WO2023070378A1 - 光波长的测量装置和方法、光波长的控制设备及发光系统 - Google Patents

光波长的测量装置和方法、光波长的控制设备及发光系统 Download PDF

Info

Publication number
WO2023070378A1
WO2023070378A1 PCT/CN2021/126758 CN2021126758W WO2023070378A1 WO 2023070378 A1 WO2023070378 A1 WO 2023070378A1 CN 2021126758 W CN2021126758 W CN 2021126758W WO 2023070378 A1 WO2023070378 A1 WO 2023070378A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
wavelength
measured
frequency
Prior art date
Application number
PCT/CN2021/126758
Other languages
English (en)
French (fr)
Inventor
周雷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/126758 priority Critical patent/WO2023070378A1/zh
Publication of WO2023070378A1 publication Critical patent/WO2023070378A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength

Definitions

  • the present application relates to the field of optoelectronic technology, in particular to a measurement device and method for light wavelength, light wavelength control equipment and a light emitting system.
  • optical inspection has developed into an optical-based technology that closely intersects and interpenetrates with information science, space science, precision machinery and manufacturing, computer science, and microelectronics technology.
  • optical wavelength measurement is widely used in the above technical fields. Taking the field of laser technology as an example, by installing a light wavelength measuring device in the laser, the laser can measure the wavelength of the generated laser light, and then adjust the luminous parameters according to the measured value of the wavelength to stabilize the wavelength of the laser light at a certain value. wavelength.
  • the optical wavelength measurement device is generally provided with a photodetector, which detects the change of optical power with time through the photodetector, and then measures the optical wavelength.
  • a photodetector which detects the change of optical power with time through the photodetector, and then measures the optical wavelength.
  • photodetectors can only respond to changes in optical power below a certain frequency value (called cut-off frequency value), resulting in a limited range of optical wavelengths that can be detected by optical wavelength measurement devices , which is not conducive to the wide application of optical wavelength measurement technology in the above technical fields.
  • Embodiments of the present application provide an optical wavelength measurement device and method, an optical wavelength control device, and a light emitting system, which are used to expand the wavelength range that can be detected by the optical wavelength measurement technology.
  • an embodiment of the present application provides an optical wavelength measuring device, including: a multiplex generation module, configured to superimpose the light to be measured with a plurality of light components respectively, so as to obtain each of the plurality of light components The multiplexing corresponding to the optical component, wherein the multiple optical components include the optical component of each comb frequency value corresponding to the multiple comb tooth frequency values of the optical frequency comb in the optical frequency comb, and the multiplexing refers to superposition The obtained light; the photodetector, used to convert the combined wave corresponding to each light component in the plurality of light components into an electrical signal; The target electrical signal and the target comb frequency value corresponding to the target light component determine the measured value of the wavelength of the light to be measured, wherein the target electrical signal includes a beat frequency signal.
  • the optical wavelength measurement device uses the light component corresponding to each comb tooth frequency value of the multiple comb tooth frequency values of the optical frequency comb to superimpose the light to be measured respectively, and detects the frequency of the beat frequency signal in the combined wave value to measure the wavelength of the light to be measured, the detection problem of the wavelength of the light to be measured can be converted into the detection problem of the beat frequency signal.
  • the frequency of the beat frequency signal is usually small, for example, the frequency interval between the light to be measured and the closest comb teeth in the optical frequency comb is smaller than the repetition frequency value of the optical frequency comb, so even if the frequency value of the light to be measured is greater than that of the photoelectric
  • the signal processor can obtain the frequency value of the light to be measured by detecting the frequency value of the beat frequency signal, which is conducive to expanding the range of light wavelengths that the light wavelength measuring device can detect, and is conducive to realizing light wavelength measurement in A wide range of applications in the field of optical technology and other technical fields combined with optical technology.
  • each multiplex wave received by the photodetector is a multiplex wave of the light component corresponding to a single comb tooth frequency value and the light to be measured
  • the signal processor recognizes the beat frequency signal in the electrical signal, it can The comb tooth frequency value of the light component corresponding to the electrical signal and the frequency value of the beat frequency signal determine the measured value of the wavelength of the light to be measured, which is beneficial to simplify the calculation process.
  • the multiplex generation module is specifically configured to sequentially superimpose the light to be measured with the light components in the light component sequence, wherein the light component sequence includes the plurality of light components arranged in a target order.
  • the multiplex generation module is specifically configured to sequentially superimpose the light to be measured with the light components in the light component sequence, wherein the light component sequence includes the plurality of light components arranged in a target order.
  • the target order is the first order or the second order
  • the target light component is the first available light component in the light component sequence
  • the electrical signal corresponding to the available light component includes beat frequency signal
  • the first order is the order of the corresponding comb tooth frequency values from small to large
  • the second order is the order of the corresponding comb tooth frequency values from large to small.
  • the multiplex generation module includes an optical frequency comb generation unit, a wavelength selection unit, and a multiplexer unit; the optical frequency comb generation unit is used to generate an optical frequency comb; the wavelength selection unit is used to generate an optical frequency comb according to the The optical frequency comb outputs the light component sequence; the multiplexing unit is used to superimpose the light component output by the wavelength selection unit (that is, each light component in the light component sequence) with the light to be measured to obtain Combined wave corresponding to each light component.
  • An optical frequency comb generating unit is arranged in the multiplexing generating module, so that the wavelength selecting unit can accurately output the light component corresponding to a single comb tooth frequency value, thereby improving the accuracy of the wavelength measurement result.
  • the wavelength selection unit includes a wavelength division multiplexer, an optical switch array, and a wavelength division multiplexer; the wavelength division multiplexer is used to separate the plurality of light from the optical frequency comb component, the plurality of optical components are respectively incident on the plurality of optical switches in the optical switch array, wherein each optical switch in the plurality of optical switches corresponds to one light in the plurality of optical components component; each optical switch in the plurality of optical switches in the optical switch array is used to receive one of the plurality of optical components, and the optical switch array is used to turn on the corresponding optical components in sequence according to the target order an optical switch to output corresponding optical components; the wavelength division multiplexer is used to combine the output optical paths of each optical switch in the plurality of optical switches into one path (referred to as the target path), or in other words, combine the The propagation paths of the light components output by each of the multiple optical switches are merged into a target path, so as to output the sequence of light components through the target light path.
  • the target path referred to as the target path
  • the wavelength selection unit uses the optical switch array to sequentially output multiple optical components to the wavelength division multiplexer according to the target order, which is beneficial to the corresponding time length of the optical component sequence, thereby facilitating The target electrical signal is identified in a short period of time, which is conducive to improving the test efficiency.
  • the wavelength selection unit includes an optical filter, and the optical filter is configured to sequentially separate corresponding light components from the optical frequency comb according to the target sequence, so as to output the light component sequence.
  • the volume of the optical filter is generally smaller, and the wavelength selection unit uses the optical filter to sequentially separate the light component sequence from the optical frequency comb, which is beneficial to reduce the volume of the optical wavelength measurement device.
  • the multiplexing unit includes a first polarization adjuster, a second polarization adjuster, and a multiplexer;
  • the first polarization adjuster is configured to adjust each light component in the light component sequence to a second polarization adjuster. linearly polarized light in a polarization direction;
  • the second polarization adjuster is configured to adjust the light to be measured to linearly polarized light in a second polarization direction, wherein the first polarization direction and the second polarization direction not vertical;
  • the multiplexer is configured to superimpose each of the light components adjusted by the first polarization adjuster and the light to be measured adjusted by the second polarization adjuster to obtain The multiplex wave corresponding to each light component. This is beneficial to produce a stable beat effect in the combined wave obtained by superposition, and is convenient for detecting the beat frequency signal from the combined electric signal.
  • the embodiment of the present application provides a method for measuring the wavelength of light, including: superimposing the light to be measured with a plurality of light components respectively, so as to obtain a combined wave corresponding to each light component in the plurality of light components, wherein, the multiple light components include light components corresponding to each comb tooth frequency value in the multiple comb tooth frequency values of the optical frequency comb in the optical frequency comb; each light component in the multiple light components The corresponding multiplexed wave is converted into an electrical signal; the measured value of the wavelength of the light to be measured is determined according to the target electrical signal corresponding to the target light component in the plurality of light components and the target comb frequency value corresponding to the target light component, Wherein, the target electrical signal includes a beat frequency signal.
  • said superimposing the light to be measured on multiple light components respectively includes: sequentially superimposing the light to be measured on the light components in the light component sequence, wherein the light component sequence includes the plurality of light components.
  • the target order is the first order or the second order
  • the target light component is the first available light component in the light component sequence
  • the electrical signal corresponding to the available light component includes beat frequency signal
  • the first order is the order of the corresponding comb tooth frequency values from small to large
  • the second order is the order of the corresponding comb tooth frequency values from large to small.
  • said superimposing the light to be measured with a plurality of light components respectively includes: adjusting each light component in the sequence of light components to linearly polarized light in the first polarization direction; Adjusting to linearly polarized light with a second polarization direction, wherein the first polarization direction and the second polarization direction are not perpendicular; superimposing each adjusted light component and the adjusted light to be measured , to obtain the multiplex wave corresponding to each light component.
  • the method provided by the second aspect is based on the same inventive concept as the device provided by the first aspect.
  • the embodiment method provided by the second aspect can be regarded as the corresponding method of the optical wavelength measurement device provided by the first aspect during operation.
  • the implementation manners and technical effects not described in detail in the embodiments of the second aspect refer to the relevant descriptions in the corresponding embodiments of the first aspect.
  • the embodiment of the present application provides an optical wavelength control device, including an optical wavelength adjustment device and an optical wavelength measurement device corresponding to any possible implementation in the first aspect; the optical wavelength an adjusting device, configured to obtain a measured value of the wavelength of the light to be measured from the light wavelength measuring device, and control the light source device of the light to be measured to adjust the light emission wavelength to the target value.
  • an embodiment of the present application provides a lighting system, including a light source device and a light wavelength control device as introduced in the third aspect.
  • the light source device is a laser.
  • the light emitting system can be a wavelength locked laser.
  • Fig. 1 schematically shows a possible structure of a measurement device for light wavelength in the embodiment of the present application
  • FIG. 2 schematically shows a possible structure of a wavelength-locked laser according to an embodiment of the present application
  • Fig. 3 exemplarily shows another possible structure of the measurement device of the light wavelength of the embodiment of the present application
  • Figure 4-1 exemplarily shows a possible frequency spectrum of the optical frequency comb involved in the embodiment of the present application
  • Figure 4-2 exemplarily shows the frequency spectrum corresponding to each light component among the multiple light components involved in the embodiment of the present application
  • Figure 4-3 exemplarily shows the frequency spectrum corresponding to each of the multiple multiplexes involved in the embodiment of the present application
  • Figure 5, Figure 6-1 and Figure 6-2 respectively illustrate the possible structure of the measurement device for the light wavelength of the embodiment of the present application
  • FIG. 7 exemplarily shows a possible flow of the method for measuring the wavelength of light in the embodiment of the present application.
  • Fig. 8 exemplarily shows a possible structure of the light wavelength control device and the lighting system of the embodiment of the present application
  • Fig. 9 exemplarily shows another possible structure of the lighting system of the embodiment of the present application.
  • Embodiments of the present application provide an optical wavelength measurement device and method, an optical wavelength control device, and a light emitting system. Embodiments of the present application will be described below in conjunction with the accompanying drawings.
  • Figure 1 shows a possible structure of the light wavelength measuring device.
  • the light wavelength measuring device can measure the wavelength of the light to be measured to obtain the measured value of the wavelength.
  • the embodiment of the present application does not limit the type of light to be measured. Taking the field of laser technology as an example, the light to be measured may be, for example, a laser.
  • the device for measuring the wavelength of light may output the measured value and/or other information related to the measured value.
  • other information related to the measured value may include the difference between the measured value and the target value of the wavelength of the light to be measured.
  • the difference may include a difference and/or a ratio between the measured value and the target value.
  • the target value may be set at the factory or set by the user, for example.
  • the light wavelength measurement device outputs the frequency of the light to be measured or information related to the frequency of the light to be measured, it can be considered that the output information is related to the wavelength of the light to be measured.
  • FIG. 2 shows a schematic diagram of a possible structure of a wavelength-locked laser
  • the wavelength-locked laser may include an optical wavelength measuring device provided in an embodiment of the present application.
  • the wavelength-locked laser may include a laser, a device for measuring the wavelength of light, and a device for adjusting the wavelength of light.
  • the laser is used to generate laser light, and part of the laser light generated by the laser is incident on the light wavelength measuring device, and the light wavelength measuring device measures the wavelength of the incident light.
  • the optical wavelength adjustment device can obtain the measured value of the wavelength obtained by the optical wavelength measuring device, and calculate the difference between the measured value and the preset target value, and then send a control signal to the laser according to the size of the difference, the control signal It is used to control the laser to adjust the emission wavelength to reduce the difference between the emission wavelength and the target value.
  • the laser adjusts the emission wavelength under the control of the control signal, which is beneficial to stabilize the emission wavelength at the target value.
  • the embodiment of the present application does not limit how the laser adjusts the emission wavelength according to the control signal.
  • the laser can adjust emission parameters (such as temperature and/or excitation current) according to the control signal, thereby adjusting the emission wavelength.
  • optical wavelength measuring device provided in the embodiment of the present application is introduced below.
  • Fig. 3 shows a possible structure of the device for measuring the wavelength of light provided by the embodiment of the present application.
  • the device for measuring the wavelength of light may include a multiplex generation module, a photodetector and a signal processor.
  • the wave multiplexing generation module is used to superimpose the light to be measured with a plurality of light components after receiving the light to be measured, so as to obtain a multiplex wave corresponding to each light component in the multiple light components, wherein the multiple light components include The light component in the optical frequency comb corresponds to each comb frequency value among the plurality of comb tooth frequency values of the optical frequency comb.
  • An optical frequency comb refers to a type of light whose spectrum is similar to a comb tooth. Specifically, its spectrum includes multiple frequency values (also known as comb tooth frequency values), and any two of the multiple comb tooth frequency values The interval between adjacent comb tooth frequency values is a certain fixed frequency value. In the embodiment of the present application, the fixed frequency value may also be referred to as the repetition frequency value of the optical frequency comb.
  • Spectrum 1 in Figure 4-1 schematically shows the spectrum of an optical frequency comb. Referring to spectrum 1 in FIG.
  • the optical frequency comb may include an optical component corresponding to the comb-tooth frequency value f1, an optical component corresponding to the comb-tooth frequency value f2, an optical component corresponding to the comb-tooth frequency value f3, and an optical component corresponding to the comb-tooth frequency value f4.
  • the arrows in spectrum 1 are used to indicate that f1-f5 gradually increase in the direction of the arrows.
  • Figure 3 only exemplarily shows some comb tooth frequency values in the optical frequency comb, and the optical frequency comb may include more or less comb tooth frequency values, for example, the frequency spectrum 1 of the optical frequency comb may also include a frequency value smaller than f1 or a plurality of comb-tooth frequency values, and/or, including one or more comb-tooth frequency values greater than f5, and/or, including one or more comb-tooth frequency values between f1 to f5.
  • f1 to f5 are any five different comb tooth frequency values in the optical frequency comb.
  • the multiple light components include the light component L1 corresponding to f1 in the optical frequency comb, the light component L2 corresponding to f2, the light component L3 corresponding to f3, and the light component L4 corresponding to f4, then the multiple comb frequency values include f1, f2 , f3 and f4.
  • Spectrum 2.1 to Spectrum 2.4 in Fig. 4-2 illustrate the spectrum of L1 to L4 respectively.
  • the embodiment of the present application does not limit the number of light components included in the multiple light components, and the multiple light components may include more or fewer light components.
