WO2023067742A1 - Network node and communication method - Google Patents

Network node and communication method Download PDF

Info

Publication number
WO2023067742A1
WO2023067742A1 PCT/JP2021/038818 JP2021038818W WO2023067742A1 WO 2023067742 A1 WO2023067742 A1 WO 2023067742A1 JP 2021038818 W JP2021038818 W JP 2021038818W WO 2023067742 A1 WO2023067742 A1 WO 2023067742A1
Authority
WO
WIPO (PCT)
Prior art keywords
api
network
network node
information
called
Prior art date
Application number
PCT/JP2021/038818
Other languages
French (fr)
Japanese (ja)
Inventor
悠司 鈴木
淳 巳之口
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/038818 priority Critical patent/WO2023067742A1/en
Publication of WO2023067742A1 publication Critical patent/WO2023067742A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to network nodes and communication methods.
  • 5G or NR New Radio
  • NR New Radio
  • 5G A wireless communication system called “5G” (hereinafter, the wireless communication system is referred to as “5G” or "NR”) is under study.
  • 5G various radio technologies are being studied in order to meet the requirements of realizing a throughput of 10 Gbps or more and keeping the delay in the radio section to 1 ms or less.
  • 5GC 5G Core Network
  • EPC Evolved Packet Core
  • LTE Long Term Evolution
  • E-UTRAN Radio Access Network
  • NG-RAN Next Generation-Radio Access Network
  • Evolved Universal Terrestrial Radio Access Network A network architecture including NG-RAN (Next Generation-Radio Access Network) corresponding to Evolved Universal Terrestrial Radio Access Network
  • CAPIF architecture configures the Northbound interface used between NEF (Network Exposure Function) and AF (Application Function) in 5G systems with CAPIF (Common API Framework) is under consideration.
  • NEF Network Exposure Function
  • AF Application Function
  • CAPIF Common API Framework
  • the 3GPP core network opens APIs for external applications, and CAPIF allows third-party applications to call the APIs.
  • One aspect of the present disclosure is a network that can prevent unintentional change of settings by an API called earlier by an API called later when API calls are made in succession from a plurality of applications.
  • a node and communication method are provided.
  • a network node controls to determine permission or rejection of a new API call based on the upper limit number of applications that can call an API (Application Programming Interface) and registered applications. and a transmission unit for notifying permission or refusal of calling the API.
  • API Application Programming Interface
  • a network node permits or denies new API calls based on the upper limit number of applications that can call APIs (Application Programming Interface) and registered applications. is determined, and permission or refusal of calling the new API is notified.
  • APIs Application Programming Interface
  • FIG. 1 is a diagram for explaining an example of a communication system
  • FIG. FIG. 4 is a diagram for explaining another example of a communication system under roaming environment
  • 1 is a diagram for explaining a CAPIF architecture
  • FIG. 4 is a diagram for explaining the first sequence of CAPIF
  • FIG. 4 is a diagram for explaining a second sequence of CAPIF
  • FIG. 4 is a diagram for explaining a second sequence of CAPIF
  • FIG. FIG. 10 is a diagram showing an example of an API invoker list
  • 1 is a diagram illustrating an example of a functional configuration of a terminal according to an embodiment of the present disclosure
  • FIG. It is a diagram showing an example of a functional configuration of a base station according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of NEF according to an embodiment of the present disclosure
  • FIG. 2 is a diagram illustrating an example of hardware configuration of a terminal, base station, data hub access support device, or other network node according to an embodiment of the present disclosure
  • FIG. It is a figure showing an example of composition of vehicles in an embodiment of the invention.
  • An API invoker such as an application in a smartphone, is registered (onboarded) in a CCF (CAPIF Core Function).
  • the CCF authenticates/authorizes the API invoker based on the registration information.
  • the API invoker receives authorization to call an API from the CCF, it calls an API to an AEF (API exposing function) within an APD (API provider domain).
  • the AEF performs processing corresponding to API calls, such as notifying the Core Network of API contents such as QoS.
  • the AEF sequentially performs processing corresponding to each API call.
  • API calls from multiple API invokers compete, for example, if API calls that apply to the same communication path and require different QoS properties are made in succession, the call will The API QoS performed is reflected (overwritten) in the Core Network communication path.
  • application A calls an API requesting QoS that realizes high-speed, large-capacity communication for downloading a large amount of data in the background.
