WO2023073802A1 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
WO2023073802A1
WO2023073802A1 PCT/JP2021/039441 JP2021039441W WO2023073802A1 WO 2023073802 A1 WO2023073802 A1 WO 2023073802A1 JP 2021039441 W JP2021039441 W JP 2021039441W WO 2023073802 A1 WO2023073802 A1 WO 2023073802A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
circuit
output
semiconductor integrated
Prior art date
Application number
PCT/JP2021/039441
Other languages
French (fr)
Japanese (ja)
Inventor
理 錦戸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/039441 priority Critical patent/WO2023073802A1/en
Priority to JP2023555927A priority patent/JPWO2023073802A1/ja
Publication of WO2023073802A1 publication Critical patent/WO2023073802A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/316Testing of analog circuits

Definitions

  • the present disclosure relates to semiconductor integrated circuit devices.
  • IC Integrated Circuit
  • checking whether the voltage is correctly output from the analog circuit to the internal node is an important factor in detecting failures.
  • the voltage of the internal node can be measured via the external terminal.
  • the voltages of the plurality of internal nodes can be measured by sharing the external terminal.
  • Patent Document 1 discloses that a voltage comparator is provided inside an IC to detect a DC voltage at a specific circuit node of an analog integrated circuit. is within a certain range, and the determination result is output to the outside of the IC.
  • the present disclosure has been made to solve such problems, and an object of the present disclosure is to speed up the normality determination of the voltage of the internal node of a semiconductor integrated circuit device with a simple circuit configuration. is.
  • the current comparator when switching between a plurality of voltage-to-current converters, can compare the measured voltage with the judgment voltage by comparing the output current obtained by voltage-to-current conversion of the measured voltage with the reference current. , the time required to stabilize the output current input to the current comparator can be shortened. As a result, it is possible to speed up the normality judgment of the voltage of the internal node of the semiconductor integrated circuit device with a simple circuit configuration.
  • FIG. 1 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a first embodiment
  • FIG. 2 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 1
  • FIG. FIG. 2 is a circuit diagram for explaining an internal configuration of each block shown in FIG. 1 according to Modification 1 of Embodiment 1
  • FIG. 10 is a circuit diagram illustrating a configuration of a voltage-current conversion circuit according to Modification 1 of Embodiment 1
  • FIG. 10 is a circuit diagram illustrating the configuration of a reference current source according to Modification 1 of Embodiment 1
  • 3 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a second embodiment
  • FIG. 7 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 6;
  • FIG. 7 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 6;
  • FIG. 3 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a third embodiment
  • FIG. 9 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 8
  • FIG. 12 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a fourth embodiment
  • FIG. 11 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 10
  • FIG. FIG. 11 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a fifth embodiment
  • 13 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 12
  • FIG. FIG. 11 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a sixth embodiment
  • 15 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 14;
  • the suffixes a to d will be omitted and, for example, the internal circuit 10, the internal node NT, the voltage current It will be described like the conversion circuit 20 .
  • the gate of the NMOS transistor 201a is connected to the internal node NTa, which is the measurement node. That is, the measurement voltage Vout is input to the gate of the NMOS transistor 201a.
  • the selection circuit 30 has switches 301a to 301d. Switches 301a-301d are connected between nodes N1a-N1d and node N2 of current comparator 50, respectively. Nodes N1a-N1d are connected to internal nodes NTa-NTd via voltage-current conversion circuits 20a-20d, respectively, as shown in FIG.
  • the voltage-to-current conversion circuits 20b to 20d are configured similarly to the voltage-to-current conversion circuit 20a, and have series circuits of NMOS transistors and resistance elements between the nodes N1b to N1c and the ground line NL. .
  • Current comparator 50 includes P-type MOS transistors (hereinafter referred to as PMOS transistors) 501 and 502 and NMOS transistors 503 and 504, which constitute two sets of current mirrors. It is connected between the power supply line NP transmitting VDD and the node N2, and the PMOS transistor 502 is connected between the power supply line NP and the node N3.
  • the PMOS transistors 501 and 502 form a current mirror by having their gates commonly connected to the node N2 (that is, the drain of the PMOS transistor 501). Assume that the current ratio of the current mirror is 1:1.
  • NMOS transistor 503 is connected between the node N3 and the ground line NL
  • the NMOS transistor 504 is connected between the node N4 and the ground line NL.
  • NMOS transistors 503 and 504 form a current mirror by having their gates commonly connected to node N4 (that is, the drain of NMOS transistor 504). In the following, it is assumed that the current ratio of the current mirror is 1:1.
  • the reference current source 40 has resistance elements 401 , 402 and 404 , an NMOS transistor 403 and PMOS transistors 405 and 406 .
  • the PMOS transistor 406 is connected between the power supply line NP and the node N4, and the PMOS transistor 405 is connected between the power supply line NP and the node N5.
  • PMOS transistors 405 and 406 form a current mirror by having their gates commonly connected to node N5 (that is, the drain of PMOS transistor 405). Assume that the current ratio of the current mirror is 1:1.
  • the resistance element 401 is connected between the power supply line NP and the node N6, and the resistance element 402 is connected between the ground line NL and the node N6. Therefore, a reference voltage Vref obtained by dividing the power supply voltage VDD by the resistance elements 401 and 402 is generated at the node N6.
  • the selection circuit 30 turns on one of the switches 301a to 301d corresponding to the internal node to be measured, and turns off the remaining switches.
  • the switch 301a is turned on. This creates a path for output current Iout from power supply line NP to ground line NL, including PMOS transistor 501, switch 301a (node N1a), NMOS transistor 201a, and resistance element 202a.
  • the output current Iout is expressed by the following formula (1) using the measured voltage Vout, the electrical resistance value RO of the resistive element 202a, and the gate-source voltage Vgs2 of the NMOS transistor 201a. That is, the voltage-current conversion circuit 20 converts the measured voltage Vout into the output current Iout according to the conversion gain according to Equation (1).
  • (1/RO) corresponds to an example of "first conversion gain”.
  • the output current Iout (Vout ⁇ Vgs2)/RO (1)
  • the output current Iout is copied by a current mirror (1:1 current ratio) by PMOS transistors 501 and 502 .
  • the PMOS transistor 502 supplies a current corresponding to the output current Iout to the node N3.
  • the reference current Iref is expressed by the following equation (2) using the reference voltage Vref of the node N6, the electrical resistance value RP of the resistance element 404, and the gate-source voltage Vgs4 of the NMOS transistor 403. That is, the reference current source 40 converts the reference voltage Vref into the reference current Iref according to the conversion gain according to equation (2).
  • (1/RP) corresponds to an example of "second conversion gain".
  • Iref (Vref ⁇ Vgs4)/RP (2)
  • the reference current Iref is copied by a current mirror by PMOS transistors 405 and 406 (current ratio 1:1) and by NMOS transistors 504 and 503 (current ratio 1:1).
  • the NMOS transistor 503 extracts a current corresponding to the reference current Iref from the node N3.
  • a voltage V3 is generated at the node N3 by amplifying the current difference between the output current Iout and the reference current Iref. Specifically, when Iout>Iref, the voltage V3 becomes a high-level voltage (hereinafter also simply referred to as "H level”) corresponding to the power supply voltage VDD. On the other hand, when Iout ⁇ Iref, the voltage V3 becomes a low level voltage (hereinafter also simply referred to as "L level”) corresponding to the ground voltage GND.
  • the voltage V3 of the node N3 is output as the determination signal Sjd to the terminal 6 that can be contacted from the outside of the semiconductor integrated circuit device 5a.
  • RO (Vto ⁇ Vgs2)/(Vref ⁇ Vgs4) ⁇ RP (4)
  • the voltage stabilization time of the node N3 when the selection circuit 30 switches the measurement voltage Vout in the present embodiment is described in Patent Document 1. Compared with the settling time of the input voltage of the voltage comparison circuit that compares the voltages, it is greatly shortened. In particular, in a configuration in which the circuit scale is suppressed by sharing the current comparator 50 among a plurality of internal nodes, the effect of shortening the test time is great.
  • the reference current Iref which is fixed in the reference current source 40, is used to determine the determination voltage Vout to be compared with the measurement voltage Vout.
  • Vto can be changed equivalently. That is, by changing the conversion gain according to the electrical resistance value RO of the resistance element 202a in the voltage-to-current conversion circuit 20, the reference current Iref is fixed and the normal range of the measured voltage Vout at each internal node NT is adjusted. , the determination voltage Vto can be freely changed. That is, the electrical resistance value RO (that is, the conversion gain) in the voltage-current conversion circuit 20 is determined by reflecting at least the determination voltage Vto, and is preferably set according to Equation (4). This makes it possible to switch the determination voltage for a plurality of measurement voltages with a simple configuration. As a result, the manufacturing cost of the semiconductor integrated circuit device can be reduced.
  • Vgs2 and Vgs4 can be set to the same value by matching the current and transistor size (W/L) ratios between the NMOS transistor 201a and the NMOS transistor 403. can.
  • FIG. 2 shows an example in which the voltage-to-current conversion circuit 20 is configured using NMOS transistors, it is also possible to adopt a configuration that performs voltage-to-current conversion using PMOS transistors.
  • the determination voltage Vto is low, it is preferable to increase the voltage applied to the resistance element 202a (electric resistance value RO) in order to reduce the influence of Vgs2 in equation (1).
  • FIG. 3 shows a circuit diagram for explaining the internal configuration of each block in FIG. 1, according to a modification in which voltage-to-current conversion is performed using PMOS transistors.
  • the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10.
  • FIG. 1 shows a circuit diagram for explaining the internal configuration of each block in FIG. 1, according to a modification in which voltage-to-current conversion is performed using PMOS transistors.
  • the voltage-current conversion circuit 20pa has a PMOS transistor 201pa and a resistance element 202a.
  • Resistance element 202a (electric resistance value RO) is connected between power supply line NP and PMOS transistor 201pa.
  • PMOS transistor 201pa is connected between resistance element 202a and node N1a.
  • the gate of PMOS transistor 201pa is connected to internal node NTa to be measured, like NMOS transistor 201 (FIG. 2).
  • the configuration of the selection circuit 30 is the same as in FIG.
  • the current comparator 50p includes NMOS transistors 501p and 502p and PMOS transistors 503p and 504p that form two sets of current mirrors.
  • NMOS transistor 501p is connected between node N2 and ground line NL
  • NMOS transistor 502p is connected between node N3 and ground line NL.
  • NMOS transistors 501p and 501n form a current mirror similar to PMOS transistors 501 and 502 (FIG. 2).
  • the output current Iout is the voltage-current conversion of the measured voltage Vout according to the following equation (5) instead of the equation (1) in FIG. From Equation (5), the conversion gain of the voltage-to-current conversion circuit 20pa is also (1/RO).
  • the reference current source 40 has resistance elements 401, 402, 404, a POS transistor 403p, and NMOS transistors 405p, 406p.
  • NMOS transistor 406p is connected between ground line NL and node N4, and NMOS transistor 405p is connected between ground line NL and node N7.
  • NMOS transistors 405p and 406p form a current mirror similar to PMOS transistors 405 and 406 (FIG. 2).
  • the PMOS transistor 403p is connected between the node N5 and the node N7, and the resistance element 404 (electrical resistance value RP) is connected between the node N5 and the power supply line NP.
  • a path of the reference current Iref corresponding to the reference voltage Vref is generated from the power supply line NP to the ground line NL, including the resistance element 404, the PMOS transistor 403p, and the NMOS transistor 405p.
  • the reference current Iref is expressed by the following formula (6) instead of formula (2) in FIG. From equation (6), the conversion gain at the reference current source 40p is also (1/RP).
  • reference current Iref (VDD ⁇ Vref ⁇ Vgs4)/RP (6)
  • reference current Iref is copied by a current mirror (1:1 current ratio) by PMOS transistors 503p and 504p.
  • the PMOS transistor 503p supplies a current corresponding to the reference current Iref to the node N3, contrary to FIG.
  • the output current Iout generated in the voltage-current conversion circuit 20p is copied by a current mirror (current ratio 1:1) by the NMOS transistors 501p and 502p.
  • a current corresponding to the output current Iout is drawn from the node N3 by the NMOS transistor 502p.
  • a voltage V3 is generated at N3 by amplifying the current difference between the output current Iout and the reference current Iref. Specifically, when the polarity is opposite to that of the current comparator 50 (FIG. 2) and Iref>Iout, the voltage V3 becomes H level (VDD). On the other hand, when Iout>Iref, the voltage V3 becomes L level (GND). Voltage V3 of node N3 is output from current comparator 50p as determination signal Sjd.
  • the ratio between the electrical resistance value RO of the resistor element 202a and the electrical resistance value RP of the resistor element 404 is determined according to the following equation (7).
  • the measured voltage Vout can be compared with the determination voltage Vto by comparing the output current Iout obtained by current-converting the measured voltage Vout with the reference current Iref.
  • the modified example of FIG. 3 when the determination voltage Vto is low, the same effect as described with reference to FIG. 2 can be obtained.
  • FIG. 4 is a circuit diagram illustrating a modification of the voltage-current conversion circuit 20a shown in FIG. Voltage-current conversion circuit 20a# according to Modification 2 of FIG. 4 further includes an operational amplifier buffer 230a in addition to NMOS transistor 201a and resistance element 202a similar to voltage-current conversion circuit 20a (FIG. 2).
  • the operational amplifier buffer 230a has PMOS transistors 2033a and 2034a, NMOS transistors 2031a, 2032a and 2035a, and current sources 2036a and 2037a.
  • the PMOS transistors 2033a and 2034a are connected between the power supply line NP and the nodes N10 and N11, respectively, and the NMOS transistors 2031a and 2032a are connected between the nodes N10 and N11, respectively, and the node N12.
  • Current source 2036a is connected between node N12 and ground line NL. Furthermore, the gates of PMOS transistors 2033a and 2034a are connected to node N10.
  • the PMOS transistors 2033a and 2034a, the NMOS transistors 2031a and 2032a, and the current source 2036a form a current mirror type differential amplifier.
  • the gate of NMOS transistor 2031a is connected to internal node NTa corresponding to the measurement node.
  • the NMOS transistor 2035a is connected between the power supply line NP and the node N13 connected to the gate of the NMOS transistor 2032a.
  • Current source 2037a is connected between node N13 and ground line NL.
  • the gate of NMOS transistor 2035a is connected to node N11.
  • the NMOS transistor 2035a, the NMOS transistor 201a, and the NMOS transistor 403 (reference current source 40) are designed with the same characteristics (transistor size).
  • the gate voltage of the NMOS transistor 2032a becomes equal to the gate voltage of the NMOS transistor 2031a, that is, the measurement voltage Vout. Furthermore, if the current of the current source 2037a is made equal to the reference current Iref, the gate-to-source voltage of the NMOS transistor 2035a becomes equal to Vgs4 in FIG. Therefore, the gate voltage of the NMOS transistor 2035a, that is, the voltage of the node N11, is equivalent to Vout+Vg4.
  • the same gate-source voltage Vgs2 as in FIG. 2 is generated in the NMOS transistor 201a.
  • the voltage applied to the resistance element 202a is Vout+Vgs4-Vg2.
  • FIG. 5 is a circuit diagram illustrating a modification of reference current source 40 shown in FIG.
  • Reference current source 40# according to Modification 2 of FIG. 2 in that an operational amplifier buffer 407 is further included.
  • the operational amplifier buffer 407 is configured similarly to the operational amplifier buffer 230a of FIG.
  • NMOS transistor 4071 The gate of NMOS transistor 4071 is connected to node N6 where reference voltage Vref is generated.
  • NMOS transistor 4075 is connected between power supply line NP and node N14, and current source 4077 is connected between node N14 and ground line NL.
  • the gate of the NMOS transistor 4075 is connected to the node N15, which is the connection point between the PMOS transistor 4074 and the NMOS transistor 4072 .
  • the gate of NMOS transistor 403 is also connected to node N15.
  • the NMOS transistor 4075 is designed with the same characteristics (transistor size and threshold voltage) as the NMOS transistor 403 (reference current source 40).
  • the gate voltage of the NMOS transistor 4072 becomes equal to the gate voltage of the NMOS transistor 4071, that is, the reference voltage Vref. Furthermore, if the current of the current source 4077 is made equal to the current flowing through the resistance element 404 , that is, the reference current Iref, the gate-source voltage of the NMOS transistor 4075 becomes equal to the gate-source voltage Vgs4 of the NMOS transistor 403 . Therefore, the gate voltage of the NMOS transistor 4075, that is, the voltage of the node N15 is equivalent to Vout+Vg4.
  • semiconductor integrated circuit device 5b has N voltage-current conversion circuits 21 instead of N voltage-current conversion circuits 20, as compared with semiconductor integrated circuit device 5a according to the first embodiment. and a selection circuit 31 instead of the selection circuit 30 .
  • Each selection circuit 21 has a node that generates two output currents with different conversion gains for the measurement voltage Vout at the internal node NT corresponding to the measurement node of the corresponding internal circuit 10 . Accordingly, the selection circuit 31 is configured to select one of the (2 ⁇ N) nodes of the N voltage-to-current conversion circuits 21 and connect it to the current comparator 50 .
  • the measured voltage Vout can be compared with two types of determination voltages. For example, by comparing the determination voltage Vtl corresponding to the lower limit of the normal range of the measured voltage Vout and the determination voltage Vtu corresponding to the upper limit of the normal range with the measured voltage Vout, the measured voltage Vout is within the normal range. It is possible to determine whether or not there is
  • voltage-current conversion circuit 21a includes NMOS transistors 203a and 205a and resistance elements 204a and 206a.
  • the gates of NMOS transistors 203a and 205a are commonly connected to internal node NTa. That is, the gate voltages of NMOS transistors 203a and 205a are the measured voltage Vout.
  • the NMOS transistor 203a is connected between the node N1ax and the resistance element 204a, and the resistance element 204a is connected between the NMOS transistor 203a and the ground line NL.
  • Resistive element 204a has an electrical resistance value RU.
  • the NMOS transistor 205a is connected between the node N1ay and the resistance element 206a, and the resistance element 206a is connected between the NMOS transistor 205a and the ground line NL.
  • the resistive element 206a has an electrical resistance value RL.
  • the voltage-current conversion circuit 21a is provided with two "voltage-current conversion units" corresponding to the series circuit of the NMOS transistor 201a and the resistance element 202a in FIG.
  • the number of nodes where Iout is generated is increased to two, nodes N1xa and N1ya. Due to the different electrical resistance values of resistive elements 204a and 206a, the two voltage-to-current conversion units convert a common measured voltage Vout to output currents with different conversion gains.
  • the voltage-to-current conversion circuits 21b to 21d are configured in the same manner as the voltage-to-current conversion circuit 21a.
  • a series circuit (voltage-to-current conversion unit) is arranged respectively.
  • the selection circuit 31 has switches 302a to 302d and 303a to 303d.
  • Switches 303a-303d are connected between one of two nodes of voltage-current conversion circuit 21 (node N1ax in FIG. 7) and node N2, respectively.
  • Switches 302a-302d are connected between the other of the two nodes of voltage-current conversion circuit 21 (node N1ay in FIG. 7) and node N2, respectively.
  • the configuration after the node N2 that is, the configurations of the current comparator 50 and the reference current source 40 are the same as in FIG. 2, so detailed description will not be repeated.
  • the selection circuit 31 turns on one of the switches 302a to 302d and 303a to 303d, and turns off the remaining switches.
  • the output current (Iou) generated at the node N1ax and the output current (Iol ) are sequentially input to the current comparator 50 one by one.
  • the measured voltage Vout can be sequentially compared with the two determination voltages Vtu and Vtl.
  • the switch 302a While the switch 302a is turned on, the remaining switches are turned off. As a result, the path of the output current Iol from the power supply line NP to the ground line NL, including the PMOS transistor 501, the switch 302a (node N1ay), the NMOS transistor 205a, and the resistance element 206a, changes from the output current Iout in FIG. It occurs in the same way as the path.
  • the voltage-to-current conversion circuit 21 can generate a plurality of output currents Iol and Iou with different conversion gains for the common measurement voltage Vout.
  • the respective conversion gains of the output currents Iol and Iou with respect to the measured voltage Vout are adjusted by the electrical resistance values RL and RL.
  • Vtl corresponding to the lower limit of the normal range of the measurement voltage Vout described above
  • Vgs22 in equation (9) indicates the gate-source voltage of the NMOS transistor 205a.
  • Modification 1 and Modification 2 described in Embodiment 1 can also be applied to Embodiment 2. That is, in the voltage-to-current conversion circuit 21, the current comparator 50, and the reference current source 40, the positions of the power supply line NP and the ground line NL are exchanged, and the NMOS transistor and the PMOS transistor are exchanged, so that the PMOS transistor is replaced. It is possible to perform voltage-to-current conversion using Alternatively, by adding operational amplifier buffers (FIGS. 4 and 5) to the voltage-current conversion circuit 21 and the reference current source 40, the effects of variations in MOS transistors and temperature fluctuations can be suppressed to improve the accuracy of determination. can be done.
  • operational amplifier buffers FIGS. 4 and 5
  • Embodiment 3 In the third embodiment, as in the second embodiment, another example of a configuration for comparing the measured voltage Vout with a plurality of determination voltages will be described.
  • FIG. 8 is a block diagram showing the configuration of a semiconductor integrated circuit device 5c according to the third embodiment.
  • semiconductor integrated circuit device 5c has N voltage-current conversion circuits 22 instead of N voltage-current conversion circuits 20, as compared with semiconductor integrated circuit device 5a according to the first embodiment. The difference is that the A control signal Schg for switching the conversion gain is input to each voltage-current conversion circuit 22 .
  • FIG. 9 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. 9 as well, the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10.
  • FIG. 9 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. 9 as well, the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10.
  • the voltage-current conversion circuit 22a has series-connected resistance elements 209a and 201a instead of the resistance element 202a between the source of the NMOS transistor 201a and the ground line NL. It has a connected configuration.
  • Transistor switch 208a is connected in parallel with resistive element 210a. Transistor switch 208a is turned on when control signal Schg is at H level, and turned off when it is at L level.
  • the configuration after the nodes N1a to N1d that is, the configuration of the selection circuit 30, the current comparator 50, and the reference current source 40 is the same as that of FIG. 2, so the detailed description will be repeated. do not have.
  • RO1+RO2 (Vtu ⁇ Vgs2)/(Vref ⁇ Vgs4) ⁇ RP (12)
  • current comparator 50 a current equivalent to reference current Iref is drawn from node N3 by NMOS transistor 503, as in FIG. Therefore, at the node N3, a voltage V3 is generated by amplifying the current difference between the output current Iout whose conversion gain is switched according to the control signal Schg and the reference current Iref.
  • one set of the reference current source 40 and the current comparator 50 is used to suppress an increase in circuit size.
  • the measured voltage Vout can be compared with a plurality of decision voltages.
  • the configuration of the third embodiment it is possible to determine the measured voltage Vout in the same manner as in the second embodiment without using the selection circuit 31 that doubles the number of switches. That is, the same effect as in the second embodiment can be obtained, and the circuit scale can be suppressed as compared with the second embodiment.
  • Modification 1 and Modification 2 described in Embodiment 1 can be applied. That is, in the voltage-current conversion circuit 22, the current comparator 50, and the reference current source 40, the positions of the power supply line NP and the ground line NL are exchanged, and the NMOS transistor and the PMOS transistor are exchanged to replace the PMOS transistor. It is possible to perform voltage-to-current conversion using Alternatively, by adding operational amplifier buffers (FIGS. 4 and 5) to the voltage-current conversion circuit 22 and the reference current source 40, the effects of variations in MOS transistors and temperature fluctuations can be suppressed to improve the accuracy of determination. can be done.
  • operational amplifier buffers FIGS. 4 and 5
  • Embodiment 4 a configuration capable of simultaneously comparing the measurement voltage Vout and a plurality of determination voltages (for example, Vtu and Vtl) described in the second and third embodiments will be described.
  • FIG. 10 is a block diagram showing the configuration of a semiconductor integrated circuit device 5d according to the fourth embodiment.
  • a semiconductor integrated circuit device 5d differs from the semiconductor integrated circuit device 5b (FIG. 6) according to the second embodiment in that a selection circuit 32 is arranged instead of the selection circuit 31. It differs in that a current comparator 51 is arranged instead of the current comparator 50 and that a decision logic circuit 60 is further arranged.
  • the voltage-current conversion circuit 21 and the reference current source 40 are the same as those in the second embodiment (FIG. 6).
  • FIG. 11 shows a circuit diagram for explaining the internal configuration of each block shown in FIG.
  • the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10.
  • FIG. 11 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. 11 as well, the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10.
  • the node N1ax of the voltage-current conversion circuit 21a is connected to the node N2x of the current comparator 51 via the switch 305a of the selection circuit 32, and the node N1ay of the voltage-current conversion circuit 21a connects the switch 304a of the selection circuit 32. It is connected to the node N2y of the current comparator 51 via.
  • the selection circuit 32 connects the two nodes (corresponding to Niax and N1ay) of one of the voltage-to-current conversion circuits 21a to 21d to the nodes N2x and N2y of the current comparator 51, respectively. Controlled to connect.
  • the current comparator 51 has PMOS transistors 505 to 508 and NMOS transistors 509 to 511 that form four sets of current mirrors.
  • the PMOS transistors 507 and 508 are connected between the power line NP and the nodes N2y and N3y, respectively.
  • the PMOS transistors 507 and 508 form a current mirror (current ratio is 1:1) by commonly connecting the gates to the node N2y (that is, the drain of the PMOS transistor 507).
  • the switch 305a creates a path for the output current Ioutx from the power supply line NP to the ground line NL, including the PMOS transistor 505, the switch 305a (node N1ax), the NMOS transistor 203a, and the resistance element 204a.
  • the output current Ioutx is equivalent to the output current Iou in FIG.
  • the switch 304a turns on the switch 304a creates a path for the output current Iouty from the power supply line NP to the ground line NL, including the PMOS transistor 507, the switch 304a (node N1ay), the NMOS transistor 205a, and the resistance element 206a.
  • the output current Iouty is equivalent to the output current Iol in FIG.
  • the output currents Ioutx and Iouty respectively corresponding to the output currents Iou and Iol in FIG. 7 are generated at the same time. That is, a plurality of output currents Ioutx and Iouty with different conversion ratios generated by the voltage-current conversion circuit 22 are input in parallel to the current comparator 50 .
  • the output current Ioutx is copied by a current mirror (current ratio 1:1) by PMOS transistors 505 and 506.
  • the output current Iouty is copied by a current mirror (1:1 current ratio) by PMOS transistors 507 and 508 .
  • PMOS transistor 506 supplies a current equivalent to output current Ioutx to node N3x
  • PMOS transistor 508 supplies a current equivalent to output current Iouty to node N3y.
  • the reference current Iref supplied from the reference current source 40 to the node N4 is a current mirror by the NMOS transistors 511 and 509 (current ratio 1:1) and a current mirror by the NMOS transistors 511 and 510 (current ratio 1:1). 1).
  • the PMOS transistor 509 extracts a current equivalent to the reference current Iref from the node N3x.
  • a current equivalent to reference current Iref is drawn from node N3y by PMOS transistor 510 .
  • the voltage V3x is set to a voltage level indicating the comparison result between the measured voltage Vout and the determination voltage Vtu (on the upper limit side).
  • Vout ⁇ Vtu, Iout ⁇ Iref so the determination signal Sidx corresponding to the voltage V3x is set to L level.
  • the voltage V3y is set to a voltage level indicating the comparison result between the measured voltage Vout and the determination voltage Vtl (lower limit side).