  • the embodiment of the present application does not limit that frequency values corresponding to any two light components among the multiple light components are different, as long as there are at least two light components with different frequency values among the multiple light components.
  • the plurality of light components may also include light component L5, and the comb tooth frequency value corresponding to L5 is f1.
  • Spectrum 1 in Figure 4-1 also shows the real value fx of the optical frequency to be measured.
  • the light component corresponding to fx in spectrum 1 is only used to illustrate the magnitude relationship between fx and the comb frequency of the optical frequency comb. It does not mean that the optical frequency comb includes an optical component corresponding to fx.
  • the multiplex generation module superimposes the light to be measured with multiple light components, it can obtain the multiplex 1 obtained by superimposing L1 and the light to be measured, the composite 2 obtained by superimposing L2 and the light to be measured, and the superimposed L3 and the light to be measured The obtained combined wave 3, and the combined wave 4 obtained by superimposing L4 and the light to be measured. Spectrum 3.1 to spectrum 3.4 in Fig.
  • FIG. 4-3 illustrate the spectrum of multiplexing 1 to multiplexing 4, respectively.
  • the difference between f1 and fx is fb1
  • the difference between f2 and fx is fb2
  • the difference between f3 and fx is fb3
  • the difference between f4 and fx is fb4.
  • the multiple multiplex waves obtained by the multiplex wave generating module can be respectively incident on the photodetectors, and the photodetectors are used to convert the multiplex waves corresponding to each of the multiple light components into electrical signals.
  • the embodiment of the present application refers to the electrical signal converted by the multiplexing corresponding to Li as the electrical signal corresponding to Li, where i is less than or Any positive integer equal to 4.
  • the frequency spectrum of the electrical signal corresponding to Li can reflect the frequency component corresponding to fpi, or in other words, the frequency component corresponding to L
  • the electrical signal includes a signal corresponding to fpi. If the frequency fpi of the combined optical power corresponding to Li is greater than the cut-off frequency value of the photodetector, then the frequency spectrum of the electrical signal corresponding to Li cannot reflect the frequency component corresponding to fpi, or in other words, the electrical signal corresponding to Li does not include The signal corresponding to fpi.
  • the combined wave i corresponding to Li corresponds to The frequency spectrum of an electrical signal generally cannot reflect the frequency components corresponding to fx or fi.
  • the amplitude of the superimposed waveform will periodically change in strength over time, that is, a beat effect will be generated.
  • the frequency of the amplitude change of the superimposed waveform is two interharmonics.
  • the difference in wave frequency since the difference fbi between fi and fx is usually smaller than fi or fx, even though the frequency spectrum of the electrical signal corresponding to Li does not include the frequency component corresponding to fi or fx, it may include the frequency component corresponding to fbi.
  • the frequency component corresponding to fbi in the electrical signal corresponding to Li is called a beat frequency signal.
  • the photodetector can be connected with the signal processor, and the electric signals obtained by the photodetector corresponding to the multiple light components can be respectively input to the signal processor.
  • the signal processor is used to obtain the electrical signal obtained by the photodetector, and determine the measurement value of the wavelength of the light to be measured according to the target electrical signal corresponding to the target light component among the multiple light components and the target comb frequency value corresponding to the target light component , wherein the target electrical signal includes a beat frequency signal.
  • the signal processor can obtain the electrical signal corresponding to Li and determine whether the electrical signal includes a beat frequency signal.
  • the embodiment of the present application does not limit how the signal processor determines whether the electrical signal includes a beat frequency signal.
  • the signal processor may perform Fourier transform on the electrical signal to obtain a frequency spectrum of the electrical signal, and judge whether the electrical signal includes a beat signal according to the frequency spectrum.
  • any one of the comb-tooth frequency values in the multiple comb-tooth frequency values is greater than the cut-off frequency value of the photodetector, then, if the frequency spectrum of the electrical signal corresponding to fi includes a frequency component corresponding to a certain frequency value, it can be The frequency component is considered to be a beat frequency signal in the electrical signal, and the frequency value corresponding to the frequency component is the difference fbi between fi and fx.
  • the signal processor can identify the beat frequency signal corresponding to fb2 from the electrical signal corresponding to L2, and identify the beat frequency signal corresponding to fb3 from the electrical signal corresponding to L3.
  • the electrical signal including the beat frequency signal recognized by the signal processor is referred to as the electrical signal corresponding to the available light component. If the signal processor identifies electrical signals corresponding to multiple available light components, the signal processor may use one or more electrical signals in the multiple available light components as the target electrical signal. Continuing to refer to Fig.
  • the optical wavelength measurement device uses the light component corresponding to each comb tooth frequency value of the multiple comb tooth frequency values of the optical frequency comb to superimpose the light to be measured respectively, and detects the frequency of the beat frequency signal in the combined wave value to measure the wavelength of the light to be measured, the detection problem of the wavelength of the light to be measured can be converted into the detection problem of the beat frequency signal.
  • the frequency of the beat frequency signal is usually small, for example, the frequency interval between the light to be measured and the closest comb teeth in the optical frequency comb is smaller than the repetition frequency value of the optical frequency comb, so even if the frequency value of the light to be measured is greater than that of the photoelectric
  • the signal processor can obtain the frequency value of the light to be measured by detecting the frequency value of the beat frequency signal, which is conducive to expanding the range of light wavelengths that the light wavelength measuring device can detect, and is conducive to realizing light wavelength measurement in A wide range of applications in the field of optical technology and other technical fields combined with optical technology.
  • each multiplex wave received by the photodetector is a multiplex wave of the light component corresponding to a single comb tooth frequency value and the light to be measured
  • the signal processor recognizes the beat frequency signal in the electrical signal, it can The comb tooth frequency value of the light component corresponding to the electrical signal and the frequency value of the beat frequency signal determine the measured value of the wavelength of the light to be measured, which is beneficial to simplify the calculation process.
  • the multiplex generation module is used to superimpose the light to be measured with multiple light components respectively, and the photodetector is used to respectively convert multiplex corresponding to multiple light components into electrical signals.
  • This example does not limit the implementation of "respectively”.
  • the multiplex generation module can perform superposition operations through multiple optical paths, and the photodetector can perform photoelectric conversion through multiple light detection units.
  • the multiplex generation module can perform superposition operations at multiple times, for example, the multiplex generation module is used to sequentially superimpose the light to be measured with the light components in the light component sequence, wherein the light component sequence Including multiple light components arranged according to the target order, for example, according to the order of time, the multiplex generation module first superimposes the light to be measured with L1 to obtain multiplex 1, and then superimposes the light to be measured with L2 to obtain multiplex 2 , after that, superimpose the light to be measured with L3 to obtain multiplex 3, and then superimpose the light to be measured with L4 to obtain multiplex 4.
  • the photodetector can first receive the combined wave 1, perform photoelectric conversion on the combined wave 1, then receive the combined wave 2, and perform photoelectric conversion on the combined wave 2, and so on, and obtain the electrical signals corresponding to L1 in chronological order. signal, the electrical signal corresponding to L2, the electrical signal corresponding to L3, and the electrical signal corresponding to L4. In this way, it is beneficial to reduce the number of optical paths in the measuring device for light wavelengths, thereby helping to reduce the cost and volume of the measuring device.
  • the target order may be the order of the corresponding comb frequency values from small to large (called the first order), and the comb frequency value corresponding to the first available light component in the light component sequence is smaller than that of the light to be measured
  • the light components in the light component sequence are L1, L2, L3 and L4 in sequence, and assuming that the electrical signals corresponding to L2 and L3 include beat frequency signals, then L2 and L3 are called usable light components.
  • the target order can be the order of the corresponding comb frequency values from large to small (called the second order), and the comb frequency value corresponding to the first available light component in the light component sequence is greater than the frequency value to be measured
  • the light components in the light component sequence are L1, L2, L3 and L4 in sequence, and assuming that the electrical signals corresponding to L2 and L3 include beat frequency signals, then L2 and L3 are called usable light components.
  • the first available light component is used as the target light component, which is convenient to accurately determine the frequency value between the frequency value of the light to be measured and the comb frequency value corresponding to the target light component.
  • the size relationship of the light to be measured is conducive to improving the accuracy of the measurement results of the light to be measured.
  • the multiplex generation module can adjust the polarization state of the light to be measured and the light component respectively, so that the polarization state of the light to be measured and the polarization state of the light component are consistent, and then the adjusted The light to be measured and the light component are superimposed, which is beneficial to produce a stable beat effect in the combined wave obtained by the superposition, and is convenient to detect the beat frequency signal from the combined electrical signal.
  • the multiplex generation module is used to adjust the light to be measured and the light components to linearly polarized light in the first polarization direction and linearly polarized light in the second polarization direction, wherein the first polarization direction and the second polarization direction are not perpendicular .
  • the possible structure and functions of the measuring device for optical wavelengths have been introduced above through the embodiment corresponding to FIG. 3 .
  • the specific structure and functions of the measuring device will be further introduced below based on the embodiment corresponding to FIG. 3 . It should be noted that the embodiment of the present application does not limit the specific structure adopted by the optical wavelength measuring device to realize the above functions.
  • the multiplex generation module may include an optical frequency comb generation unit, a wavelength selection unit, and a multiplexer unit.
  • the optical frequency comb generation unit is used to generate the optical frequency comb.
  • the wavelength selection unit is used to output the light component sequence according to the optical frequency comb.
  • the multiplexing unit is used to superimpose the light components output by the wavelength selection unit and the light to be measured to obtain multiplexed waves corresponding to the corresponding light components.
  • the optical frequency comb generating unit is used for generating an optical frequency comb.
  • the optical frequency comb generated by it can be, for example, spectrum 1 shown in Fig. 4-1.
  • the embodiment of the present application does not limit the specific device used by the optical frequency comb generation unit.
  • the optical frequency comb generation unit may include a laser, and the laser may be, for example, a wavelength-locked laser.
  • the positions of the optical frequency comb generation unit and the wavelength selection unit can be set such that the optical frequency comb emitted by the optical frequency comb generation unit can be incident on the light receiving end of the wavelength selection unit.
  • the embodiment of the present application does not limit that the optical receiving end of the wavelength selection unit is located in the outgoing direction of the optical frequency comb generating unit.
  • an optical path adjustment unit (called a first optical path adjustment unit) may also be provided in the optical wavelength measurement device.
  • the first optical path adjustment unit is used to guide the optical frequency comb emitted by the optical frequency comb generating unit to the light receiving end of the wavelength selection unit.
  • the first optical path adjustment unit may include a light reflection element and/or a refraction element.
  • the wavelength selection unit is used to receive the optical frequency comb generated by the optical frequency comb generation unit, and respectively output a plurality of optical components corresponding to a plurality of comb tooth frequency values of the optical frequency comb, wherein each optical component in the plurality of optical components Corresponds to one comb frequency value among multiple comb frequency values.
  • multiple light components include L1 to L4.
  • Comb frequency values corresponding to L1, L2, L3, and L4 are f1, f2, f3, and f4, respectively.
  • the embodiment of the present application does not limit the number of light components included in the multiple light components, and the multiple light components may include more or fewer light components.
  • the embodiment of the present application does not limit that frequency values corresponding to any two light components among the multiple light components are different, as long as there are at least two light components with different frequency values among the multiple light components.
  • the plurality of light components may also include light component L5, and the comb tooth frequency value corresponding to L5 is f1.
  • Implementation mode 1 "respectively" is implemented through multiple optical output terminals of the wavelength selection unit.
  • the wavelength selection unit may be provided with a plurality of optical output terminals. After receiving the optical frequency comb, the wavelength selection unit may extract light components corresponding to a plurality of comb tooth frequency values in the optical frequency comb, and pass the multiple light components through the optical frequency comb at the same time. A plurality of light output terminals output, wherein each light output terminal is used to output a light component. For example, the wavelength selection unit outputs L1 through the optical output terminal 1, outputs L2 through the optical output terminal 2, outputs L3 through the optical output terminal 3, and outputs L4 through the optical output terminal 4.
  • Realization 2 "Respectively" is realized through multiple moments.
  • the wavelength selection unit may respectively output multiple light components through one light output port at multiple times, that is, output a sequence of light components. For example, output L1 through optical output terminal 1 at time 1, then output L2 through optical output terminal 1 at time 2, then output L3 through optical output terminal 3 at time 3, and then output through optical output terminal 1 at time 4 L4.
  • Implementation mode 3 "respectively" is realized through multiple light output terminals and multiple times.
  • the wavelength selection unit may output multiple light components through multiple optical output ports at multiple times. For example, at time 1, the wavelength selection unit outputs L1 through optical output terminal 1, outputs L2 through optical output terminal 2, and then outputs L3 through optical output terminal 1 at time 2, and outputs L4 through optical output terminal 2.
  • the multiple light components output by the wavelength selection unit can be the same or different.
  • the multiple light components can be determined according to the test task, for example, the range and interval of the frequency values corresponding to the light components in the multiple light components can be based on the estimated range of the wavelength of the light to be measured and the required test accuracy, etc. to make sure.
  • the functions of the wavelength selection unit are introduced above, and the embodiment of the present application does not limit the specific structure adopted by the wavelength selection unit to realize the above functions.
  • FIG. 6-1 schematically shows another possible structure of the device for measuring the wavelength of light in the embodiment of the present application.
  • the wavelength selection unit may include a wavelength division multiplexer, an optical switch array, and a wavelength division multiplexer.
  • the wave division multiplexer is used to separate the light component of each comb tooth frequency value in the multiple comb tooth frequency values from the optical frequency comb, and the separated multiple light components are respectively incident on the multiple optical components in the optical switch array.
  • each optical switch in the plurality of optical switches corresponds to one optical component in the plurality of optical components.
  • the wave division multiplexer can separate L1-L4 from the optical frequency comb, wherein L1-L4 are respectively incident on optical switches 1-4 in the optical switch array.
  • the optical switch array is used to sequentially turn on the optical switches corresponding to each of the multiple optical components according to the target order under the control of the control signal. That is to say, if L1 is prior to L2 in the target order, then the optical switch array first turns on the optical switch corresponding to L1, and then turns on the optical switch corresponding to L2.
  • the embodiment of the present application does not limit the specific form of the target sequence. Assume that the target sequence is the first sequence. Referring to Figure 6-1, the optical switch array first turns on the optical switch 1, and then turns off the optical switches 2 to 4.
  • L1 can pass through The optical path of the optical switch 1 enters the wavelength multiplexer, while L2-L3 cannot enter the wavelength multiplexer.
  • the optical switch 2 is turned on, and the optical switch 1, the optical switch 3 and the optical switch 4 are turned off.
  • L2 can enter the wavelength multiplexer through the optical path of the optical switch 2, while L1, L3 and L4 cannot be incident to the wavelength multiplexer.
  • the optical switch 3 is turned on, and the optical switch 1, the optical switch 2 and the optical switch 4 are turned off.
  • L3 can enter the wavelength multiplexer through the optical path of the optical switch 3, while L1, L2 and L4 cannot be incident to the wavelength multiplexer.
  • the optical switch 4 is turned on, and the optical switch 1, the optical switch 2 and the optical switch 3 are turned off.
  • L4 can enter the wavelength multiplexer through the optical path of the optical switch 4, while L1, L2 and L3 cannot enter the wavelength multiplexer. . That is to say, the optical switch array sequentially outputs L1, L2, L3 and L4, that is, sequentially outputs multiple optical components according to the first sequence.
  • control signal can come from the wavelength selection unit, or, as shown in Figure 6-1, from the signal acquisition and processing module, or may come from other modules in the wavelength selective unit, or from other devices outside the wavelength selective unit.
  • a wavelength division multiplexer is used to combine the output optical paths of each optical switch in a plurality of optical switches into one (called the target optical path), or in other words, to combine the propagation of the optical components output by each optical switch in a plurality of optical switches
  • the paths are merged into a target path to output a sequence of light components through the target light path.
  • the wavelength multiplexer can adjust the optical path of L1 so that L1 is incident on the multiplexing unit.
  • the wavelength multiplexer may include one or more optical path adjustment elements, where the optical path adjustment elements may include, for example, a light reflection element or a light refraction element.
  • FIG. 6-2 schematically shows another possible structure of the device for measuring the wavelength of light in the embodiment of the present application.
