteenth region are connected to LAD (left anterior descending a.), The third region, the ninth region, and the fifteenth region are connected to left circumflex a. (LCX) and LAD, the fourth region and the tenth region are connected to LCX and right coronary a. (RCA), and the fifth region, The sixth region, the eleventh region, the twelfth region, and the sixteenth region are connected to the RCA. When measuring the wall thickness of the left ventricle, the controller 40 measures the maximum diastolic left ventricular wall thickness (EDT) and maximum systolic left ventricular wall thickness (EST) for each region. In detail, the controller 40 determines the maximum diastolic period and maximum systolic period of the left ventricle by using at least one of image analysis of an ultrasound image and electrocardiogram analysis, and measures the thickness at the determined time point. That is, the control unit 40 analyzes the ultrasound image to detect when the left ventricle is at its maximum or minimum, measures the wall thickness at the detected time point ( FIG. 3A ), or uses the information on the electrocardiogram to determine the maximum diastolic and maximum diastolic phases. The wall thickness can be measured by detecting the systole and measuring the wall thickness at the detected time point ( FIG. 3B ), or by using both of the above methods.
제어부(40)는 측정된 벽두께에 대한 정보를 기초로 좌심실의 벽운동을 정량 분석한다. 여기서 벽운동은 벽두께의 변화율을 의미한다. 제어부(40)는 최대이완기 좌심실 벽두께와 최대수축기 좌심실 벽두께 간의 차이값을 산출하고, 최대수축기 좌심실 벽두께를 산출된 차이값으로 나눈 후, 백분율(%)하여 정량 분석을 할 수 있다. 즉 제어부(40)는 [수학식 1]과 같이 정량 분석을 할 수 있다.The controller 40 quantitatively analyzes the wall motion of the left ventricle based on the measured wall thickness information. Here, the wall motion means the change rate of the wall thickness. The controller 40 may perform quantitative analysis by calculating a difference between the maximum diastolic left ventricular wall thickness and the maximum systolic left ventricular wall thickness, dividing the maximum systolic left ventricular wall thickness by the calculated difference value, and then calculating a percentage (%). That is, the control unit 40 may perform quantitative analysis as shown in [Equation 1].
Figure PCTKR2021017539-appb-M000001
Figure PCTKR2021017539-appb-M000001
여기서 EDT는 최대이완기 좌심실 벽두께이고, EST는 최대수축기 좌심실 벽두께를 의미한다.Here, EDT is the maximum diastolic left ventricular wall thickness, and EST is the maximum systolic left ventricular wall thickness.
제어부(40)는 정량 분석된 결과를 인공지능 모델에 적용하여 심장의 상태를 진단한다. 여기서 인공지능 모델은 인공신경망, 기계학습, 딥러닝 등과 같은 다양한 인공지능 모델일 수 있다.The control unit 40 diagnoses the condition of the heart by applying the result of the quantitative analysis to the artificial intelligence model. Here, the artificial intelligence model may be various artificial intelligence models such as artificial neural networks, machine learning, and deep learning.
예를 들어 도 6은 인공지능 모델의 일례인 인공신경망을 도시하였으며, 도시된 바와 같이 인공신경망은 복수의 계층을 포함한다. 이러한 복수의 계층은 입력층(IL: Input Layer), 은닉층(HL: Hidden Layer, HL1 내지 HLk) 및 출력층(OL: Output Layer)을 포함한다. For example, FIG. 6 illustrates an artificial neural network, which is an example of an artificial intelligence model, and as shown, the artificial neural network includes a plurality of layers. These plurality of layers include an input layer (IL), a hidden layer (HL1 to HLk), and an output layer (OL).
또한 복수의 계층(IL, HL, OL) 각각은 하나 이상의 노드를 포함한다. 예컨대 도시된 바와 같이, 입력층(IL)은 n개의 입력노드(i1 ~ in)를 포함하며, 출력층(OL)은 1개의 출력노드(v)를 포함할 수 있다. 또한 은닉층(HL) 중 제1 은닉계층(HL1)은 a개의 노드(h11 ~ h1a)를 포함하고, 제2 은닉계층(HL2)은 b개의 노드(h21 ~ h2b)를 포함하고, 제k 은닉계층(HLk)은 c개의 노드(hk1 ~ hkc)를 포함할 수 있다. In addition, each of the plurality of layers (IL, HL, OL) includes one or more nodes. For example, as shown, the input layer IL may include n input nodes i1 to in, and the output layer OL may include one output node v. In addition, among the hidden layers HL, the first hidden layer HL1 includes a number of nodes h11 to h1a, the second hidden layer HL2 includes b nodes h21 to h2b, and the kth hidden layer (HLk) may include c nodes (hk1 to hkc).