  • the determination signal Sidy corresponding to the voltage V3y is set to H level.
  • the decision logic circuit 60 has an inverter 601 and a NAND (negative logical product) gate 602 .
  • Inverter 601 inverts and outputs determination signal Sidx.
  • the output voltage of the inverter 610 and the determination signal Sidy are input to the NAND gate 602 to output the determination signal Sjd.
  • the determination signal Sjd from the determination logic circuit 60 can be output to the terminal 6 that can be contacted from the outside of the semiconductor integrated circuit device 5f.
  • the measured voltage Vout is in the voltage range (normal range) of Vtl ⁇ Vout ⁇ Vtu.
  • the determination signal Sjd is set to L level.
  • the determination signal Sjd H level.
  • the current comparator 52 compares the measured voltage Vout and the determination voltage Vtl (lower limit side), and compares the measured voltage Vout and the determination voltage Vtu (upper limit side). side) can be performed at the same time.
  • the measured voltage Vout can be compared with only one judgment voltage, so that the measured voltage Vout falls within the normal range defined by the upper and lower limits. It is necessary to use the determination signal Sjd at different timings to determine whether or not it will be possible.
  • the measured voltage Vout obtained by comparing the same measured voltage Vout as in the second embodiment with a plurality of judgment voltages, for example, the lower limit value and the upper limit value of the normal range is It is possible to determine whether or not it is within the normal range at a higher speed than in the second embodiment. That is, in the semiconductor integrated circuit device according to the fourth embodiment, in addition to the effect described in the second embodiment, it is possible to further shorten the test time.
  • Modification 1 and Modification 2 described in Embodiment 1 can also be applied to Embodiment 4. That is, in the voltage-current conversion circuit 21, the current comparator 51, and the reference current source 40, the positions of the power supply line NP and the ground line NL are exchanged, and the NMOS transistor and the PMOS transistor are exchanged, so that the PMOS transistor is It is possible to perform voltage-to-current conversion using Alternatively, by adding operational amplifier buffers (FIGS. 4 and 5) to the voltage-current conversion circuit 21 and the reference current source 40, the effects of variations in MOS transistors and temperature fluctuations can be suppressed to improve the accuracy of determination. can be done.
  • operational amplifier buffers FIGS. 4 and 5
  • FIG. 12 is a block diagram showing the configuration of a semiconductor integrated circuit device 5e according to the fifth embodiment.
  • a semiconductor integrated circuit device 5e is different from the semiconductor integrated circuit device 5d (FIG. 10) according to the fourth embodiment in that the arrangement of the selection circuit 32 is omitted, and voltage-current conversion is performed.
  • the difference is that a voltage-current conversion circuit 23 is arranged instead of the circuit 21 .
  • An enable signal EN is input to each voltage-current conversion circuit 21 .
  • One of enable signals ENa-ENd is set to H level to select internal nodes NTa-NTd of internal circuits 10a-10d to be measured.
  • the remaining three enable signals ENa-ENd are set to L level.
  • FIG. 13 shows a circuit diagram for explaining the internal configuration of each block shown in FIG.
  • the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10.
  • FIG. 13 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. 13 as well, the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10.
  • the two nodes of each voltage-to-current conversion circuit 23 are connected to the nodes N2x and N2y of the current comparator 51 and through switches. connected without For example, nodes N1ax and N1ay of the voltage-current conversion circuit 23a are connected to nodes N2x and N2y of the current comparator 51, respectively, without switches.
  • Embodiment 5 can be combined with Embodiments 1 to 3 and configurations obtained by applying Modification 1 and/or Modification 2 to Embodiments 1 to 3. Specifically, by connecting the enable switch 207a in series with the resistance element 202a in the voltage-current conversion circuit 20a (FIG. 2) and the voltage-current conversion circuit 20a# (FIG. 4), the first embodiment or the modified example 1 Applied Embodiment 1 and Embodiment 5 can be combined. Similarly, by connecting the enable switch 207a in series with the resistance element 202pa in the voltage-current conversion circuit 20pa (FIG. 3), it is possible to combine the first embodiment to which the modification 2 is applied and the fifth embodiment. can.
  • Embodiment 6 In a sixth embodiment, an abnormality handling configuration using the determination results in the fourth and fifth embodiments will be described.
  • FIG. 14 is a block diagram showing the configuration of a semiconductor integrated circuit device 5f according to the sixth embodiment.
  • a semiconductor integrated circuit device 5f includes N internal circuits 10 each composed of an internal circuit (hereinafter also referred to as "first internal circuit") 11 having the same function and an internal circuit (hereinafter also referred to as " 12, and each internal circuit 10 has an abnormality response configuration that switches to the second internal circuit 12 when a failure is detected in the first internal circuit 11.
  • first internal circuit an internal circuit having the same function
  • 12 an internal circuit (hereinafter also referred to as "12”
  • each internal circuit 10 has an abnormality response configuration that switches to the second internal circuit 12 when a failure is detected in the first internal circuit 11.
  • the semiconductor integrated circuit device 5f includes voltage-to-current conversion circuits 21a to 21d, a selection circuit 32, a reference current source 40, a current comparator 51, and a decision logic circuit 60 similar to the semiconductor integrated circuit device 5d (FIG. 10). Further, selection circuits 15a to 15d, a judgment result selection circuit 70, recording devices 80a to 80d, and control logic circuits 9a to 9d are further provided for the above-described abnormality handling configuration.
  • FIG. 15 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. 15 as well, the structure corresponding to internal circuit 10a is indicated with a suffix a, and the same structure is arranged corresponding to each internal circuit 10. As shown in FIG. 15
  • the selection circuit 15 has switches 1001a to 1004a.
  • the switches 1001a and 1002a connect the first internal circuit 11a, the second internal circuit 12a, and another actual circuit (not shown) mounted on the semiconductor integrated circuit device 5f to which the output voltage of the internal circuit 10a is input. connected between Switch 1001a is turned on and off according to control signal Aa, while switch 1001a is turned on and off according to control signal /Aa (inverted signal of Aa). As a result, the output voltage of one of the first internal circuit 11a and the second internal circuit 12a is input to the actual circuit.
  • the switch 1003a is connected between the internal node NT1a corresponding to the output node of the first internal circuit 11a and the voltage-current conversion circuit 21a.
  • Switch 1004a is connected between internal node NT2a corresponding to the output node of second internal circuit 12a and voltage-current conversion circuit 21a.
  • the switch 1003a When the switch 1003a is turned on, the voltage of the internal node NT1a, that is, the output voltage of the first internal circuit 11a is input to the voltage-current conversion circuit 21a as the measurement voltage Vout.
  • the switch 1004a when the switch 1004a is turned on, the voltage of the internal node NT2a, that is, the output voltage of the second internal circuit 12a is input to the voltage-current conversion circuit 21a as the measurement voltage Vout.
  • a determination signal Sjd indicating whether the voltage (Vout) is within the range of Vtl ⁇ Vout ⁇ Vtu (normal range) can be obtained at the node N20.
  • the determination result selection circuit 70 has switches 701a to 701d and 702a to 702d.
  • a recording device 80a corresponding to the internal circuit 10a has a first latch circuit 801a, a second latch circuit 802a, and a NAND gate 803a.
  • the switch 701a is connected between the node N20 and the first latch circuit 801a.
  • the first latch circuit 801a is arranged to store the determination signal Sjd for the first internal circuit 11a included in the internal circuit 10a. Therefore, the switch 701a is provided with an ON period in conjunction with the switch 1003a.
  • the switch 702a is connected between the node N20 and the second latch circuit 802a.
  • Second latch circuit 802a is arranged to store determination signal Sjd for second internal circuit 12a included in internal circuit 10a. Therefore, the switch 702a is provided with an ON period in conjunction with the switch 1004a.
  • each of the recording devices 80b to 80d arranged corresponding to each of the internal circuits 10b to 10d also has a first latch circuit 801 for storing the judgment result of the first internal circuit 11, and , and a second latch circuit 802 for storing the determination result of the second internal circuit 12 .
  • a switch 701 leading to the first latch circuit and a second latch circuit are provided.
  • a switch 702 is provided.
  • the NAND gate 803a receives the latch data S11a of the first latch circuit 801a and the latch data S12a of the second latch circuit 802a, and outputs the internal circuit normal signal /Ea.
  • the control logic circuit 9a has a NAND gate 901a and an inverter 902a.
  • the NAND gate 901a receives the latch data S11a and the inverted data of the latch data S12a as inputs, and outputs a control signal Aa for the switch 1001a.
  • Inverter 902a inverts the output signal of NAND gate 901a to output control signal /Aa for switch 1002a.
  • the output voltage of the first internal circuit 11a and the output voltage of the second internal circuit 12a are determined in order.
  • the determination signal Sjd indicating whether the output voltage (Vout) of the first internal circuit 11a is within the range of Vtl ⁇ Vout ⁇ Vtu (normal range) is output to the first It is input to the latch circuit 801a. If the determination result of the first internal circuit 11a is normal, the latch data S11a of the first latch circuit 801a becomes L level.
  • the determination signal Sjd indicating whether the output voltage (Vout) of the second internal circuit 12a is within the range of Vtl ⁇ Vout ⁇ Vtu (normal range) is generated. 2 is input to the latch circuit 802a. If the determination result of the first internal circuit 11a is normal, the latch data S12a of the second latch circuit 802a becomes L level.
  • the first latch circuit 801a corresponds to an example of "first storage circuit”
  • the latch data S11a corresponds to an example of "first information”.
  • the second latch circuit 802a corresponds to an example of the "second storage circuit”
  • the latch data S12a corresponds to an example of the "second information”.
  • the switches 1003a and 1004a in the selection circuit 15a can constitute an embodiment of the "measurement selection circuit”.
  • switches 1003b, 1004b, 304b, 305b, and 701b corresponding to the internal circuit 10b are selected so that the output voltage of the first internal circuit 11b and the output voltage of the second internal circuit 12b are sequentially determined.
  • 702b are turned on and off in the same manner as switches 1003a, 1004a, 304a, 305a, 701a and 702a at the test timing of internal circuit 10a.
  • FIG. 17 shows a chart for explaining the operation of the abnormality detection configuration with respect to the judgment results of the first and second internal circuits. As shown in FIG. 17, there are cases 1 to 4 in combination of determination results of the first and second internal circuits.
  • control signal Aa is set to H level
  • control signal /Aa is set to L level. That is, the output of the first internal circuit 11a is transmitted to the actual circuit by the switch 1001a.
  • the internal circuit abnormality signal /Ea is set to H level.
  • the first internal circuit 11a is used as the default circuit for actual use, and when the first internal circuit 11a fails, the second internal circuit 12a for backup is used as the circuit for actual use on condition that the determination result is normal.
  • An abnormality handling configuration that automatically switches to .
  • the operation of semiconductor integrated circuit device 5e can be continued even when a failure occurs in the internal circuit.
  • the internal circuit abnormality signal /Ea is set to L level, thereby notifying that the internal circuit 10a cannot be used.
  • the semiconductor integrated circuit device As described above, according to the semiconductor integrated circuit device according to the sixth embodiment, it is possible to automatically detect a failure in the internal circuit 10 and switch over to the backup circuit when a failure occurs. In addition to the effect described in Embodiment 4, it is possible to improve the reliability of circuit operation continuation. Further, by monitoring the control signals Aa, /Aa and the internal circuit abnormality signal /Ea from the outside of the semiconductor integrated circuit device 5f, the failure state of each internal circuit 10 can also be grasped. That is, the control signals Aa, /Aa and the internal circuit error signal /Ea can be output to terminals (not shown) that can be contacted from the outside of the semiconductor integrated circuit device 5f, similarly to the terminal 6. FIG.
  • FIG. 15 illustrates an example in which the abnormality handling configuration of the sixth embodiment is applied to the semiconductor integrated circuit device of the fourth embodiment.
  • modifications 1 and 2 it is possible to further combine the sixth embodiment.
  • the number of latch circuits of the recording device 80 and the content of the logic operation in the control logic circuit 9 can be changed as needed.
  • Embodiments 1 to 3 in order to determine normality and ⁇ using the same determination result related to the voltage range (Vtl ⁇ Vout ⁇ Vtu) as in Embodiment 4, the determination voltages Vtl and Vtu Four latch circuits are required in each recording device 80 in order to hold the determination signal Sjd for comparison with each other.
  • the logic in the control logic circuit 9 is adjusted so that the control signals Aa and /Aa and the internal circuit abnormality signal /Ea similar to those in FIG. It is necessary to change the operation.
  • Embodiment 7 In the seventh embodiment, a configuration will be described in which two voltage differences (voltage differences) relating to measurement nodes of an internal circuit are used as measurement voltages, ie, determination targets.
  • FIG. 18 is a block diagram showing the configuration of a semiconductor integrated circuit device 5g according to the seventh embodiment.
  • a semiconductor integrated circuit device 5g differs from the semiconductor integrated circuit device 5b according to the fourth embodiment (FIG. 10) in that two voltages Vout1 and Vout2 are applied from the internal circuit 10a. It differs in that Vout2 is output and in that a voltage-current conversion circuit 24a is arranged instead of the voltage-current conversion circuit 21a. Further, an upper peak detector 13a and a lower peak detector 14a are provided for the internal node NTa (output voltage Vout) of the internal circuit 10a, which corresponds to the "measurement node".
  • the upper peak detector 13a extracts the maximum value (upper peak value) of the output voltage Vout and outputs it as the first voltage Vout1.
  • the lower peak detector 14a extracts the minimum value (lower peak value) of the output voltage Vout and outputs it as the second voltage Vout2.
  • Vout1-Vout2 represents the peak-to-peak value of the AC voltage.
  • a first voltage Vout1 and a second voltage Vout2 are input to the voltage-current conversion circuit 24a.
  • the voltage-current conversion circuit 24a converts the voltage difference (Vout1-Vout2) between the first voltage Vout1 and the second voltage Vout2 into output currents Ioutx and Iouty in FIG. 11 with different conversion gains.
  • the selection circuit 32, the current comparator 50, the reference current source 40, and the decision logic circuit 60, which are shared by the N internal circuits 10, are the same as in the fourth embodiment (FIG. 10).
  • the structure corresponding to internal circuit 10a is representatively shown with the suffix a.
  • FIG. 19 shows a circuit diagram for explaining the configuration of the voltage-current conversion circuit according to Embodiment 7, that is, the voltage-current conversion circuit 24a of FIG.
  • the NMOS transistor 2301a is connected between the power supply line NP and the node N31, and the current source 2302a is connected between the node N31 and the ground line NL.
  • a second voltage Vout2 is input to the gate of the NMOS transistor 2301a.
  • a current source 2303a is connected between the power supply line NP and the node N32, and a PMOS transistor 2304a is connected between the node N32 and the ground line NL.
  • a first voltage Vout1 is input to the gate of the PMOS transistor 2304a.
  • the NMOS transistor 2305a is connected between the node N1ax and the node N33.
  • Resistive element 2306a is connected between node N33 and PMOS transistor 2307a, and PMOS transistor 2307a is connected between resistive element 2306a and ground line NL.
  • Resistive element 2306a has an electrical resistance value RDU.
  • the NMOS transistor 2308a is connected between the node N1ay and the node N34.
  • Resistive element 2309a is connected between node N34 and PMOS transistor 2310a, and PMOS transistor 2310a is connected between resistive element 2309a and ground line NL.
  • Resistance element 2309a has an electrical resistance value RDL.
  • NMOS transistors 2305a and 2038a are commonly connected to node N32.
  • PMOS transistors 2307a and 2310a are commonly connected to node N31.
  • the NMOS transistor 2308a, the resistance element 2309a, and the PMOS transistor 2310a are omitted from the voltage-current conversion circuit 24a of FIG. 19, and the NMOS transistor 2305a is connected between the node N1a and the node N33.
  • the electrical resistance value of the resistive element 2306a at that time can be obtained by replacing the determination voltage Vtu with the determination voltage Vdt in the equation (15).
  • the first voltage Vout1 and the second voltage Vout2 related to the measurement node of the internal circuit 10 are two voltages at different timings of the same node. It is also possible to take the voltages as the first voltage Vout1 and the second voltage Vout2 and the voltage difference between the two internal nodes as the measured voltage Vout.
  • the circuits subsequent to the nodes N1ax and N1ay can be the same as those of any one of the first to sixth embodiments.
  • the difference between the two voltages (voltage difference) associated with the internal circuit 10 can be determined in the same manner as in the first to sixth embodiments, or an abnormality handling configuration based on the determination result can be performed.
  • the voltage-to-current conversion circuit 25a further includes a PMOS transistor 2312a, an NMOS transistor 2313a, and current sources 2311a and 2314a compared to the voltage-to-current conversion circuit 24a shown in FIG. and that the connection destinations of the gates of the NMOS transistor 2308a and the PMOS transistor 2310a are changed.
  • the current source 2311a is connected between the power supply line NP and the node N35, and the PMOS transistor 2312a is connected between the node N35 and the ground line NL.
  • a second voltage Vout2 is input to the gate of the PMOS transistor 2312a in common with the gate of the NMOS transistor 2301a.
  • the NMOS 2313a is connected between the power supply line NP and the node N36, and the current source 2314a is connected between the node N36 and the ground line NL.
  • a first voltage Vout1 is input to the gate of the NMOS transistor 2313a in common with the gate of the PMOS transistor 2304a.
  • the gate of the NMOS transistor 2308 is connected to the node N35 generating a voltage according to the second voltage Vout2, and the gate of the PMOS transistor 2310a is connected to the node N36 generating a voltage according to the first voltage Vout1. Therefore, a voltage according to the voltage difference (Vout2-Vout1) is applied across the resistance element 2309a. As a result, the output current Iouty becomes a current obtained by converting the voltage difference (Vout2-Vout1) by the conversion gain according to the electrical resistance value RDL.
  • the polarity (positive/negative) of the conversion gain of the output current Iouty is inverted with respect to the voltage-current conversion circuit 24a. Therefore, as a whole, it can be understood that the polarity (positive/negative) of the determination voltage Vdl can be reversed and compared with the voltage difference (Vout1-Vout2) as compared with the case of using the voltage-current conversion circuit 24a.
  • the voltage-current conversion circuit 25a shown in FIG. 20 even if the lower limit of the normal range of the voltage difference (Vout1-Vout2) is a negative voltage, the same as in the first to sixth embodiments , the voltage difference between the first voltage Vout1 and the second voltage Vout2 can be compared with the determination voltage as the measurement voltage Vout.
  • the current ratio of each current mirror is 1:1, but other current ratios are also possible.
  • the current ratio A of the output current Iout generated in the current comparator 50 transistors, 51 (nodes N3, N3x, N3y) to the output currents Iout, Ioutx, Iouty of the voltage-current conversion circuit 20, etc., and the reference (A /B) Multiplication is required.
  • two NMOS transistors having a transistor size equivalent to that of the NMOS transistor 403 are connected in parallel to configure the NMOS transistor 201a, so that the ratio of current and transistor size can be made uniform between the NMOS transistor 201a and the NMOS transistor 403. can be done.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

A voltage-current conversion circuit (20a) generates an output current (Iout) by converting a measured voltage (Vout) at a measurement node (NTa) inside a semiconductor integrated circuit device in accordance with a conversion gain dependent on an electric resistance value (RO) determined to reflect a determination voltage. A reference current source (40) outputs a predetermined reference current (Iref). A current comparator (50) outputs a determination signal (Sjd) indicating the result of comparing the output current (Iout) and the reference current (Iref).

Description

半導体集積回路装置Semiconductor integrated circuit device
 本開示は、半導体集積回路装置に関する。 The present disclosure relates to semiconductor integrated circuit devices.
 半導体集積回路に代表されるIC(Integrated Circuit)では、アナログ回路から内部ノードに対して電圧が正しく出ているかを確認することが、故障を検出するために重要な要素である。最もシンプルには、電圧モニタ用の外部端子を設けるとともに、測定対象の内部ノードと当該外部端子とを接続することによって、外部端子を介して、内部ノードの電圧を測定することができる。この際には、外部端子を、複数の内部ノードと順々に接続することで、外部端子を共有して複数の内部ノードの電圧を測定することができる。 In an IC (Integrated Circuit) represented by a semiconductor integrated circuit, checking whether the voltage is correctly output from the analog circuit to the internal node is an important factor in detecting failures. Most simply, by providing an external terminal for voltage monitoring and connecting the internal node to be measured to the external terminal, the voltage of the internal node can be measured via the external terminal. In this case, by sequentially connecting the external terminal to the plurality of internal nodes, the voltages of the plurality of internal nodes can be measured by sharing the external terminal.
 ICの大規模化に伴い、電圧を確認したい内部ノードが増大すると、内部ノードの電圧確認のためのテスト時間が増大する。この様なテストを効率化するための技術として、特開2006-234577号公報(特許文献1)には、IC内部に電圧比較器を設けて、アナログ集積回路のある特定の回路ノードのDC電圧が、ある範囲に入っているどうかを判定して、当該判定結果をIC外部に出力する構成が記載されている。 As the size of the IC increases, the number of internal nodes whose voltages need to be checked increases, and the test time for checking the voltages of the internal nodes increases. As a technique for improving the efficiency of such a test, Japanese Patent Application Laid-Open No. 2006-234577 (Patent Document 1) discloses that a voltage comparator is provided inside an IC to detect a DC voltage at a specific circuit node of an analog integrated circuit. is within a certain range, and the determination result is output to the outside of the IC.
特開2006-234577号公報JP-A-2006-234577
 特許文献1では、測定対象の内部ノード数が多い場合には、複数の内部ノードと電圧比較器との間に切替スイッチ(選択回路)を配置して、複数の内部ノードで電圧比較器を共有する構成がチップサイズの面から求められる。 In Patent Document 1, when the number of internal nodes to be measured is large, a changeover switch (selection circuit) is arranged between a plurality of internal nodes and a voltage comparator, and the voltage comparator is shared by the plurality of internal nodes. A configuration that does so is required from the aspect of chip size.
 しかしながら、この構成では切替スイッチによって電圧比較器と接続される内部ノードを切り替えた場合に、電圧比較器への入力電圧が静定するまでの時間が、正確な判定結果を得るために必要となる。この結果、測定対象が多くなると、テスト時間が長くなることが懸念される。 However, in this configuration, when the changeover switch switches the internal node connected to the voltage comparator, it takes time for the input voltage to the voltage comparator to stabilize in order to obtain an accurate determination result. . As a result, it is feared that the more objects to be measured, the longer the test time.
 又、内部ノード毎に規格値、即ち、正常と判定すべきで電圧範囲が異なるため、電圧比較器側において、内部ノードの電圧と比較される基準電圧も切り替えることが必要になる。この結果、基準電圧を切替えるための構成を追加することによる回路規模の増大が懸念される他、基準電圧の切替についても静定時間が必要になることで、テスト時間が更に長くなることも懸念される。 In addition, since the standard value, that is, the voltage range that should be determined as normal differs for each internal node, it is necessary to switch the reference voltage to be compared with the voltage of the internal node on the voltage comparator side. As a result, there is concern that adding a configuration for switching the reference voltage will increase the circuit size, and that switching the reference voltage will also require a settling time, further lengthening the test time. be done.
 本開示は、このような問題点を解決するためになされたものであって、本開示の目的は、半導体集積回路装置の内部ノードの電圧の正常判定を、簡易な回路構成で高速化することである。 The present disclosure has been made to solve such problems, and an object of the present disclosure is to speed up the normality determination of the voltage of the internal node of a semiconductor integrated circuit device with a simple circuit configuration. is.
 本開示のある局面では、半導体集積回路装置が提供される。半導体集積回路装置は、複数の電圧電流変換回路と、基準電流源と、電流比較器とを備える。各電圧電流変換回路は、半導体集積回路装置の内部の少なくとも1つの測定ノードの電圧に従う測定電圧を第1変換ゲインに従って電圧電流変換して少なくとも1つの出力電流を生成する。基準電流源は、予め定められた基準電流を出力する。電流比較器は、複数の電圧電流変換回路のうちの選択された電圧電流変換回路から入力された少なくとも1つの出力電流のそれぞれと基準電流との比較結果に従う少なくとも1つの判定信号を出力する。 A semiconductor integrated circuit device is provided in one aspect of the present disclosure. A semiconductor integrated circuit device includes a plurality of voltage-current conversion circuits, a reference current source, and a current comparator. Each voltage-to-current converter circuit voltage-to-current converts a measured voltage according to the voltage of at least one measurement node inside the semiconductor integrated circuit device according to a first conversion gain to generate at least one output current. A reference current source outputs a predetermined reference current. The current comparator outputs at least one determination signal according to the comparison result between each of at least one output current input from a voltage-current conversion circuit selected from among the plurality of voltage-current conversion circuits and a reference current.
 本開示によれば、測定電圧を電圧電流変換した出力電流と基準電流とを電流比較器によって比較することで測定電圧を判定電圧と比較できる、複数の電圧電流変換器の選択の切替の際に、電流比較器に入力される出力電流の静定に要する時間を短くすることができる。この結果、半導体集積回路装置の内部ノードの電圧の正常判定を、簡易な回路構成で高速化することができる。 According to the present disclosure, when switching between a plurality of voltage-to-current converters, the current comparator can compare the measured voltage with the judgment voltage by comparing the output current obtained by voltage-to-current conversion of the measured voltage with the reference current. , the time required to stabilize the output current input to the current comparator can be shortened. As a result, it is possible to speed up the normality judgment of the voltage of the internal node of the semiconductor integrated circuit device with a simple circuit configuration.
実施の形態1に係る半導体集積回路装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a first embodiment; FIG. 図1に記載された各ブロックの内部構成を説明するための回路図である。2 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 1; FIG. 図1に記載された各ブロックの実施の形態1の変形例1に係る内部構成を説明するための回路図である。FIG. 2 is a circuit diagram for explaining an internal configuration of each block shown in FIG. 1 according to Modification 1 of Embodiment 1; 実施の形態1の変形例1に係る電圧電流変換回路の構成を説明する回路図である。FIG. 10 is a circuit diagram illustrating a configuration of a voltage-current conversion circuit according to Modification 1 of Embodiment 1; 実施の形態1の変形例1に係る基準電流源の構成を説明する回路図である。FIG. 10 is a circuit diagram illustrating the configuration of a reference current source according to Modification 1 of Embodiment 1; 実施の形態2に係る半導体集積回路装置の構成を示すブロック図である。3 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a second embodiment; FIG. 図6に記載された各ブロックの内部構成を説明するための回路図である。7 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 6; FIG. 実施の形態3に係る半導体集積回路装置の構成を示すブロック図である。3 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a third embodiment; FIG. 図8に記載された各ブロックの内部構成を説明するための回路図である。9 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 8; FIG. 実施の形態4に係る半導体集積回路装置の構成を示すブロック図である。12 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a fourth embodiment; FIG. 図10に記載された各ブロックの内部構成を説明するための回路図である。11 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 10; FIG. 実施の形態5に係る半導体集積回路装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a fifth embodiment; 図12に記載された各ブロックの内部構成を説明するための回路図である。13 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 12; FIG. 実施の形態6に係る半導体集積回路装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a sixth embodiment; 図14に記載された各ブロックの内部構成を説明するための回路図である。15 is a circuit diagram for explaining the internal configuration of each block shown in FIG. 14; FIG. 実施の形態6に係る半導体集積回路装置の動作を説明するための信号波形図である。FIG. 13 is a signal waveform diagram for explaining the operation of the semiconductor integrated circuit device according to the sixth embodiment; 第1及び第2内部回路の判定結果に対する異常検出構成の動作を説明する図表である。4 is a diagram for explaining the operation of the abnormality detection configuration with respect to the judgment results of the first and second internal circuits; 実施の形態7に係る半導体集積回路装置の構成を示すブロック図である。FIG. 14 is a block diagram showing the configuration of a semiconductor integrated circuit device according to a seventh embodiment; 実施の形態7に係る電圧電流変換回路の構成を説明する回路図である。FIG. 12 is a circuit diagram illustrating the configuration of a voltage-current conversion circuit according to Embodiment 7; 実施の形態7の変形例に係る電圧電流変換回路の構成を説明する回路図である。FIG. 20 is a circuit diagram illustrating a configuration of a voltage-current conversion circuit according to a modification of Embodiment 7;
 以下に、本開示の実施の形態について、図面を参照して詳細に説明する。なお、以下では、図中の同一又は相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following description, the same reference numerals are given to the same or corresponding parts in the drawings, and the description thereof will not be repeated in principle.