  • the wavelength selection unit may include an optical filter.
  • the optical filter is used to sequentially separate each of the plurality of light components from the optical frequency comb according to the target order under the control of the control signal.
  • the embodiment of the present application does not limit the specific form of the target order.
  • the target order is the first order or the second order, wherein the first order is the order of the corresponding comb tooth frequency values from small to large, and the second order is The order of the corresponding comb frequency values is from large to small.
  • the optical filter separates L1 from the received optical frequency comb. Afterwards, an optical filter separates L2 from the received optical frequency comb. Afterwards, an optical filter separates L3 from the received optical frequency comb. Afterwards, an optical filter separates L4 from the received optical frequency comb. That is to say, the optical filter sequentially outputs L1, L2, L3 and L4 under the control of the control signal, that is, sequentially outputs multiple light components according to the first sequence.
  • control signal may come from the wavelength selection unit, or, for example, as shown in FIG. 6-2, from the signal processor, Or it can come from other modules in the wavelength selective unit, or from other devices outside the wavelength selective unit.
  • the positions of the wavelength selection unit and the multiplexing unit can be set such that the light component sequence output by the wavelength selection unit can be sequentially incident on the light receiving end of the multiplexing unit. Similar to the content in 1.2), the embodiment of the present application does not limit that the optical receiving end of the multiplexing unit is located in the outgoing direction of the wavelength selection unit.
  • a second optical path adjustment unit may also be provided in the optical wavelength measurement device , the second optical path adjustment unit is used to sequentially guide the light component sequence emitted by the wavelength selection unit to the light receiving end of the multiplexing unit.
  • the second optical path adjustment unit may include a light reflection element and/or a refraction element.
  • the multiplexing unit is used to receive the light to be measured and the light components of the multiple light components, and superimpose the light to be measured with each of the multiple light components, so as to output multiplex waves corresponding to the corresponding light components.
  • the multiplexing unit can superimpose L1 with the light to be measured and output multiplex 1, superimpose L2 with the light to be measured and output multiplex 2, superimpose L3 with the light to be measured and output multiplex 3, and combine L4 with the light to be measured to output multiplex 3.
  • the light is superimposed and output multiplexed 4.
  • Spectrum 3.1 to spectrum 3.4 in Fig. 4-3 illustrate the spectrum of multiplexing 1 to multiplexing 4, respectively.
  • the multiplexing unit may obtain the multiplex corresponding to each of the multiple light components in a corresponding manner.
  • the multiplexing unit can superimpose L1 and the light to be measured through the multiplexer 1 and output the multiplexed 1, and through the multiplexer 1
  • the device 2 superimposes L2 and the light to be measured to output a multiplexer 2
  • the multiplexer 3 superimposes L3 and the light to be measured to output a multiplexer 3
  • the multiplexer 4 superimposes L4 and the light to be measured to output a multiplexer 4.
  • the wave combining unit can superimpose L1 and the light to be measured at time 1 and output multiple wave 1, and then, at time 2 Superimpose L2 with the light to be measured and output multiplex 2, then at time 3, superimpose L3 with the light to be measured and output multiplex 3, and then at time 4, superimpose L4 with the light to be measured and output multiplex 4.
  • the multiplexing unit may include a first polarization adjuster, a second polarization adjuster, and a multiplexer.
  • the first polarization adjuster can be used to adjust the polarization state of the light component output by the wavelength selection unit
  • the second polarization adjuster can be used to adjust the polarization state of the light to be measured, so that the polarization state of the light to be measured and the wavelength selection unit
  • the polarization states of the output light components are kept consistent, which is conducive to generating a stable beat effect in the multiplex output by the multiplex unit, and is convenient for detecting beat frequency signals from the multiplex.
  • the first polarization adjuster is used to adjust each of the plurality of light components to linearly polarized light in the first polarization direction.
  • the second polarization adjuster is used to adjust the light to be measured into linearly polarized light with a second polarization direction. Wherein, the first polarization direction and the second polarization direction are not perpendicular.
  • the multiplexer is used to superimpose each light component adjusted by the first polarization adjuster and the light to be measured adjusted by the second polarization adjuster to obtain the multiplex corresponding to each light component.
  • the multiplexer may include one or more optical path adjustment elements, where the optical path adjustment elements may include, for example, a light reflection element or a light refraction element.
  • the multiplexer can receive L1 adjusted by the first polarization adjuster and the light to be measured adjusted by the second polarization unit, superimpose the two and output multiplex 1 . Afterwards, the multiplexer can receive L2 adjusted by the first polarization adjuster and the light to be measured adjusted by the second polarization unit, superimpose them and output multiplex 2 . Afterwards, the multiplexer can receive L3 adjusted by the first polarization adjuster and the light to be measured adjusted by the second polarization unit, superimpose the two and output multiplexed 3 .
  • the multiplexer can receive L4 adjusted by the first polarization adjuster and the light to be measured adjusted by the second polarization unit, superimpose the two and output multiplexed 4 . That is to say, if the wavelength selection unit outputs L1 , L2 , L3 and L4 in sequence, the multiplexing unit can output multiplexing 1 , multiplexing 2 , multiplexing 3 and multiplexing 4 in sequence. In other words, if the wavelength selection unit sequentially outputs multiple light components according to the target sequence, then the multiplexing unit may sequentially output multiplex waves corresponding to the multiple light components according to the target sequence.
  • the positions of the multiplexing unit and the photodetector can be set such that the multiplexing sequence output by the multiplexing unit can be sequentially incident on the light receiving end of the photodetector. Similar to the content in 1.2) or 1.4), the embodiment of the present application does not limit that the light receiving end of the photodetector is located in the outgoing direction of the multiplexing unit.
  • a third optical wavelength measurement device may also be provided.
  • An optical path adjustment unit, the third optical path adjustment unit is used to sequentially guide the multiplexed sequence emitted by the multiplexer unit to the light receiving end of the photodetector.
  • the third optical path adjustment unit may include a light reflection element and/or a refraction element.
  • the photodetector may be a photodiode, for example, may be an avalanche photodiode.
  • the photodetector can obtain the signal of the optical power of each of the multiple multiplexed waves in a corresponding way.
  • the multiplexer unit superimposes L1 and the light to be measured through multiplexer 1 and outputs multiplexer 1, and combines L2 with the light to be measured through multiplexer 2
  • Photometric superimposition and output multiplex 2 L3 and the light to be measured are superimposed and output multiplexed 3 through the multiplexer 3
  • L4 and the light to be measured are superimposed and outputted through the multiplexer 4
  • the photodetector can pass the photoelectric
  • the detection unit 1 detects the signal of the optical power of the multiplex 1, the signal of the optical power of the multiplex 2 is detected by the photodetection unit 2, the signal of the optical power of the multiplex 3 is detected by the photodetection unit 3,
  • the photodetector can Multiplex 1, multiplex 2, multiplex 3, and multiplex 4 are received sequentially in chronological order, and the signals of the optical power of multiplex 1, the signal of optical power of multiplex 2, and the signal of multiplex 3 are detected sequentially in chronological order.
  • the signal processor is used to obtain the electrical signal output by the photodetector, and determine the measured value of the wavelength of the light to be measured according to the target electrical signal.
  • the signal processor is used to generate control signals.
  • the signal processor may be connected to the wavelength selection unit to input a control signal into the wavelength selection unit, and the control signal is used to control the wavelength selection unit to output multiple optical components.
  • the control signal may be used to control the wavelength selection unit to sequentially output multiple light components in a target sequence.
  • the signal processor can be used to send a control signal to the optical switch array, so as to control the optical switch array to turn on the optical switches corresponding to each of the multiple optical components in sequence according to the target order, for example, in chronological order Turn on the optical switch 1, the optical switch 2, the optical switch 3 and the optical switch 4 in sequence, and turn off other optical switches while turning on any one of the optical switches.
  • the signal processor can control the wavelength selection unit to no longer output the optical component after identifying the required multiplexer for measurement.
  • the signal processor can determine the wavelength of the light to be measured according to the information of the first target multiplexing, in order to save the measurement of the optical wavelength measurement device resources, after the signal processor recognizes the first target multiplexer, it controls the wavelength selection unit to no longer output optical components, that is to say, the multiple multiplexers output by the wavelength selection unit only include one target multiplexer, and the target multiplexer It is the last multiplexed wave output by the wavelength selection unit among multiple multiplexed waves.
  • the signal processor can also be connected to the optical frequency comb generating unit to control the optical frequency comb generating unit to generate or stop generating the optical frequency comb.
  • the signal processor may control the optical frequency comb generation unit to stop outputting the optical frequency comb.
  • the signal processor After the signal processor obtains the measured value of the wavelength, it can output the measured value and/or other information related to the measured value.
  • other information related to the measured value may include the difference between the measured value and the target value of the wavelength of the light to be measured.
  • the difference may include a difference and/or a ratio between the measured value and the target value.
  • the target value may be set at the factory or set by the user, for example.
  • the signal processor outputs information related to the frequency of the light to be measured, it can also be considered that the output information is related to the wavelength of the light to be measured.
  • the embodiment of the present application also provides a method for measuring the wavelength of light, as shown in FIG. 7 , the method may include the following steps S701 to S703.
  • the multiple light components include light components corresponding to each comb tooth frequency value in the multiple comb tooth frequency values of the optical frequency comb in the optical frequency comb.
  • S703. Determine the measurement value of the wavelength of the light to be measured according to the target electrical signal corresponding to the target light component and the target comb tooth frequency value corresponding to the target light component.
  • the plurality of light components include a target light component, and the target electrical signal includes a beat frequency signal.
  • the optical wavelength measurement method provided in the embodiment of the present application uses the light component corresponding to each comb tooth frequency value of the multiple comb tooth frequency values of the optical frequency comb to superimpose on the light to be measured respectively, and detects the frequency of the beat frequency signal in the combined wave value to measure the wavelength of the light to be measured, the detection problem of the wavelength of the light to be measured can be converted into the detection problem of the beat frequency signal.
  • the frequency of the beat frequency signal is usually small, for example, the frequency interval between the light to be measured and the closest comb teeth in the optical frequency comb is smaller than the repetition frequency value of the optical frequency comb, so even if the frequency value of the light to be measured is greater than that of the photoelectric
  • the cut-off frequency of the detector can obtain the frequency value of the light to be measured by detecting the frequency value of the beat frequency signal, which is conducive to expanding the range of light wavelengths that can be detected by the measurement method of light wavelength, and is conducive to the realization of light wavelength measurement in the field of optical technology. And a wide range of applications in other technical fields combined with optical technology.
  • each multiplex wave corresponding to the electrical signal is the multiplex wave of the light component corresponding to a single comb tooth frequency value and the light to be measured, after identifying the beat frequency signal in the electrical signal, it can be based on the corresponding The comb tooth frequency value of the light component and the frequency value of the beat frequency signal determine the measurement value of the wavelength of the light to be measured, which is beneficial to simplify the calculation process.
  • S701 may specifically include: sequentially superimposing the light to be measured with light components in a light component sequence, where the light component sequence includes a plurality of light components arranged in a target order.
  • the light component sequence includes a plurality of light components arranged in a target order.
  • the target order is the first order or the second order
  • the target light component is the first available light component in the light component sequence
  • the electrical signal corresponding to the available light component includes a beat frequency signal
  • the first order is the corresponding
  • the order of the comb frequency values of the corresponding comb teeth is from small to large
  • the second order is the order of corresponding comb frequency values from large to small. If the light component sequence is arranged in the first order or the second order, the first available light component is used as the target light component, which is convenient to accurately determine the size between the frequency value of the light to be measured and the comb tooth frequency value corresponding to the target light component relationship, which is conducive to improving the accuracy of the measurement results of the light to be measured.
  • S701 may specifically include: adjusting the light to be measured to linearly polarized light in the first polarization direction, respectively adjusting a plurality of light components to linearly polarized light in the second polarization direction, and combining the adjusted light to be measured with Each of the adjusted light components is superimposed, which is conducive to generating a stable beat effect in the combined wave obtained by the superposition, and is convenient for detecting the beat frequency signal from the combined electrical signal.
  • the method of the embodiment corresponding to FIG. 7 can be regarded as the process corresponding to the measurement device of the optical wavelength corresponding to FIG. 3 or FIG. 6-1 or FIG. 6-2 during operation, and the embodiment corresponding to FIG. 7 does not For the implementation manner and technical effect described in detail, refer to the relevant description in the embodiment corresponding to FIG. 3 or FIG. 6-1 or FIG. 6-2.
  • the device and method for measuring the wavelength of light provided by the embodiments of the present application are described above, and the embodiment of the present application also provides a device for controlling the wavelength of light.
  • the optical wavelength control device may include an optical wavelength adjustment device and an optical wavelength measurement device.
  • the light wavelength measuring device is used to measure the wavelength of the light to be measured to obtain the wavelength of the light to be measured.
  • the measuring device for the light wavelength may be the measuring device introduced in the embodiment corresponding to FIG. 3 or FIG. 6-1 or FIG. 6-2.
  • the light wavelength adjusting device is used to obtain the measured value of the wavelength of the light to be measured from the light wavelength measuring device, and control the light source device of the light to be measured according to the difference between the measured value and the target value (that is, the light to be measured comes from The light source device) adjusts the emission wavelength to a target value.
  • an embodiment of the present application further provides a lighting system, which may include a light source device and a light wavelength control device.
  • a portion of the light emitted by the light source device is used for the control device incident on the wavelength of the light.
  • the optical wavelength control device includes an optical wavelength adjustment device and an optical wavelength measurement device.
  • the light wavelength measuring device is used to measure the wavelength of the incident light (or light to be measured) to obtain the wavelength of the light to be measured.
  • the measuring device for the light wavelength may be the measuring device introduced in the embodiment corresponding to FIG. 3 or FIG. 6-1 or FIG. 6-2.
  • the light wavelength adjusting device is used to obtain the measured value of the wavelength of the light to be measured from the light wavelength measuring device, and send a control signal to the light source device that emits the light to be measured according to the difference between the measured value and the target value.
  • the control signal is used It is used to control the light source equipment to adjust the emission wavelength to the target value.
  • the light source device is used to adjust the luminous wavelength according to the control signal after receiving the control signal, so as to reduce the difference between the luminous wavelength and the target value, thereby helping to stabilize the luminous wavelength at the target value.
  • the light source device may be a laser.
  • the light emitting system may be a wavelength-locked laser as shown in FIG. 2 .
  • the lighting system may include multiple groups of lighting devices, and each group of lighting devices includes the light source device and light wavelength control device shown in FIG. 8 .
  • the lighting system can be an optical network transmitter.
  • the lighting system may include light source device 1 to light source n, may also include light wavelength control device 1 to light wavelength control device n, may also include modulator 1 to modulator n, and may also include a multiplexer , where n is a positive integer. Assuming that i is any positive integer less than or equal to n, the light source device i is used to output an optical signal with a stable wavelength under the control of the optical wavelength control device i.
  • the modulator i It is used to modulate the optical signal output by the light source device i, and the modulated optical signal is incident to the multiplexer.
  • the multiplexer is used to respectively receive the optical signals output by the modulator 1 to the modulator n, and multiplex the multiple optical signals to obtain multiplexing of the multiple optical signals.
  • the combined waves output by the multiplexer may be incident on an optical transmission line (such as an optical fiber). Since the light source device i can output optical signals with stable wavelengths, the wavelength jitter range of each optical signal in the combined wave output by the multiplexer is small, which is conducive to increasing the data without increasing the interference between optical signals of adjacent wavelengths. transmission bandwidth.
  • multiple refers to two or more, which is not limited in the present application.
  • "/" can indicate that the objects associated before and after are in an "or” relationship, for example, A/B can indicate A or B; “and/or” can be used to describe that there are three types of associated objects A relationship, for example, A and/or B, may mean: A exists alone, A and B exist simultaneously, and B exists independently, where A and B may be singular or plural.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions.
  • words “first” and “second” do not limit the number and execution order, and the words “first” and “second” do not necessarily mean that they must be different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and any embodiment or design described as “exemplary” or “for example” should not be interpreted It is more preferred or more advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner for easy understanding.