복수의 계층의 노드 각각은 연산을 수행한다. 특히 서로 다른 계층의 복수의 노드는 가중치(w: weight)를 가지는 채널(점선으로 표시)로 연결된다. 다른 말로, 어느 하나의 노드의 연산 결과는 가중치(w) 혹은 임계치(b)를 포함하는 인공신경망의 파라미터가 적용되어 다음 계층의 노드에 입력된다. 이러한 연결 관계에 대해 노드를 기준으로 설명하기로 한다. Each of the nodes of the plurality of layers performs an operation. In particular, a plurality of nodes of different layers are connected by a channel (shown as a dotted line) having a weight (w: weight). In other words, the calculation result of any one node is input to the node of the next layer after applying the parameters of the artificial neural network including the weight (w) or threshold (b). This connection relationship will be described based on nodes.
도 7에 본 발명의 실시예에 따른 노드(h)의 일례가 도시되었다. 도 7의 노드는 히든 노드(h) 중 하나인 것으로 설명되지만, 인공지능 모델에 포함된 모든 노드에 공통으로 적용될 수 있다. 이러한 노드(h)의 연산은 다음의 [수학식 2]에 따라 이루어진다. 7 shows an example of a node h according to an embodiment of the present invention. Although the node of FIG. 7 is described as one of the hidden nodes h, it can be commonly applied to all nodes included in the artificial intelligence model. The operation of this node (h) is performed according to the following [Equation 2].
Figure PCTKR2021017539-appb-M000002
Figure PCTKR2021017539-appb-M000002
여기서, 함수 F는 활성화 함수(activation function)를 의미한다. 또한, x는 이전 계층의 복수의 노드 각각의 연산 결과에 따른 노드값이고, 다음 계층의 노드(h)에 대한 입력을 의미한다. 이러한 입력은 x=[x1, x2, … , xn]와 같이 표현될 수 있다. w는 입력 x에 대응하는 가중치이며, w=[w1, w2, … , wn]와 같이 표현될 수 있다. [수학식 2]에 따르면, 노드(h)는 이전 계층의 복수의 노드 각각의 노드값인 입력 x=[x1, x2, … , xn]에 가중치 w=[w1, w2, … , wn]를 적용한 후, 그 결과에 함수 F를 취한다. 여기서, 파라미터 b는 임계치이며, 임계치 b는 [수학식 2]에서
Figure PCTKR2021017539-appb-I000001
의 값이 임계치 보다 작을 때 해당 노드가 활성화되지 않도록 하는 역할을 한다.
Here, function F means an activation function. In addition, x is a node value according to an operation result of each of a plurality of nodes of the previous layer, and denotes an input to a node h of the next layer. These inputs are x=[x1, x2, … , xn]. w is the weight corresponding to the input x, and w=[w1, w2, . . . , wn]. According to [Equation 2], node h is an input x = [x1, x2, . , xn] with weights w=[w1, w2, … , wn], the result is taken as the function F. Here, the parameter b is a threshold, and the threshold b is in [Equation 2]
Figure PCTKR2021017539-appb-I000001
It serves to prevent the corresponding node from being activated when the value of is smaller than the threshold.