 実施の形態1.
 図1は、実施の形態1に係る半導体集積回路装置5aの構成を示すブロック図である。
Embodiment 1.
FIG. 1 is a block diagram showing the configuration of a semiconductor integrated circuit device 5a according to the first embodiment.
 図1を参照して、半導体集積回路装置5aは、N個(N:2以上の整数)の内部回路10と、N個の電圧電流変換回路20と、選択回路30と、基準電流源40と、電流比較器50とを備える。以下では、N=4の例を説明するので、半導体集積回路装置5aは、4個の内部回路10a~10dと、電圧電流変換回路20a~20dを備えている。 Referring to FIG. 1, semiconductor integrated circuit device 5a includes N internal circuits 10 (where N is an integer equal to or greater than 2), N voltage-current conversion circuits 20, a selection circuit 30, and a reference current source 40. , and a current comparator 50 . Since an example of N=4 will be described below, the semiconductor integrated circuit device 5a includes four internal circuits 10a to 10d and voltage-to-current conversion circuits 20a to 20d.
 内部回路10a~10dは、内部ノードNTa~NTdに電圧を生成する。即ち、内部ノードNTa~NTdが「測定ノード」であり、電流比較器50からは、測定ノードの電圧(図1では、内部回路10aの出力電圧Vout)と、予め定められた判定電圧Vtoとの比較結果に従う、2値の判定信号Sjdが出力される。実施の形態1では、判定信号Sjdによって、出力電圧Voutが、予め定められた判定電圧よりも高い範囲及び低い範囲のいずれに含まれるか否かが示される。判定電圧Vtoは、出力電圧(測定電圧)Voutの正常範囲の境界値に設定することができる。 The internal circuits 10a-10d generate voltages at the internal nodes NTa-NTd. That is, the internal nodes NTa to NTd are "measurement nodes", and the current comparator 50 outputs voltages of the measurement nodes (in FIG. 1, the output voltage Vout of the internal circuit 10a) and a predetermined determination voltage Vto. A binary determination signal Sjd is output according to the comparison result. In the first embodiment, the determination signal Sjd indicates whether the output voltage Vout is included in a range higher or lower than a predetermined determination voltage. The determination voltage Vto can be set to a boundary value of the normal range of the output voltage (measurement voltage) Vout.
 図2には、図1に記載された各ブロックの内部構成を説明するための回路図が示される。内部回路10a~10d(内部ノードNTa~NTd)に対する測定構成は同様であるので、図2では、内部回路10a(内部ノードNTa)に対応する構成が添字aを付して代表的に示されるが、同様の構成が、内部回路10b~10dに対応して配置されている。 FIG. 2 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. Since the measurement configuration for the internal circuits 10a to 10d (internal nodes NTa to NTd) is the same, FIG. , similar configurations are arranged corresponding to the internal circuits 10b to 10d.
 又、以下では、内部回路10a~10dにそれぞれ対応する要素を区別せずに包括的に表記する場合には、添字a~dを省略して、例えば、内部回路10、内部ノードNT、電圧電流変換回路20の様に記載することとする。 Further, in the following description, when the elements corresponding to the internal circuits 10a to 10d are not distinguished, the suffixes a to d will be omitted and, for example, the internal circuit 10, the internal node NT, the voltage current It will be described like the conversion circuit 20 .
 図2では、電圧電流変換回路20a~20dのうちの電圧電流変換回路20aが選択されて、電圧電流変換回路20aによって生成された出力電流Ioutが電流比較器50に入力される例が示されている。このとき、測定ノードである内部ノードNTaには、内部回路10aからの出力電圧Voutが現れる。以下では、判定電圧と比較される電圧を測定電圧と称する。従って、出力電圧Voutについて、以下では、測定電圧Voutとも称する。 FIG. 2 shows an example in which the voltage-current conversion circuit 20a is selected from among the voltage-current conversion circuits 20a to 20d, and the output current Iout generated by the voltage-current conversion circuit 20a is input to the current comparator 50. there is At this time, the output voltage Vout from the internal circuit 10a appears at the internal node NTa, which is the measurement node. Hereinafter, the voltage to be compared with the determination voltage is referred to as measurement voltage. Therefore, the output voltage Vout is hereinafter also referred to as the measured voltage Vout.
 電圧電流変換回路20aは、N型のMOS(Metal-oxide Semiconductor)トランジスタ(以下、NMOSトランジスタと表記する)201aと、抵抗素子202aとを含む。NMOSトランジスタ201aは、ノードN1a及び抵抗素子202aの間に接続される。抵抗素子202aは、NMOSトランジスタ201aと、接地電圧GNDを伝達する接地ラインNLとの間に接続される。抵抗素子202aは、電気抵抗値ROを有する。 The voltage-current conversion circuit 20a includes an N-type MOS (Metal-oxide Semiconductor) transistor (hereinafter referred to as an NMOS transistor) 201a and a resistance element 202a. NMOS transistor 201a is connected between node N1a and resistance element 202a. Resistance element 202a is connected between NMOS transistor 201a and ground line NL transmitting ground voltage GND. The resistive element 202a has an electrical resistance value RO.
 NMOSトランジスタ201aのゲートは、測定ノードである内部ノードNTaと接続される。即ち、NMOSトランジスタ201aのゲートには、測定電圧Voutが入力される。 The gate of the NMOS transistor 201a is connected to the internal node NTa, which is the measurement node. That is, the measurement voltage Vout is input to the gate of the NMOS transistor 201a.
 選択回路30は、スイッチ301a~301dを有する。スイッチ301a~301dは、ノードN1a~N1dと、電流比較器50のノードN2との間にそれぞれ接続される。ノードN1a~N1dは、図1に示される様に、電圧電流変換回路20a~20dを介して、内部ノードNTa~NTdとそれぞれ接続される。電圧電流変換回路20b~20dについても、電圧電流変換回路20aと同様に構成されており、ノードN1b~N1cと、接地ラインNLとの間に、NMOSトランジスタ及び抵抗素子の直列回路を有している。 The selection circuit 30 has switches 301a to 301d. Switches 301a-301d are connected between nodes N1a-N1d and node N2 of current comparator 50, respectively. Nodes N1a-N1d are connected to internal nodes NTa-NTd via voltage-current conversion circuits 20a-20d, respectively, as shown in FIG. The voltage-to-current conversion circuits 20b to 20d are configured similarly to the voltage-to-current conversion circuit 20a, and have series circuits of NMOS transistors and resistance elements between the nodes N1b to N1c and the ground line NL. .
 電流比較器50は、2組のカレントミラーを構成する、P型のMOSトランジスタ(以下、PMOSトランジスタと表記する)501,502と、NMOSトランジスタ503,504とを含む、PMOSトランジスタ501は、電源電圧VDDを伝達する電源ラインNPと、ノードN2の間に接続され、PMOSトランジスタ502は、電源ラインNP及びノードN3の間に接続される。PMOSトランジスタ501及び502は、ゲートがノードN2(即ち、PMOSトランジスタ501のドレイン)と共通接続されることでカレントミラーを構成する。当該カレントミラーの電流比は1:1であるものとする。 Current comparator 50 includes P-type MOS transistors (hereinafter referred to as PMOS transistors) 501 and 502 and NMOS transistors 503 and 504, which constitute two sets of current mirrors. It is connected between the power supply line NP transmitting VDD and the node N2, and the PMOS transistor 502 is connected between the power supply line NP and the node N3. The PMOS transistors 501 and 502 form a current mirror by having their gates commonly connected to the node N2 (that is, the drain of the PMOS transistor 501). Assume that the current ratio of the current mirror is 1:1.
 NMOSトランジスタ503は、ノードN3及び接地ラインNLの間に接続され、NMOSトランジスタ504は、ノードN4及び接地ラインNLの間に接続される。NMOSトランジスタ503及び504は、ゲートがノードN4(即ち、NMOSトランジスタ504のドレイン)と共通接続されることでカレントミラーを構成する。以下では、当該カレントミラーの電流比は1:1であるものとする。 The NMOS transistor 503 is connected between the node N3 and the ground line NL, and the NMOS transistor 504 is connected between the node N4 and the ground line NL. NMOS transistors 503 and 504 form a current mirror by having their gates commonly connected to node N4 (that is, the drain of NMOS transistor 504). In the following, it is assumed that the current ratio of the current mirror is 1:1.
 基準電流源40は、抵抗素子401,402,404と、NMOSトランジスタ403と、PMOSトランジスタ405,406とを有する。 The reference current source 40 has resistance elements 401 , 402 and 404 , an NMOS transistor 403 and PMOS transistors 405 and 406 .
 PMOSトランジスタ406は、電源ラインNP及びノードN4の間に接続され、PMOSトランジスタ405は、電源ラインNP及びノードN5の間に接続される。PMOSトランジスタ405及び406は、ゲートがノードN5(即ち、PMOSトランジスタ405のドレイン)と共通接続されることでカレントミラーを構成する。当該カレントミラーの電流比は1:1であるものとする。 The PMOS transistor 406 is connected between the power supply line NP and the node N4, and the PMOS transistor 405 is connected between the power supply line NP and the node N5. PMOS transistors 405 and 406 form a current mirror by having their gates commonly connected to node N5 (that is, the drain of PMOS transistor 405). Assume that the current ratio of the current mirror is 1:1.
 NMOSトランジスタ403は、ノードN5及びノードN7の間に接続され、抵抗素子404は、ノードN7及び接地ラインNLの間に接続される。抵抗素子404は、電気抵抗値RPを有する。 The NMOS transistor 403 is connected between the node N5 and the node N7, and the resistive element 404 is connected between the node N7 and the ground line NL. Resistive element 404 has an electrical resistance value RP.
 抵抗素子401は、電源ラインNP及びノードN6の間に接続され、抵抗素子402は、接地ラインNL及びノードN6の間に接続される。従って、ノードN6には、電源電圧VDDを抵抗素子401及び402で分圧した基準電圧Vrefが発生する。 The resistance element 401 is connected between the power supply line NP and the node N6, and the resistance element 402 is connected between the ground line NL and the node N6. Therefore, a reference voltage Vref obtained by dividing the power supply voltage VDD by the resistance elements 401 and 402 is generated at the node N6.
 次に、図2に示された回路の動作を説明する。
 選択回路30は、スイッチ301a~301dのうちの、測定対象の内部ノードに対応する1つのスイッチをオンする一方で、残りのスイッチをオフする。図2の例では、スイッチ301aがオンされる。これにより、電源ラインNPから接地ラインNLへ、PMOSトランジスタ501、スイッチ301a(ノードN1a)、NMOSトランジスタ201a、及び、抵抗素子202aを含む、出力電流Ioutの経路が生じる。
The operation of the circuit shown in FIG. 2 will now be described.
The selection circuit 30 turns on one of the switches 301a to 301d corresponding to the internal node to be measured, and turns off the remaining switches. In the example of FIG. 2, the switch 301a is turned on. This creates a path for output current Iout from power supply line NP to ground line NL, including PMOS transistor 501, switch 301a (node N1a), NMOS transistor 201a, and resistance element 202a.
 出力電流Ioutは、測定電圧Vout、抵抗素子202aの電気抵抗値RO、及び、NMOSトランジスタ201aのゲートソース間電圧Vgs2を用いて、下記の式(1)で示される。即ち、電圧電流変換回路20は、式(1)に従う変換ゲインに従って、測定電圧Voutを出力電流Ioutに変換する。式(1)では、(1/RO)が「第1変換ゲイン」の一実施例に相当する。 The output current Iout is expressed by the following formula (1) using the measured voltage Vout, the electrical resistance value RO of the resistive element 202a, and the gate-source voltage Vgs2 of the NMOS transistor 201a. That is, the voltage-current conversion circuit 20 converts the measured voltage Vout into the output current Iout according to the conversion gain according to Equation (1). In Equation (1), (1/RO) corresponds to an example of "first conversion gain".
 Iout=(Vout-Vgs2)/RO  …(1)
 出力電流Ioutは、PMOSトランジスタ501及び502によるカレントミラー(電流比1:1)によってコピーされる。この結果、電流比較器50では、PMOSトランジスタ502によって、出力電流Iout相当の電流が、ノードN3に供給される。
Iout=(Vout−Vgs2)/RO (1)
The output current Iout is copied by a current mirror (1:1 current ratio) by PMOS transistors 501 and 502 . As a result, in the current comparator 50, the PMOS transistor 502 supplies a current corresponding to the output current Iout to the node N3.
 これに対して、基準電流源40では、電源ラインNPから接地ラインNLへ、PMOSトランジスタ405、NMOSトランジスタ403、及び、抵抗素子404を含む、基準電流Irefの経路が生じる。 On the other hand, in the reference current source 40, a reference current Iref path is generated from the power supply line NP to the ground line NL, including the PMOS transistor 405, the NMOS transistor 403, and the resistance element 404.
 基準電流Irefは、ノードN6の基準電圧Vref、抵抗素子404の電気抵抗値RP、及び、NMOSトランジスタ403のゲートソース間電圧Vgs4を用いて、下記の式(2)で示される。即ち、基準電流源40は、式(2)に従う変換ゲインに従って、基準電圧Vrefを基準電流Irefに変換する。式(2)では、(1/RP)が「第2変換ゲイン」の一実施例に相当する。 The reference current Iref is expressed by the following equation (2) using the reference voltage Vref of the node N6, the electrical resistance value RP of the resistance element 404, and the gate-source voltage Vgs4 of the NMOS transistor 403. That is, the reference current source 40 converts the reference voltage Vref into the reference current Iref according to the conversion gain according to equation (2). In Equation (2), (1/RP) corresponds to an example of "second conversion gain".
 Iref=(Vref-Vgs4)/RP  …(2)
 基準電流Irefは、PMOSトランジスタ405及び406によるカレントミラー(電流比1:1)、及び、NMOSトランジスタ504及び503によるカレントミラー(電流比1:1)によってコピーされる。これにより、電流比較器50では、NMOSトランジスタ503によって、基準電流Iref相当の電流が、ノードN3から引き抜かれる。
Iref=(Vref−Vgs4)/RP (2)
The reference current Iref is copied by a current mirror by PMOS transistors 405 and 406 (current ratio 1:1) and by NMOS transistors 504 and 503 (current ratio 1:1). As a result, in the current comparator 50, the NMOS transistor 503 extracts a current corresponding to the reference current Iref from the node N3.
 この結果、電流比較器50において、ノードN3には、出力電流Iout及び基準電流Irefの電流差を増幅した電圧V3が発生する。具体的には、Iout>Irefの場合には、電圧V3は、電源電圧VDD相当のハイレベル電圧(以下、単に「Hレベル」とも表記する)となる。一方で、Iout<Irefの場合には、電圧V3は、接地電圧GND相当のローレベル電圧(以下、単に「Lレベル」とも表記する)となる。ノードN3の電圧V3は、判定信号Sjdとして、半導体集積回路装置5aの外部からコンタクト可能な端子6に出力される。 As a result, in the current comparator 50, a voltage V3 is generated at the node N3 by amplifying the current difference between the output current Iout and the reference current Iref. Specifically, when Iout>Iref, the voltage V3 becomes a high-level voltage (hereinafter also simply referred to as "H level") corresponding to the power supply voltage VDD. On the other hand, when Iout<Iref, the voltage V3 becomes a low level voltage (hereinafter also simply referred to as "L level") corresponding to the ground voltage GND. The voltage V3 of the node N3 is output as the determination signal Sjd to the terminal 6 that can be contacted from the outside of the semiconductor integrated circuit device 5a.
 この際に、測定電圧Voutと比較されるべき判定電圧Vtoを用いて、Vout=Vtoのときに、Iout=Irefとなる様に設計することで、判定を高速化することができる。 At this time, by using the determination voltage Vto to be compared with the measured voltage Vout, and designing so that Iout=Iref when Vout=Vto, it is possible to speed up the determination.
 式(1),(2)より、この様な条件は、下記の式(3)を解くことで求めることができる。 From formulas (1) and (2), such conditions can be obtained by solving formula (3) below.
 (Vto-Vgs2)/RO=(Vref-Vgs4)/RP  …(3)
 従って、式(3)を変形した式(4)に従って、抵抗素子202aの電気抵抗値RO、を決めることで、Vout=Vtoのときに、Iout=Irefとすることができる。
(Vto-Vgs2)/RO=(Vref-Vgs4)/RP (3)
Therefore, by determining the electric resistance value RO of the resistance element 202a according to the modified expression (4) of the expression (3), Iout=Iref can be established when Vout=Vto.
 RO=(Vto-Vgs2)/(Vref-Vgs4)・RP  …(4)
 この様に、実施の形態1に係る半導体集積回路装置によれば、測定電圧Voutを電流変換した出力電流Ioutと、基準電流Irefとの比較によって、測定電圧Voutを判定電圧Vtoと比較することができる。
RO=(Vto−Vgs2)/(Vref−Vgs4)·RP (4)
As described above, according to the semiconductor integrated circuit device according to the first embodiment, it is possible to compare the measured voltage Vout with the determination voltage Vto by comparing the output current Iout obtained by current-converting the measured voltage Vout with the reference current Iref. can.
 電流比較器50の入力は本質的に低インピーダンス特性を有するため、本実施の形態において、選択回路30による測定電圧Voutの切替の際における、ノードN3の電圧の静定時間は、特許文献1において電圧同士を比較する電圧比較回路の入力電圧の静定時間と比較して、大幅に短縮される。特に、電流比較器50を複数の内部ノード間で共有することで回路規模が抑制された構成において、テスト時間を短縮する効果が大きい。 Since the input of the current comparator 50 essentially has low impedance characteristics, the voltage stabilization time of the node N3 when the selection circuit 30 switches the measurement voltage Vout in the present embodiment is described in Patent Document 1. Compared with the settling time of the input voltage of the voltage comparison circuit that compares the voltages, it is greatly shortened. In particular, in a configuration in which the circuit scale is suppressed by sharing the current comparator 50 among a plurality of internal nodes, the effect of shortening the test time is great.
 更に、式(4)から理解される通り、抵抗素子202aの電気抵抗値ROを変えることで、基準電流源40での固定された基準電流Irefを用いて、測定電圧Voutと比較される判定電圧Vtoを等価的に変化することができる。即ち、電圧電流変換回路20での、抵抗素子202aの電気抵抗値ROに従う変換ゲインを変えることで、基準電流Irefを固定した上で、各内部ノードNTでの測定電圧Voutの正常範囲に対応させて、判定電圧Vtoを自由に変えることができる。即ち、電圧電流変換回路20での電気抵抗値RO(即ち、変換ゲイン)は、少なくとも判定電圧Vtoを反映して決定され、好ましくは、式(4)に従って設定される。これにより、複数の測定電圧に対する判定電圧の切替えを簡素な構成で実現することができる。これらの結果、半導体集積回路装置の製造コストを低減することができる。 Furthermore, as understood from the equation (4), by changing the electrical resistance value RO of the resistive element 202a, the reference current Iref, which is fixed in the reference current source 40, is used to determine the determination voltage Vout to be compared with the measurement voltage Vout. Vto can be changed equivalently. That is, by changing the conversion gain according to the electrical resistance value RO of the resistance element 202a in the voltage-to-current conversion circuit 20, the reference current Iref is fixed and the normal range of the measured voltage Vout at each internal node NT is adjusted. , the determination voltage Vto can be freely changed. That is, the electrical resistance value RO (that is, the conversion gain) in the voltage-current conversion circuit 20 is determined by reflecting at least the determination voltage Vto, and is preferably set according to Equation (4). This makes it possible to switch the determination voltage for a plurality of measurement voltages with a simple configuration. As a result, the manufacturing cost of the semiconductor integrated circuit device can be reduced.
 尚、式(1)~(4)において、Vgs2及びVgs4は、NMOSトランジスタ201a及びNMOSトランジスタ403の間で、電流及びトランジスタサイズ(W/L)の比を合わせることで同等の値とすることができる。これにより、式(4)に従って電気抵抗値RO,RPが決定された下で、Iout=Irefのときに、Vgs2=Vgs4として、測定電圧Voutと上記判定電圧Vtoとの比較を行うことができる。 In equations (1) to (4), Vgs2 and Vgs4 can be set to the same value by matching the current and transistor size (W/L) ratios between the NMOS transistor 201a and the NMOS transistor 403. can. As a result, when Iout=Iref and Vgs2=Vgs4, the measured voltage Vout and the determination voltage Vto can be compared with the electrical resistance values RO and RP determined according to the equation (4).
 但し、トランジスタの製造ばらつき(主に、閾値電圧ばらつき)、及び、温度変化に伴って、Vgs2及びVgs4が変動すると、判定結果が影響を受けることが懸念される。従って、電圧電流変換回路20及び基準電流源40に使用するNMOSトランジスタ201a,403には、閾値電圧(Vth)が判定電圧Vto及び基準電圧Vrefよりも十分に小さな素子を適用することが好ましい。例えば、原理的にはVth=0(V)であるネイティブMOSを用いて、NMOSトランジスタ201a,403を構成することが好ましい。 However, if Vgs2 and Vgs4 fluctuate due to transistor manufacturing variations (mainly threshold voltage variations) and temperature changes, there is concern that the determination results may be affected. Therefore, for the NMOS transistors 201a and 403 used in the voltage-current conversion circuit 20 and the reference current source 40, it is preferable to use elements whose threshold voltage (Vth) is sufficiently lower than the determination voltage Vto and the reference voltage Vref. For example, in principle, it is preferable to construct the NMOS transistors 201a and 403 using native MOS with Vth=0 (V).
 図2では、NMOSトランジスタを用いて電圧電流変換回路20を構成する例を示したが、PMOSトランジスタを用いて電圧電流変換を行う構成とすることも可能である。特に、判定電圧Vtoが低い場合には、式(1)中でのVgs2の影響を軽減するために、抵抗素子202a(電気抵抗値RO)に印加される電圧を大きくことが好ましい。 Although FIG. 2 shows an example in which the voltage-to-current conversion circuit 20 is configured using NMOS transistors, it is also possible to adopt a configuration that performs voltage-to-current conversion using PMOS transistors. In particular, when the determination voltage Vto is low, it is preferable to increase the voltage applied to the resistance element 202a (electric resistance value RO) in order to reduce the influence of Vgs2 in equation (1).
 (変形例1)
 図3には、PMOSトランジスタを用いて電圧電流変換を行う変形例に係る、図1の各ブロックの内部構成を説明する回路図が示される。図3においても、内部回路10aに対応する構成が添字aを付して代表的に示されるが、同様の構成が、各内部回路10に対応して配置されている。
(Modification 1)
FIG. 3 shows a circuit diagram for explaining the internal configuration of each block in FIG. 1, according to a modification in which voltage-to-current conversion is performed using PMOS transistors. In FIG. 3 as well, the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10. FIG.
 図3を参照して、変形例1では、図2における電圧電流変換回路20a、電流比較器50、及び、基準電流源40が、電圧電流変換回路20pa、電流比較器50p、及び、基準電流源40pに置換される。 3, in modification 1, the voltage-current conversion circuit 20a, the current comparator 50, and the reference current source 40 in FIG. 40p is substituted.
 電圧電流変換回路20paは、PMOSトランジスタ201paと、抵抗素子202aを有する。抵抗素子202a(電気抵抗値RO)は、電源ラインNPと、PMOSトランジスタ201paとの間に接続される。PMOSトランジスタ201paは、抵抗素子202a及びノードN1aの間に接続される。PMOSトランジスタ201paのゲートは、NMOSトランジスタ201(図2)と同様に、測定対象とされる内部ノードNTaと接続される。選択回路30の構成は、図2と同様である。 The voltage-current conversion circuit 20pa has a PMOS transistor 201pa and a resistance element 202a. Resistance element 202a (electric resistance value RO) is connected between power supply line NP and PMOS transistor 201pa. PMOS transistor 201pa is connected between resistance element 202a and node N1a. The gate of PMOS transistor 201pa is connected to internal node NTa to be measured, like NMOS transistor 201 (FIG. 2). The configuration of the selection circuit 30 is the same as in FIG.
 電流比較器50pは、2組のカレントミラーを構成する、NMOSトランジスタ501p,502pと、PMOSトランジスタ503p,504pとを含む。NMOSトランジスタ501pは、ノードN2及び接地ラインNLの間に接続され、NMOSトランジスタ502pは、ノードN3及び接地ラインNLの間に接続される。NMOSトランジスタ501p及び501nは、PMOSトランジスタ501及び502(図2)と同様にカレントミラーを構成する。 The current comparator 50p includes NMOS transistors 501p and 502p and PMOS transistors 503p and 504p that form two sets of current mirrors. NMOS transistor 501p is connected between node N2 and ground line NL, and NMOS transistor 502p is connected between node N3 and ground line NL. NMOS transistors 501p and 501n form a current mirror similar to PMOS transistors 501 and 502 (FIG. 2).
 この結果、スイッチ301aのオンに応じて、電源ラインNPから接地ラインNLへ、抵抗素子202a、PMOSトランジスタ201pa、スイッチ301a(ノードN1a)、及び、NMOSトランジスタ501pを含む、出力電流Ioutの経路が生じる。出力電流Ioutは、図2での式(1)に代わる下記の式(5)に従って、測定電圧Voutを電圧電流変換したものである。式(5)より、電圧電流変換回路20paの変換ゲインも、(1/RO)である。 As a result, when the switch 301a is turned on, a path of the output current Iout is generated from the power supply line NP to the ground line NL, including the resistance element 202a, the PMOS transistor 201pa, the switch 301a (node N1a), and the NMOS transistor 501p. . The output current Iout is the voltage-current conversion of the measured voltage Vout according to the following equation (5) instead of the equation (1) in FIG. From Equation (5), the conversion gain of the voltage-to-current conversion circuit 20pa is also (1/RO).
 Iout=(VDD-Vout-Vgs2)/RO  …(5)
 基準電流源40は、抵抗素子401,402,404と、POSトランジスタ403pと、NMOSトランジスタ405p,406pとを有する。NMOSトランジスタ406pは、接地ラインNL及びノードN4の間に接続され、NMOSトランジスタ405pは、接地ラインNL及びノードN7の間に接続される。NMOSトランジスタ405p及び406pは、PMOSトランジスタ405及び406(図2)と同様にカレントミラーを構成する。PMOSトランジスタ403pは、ノードN5及びノードN7の間に接続され、抵抗素子404(電気抵抗値RP)は、ノードN5及び電源ラインNPの間に接続される。
Iout=(VDD−Vout−Vgs2)/RO (5)
The reference current source 40 has resistance elements 401, 402, 404, a POS transistor 403p, and NMOS transistors 405p, 406p. NMOS transistor 406p is connected between ground line NL and node N4, and NMOS transistor 405p is connected between ground line NL and node N7. NMOS transistors 405p and 406p form a current mirror similar to PMOS transistors 405 and 406 (FIG. 2). The PMOS transistor 403p is connected between the node N5 and the node N7, and the resistance element 404 (electrical resistance value RP) is connected between the node N5 and the power supply line NP.