Abstract

一种光波长的测量装置和方法、光波长的控制设备及发光系统,其中,光波长的测量装置和方法可以用于扩展光波长的测量技术所能检测的波长范围,光波长的控制设备及发光系统可以用于提供波长稳定的激光。测量装置可以将待测光分别与光频梳中多个梳齿频率值中每个梳齿频率值对应的光分量进行叠加,以得到每个光分量对应的合波,之后根据电学拍频得到的目标光分量对应的合波的电信号确定待测光的波长的测量值,其中,目标光分量对应的电信号包括拍频信号。

Description

光波长的测量装置和方法、光波长的控制设备及发光系统 技术领域
本申请涉及光电技术领域,尤其涉及一种光波长的测量装置和方法、光波长的控制设备及发光系统。
背景技术
随着激光技术和光电子技术的崛起,光学检测已发展为光学为主的,并与信息科学、空间科学、精密机械与制造、计算机科学及微电子技术等紧密交叉和相互渗透的技术。光波长测量作为光学检测的重要分支,广泛应用于上述技术领域。以激光技术领域为例,通过在激光器中设置光波长的测量装置,激光器可以对产生的激光的波长进行测量,进而可以根据波长的测量值调整发光参数,以将激光的波长稳定在某个固定波长。
光波长的测量装置一般设置有光电探测器,通过光电探测器检测光功率随时间的变化,进而测量光波长。但是,受到光电探测器的带宽限制,光电探测器仅能响应低于某个频率值(称作截止频率值)的光功率的变化,导致光波长的测量装置所能检测的光波长的范围有限,不利于光波长测量技术在上述技术领域的广泛应用。
发明内容
本申请实施例提供了一种光波长的测量装置和方法、光波长的控制设备及发光系统,用于扩展光波长的测量技术所能检测的波长范围。
第一方面,本申请实施例提供一种光波长的测量装置,包括:合波产生模块,用于将待测光分别与多个光分量进行叠加,以得到所述多个光分量中每个光分量对应的合波,其中,所述多个光分量包括光频梳中对应于所述光频梳的多个梳齿频率值中每个梳齿频率值的光分量,合波是指叠加得到的光;光电探测器,用于将所述多个光分量中每个光分量对应的合波转换为电信号;信号处理器,用于根据所述多个光分量中目标光分量对应的目标电信号和所述目标光分量对应的目标梳齿频率值确定所述待测光的波长的测量值,其中,所述目标电信号包括拍频信号。
本申请实施例提供的光波长的测量装置利用光频梳多个梳齿频率值中每个梳齿频率值对应的光分量分别与待测光进行叠加,通过检测合波中拍频信号的频率值来测量待测光的波长,可以将对待测光波长的检测问题转换为对拍频信号的检测问题。由于拍频信号的频率通常较小,例如,待测光与光频梳中最接近的梳齿之间的频率间隔小于光频梳的重复频率值,这样,即使待测光的频率值大于光电探测器的截止频率,信号处理器可以通过检测拍频信号的频率值来得到待测光的频率值,有利于扩展光波长的测量装置所能检测的光波长范围,有利于实现光波长测量在光学技术领域和与光学技术相结合的其他技术领域的广泛应用。
并且,由于光电探测器所接收的每个合波为单个梳齿频率值对应的光分量与待测光的合波,因此,信号处理器识别到电信号中的拍频信号后,可以根据该电信号所对应的光分量的梳齿频率值和拍频信号的频率值确定待测光的波长的测量值,有利于简化计算过程。
可选的,所述合波产生模块,具体用于将待测光依次与光分量序列中的光分量进行叠 加,其中,所述光分量序列包括按照目标顺序排列的所述多个光分量。这样,有利于减少光波长的测量装置中光路的数量,从而有利于降低该测量装置的成本和体积。
可选的,所述目标顺序为第一顺序或第二顺序,所述目标光分量为所述光分量序列中的第一个可用光分量,其中,所述可用光分量对应的电信号包括拍频信号,所述第一顺序为对应的梳齿频率值由小到大的顺序,所述第二顺序为对应的梳齿频率值由大到小的顺序。若光分量序列按照第一顺序或第二顺序排列,可以以第一个可用光分量作为目标光分量,便于准确的确定待测光的频率值与目标光分量对应的梳齿频率值之间的大小关系,从而有利于提高待测光的测量结果的准确性。
可选的,所述合波产生模块包括光频梳产生单元、波长选择单元和合波单元;所述光频梳产生单元,用于产生光频梳;所述波长选择单元,用于根据所述光频梳输出所述光分量序列;所述合波单元,用于将所述波长选择单元输出的光分量(即光分量序列中的每个光分量)与所述待测光进行叠加,得到每个光分量对应的合波。合波产生模块中设置有光频梳产生单元,便于波长选择单元准确的输出对应于对应于单个梳齿频率值的光分量,从而有利于提高波长测量结果的准确性。
可选的,所述波长选择单元包括波分解复用器、光开关阵列和波分复用器;所述波分解复用器,用于从所述光频梳中分离出所述多个光分量,所述多个光分量分别入射到所述光开关阵列中的多个光开关中,其中,所述多个光开关中的每个光开关对应于所述多个光分量中的一个光分量;所述光开关阵列中多个光开关中的每个光开关用于接收所述多个光分量中的一个,所述光开关阵列用于按照所述目标顺序依次开通相应光分量对应的光开关,以输出相应光分量;所述波分复用器,用于将所述多个光开关中每个光开关的输出光路合并为一路(称作目标路径),或者说,将所述多个光开关中每个光开关输出的光分量的传播路径合并为目标路径,以通过所述目标光路输出所述光分量序列。由于光开关阵列的开关速度较高,波长选择单元采用光开关阵列来将多个光分量按照目标顺序依次输出至波分复用器,有利于光分量序列所对应的时长,从而有利于在较短时长内识别到目标电信号,从而有利于提高测试效率。
可选的,所述波长选择单元包括光滤波器;所述光滤波器,用于按照所述目标顺序依次从所述光频梳中分离出相应光分量,以输出所述光分量序列。和光开关阵列相比,光滤波器的体积通常较小,波长选择单元采用光滤波器来从光频梳中依次分离出光分量序列,有利于减小光波长的测量装置的体积。
可选的,所述合波单元包括第一偏振调整器、第二偏振调整器和合波器;所述第一偏振调整器,用于将所述光分量序列中的每个光分量调整为第一偏振方向的线偏振光;所述第二偏振调整器,用于将所述待测光调整为第二偏振方向的线偏振光,其中,所述第一偏振方向和所述第二偏振方向不垂直;所述合波器,用于将经过所述第一偏振调整器调整后的所述每个光分量和经过所述第二偏振调整器调整后的所述待测光进行叠加,得到所述每个光分量对应的合波。这样有利于在叠加得到的合波中产生稳定的拍效应,便于从合波的电信号中检测到拍频信号。
第二方面,本申请实施例提供一种光波长的测量方法,包括:将待测光分别与多个光分量进行叠加,以得到所述多个光分量中每个光分量对应的合波,其中,所述多个光分量包括 光频梳中对应于所述光频梳的多个梳齿频率值中每个梳齿频率值的光分量;将所述多个光分量中每个光分量对应的合波转换为电信号;根据所述多个光分量中目标光分量对应的目标电信号和所述目标光分量对应的目标梳齿频率值确定所述待测光的波长的测量值,其中,所述目标电信号包括拍频信号。
可选的,所述将待测光分别与多个光分量进行叠加,包括:将待测光依次与光分量序列中的光分量进行叠加,其中,所述光分量序列包括按照目标顺序排列的所述多个光分量。
可选的,所述目标顺序为第一顺序或第二顺序,所述目标光分量为所述光分量序列中的第一个可用光分量,其中,所述可用光分量对应的电信号包括拍频信号,所述第一顺序为对应的梳齿频率值由小到大的顺序,所述第二顺序为对应的梳齿频率值由大到小的顺序。
可选的,所述将待测光分别与多个光分量进行叠加,包括:将所述光分量序列中的每个光分量调整为第一偏振方向的线偏振光;将所述待测光调整为第二偏振方向的线偏振光,其中,所述第一偏振方向和所述第二偏振方向不垂直;将调整后的所述每个光分量和调整后的所述待测光进行叠加,得到所述每个光分量对应的合波。
第二方面提供的方法与第一方面提供的装置基于同一发明构思,可选的,第二方面提供的实施例方法可以视为第一方面提供的光波长的测量装置在运行过程中所对应的流程,第二方面的实施例中未详尽描述的实现方式和技术效果可以参见第一方面对应的实施例中的相关描述。
第三方面,本申请实施例提供一种光波长的控制设备,包括光波长的调整装置和如第一方面中任意一种可能的实现方式所对应的光波长的测量装置;所述光波长的调整装置,用于从所述光波长的测量装置获取待测光的波长的测量值,并根据所述测量值和目标值之间的差异控制所述待测光的光源设备将发光波长调整为所述目标值。
第四方面,本申请实施例提供一种发光系统,包括光源设备和如第三方面所介绍的光波长的控制设备。
可选的,所述光源设备为激光器。可选的,发光系统可以为波长锁定激光器。
附图说明
图1示例性示出本申请实施例光波长的测量装置一种可能的结构;
图2示例性示出本申请实施例波长锁定激光器一种可能的结构;
图3示例性示出本申请实施例光波长的测量装置另一种可能的结构;
图4-1示例性示出本申请实施例涉及的光频梳一种可能的频谱;
图4-2示例性示出本申请实施例涉及的多个光分量中每个光分量对应的频谱;
图4-3示例性示出本申请实施例涉及的多个合波中每个合波对应的频谱;
图5、图6-1和图6-2分别示例性示出本申请实施例光波长的测量装置的可能结构;
图7示例性示出本申请实施例光波长的测量方法一种可能的流程;
图8示例性示出本申请实施例光波长的控制设备和发光系统一种可能的结构;
图9示例性示出本申请实施例发光系统另一种可能的结构。
具体实施方式
本申请实施例提供一种光波长的测量装置和方法、光波长的控制设备及发光系统。下面结合附图对本申请实施例进行介绍。
图1示出了光波长的测量装置一种可能的结构。参考图1,待测光入射到光波长的测量装置后,光波长的测量装置可以对待测光的波长进行测量,得到波长的测量值。本申请实施例不限定待测光的类型。以激光技术领域为例,待测光可以例如为激光。
可选的,光波长的测量装置得到波长的测量值后,可以输出该测量值和/或与该测量值相关的其他信息。示例性的,与该测量值相关的其他信息可以包括测量值与待测光的波长的目标值之间的差异。可选的,该差异可以包括测量值与目标值之间的差值和/或比值。该目标值可以例如为出厂时设置的或由用户设置的。对于待测光,若确定其波长,那么便可以确定其频率,反之,若确定其频率,便可以确定其波长。因此,在本申请实施例中,若光波长的测量装置输出待测光的频率或与待测光的频率相关的信息,可以认为其输出的信息与待测光的波长有关。
光波长的测量装置的输入和输出可以具体根据应用场景来设置。图2示出了波长锁定激光器一种可能的结构示意图,波长锁定激光器中可以包括本申请实施例提供的光波长的测量装置。参考图2,波长锁定激光器可以包括激光器、光波长的测量装置和光波长的调整装置。其中,激光器用于产生激光,激光器产生的部分激光入射到光波长的测量装置,光波长的测量装置对入射光的波长进行测量。光波长的调整装置可以获取光波长的测量装置得到的波长的测量值,并计算该测量值与预设的目标值之间的差异,之后根据该差异的大小向激光器发送控制信号,该控制信号用于控制激光器调整发光波长,以减小发光波长与目标值之间的差异。激光器在控制信号的控制调整发光波长,从而有利于将发光波长稳定在目标值。本申请实施例不限定激光器是如何根据控制信号调整发光波长的,可选的,激光器可以根据控制信号调整发光参数(例如温度和/或激励电流),从而调整发光波长。
下面介绍本申请实施例提供的光波长的测量装置的结构。
图3示出了本申请实施例提供的光波长的测量装置一种可能的结构。参考图3,光波长的测量装置可以包括合波产生模块、光电探测器和信号处理器。
1)关于合波产生模块
合波产生模块用于在接收到待测光后,将待测光分别与多个光分量进行叠加,以得到多个光分量中每个光分量对应的合波,其中,多个光分量包括光频梳中对应于光频梳的多个梳齿频率值中每个梳齿频率值的光分量。
光频梳是指这样一类光,该类光的频谱类似梳齿,具体的,其频谱包括多个频率值(又称梳齿频率值),且该多个梳齿频率值中任意两个相邻梳齿频率值的间隔均为某个固定频率值。本申请实施例中,也可以将该固定频率值称作光频梳的重复频率值。图4-1中的频谱1示意性示出了光频梳的频谱。参考图3中的频谱1,光频梳可以包括梳齿频率值f1对应的光分量、梳齿频率值f2对应的光分量、梳齿频率值f3对应的光分量、梳齿频率值f4对应的光分量和梳齿频率值f5对应的光分量。在频谱1中的箭头用于表示f1~f5按照箭头方向逐渐增大。图3仅示例性示出了光频梳中的部分梳齿频率值,光频梳可以包括更多或更少的梳齿频率值,例如,光频梳的频谱1还可以包括小于f1的一个或多个梳齿频率值,和/或,包括大 于f5的一个或多个梳齿频率值,和/或,包括介于f1至f5之间的一个或多个梳齿频率值。其中,f1至f5为光频梳中任意5个不同的梳齿频率值。
假设多个光分量包括光频梳中f1对应的光分量L1、f2对应的光分量L2、f3对应的光分量L3和f4对应的光分量L4,那么,多个梳齿频率值包括f1、f2、f3和f4。图4-2中的频谱2.1~频谱2.4分别示例性示出了L1~L4的频谱。本申请实施例不限定多个光分量所包含的光分量的数目,多个光分量可以包括更多或更少的光分量。并且,本申请实施例不限定多个光分量中任意两个光分量对应的频率值均不同,只要多个光分量中存在至少两个频率值不同的光分量即可。例如,多个光分量还可以包括光分量L5,L5对应的梳齿频率值为f1。
图4-1的频谱1中还示出了待测光频率的真实值fx,频谱1中fx对应的光分量仅用于示例性表示fx与光频梳的梳齿频率之间的大小关系,而不是表示光频梳包括fx对应的光分量。合波产生模块将待测光分别与多个光分量进行叠加后,可以得到L1和待测光叠加得到的合波1,L2和待测光叠加得到的合波2,L3和待测光叠加得到的合波3,以及L4和待测光叠加得到的合波4。图4-3中的频谱3.1~频谱3.4分别示例性示出了合波1~合波4的频谱。参考图4-3,f1和fx之间的差值为fb1,f2和fx之间的差值为fb2,f3和fx之间的差值为fb3,f4和fx之间的差值为fb4。
2)关于光电探测器
合波产生模块得到的多个合波可以分别入射到光电探测器,光电探测器用于将多个光分量中每个光分量对应的合波转换为电信号。为了便于描述,对于多个光分量中的任意一个光分量(称作Li),本申请实施例将Li对应的合波所转换得到的电信号称作Li对应的电信号,其中i为小于或等于4的任意一个正整数。