  • an API requesting QoS for achieving low-delay communication for comfortable playing is performed.
  • the QoS for high-speed, large-capacity communication requested by application A is overwritten by the QoS for low-delay communication requested by application B on the communication path of the Core Network.
  • the inventor focused on this problem and came to the present invention.
  • existing technology may be used as appropriate.
  • the existing technology is, for example, existing LTE or existing 5G, but is not limited to existing LTE or existing 5G.
  • node names, signal names, etc. described in the 5G standard are currently used, but node names and signal names having the same functions as these are used. Names, etc. may be called by names different from these.
  • SS Synchronization Signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical Broadcast Channel
  • PRACH Physical Random Access Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • FIG. 1 is a diagram for explaining an example of a communication system 1A.
  • the communication system 1A includes, for example, a UE 10A (User Equipment: may be called a (user) terminal or a (user) node), a plurality of network nodes 20A, 30A-1 to 30A-10 (which may be called NF (Network Function)) and 40A.
  • a UE 10A User Equipment: may be called a (user) terminal or a (user) node
  • NF Network Function
  • one network node corresponds to each function, but one network node may implement a plurality of functions, or a plurality of network nodes may implement one function.
  • the "connection" described below may be a logical connection or a physical connection.
  • the NG-RAN (Next Generation - Radio Access Network) 20A is a network node with radio access functionality, and may be, for example, a gNB (next generation Node B) (which may also be called a base station).
  • NG-RAN 20A is connected to UE 10A, AMF (Access and Mobility Management Function) 30A-1 and UPF (User Plane Function) 40A.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF30A-1 is a network node having functions such as RAN interface termination, NAS (Non-Access Stratum) termination, registration management, connection management, reachability management, and mobility management.
  • AMF 30A-1 includes UE 10A, NG-RAN 20A, SMF (Session Management function) 30A-2, NSSF (Network Slice Selection Function) 30A-3, NEF (Network Exposure Function) 30A-4, NRF (Network Repository Function) 30A- 5, UDM (Unified Data Management) 30A-6, AUSF (Authentication Server Function) 30A-7, PCF (Policy Control Function) 30A-8, AF (Application Function) 30A-9 and NWDAF (Network Data Analytics Function) 30A- 10. Note that the AMF 30A-1 may also be called an access mobility management device.
  • AMF30A-1, SMF30A-2, NSSF30A-3, NEF30A-4, NRF30A-5, UDM30A-6, AUSF30A-7, PCF30A-8, AF30A-9 and NWDAF30A-10 are interfaces Namf, Nsmf , Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf and Nnwdaf, respectively.
  • SMF30A-2 is a network node that has functions such as session management, UE IP (Internet Protocol) address assignment and management, DHCP (Dynamic Host Configuration Protocol) function, ARP (Address Resolution Protocol) proxy, and roaming function. Note that the SMF 30A-2 may be called a session management device.
  • NSSF 30A-3 is a network node that has functions such as selecting a network slice to which the UE connects, determining the allowed NSSAI (Network Slice Selection Assistance Information), determining the NSSAI to be set, and determining the AMF set to which the UE connects. is.
  • NSSAI Network Slice Selection Assistance Information
  • the NEF 30A-4 is a network node that has the function of notifying other NFs of capabilities and events.
  • NRF 30A-5 is a network node that has the function of discovering NF instances that provide services.
  • the UDM 30A-6 is a network node that manages subscriber data and authentication data.
  • UDM 30A-6 is connected to a UDR (User Data Repository) that holds the data.
  • UDR User Data Repository
  • AUSF 30A-7 is a network node that authenticates subscribers/UEs 10 against subscriber data held in UDR.
  • the PCF 30A-8 is a network node that has the function of performing network policy control.
  • AF30A-9 is a network node that has the function of controlling the application server.
  • NWDAF30A-10 is a network node that collects and analyzes data acquired by the network and provides analysis results.
  • UPF 40A is a network that has functions such as PDU (Protocol Data Unit) session point for the outside that interconnects with NG-RAN 20 and DN (Data Network) 50A, packet routing and forwarding, user plane QoS (Quality of Service) handling, etc.
  • PDU Protocol Data Unit
  • DN Data Network
  • QoS Quality of Service
  • the UPF 40A may also be called a user plane device.
  • one UPF 40A and DN 50A may constitute a network slice.