 この結果、基準電流源40pでは、電源ラインNPから接地ラインNLへ、抵抗素子404、PMOSトランジスタ403p、及び、NMOSトランジスタ405pを含む、基準電圧Vrefに応じた基準電流Irefの経路が生じる。 As a result, in the reference current source 40p, a path of the reference current Iref corresponding to the reference voltage Vref is generated from the power supply line NP to the ground line NL, including the resistance element 404, the PMOS transistor 403p, and the NMOS transistor 405p.
 基準電流Irefは、図2での式(2)に代わる下記の式(6)によって示される。式(6)より、基準電流源40pでの変換ゲインも(1/RP)である。 The reference current Iref is expressed by the following formula (6) instead of formula (2) in FIG. From equation (6), the conversion gain at the reference current source 40p is also (1/RP).
 Iref=(VDD-Vref-Vgs4)/RP  …(6)
 図3の電流比較器50pにおいて、基準電流Irefは、PMOSトランジスタ503p及び504pによるカレントミラー(電流比1:1)によってコピーされる。これにより、PMOSトランジスタ503pは、図2と反対に、基準電流Iref相当の電流を、ノードN3へ供給する。
Iref=(VDD−Vref−Vgs4)/RP (6)
In current comparator 50p of FIG. 3, reference current Iref is copied by a current mirror (1:1 current ratio) by PMOS transistors 503p and 504p. As a result, the PMOS transistor 503p supplies a current corresponding to the reference current Iref to the node N3, contrary to FIG.
 一方で、電圧電流変換回路20pに生じる出力電流Ioutは、NMOSトランジスタ501p及び502pによるカレントミラー(電流比1:1)によってコピーされる。この結果、電流比較器50pでは、NMOSトランジスタ502pによって、出力電流Iout相当の電流が、ノードN3から引き抜かれる。 On the other hand, the output current Iout generated in the voltage-current conversion circuit 20p is copied by a current mirror (current ratio 1:1) by the NMOS transistors 501p and 502p. As a result, in the current comparator 50p, a current corresponding to the output current Iout is drawn from the node N3 by the NMOS transistor 502p.
 従って、電流比較器50pにおいても、N3には、出力電流Iout及び基準電流Irefの電流差を増幅した電圧V3が発生する。具体的には、電流比較器50(図2)とは逆の極性で、Iref>Ioutの場合には、電圧V3は、Hレベル(VDD)となる。一方で、Iout>Irefの場合には、電圧V3は、Lレベル(GND)となる。ノードN3の電圧V3は、判定信号Sjdとして、電流比較器50pから出力される。 Therefore, also in the current comparator 50p, a voltage V3 is generated at N3 by amplifying the current difference between the output current Iout and the reference current Iref. Specifically, when the polarity is opposite to that of the current comparator 50 (FIG. 2) and Iref>Iout, the voltage V3 becomes H level (VDD). On the other hand, when Iout>Iref, the voltage V3 becomes L level (GND). Voltage V3 of node N3 is output from current comparator 50p as determination signal Sjd.
 尚、上述の式(5),(6)から理解される様に、図3の変形例では、測定電圧Voutに対する判定電圧Vtoを用いて、Vout=Vtoのときに、Iout=Irefとなる様に設計するためには、下記の式(7)に従って、抵抗素子202aの電気抵抗値RO、及び、抵抗素子404の電気抵抗値RPの比が決められる。 As can be understood from the above equations (5) and (6), in the modified example of FIG. , the ratio between the electrical resistance value RO of the resistor element 202a and the electrical resistance value RP of the resistor element 404 is determined according to the following equation (7).
 RO=(VDD-Vto-Vgs2)/(VDD-Vref-Vgs4)・RP   …(7)
 この様に、変形例1の構成では、図2の構成例に対して、電源ラインNP及び接地ラインNLの位置の入れ替え、並びに、NMOSトランジスタ及びPMOSトランジスタの入れ替えを行うことにより、PMOSトランジスタを用いて電圧電流変換を行うことが可能となる。
RO=(VDD−Vto−Vgs2)/(VDD−Vref−Vgs4)·RP (7)
As described above, in the configuration of Modification 1, the positions of the power supply line NP and the ground line NL are interchanged with respect to the configuration example of FIG. 2, and the NMOS transistor and the PMOS transistor are interchanged. voltage-to-current conversion can be performed.
 変形例1の構成によっても、図2の構成と同様に、測定電圧Voutを電流変換した出力電流Ioutと、基準電流Irefとの比較によって、測定電圧Voutを判定電圧Vtoと比較することができる。これにより、判定電圧Vtoが低い場合に図3の変形例を用いることで、図2で説明したのと同様の効果を得ることができる。 Also with the configuration of Modification 1, similarly to the configuration of FIG. 2, the measured voltage Vout can be compared with the determination voltage Vto by comparing the output current Iout obtained by current-converting the measured voltage Vout with the reference current Iref. As a result, by using the modified example of FIG. 3 when the determination voltage Vto is low, the same effect as described with reference to FIG. 2 can be obtained.
 (変形例2)
 更に、式(1),(2)等でのVgs2,Vgs4の影響をキャンセルするための変形例について説明する。
(Modification 2)
Furthermore, a modified example for canceling the effects of Vgs2 and Vgs4 in equations (1) and (2) will be described.
 図4は、図2に示された電圧電流変換回路20aの変形例を説明する回路図である。
 図4の変形例2に係る電圧電流変換回路20a♯は、電圧電流変換回路20a(図2)と同様のNMOSトランジスタ201a及び抵抗素子202aに加えて、オペアンプバッファ230aを更に含む。
FIG. 4 is a circuit diagram illustrating a modification of the voltage-current conversion circuit 20a shown in FIG.
Voltage-current conversion circuit 20a# according to Modification 2 of FIG. 4 further includes an operational amplifier buffer 230a in addition to NMOS transistor 201a and resistance element 202a similar to voltage-current conversion circuit 20a (FIG. 2).
 オペアンプバッファ230aは、PMOSトランジスタ2033a,2034aと、NMOSトランジスタ2031a,2032a,2035aと、電流源2036a,2037aとを有する。 The operational amplifier buffer 230a has PMOS transistors 2033a and 2034a, NMOS transistors 2031a, 2032a and 2035a, and current sources 2036a and 2037a.
 PMOSトランジスタ2033a及び2034aは、電源ラインNPと、ノードN10及びノードN11の間にそれぞれ接続され、NMOSトランジスタ2031a及び2032aは、ノードN10及びノードN11と、ノードN12との間にそれぞれ接続される。電流源2036aは、ノードN12及び接地ラインNLの間に接続される。更に、PMOSトランジスタ2033a及び2034aのゲートがノードN10と接続される。 The PMOS transistors 2033a and 2034a are connected between the power supply line NP and the nodes N10 and N11, respectively, and the NMOS transistors 2031a and 2032a are connected between the nodes N10 and N11, respectively, and the node N12. Current source 2036a is connected between node N12 and ground line NL. Furthermore, the gates of PMOS transistors 2033a and 2034a are connected to node N10.
 この様に、PMOSトランジスタ2033a,2034aと、NMOSトランジスタ2031a,2032aと、電流源2036aとによって、カレントミラー型の差動アンプが構成される。NMOSトランジスタ2031aのゲートは、測定ノードに相当する内部ノードNTaと接続される。 Thus, the PMOS transistors 2033a and 2034a, the NMOS transistors 2031a and 2032a, and the current source 2036a form a current mirror type differential amplifier. The gate of NMOS transistor 2031a is connected to internal node NTa corresponding to the measurement node.
 更に、NMOSトランジスタ2035aは、電源ラインNPと、NMOSトランジスタ2032aのゲートと接続されるノードN13との間に接続される。電流源2037aは、ノードN13及び接地ラインNLの間に接続される。NMOSトランジスタ2035aのゲートは、ノードN11と接続される。尚、NMOSトランジスタ2035a、NMOSトランジスタ201a、及び、NMOSトランジスタ403(基準電流源40)は、同じ特性(トランジスタサイズ)で設計される。 Furthermore, the NMOS transistor 2035a is connected between the power supply line NP and the node N13 connected to the gate of the NMOS transistor 2032a. Current source 2037a is connected between node N13 and ground line NL. The gate of NMOS transistor 2035a is connected to node N11. The NMOS transistor 2035a, the NMOS transistor 201a, and the NMOS transistor 403 (reference current source 40) are designed with the same characteristics (transistor size).
 これにより、オペアンプバッファ230aでは、NMOSトランジスタ2032aのゲート電圧は、NMOSトランジスタ2031aのゲート電圧、即ち、測定電圧Voutと同等となる。更に、電流源2037aの電流を基準電流Irefと同等すると、NMOSトランジスタ2035aのゲートソース間電圧は、図2でのVgs4と同等となる。従って、NMOSトランジスタ2035aのゲート電圧、即ち、ノードN11の電圧は、Vout+Vg4相当となる。 As a result, in the operational amplifier buffer 230a, the gate voltage of the NMOS transistor 2032a becomes equal to the gate voltage of the NMOS transistor 2031a, that is, the measurement voltage Vout. Furthermore, if the current of the current source 2037a is made equal to the reference current Iref, the gate-to-source voltage of the NMOS transistor 2035a becomes equal to Vgs4 in FIG. Therefore, the gate voltage of the NMOS transistor 2035a, that is, the voltage of the node N11, is equivalent to Vout+Vg4.
 一方で、NMOSトランジスタ201aには、図2と同様のゲートソース間電圧Vgs2が生じる。この結果、抵抗素子202aに印加される電圧は、Vout+Vgs4-Vg2となることが理解される。 On the other hand, the same gate-source voltage Vgs2 as in FIG. 2 is generated in the NMOS transistor 201a. As a result, the voltage applied to the resistance element 202a is Vout+Vgs4-Vg2.
 更に、変形例2では、基準電流源側にも同様のオペアンプバッファが配置される。
 図5は、図2に示された基準電流源40の変形例を説明する回路図である。
Furthermore, in Modification 2, a similar operational amplifier buffer is arranged on the side of the reference current source.
FIG. 5 is a circuit diagram illustrating a modification of reference current source 40 shown in FIG.
 図5の変形例2に係る基準電流源40♯は、基準電流源40(図2)と比較すると、抵抗素子401及び402の接続点であるのノードN6と、NMOSトランジスタ403のゲートとの間に、オペアンプバッファ407を更に含む点で異なる。 Reference current source 40# according to Modification 2 of FIG. 2 in that an operational amplifier buffer 407 is further included.
 オペアンプバッファ407は、図4のオペアンプバッファ230aと同様に構成されており、NMOSトランジスタ4071,4072,4075と、NMOSトランジスタ4073,4074と、電流源4076,4077とを有する。 The operational amplifier buffer 407 is configured similarly to the operational amplifier buffer 230a of FIG.
 NMOSトランジスタ4071のゲートは、基準電圧Vrefが生成されるノードN6と接続される。NMOSトランジスタ4075は、電源ラインNP及びノードN14の間に接続され、電流源4077は、ノードN14及び接地ラインNLの間に接続される。NMOSトランジスタ4075のゲートは、PMOSトランジスタ4074及びNMOSトランジスタ4072の接続点であるノードN15と接続される。NMOSトランジスタ403のゲートも、ノードN15と接続される。尚、NMOSトランジスタ4075は、NMOSトランジスタ403(基準電流源40)と同じ特性(トランジスタサイズ及び閾値電圧)で設計される。 The gate of NMOS transistor 4071 is connected to node N6 where reference voltage Vref is generated. NMOS transistor 4075 is connected between power supply line NP and node N14, and current source 4077 is connected between node N14 and ground line NL. The gate of the NMOS transistor 4075 is connected to the node N15, which is the connection point between the PMOS transistor 4074 and the NMOS transistor 4072 . The gate of NMOS transistor 403 is also connected to node N15. The NMOS transistor 4075 is designed with the same characteristics (transistor size and threshold voltage) as the NMOS transistor 403 (reference current source 40).
 これにより、オペアンプバッファ407では、NMOSトランジスタ4072のゲート電圧は、NMOSトランジスタ4071のゲート電圧、即ち、基準電圧Vrefと同等となる。更に、電流源4077の電流を、抵抗素子404を流れる電流、即ち、基準電流Irefと同等すると、NMOSトランジスタ4075のゲートソース間電圧は、NMOSトランジスタ403のゲートソース間電圧Vgs4と同等となる。従って、NMOSトランジスタ4075のゲート電圧、即ち、ノードN15の電圧は、Vout+Vg4相当となる。 As a result, in the operational amplifier buffer 407, the gate voltage of the NMOS transistor 4072 becomes equal to the gate voltage of the NMOS transistor 4071, that is, the reference voltage Vref. Furthermore, if the current of the current source 4077 is made equal to the current flowing through the resistance element 404 , that is, the reference current Iref, the gate-source voltage of the NMOS transistor 4075 becomes equal to the gate-source voltage Vgs4 of the NMOS transistor 403 . Therefore, the gate voltage of the NMOS transistor 4075, that is, the voltage of the node N15 is equivalent to Vout+Vg4.
 この結果、抵抗素子404に印加される電圧は、基準電圧Vrefと同等になることが理解される。従って、基準電流Irefは、Iref=Vref/RSで示される。 As a result, it is understood that the voltage applied to the resistance element 404 becomes equivalent to the reference voltage Vref. Therefore, the reference current Iref is given by Iref=Vref/RS.
 上述の様に、電圧電流変換回路20a♯において、抵抗素子202aに印加される電圧は、Vout+Vgs4-Vg2である。従って、測定電圧Voutが判定電圧Vtoであるとき(Vout=Vto)に、出力電流Ioutと基準電流Irefが等しくなる様に設計すると、Vgs4=Vgs2となるので、出力電流Ioutは、Iout=Vout/ROで示される。 As described above, in the voltage-current conversion circuit 20a#, the voltage applied to the resistance element 202a is Vout+Vgs4-Vg2. Therefore, when the measured voltage Vout is the judgment voltage Vto (Vout=Vto), if the output current Iout and the reference current Iref are designed to be equal, Vgs4=Vgs2, so the output current Iout is Iout=Vout/ Denoted by RO.
 従って、オペアンプバッファを含む電圧電流変換回路20a♯及び基準電流源40♯を適用した変形例では、測定電圧Voutに対する判定電圧Vtoを用いて、Vout=Vtoのときに、Iout=Irefとなる様に設計するためには、下記の式(8)に従って、抵抗素子202aの電気抵抗値RO、及び、抵抗素子404の電気抵抗値RPの比を決めることができる。尚、式(8)は、図2及び図3の電圧電流変換回路20,20pにおいても、Vgs2=Vgs4とすることで成立する。 Therefore, in the modification using the voltage-to-current conversion circuit 20a# including an operational amplifier buffer and the reference current source 40#, the judgment voltage Vto for the measurement voltage Vout is used so that Iout=Iref when Vout=Vto. For design purposes, the ratio between the electrical resistance value RO of the resistor element 202a and the electrical resistance value RP of the resistor element 404 can be determined according to the following equation (8). Equation (8) is established by setting Vgs2=Vgs4 in the voltage-to-current conversion circuits 20 and 20p of FIGS. 2 and 3 as well.
 RO=(Vto/Vref)・RP   …(8)
 式(8)から理解される様に、オペアンプバッファを用いることによって、トランジスタの製造ばらつき(主に、閾値電圧ばらつき)、及び、温度変化が生じても、式(4),(7)中でのVGs2,Vgs4の依存性をキャンセルすることができる。この結果、測定電圧Voutと判定電圧Vtoとの比較判定を高精度化することができる。
RO=(Vto/Vref)·RP (8)
As can be understood from the equation (8), the use of the operational amplifier buffer makes it possible to produce can cancel the dependence of VGs2 and Vgs4. As a result, it is possible to improve the accuracy of comparison and determination between the measured voltage Vout and the determination voltage Vto.
 尚、オペアンプバッファ230a(図4)及びオペアンプバッファ407(図5)は、図3に示された変形例1での電圧電流変換回路20pa及び基準電流源40pに対しても、それぞれ適用することが可能である。この場合は、図2から図3へのアレンジと同様にして、オペアンプバッファ230a及びオペアンプバッファ407の各々において、電源ラインNP及び接地ラインNLの位置の入れ替え、並びに、NMOSトランジスタ及びPMOSトランジスタの入れ替えを行うことが必要である。 The operational amplifier buffer 230a (FIG. 4) and the operational amplifier buffer 407 (FIG. 5) can also be applied to the voltage-current conversion circuit 20pa and the reference current source 40p in Modification 1 shown in FIG. It is possible. In this case, similar to the arrangement from FIG. 2 to FIG. 3, in each of the operational amplifier buffer 230a and the operational amplifier buffer 407, the positions of the power supply line NP and the ground line NL are exchanged, and the NMOS transistors and PMOS transistors are exchanged. it is necessary to
 実施の形態2.
 図6は、実施の形態2に係る半導体集積回路装置5bの構成を示すブロック図である。
Embodiment 2.
FIG. 6 is a block diagram showing the configuration of a semiconductor integrated circuit device 5b according to the second embodiment.
 図6に示される様に、半導体集積回路装置5bは、実施の形態1に係る半導体集積回路装置5aと比較して、N個の電圧電流変換回路20に代えてN個の電圧電流変換回路21を備える点と、選択回路30に代えて選択回路31とを備える点で異なる。図6でもN=4の場合の構成例が示される。 As shown in FIG. 6, semiconductor integrated circuit device 5b has N voltage-current conversion circuits 21 instead of N voltage-current conversion circuits 20, as compared with semiconductor integrated circuit device 5a according to the first embodiment. and a selection circuit 31 instead of the selection circuit 30 . FIG. 6 also shows a configuration example when N=4.
 各選択回路21は、対応の内部回路10の測定ノードに相当する内部ノードNTでの測定電圧Voutに対する変換ゲインが異なる2つの出力電流を発生されるノードを有している。これに応じて、選択回路31は、N個の電圧電流変換回路21の(2×N)個のノードのうちの1個を選択して、電流比較器50と接続する様に構成される。 Each selection circuit 21 has a node that generates two output currents with different conversion gains for the measurement voltage Vout at the internal node NT corresponding to the measurement node of the corresponding internal circuit 10 . Accordingly, the selection circuit 31 is configured to select one of the (2×N) nodes of the N voltage-to-current conversion circuits 21 and connect it to the current comparator 50 .
 実施の形態2では、測定電圧Voutを、2種類の判定電圧と比較することができる。例えば、測定電圧Voutの正常範囲の下限値に相当する判定電圧Vtlと、当該正常範囲の上限値に相当する判定電圧Vtuとを測定電圧Voutと比較することで、測定電圧Voutが正常範囲内であるか否かの判定が可能となる。 In Embodiment 2, the measured voltage Vout can be compared with two types of determination voltages. For example, by comparing the determination voltage Vtl corresponding to the lower limit of the normal range of the measured voltage Vout and the determination voltage Vtu corresponding to the upper limit of the normal range with the measured voltage Vout, the measured voltage Vout is within the normal range. It is possible to determine whether or not there is
 図7には、図6に記載された各ブロックの内部構成を説明するための回路図が示される。図7においても、内部回路10aに対応する構成が添字aを付して代表的に示されるが、同様の構成が、各内部回路10に対応して配置されている。 FIG. 7 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. In FIG. 7 as well, the structure corresponding to internal circuit 10a is representatively shown with a suffix a, and similar structures are arranged corresponding to each internal circuit 10. In FIG.
 図7を参照して、電圧電流変換回路21aは、NMOSトランジスタ203a,205aと、抵抗素子204a,206aとを含む。NMOSトランジスタ203a及び205aのゲートは、内部ノードNTaと共通に接続される。即ち、NMOSトランジスタ203a及び205aのゲート電圧は、測定電圧Voutである。 Referring to FIG. 7, voltage-current conversion circuit 21a includes NMOS transistors 203a and 205a and resistance elements 204a and 206a. The gates of NMOS transistors 203a and 205a are commonly connected to internal node NTa. That is, the gate voltages of NMOS transistors 203a and 205a are the measured voltage Vout.
 NMOSトランジスタ203aは、ノードN1ax及び抵抗素子204aの間に接続され、抵抗素子204aは、NMOSトランジスタ203a及び接地ラインNLの間に接続される。抵抗素子204aは、電気抵抗値RUを有する。 The NMOS transistor 203a is connected between the node N1ax and the resistance element 204a, and the resistance element 204a is connected between the NMOS transistor 203a and the ground line NL. Resistive element 204a has an electrical resistance value RU.
 同様に、NMOSトランジスタ205aは、ノードN1ay及び抵抗素子206aの間に接続され、抵抗素子206aは、NMOSトランジスタ205a及び接地ラインNLの間に接続される。抵抗素子206aは、電気抵抗値RLを有する。 Similarly, the NMOS transistor 205a is connected between the node N1ay and the resistance element 206a, and the resistance element 206a is connected between the NMOS transistor 205a and the ground line NL. The resistive element 206a has an electrical resistance value RL.
 電圧電流変換回路21aでは、図2でのNMOSトランジスタ201a及び抵抗素子202aの直列回路に相当する「電圧電流変換ユニット」が2個設けられており、図2でのノードN1aに相当する、出力電流Ioutが生成されるノードが、ノードN1xa,N1yaの2個に増加する。抵抗素子204a及び206aの電気抵抗値が異なるので、2個の電圧電流変換ユニットは、共通の測定電圧Voutを、異なる変換ゲインで出力電流に変換する。 The voltage-current conversion circuit 21a is provided with two "voltage-current conversion units" corresponding to the series circuit of the NMOS transistor 201a and the resistance element 202a in FIG. The number of nodes where Iout is generated is increased to two, nodes N1xa and N1ya. Due to the different electrical resistance values of resistive elements 204a and 206a, the two voltage-to-current conversion units convert a common measured voltage Vout to output currents with different conversion gains.
 電圧電流変換回路21b~21dについても、電圧電流変換回路21aと同様に構成されており、各電圧電流変換回路21において、2個のノードと接地ラインNLとの間に、NMOSトランジスタ及び抵抗素子の直列回路(電圧電流変換ユニット)がそれぞれ配置される。 The voltage-to-current conversion circuits 21b to 21d are configured in the same manner as the voltage-to-current conversion circuit 21a. A series circuit (voltage-to-current conversion unit) is arranged respectively.
 選択回路31は、スイッチ302a~302d,303a~303dを有する。スイッチ303a~303dは、電圧電流変換回路21の2個のノードの一方(図7でのノードN1ax)と、ノードN2との間にそれぞれ接続される。スイッチ302a~302dは、電圧電流変換回路21の2個のノードの他方(図7でのノードN1ay)と、ノードN2との間にそれぞれ接続される。 The selection circuit 31 has switches 302a to 302d and 303a to 303d. Switches 303a-303d are connected between one of two nodes of voltage-current conversion circuit 21 (node N1ax in FIG. 7) and node N2, respectively. Switches 302a-302d are connected between the other of the two nodes of voltage-current conversion circuit 21 (node N1ay in FIG. 7) and node N2, respectively.
 実施の形態2において、ノードN2よりも後段の構成、即ち、電流比較器50及び基準電流源40の構成は、図2と同様であるので、詳細な説明は繰り返さない。 In the second embodiment, the configuration after the node N2, that is, the configurations of the current comparator 50 and the reference current source 40 are the same as in FIG. 2, so detailed description will not be repeated.
 実施の形態2に係る半導体集積回路装置5bにおいて、選択回路31は、スイッチ302a~302d,303a~303dのうちの1つをオンする一方で、残りのスイッチをオフする。測定対象の内部回路(内部ノード)に対応する2つのスイッチについて、一方ずつを順番にオンすることで、ノードN1axに生成される出力電流(Iou)と、ノードN1ayに生成される出力電流(Iol)とが、1つずつ順に電流比較器50に入力される。これにより、測定電圧Voutを、2個の判定電圧Vtu,Vtlと順番に比較することができる。 In the semiconductor integrated circuit device 5b according to the second embodiment, the selection circuit 31 turns on one of the switches 302a to 302d and 303a to 303d, and turns off the remaining switches. By sequentially turning on two switches corresponding to the internal circuit (internal node) to be measured, the output current (Iou) generated at the node N1ax and the output current (Iol ) are sequentially input to the current comparator 50 one by one. As a result, the measured voltage Vout can be sequentially compared with the two determination voltages Vtu and Vtl.
 まず、スイッチ302aをオンする一方で、残りのスイッチをオフする。これにより、電源ラインNPから接地ラインNLへ、PMOSトランジスタ501、スイッチ302a(ノードN1ay)、NMOSトランジスタ205a、及び、抵抗素子206aを含む、出力電流Iolの経路が、図2での出力電流Ioutの経路と同様に生じる。このとき、電流比較器50では、PMOSトランジスタ501及び502によるカレントミラーによって、PMOSトランジスタ502がノードN3へ供給する出力電流Ioutが、出力電流Iolと同等となる(Iout=Iol)。 First, while the switch 302a is turned on, the remaining switches are turned off. As a result, the path of the output current Iol from the power supply line NP to the ground line NL, including the PMOS transistor 501, the switch 302a (node N1ay), the NMOS transistor 205a, and the resistance element 206a, changes from the output current Iout in FIG. It occurs in the same way as the path. At this time, in the current comparator 50, the current mirror by the PMOS transistors 501 and 502 makes the output current Iout supplied to the node N3 by the PMOS transistor 502 equal to the output current Iol (Iout=Iol).
 次に、スイッチ303aをオンする一方で、残りのスイッチをオフする。電源ラインNPから接地ラインNLへ、PMOSトランジスタ501、スイッチ303a(ノードN1ax)、NMOSトランジスタ203a、及び、抵抗素子204aを含む、出力電流Iouの経路が、図2での出力電流Ioutの経路と同様に生じる。このとき、電流比較器50では、PMOSトランジスタ502がノードN3へ供給する出力電流Ioutが、出力電流Iouと同等となる(Iout=Iou)。 Next, while turning on the switch 303a, the remaining switches are turned off. The path of output current Iou from power supply line NP to ground line NL, including PMOS transistor 501, switch 303a (node N1ax), NMOS transistor 203a, and resistance element 204a, is the same as the path of output current Iout in FIG. occurs in At this time, in current comparator 50, output current Iout supplied from PMOS transistor 502 to node N3 becomes equal to output current Iou (Iout=Iou).
 この様に、電圧電流変換回路21は、共通の測定電圧Voutに対して、変換ゲインが異なる複数の出力電流Iol,Iouを生成することできる。測定電圧Voutに対する、出力電流Iol及びIouのそれぞれの変換ゲインは、電気抵抗値RL及びRLによって調整される。 Thus, the voltage-to-current conversion circuit 21 can generate a plurality of output currents Iol and Iou with different conversion gains for the common measurement voltage Vout. The respective conversion gains of the output currents Iol and Iou with respect to the measured voltage Vout are adjusted by the electrical resistance values RL and RL.
 上述した、測定電圧Voutの正常範囲の下限値に相当する判定電圧Vtlについて、Vout=Vtlのときに、Iout=Iol=Irefとするための電気抵抗値RUは、式(4)を変形した下記の式(9)によって示される。式(9)中のVgs22は、NMOSトランジスタ205aのゲートソース間電圧を示す。 Regarding the judgment voltage Vtl corresponding to the lower limit of the normal range of the measurement voltage Vout described above, when Vout=Vtl, the electric resistance value RU for setting Iout=Iol=Iref is obtained by modifying the formula (4) as follows. (9). Vgs22 in equation (9) indicates the gate-source voltage of the NMOS transistor 205a.