可选的,若Li对应的合波的光功率随时间的变化频率fpi小于光电探测器的截止频率值,那么Li对应的电信号的频谱可以体现fpi对应的频率成分,或者说,L对应的电信号包括fpi对应的信号。若Li对应的合波的光功率随时间的变化频率fpi大于光电探测器的截止频率值,那么Li对应的电信号的频谱无法体现fpi对应的频率成分,或者说,Li对应的电信号不包括fpi对应的信号。
由于Li对应梳齿频率值fi和待测光的频率值fx通常大于光电探测器的截止频率值,因此,Li对应的合波i(即Li和待测光叠加得到的合波)所对应的电信号的频谱一般无法体现fx或fi对应的频率成分。
两个频率相差不大的间谐波叠加时,叠加后的波形的幅值将随时间作强弱的周期性变化,即产生拍效应,叠加后波形的幅值变化的频率为两个间谐波的频率的差值。因此,由于fi与fx之前的差值fbi通常小于fi或fx,因此,即使Li对应的电信号的频谱不包括fi或fx对应的频率成分,但是可能包括fbi对应的频率成分。本申请实施例将Li对应的电信号中对应于fbi的频率成分称作拍频信号。
参考图4-1,假设f1~f4中任意两个相邻梳齿频率值的间隔为fr,并且,光电探测器的截止频率值为fr。那么,由于fb2和fb3均小于fr,因此,L2对应的电信号和L3对应的电信号分别包括fb2对应的拍频信号和fb3对应的拍频信号。而由于fb1和fb4均大于fr,因此,L1对应的电信号和L4对应的电信号均不包括拍频信号。
3)关于信号处理器
光电探测器可以与信号处理器相连,光电探测器得到的对应于多个光分量的电信号可以分别输入到信号处理器。信号处理器,用于获取光电探测器得到的电信号,并根据多个光分量中目标光分量对应的目标电信号和目标光分量对应的目标梳齿频率值确定待测光的波长的测量值,其中,目标电信号包括拍频信号。例如,光电探测器得到将Li对应的合波转换为电信号(即Li对应的电信号)后,信号处理器可以获取到Li对应的电信号,并判断该电信号是否包括拍频信号。
本申请实施例不限定信号处理器是如何判断电信号是否包括拍频信号的。可选的,信号处理器可以对电信号进行傅里叶变换,得到该电信号的频谱,根据其频谱判断该电信号是否包括拍频信号。可选的,假设多个梳齿频率值中的任意一个梳齿频率值均大于光电探测器的截止频率值,那么,若fi对应的电信号的频谱包括某个频率值对应的频率成分,可以认为该频率成分为电信号中的拍频信号,该频率成分对应的频率值为fi与fx之间的差值fbi。示例性的,继续参考图4-1,假设f1~f4中任意两个相邻梳齿频率值的间隔为fr,光电探测器的截止频率值为fr,并且,f1大于光电探测器的截止频率值,那么,信号处理器可以从L2对应的电信号中识别到fb2对应的拍频信号,从L3对应的电信号中识别到fb3对应的拍频信号。
本申请实施例将信号处理器识别到的包括拍频信号的电信号称作可用光分量对应的电信号。若信号处理器识别到多个可用光分量对应的电信号,信号处理器可以将多个可用光分量中的一个或多个电信号作为目标电信号。继续参考图4-1,假设信号处理器识别到的可用光分量对应的电信号包括L2对应的电信号和L3对应的电信号,那么,信号处理器可以根据L2对应的电信号和L2对应梳齿频率值f2确定待测光的频率的测量值,例如,fx=f2+fb2,或者,根据L3对应的电信号和L3对应梳齿频率值f3确定待测光的频率的测量值,例如,fx=f3-fb3,或者,根据L2对应的电信号、L3对应的电信号、L2对应的梳齿频率值f2和L3对应梳齿频率值f3确定待测光的频率的测量值,例如,fx=((f2+fb2)+(f3-fb3))/2。
本申请实施例提供的光波长的测量装置利用光频梳多个梳齿频率值中每个梳齿频率值对应的光分量分别与待测光进行叠加,通过检测合波中拍频信号的频率值来测量待测光的波长,可以将对待测光波长的检测问题转换为对拍频信号的检测问题。由于拍频信号的频率通常较小,例如,待测光与光频梳中最接近的梳齿之间的频率间隔小于光频梳的重复频率值,这样,即使待测光的频率值大于光电探测器的截止频率,信号处理器可以通过检测拍频信号的频率值来得到待测光的频率值,有利于扩展光波长的测量装置所能检测的光波长范围,有利于实现光波长测量在光学技术领域和与光学技术相结合的其他技术领域的广泛应用。
并且,由于光电探测器所接收的每个合波为单个梳齿频率值对应的光分量与待测光的合波,因此,信号处理器识别到电信号中的拍频信号后,可以根据该电信号所对应的光分量的梳齿频率值和拍频信号的频率值确定待测光的波长的测量值,有利于简化计算过程。
在图3对应的实施例中,合波产生模块用于将待测光分别与多个光分量进行叠加,光电探测器用于分别将多个光分量对应的合波转换为电信号,本申请实施例不限定“分别”的实现方式。
可选的,合波产生模块可以通过多个光路来分别执行叠加操作,光电探测器可以通过多 个光探测单元来分别执行光电转换。
或者,可选的,合波产生模块可以通过在多个时刻分别执行叠加操作,例如,合波产生模块用于将待测光依次与光分量序列中的光分量进行叠加,其中,光分量序列包括按照目标顺序排列的多个光分量,例如,按照时间先后顺序,合波产生模块先将待测光与L1进行叠加得到合波1,之后,将待测光与L2进行叠加得到合波2,之后,将待测光与L3进行叠加得到合波3,之后,将待测光与L4进行叠加得到合波4。相应的,光电探测器可以先接收到合波1,对合波1进行光电转换,之后接收合波2,对合波2进行光电转换,以此类推,按照时间先后顺序依次得到L1对应的电信号、L2对应的电信号、L3对应的电信号和L4对应的电信号。这样,有利于减少光波长的测量装置中光路的数量,从而有利于降低该测量装置的成本和体积。
可选的,该目标顺序可以为对应的梳齿频率值由小到大的顺序(称作第一顺序),光分量序列中第一个可用光分量对应的梳齿频率值小于待测光的频率值,相应的,可以以该第一个可用光分量作为目标光分量,那么,fx=目标光分量对应的梳齿频率值+目标光信号中拍频信号的频率值。例如,参考图4-1,该光分量序列中的光分量依次为L1、L2、L3和L4,假设L2和L3对应的电信号包括拍频信号,那么将L2和L3称作可用光分量。若光分量序列按照第一顺序排列,那么,光分量序列中的第一个可用光分量(即L2)对应的梳齿频率值(即f2)小于待测光的频率值(即fx),那么fx=f2+fb2。
或者,可选的,该目标顺序可以为对应的梳齿频率值由大到小的顺序(称作第二顺序),光分量序列中第一个可用光分量对应的梳齿频率值大于待测光的频率值,相应的,可以以该第一个可用光分量作为目标光分量,那么,fx=目标光分量对应的梳齿频率值-目标光信号中拍频信号的频率值。例如,参考图4-1,该光分量序列中的光分量依次为L1、L2、L3和L4,假设L2和L3对应的电信号包括拍频信号,那么将L2和L3称作可用光分量。若光分量序列按照第二顺序排列,那么,光分量序列中的第一个可用光分量(即L3)对应的梳齿频率值(即f3)大于待测光的频率值(即fx),那么fx=f3-fb3。
可见,若光分量序列按照第一顺序或第二顺序排列,以第一个可用光分量作为目标光分量,便于准确的确定待测光的频率值与目标光分量对应的梳齿频率值之间的大小关系,从而有利于提高待测光的测量结果的准确性。
可选的,合波产生模块在接收到待测光和光分量之后,可以分别调整待测光和光分量的偏振态,以使得待测光的偏振态和光分量的偏振态保持一致,之后将调整后的待测光和光分量进行叠加,这样有利于在叠加得到的合波中产生稳定的拍效应,便于从合波的电信号中检测到拍频信号。可选的,合波产生模块用于分别将待测光和光分量调整为第一偏振方向的线偏振光和第二偏振方向的线偏振光,其中,第一偏振方向和第二偏振方向不垂直。
以上通过图3对应的实施例介绍了光波长的测量装置的可能结构和功能,下面基于图3对应的实施例进一步介绍测量装置的具体结构和功能。需要说明的是,本申请实施例不限定光波长的测量装置为了实现上述功能而采用的具体结构。
首先对图3对应的实施例中的合波产生模块进行举例介绍。
参考图5,合波产生模块可以包括光频梳产生单元、波长选择单元和合波单元。其中, 光频梳产生单元,用于产生光频梳。波长选择单元,用于根据光频梳输出光分量序列。合波单元,用于将波长选择单元输出的光分量与待测光进行叠加,得到相应光分量对应的合波。
下面分别对合波产生模块中的各个单元以及单元之间的连接关系进行介绍。
1.1)关于光频梳产生单元
光频梳产生单元用于产生光频梳。作为举例,其产生的光频梳可以例如图4-1所示的频谱1。本申请实施例不限定光频梳产生单元所采用的具体器件,可选的,光频梳产生单元可以包括激光器,该激光器可以例如为波长锁定激光器。
1.2)关于光频梳产生单元和波长选择单元之间的位置关系
在光波长的测量装置中,光频梳产生单元和波长选择单元的位置可以被设置为:由光频梳产生单元出射的光频梳能够入射到波长选择单元的光接收端。本申请实施例不限定波长选择单元的光接收端位于光频梳产生单元的出射方向,可选的,光波长的测量装置中还可以设置有光路调整单元(称作第一光路调整单元),该第一光路调整单元用于将光频梳产生单元出射的光频梳引导至波长选择单元的光接收端。示例性的,第一光路调整单元可以包括光反射元件和/或折射元件。
1.3)关于波长选择单元
波长选择单元用于接收光频梳产生单元产生的光频梳,并分别输出对应于光频梳的多个梳齿频率值的多个光分量,其中,多个光分量中的每个光分量对应于多个梳齿频率值中的一个梳齿频率值。
为了便于理解,假设多个光分量包括L1~L4,参考图4-2中频谱2.1~频谱2.4,L1、L2、L3和L4所对应的梳齿频率值分别为f1、f2、f3和f4。本申请实施例不限定多个光分量所包含的光分量的数目,多个光分量可以包括更多或更少的光分量。并且,本申请实施例不限定多个光分量中任意两个光分量对应的频率值均不同,只要多个光分量中存在至少两个频率值不同的光分量即可。例如,多个光分量还可以包括光分量L5,L5对应的梳齿频率值为f1。
下面介绍波长选择单元分别输出多个光分量中“分别”的可能实现方式。
实现方式1:“分别”是通过波长选择单元的多个光输出端来实现的。
具体的,波长选择单元可以设置有多个光输出端,波长选择单元接收到光频梳后,可以分别提取出光频梳中多个梳齿频率值对应的光分量,同时将多个光分量通过多个光输出端输出,其中,每个光输出端用于输出一个光分量。例如,波长选择单元通过光输出端1输出L1,通过光输出端2输出L2,通过光输出端3输出L3,通过光输出端4输出L4。
实现方式2:“分别”是通过多个时刻来实现的。
具体的,波长选择单元可以在多个时刻通过一个光输出端分别输出多个光分量,即输出光分量序列。例如,在时刻1通过光输出端1输出L1,之后,在时刻2通过光输出端1输出L2,之后,在时刻3通过光输出端3输出L3,之后,在时刻4通过光输出端1输出L4。
实现方式3:“分别”是通过多个光输出端和多个时刻来实现的。
结合实现方式1和实现方式2的内容,在实现方式3中,波长选择单元可以在多个时刻通过多个光输出端输出多个光分量。例如,在时刻1,波长选择单元通过光输出端1输出L1,通过光输出端2输出L2,之后,在时刻2通过光输出端1输出L3,通过光输出端2输出 L4。
对于不同的测试任务,波长选择单元所输出的多个光分量可以相同或不同。可选的,该多个光分量可以根据测试任务而确定,例如,该多个光分量中光分量对应的频率值的范围和间隔可以根据待测光波长的预估范围和需要的测试精度等来确定。
以上介绍了波长选择单元的功能,本申请实施例不限定波长选择单元为了实现上述功能而采用的具体结构。
作为举例,图6-1示例性示出了本申请实施例光波长的测量装置另一种可能的结构。参考图6-1,可选的,波长选择单元可以包括波分解复用器、光开关阵列和波分复用器。
其中,波分解复用器,用于从光频梳中分离出多个梳齿频率值中每个梳齿频率值的光分量,分离出的多个光分量分别入射到光开关阵列中的多个光开关中,其中,多个光开关中的每个光开关对应于多个光分量中的一个光分量。继续参考图6-1,假设波分解复用器可以从光频梳中分离出L1~L4,其中,L1~L4分别入射到光开关阵列中的光开关1~光开关4中。
光开关阵列,用于在控制信号的控制下,按照目标顺序依次开通多个光分量中每个光分量对应的光开关。也就是说,若在目标顺序中,L1先于L2,那么,光开关阵列先开通L1对应的光开关,后开通L2对应的光开关。本申请实施例不限定目标顺序的具体形式,假设目标顺序为第一顺序,参考图6-1,光开关阵列先开通光开关1,关闭光开关2~光开关4,相应的,L1能够经过光开关1的光路入射到波长复用器,而L2~L3无法入射到波长复用器。之后,光开关2开通,光开关1、光开关3和光开关4关闭,相应的,L2能够经过光开关2的光路入射到波长复用器,而L1、L3和L4无法入射到波长复用器。之后,光开关3开通,光开关1、光开关2和光开关4关闭,相应的,L3能够经过光开关3的光路入射到波长复用器,而L1、L2和L4无法入射到波长复用器。之后,光开关4开通,光开关1、光开关2和光开关3关闭,相应的,L4能够经过光开关4的光路入射到波长复用器,而L1、L2和L3无法入射到波长复用器。也就是说,光开关阵列依次输出L1、L2、L3和L4,即按照第一顺序依次输出多个光分量。
本申请实施例不限定光开关阵列所接收到的控制信号的来源,作为举例,可选的,该控制信号可以来自波长选择单元中,或者,例如图6-1所示,来自信号采集与处理模块,或者可以来自波长选择单元中的其他模块中,或者来自波长选择单元外的其他装置中。
波分复用器,用于将多个光开关中每个光开关的输出光路合并为一路(称作目标光路),或者说,将多个光开关中每个光开关输出的光分量的传播路径合并为目标路径,以通过目标光路输出光分量序列。继续参考图6-1,L1入射到波长复用器之后,波长复用器可以调整L1的光路,使L1入射到合波单元。可选的,波长复用器可以包括一个或多个光路调整元件,其中,光路调整元件可以例如包括光反射元件或光折射元件等。