  • a plurality of network slices are constructed in the wireless communication network according to the embodiment of the present disclosure.
  • One UPF 40A may operate one network slice, or one UPF 40A may operate a plurality of network slices.
  • the UPF 40A is physically one or more computers (servers, etc.), and can be made by logically integrating and dividing the hardware resources (CPU, memory, hard disk, network interface, etc.) of the computer.
  • a plurality of resources can be viewed as a resource pool and each resource can be used as a network slice for the resource pool.
  • the UPF 40A operating the network slice means, for example, managing the correspondence between the network slice and the resource, starting/stopping the resource, monitoring the operation status of the resource, and the like.
  • FIG. 2 is a diagram for explaining an example of the communication system 1B under the roaming environment.
  • the communication system 1B includes, for example, a UE 10B, which is a communication terminal (node) used by a user, and a plurality of network nodes 20B, 30B-1 to 30B-12, 40B.
  • the communication system 1B is a system included in the 5G network system, and is a system that provides network services to the UE 10B through data communication.
  • Network services refer to services using network resources, such as communication services (dedicated line services, etc.) and application services (video distribution, services using sensor devices such as embedded devices).
  • the UE 10B is in a roaming environment.
  • the UE 10 is in a roaming environment, which is different from the HPLMN (Home Public Land Mobile Network) which is the network (home network) of the operator to which the user of the UE 10 has a contract.
  • the HPLMN Home Public Land Mobile Network
  • the VPLMN Visitd Public Land Mobile Network
  • the VPLMN of the communication system 1B includes UE 10B, (R) AN ((Radio) Access Network) 20B, AMF (Access and Mobility Management Function) 30B-1, SMF (Session Management function) 30B-2, NSSF (Network Slice Selection Function ) 30B-3, NEF (Network Exposure Function) 30B-4, NRF (Network Repository Function) 30B-5, PCF (Policy Control Function) 30B-8, NSACF (Network Slice Admission Control Function) 30B-10, SEPP (Security Edge Protection Proxy) 30B-12 and UPF (User Plane Function) 40B.
  • R Radio Access Network
  • AMF Access and Mobility Management Function
  • SMF Session Management function
  • NSSF Network Slice Selection Function
  • NEF Network Exposure Function
  • PCF Policy Control Function
  • NSACF Network Slice Admission Control Function
  • SEPP Security Edge Protection Proxy
  • UPF User Plane Function
  • the HPLMN of the communication system 1B includes SMF30B-2, NSSF30B-3, NEF30B-4, NRF30B-5, UDM (Unified Data Management) 30B-6, AUSF (Authentication Server Function) 30B-7, PCF30B-8, AF (Application Function) 30B-9, NSACF 30B-10, NSSAAF (Network Slice Specific Authentication and Authorization Function) 30B-11, SEPP 30B-12, and UPF 40B.
  • the (R)AN 20B is a network node with radio access functionality, and may be, for example, a gNB (next generation Node B) (which may also be called a base station).
  • gNB next generation Node B
  • base station which may also be called a base station
  • AMF30B-1 is a network node having functions such as RAN interface termination, NAS (Non-Access Stratum) termination, registration management, connection management, reachability management, and mobility management.
  • RAN interface termination NAS (Non-Access Stratum) termination
  • registration management registration management
  • connection management reachability management
  • mobility management mobility management
  • SMF30B-2 is a network node that has functions such as session management, UE IP (Internet Protocol) address assignment and management, DHCP (Dynamic Host Configuration Protocol) function, ARP (Address Resolution Protocol) proxy, and roaming function.
  • UE IP Internet Protocol
  • DHCP Dynamic Host Configuration Protocol
  • ARP Address Resolution Protocol
  • NSSF 30B-3 selects the network slice to which the UE connects, determines the allowed NSSAI (Network Slice Selection Assistance Information), determines the NSSAI to be set, determines the AMF set to which the UE connects, etc.
  • NSSAI Network Slice Selection Assistance Information
  • the NEF 30B-4 is a network node that has the function of notifying other NFs of capabilities and events.
  • NRF30B-5 is a network node that has the function of discovering NF instances that provide services.
  • the UDM 30B-6 is a network node that manages subscriber data and authentication data.
  • the UDM 30B-6 is connected to a UDR (User Data Repository) holding the data.
  • UDR User Data Repository
  • AUSF 30B-7 is a network node that authenticates the subscriber/UE 10B against the subscriber data held in the UDR.