 RO=(Vtl-Vgs22)/(Vref-Vgs4)・RP  …(9)
 測定電圧Voutの正常範囲の上限値に相当する判定電圧Vtuについて、Vout=Vtuのときに、Iout=Iou=Irefとするための電気抵抗値RUは、式(4)を変形した下記の式(10)によって示される。式(10)中のVgs21は、NMOSトランジスタ203aのゲートソース間電圧を示す。
RO=(Vtl−Vgs22)/(Vref−Vgs4)·RP (9)
Regarding the judgment voltage Vtu corresponding to the upper limit of the normal range of the measured voltage Vout, the electrical resistance value RU for setting Iout=Iou=Iref when Vout=Vtu is obtained by the following formula ( 10). Vgs21 in equation (10) indicates the gate-source voltage of the NMOS transistor 203a.
 RO=(Vtu-Vgs21)/(Vref-Vgs4)・RP  …(10)
 電流比較器50では、図2と同様に、基準電流Irefと同等の電流が、NMOSトランジスタ503によって、ノードN3から引き抜かれる。従って、ノードN3では、スイッチ302aのオン時には、出力電流Iolと基準電流Irefとの電流差を増幅した電圧V3が生じる一方で、スイッチ303aのオン時には、出力電流Iouと基準電流Irefとの電流差を増幅した電圧V3が生じることになる。即ち、Iou又はIolのいずれかに設定される出力電流Ioutと、基準電流Irefとの大小に応じて、ノードN3に生成される判定信号Sjdは、Hレベル又はLレベルに設定される。
RO=(Vtu−Vgs21)/(Vref−Vgs4)·RP (10)
In current comparator 50, a current equivalent to reference current Iref is drawn from node N3 by NMOS transistor 503, as in FIG. Therefore, at the node N3, when the switch 302a is turned on, a voltage V3 generated by amplifying the current difference between the output current Iol and the reference current Iref is generated. is amplified to generate a voltage V3. That is, the determination signal Sjd generated at the node N3 is set to H level or L level depending on the magnitude of the output current Iout set to either Iou or Iol and the reference current Iref.
 従って、スイッチ302aのオン時には、Vout>Vtlのときには、Iout=Iou>Irefとなるので、判定信号SjdはHレベルに設定される。一方で、スイッチ303aのオン時には、Vout<Vtuのときには、Iout=Iol<Irefとなるので、判定信号SjdはLレベルに設定される。この様にして、測定電圧Voutが、予め定められた電圧範囲(正常範囲)Vtu<Vout<Vtlに含まれるか否かを判定することができる。 Therefore, when the switch 302a is turned on, Iout=Iou>Iref when Vout>Vtl, and the determination signal Sjd is set to H level. On the other hand, when the switch 303a is turned on, when Vout<Vtu, Iout=Iol<Iref, so the decision signal Sjd is set to L level. In this manner, it is possible to determine whether or not the measured voltage Vout is included in a predetermined voltage range (normal range) Vtu<Vout<Vtl.
 以上説明した様に、実施の形態2に係る半導体集積回路装置によれば、実施の形態1で説明した効果に加えて、1組の基準電流源40及び電流比較器50を用いて、回路規模の増大を抑制して、測定電圧Voutを複数の判定電圧と比較することができる。これにより、正常範囲の下限値及び上限値との比較により、測定電圧Voutが正常範囲内であるか否かの判定を効率的に実行することができる。 As described above, according to the semiconductor integrated circuit device according to the second embodiment, in addition to the effects described in the first embodiment, a set of the reference current source 40 and the current comparator 50 is used to reduce the circuit scale. can be suppressed, and the measured voltage Vout can be compared with a plurality of judgment voltages. Thus, it is possible to efficiently determine whether or not the measured voltage Vout is within the normal range by comparison with the lower limit value and the upper limit value of the normal range.
 尚、実施の形態2においても、実施の形態1で説明した変形例1及び変形例2を適用することが可能である。即ち、電圧電流変換回路21、電流比較器50,及び、基準電流源40において、電源ラインNP及び接地ラインNLの位置の入れ替え、並びに、NMOSトランジスタ及びPMOSトランジスタの入れ替えを行うことにより、PMOSトランジスタを用いて電圧電流変換を行うことが可能である。或いは、電圧電流変換回路21及び基準電流源40にオペアンプバッファ(図4、図5)を追加することで、MOSトランジスタのばらつき及び温度変動の影響を抑制して、判定の高精度化を図ることができる。 It should be noted that Modification 1 and Modification 2 described in Embodiment 1 can also be applied to Embodiment 2. That is, in the voltage-to-current conversion circuit 21, the current comparator 50, and the reference current source 40, the positions of the power supply line NP and the ground line NL are exchanged, and the NMOS transistor and the PMOS transistor are exchanged, so that the PMOS transistor is replaced. It is possible to perform voltage-to-current conversion using Alternatively, by adding operational amplifier buffers (FIGS. 4 and 5) to the voltage-current conversion circuit 21 and the reference current source 40, the effects of variations in MOS transistors and temperature fluctuations can be suppressed to improve the accuracy of determination. can be done.
 実施の形態3.
 実施の形態3では、実施の形態2と同様に、測定電圧Voutを複数の判定電圧と比較する構成の他の一例を説明する。
Embodiment 3.
In the third embodiment, as in the second embodiment, another example of a configuration for comparing the measured voltage Vout with a plurality of determination voltages will be described.
 図8は、実施の形態3に係る半導体集積回路装置5cの構成を示すブロック図である。
 図8に示される様に、半導体集積回路装置5cは、実施の形態1に係る半導体集積回路装置5aと比較して、N個の電圧電流変換回路20に代えてN個の電圧電流変換回路22を備える点が異なる。各電圧電流変換回路22には、変換ゲインを切替えるための制御信号Schgが入力される。
FIG. 8 is a block diagram showing the configuration of a semiconductor integrated circuit device 5c according to the third embodiment.
As shown in FIG. 8, semiconductor integrated circuit device 5c has N voltage-current conversion circuits 22 instead of N voltage-current conversion circuits 20, as compared with semiconductor integrated circuit device 5a according to the first embodiment. The difference is that the A control signal Schg for switching the conversion gain is input to each voltage-current conversion circuit 22 .
 一方で、選択回路30、基準電流源40、及び、電流比較器50については、実施の形態1と同様の構成である。図8でもN=4の場合の構成例が示される。実施の形態3においても、測定電圧Voutを、実施の形態2と同様の判定電圧Vtl,Vtuと比較するための構成について説明する。 On the other hand, the selection circuit 30, the reference current source 40, and the current comparator 50 have the same configurations as in the first embodiment. FIG. 8 also shows a configuration example when N=4. Also in the third embodiment, a configuration for comparing the measured voltage Vout with the determination voltages Vtl and Vtu similar to those in the second embodiment will be described.
 図9には、図8に記載された各ブロックの内部構成を説明するための回路図が示される。図9においても、内部回路10aに対応する構成が添字aを付して代表的に示されるが、同様の構成が、各内部回路10に対応して配置されている。 FIG. 9 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. In FIG. 9 as well, the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10. In FIG.
 図9を参照して、電圧電流変換回路22aは、NMOSトランジスタ201aと、抵抗素子209a,210aと、トランジスタスイッチ208aとを有する。抵抗素子209aは、電気抵抗値RO1を有し、抵抗素子210aは、電気抵抗値RO2を有する。 Referring to FIG. 9, voltage-current conversion circuit 22a has NMOS transistor 201a, resistance elements 209a and 210a, and transistor switch 208a. Resistance element 209a has an electrical resistance value RO1, and resistance element 210a has an electrical resistance value RO2.
 電圧電流変換回路22aは、図2の電圧電流変換回路20aと比較すると、抵抗素子202aに代えて、直列接続された抵抗素子209a及び201aが、NMOSトランジスタ201aのソースと接地ラインNLとの間に接続される構成を有する。トランジスタスイッチ208aは、抵抗素子210aに対して並列に接続される。トランジスタスイッチ208aは、制御信号SchgがHレベルのときにオンされる一方で、Lレベルのときにはオフされる。 Compared to the voltage-current conversion circuit 20a of FIG. 2, the voltage-current conversion circuit 22a has series-connected resistance elements 209a and 201a instead of the resistance element 202a between the source of the NMOS transistor 201a and the ground line NL. It has a connected configuration. Transistor switch 208a is connected in parallel with resistive element 210a. Transistor switch 208a is turned on when control signal Schg is at H level, and turned off when it is at L level.
 実施の形態3において、ノードN1a~N1dよりも後段の構成、即ち、選択回路30、電流比較器50、及び、基準電流源40の構成は、図2と同様であるので、詳細な説明は繰り返さない。 In the third embodiment, the configuration after the nodes N1a to N1d, that is, the configuration of the selection circuit 30, the current comparator 50, and the reference current source 40 is the same as that of FIG. 2, so the detailed description will be repeated. do not have.
 実施の形態3に係る半導体集積回路装置5cにおいて、選択回路30は、図2と同様に、測定ノードに対応するスイッチ301aをオンする。これにより、図2と同様に、電源ラインNPから接地ラインNLへ、PMOSトランジスタ501、スイッチ301a(ノードN1a)、及び、NMOSトランジスタ201aを含む、出力電流Ioutの経路が生じる。 In the semiconductor integrated circuit device 5c according to the third embodiment, the selection circuit 30 turns on the switch 301a corresponding to the measurement node, as in FIG. As a result, as in FIG. 2, a path of the output current Iout is generated from the power supply line NP to the ground line NL, including the PMOS transistor 501, the switch 301a (node N1a), and the NMOS transistor 201a.
 電圧電流変換回路22aでは、出力電流Ioutの経路に含まれる、NMOSトランジスタ201aのソースと接地ラインNLの間の電気抵抗値が、制御信号Schgに応じて切替えられる。具体的には、制御信号SchgがHレベルのときには、出力電流Ioutが抵抗素子210aをバイパスするので、電気抵抗値はRO1となる。これに対して、制御信号SchgがLレベルのときには、出力電流Ioutが抵抗素子209a及び210aの両方を通過するので、電気抵抗値はRO1+RO2となる。 In the voltage-current conversion circuit 22a, the electrical resistance value between the source of the NMOS transistor 201a and the ground line NL included in the path of the output current Iout is switched according to the control signal Schg. Specifically, when the control signal Schg is at the H level, the output current Iout bypasses the resistance element 210a, so the electrical resistance value is RO1. On the other hand, when the control signal Schg is at L level, the output current Iout passes through both the resistive elements 209a and 210a, so the electrical resistance value is RO1+RO2.
 この結果、電圧電流変換回路22aでは、実施の形態2(図7)の電圧電流変換回路21aと同様に、測定電圧Voutに対する出力電流Ioutの変換ゲインを2段階に設定できる。それぞれの変換ゲインは、1/RO1及び1/(RO1+RO2)に相当する。電流比較器50では、PMOSトランジスタ502がノードN3へ供給する出力電流Ioutが、トランジスタスイッチ208aに入力される制御信号Schgに応じて切替えられることになる。即ち、トランジスタスイッチ208aによって「ゲイン切替機構」の一実施例を構成することができる。 As a result, in the voltage-to-current conversion circuit 22a, the conversion gain of the output current Iout with respect to the measured voltage Vout can be set in two stages, like the voltage-to-current conversion circuit 21a of the second embodiment (FIG. 7). The respective conversion gains correspond to 1/RO1 and 1/(RO1+RO2). In the current comparator 50, the output current Iout supplied to the node N3 by the PMOS transistor 502 is switched according to the control signal Schg input to the transistor switch 208a. That is, an embodiment of a "gain switching mechanism" can be configured by the transistor switch 208a.
 実施の形態2と同様の判定電圧Vtl(下限値側)について、Vout=Vtlのときに、Iout=Irefとするための電気抵抗値RO1は、式(4)を変形した下記の式(11)によって示される。 Regarding the determination voltage Vtl (lower limit side) similar to that of the second embodiment, when Vout=Vtl, the electrical resistance value RO1 for setting Iout=Iref is given by the following formula (11), which is a modified formula (4). indicated by
 RO1=(Vtl-Vgs2)/(Vref-Vgs4)・RP  …(11)
 同様に、判定電圧Vtu(上限値側)について、Vout=Vtuのときに、Iout=Irefとするための電気抵抗値RO1+RO2は、式(4)を変形した下記の式(12)によって示される。
RO1=(Vtl−Vgs2)/(Vref−Vgs4)·RP (11)
Similarly, regarding the determination voltage Vtu (on the upper limit side), when Vout=Vtu, the electric resistance value RO1+RO2 for setting Iout=Iref is given by the following equation (12), which is a modified equation (4).
 RO1+RO2=(Vtu-Vgs2)/(Vref-Vgs4)・RP …(12)
 電流比較器50では、図2と同様に、基準電流Irefと同等の電流が、NMOSトランジスタ503によって、ノードN3から引き抜かれる。従って、ノードN3では、制御信号Schgに応じて変換ゲインが切り替えられる出力電流Ioutと、基準電流Irefの電流差を増幅した電圧V3が生じる。
RO1+RO2=(Vtu−Vgs2)/(Vref−Vgs4)·RP (12)
In current comparator 50, a current equivalent to reference current Iref is drawn from node N3 by NMOS transistor 503, as in FIG. Therefore, at the node N3, a voltage V3 is generated by amplifying the current difference between the output current Iout whose conversion gain is switched according to the control signal Schg and the reference current Iref.
 従って、制御信号SchgのHレベル時(トランジスタスイッチ208aのオン時)には、Vout<Vtlのときには、Iout>Irefとなって、判定信号SjdはHレベルに設定される。一方で、制御信号SchgのLレベル時(トランジスタスイッチ208aのオフ時)には、Vout<Vtuのときには、Iout<Irefとなって、判定信号SjdはLレベルに設定される。この様にして、測定電圧Voutが、予め定められた電圧範囲(正常範囲)Vtu<Vout<Vtlに含まれるか否かを判定することができる。 Therefore, when the control signal Schg is at H level (when the transistor switch 208a is on), when Vout<Vtl, Iout>Iref, and the determination signal Sjd is set at H level. On the other hand, when the control signal Schg is at L level (when the transistor switch 208a is off), when Vout<Vtu, Iout<Iref, and the determination signal Sjd is set at L level. In this manner, it is possible to determine whether or not the measured voltage Vout is included in a predetermined voltage range (normal range) Vtu<Vout<Vtl.
 以上説明した様に、実施の形態3に係る半導体集積回路装置によれば、実施の形態2と同様に、1組の基準電流源40及び電流比較器50を用いて、回路規模の増大を抑制して、測定電圧Voutを複数の判定電圧と比較することができる。これにより、正常範囲の下限値及び上限値との比較により、測定電圧Voutが正常範囲内であるか否かの判定を効率的に実行することができる。 As described above, according to the semiconductor integrated circuit device according to the third embodiment, similar to the second embodiment, one set of the reference current source 40 and the current comparator 50 is used to suppress an increase in circuit size. Thus, the measured voltage Vout can be compared with a plurality of decision voltages. Thus, it is possible to efficiently determine whether or not the measured voltage Vout is within the normal range by comparison with the lower limit value and the upper limit value of the normal range.
 更に、実施の形態3の構成によれば、スイッチ数が2倍となる選択回路31を用いることなく、実施の形態2と同様の測定電圧Voutの判定を実行することができる。即ち、実施の形態2と同様の効果が得られるとともに、実施の形態2と比較して、回路規模を抑制することが可能となる。 Furthermore, according to the configuration of the third embodiment, it is possible to determine the measured voltage Vout in the same manner as in the second embodiment without using the selection circuit 31 that doubles the number of switches. That is, the same effect as in the second embodiment can be obtained, and the circuit scale can be suppressed as compared with the second embodiment.
 尚、実施の形態3においても、実施の形態1で説明した変形例1及び変形例2を適用することが可能である。即ち、電圧電流変換回路22、電流比較器50,及び、基準電流源40において、電源ラインNP及び接地ラインNLの位置の入れ替え、並びに、NMOSトランジスタ及びPMOSトランジスタの入れ替えを行うことにより、PMOSトランジスタを用いて電圧電流変換を行うことが可能である。或いは、電圧電流変換回路22及び基準電流源40にオペアンプバッファ(図4、図5)を追加することで、MOSトランジスタのばらつき及び温度変動の影響を抑制して、判定の高精度化を図ることができる。 Also in Embodiment 3, Modification 1 and Modification 2 described in Embodiment 1 can be applied. That is, in the voltage-current conversion circuit 22, the current comparator 50, and the reference current source 40, the positions of the power supply line NP and the ground line NL are exchanged, and the NMOS transistor and the PMOS transistor are exchanged to replace the PMOS transistor. It is possible to perform voltage-to-current conversion using Alternatively, by adding operational amplifier buffers (FIGS. 4 and 5) to the voltage-current conversion circuit 22 and the reference current source 40, the effects of variations in MOS transistors and temperature fluctuations can be suppressed to improve the accuracy of determination. can be done.
 実施の形態4.
 実施の形態4では、実施の形態2及び3で説明した、測定電圧Voutと、複数の判定電圧(例えば、Vtu,Vtl)との比較を同時刻に実行可能な構成を説明する。
Embodiment 4.
In a fourth embodiment, a configuration capable of simultaneously comparing the measurement voltage Vout and a plurality of determination voltages (for example, Vtu and Vtl) described in the second and third embodiments will be described.
 図10は、実施の形態4に係る半導体集積回路装置5dの構成を示すブロック図である。 FIG. 10 is a block diagram showing the configuration of a semiconductor integrated circuit device 5d according to the fourth embodiment.
 図10に示される様に、半導体集積回路装置5dは、実施の形態2に係る半導体集積回路装置5b(図6)と比較して、選択回路31に代えて選択回路32が配置される点、電流比較器50に代えて電流比較器51が配置される点、及び、判定論理回路60が更に配置される点で異なる。一方で、電圧電流変換回路21及び基準電流源40は、実施の形態2(図6)と同様である。 As shown in FIG. 10, a semiconductor integrated circuit device 5d differs from the semiconductor integrated circuit device 5b (FIG. 6) according to the second embodiment in that a selection circuit 32 is arranged instead of the selection circuit 31. It differs in that a current comparator 51 is arranged instead of the current comparator 50 and that a decision logic circuit 60 is further arranged. On the other hand, the voltage-current conversion circuit 21 and the reference current source 40 are the same as those in the second embodiment (FIG. 6).
 図11には、図10に示された各ブロックの内部構成を説明するための回路図が示される。図11においても、内部回路10aに対応する構成が添字aを付して代表的に示されるが、同様の構成が、各内部回路10に対応して配置されている。 FIG. 11 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. In FIG. 11 as well, the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10. In FIG.
 図11に示される様に、選択回路32は、スイッチ304a~304d,305a~305dを有する。又、電流比較器51は、ノードN2x及びN2xに出力電流Ioutx及びIoutyを同時に生成できる様に構成される。 As shown in FIG. 11, the selection circuit 32 has switches 304a-304d and 305a-305d. Also, the current comparator 51 is configured to simultaneously generate output currents Ioutx and Iouty at nodes N2x and N2x.
 従って、電圧電流変換回路21aのノードN1axは、選択回路32のスイッチ305aを介して、電流比較器51のノードN2xと接続され、電圧電流変換回路21aのノードN1ayは、選択回路32のスイッチ304aを介して、電流比較器51のノードN2yと接続される。この様に、選択回路32は、電圧電流変換回路21a~21dのうちの1つの電圧電流変換回路21の2個のノード(Niax,N1ay相当)を、電流比較器51のノードN2x及びN2yとそれぞれ接続する様に制御される。 Therefore, the node N1ax of the voltage-current conversion circuit 21a is connected to the node N2x of the current comparator 51 via the switch 305a of the selection circuit 32, and the node N1ay of the voltage-current conversion circuit 21a connects the switch 304a of the selection circuit 32. It is connected to the node N2y of the current comparator 51 via. In this way, the selection circuit 32 connects the two nodes (corresponding to Niax and N1ay) of one of the voltage-to-current conversion circuits 21a to 21d to the nodes N2x and N2y of the current comparator 51, respectively. Controlled to connect.
 電流比較器51は、4組のカレントミラーを構成する、PMOSトランジスタ505~508と、NMOSトランジスタ509~511とを有する。 The current comparator 51 has PMOS transistors 505 to 508 and NMOS transistors 509 to 511 that form four sets of current mirrors.
 PMOSトランジスタ505及び506は、電源ラインNPと、ノードN2x及びN3xとの間にそれぞれ接続される。PMOSトランジスタ505及び506は、ゲートがノードN2x(即ち、PMOSトランジスタ505のドレイン)と共通接続されることでカレントミラー(電流比は1:1)を構成する。 The PMOS transistors 505 and 506 are connected between the power supply line NP and the nodes N2x and N3x, respectively. The PMOS transistors 505 and 506 form a current mirror (current ratio is 1:1) by commonly connecting the gates to the node N2x (that is, the drain of the PMOS transistor 505).
 PMOSトランジスタ507及び508は、電源ラインNPと、ノードN2y及びN3yとの間にそれぞれ接続される。PMOSトランジスタ507及び508は、ゲートがノードN2y(即ち、PMOSトランジスタ507のドレイン)と共通接続されることでカレントミラー(電流比は1:1)を構成する。 The PMOS transistors 507 and 508 are connected between the power line NP and the nodes N2y and N3y, respectively. The PMOS transistors 507 and 508 form a current mirror (current ratio is 1:1) by commonly connecting the gates to the node N2y (that is, the drain of the PMOS transistor 507).
 NMOSトランジスタ509は、ノードN3x及び接地ラインNLの間に接続され、NMOSトランジスタ510は、ノードN3y及び接地ラインNLの間に接続される。NMOSトランジスタ511は、図7のNMOSトランジスタ504と同様に、ノードN4と接地ラインNLとの間に接続される。ノードN4に対しては、図2と同様の基準電流源40から基準電流Irefが供給される。 The NMOS transistor 509 is connected between the node N3x and the ground line NL, and the NMOS transistor 510 is connected between the node N3y and the ground line NL. NMOS transistor 511 is connected between node N4 and ground line NL, similar to NMOS transistor 504 in FIG. Reference current Iref is supplied to node N4 from reference current source 40 similar to that in FIG.
 NMOSトランジスタ509~511のゲートは、ノードN4(NMOSトランジスタ511のドレイン)と共通接続される。これにより、NMOSトランジスタ511及び509によるカレントミラー(電流比は1:1)、並びに、NMOSトランジスタ511及び510によるカレントミラー(電流比は1:1)が構成される。 The gates of NMOS transistors 509 to 511 are commonly connected to node N4 (the drain of NMOS transistor 511). As a result, a current mirror (with a current ratio of 1:1) is formed by the NMOS transistors 511 and 509 and a current mirror (with a current ratio of 1:1) is formed by the NMOS transistors 511 and 510 .
 次に、図11に示された回路の動作を説明する。図11の例では、内部回路10aの内部ノードNTaが選択されて、選択回路32において、スイッチ304a及び305aがオンされたときの動作を説明する。 Next, the operation of the circuit shown in FIG. 11 will be described. In the example of FIG. 11, the operation when the internal node NTa of the internal circuit 10a is selected and the switches 304a and 305a in the selection circuit 32 are turned on will be described.
 スイッチ305aのオンにより、電源ラインNPから接地ラインNLへ、PMOSトランジスタ505、スイッチ305a(ノードN1ax)、NMOSトランジスタ203a、及び、抵抗素子204aを含む、出力電流Ioutxの経路が生じる。出力電流Ioutxは、図7における出力電流Iouと同等である。 Turning on the switch 305a creates a path for the output current Ioutx from the power supply line NP to the ground line NL, including the PMOS transistor 505, the switch 305a (node N1ax), the NMOS transistor 203a, and the resistance element 204a. The output current Ioutx is equivalent to the output current Iou in FIG.
 同様に、スイッチ304aのオンにより、電源ラインNPから接地ラインNLへ、PMOSトランジスタ507、スイッチ304a(ノードN1ay)、NMOSトランジスタ205a、及び、抵抗素子206aを含む、出力電流Ioutyの経路が生じる。出力電流Ioutyは、図7における出力電流Iolと同等である。この様に、実施の形態4の電流比較器52では、図7での出力電流Iou及びIolにそれぞれ相当する出力電流Ioutx及びIoutyが同時に発生する。即ち、電流比較器50には、電圧電流変換回路22によって生成された、変換比が異なる複数の出力電流Ioutx,Ioutyが並列に入力される。 Similarly, turning on the switch 304a creates a path for the output current Iouty from the power supply line NP to the ground line NL, including the PMOS transistor 507, the switch 304a (node N1ay), the NMOS transistor 205a, and the resistance element 206a. The output current Iouty is equivalent to the output current Iol in FIG. Thus, in the current comparator 52 of the fourth embodiment, the output currents Ioutx and Iouty respectively corresponding to the output currents Iou and Iol in FIG. 7 are generated at the same time. That is, a plurality of output currents Ioutx and Iouty with different conversion ratios generated by the voltage-current conversion circuit 22 are input in parallel to the current comparator 50 .
 出力電流Ioutxは、PMOSトランジスタ505及び506によるカレントミラー(電流比1:1)によってコピーされる。同様に、出力電流Ioutyは、PMOSトランジスタ507及び508によるカレントミラー(電流比1:1)によってコピーされる。この結果、電流比較器52では、PMOSトランジスタ506によって、出力電流Ioutx相当の電流が、ノードN3xに供給されるとともに、PMOSトランジスタ508によって、出力電流Iouty相当の電流が、ノードN3yに供給される。 The output current Ioutx is copied by a current mirror (current ratio 1:1) by PMOS transistors 505 and 506. Similarly, the output current Iouty is copied by a current mirror (1:1 current ratio) by PMOS transistors 507 and 508 . As a result, in current comparator 52, PMOS transistor 506 supplies a current equivalent to output current Ioutx to node N3x, and PMOS transistor 508 supplies a current equivalent to output current Iouty to node N3y.
 一方で、基準電流源40からノードN4に供給される基準電流Irefが、NMOSトランジスタ511及び509によるカレントミラー(電流比1:1)、及び、NMOSトランジスタ511及び510によるカレントミラー(電流比1:1)によってコピーされる。これにより、ノードN3xから、PMOSトランジスタ509によって、基準電流Irefと同等の電流が引き抜かれる。同様に、ノードN3yから、PMOSトランジスタ510によって、基準電流Irefと同等の電流が引き抜かれる。 On the other hand, the reference current Iref supplied from the reference current source 40 to the node N4 is a current mirror by the NMOS transistors 511 and 509 (current ratio 1:1) and a current mirror by the NMOS transistors 511 and 510 (current ratio 1:1). 1). As a result, the PMOS transistor 509 extracts a current equivalent to the reference current Iref from the node N3x. Similarly, a current equivalent to reference current Iref is drawn from node N3y by PMOS transistor 510 .
 この結果、ノードN3xには、出力電流Ioutx(Ioutx=Iou)と基準電流Irefとの電流差を増幅した電圧V3xが生じる。これは、図7において、スイッチ303aのオン時にノードN3に生じる電圧V3と同等である。従って、電圧V3xは、測定電圧Voutと、判定電圧Vtu(上限値側)との比較結果を示す電圧レベルに設定される。図7と同様に、Vout<Vtuのときには、Iout<Irefとなるので、電圧V3xに相当する判定信号SidxはLレベルに設定される。 As a result, a voltage V3x, which is obtained by amplifying the current difference between the output current Ioutx (Ioutx=Iou) and the reference current Iref, is generated at the node N3x. This is equivalent to the voltage V3 generated at the node N3 when the switch 303a is turned on in FIG. Therefore, the voltage V3x is set to a voltage level indicating the comparison result between the measured voltage Vout and the determination voltage Vtu (on the upper limit side). As in FIG. 7, when Vout<Vtu, Iout<Iref, so the determination signal Sidx corresponding to the voltage V3x is set to L level.