예를 들면, 노드(h)의 이전 계층의 노드가 3개라고 가정한다(n=3). 이에 따라, 노드(h)에 대해 3개의 입력 x1, x2, x3과 3개의 가중치 w1, w2, w3이 존재한다. 노드(h)는 3개의 입력 x1, x2, x3에 대응하는 가중치 w1, w2, w3을 곱한 값을 입력받고, 모두 합산한 후, 합산된 값을 전달 함수에 대입하여 출력을 산출한다. 구체적으로, 입력 [x1, x2, x3] = 0.5, -0.3, 0이라고 가정하고, 가중치 w=[w1, w2, w3] = 4, 5, 2라고 가정한다. 또한, 활성화함수 F는 ‘sgn()’이고, 임계치는 0.01이라고 가정하면, [수학식 2]에 따른 연산을 통해 다음과 같이 출력이 산출된다. For example, it is assumed that there are 3 nodes in the hierarchy prior to node h (n=3). Accordingly, there are three inputs x1, x2, and x3 and three weights w1, w2, and w3 for node h. The node h receives a value obtained by multiplying the three inputs x1, x2, and x3 by weights w1, w2, and w3, sums them all, and substitutes the summed value into a transfer function to calculate an output. Specifically, it is assumed that the inputs [x1, x2, x3] = 0.5, -0.3, 0, and the weights w = [w1, w2, w3] = 4, 5, 2. In addition, assuming that the activation function F is 'sgn()' and the threshold is 0.01, the output is calculated as follows through the operation according to [Equation 2].
x1 × w1 = 0.5 × 0.19 = 0.095 x1 × w1 = 0.5 × 0.19 = 0.095
x2 × w2 = - 0.3 × 0.25 = -0.075x2 × w2 = -0.3 × 0.25 = -0.075
x3 × w3 = 0 × 0.66 = 0 x3 × w3 = 0 × 0.66 = 0
0.095 + (-0.075) + 0 = 0.02 0.095 + (-0.075) + 0 = 0.02
b=0.01일 때, sgn(0.02-0.01) = 1 When b=0.01, sgn(0.02-0.01) = 1
이와 같이, 인공신경망으로부터 생성된 복수의 계층에 대한 복수의 노드 각각은 이전 계층의 노드값 x1, x2, x3에 인공신경망의 파라미터인 가중치 w1, w2, w3 및 임계치 b가 적용된 값을 입력받고, 활성화함수 F에 의한 연산을 수행하여 출력값 OUT을 산출한다. 다음 계층이 존재하는 경우, 산출된 출력값 OUT은 다음 계층의 노드에 대한 입력이 된다. 즉, 인공지능 모델의 어느 한 계층의 어느 하나의 노드는 이전 계층의 노드의 출력에 가중치 혹은 임계치를 적용한 값을 입력받고, 활성화함수 F에 의한 연산을 수행하여 그 연산 결과를 다음 계층으로 전달한다. In this way, each of the plurality of nodes for the plurality of layers generated from the artificial neural network receives a value obtained by applying weights w1, w2, w3 and threshold b, which are parameters of the artificial neural network, to node values x1, x2, and x3 of the previous layer, Calculate the output value OUT by performing the operation by the activation function F. When the next layer exists, the calculated output value OUT becomes an input to a node of the next layer. That is, any one node of any one layer of the artificial intelligence model receives a value obtained by applying a weight or threshold to the output of the node of the previous layer, performs an operation by the activation function F, and transfers the operation result to the next layer. .
인공지능 모델의 전체적인 연산은 다음과 같이 이루어진다. 먼저, 인공지능 모델에 대한 입력 데이터로 정량 분석된 결과가 사용된다. 입력 데이터는 입력특징벡터로 변환되어 입력될 수 있다. 입력특징벡터 IV는 인공지능 모델의 입력층(IL)의 복수의 입력노드(i1 ~ in)에 대응하는 복수의 요소값 iv1 ~ ivn을 가진다. 이에 따라 입력층(IL)의 복수의 입력노드(i1 ~ in)에 입력특징벡터 IV=[iv1 ~ ivn]가 입력되면, 제1 은닉층(HL1)의 복수의 제1 은닉노드(h11 ~ h1a) 각각은 복수의 입력노드(i1 ~ in)의 복수의 요소값 iv1 ~ ivn에 가중치 및 임계치를 적용하고, 가중치 및 임계치가 적용된 입력특징벡터의 복수의 요소값 각각에 대해 활성화함수에 따른 연산을 수행하여 복수의 제1 은닉노드값을 산출한다. The overall calculation of the artificial intelligence model is performed as follows. First, the results of quantitative analysis are used as input data for the artificial intelligence model. The input data may be converted into an input feature vector and then input. The input feature vector IV has a plurality of element values iv1 to ivn corresponding to a plurality of input nodes i1 to in of the input layer IL of the artificial intelligence model. Accordingly, when the input feature vector IV = [iv1 to ivn] is input to the plurality of input nodes i1 to in of the input layer IL, the plurality of first hidden nodes h11 to h1a of the first hidden layer HL1 Each applies weights and thresholds to a plurality of element values iv1 to ivn of a plurality of input nodes (i1 to in), and performs an operation according to an activation function for each of the plurality of element values of the input feature vector to which the weights and thresholds are applied. Thus, a plurality of first hidden node values are calculated.