作为举例,图6-2示例性示出了本申请实施例光波长的测量装置另一种可能的结构。参考图6-2,可选的,波长选择单元可以包括光滤波器。其中,光滤波器用于在控制信号的控制下,按照目标顺序依次从光频梳中分离出多个光分量中的每个光分量。本申请实施例不限定目标顺序的具体形式,可选的,目标顺序为第一顺序或第二顺序,其中,第一顺序为对应的梳齿频率值由小到大的顺序,第二顺序为对应的梳齿频率值由大到小的顺序。
参考图6-2,假设在时刻1,光滤波器从接收到的光频梳中分离出L1。之后,光滤波器 从接收到的光频梳中分离出L2。之后,光滤波器从接收到的光频梳中分离出L3。之后,光滤波器从接收到的光频梳中分离出L4。也就是说,光滤波器在控制信号的控制下依次输出L1、L2、L3和L4,即按照第一顺序依次输出多个光分量。
本申请实施例不限定光滤波器所接收到的控制信号的来源,作为举例,可选的,该控制信号可以来自波长选择单元中,或者,例如图6-2所示,来自信号处理器,或者可以来自波长选择单元中的其他模块中,或者来自波长选择单元外的其他装置中。
1.4)关于波长选择单元和合波单元之间的位置关系
在光波长的测量装置中,波长选择单元和合波单元的位置可以被设置为:由波长选择单元输出的光分量序列能够依次入射到合波单元的光接收端。与1.2)中的内容相类似的,本申请实施例不限定合波单元的光接收端位于波长选择单元的出射方向,可选的,光波长的测量装置中还可以设置有第二光路调整单元,该第二光路调整单元用于将波长选择单元出射的光分量序列依次引导至合波单元的光接收端。示例性的,第二光路调整单元可以包括光反射元件和/或折射元件。
1.5)关于合波单元
合波单元用于接收待测光和多个光分量中的光分量,并且将待测光分别与多个光分量中的每个光分量进行叠加,以输出相应光分量对应的合波。例如,合波单元可以将L1与待测光进行叠加输出合波1,将L2与待测光进行叠加输出合波2,将L3与待测光进行叠加输出合波3,将L4与待测光进行叠加输出合波4。图4-3中的频谱3.1~频谱3.4分别示例性示出了合波1~合波4的频谱。
可选的,参考前文实现方式1至实现方式3所介绍的“分别”的几种实现方式,合波单元可以通过相应方式来实现得到多个光分量中每个光分量对应的合波。例如,假设波长选择单元通过实现方式1介绍的实现方式分别输出L1~L4,那么,可选的,合波单元可以通过合波器1将L1与待测光叠加输出合波1,通过合波器2将L2与待测光叠加输出合波2,通过合波器3将L3与待测光叠加输出合波3,通过合波器4将L4与待测光叠加输出合波4。例如,假设波长选择单元通过实现方式2介绍的实现方式分别输出L1~L4,那么,可选的,合波单元可以在时刻1将L1与待测光叠加输出合波1,之后,在时刻2将L2与待测光叠加输出合波2,之后,在时刻3将L3与待测光叠加输出合波3,之后,在时刻4将L4与待测光叠加输出合波4。
以上介绍了合波单元的功能,本申请实施例不限定合波单元为了实现上述功能而采用的具体结构。作为举例,继续参考图6-1或图6-2,可选的,合波单元可以包括第一偏振调整器、第二偏振调整器和合波器。
其中,第一偏振调整器可以用于调整波长选择单元输出的光分量的偏振态,第二偏振调整器可以用于调整待测光的偏振态,以使得待测光的偏振态和波长选择单元输出的光分量的偏振态保持一致,有利于在合波单元输出的合波中产生稳定的拍效应,便于从合波中检测到拍频信号。可选的,第一偏振调整器用于将多个光分量中的每个光分量调整为第一偏振方向的线偏振光。第二偏振调整器用于将待测光调整为第二偏振方向的线偏振光。其中,第一偏振方向和第二偏振方向不垂直。
合波器,用于将经过第一偏振调整器调整后的每个光分量和经过第二偏振调整器调整后 的待测光进行叠加,得到每个光分量对应的合波。可选的,合波器可以包括一个或多个光路调整元件,其中,光路调整元件可以例如包括光反射元件或光折射元件等。
参考图6-1或图6-2,合波器可以接收到经第一偏振调整器调整后L1和经第二偏振单元调整后的待测光,对二者进行叠加输出合波1。之后,合波器可以接收到经第一偏振调整器调整后L2和经第二偏振单元调整后的待测光,对二者进行叠加输出合波2。之后,合波器可以接收到经第一偏振调整器调整后L3和经第二偏振单元调整后的待测光,对二者进行叠加输出合波3。之后,合波器可以接收到经第一偏振调整器调整后L4和经第二偏振单元调整后的待测光,对二者进行叠加输出合波4。也就是说,若波长选择单元依次输出L1、L2、L3和L4,那么合波单元可以依次输出合波1、合波2、合波3和合波4。换言之,若波长选择单元按照目标顺序依次输出多个光分量,那么合波单元可以按照目标顺序依次输出多个光分量对应的合波。
1.6)关于合波单元和光电探测器之间的位置关系
在光波长的测量装置中,合波单元和光电探测器的位置可以被设置为:由合波单元输出的合波序列能够依次入射到光电探测器的光接收端。与1.2)或1.4)中的内容相类似的,本申请实施例不限定光电探测器的光接收端位于合波单元的出射方向,可选的,光波长的测量装置中还可以设置有第三光路调整单元,该第三光路调整单元用于将合波单元出射的合波序列依次引导至光电探测器的光接收端。示例性的,第三光路调整单元可以包括光反射元件和/或折射元件。
2.1)本申请实施例不限定光电探测器的器件类型。示例性的,光电探测器可以为光电二极管,例如,可以为雪崩光电二极管。
参考前文实现方式1至实现方式3所介绍的“分别”的几种实现方式,光电探测器可以通过相应方式来实现得到多个合波中每个合波的光功率的信号。例如,假设波长选择单元通过实现方式3介绍的实现方式分别输出L1~L4,合波单元通过通过合波器1将L1与待测光叠加输出合波1,通过合波器2将L2与待测光叠加输出合波2,通过合波器3将L3与待测光叠加输出合波3,通过合波器4将L4与待测光叠加输出合波4,那么,光电探测器可以通过光电探测单元1检测合波1的光功率的信号,通过光电探测单元2检测合波2的光功率的信号,通过光电探测单元3检测合波3的光功率的信号,通过光电探测单元4检测合波4的光功率的信号。例如,假设波长选择单元通过实现方式2介绍的实现方式分别输出L1~L4,合波单元按照时间先后顺序依次输出合波1、合波2、合波3和合波4,那么,光电探测器可以按照时间先后顺序依次接收合波1、合波2、合波3和合波4,并按照时间先后顺序依次检测得到合波1的光功率的信号、合波2的光功率的信号、合波3的光功率的信号和合波4的光功率的信号。
3.1)如图3对应的实施例所介绍的,信号处理器用于获取光电探测器输出的电信号,并且根据目标电信号确定待测光的波长的测量值。在一种可能的实现方式中,信号处理器用于产生控制信号。可选的,参考图6-1或图6-2,信号处理器可以与波长选择单元相连,以将控制信号输入波长选择单元,该控制信号用于控制波长选择单元输出多个光分量。可选的,该控制信号可以用于控制波长选择单元按照目标顺序依次输出多个光分量。继续参考图6-1,信号处理器可以用于向光开关阵列发送控制信号,以控制光开关阵列按照目标顺序依次开 通多个光分量中每个光分量对应的光开关,例如按照时间先后顺序依次开启光开关1、光开关2、光开关3和光开关4,并且,在开启任意一个光开关的同时关闭其他光开关。
为了节约光波长的测量装置的测量资源,信号处理器在识别到所需的测量用合波后,便可以控制波长选择单元不再输出光分量。以该目标顺序为前文介绍的第一顺序或第二顺序为例,由于信号处理器根据首个目标合波的信息便可以确定待测光的波长,因此,为了节约光波长的测量装置的测量资源,信号处理器在识别到首个目标合波后,控制波长选择单元不再输出光分量,也就是说,波长选择单元输出的多个合波仅包括一个目标合波,且该目标合波为波长选择单元在多个合波中最后输出的一个合波。
可选的,为了节约光波长的测量装置的能耗,信号处理器还可以与光频梳产生单元相连,控制光频梳产生单元产生或停止产生光频梳。可选的,当信号处理器识别到所需的测量用合波后,信号处理器可以控制光频梳产生单元停止输出光频梳。
信号处理器得到波长的测量值后,可以输出该测量值和/或与该测量值相关的其他信息。示例性的,与该测量值相关的其他信息可以包括测量值与待测光的波长的目标值之间的差异。可选的,该差异可以包括测量值与目标值之间的差值和/或比值。该目标值可以例如为出厂时设置的或由用户设置的。
对于待测光,若确定其波长,那么便可以确定其频率,反之,若确定其频率,便可以确定其波长。因此,在本申请实施例中,若信号处理器输出与待测光的频率有关的信息,也可以认为该输出信息与待测光的波长有关。
基于同一发明构思,本申请实施例还提供一种光波长的测量方法,参见图7,该方法可以包括如下步骤S701至步骤S703。
S701、将待测光分别与多个光分量进行叠加,以得到多个光分量中每个光分量对应的合波;
其中,多个光分量包括光频梳中对应于光频梳的多个梳齿频率值中每个梳齿频率值的光分量。
S702、将多个光分量中每个光分量对应的合波转换为电信号;
S703、根据目标光分量对应的目标电信号和目标光分量对应的目标梳齿频率值确定待测光的波长的测量值。
其中,多个光分量包括目标光分量,目标电信号包括拍频信号。
本申请实施例提供的光波长的测量方法利用光频梳多个梳齿频率值中每个梳齿频率值对应的光分量分别与待测光进行叠加,通过检测合波中拍频信号的频率值来测量待测光的波长,可以将对待测光波长的检测问题转换为对拍频信号的检测问题。由于拍频信号的频率通常较小,例如,待测光与光频梳中最接近的梳齿之间的频率间隔小于光频梳的重复频率值,这样,即使待测光的频率值大于光电探测器的截止频率,可以通过检测拍频信号的频率值来得到待测光的频率值,有利于扩展光波长的测量方法所能检测的光波长范围,有利于实现光波长测量在光学技术领域和与光学技术相结合的其他技术领域的广泛应用。
并且,由于电信号对应的每个合波为单个梳齿频率值对应的光分量与待测光的合波,因此,识别到电信号中的拍频信号后,可以根据该电信号所对应的光分量的梳齿频率值和拍频 信号的频率值确定待测光的波长的测量值,有利于简化计算过程。
可选的,S701可以具体包括:将待测光依次与光分量序列中的光分量进行叠加,其中,光分量序列包括按照目标顺序排列的多个光分量。这样,有利于减少光波长的测量方法所需设置的光路的数量,从而有利于降低测量方法的实施成本和复杂度。
可选的,目标顺序为第一顺序或第二顺序,目标光分量为光分量序列中的第一个可用光分量,其中,可用光分量对应的电信号包括拍频信号,第一顺序为对应的梳齿频率值由小到大的顺序,第二顺序为对应的梳齿频率值由大到小的顺序。若光分量序列按照第一顺序或第二顺序排列,以第一个可用光分量作为目标光分量,便于准确的确定待测光的频率值与目标光分量对应的梳齿频率值之间的大小关系,从而有利于提高待测光的测量结果的准确性。
可选的,S701可以具体包括:将待测光调整为第一偏振方向的线偏振光,分别将多个光分量调整为第二偏振方向的线偏振光,将调整后的待测光分别与调整后的多个光分量中的每个光分量进行叠加,这样有利于在叠加得到的合波中产生稳定的拍效应,便于从合波的电信号中检测到拍频信号。
可选的,图7对应的实施例方法可以视为图3或图6-1或图6-2对应的光波长的测量装置在运行过程中所对应的流程,图7对应的实施例中未详尽描述的实现方式和技术效果可以参见图3或图6-1或图6-2对应的实施例中的相关描述。
以上介绍了本申请实施例提供的光波长的测量装置和方法,本申请实施例还提供一种光波长的控制设备。
参考图8,本申请实施例提供的光波长的控制设备可以包括光波长的调整装置和光波长的测量装置。其中,光波长的测量装置用于对待测光的波长进行测量,得到待测光的波长。可选的,该光波长的测量装置可以为图3或图6-1或图6-2对应的实施例中所介绍的测量装置。光波长的调整装置,用于从光波长的测量装置获取待测光的波长的测量值,并根据测量值和目标值之间的差异控制该待测光的光源设备(即该待测光来自该光源设备)将发光波长调整为目标值。
继续参考图8,本申请实施例还提供一种发光系统,该发光系统可以包括光源设备和光波长的控制设备。光源设备发出的部分光用于入射到光波长的控制设备。光波长的控制设备包括光波长的调整装置和光波长的测量装置。其中,光波长的测量装置用于对入射光(或称待测光)的波长进行测量,得到待测光的波长。可选的,该光波长的测量装置可以为图3或图6-1或图6-2对应的实施例中所介绍的测量装置。光波长的调整装置,用于从光波长的测量装置获取待测光的波长的测量值,并根据测量值和目标值之间的差异向发出待测光的光源设备发送控制信号,控制信号用于控制光源设备将发光波长调整为目标值。光源设备用于在接收到控制信号后根据控制信号调整发光波长,以减小发光波长与目标值之间的差异,从而有利于将发光波长稳定在目标值。可选的,该光源设备可以为激光器。在一种可能的实现方式中,该发光系统可以为图2所示的波长锁定激光器。
可选的,该发光系统可以包括多组发光设备,每组发光设备均包括图8所示的光源设备和光波长的控制设备。可选的,该发光系统可以为光网络发送机。
参考图9,该发光系统可以包括光源设备1~光源n,还可以包括光波长的控制设备1~光 波长的控制设备n,还可以包括调制器1~调制器n,还可以包括复用器,其中,n为正整数。假设i为小于或等于n的任意一个正整数,光源设备i用于在光波长的控制设备i的控制下输出波长稳定的光信号,具体可以参考图8对应的实施例进行理解,调制器i用于对光源设备i输出的光信号进行调制,调制后的光信号入射到复用器。复用器用于分别接收调制器1~调制器n输出的光信号,并对多个光信号进行复用,得到多个光信号的合波。可选的,复用器输出的合波可以入射到光传输线路(例如光纤)中。由于光源设备i能够输出波长稳定的光信号,因此,复用器输出的合波中各个光信号的波长抖动范围较小,有利于在不提高相邻波长光信号间的干扰的前提下增加数据传输的带宽。
本申请实施例中,多个是指两个或两个以上,本申请不做限制。在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的范围。这样,倘若本申请的这些修改和变型属于本发明权利要求的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (14)