 一方で、ノードN3yには、出力電流Iouty(Iouty=Iou)と基準電流Irefとの電流差を増幅した電圧V3yが生じる。これは、図7において、スイッチ302aのオン時にノードN3に生じる電圧V3と同等である。従って、電圧V3yは、測定電圧Voutと、判定電圧Vtl(下限値側)との比較結果を示す電圧レベルに設定される。図7と同様に、Vout>Vtlのときには、Iout=Iol>Irefとなるので、電圧V3yに相当する判定信号SidyはHレベルに設定される。 On the other hand, a voltage V3y generated by amplifying the current difference between the output current Iouty (Iouty=Iou) and the reference current Iref is generated at the node N3y. This is equivalent to the voltage V3 generated at the node N3 when the switch 302a is turned on in FIG. Therefore, the voltage V3y is set to a voltage level indicating the comparison result between the measured voltage Vout and the determination voltage Vtl (lower limit side). As in FIG. 7, when Vout>Vtl, Iout=Iol>Iref, so the determination signal Sidy corresponding to the voltage V3y is set to H level.
 判定論理回路60は、インバータ601及びNAND(否定論理積)ゲート602を有する。インバータ601は、判定信号Sidxを反転して出力する。NANDゲート602には、インバータ610の出力電圧と、判定信号Sidyとが入力されて、判定信号Sjdを出力する。図11の構成では、判定論理回路60からの判定信号Sjdを、半導体集積回路装置5fの外部からコンタクト可能な端子6に出力することができる。 The decision logic circuit 60 has an inverter 601 and a NAND (negative logical product) gate 602 . Inverter 601 inverts and outputs determination signal Sidx. The output voltage of the inverter 610 and the determination signal Sidy are input to the NAND gate 602 to output the determination signal Sjd. In the configuration of FIG. 11, the determination signal Sjd from the determination logic circuit 60 can be output to the terminal 6 that can be contacted from the outside of the semiconductor integrated circuit device 5f.
 従って、上述した、Vout<Vtu(V3x=Lレベル)、及び、Vout>Vtl(V3y=Hレベル)の両方が成立して、測定電圧Voutが、Vtl<Vout<Vtuの電圧範囲(正常範囲)に含まれる場合には、判定信号Sjd=Lレベルに設定される。これに対して、測定電圧Voutが、Vtl<Vout<Vtuの電圧範囲(正常範囲)に含まれない場合には、Vout<Vtu、及び、Vout>Vtlのいずれが不成立になるので、判定信号Sjd=Hレベルに設定される。 Therefore, both Vout<Vtu (V3x=L level) and Vout>Vtl (V3y=H level) are established, and the measured voltage Vout is in the voltage range (normal range) of Vtl<Vout<Vtu. , the determination signal Sjd is set to L level. On the other hand, when the measured voltage Vout is not included in the voltage range (normal range) of Vtl<Vout<Vtu, either Vout<Vtu or Vout>Vtl is not established, so the determination signal Sjd =H level.
 以上説明した様に、実施の形態4に係る半導体集積回路装置において、電流比較器52では、測定電圧Vout及び判定電圧Vtl(下限値側)の比較と、測定電圧Vout及び判定電圧Vtu(上限値側)との比較とを同時刻に行うことができる。 As described above, in the semiconductor integrated circuit device according to the fourth embodiment, the current comparator 52 compares the measured voltage Vout and the determination voltage Vtl (lower limit side), and compares the measured voltage Vout and the determination voltage Vtu (upper limit side). side) can be performed at the same time.
 これに対して、実施の形態2及び3の構成では、測定電圧Voutは、1個の判定電圧としか比較できないので、測定電圧Voutが、上限値及び下限値によって規定される正常範囲内に含まれるか否かの判定は、異なるタイミングでの判定信号Sjdを用いて実行することが必要になる。 On the other hand, in the configurations of Embodiments 2 and 3, the measured voltage Vout can be compared with only one judgment voltage, so that the measured voltage Vout falls within the normal range defined by the upper and lower limits. It is necessary to use the determination signal Sjd at different timings to determine whether or not it will be possible.
 この結果、実施の形態4の構成によれば、実施の形態2と同様の測定電圧Voutと複数の判定電圧との比較、例えば、正常範囲の下限値及び上限値との比較による測定電圧Voutが正常範囲内であるか否かの判定を、実施の形態2よりも高速に行うことができる。即ち、実施の形態4に係る半導体集積回路装置では、実施の形態2で説明した効果に加えて、更なるテスト時間の短縮が可能となる。 As a result, according to the configuration of the fourth embodiment, the measured voltage Vout obtained by comparing the same measured voltage Vout as in the second embodiment with a plurality of judgment voltages, for example, the lower limit value and the upper limit value of the normal range is It is possible to determine whether or not it is within the normal range at a higher speed than in the second embodiment. That is, in the semiconductor integrated circuit device according to the fourth embodiment, in addition to the effect described in the second embodiment, it is possible to further shorten the test time.
 尚、実施の形態4においても、実施の形態1で説明した変形例1及び変形例2を適用することが可能である。即ち、電圧電流変換回路21、電流比較器51,及び、基準電流源40において、電源ラインNP及び接地ラインNLの位置の入れ替え、並びに、NMOSトランジスタ及びPMOSトランジスタの入れ替えを行うことにより、PMOSトランジスタを用いて電圧電流変換を行うことが可能である。或いは、電圧電流変換回路21及び基準電流源40にオペアンプバッファ(図4、図5)を追加することで、MOSトランジスタのばらつき及び温度変動の影響を抑制して、判定の高精度化を図ることができる。 It should be noted that Modification 1 and Modification 2 described in Embodiment 1 can also be applied to Embodiment 4. That is, in the voltage-current conversion circuit 21, the current comparator 51, and the reference current source 40, the positions of the power supply line NP and the ground line NL are exchanged, and the NMOS transistor and the PMOS transistor are exchanged, so that the PMOS transistor is It is possible to perform voltage-to-current conversion using Alternatively, by adding operational amplifier buffers (FIGS. 4 and 5) to the voltage-current conversion circuit 21 and the reference current source 40, the effects of variations in MOS transistors and temperature fluctuations can be suppressed to improve the accuracy of determination. can be done.
 実施の形態5.
 実施の形態5では、実施の形態4での選択回路32の配置を省略するための回路構成を説明する。
Embodiment 5.
In the fifth embodiment, a circuit configuration for omitting the placement of the selection circuit 32 in the fourth embodiment will be described.
 図12は、実施の形態5に係る半導体集積回路装置5eの構成を示すブロック図である。 FIG. 12 is a block diagram showing the configuration of a semiconductor integrated circuit device 5e according to the fifth embodiment.
 図12に示される様に、半導体集積回路装置5eは、実施の形態4に係る半導体集積回路装置5d(図10)と比較して、選択回路32の配置が省略される点と、電圧電流変換回路21に代えて電圧電流変換回路23が配置される点が異なる。各電圧電流変換回路21には、イネーブル信号ENが入力される。図12においても、N=4の構成が示されており、内部回路10a~10dにそれぞれ対応して配置される電圧電流変換回路23a~23dに対して、個別のイネーブル信号ENa~ENdがそれぞれ入力される。イネーブル信号ENa~ENdのうちの1個は、内部回路10a~10dの内部ノードNTa~NTdを測定対象に選択するためにHレベルに設定される。一方で、イネーブル信号ENa~ENdの残りの3個はLレベルに設定される。 As shown in FIG. 12, a semiconductor integrated circuit device 5e is different from the semiconductor integrated circuit device 5d (FIG. 10) according to the fourth embodiment in that the arrangement of the selection circuit 32 is omitted, and voltage-current conversion is performed. The difference is that a voltage-current conversion circuit 23 is arranged instead of the circuit 21 . An enable signal EN is input to each voltage-current conversion circuit 21 . FIG. 12 also shows a configuration where N=4, and individual enable signals ENa-ENd are input to voltage-current conversion circuits 23a-23d arranged corresponding to internal circuits 10a-10d, respectively. be done. One of enable signals ENa-ENd is set to H level to select internal nodes NTa-NTd of internal circuits 10a-10d to be measured. On the other hand, the remaining three enable signals ENa-ENd are set to L level.
 図13には、図12に示された各ブロックの内部構成を説明するための回路図が示される。図13においても、内部回路10aに対応する構成が添字aを付して代表的に示されるが、同様の構成が、各内部回路10に対応して配置されている。 FIG. 13 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. In FIG. 13 as well, the structure corresponding to internal circuit 10a is representatively shown with a subscript a, and similar structures are arranged corresponding to each internal circuit 10. In FIG.
 図13に示される様に、電圧電流変換回路23aは、図11の電圧電流変換回路21aと比較して、抵抗素子204a及び206aと接地ラインNLとの間に、抵抗素子204a及び206aの各々に対して直列接続されたイネーブルスイッチ207aを更に含む。イネーブルスイッチ207aは、イネーブル信号ENaに応じてオンオフする。 As shown in FIG. 13, the voltage-to-current conversion circuit 23a is different from the voltage-to-current conversion circuit 21a of FIG. It further includes an enable switch 207a connected in series therewith. The enable switch 207a is turned on and off according to the enable signal ENa.
 更に、実施の形態5では、図11での選択回路32が配置されないため、各電圧電流変換回路23の2個のノードは、電流比較器51のノードN2x及びN2yのそれぞれと、スイッチを介することなく接続される。例えば、電圧電流変換回路23aのノードN1ax及びN1ayは、スイッチを介することなく、電流比較器51のノードN2x及びN2yとそれぞれ接続される。 Furthermore, in the fifth embodiment, since the selection circuit 32 in FIG. 11 is not arranged, the two nodes of each voltage-to-current conversion circuit 23 are connected to the nodes N2x and N2y of the current comparator 51 and through switches. connected without For example, nodes N1ax and N1ay of the voltage-current conversion circuit 23a are connected to nodes N2x and N2y of the current comparator 51, respectively, without switches.
 イネーブル信号ENaがHレベルに設定されて、イネーブルスイッチ207aがオンすると、電圧電流変換回路23aは、電流比較器51のノードN2x及びN2yに対して、電圧電流変換回路21aと同様の回路状態で接続される。従って、電圧電流変換回路23aによって、図11と同様の出力電流Ioutx及びIoutyを、電流比較器51に入力することができる。これにより、実施の形態4と同様の、測定電圧Voutと、判定電圧Vlu及びVtlとの比較に基づく、判定信号Sjdを生成することができる。 When the enable signal ENa is set to H level and the enable switch 207a is turned on, the voltage-current conversion circuit 23a is connected to the nodes N2x and N2y of the current comparator 51 in the same circuit state as the voltage-current conversion circuit 21a. be done. Therefore, output currents Ioutx and Iouty similar to those in FIG. This makes it possible to generate the determination signal Sjd based on the comparison between the measured voltage Vout and the determination voltages Vlu and Vtl, as in the fourth embodiment.
 これに対して、イネーブル信号ENaがLレベルに設定されて、イネーブルスイッチ207aがオフすると、電圧電流変換回路23aにおいて、出力電流Ioutx及びIoutyの経路が遮断される。これにより、図11において、選択回路32のスイッチ304a及び305aがオフされた場合と同様に、電流比較器51において、内部ノードNTaの測定電圧Voutに従う出力電流Ioutx及びIoutyは生成されない。この場合は、他の電圧電流変換回路23(図12での電圧電流変換回路23b~23dのうちの1個が選択されて、対応するイネーブル信号ENがHレベルに設定される。そして、電流比較器51では、選択された電圧電流変換回路23に入力される測定電圧Voutに従った出力電流Ioutx及びIoutyが生成されて、基準電流Irefと比較されることになる。 On the other hand, when the enable signal ENa is set to L level and the enable switch 207a is turned off, the paths of the output currents Ioutx and Iouty are cut off in the voltage-current conversion circuit 23a. As a result, current comparator 51 does not generate output currents Ioutx and Iouty according to measured voltage Vout of internal node NTa, similarly to the case where switches 304a and 305a of selection circuit 32 are turned off in FIG. In this case, another voltage-to-current conversion circuit 23 (one of the voltage-to-current conversion circuits 23b to 23d in FIG. 12) is selected, and the corresponding enable signal EN is set to H level. The unit 51 generates output currents Ioutx and Iouty according to the measured voltage Vout input to the selected voltage-current conversion circuit 23 and compares them with the reference current Iref.
 この様に、実施の形態5に係る半導体集積回路装置では、選択回路32の配置を省略して、実施の形態4に係る半導体装置と同様の測定電圧Voutと、複数の判定電圧Vtu,Vylとの比較による判定を実行することができる。従って、実施の形態4の半導体集積回路装置による効果に加えて、回路の小型化の効果を更に享受することができる。 As described above, in the semiconductor integrated circuit device according to the fifth embodiment, the arrangement of the selection circuit 32 is omitted, and the same measurement voltage Vout and the plurality of determination voltages Vtu and Vyl as in the semiconductor device according to the fourth embodiment are used. A determination can be made by comparing the Therefore, in addition to the effect of the semiconductor integrated circuit device of the fourth embodiment, the effect of miniaturization of the circuit can be further enjoyed.
 尚、実施の形態5においても、実施の形態1で説明した変形例1及び変形例2を適用することが可能である。即ち、電圧電流変換回路22、電流比較器50,及び、基準電流源40において、電源ラインNP及び接地ラインNLの位置の入れ替え、並びに、NMOSトランジスタ及びPMOSトランジスタの入れ替えを行うことにより、PMOSトランジスタを用いて電圧電流変換を行うことが可能である。或いは、電圧電流変換回路22及び基準電流源40にオペアンプバッファ(図4、図5)を追加することで、MOSトランジスタのばらつき及び温度変動の影響を抑制して、判定の高精度化を図ることができる。 Also in Embodiment 5, Modification 1 and Modification 2 described in Embodiment 1 can be applied. That is, in the voltage-current conversion circuit 22, the current comparator 50, and the reference current source 40, the positions of the power supply line NP and the ground line NL are exchanged, and the NMOS transistor and the PMOS transistor are exchanged to replace the PMOS transistor. It is possible to perform voltage-to-current conversion using Alternatively, by adding operational amplifier buffers (FIGS. 4 and 5) to the voltage-current conversion circuit 22 and the reference current source 40, the effects of variations in MOS transistors and temperature fluctuations can be suppressed to improve the accuracy of determination. can be done.
 更に、実施の形態5は、実施の形態1~3、並びに、実施の形態1~3に変形例1及び/又は変形例2を適用した構成と組み合わせることも可能である。具体的には、電圧電流変換回路20a(図2)及び電圧電流変換回路20a♯(図4)において抵抗素子202aと直列にイネーブルスイッチ207aを接続することで、実施の形態1又は変形例1が適用された実施の形態1と、実施の形態5とを組み合わせることができる。同様に、電圧電流変換回路20pa(図3)において抵抗素子202paと直列にイネーブルスイッチ207aを接続することで、変形例2が適用された実施の形態1と、実施の形態5とを組み合わせることができる。 Furthermore, Embodiment 5 can be combined with Embodiments 1 to 3 and configurations obtained by applying Modification 1 and/or Modification 2 to Embodiments 1 to 3. Specifically, by connecting the enable switch 207a in series with the resistance element 202a in the voltage-current conversion circuit 20a (FIG. 2) and the voltage-current conversion circuit 20a# (FIG. 4), the first embodiment or the modified example 1 Applied Embodiment 1 and Embodiment 5 can be combined. Similarly, by connecting the enable switch 207a in series with the resistance element 202pa in the voltage-current conversion circuit 20pa (FIG. 3), it is possible to combine the first embodiment to which the modification 2 is applied and the fifth embodiment. can.
 又、電圧電流変換回路21a(図7)において抵抗素子204a及び206aと接地ラインNLとの間に、図13と同じ態様でイネーブルスイッチ207aを接続することで、実施の形態2と、実施の形態5とを組み合わせることができる。又、電圧電流変換回路22a(図9)において、抵抗素子209a及び210aと直列に、かつ、トランジスタスイッチ208aによる短絡経路からは外れる様に、イネーブルスイッチ207aを接続することで、実施の形態3と、実施の形態5とを組み合わせることも可能である。 Further, by connecting an enable switch 207a between the resistor elements 204a and 206a and the ground line NL in the voltage-current conversion circuit 21a (FIG. 7) in the same manner as in FIG. 5 can be combined. In addition, in the voltage-current conversion circuit 22a (FIG. 9), by connecting the enable switch 207a in series with the resistance elements 209a and 210a and out of the short-circuit path by the transistor switch 208a, , and Embodiment 5 can be combined.
 実施の形態6.
 実施の形態6では、実施の形態4,5での判定結果を用いた異常対応構成について説明する。
Embodiment 6.
In a sixth embodiment, an abnormality handling configuration using the determination results in the fourth and fifth embodiments will be described.
 図14は、実施の形態6に係る半導体集積回路装置5fの構成を示すブロック図である。 FIG. 14 is a block diagram showing the configuration of a semiconductor integrated circuit device 5f according to the sixth embodiment.
 図14に示される様に、半導体集積回路装置5fは、N個の内部回路10の各々を、同一機能の内部回路(以下、「第1内部回路」とも称する)11及び内部回路(以下、「第2内部回路」とも称する)12によって構成するとともに、各内部回路10において、第1内部回路11に故障が検出されたときに第2内部回路12に切り替える異常対応構成を具備している。 As shown in FIG. 14, a semiconductor integrated circuit device 5f includes N internal circuits 10 each composed of an internal circuit (hereinafter also referred to as "first internal circuit") 11 having the same function and an internal circuit (hereinafter also referred to as " 12, and each internal circuit 10 has an abnormality response configuration that switches to the second internal circuit 12 when a failure is detected in the first internal circuit 11.
 図14においても、N=4の例が示される。即ち、内部回路10aは、第1内部回路11a及び第2内部回路12aを有し、内部回路10bは、第1内部回路11b及び第2内部回路12bを有し、内部回路10cは、第1内部回路11c及び第2内部回路12cを有し、内部回路10dは、第1内部回路11d及び第2内部回路12dを有する。 FIG. 14 also shows an example of N=4. That is, the internal circuit 10a has a first internal circuit 11a and a second internal circuit 12a, the internal circuit 10b has a first internal circuit 11b and a second internal circuit 12b, and the internal circuit 10c has a first internal circuit. It has a circuit 11c and a second internal circuit 12c, and the internal circuit 10d has a first internal circuit 11d and a second internal circuit 12d.
 半導体集積回路装置5fは、半導体集積回路装置5d(図10)と同様の、電圧電流変換回路21a~21d、選択回路32,基準電流源40,電流比較器51,及び、判定論理回路60に加えて、上記異常対応構成のための、選択回路15a~15d、判定結果選択回路70、記録装置80a~80d、及び、制御論理回路9a~9dを更に備える。 The semiconductor integrated circuit device 5f includes voltage-to-current conversion circuits 21a to 21d, a selection circuit 32, a reference current source 40, a current comparator 51, and a decision logic circuit 60 similar to the semiconductor integrated circuit device 5d (FIG. 10). Further, selection circuits 15a to 15d, a judgment result selection circuit 70, recording devices 80a to 80d, and control logic circuits 9a to 9d are further provided for the above-described abnormality handling configuration.
 図15には、図14に記載された各ブロックの内部構成を説明するための回路図が示される。図15においても、内部回路10aに対応する構成が添字aを付して示されるが、同様の構成が、各内部回路10に対応して配置されている。 FIG. 15 shows a circuit diagram for explaining the internal configuration of each block shown in FIG. In FIG. 15 as well, the structure corresponding to internal circuit 10a is indicated with a suffix a, and the same structure is arranged corresponding to each internal circuit 10. As shown in FIG.
 選択回路15は、スイッチ1001a~1004aを有する。スイッチ1001a及び1002aは、第1内部回路11a及び第2内部回路12aと、内部回路10aの出力電圧を入力とする、半導体集積回路装置5fに搭載される他の実回路(図示せず)との間に接続される。スイッチ1001aは、制御信号Aaに応じてオンオフされる一方で、スイッチ1001aは、制御信号/Aa(Aaの反転信号)に応じてオンオフされる。これにより、第1内部回路11a及び第2内部回路12aの一方の出力電圧が、実回路へ入力される。 The selection circuit 15 has switches 1001a to 1004a. The switches 1001a and 1002a connect the first internal circuit 11a, the second internal circuit 12a, and another actual circuit (not shown) mounted on the semiconductor integrated circuit device 5f to which the output voltage of the internal circuit 10a is input. connected between Switch 1001a is turned on and off according to control signal Aa, while switch 1001a is turned on and off according to control signal /Aa (inverted signal of Aa). As a result, the output voltage of one of the first internal circuit 11a and the second internal circuit 12a is input to the actual circuit.
 スイッチ1003aは、第1内部回路11aの出力ノードに相当する内部ノードNT1aと、電圧電流変換回路21aとの間に接続される。スイッチ1004aは、第2内部回路12aの出力ノードに相当する内部ノードNT2aと、電圧電流変換回路21aとの間に接続される。 The switch 1003a is connected between the internal node NT1a corresponding to the output node of the first internal circuit 11a and the voltage-current conversion circuit 21a. Switch 1004a is connected between internal node NT2a corresponding to the output node of second internal circuit 12a and voltage-current conversion circuit 21a.
 スイッチ1003aのオン時には、内部ノードNT1aの電圧、即ち、第1内部回路11aの出力電圧が、測定電圧Voutとして、電圧電流変換回路21aに入力される。これに対して、スイッチ1004aのオン時には、内部ノードNT2aの電圧、即ち、第2内部回路12aの出力電圧が、測定電圧Voutとして、電圧電流変換回路21aに入力される。 When the switch 1003a is turned on, the voltage of the internal node NT1a, that is, the output voltage of the first internal circuit 11a is input to the voltage-current conversion circuit 21a as the measurement voltage Vout. On the other hand, when the switch 1004a is turned on, the voltage of the internal node NT2a, that is, the output voltage of the second internal circuit 12a is input to the voltage-current conversion circuit 21a as the measurement voltage Vout.
 スイッチ1003a,1004aの制御により、第1内部回路11aの出力電圧、及び、第2内部回路12aの出力電圧の各々について、実施の形態5で説明したのと同様に、第1内部回路11aの出力電圧(Vout)が、Vtl<Vout<Vtuの範囲(正常範囲)に含まれているかを示す判定信号SjdをノードN20に得ることができる。 By controlling the switches 1003a and 1004a, the output voltage of the first internal circuit 11a and the output voltage of the second internal circuit 12a are changed in the same manner as described in the fifth embodiment. A determination signal Sjd indicating whether the voltage (Vout) is within the range of Vtl<Vout<Vtu (normal range) can be obtained at the node N20.
 判定結果選択回路70は、スイッチ701a~701d,702a~702dを有する。内部回路10aに対応する記録装置80aは、第1ラッチ回路801aと、第2ラッチ回路802aと、NANDゲート803aとを有する。 The determination result selection circuit 70 has switches 701a to 701d and 702a to 702d. A recording device 80a corresponding to the internal circuit 10a has a first latch circuit 801a, a second latch circuit 802a, and a NAND gate 803a.
 スイッチ701aは、ノードN20と、第1ラッチ回路801aとの間に接続される。第1ラッチ回路801aは、内部回路10aに含まれる第1内部回路11aに対する判定信号Sjdを記憶するために配置される。従って、スイッチ701aは、スイッチ1003aと連動してオン期間が設けられる。 The switch 701a is connected between the node N20 and the first latch circuit 801a. The first latch circuit 801a is arranged to store the determination signal Sjd for the first internal circuit 11a included in the internal circuit 10a. Therefore, the switch 701a is provided with an ON period in conjunction with the switch 1003a.
 同様に、スイッチ702aは、ノードN20と、第2ラッチ回路802aとの間に接続される。第2ラッチ回路802aは、内部回路10aに含まれる第2内部回路12aに対する判定信号Sjdを記憶するために配置される。従って、スイッチ702aは、スイッチ1004aと連動してオン期間が設けられる。 Similarly, the switch 702a is connected between the node N20 and the second latch circuit 802a. Second latch circuit 802a is arranged to store determination signal Sjd for second internal circuit 12a included in internal circuit 10a. Therefore, the switch 702a is provided with an ON period in conjunction with the switch 1004a.
 図示は省略しているが、内部回路10b~10dのそれぞれに対応して配置される記録装置80b~80dの各々にも、第1内部回路11の判定結果を記憶する第1ラッチ回路801、及び、第2内部回路12の判定結果を記憶する第2ラッチ回路802が含まれる。更に、判定結果選択回路70では、記録装置80b~80dと、判定論理回路60から判定信号Sjdが出力されるノードN20との間に、第1ラッチ回路に至るスイッチ701及び第2ラッチ回路に至るスイッチ702が配置される。 Although not shown, each of the recording devices 80b to 80d arranged corresponding to each of the internal circuits 10b to 10d also has a first latch circuit 801 for storing the judgment result of the first internal circuit 11, and , and a second latch circuit 802 for storing the determination result of the second internal circuit 12 . Further, in the determination result selection circuit 70, between the recording devices 80b to 80d and the node N20 to which the determination signal Sjd is output from the determination logic circuit 60, a switch 701 leading to the first latch circuit and a second latch circuit are provided. A switch 702 is provided.
 NANDゲート803aは、第1ラッチ回路801aのラッチデータS11a及び第2ラッチ回路802aのラッチデータS12aを入力として、内部回路正常信号/Eaを出力する。 The NAND gate 803a receives the latch data S11a of the first latch circuit 801a and the latch data S12a of the second latch circuit 802a, and outputs the internal circuit normal signal /Ea.
 制御論理回路9aは、NANDゲート901aと、インバータ902aとを有する。NANDゲート901aは、ラッチデータS11aと、ラッチデータS12aの反転データとを入力として、スイッチ1001aの制御信号Aaを出力する。インバータ902aは、NANDゲート901aの出力信号を反転して、スイッチ1002aの制御信号/Aaを出力する。 The control logic circuit 9a has a NAND gate 901a and an inverter 902a. The NAND gate 901a receives the latch data S11a and the inverted data of the latch data S12a as inputs, and outputs a control signal Aa for the switch 1001a. Inverter 902a inverts the output signal of NAND gate 901a to output control signal /Aa for switch 1002a.
 図16には、半導体集積回路装置5fの動作を説明するための信号波形図が示される。
 図16を参照して、第1内部回路11a及び第2内部回路12aの出力電圧を判定するための内部回路10aのテストタイミングにおいて、選択回路32のスイッチ304a,305aがオンされて、内部回路10aに対応する電圧電流変換回路21aが電流比較器51と接続される。
FIG. 16 shows a signal waveform diagram for describing the operation of semiconductor integrated circuit device 5f.
Referring to FIG. 16, at the test timing of internal circuit 10a for determining the output voltages of first internal circuit 11a and second internal circuit 12a, switches 304a and 305a of selection circuit 32 are turned on, and internal circuit 10a is connected to the current comparator 51 .