이어서 제2 은닉층(HL2)의 복수의 제2 은닉노드(h21 ~ h2b) 각각은 복수의 제1 은닉노드(h11 ~ h1a)의 복수의 제1 은닉노드값 각각에 가중치 및 임계치를 적용하고, 가중치 및 임계치가 적용된 복수의 제1 은닉노드값 각각에 대해 활성화함수에 따른 연산을 수행하여 복수의 제2 은닉노드값을 산출한다. 이와 같은 방식으로 은닉층(HL) 내에서 이전의 노드값이 가중치가 적용되어 전달되고, 연산을 통해 현재의 노드값이 산출된다. 이러한 과정을 반복하여, 제k 은닉계층(HLk)의 복수의 제k 은닉노드(hk1 ~ hkc)의 복수의 제k 은닉노드값을 산출할 수 있다. Then, each of the plurality of second hidden nodes h21 to h2b of the second hidden layer HL2 applies a weight and a threshold value to each of the plurality of first hidden node values of the plurality of first hidden nodes h11 to h1a, and the weight and calculating a plurality of second hidden node values by performing an operation according to an activation function for each of the plurality of first hidden node values to which the threshold value is applied. In this way, in the hidden layer (HL), a previous node value is transmitted with a weight applied, and a current node value is calculated through an operation. By repeating this process, a plurality of k-th hidden node values of the plurality of k-th hidden nodes (hk1 to hkc) of the k-th hidden layer (HLk) may be calculated.
이에 따라 출력층(OL)의 출력노드(v)는 제k 은닉계층(HLk)의 복수의 제k 은닉노드(hk1 ~ hkc)의 복수의 제k 은닉노드값에 가중치 w=[w1, w2, … , wc]가 적용된 값을 입력받고(점선으로 표시), 입력된 값을 모두 합산한 후, 임계치를 차감하고, 해당 값에 대해 활성화함수에 따른 연산을 수행하여 출력값을 산출한다. 이러한 출력노드(v)가 산출한 출력값은 구동 제어값의 추정치가 될 수 있다. Accordingly, the output node v of the output layer OL applies a weight w = [w1, w2, . . . , wc] is applied (indicated by a dotted line), the input values are summed up, the threshold value is subtracted, and the corresponding value is calculated according to the activation function to calculate the output value. The output value calculated by the output node v may be an estimated value of the driving control value.
상술된 바와 같이 제어부(40)는 인공신경망을 통해 심장의 상태에 대한 진단을 추정하나, 이에 한정하지 않고 다양한 인공지능 모델을 이용하여 심장의 상태에 대한 진단을 추정할 수 있다.As described above, the controller 40 estimates the diagnosis of the heart condition through the artificial neural network, but is not limited thereto and may estimate the diagnosis of the heart condition using various artificial intelligence models.
제어부(40)는 추정된 진단 결과를 사용자에게 맞춤형으로 진단 정보를 생성한다. 진단 정보는 사용자의 나이, 성별, 학력 등의 개인정보를 기반으로 생성되며, 해당 내용을 확인하는 것만으로 심장의 어디가 아픈지 직관적으로 인지할 수 있도록 요약된 정보를 의미한다. The control unit 40 generates diagnostic information tailored to the user based on the estimated diagnosis result. Diagnosis information is generated based on the user's personal information such as age, gender, and educational background, and refers to information summarized so that one can intuitively recognize where the heart is hurting just by checking the contents.