  1. 一种光波长的测量装置,其特征在于,包括:
    合波产生模块,用于将待测光分别与多个光分量进行叠加,以得到所述多个光分量中每个光分量对应的合波,其中,所述多个光分量包括光频梳中对应于所述光频梳的多个梳齿频率值中每个梳齿频率值的光分量;
    光电探测器,用于将所述多个光分量中每个光分量对应的合波转换为电信号;
    信号处理器,用于根据目标光分量对应的目标电信号和所述目标光分量对应的目标梳齿频率值确定所述待测光的波长的测量值,所述多个光分量包括所述目标光分量,其中,所述目标电信号包括拍频信号。
  2. 根据权利要求1所述的装置,其特征在于,所述合波产生模块,具体用于将所述待测光依次与光分量序列中的光分量进行叠加,其中,所述光分量序列包括按照目标顺序排列的所述多个光分量。
  3. 根据权利要求2所述的装置,其特征在于,所述目标顺序为第一顺序或第二顺序,所述目标光分量为所述光分量序列中的第一个可用光分量,其中,所述可用光分量对应的电信号包括拍频信号,所述第一顺序为对应的梳齿频率值由小到大的顺序,所述第二顺序为对应的梳齿频率值由大到小的顺序。
  4. 根据权利要求2或3所述的装置,其特征在于,所述合波产生模块包括光频梳产生单元、波长选择单元和合波单元;
    所述光频梳产生单元,用于产生光频梳;
    所述波长选择单元,用于根据所述光频梳输出所述光分量序列;
    所述合波单元,用于将所述光分量序列中的每个光分量与所述待测光进行叠加,得到所述每个光分量对应的合波。
  5. 根据权利要求4所述的装置,其特征在于,所述波长选择单元包括波分解复用器、光开关阵列和波分复用器;
    所述波分解复用器,用于从所述光频梳中分离出所述多个光分量;
    所述光开关阵列中多个光开关中的每个光开关用于接收所述多个光分量中的一个,所述光开关阵列用于按照所述目标顺序依次开通相应光分量对应的光开关以输出相应光分量;
    所述波分复用器,用于将所述多个光开关中每个光开关输出的光分量的传播路径合并为目标路径,以通过所述目标光路输出所述光分量序列。
  6. 根据权利要求4所述的装置,其特征在于,所述波长选择单元包括光滤波器;
    所述光滤波器,用于按照所述目标顺序依次从所述光频梳中分离出相应光分量,以输出所述光分量序列。
  7. 根据权利要求4至6中任一项所述的装置,其特征在于,所述合波单元包括第一偏振调整器、第二偏振调整器和合波器;
    所述第一偏振调整器,用于将所述光分量序列中的每个光分量调整为第一偏振方向的线偏振光;
    所述第二偏振调整器,用于将所述待测光调整为第二偏振方向的线偏振光,其中,所述第一偏振方向和所述第二偏振方向不垂直;
    所述合波器,用于将经过所述第一偏振调整器调整后的所述每个光分量和经过所述第二偏振调整器调整后的所述待测光进行叠加,得到所述每个光分量对应的合波。
  8. 一种光波长的测量方法,其特征在于,包括:
    将待测光分别与多个光分量进行叠加,以得到所述多个光分量中每个光分量对应的合波,其中,所述多个光分量包括光频梳中对应于所述光频梳的多个梳齿频率值中每个梳齿频率值的光分量;
    将所述多个光分量中每个光分量对应的合波转换为电信号;
    根据目标光分量对应的目标电信号和所述目标光分量对应的目标梳齿频率值确定所述待测光的波长的测量值,所述多个光分量包括所述目标光分量,其中,所述目标电信号包括拍频信号。
  9. 根据权利要求8所述的方法,其特征在于,所述将待测光分别与多个光分量进行叠加,包括:
    将所述待测光依次与光分量序列中的光分量进行叠加,其中,所述光分量序列包括按照目标顺序排列的所述多个光分量。
  10. 根据权利要求9所述的方法,其特征在于,所述目标顺序为第一顺序或第二顺序,所述目标光分量为所述光分量序列中的第一个可用光分量,其中,所述可用光分量对应的电信号包括拍频信号,所述第一顺序为对应的梳齿频率值由小到大的顺序,所述第二顺序为对应的梳齿频率值由大到小的顺序。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述将待测光分别与多个光分量进行叠加,包括:
    将所述光分量序列中的每个光分量调整为第一偏振方向的线偏振光;
    将所述待测光调整为第二偏振方向的线偏振光,其中,所述第一偏振方向和所述第二偏振方向不垂直;
    将调整后的所述每个光分量和调整后的所述待测光进行叠加,得到所述每个光分量对应的合波。
  12. 一种光波长的控制设备,其特征在于,包括光波长的调整装置和如权利要求1至7中任一项所述的光波长的测量装置;
    所述光波长的调整装置,用于从所述光波长的测量装置获取待测光的波长的测量值,并根据所述测量值和目标值之间的差异控制所述待测光的光源设备将发光波长调整为所述目标值。
  13. 一种发光系统,其特征在于,包括光源设备和如权利要求12所述的光波长的控制设备。
  14. 根据权利要求13所述的发光系统,其特征在于,所述光源设备为激光器。
PCT/CN2021/126758 2021-10-27 2021-10-27 光波长的测量装置和方法、光波长的控制设备及发光系统 WO2023070378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/126758 WO2023070378A1 (zh) 2021-10-27 2021-10-27 光波长的测量装置和方法、光波长的控制设备及发光系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/126758 WO2023070378A1 (zh) 2021-10-27 2021-10-27 光波长的测量装置和方法、光波长的控制设备及发光系统