 内部回路10aのテストタイミングでは、第1内部回路11aの出力電圧と、第2内部回路12aの出力電圧とが順に判定される。まず、スイッチ1003a及び701aをオンすることで、第1内部回路11aの出力電圧(Vout)が、Vtl<Vout<Vtuの範囲(正常範囲)に含まれているかを示す判定信号Sjdが、第1ラッチ回路801aに入力される。第1内部回路11aの判定結果が正常であれば、第1ラッチ回路801aのラッチデータS11aはLレベルとなる。 At the test timing of the internal circuit 10a, the output voltage of the first internal circuit 11a and the output voltage of the second internal circuit 12a are determined in order. First, by turning on the switches 1003a and 701a, the determination signal Sjd indicating whether the output voltage (Vout) of the first internal circuit 11a is within the range of Vtl<Vout<Vtu (normal range) is output to the first It is input to the latch circuit 801a. If the determination result of the first internal circuit 11a is normal, the latch data S11a of the first latch circuit 801a becomes L level.
 次に、スイッチ1004a及び702aをオンすることで、第2内部回路12aの出力電圧(Vout)が、Vtl<Vout<Vtuの範囲(正常範囲)に含まれているかを示す判定信号Sjdが、第2ラッチ回路802aに入力される。第1内部回路11aの判定結果が正常であれば、第2ラッチ回路802aのラッチデータS12aはLレベルとなる。 Next, by turning on the switches 1004a and 702a, the determination signal Sjd indicating whether the output voltage (Vout) of the second internal circuit 12a is within the range of Vtl<Vout<Vtu (normal range) is generated. 2 is input to the latch circuit 802a. If the determination result of the first internal circuit 11a is normal, the latch data S12a of the second latch circuit 802a becomes L level.
 第1ラッチ回路801aは「第1記憶回路」の一実施例に対応し、ラッチデータS11aは「第1情報」の一実施例に対応する。第2ラッチ回路802aは「第2記憶回路」の一実施例に対応し、ラッチデータS12aは「第2情報」の一実施例に対応する。又、選択回路15aのうちの、スイッチ1003a,1004aによって、「測定選択回路」の一実施例を構成することができる。 The first latch circuit 801a corresponds to an example of "first storage circuit", and the latch data S11a corresponds to an example of "first information". The second latch circuit 802a corresponds to an example of the "second storage circuit", and the latch data S12a corresponds to an example of the "second information". Also, the switches 1003a and 1004a in the selection circuit 15a can constitute an embodiment of the "measurement selection circuit".
 第1内部回路11a及び第2内部回路12aの出力電圧の判定が終了すると、内部回路10aのテストタイミングが終了されて、内部回路10bのテストタイミングが設けられる。内部回路10bのテストタイミングでは、第1内部回路11bの出力電圧と、第2内部回路12bの出力電圧とを順に判定する様に、内部回路10bに対応するスイッチ1003b,1004b,304b,305b,701b,702bが、内部回路10aのテストタイミングでのスイッチ1003a,1004a,304a,305a,701a,702aと同じ態様でオンオフされる。 When the determination of the output voltages of the first internal circuit 11a and the second internal circuit 12a is finished, the test timing of the internal circuit 10a is finished, and the test timing of the internal circuit 10b is provided. At the test timing of the internal circuit 10b, switches 1003b, 1004b, 304b, 305b, and 701b corresponding to the internal circuit 10b are selected so that the output voltage of the first internal circuit 11b and the output voltage of the second internal circuit 12b are sequentially determined. , 702b are turned on and off in the same manner as switches 1003a, 1004a, 304a, 305a, 701a and 702a at the test timing of internal circuit 10a.
 図17には、第1及び第2内部回路の判定結果に対する異常検出構成の動作を説明する図表が示される。図17に示される様に、第1及び第2内部回路の判定結果の組み合わせにはケース1~ケース4が存在する。 FIG. 17 shows a chart for explaining the operation of the abnormality detection configuration with respect to the judgment results of the first and second internal circuits. As shown in FIG. 17, there are cases 1 to 4 in combination of determination results of the first and second internal circuits.
 ケース1では、第1内部回路11a及び第2内部回路12aとも出力電圧(Vout)が正常である(S11a=S12a=L)。このとき、制御信号AaがHレベルに設定される一方で、制御信号/AaはLレベルに設定される。即ち、第1内部回路11aの出力が、スイッチ1001aによって実回路へ伝達される。又、内部回路異常信号/Eaは、Hレベルに設定される。 In case 1, the output voltages (Vout) of both the first internal circuit 11a and the second internal circuit 12a are normal (S11a=S12a=L). At this time, control signal Aa is set to H level, while control signal /Aa is set to L level. That is, the output of the first internal circuit 11a is transmitted to the actual circuit by the switch 1001a. Also, the internal circuit abnormality signal /Ea is set to H level.
 ケース2では、第1内部回路11aの出力電圧が正常(S11a=L)である一方で、第2内部回路12aの出力電圧が異常(S12a=H)であり、第2内部回路12aが故障している。この場合にも、ケース1と同様に、制御信号AaがHレベルに設定される一方で、制御信号/AaはLレベルに設定される。即ち、第1内部回路11aの出力が、スイッチ1001aによって実回路へ伝達される。又、内部回路異常信号/Eaは、Hレベルに設定される。 In case 2, the output voltage of the first internal circuit 11a is normal (S11a=L), while the output voltage of the second internal circuit 12a is abnormal (S12a=H), and the second internal circuit 12a fails. ing. Also in this case, similarly to case 1, control signal Aa is set to H level, while control signal /Aa is set to L level. That is, the output of the first internal circuit 11a is transmitted to the actual circuit by the switch 1001a. Also, the internal circuit abnormality signal /Ea is set to H level.
 ケース3では、ケース2と反対に、第2内部回路12aの出力電圧が正常(S12a=L)である一方で、第1内部回路11aの出力が異常(S11a=H)であり、第1内部回路11aが故障している。この場合には、制御信号AaがLレベルに設定される一方で、制御信号/AaはHレベルに設定される。即ち、第2内部回路12aの出力が、スイッチ1002aによって実回路へ伝達される。又、内部回路異常信号/Eaは、Hレベルに設定される。この様に、選択回路15aのうちの、スイッチ1001a,1002aによって、「出力択回路」の一実施例を構成することができる。 In case 3, contrary to case 2, the output voltage of the second internal circuit 12a is normal (S12a=L), while the output of the first internal circuit 11a is abnormal (S11a=H). Circuit 11a is faulty. In this case, control signal Aa is set to L level, while control signal /Aa is set to H level. That is, the output of the second internal circuit 12a is transmitted to the actual circuit by the switch 1002a. Also, the internal circuit abnormality signal /Ea is set to H level. In this manner, the switches 1001a and 1002a in the selection circuit 15a can constitute an embodiment of the "output selection circuit".
 ケース4では、第1内部回路11a及び第2内部回路12aともに出力電圧が異常であり(S11a=S12a=L)、第1内部回路11a及び第2内部回路12aの両方が故障している。この場合には、内部回路異常信号/Eaが、ケース1~ケース3とは異なり、Lレベルに設定される。制御信号Aa,/Aaについては、ケース1及びケース2と同様に設定される。 In case 4, the output voltages of both the first internal circuit 11a and the second internal circuit 12a are abnormal (S11a=S12a=L), and both the first internal circuit 11a and the second internal circuit 12a are out of order. In this case, unlike cases 1 to 3, internal circuit abnormality signal /Ea is set to the L level. The control signals Aa and /Aa are set in the same manner as in cases 1 and 2. FIG.
 この様に、第1内部回路11aを実使用のデフォルト回路とし、第1内部回路11aの故障時には、判定結果が正常であることを条件に予備用の第2内部回路12aを、実使用の回路に自動的に切替える異常対応構成が実現される。これにより、内部回路の故障発生時にも、半導体集積回路装置5eの動作を継続することが可能となる。 In this manner, the first internal circuit 11a is used as the default circuit for actual use, and when the first internal circuit 11a fails, the second internal circuit 12a for backup is used as the circuit for actual use on condition that the determination result is normal. An abnormality handling configuration that automatically switches to . As a result, the operation of semiconductor integrated circuit device 5e can be continued even when a failure occurs in the internal circuit.
 又、第1内部回路11a及び第2内部回路12aの両方が故障した場合には、内部回路異常信号/EaがLレベルに設定されることで、内部回路10aが使用不可であることを報知できる。 Further, when both the first internal circuit 11a and the second internal circuit 12a fail, the internal circuit abnormality signal /Ea is set to L level, thereby notifying that the internal circuit 10a cannot be used. .
 図16に示された内部回路10のテストタイミングは、半導体集積回路装置5fの電源立ち上げ時、及び、回路動作に影響のない時刻に定期的に設けることができる。 The test timing of the internal circuit 10 shown in FIG. 16 can be set periodically at the time of power-up of the semiconductor integrated circuit device 5f and at a time that does not affect the circuit operation.
 以上説明した様に、実施の形態6に係る半導体集積回路装置によれば、内部回路10の故障の検知、及び、故障発生時の予備回路への切替を自動的に行うことができるので、実施の形態4で説明した効果に加えて、回路動作継続の信頼性を高めることができる。又、制御信号Aa,/Aa及び内部回路異常信号/Eaを、半導体集積回路装置5fの外部からモニタすることで、各内部回路10の故障状態についても把握することができる。即ち、制御信号Aa,/Aa及び内部回路異常信号/Eaについては、端子6と同様に、半導体集積回路装置5fの外部からコンタクト可能な端子(図示せず)に出力することができる。 As described above, according to the semiconductor integrated circuit device according to the sixth embodiment, it is possible to automatically detect a failure in the internal circuit 10 and switch over to the backup circuit when a failure occurs. In addition to the effect described in Embodiment 4, it is possible to improve the reliability of circuit operation continuation. Further, by monitoring the control signals Aa, /Aa and the internal circuit abnormality signal /Ea from the outside of the semiconductor integrated circuit device 5f, the failure state of each internal circuit 10 can also be grasped. That is, the control signals Aa, /Aa and the internal circuit error signal /Ea can be output to terminals (not shown) that can be contacted from the outside of the semiconductor integrated circuit device 5f, similarly to the terminal 6. FIG.
 尚、図15では、実施の形態4に係る半導体集積回路装置に対して、実施の形態6での異常対応構成を適用する例を説明したが、他の実施の形態1~3,5に対しても同様に、変形例1,2の適用に加えて、実施の形態6を更に組み合わせることが可能である。この際に、必要に応じて、記録装置80のラッチ回路数、及び、制御論理回路9での論理演算内容を適宜変更することができる。 Note that FIG. 15 illustrates an example in which the abnormality handling configuration of the sixth embodiment is applied to the semiconductor integrated circuit device of the fourth embodiment. Similarly, in addition to the application of modifications 1 and 2, it is possible to further combine the sixth embodiment. At this time, the number of latch circuits of the recording device 80 and the content of the logic operation in the control logic circuit 9 can be changed as needed.
 一例として、実施の形態1~3において、実施の形態4と同様の電圧範囲(Vtl<Vout<Vtu)に係る判定結果を用いて正常及び≧を判断するためには、判定電圧Vtl及びVtuのそれぞれとの比較における判定信号Sjdを保持するために、各記録装置80に4個のラッチ回路が必要となり、当該4個のラッチ回路のラッチデータを用いて、第1内部回路11a及び第2内部回路12aの正常及び異常の組み合わせ(ケース1~ケース4)に対して、図17と同様の制御信号Aa,/Aa及び内部回路異常信号/Eaが得られる様に、制御論理回路9での論理演算を変更することが必要である。 As an example, in Embodiments 1 to 3, in order to determine normality and ≧ using the same determination result related to the voltage range (Vtl<Vout<Vtu) as in Embodiment 4, the determination voltages Vtl and Vtu Four latch circuits are required in each recording device 80 in order to hold the determination signal Sjd for comparison with each other. The logic in the control logic circuit 9 is adjusted so that the control signals Aa and /Aa and the internal circuit abnormality signal /Ea similar to those in FIG. It is necessary to change the operation.
 実施の形態7.
 実施の形態7では、内部回路の測定ノードに係る2個の電圧差(電圧差)を測定電圧、即ち、判定の対象とする構成について説明する。
Embodiment 7.
In the seventh embodiment, a configuration will be described in which two voltage differences (voltage differences) relating to measurement nodes of an internal circuit are used as measurement voltages, ie, determination targets.
 図18は、実施の形態7に係る半導体集積回路装置5gの構成を示すブロック図である。 FIG. 18 is a block diagram showing the configuration of a semiconductor integrated circuit device 5g according to the seventh embodiment.
 図18に示される様に、半導体集積回路装置5gは、実施の形態4に係る半導体集積回路装置5b(図10)と比較して、内部回路10aから2個の第1電圧Vout1及び第2電圧Vout2が出力される点と、電圧電流変換回路21aに代えて、電圧電流変換回路24aが配置される点とで異なる。更に、「測定ノード」に相当する、内部回路10aの内部ノードNTa(出力電圧Vout)に対して、上側ピーク検波器13a及び下側ピーク検波器14aが設けられる。 As shown in FIG. 18, a semiconductor integrated circuit device 5g differs from the semiconductor integrated circuit device 5b according to the fourth embodiment (FIG. 10) in that two voltages Vout1 and Vout2 are applied from the internal circuit 10a. It differs in that Vout2 is output and in that a voltage-current conversion circuit 24a is arranged instead of the voltage-current conversion circuit 21a. Further, an upper peak detector 13a and a lower peak detector 14a are provided for the internal node NTa (output voltage Vout) of the internal circuit 10a, which corresponds to the "measurement node".
 上側ピーク検波器13aは、出力電圧Voutの最大値(上側ピーク値)を抽出して、第1電圧Vout1として出力する。下側ピーク検波器14aは、出力電圧Voutの最小値(下側ピーク値)を抽出して、第2電圧Vout2として出力する。例えば、内部ノードNTaに交流電圧が出力される場合には、Vout1-Vout2は、当該交流電圧のピーク・トゥ・ピーク値を示す。 The upper peak detector 13a extracts the maximum value (upper peak value) of the output voltage Vout and outputs it as the first voltage Vout1. The lower peak detector 14a extracts the minimum value (lower peak value) of the output voltage Vout and outputs it as the second voltage Vout2. For example, when an AC voltage is output to internal node NTa, Vout1-Vout2 represents the peak-to-peak value of the AC voltage.
 電圧電流変換回路24aには、第1電圧Vout1及び第2電圧Vout2が入力される。電圧電流変換回路24aは、第1電圧Vout1及び第2電圧Vout2の電圧差(Vout1-Vout2)を、異なる変換ゲインで、図11での出力電流Ioutx,Ioutyに変換する。 A first voltage Vout1 and a second voltage Vout2 are input to the voltage-current conversion circuit 24a. The voltage-current conversion circuit 24a converts the voltage difference (Vout1-Vout2) between the first voltage Vout1 and the second voltage Vout2 into output currents Ioutx and Iouty in FIG. 11 with different conversion gains.
 一方で、N個の内部回路10で共有される、選択回路32、電流比較器50、基準電流源40、及び、判定論理回路60は、実施の形態4(図10)と同様である。図18及び図19においても、内部回路10aに対応する構成が添字aを付して代表的に示されるが、同様の構成が、各内部回路10に対応して配置されている。 On the other hand, the selection circuit 32, the current comparator 50, the reference current source 40, and the decision logic circuit 60, which are shared by the N internal circuits 10, are the same as in the fourth embodiment (FIG. 10). In FIGS. 18 and 19 as well, the structure corresponding to internal circuit 10a is representatively shown with the suffix a.
 図19には、実施の形態7に係る電圧電流変換回路、即ち、図18の電圧電流変換回路24aの構成を説明する回路図が示される。 FIG. 19 shows a circuit diagram for explaining the configuration of the voltage-current conversion circuit according to Embodiment 7, that is, the voltage-current conversion circuit 24a of FIG.
 図19を参照して、電圧電流変換回路24aは、ノードN1ax及びN1ayを介して、選択回路32(図11)と接続される。電圧電流変換回路24aは、NMOSトランジスタ2031a,2035a,2308aと、PMOSトランジスタ2304a,2307a,2310aと、抵抗素子2306a,2309aと、電流源2302a,2303aとを有する。 Referring to FIG. 19, voltage-current conversion circuit 24a is connected to selection circuit 32 (FIG. 11) via nodes N1ax and N1ay. The voltage-current conversion circuit 24a has NMOS transistors 2031a, 2035a, 2308a, PMOS transistors 2304a, 2307a, 2310a, resistance elements 2306a, 2309a, and current sources 2302a, 2303a.
 NMOSトランジスタ2301aは、電源ラインNP及びノードN31の間に接続され、電流源2302aは、ノードN31及び接地ラインNLの間に接続される。NMOSトランジスタ2301aのゲートには、第2電圧Vout2が入力される。 The NMOS transistor 2301a is connected between the power supply line NP and the node N31, and the current source 2302a is connected between the node N31 and the ground line NL. A second voltage Vout2 is input to the gate of the NMOS transistor 2301a.
 電流源2303aは、電源ラインNP及びノードN32の間に接続され、PMOSトランジスタ2304aは、ノードN32及び接地ラインNLの間に接続される。PMOSトランジスタ2304aのゲートには、第1電圧Vout1が入力される。 A current source 2303a is connected between the power supply line NP and the node N32, and a PMOS transistor 2304a is connected between the node N32 and the ground line NL. A first voltage Vout1 is input to the gate of the PMOS transistor 2304a.
 NMOSトランジスタ2305aは、ノードN1ax及びノードN33の間に接続される。抵抗素子2306aは、ノードN33及びPMOSトランジスタ2307aの間に接続され、PMOSトランジスタ2307aは、抵抗素子2306a及び接地ラインNLの間に接続される。抵抗素子2306aは、電気抵抗値RDUを有する。 The NMOS transistor 2305a is connected between the node N1ax and the node N33. Resistive element 2306a is connected between node N33 and PMOS transistor 2307a, and PMOS transistor 2307a is connected between resistive element 2306a and ground line NL. Resistive element 2306a has an electrical resistance value RDU.
 NMOSトランジスタ2308aは、ノードN1ay及びノードN34の間に接続される。抵抗素子2309aは、ノードN34及びPMOSトランジスタ2310aの間に接続され、PMOSトランジスタ2310aは、抵抗素子2309a及び接地ラインNLの間に接続される。抵抗素子2309aは、電気抵抗値RDLを有する。 The NMOS transistor 2308a is connected between the node N1ay and the node N34. Resistive element 2309a is connected between node N34 and PMOS transistor 2310a, and PMOS transistor 2310a is connected between resistive element 2309a and ground line NL. Resistance element 2309a has an electrical resistance value RDL.
 NMOSトランジスタ2305a及び2038aのゲートは、ノードN32と共通に接続される。PMOSトランジスタ2307a及び2310aのゲートは、ノードN31と共通に接続される。 The gates of NMOS transistors 2305a and 2038a are commonly connected to node N32. The gates of PMOS transistors 2307a and 2310a are commonly connected to node N31.
 ノードN32の電圧V32は、PMOSトランジスタ2304aのゲートソース間電圧Vgs14を用いて、V32=Vout1+Vgs14と示される。同様に、ノードN31の電圧V31は、NMOSトランジスタ2301aのゲートソース間電圧Vgs11を用いて、V31=Vout2-Vgs11と示される。 The voltage V32 at the node N32 is expressed as V32=Vout1+Vgs14 using the gate-to-source voltage Vgs14 of the PMOS transistor 2304a. Similarly, the voltage V31 at node N31 is expressed as V31=Vout2−Vgs11 using the gate-to-source voltage Vgs11 of NMOS transistor 2301a.
 従って、抵抗素子2306aの両端に印加される電圧差は、NMOSトランジスタ2305aのゲートソース間電圧Vgs15と、NMOSトランジスタ2307aのゲートソース間電圧Vgs17とを更に用いると、(V32-Vgs15)-(V31+Vgs17)で示される。この結果、出力電流Ioutxは、下記の式(13)で示される。 Therefore, using the gate-source voltage Vgs15 of the NMOS transistor 2305a and the gate-source voltage Vgs17 of the NMOS transistor 2307a, the voltage difference applied across the resistance element 2306a is (V32-Vgs15)-(V31+Vgs17). is indicated by As a result, the output current Ioutx is given by the following equation (13).
 Ioutx=((Vout1+Vgs14-Vgs15)-(Vout2-Vgs11+Vgs17))/RDU
 =(Vout1-Vout2+Vgs14-Vgs15+Vgs11-Vgs17)/RDU  …(13)
 同様に、抵抗素子2309aの両端に印加される電圧差は、NMOSトランジスタ2308aのゲートソース間電圧Vgs18と、NMOSトランジスタ2310aのゲートソース間電圧Vgs20とを更に用いると、(V32-Vgs18)-(V31+Vgs20)で示される。この結果、出力電流Ioutyは、下記の式(14)で示される。
Ioutx=((Vout1+Vgs14-Vgs15)-(Vout2-Vgs11+Vgs17))/RDU
= (Vout1-Vout2+Vgs14-Vgs15+Vgs11-Vgs17)/RDU (13)
Similarly, the voltage difference applied across the resistance element 2309a is (V32-Vgs18)-(V31+Vgs20) using the gate-source voltage Vgs18 of the NMOS transistor 2308a and the gate-source voltage Vgs20 of the NMOS transistor 2310a. ). As a result, the output current Iouty is given by the following equation (14).
 Iouty=((Vout1+Vgs14-Vgs18)-(Vout2-Vgs11+Vgs20))/RDL
 =(Vout1-Vout2+Vgs14-Vgs18+Vgs11-Vgs20)/RDL  …(14)
 この様に、出力電流Ioutx及びIoutyは、測定電圧(Vout1-Vout2)を異なる変換ゲインによって電圧電流変換して得られる。
Iouty=((Vout1+Vgs14-Vgs18)-(Vout2-Vgs11+Vgs20))/RDL
= (Vout1-Vout2+Vgs14-Vgs18+Vgs11-Vgs20)/RDL (14)
Thus, the output currents Ioutx and Iouty are obtained by voltage-to-current conversion of the measured voltage (Vout1-Vout2) with different conversion gains.
 測定電圧Vout=Vout1-Vout2の正常範囲の下限値及び上限値に相当する判定電圧Vdu及びVdlを設定すると、当該判定電圧Vdu及びhVdlの各々と、電圧差(Vout1-Vout2)との比較により、電圧差(Vout1-Vout2)が正常範囲に含まれているか否かを判定することができる。 When the determination voltages Vdu and Vdl corresponding to the lower and upper limits of the normal range of the measured voltage Vout=Vout1-Vout2 are set, by comparing each of the determination voltages Vdu and hVdl with the voltage difference (Vout1-Vout2), It can be determined whether the voltage difference (Vout1-Vout2) is within the normal range.
 実施の形態1と同様に、Vout=Vout1-Vout2=Vduのときに、Ioutx=Irefとするための、電気抵抗値RDUは、基準電流Irefを決める電気抵抗値RS(基準電流源40)を用いて、下記の式(15)によって示される。 As in the first embodiment, the electrical resistance value RS (reference current source 40) that determines the reference current Iref is used as the electrical resistance value RDU for setting Ioutx=Iref when Vout=Vout1−Vout2=Vdu. is represented by the following equation (15).
 RDU=(Vdu+Vgs14-Vgs15+Vgs11-Vgs17)/(Vref-Vgs4)・RP  …(15)
 同様に、Vout=Vout1-Vout2=Vdlのときに、Iouty=Irefとするための、電気抵抗値RDLは、電気抵抗値RS(基準電流源40)を用いて、下記の式(16)によって示される。
RDU=(Vdu+Vgs14−Vgs15+Vgs11−Vgs17)/(Vref−Vgs4)·RP (15)
Similarly, when Vout=Vout1−Vout2=Vdl, the electrical resistance value RDL for Iouty=Iref is expressed by the following equation (16) using the electrical resistance value RS (reference current source 40). be
 RDL=(Vdl+Vgs14-Vgs18+Vgs11-Vgs20)/(Vref-Vgs4)・RP  …(16)
 式(15),(16)に従って、抵抗素子2306aの電気抵抗値RDU、及び、抵抗素子2309aの電気抵抗値RDLを定めることにより、固定された基準電流Irefを用いて、電圧差(Vout1-Vout2)を測定電圧Voutとして、判定電圧Vdu及びVdlの各々と比較することができる。この結果、内部回路の測定ノードに係る2つ電圧の電圧差が、判定電圧Vdu,Vdlによって定められる正常範囲に含まれるか否かを判定することができる。
RDL=(Vdl+Vgs14−Vgs18+Vgs11−Vgs20)/(Vref−Vgs4)·RP (16)
By determining the electrical resistance value RDU of the resistor element 2306a and the electrical resistance value RDL of the resistor element 2309a according to equations (15) and (16), the voltage difference (Vout1-Vout2 ) can be compared with each of the determination voltages Vdu and Vdl as the measurement voltage Vout. As a result, it can be determined whether or not the voltage difference between the two voltages associated with the measurement nodes of the internal circuit is within the normal range determined by the determination voltages Vdu and Vdl.
 尚、実施の形態1及び3と同様に、単一のノードN1aが、選択回路30(図2又は図9)を介して、電流比較器50と接続される構成においても、第1電圧Vout1及び第2電圧Vout2の電圧差を測定電圧Voutとして、単一の判定電圧Vdtとを比較することが可能である。この場合には、図19の電圧電流変換回路24aにおいて、NMOSトランジスタ2308a、抵抗素子2309a、及び、PMOSトランジスタ2310aの配置を省略して、NMOSトランジスタ2305aを、ノードN1a及びノードN33の間に接続することで、上記の電圧比較が実行できる。その際の抵抗素子2306aの電気抵抗値は、式(15)において、判定電圧Vtuを判定電圧Vdtに置換することで求めることができる。 As in the first and third embodiments, even in the configuration in which the single node N1a is connected to the current comparator 50 via the selection circuit 30 (FIG. 2 or FIG. 9), the first voltage Vout1 and It is possible to compare the voltage difference of the second voltage Vout2 as the measurement voltage Vout with the single determination voltage Vdt. In this case, the NMOS transistor 2308a, the resistance element 2309a, and the PMOS transistor 2310a are omitted from the voltage-current conversion circuit 24a of FIG. 19, and the NMOS transistor 2305a is connected between the node N1a and the node N33. Thus, the above voltage comparison can be performed. The electrical resistance value of the resistive element 2306a at that time can be obtained by replacing the determination voltage Vtu with the determination voltage Vdt in the equation (15).
 又、内部回路10の測定ノードに係る第1電圧Vout1及び第2電圧Vout2について、図18の例では、同一ノードの異なるタイミングでの2つの電圧としたが、内部回路10の異なる2つのノードの電圧を第1電圧Vout1及び第2電圧Vout2として、2つの内部ノード間の電圧差を測定電圧Voutとすることも可能である。 In the example of FIG. 18, the first voltage Vout1 and the second voltage Vout2 related to the measurement node of the internal circuit 10 are two voltages at different timings of the same node. It is also possible to take the voltages as the first voltage Vout1 and the second voltage Vout2 and the voltage difference between the two internal nodes as the measured voltage Vout.
 実施の形態7の半導体集積回路装置では、ノードN1ax及びN1ay(又は、ノードN1a)の後段の回路は、実施の形態1~6のいずれかと同様とすることが可能である。これにより、内部回路10に係る2つの電圧の差(電圧差)について、実施の形態1~6と同様の判定、或いは、当該判定結果に基づく異常対応構成を行うことができる。 In the semiconductor integrated circuit device of the seventh embodiment, the circuits subsequent to the nodes N1ax and N1ay (or the node N1a) can be the same as those of any one of the first to sixth embodiments. As a result, the difference between the two voltages (voltage difference) associated with the internal circuit 10 can be determined in the same manner as in the first to sixth embodiments, or an abnormality handling configuration based on the determination result can be performed.