제어부(40)는 진단 정보를 출력부(50)에 전달하여 출력되도록 제어하고, 이와 동시에 진단 정보를 학습한다. 즉 제어부(40)는 진단된 결과인 진단 정보를 기반으로 인공지능 모델을 학습시켜 추후 수행될 진단 결과의 정확도를 향상시킨다.The control unit 40 transfers the diagnostic information to the output unit 50 and controls it to be output, and learns the diagnostic information at the same time. That is, the control unit 40 improves the accuracy of a diagnosis result to be performed later by learning an artificial intelligence model based on diagnosis information, which is a diagnosis result.
출력부(50)는 초음파 영상(41), 정량 분석표(43) 및 진단된 정보를 출력한다. 또한 출력부(50)는 좌심실의 벽두께를 측정하는 영역을 특정 표시(42)로 나타내고, 화면 일부에 초음파 프로브(200)의 조작을 보조하는 가이드 설명(44)을 출력할 수 있다. 출력부(50)는 디스플레이일 수 있으며, 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(3D display) 중에서 적어도 하나를 포함할 수 있다.The output unit 50 outputs an ultrasound image 41, a quantitative analysis table 43, and diagnosed information. In addition, the output unit 50 may display a region for measuring the wall thickness of the left ventricle with a specific display 42 and output a guide description 44 for assisting the operation of the ultrasound probe 200 on a portion of the screen. The output unit 50 may be a display, such as a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), or an organic light-emitting diode (OLED). , a flexible display, and a 3D display.
저장부(60)는 장치(100)를 구동하기 위한 프로그램 또는 알고리즘이 저장된다. 저장부(60)는 초음파 영상, 심전도에 대한 정보, 정량 분석된 정보 및 진단된 정보가 저장된다. 저장부(60)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기메모리, 자기 디스크 및 광디스크 중 적어도 하나의 저장매체를 포함할 수 있다. The storage unit 60 stores programs or algorithms for driving the device 100 . The storage unit 60 stores ultrasound images, electrocardiogram information, quantitatively analyzed information, and diagnosed information. The storage unit 60 is a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (eg SD or XD memory, etc.), RAM (Random Access Memory, RAM), SRAM (Static Random Access Memory), ROM (Read-Only Memory, ROM), EEPROM (Electrically Erasable Programmable Read-Only Memory), PROM (Programmable Read-Only Memory), magnetic memory, It may include at least one storage medium of a magnetic disk and an optical disk.

Claims (6)

  1. 초음파 프로브에 의해 심장의 심근이 촬영된 초음파 영상을 수신하는 통신부; 및a communication unit for receiving an ultrasound image of a myocardium of a heart photographed by an ultrasound probe; and
    상기 초음파 영상을 기초로 심근을 기 설정된 영역으로 분할하여 각 영역별 좌심실의 최대이완기 및 최대수축기에 대한 벽두께를 측정하고, 상기 측정된 벽두께에 대한 정보를 기초로 좌심실의 벽운동을 정량 분석하며, 상기 정량 분석된 결과를 인공지능 모델에 적용하여 심장의 상태를 진단하는 제어부;Based on the ultrasound image, the myocardium is divided into preset regions to measure the wall thickness of the left ventricle during maximum diastole and maximum systole for each region, and quantitatively analyze the wall motion of the left ventricle based on the information on the measured wall thickness. and a controller for diagnosing the state of the heart by applying the result of the quantitative analysis to an artificial intelligence model;
    를 포함하는 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치.Cardiac quantitative analysis and self-diagnosis device using artificial intelligence technology including.
  2. 제 1항에 있어서,According to claim 1,
    심장의 심전도를 측정하는 센서부;를 더 포함하고,It further includes; a sensor unit for measuring the electrocardiogram of the heart;
    상기 제어부는,The control unit,
    초음파 영상의 영상 분석 및 심전도 분석 중 적어도 하나를 이용하여 상기 좌심실의 최대이완기 및 최대수축기를 결정하는 것을 특징으로 하는 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치.A heart quantitative analysis and self-diagnosis device using artificial intelligence technology, characterized in that for determining the maximum diastolic period and maximum systolic period of the left ventricle using at least one of image analysis and electrocardiogram analysis of an ultrasound image.