Publications (1)

Publication Number Publication Date
WO2023070378A1 true WO2023070378A1 (zh) 2023-05-04

Family

ID=86160273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126758 WO2023070378A1 (zh) 2021-10-27 2021-10-27 光波长的测量装置和方法、光波长的控制设备及发光系统

Country Status (1)

Country Link
WO (1) WO2023070378A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072848A (ja) * 2011-09-29 2013-04-22 Mitsutoyo Corp レーザ装置
US20160011055A1 (en) * 2014-07-10 2016-01-14 Mitutoyo Corporation Laser frequency measurement method and device using optical frequency comb
CN107024285A (zh) * 2017-04-28 2017-08-08 中国航空工业集团公司北京长城计量测试技术研究所 一种全光纤激光频率测量装置及方法
CN107240854A (zh) * 2017-07-07 2017-10-10 浙江理工大学 基于欠采样的激光频率锁定至光频梳方法及装置
CN110567594A (zh) * 2019-09-17 2019-12-13 中国计量科学研究院 精密激光波长测量系统
CN111609999A (zh) * 2020-05-12 2020-09-01 浙江理工大学 激光偏频锁定中宽波长范围的拍频信号探测装置与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072848A (ja) * 2011-09-29 2013-04-22 Mitsutoyo Corp レーザ装置
US20160011055A1 (en) * 2014-07-10 2016-01-14 Mitutoyo Corporation Laser frequency measurement method and device using optical frequency comb
CN107024285A (zh) * 2017-04-28 2017-08-08 中国航空工业集团公司北京长城计量测试技术研究所 一种全光纤激光频率测量装置及方法
CN107240854A (zh) * 2017-07-07 2017-10-10 浙江理工大学 基于欠采样的激光频率锁定至光频梳方法及装置
CN110567594A (zh) * 2019-09-17 2019-12-13 中国计量科学研究院 精密激光波长测量系统
CN111609999A (zh) * 2020-05-12 2020-09-01 浙江理工大学 激光偏频锁定中宽波长范围的拍频信号探测装置与方法

Similar Documents

Publication Publication Date Title
CN108287349B (zh) 微波光子mimo雷达探测方法及微波光子mimo雷达系统
CN103378906B (zh) 采用相干检测及带外信道识别的光学通信链路及方法
US8670665B2 (en) Optical apparatus using polarized orthogonal control
CN103245369B (zh) 基于多纵模f-p激光器的新型光纤光栅解调方法及其系统
CN101247199A (zh) 波长漂移检测装置、波长锁定系统及其方法
WO2015042875A1 (zh) 波长选择开关和控制波长选择开关中的空间相位调制器的方法
CN107395316A (zh) 波分多路复用光接收器及其驱动方法
JP2018516488A (ja) 空間分割多重化システム用偏光不感セルフホモダイン検出受信機
KR20120107242A (ko) 광 스펙트로미터 기반 다채널 고속 물리량 측정 시스템
TWI234668B (en) Fiber Bragg grating sensing system of light intensity and wave-divided multiplex
TW200415341A (en) Apparatus and method for simultaneous channel and optical single-to-noise ratio monitoring
WO2023070378A1 (zh) 光波长的测量装置和方法、光波长的控制设备及发光系统
JP2014228504A (ja) 光サンプリング装置および光サンプリング方法
CN107248897B (zh) 一种用于光纤通信与光纤偏振传感的光纤复用系统
US20220086538A1 (en) Wavelength Monitoring Device and Controlling Method Thereof
WO2015135171A1 (zh) Wdm-pon中调整激光器发射参数的方法、装置及系统
JP2008275514A (ja) 光サンプリング装置および光サンプリング方法
JP4150193B2 (ja) 波長制御装置及び波長制御方法
CN100395527C (zh) 用于测量强度调制光信号之间相位差的方法和设备
CN106921438B (zh) 一种光模块
JP5970412B2 (ja) 二重化光線路の光路遅延測定方法とその測定装置
JP5732648B2 (ja) 双方向光モジュールおよび光パルス試験器
CN112305550A (zh) 相干探测装置及方法
CN117192703B (zh) 光芯片、激光雷达及可移动设备
JP2003309523A (ja) 光伝送路障害検出システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961749

Country of ref document: EP

Kind code of ref document: A1