 (変形例)
 図18及び図19では、第1電圧Vout1及び第2電圧Vout2が、同一ノードの上限ピーク電圧及び下限ピーク電圧である例を説明したので、判定電圧Vtu(上限値側)及び判定電圧(下限値側)の両方が正電圧であることを想定した電圧電流変換回路24aの構成例を説明した。図20では、変形例として、判定電圧Vtu(上限値側)が正電圧である一方で、判定電圧(下限値側)が負電圧である場合に対応するための電圧電流変換回路25aの構成例を、図20を用いて説明する。
(Modification)
18 and 19, the first voltage Vout1 and the second voltage Vout2 are the upper limit peak voltage and the lower limit peak voltage of the same node. A configuration example of the voltage-to-current conversion circuit 24a has been described on the assumption that both of the voltages on both sides are positive voltages. In FIG. 20, as a modified example, the configuration example of the voltage-current conversion circuit 25a for coping with the case where the determination voltage Vtu (on the upper limit side) is a positive voltage and the determination voltage (on the lower limit side) is a negative voltage. will be described with reference to FIG.
 図20に示される様に、電圧電流変換回路25aは、図19に示された、電圧電流変換回路24aと比較して、PMOSトランジスタ2312a、NMOSトランジスタ2313a、及び、電流源2311a,2314aを更に有する点と、NMOSトランジスタ2308a及びPMOSトランジスタ2310aのゲートの接続先が変更される点とで異なる。 As shown in FIG. 20, the voltage-to-current conversion circuit 25a further includes a PMOS transistor 2312a, an NMOS transistor 2313a, and current sources 2311a and 2314a compared to the voltage-to-current conversion circuit 24a shown in FIG. and that the connection destinations of the gates of the NMOS transistor 2308a and the PMOS transistor 2310a are changed.
 電流源2311aは、電源ラインNP及びノードN35の間に接続され、PMOSトランジスタ2312aは、ノードN35及び接地ラインNLの間に接続される。PMOSトランジスタ2312aのゲートには、NMOSトランジスタ2301aのゲートと共通に、第2電圧Vout2が入力される。 The current source 2311a is connected between the power supply line NP and the node N35, and the PMOS transistor 2312a is connected between the node N35 and the ground line NL. A second voltage Vout2 is input to the gate of the PMOS transistor 2312a in common with the gate of the NMOS transistor 2301a.
 NMOS2313aは、電源ラインNP及びノードN36の間に接続され、電流源2314aは、ノードN36及び接地ラインNLの間に接続される。NMOSトランジスタ2313aのゲートには、PMOSトランジスタ2304aのゲートと共通に、第1電圧Vout1が入力される。 The NMOS 2313a is connected between the power supply line NP and the node N36, and the current source 2314a is connected between the node N36 and the ground line NL. A first voltage Vout1 is input to the gate of the NMOS transistor 2313a in common with the gate of the PMOS transistor 2304a.
 NMOSトランジスタ2308のゲートは、第2電圧Vout2に従う電圧が発生するノードN35と接続され、PMOSトランジスタ2310aのゲートは、第1電圧Vout1に従う電圧が発生するノードN36と接続される。従って、抵抗素子2309aの両端には、電圧差(Vout2-Vout1)に従う電圧が印加される。この結果、出力電流Ioutyは、電圧差(Vout2-Vout1)を電気抵抗値RDLに従う変換ゲインによって変換した電流となる。 The gate of the NMOS transistor 2308 is connected to the node N35 generating a voltage according to the second voltage Vout2, and the gate of the PMOS transistor 2310a is connected to the node N36 generating a voltage according to the first voltage Vout1. Therefore, a voltage according to the voltage difference (Vout2-Vout1) is applied across the resistance element 2309a. As a result, the output current Iouty becomes a current obtained by converting the voltage difference (Vout2-Vout1) by the conversion gain according to the electrical resistance value RDL.
 即ち、図20の電圧電流変換回路25aでは、電圧電流変換回路24aに対して、出力電流Ioutyの変換ゲインの極性(正/負)が反転される。従って、全体としては、電圧電流変換回路24aを用いる場合に対して、判定電圧Vdlの極性(正/負)を反転して、電圧差(Vout1-Vout2)と比較できることが理解される。 That is, in the voltage-current conversion circuit 25a of FIG. 20, the polarity (positive/negative) of the conversion gain of the output current Iouty is inverted with respect to the voltage-current conversion circuit 24a. Therefore, as a whole, it can be understood that the polarity (positive/negative) of the determination voltage Vdl can be reversed and compared with the voltage difference (Vout1-Vout2) as compared with the case of using the voltage-current conversion circuit 24a.
 この様に、図20に示された電圧電流変換回路25aを用いることで、電圧差(Vout1-Vout2)の正常範囲の下限値が負電圧であっても、実施の形態1~6と同様に、第1電圧Vout1及び第2電圧Vout2の電圧差を測定電圧Voutとして、判定電圧と比較することができる。 In this way, by using the voltage-current conversion circuit 25a shown in FIG. 20, even if the lower limit of the normal range of the voltage difference (Vout1-Vout2) is a negative voltage, the same as in the first to sixth embodiments , the voltage difference between the first voltage Vout1 and the second voltage Vout2 can be compared with the determination voltage as the measurement voltage Vout.
 本開示には、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組合せで実施の形態に適用可能である。 While this disclosure describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may not be found in particular embodiments. can be applied to the embodiments singly or in various combinations.
 従って、例示されていない無数の変形例が、本開示での技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組合せる場合が含まれるものとする。 Therefore, countless modifications not illustrated are envisioned within the technical scope of the present disclosure. For example, when at least one component is modified, added or omitted, and at least one component is extracted and combined with the components of other embodiments. .
 又、実施の形態2以降では、測定電圧Voutを変換ゲインが異なる2個の出力電流に変換することで2個の判定電圧と比較する構成例を説明したが、変換ゲインが異なる3以上の出力電流を基準電流と比較することで、測定電圧Voutを3個以上の判定電圧と比較する構成とすることも、原理上は可能である。例えば、各電圧電流変換回路21,22において、図7等での並列配置される電圧電流変換ユニットの個数、又は、図9での抵抗素子及びスイッチ(ゲイン切替機構)の個数を増加することで、この様な構成を実現することができる。 In the second and subsequent embodiments, a configuration example in which the measured voltage Vout is converted into two output currents with different conversion gains and compared with two determination voltages has been described. In principle, it is also possible to compare the measured voltage Vout with three or more determination voltages by comparing the current with the reference current. For example, in each of the voltage-current conversion circuits 21 and 22, by increasing the number of voltage-current conversion units arranged in parallel in FIG. , such a configuration can be realized.
 又、上記実施の形態では、各カレントミラーの電流比を1:1としたが、それ以外の電流比とすることも可能である。この場合には、電圧電流変換回路20等の出力電流Iout,Ioutx,Ioutyに対する、電流比較器50トランジスタ,51内(ノードN3,N3x,N3y)に生じる出力電流Ioutの電流比A、及び、基準電流源40での基準電流Irefに対する、電流比較器50~52,51内(ノードN4)に生じる基準電流Irefの電流比Bを用いて、式(4)等の電気抵抗値ROについて、(A/B)倍することが必要である。 Also, in the above embodiment, the current ratio of each current mirror is 1:1, but other current ratios are also possible. In this case, the current ratio A of the output current Iout generated in the current comparator 50 transistors, 51 (nodes N3, N3x, N3y) to the output currents Iout, Ioutx, Iouty of the voltage-current conversion circuit 20, etc., and the reference (A /B) Multiplication is required.
 この場合には、更に、式(4)等中のVgs2及びVgs4を均衡させるために、例えば、トランジスタサイズの調整によって、図2中のNMOSトランジスタ201a及びNMOSトランジスタ403の間で、電流及びトランジスタサイズの比を揃えることが好ましい。一例として(A/B)=0.5である場合には、電気抵抗値ROが1/2倍とされて、NMOSトランジスタ201aを流れる電流が2倍になるので、NMOSトランジスタ201aのトランジスタサイズは、NMOSトランジスタ403の2倍とすることが好ましい。例えば、NMOSトランジスタ403と同等のトランジスタサイズを有するNMOSトランジスタを2個並列接続してNMOSトランジスタ201aを構成することで、NMOSトランジスタ201a及びNMOSトランジスタ403の間で、電流及びトランジスタサイズの比を揃えることができる。 In this case, furthermore, to balance Vgs2 and Vgs4 in equation (4) etc., the current and transistor size between NMOS transistor 201a and NMOS transistor 403 in FIG. It is preferable to align the ratio of As an example, when (A/B)=0.5, the electric resistance value RO is halved and the current flowing through the NMOS transistor 201a is doubled, so the transistor size of the NMOS transistor 201a is , is preferably twice that of the NMOS transistor 403 . For example, two NMOS transistors having a transistor size equivalent to that of the NMOS transistor 403 are connected in parallel to configure the NMOS transistor 201a, so that the ratio of current and transistor size can be made uniform between the NMOS transistor 201a and the NMOS transistor 403. can be done.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalents of the scope of the claims.
 5a~5g 半導体集積回路装置、9a~9d 制御論理回路、10a~10d 内部回路、11a~11d 第1内部回路、12a~12d 第2内部回路、13a 上側ピーク検波器、14a 下側ピーク検波器、15a~15d,21,30,31,32 選択回路、20a~20d,20pa,21a~21d,22a~22d,23a~23d,24a,25a 電圧電流変換回路、40,40p 基準電流源、50,50p,51,52 電流比較器、60 判定論理回路、70 判定結果選択回路、80a,80b,80d 記録装置、207a イネーブルスイッチ、208a トランジスタスイッチ、230a,407 オペアンプバッファ、801a 第1ラッチ回路、802a 第2ラッチ回路、Aa,/Aa,Schg 制御信号、ENa~ENd イネーブル信号、GND 接地電圧、Iol,Iou,Iout,Ioutx,Iouty 出力電流、Iref 基準電流、NL 接地ライン、NP 電源ライン、S11a,S12a ラッチデータ、Sjd 判定信号、VDD 電源電圧、Vout 測定電圧、Vout1 第1電圧、Vout2 第2電圧、Vref 基準電圧。 5a to 5g semiconductor integrated circuit device, 9a to 9d control logic circuit, 10a to 10d internal circuit, 11a to 11d first internal circuit, 12a to 12d second internal circuit, 13a upper peak detector, 14a lower peak detector, 15a to 15d, 21, 30, 31, 32 selection circuits, 20a to 20d, 20pa, 21a to 21d, 22a to 22d, 23a to 23d, 24a, 25a voltage-current conversion circuits, 40, 40p reference current sources, 50, 50p , 51, 52 current comparator, 60 decision logic circuit, 70 decision result selection circuit, 80a, 80b, 80d recording device, 207a enable switch, 208a transistor switch, 230a, 407 operational amplifier buffer, 801a first latch circuit, 802a second Latch circuit, Aa, /Aa, Schg control signal, ENa to ENd enable signal, GND ground voltage, Iol, Iou, Iout, Ioutx, Iouty output current, Iref reference current, NL ground line, NP power supply line, S11a, S12a latch Data, Sjd decision signal, VDD power supply voltage, Vout measurement voltage, Vout1 first voltage, Vout2 second voltage, Vref reference voltage.

Claims (14)

  1.  複数の電圧電流変換回路を備え、
     前記複数の電圧電流変換回路の各々は、半導体集積回路装置の内部の少なくとも1つの測定ノードの電圧に従う測定電圧を、前記測定電圧と比較されるべき判定電圧が反映された第1変換ゲインに従って電圧電流変換して少なくとも1つの出力電流を生成する様に構成され、
     予め定められた基準電流を出力する基準電流源と、
     前記複数の電圧電流変換回路のうちの選択された電圧電流変換回路から入力された前記少なくとも1つの出力電流のそれぞれと前記基準電流との比較結果に従う少なくとも1つの判定信号を出力する電流比較器とを更に備える、半導体集積回路装置。
    Equipped with multiple voltage-current conversion circuits,
    Each of the plurality of voltage-current conversion circuits converts a measured voltage according to the voltage of at least one measurement node inside the semiconductor integrated circuit device to a voltage according to a first conversion gain reflecting a determination voltage to be compared with the measured voltage. configured to current convert to produce at least one output current;
    a reference current source that outputs a predetermined reference current;
    a current comparator for outputting at least one determination signal according to a comparison result between each of the at least one output current input from a voltage-current conversion circuit selected from the plurality of voltage-current conversion circuits and the reference current; A semiconductor integrated circuit device further comprising:
  2.  各前記電圧電流変換回路は、前記第1変換ゲインが異なる複数の電圧電流変換ユニットを有し、
     前記複数の電圧電流変換ユニットは、前記測定電圧をそれぞれの前記第1変換ゲインに従って変換して複数の前記出力電流を生成し、
     前記選択された電圧電流変換回路の前記複数の電圧電流変換ユニットによって生成された前記複数の出力電流は、1つずつ順に前記電流比較器に入力され、
     前記電流比較器は、前記選択された電圧電流変換回路から入力された前記複数の出力電流のうちの1つと、前記基準電流との比較結果に従う前記判定信号を出力するように構成される、請求項1記載の半導体集積回路装置。
    each of the voltage-to-current conversion circuits has a plurality of voltage-to-current conversion units with different first conversion gains;
    the plurality of voltage-to-current conversion units convert the measured voltages according to respective first conversion gains to generate a plurality of the output currents;
    the plurality of output currents generated by the plurality of voltage-to-current conversion units of the selected voltage-to-current conversion circuit are sequentially input to the current comparator one by one;
    wherein the current comparator is configured to output the determination signal according to a comparison result between one of the plurality of output currents input from the selected voltage-current conversion circuit and the reference current; 2. A semiconductor integrated circuit device according to item 1.
  3.  各前記電圧電流変換回路は、
     前記第1変換ゲインを複数に切替えるためのゲイン切替機構を有し、
     前記選択された電圧電流変換回路は、前記ゲイン切替機構によって切替えられた前記複数の第1変換ゲインにそれぞれ従う複数の前記出力電流を、1つずつ順に出力し、
     前記電流比較器は、前記選択された電圧電流変換回路から入力された前記複数の出力電流のうちの1つと、前記基準電流との比較結果に従う前記判定信号を出力するように構成される、請求項1記載の半導体集積回路装置。
    Each voltage-to-current conversion circuit includes:
    Having a gain switching mechanism for switching the first conversion gain to a plurality,
    The selected voltage-current conversion circuit sequentially outputs the plurality of output currents respectively according to the plurality of first conversion gains switched by the gain switching mechanism,
    wherein the current comparator is configured to output the determination signal according to a comparison result between one of the plurality of output currents input from the selected voltage-current conversion circuit and the reference current; 2. A semiconductor integrated circuit device according to item 1.
  4.  各前記電圧電流変換回路は、前記第1変換ゲインがそれぞれ異なる複数の電圧電流変換ユニットを有し、
     前記複数の電圧電流変換ユニットは、前記測定電圧をそれぞれの前記第1変換ゲインに従って変換して複数の前記出力電流を生成し、
     前記複数の電圧電流変換ユニットによって生成された前記複数の出力電流は、並列に前記電流比較器に入力され、
     前記電流比較器は、前記複数の電圧電流変換ユニットから入力された前記複数の出力電流のそれぞれと前記基準電流との比較結果に従う複数の前記判定信号を出力するように構成される、請求項1記載の半導体集積回路装置。
    each of the voltage-to-current conversion circuits has a plurality of voltage-to-current conversion units with different first conversion gains;
    the plurality of voltage-to-current conversion units convert the measured voltages according to respective first conversion gains to generate a plurality of the output currents;
    the plurality of output currents generated by the plurality of voltage-to-current conversion units are input in parallel to the current comparator;
    2. The current comparator is configured to output a plurality of the determination signals according to comparison results between each of the plurality of output currents input from the plurality of voltage-to-current conversion units and the reference current. A semiconductor integrated circuit device as described.
  5.  前記複数の判定信号の論理演算結果を示す信号を生成する判定論理回路を更に備える、請求項4記載の半導体集積回路装置。 5. The semiconductor integrated circuit device according to claim 4, further comprising a decision logic circuit for generating a signal indicating a logical operation result of said plurality of decision signals.
  6.  前記電圧電流変換回路は、1つの前記測定ノードの電圧を前記測定電圧として、前記少なくとも1つの出力電流を生成する、請求項1~5のいずれか1項に記載の半導体集積回路装置。 6. The semiconductor integrated circuit device according to claim 1, wherein said voltage-to-current conversion circuit generates said at least one output current using the voltage of one said measurement node as said measurement voltage.
  7.  前記電圧電流変換回路は、1つの前記測定ノードの異なるタイミングでの第1電圧及び第2電圧の電圧差を前記測定電圧として、前記少なくとも1つの出力電流を生成する、請求項1~5のいずれか1項に記載の半導体集積回路装置。 6. The voltage-current conversion circuit according to any one of claims 1 to 5, wherein the voltage difference between the first voltage and the second voltage at different timings of one of the measurement nodes is used as the measurement voltage to generate the at least one output current. 1. A semiconductor integrated circuit device according to claim 1.
  8.  前記第1電圧及び前記第2電圧は、前記1つの測定ノードの電圧の最大ピーク値及び最小ピーク値である、請求項7記載の半導体集積回路装置。 8. The semiconductor integrated circuit device according to claim 7, wherein said first voltage and said second voltage are the maximum peak value and minimum peak value of the voltage of said one measurement node.
  9.  前記電圧電流変換回路は、2つの前記測定ノードの電圧差を前記測定電圧として、前記少なくとも1つの出力電流を生成する、請求項1~5のいずれか1項に記載の半導体集積回路装置。 6. The semiconductor integrated circuit device according to any one of claims 1 to 5, wherein said voltage-to-current conversion circuit generates said at least one output current using a voltage difference between said two measurement nodes as said measurement voltage.
  10.  前記基準電流源は、予め定められた基準電圧を予め定められた第2変換ゲインに従って電圧電流変換することで前記基準電流を生成する様に構成され、
     各前記電圧電流変換回路における前記第1変換ゲインは、前記判定電圧及び前記基準電圧の比、並びに、前記第2変換ゲインを用いて定められる、請求項1~9のいずれか1項に記載の半導体集積回路装置。
    The reference current source is configured to generate the reference current by converting a predetermined reference voltage into voltage-to-current in accordance with a predetermined second conversion gain,
    10. The first conversion gain in each voltage-current conversion circuit according to claim 1, wherein the first conversion gain is determined using the ratio of the judgment voltage and the reference voltage, and the second conversion gain. Semiconductor integrated circuit device.
  11.  前記第1変換ゲインは、前記測定電圧が前記判定電圧と同等であるときに、前記出力電流と前記基準電流とが同等となるように設定される、請求項1~9のいずれか1項に記載の半導体集積回路装置。 The first conversion gain according to any one of claims 1 to 9, wherein the output current is equal to the reference current when the measured voltage is equal to the judgment voltage. A semiconductor integrated circuit device as described.
  12.  前記半導体集積回路装置は、
     前記複数の電圧電流変換回路と前記電流比較器の間に接続された複数のスイッチを有する選択回路を更に備え、
     前記選択回路において、前記複数のスイッチのうちの、前記選択された電圧電流変換回路と前記電流比較器の間に接続された一部のスイッチは選択的にオンされる、請求項1~11のいずれか1項に記載の半導体集積回路装置。
    The semiconductor integrated circuit device is
    further comprising a selection circuit having a plurality of switches connected between the plurality of voltage-to-current conversion circuits and the current comparator;
    12. The method of claim 1, wherein in said selection circuit, some of said plurality of switches connected between said selected voltage-to-current conversion circuit and said current comparator are selectively turned on. The semiconductor integrated circuit device according to any one of items 1 to 3.
  13.  前記複数の電圧電流変換回路の各々は、前記少なくとも1つの出力電流の経路に介挿接続されたイネーブルスイッチを有し、
     前記イネーブルスイッチは、前記選択された電圧電流変換回路においてオンされる、請求項1~11のいずれか1項に記載の半導体集積回路装置。
    each of the plurality of voltage-to-current conversion circuits has an enable switch interposed and connected to the path of the at least one output current;
    12. The semiconductor integrated circuit device according to claim 1, wherein said enable switch is turned on in said selected voltage-current conversion circuit.
  14.  前記半導体集積回路装置は、
     予め定められた機能を有する第1内部回路と、
     前記第1内部回路と同一機能を有する第2内部回路と、
     前記第1内部回路に係る前記測定電圧及び前記第2内部回路に係る前記測定電圧の一方を選択的に前記電圧電流変換回路に入力するための測定選択回路と、
     前記測定選択回路によって前記第1内部回路に係る前記測定電圧が前記電圧電流変換回路に入力されているときに前記電流比較器から出力された前記判定信号に係る第1情報を記憶するための第1記憶回路と、
     前記測定選択回路によって前記第2内部回路に係る前記測定電圧が前記電圧電流変換回路に入力されているときに前記電流比較器から出力された前記判定信号に係る第2情報を記憶するための第2記憶回路と、
     前記第1記憶回路及び前記第2記憶回路に記憶された前記第1情報及び前記第2情報に基づき、前記第1内部回路に故障が生じているときは前記第2内部回路の出力を用いて前記半導体集積回路装置を動作させる一方で、前記第2内部回路に故障が生じているときは前記第1内部回路の出力を用いて前記半導体集積回路装置を動作させるための出力選択回路とを更に備える、請求項1~13のいずれか1項に記載の半導体集積回路装置。
    The semiconductor integrated circuit device is
    a first internal circuit having a predetermined function;
    a second internal circuit having the same function as the first internal circuit;
    a measurement selection circuit for selectively inputting one of the measured voltage related to the first internal circuit and the measured voltage related to the second internal circuit to the voltage-current conversion circuit;
    a first information for storing first information related to the determination signal output from the current comparator when the measured voltage related to the first internal circuit is input to the voltage-current conversion circuit by the measurement selection circuit; 1 memory circuit;
    a second information for storing second information related to the determination signal output from the current comparator when the measured voltage related to the second internal circuit is input to the voltage-current conversion circuit by the measurement selection circuit; 2 a memory circuit;
    Based on the first information and the second information stored in the first memory circuit and the second memory circuit, using the output of the second internal circuit when a failure occurs in the first internal circuit an output selection circuit for operating the semiconductor integrated circuit device while operating the semiconductor integrated circuit device using the output of the first internal circuit when a failure occurs in the second internal circuit; 14. The semiconductor integrated circuit device according to claim 1, comprising:
PCT/JP2021/039441 2021-10-26 2021-10-26 Semiconductor integrated circuit device WO2023073802A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/039441 WO2023073802A1 (en) 2021-10-26 2021-10-26 Semiconductor integrated circuit device
JP2023555927A JPWO2023073802A1 (en) 2021-10-26 2021-10-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039441 WO2023073802A1 (en) 2021-10-26 2021-10-26 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
WO2023073802A1 true WO2023073802A1 (en) 2023-05-04

Family

ID=86159237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039441 WO2023073802A1 (en) 2021-10-26 2021-10-26 Semiconductor integrated circuit device

Country Status (2)

Country Link
JP (1) JPWO2023073802A1 (en)
WO (1) WO2023073802A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232714A (en) * 1985-08-06 1987-02-12 Clarion Co Ltd Offset voltage correcting circuit
JPH0829493A (en) * 1994-07-14 1996-02-02 Fujitsu Ltd Semiconductor integrated circuit device
JPH09139635A (en) * 1995-09-12 1997-05-27 Toshiba Corp Current mirror circuit
US6008673A (en) * 1997-09-30 1999-12-28 Intel Corporation High speed, low power, current mode comparator
US20110012605A1 (en) * 2009-07-20 2011-01-20 Texas Instruments Incorporated Current based overvoltage and undervoltage detector
JP2012117983A (en) * 2010-12-02 2012-06-21 Advantest Corp Electronic device and measuring apparatus
JP2016211917A (en) * 2015-05-01 2016-12-15 国立研究開発法人産業技術総合研究所 Semiconductor chip, semiconductor device, and semiconductor inspection system
JP2017005609A (en) * 2015-06-15 2017-01-05 株式会社デンソー Overvoltage detection circuit
JP2021173554A (en) * 2020-04-21 2021-11-01 株式会社デンソー Overvoltage determination circuit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232714A (en) * 1985-08-06 1987-02-12 Clarion Co Ltd Offset voltage correcting circuit
JPH0829493A (en) * 1994-07-14 1996-02-02 Fujitsu Ltd Semiconductor integrated circuit device
JPH09139635A (en) * 1995-09-12 1997-05-27 Toshiba Corp Current mirror circuit
US6008673A (en) * 1997-09-30 1999-12-28 Intel Corporation High speed, low power, current mode comparator
US20110012605A1 (en) * 2009-07-20 2011-01-20 Texas Instruments Incorporated Current based overvoltage and undervoltage detector
JP2012117983A (en) * 2010-12-02 2012-06-21 Advantest Corp Electronic device and measuring apparatus
JP2016211917A (en) * 2015-05-01 2016-12-15 国立研究開発法人産業技術総合研究所 Semiconductor chip, semiconductor device, and semiconductor inspection system
JP2017005609A (en) * 2015-06-15 2017-01-05 株式会社デンソー Overvoltage detection circuit
JP2021173554A (en) * 2020-04-21 2021-11-01 株式会社デンソー Overvoltage determination circuit

Also Published As

Publication number Publication date
JPWO2023073802A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US6445244B1 (en) Current measuring methods
US7619402B1 (en) Low dropout voltage regulator with programmable on-chip output voltage for mixed signal embedded applications
KR0151232B1 (en) Power on reset circuit
US6118293A (en) High resolution (quiescent) supply current system (IDD monitor)
US8890503B2 (en) Step-down power supply circuit
KR100927783B1 (en) Fail Bit Verification Circuit and Verification Method of Memory Devices
US20060255787A1 (en) Voltage controlled current source device
US11567522B2 (en) Voltage reference buffer circuit
US5532618A (en) Stress mode circuit for an integrated circuit with on-chip voltage down converter
US8487697B2 (en) Fully differential autozeroing amplifier
US20050136862A1 (en) Circuit and method for setting the operation point of a BGR circuit
CN115843416A (en) Multi-bias mode current conveyors, configuring multi-bias mode current conveyors, touch sensing systems including multi-bias mode current conveyors, and related systems, methods, and devices
US8013668B1 (en) Bias current compensation device and method
WO2023073802A1 (en) Semiconductor integrated circuit device
CN114373497A (en) Fuse burning circuit
JP2006230192A (en) Charge pump circuit for semiconductor memory apparatus
US6573783B2 (en) Method and apparatus for open-loop input offset adjustment in a differential amplifier
US20190086355A1 (en) Semiconductor apparatus including a capacitance measuring circuit
US6590980B1 (en) Low voltage, low power operational amplifier with rail to rail output
US7190212B2 (en) Power-up and BGREF circuitry
KR20100089508A (en) Circuit of testing for fail bit and semiconductor memory device with the same
US20030184395A1 (en) CR oscillation circuit
KR100387192B1 (en) Semiconductor device having an internal power supply circuit
JPH06187780A (en) Voltage supply device of internal power supply of semiconductor memory device
JP3297361B2 (en) Semiconductor integrated circuit with hysteresis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555927

Country of ref document: JP