  3. 제 1항 또는 제 2항에 있어서,According to claim 1 or 2,
    상기 제어부는,The control unit,
    최대이완기 좌심실 벽두께(EDT)와 최대수축기 좌심실 벽두께(EST)를 측정하고, 최대이완기 좌심실 벽두께와 최대수축기 좌심실 벽두께 간의 차이값을 산출하며, 최대수축기 좌심실 벽두께를 상기 차이값으로 나눈 후, 백분율하여 정량 분석을 하는 것을 특징으로 하는 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치.The maximum diastolic left ventricular wall thickness (EDT) and maximum systolic left ventricular wall thickness (EST) were measured, the difference between the maximum diastolic left ventricular wall thickness and the maximum systolic left ventricular wall thickness was calculated, and the maximum systolic left ventricular wall thickness was divided by the difference. After, quantitative analysis of the heart and self-diagnosis device using artificial intelligence technology, characterized in that the quantitative analysis is performed by percentage.
  4. 제 1항에 있어서,According to claim 1,
    상게 제어부는,The upper control unit,
    상기 진단된 결과를 기반으로 상기 인공지능 모델을 학습시키는 것을 특징으로 하는 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치.Cardiac quantitative analysis and self-diagnosis device using artificial intelligence technology, characterized in that for learning the artificial intelligence model based on the diagnosed result.
  5. 제 1항에 있어서,According to claim 1,
    상기 진단과 관련된 내용을 출력하는 출력부;를 더 포함하고,Further comprising an output unit for outputting contents related to the diagnosis;
    상기 제어부는,The control unit,
    각 영역별 벽두께에 대한 측정이 가능한 초음파 영상이 수신되도록 상기 초음파 프로브의 조작을 보조하는 가이드 설명을 상기 출력부의 일부에 출력시키는 것을 특징으로 하는 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 장치.A heart quantitative analysis and self-diagnosis device using artificial intelligence technology, characterized in that a guide description for assisting the operation of the ultrasound probe is output to a part of the output unit so that an ultrasound image capable of measuring wall thickness for each region is received.
  6. 심장 정량 분석 및 자가 진단 장치가 초음파 프로브에 의해 심장의 심근이 촬영된 초음파 영상을 수신하는 단계;receiving an ultrasound image of myocardium captured by an ultrasound probe by a device for quantitative cardiac analysis and self-diagnosis;
    상기 심장 정량 분석 및 자가 진단 장치가 상기 초음파 영상을 기초로 심근을 기 설정된 영역으로 분할하여 각 영역별 좌심실의 최대이완기 및 최대수축기에 대한 벽두께를 측정하는 단계;dividing the myocardium into preset regions based on the ultrasound image, and measuring, by the device for quantitative cardiac analysis and self-diagnosis, wall thicknesses of the left ventricle during maximum diastole and maximum systole for each region;
    상기 심장 정량 분석 및 자가 진단 장치가 상기 측정된 벽두께에 대한 정보를 기초로 좌심실의 벽운동을 정량 분석하는 단계; 및quantitatively analyzing wall motion of the left ventricle based on the measured wall thickness information by the heart quantitative analysis and self-diagnosis device; and
    상기 심장 정량 분석 및 자가 진단 장치가 상기 정량 분석된 결과를 인공지능 모델에 적용하여 심장의 상태를 진단하는 단계;diagnosing a state of the heart by applying the quantitative analysis result to an artificial intelligence model by the heart quantitative analysis and self-diagnosis device;
    를 포함하는 인공지능 기술을 이용한 심장 정량 분석 및 자가 진단 방법.Cardiac quantitative analysis and self-diagnosis method using artificial intelligence technology including.
PCT/KR2021/017539 2021-11-25 2021-11-25 Device for cardiac quantitative analysis and self-diagnosis using artificial intelligence technology WO2023095950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0163908 2021-11-25
KR1020210163908A KR20230077065A (en) 2021-11-25 2021-11-25 Heart quantitative analysis and self-diagnosis device using artificial intelligence technology

Publications (1)

Publication Number Publication Date
WO2023095950A1 true WO2023095950A1 (en) 2023-06-01

Family

ID=86539814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017539 WO2023095950A1 (en) 2021-11-25 2021-11-25 Device for cardiac quantitative analysis and self-diagnosis using artificial intelligence technology

Country Status (2)

Country Link
KR (1) KR20230077065A (en)
WO (1) WO2023095950A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527743A (en) * 2004-02-03 2007-10-04 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド System and method for automatic diagnosis and decision support for heart related diseases and conditions
KR20090010069A (en) * 2006-05-25 2009-01-28 코닌클리케 필립스 일렉트로닉스 엔.브이. Quantification and display of cardiac chamber wall thickening
KR101321885B1 (en) * 2012-06-25 2013-10-28 인텔렉추얼디스커버리 주식회사 Ultrasonic diagnostic system and method using physiological signal
KR20150097277A (en) * 2014-02-18 2015-08-26 연세대학교 산학협력단 Apparatus and method for analysing functional cahnges of left venticle
KR20170071391A (en) * 2015-12-15 2017-06-23 삼성전자주식회사 Ultrasound apparatus, controlling method of thereof and telemedicine system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080045480A (en) 2006-11-20 2008-05-23 주식회사 메디슨 Portable ultrasound apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527743A (en) * 2004-02-03 2007-10-04 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド System and method for automatic diagnosis and decision support for heart related diseases and conditions
KR20090010069A (en) * 2006-05-25 2009-01-28 코닌클리케 필립스 일렉트로닉스 엔.브이. Quantification and display of cardiac chamber wall thickening
KR101321885B1 (en) * 2012-06-25 2013-10-28 인텔렉추얼디스커버리 주식회사 Ultrasonic diagnostic system and method using physiological signal
KR20150097277A (en) * 2014-02-18 2015-08-26 연세대학교 산학협력단 Apparatus and method for analysing functional cahnges of left venticle
KR20170071391A (en) * 2015-12-15 2017-06-23 삼성전자주식회사 Ultrasound apparatus, controlling method of thereof and telemedicine system

Also Published As

Publication number Publication date
KR20230077065A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US11517241B2 (en) Mean TSI feature based determination method and system
US10226195B2 (en) Electronic system to control the acquisition of an electrocardiogram
US8391546B2 (en) Method and corresponding apparatus for quantitative measurements on sequences of images, particularly ultrasonic images
US6106466A (en) Automated delineation of heart contours from images using reconstruction-based modeling
KR20190021344A (en) Automated image acquisition to assist users operating ultrasound devices
CN108665449B (en) Deep learning model and device for predicting blood flow characteristics on blood flow vector path
WO2014086191A1 (en) Ultrasound system, and method and apparatus for associating detection information of the same
WO2006113697A1 (en) Trainable diagnotic system and method of use
ITMI971726A1 (en) ANALYSIS AND MEASUREMENT OF TEMPORAL TISSUE SPEED INFORMATION
CN110085321A (en) The method and system of multiple dimensioned anatomy and function modeling is carried out to coronary circulation
CN103479346B (en) To the compensation of heart movement in body coordinate system
WO2022037274A1 (en) Muscle training method and system for providing visual feedback by using ultrasonic imaging
Heintzen et al. Automated video-angiocardiographic image analysis
CN109700433A (en) A kind of tongue picture diagnostic system and lingual diagnosis mobile terminal
CN105580049A (en) Process management system for digital media production and method therefor
CN108309353A (en) Heart rate auxiliary for carrying out phase determination in ultrasonic cardiography
Chew Haemodynamic monitoring using echocardiography in the critically ill: a review
Pasdeloup et al. Real-time echocardiography guidance for optimized apical standard views
WO2023095950A1 (en) Device for cardiac quantitative analysis and self-diagnosis using artificial intelligence technology
CN113456033B (en) Physiological index characteristic value data processing method, system and computer equipment
CN113197560A (en) Heart rate detection and defibrillation device for sudden cardiac arrest emergency treatment
WO2023022507A1 (en) Method for generating synchronous electrocardiograms on basis of two lead asynchronous electrocardiograms
EP3855446A1 (en) Evaluation support system and evaluation support method for supporting evaluation of state of circulatory system
US20150119734A1 (en) Electrocardiogram measuring apparatus and synthesized electrocardiogram generating method
WO2021010734A1 (en) Medical examination result sheet generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965737

Country of ref document: EP

Kind code of ref document: A1