  • PCF 30B-8 is a network node that has the function of performing network policy control.
  • AF30B-9 is a network node that has the function of controlling the application server.
  • NSACF 30B-10B is a network node that has the function of controlling network slice approval.
  • NSSAAF 30B-11 is a network node that has the function of controlling network slice authentication and authorization.
  • SEPP 30B-12 is a network node with a proxy that controls message filtering and policy restrictions in inter-operator control plane exchanges.
  • the SEPP30B-12 on the VPLMN side is described as vSEPP30B-12v
  • the SEPP30B-12 on the HPLMN side is described as hSEPP30B-12h.
  • vSEPP 30B-12v and hSEPP 30B-12h provide functions related to security and integrity of messages (HTTP Request, HTTP Response, etc.) sent and received between VPLMN and HPLMN.
  • the UPF 40B is a network node that has functions such as a PDU (Protocol Data Unit) session point to the outside, packet routing and forwarding, and user plane QoS (Quality of Service) handling.
  • PDU Protocol Data Unit
  • QoS Quality of Service
  • N1, N2, N3, N4, and N9 are reference points between network nodes. Also, N32 between vSEPP30B-12v and hSEPP30B-12h is a reference point at the connection point between VPLMN and HPLMN.
  • (R) AN 20B is connected to UE 10B, AMF 30B-1 and UPF 40B.
  • AMF 30B-1, SMF 30B-2, NSSF 30B-3, NEF 30B-4, NRF 30B-5, PCF 30B-8, NSACF 30B-10 have respective service-based interfaces Namf, Nsmf, Nnssf, Nnef, Nnrf, Npcf, are connected to each other via Nsacf respectively.
  • SMF30B-2, NSSF30B-3, NEF30B-4, NRF30B-5, UDM30B-6, AUSF30B-7, PCF30B-8, AF30B-9, NSACF30B-10, NSSAAF30B-11 are interfaces based on each service. are interconnected via Nsmf, Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf, Nsacf, and Nnssaaf, respectively.
  • vSEPP30B-12v connects with VPLMN's AMF30B-1, SMF30B-2, NSSF30B-3, NEF30B-4, NRF30B-5, PCF30B-8 and NSACF30B-10, and connects with hSEPP30B-12h via N32.
  • hSEPP30B-12h connects with HPLMN SMF30B-2, NSSF30B-3, NEF30B-4, NRF30B-5, UDM30B-6, AUSF30B-7, PCF30B-8, AF30B-9, NSACF30B-10 and NSSAAF30B-11. , N32 to vSEPP30B-12v.
  • the UPF 40B on the VPLMN side interconnects with (R)AN 20B, SMF 30B-2 and UPF 40B on the HPLMN side.
  • UPF 40B of HPLMN interconnects with SMF 30B-2 and DN (Data Network) 50B.
  • the NEF 30A-4 (30B-4) described above is under consideration to implement an API that can be called from the AF 30A-9 (30B-9) by applying the CAPIF architecture.
  • the CAPIF architecture provides a mechanism to support service API operation, for example, allows an API invoker to discover a service API provided by an API provider and use the service API. enable communication.
  • the CAPIF architecture also has mechanisms to hide the topology of the PLMN trust domain, eg, from API callers accessing the service API from outside the PLMN trust domain.
  • CAPIF is composed of API invoker 101, CCF 102, and APD 103.
  • the API invoker 101 is an API caller application, and the CCF 102 and APD 103 are network nodes.
  • the APD 103 has each function (network node) of AEF 103-1, APF (API publishing function) 103-2, and AMF (API management function) 103-3.
  • the APD 103 uses the AEF 103-1 to authenticate/authorize the access of the API invoker 101. Also, the APD 103 publishes the Service API on the CCF 102 using the APF 103-2.
  • the APD 103 also uses the AMF 103-3 to audit logs of API calls received from the CCF 102 and to monitor the status of Service APIs.
  • a CAPIF can contain multiple API invokers 101.
  • FIG. 3 shows an example in which the CAPIF includes two API invokers 101, API invoker 101A and API invoker 101B.
  • API invoker 101A is an application that performs high-speed, large-capacity communication to download a large amount of data in the background
  • API invoker 101B is a low-delay application that allows you to play competitive games comfortably without time lag. It is an application that communicates.
  • processing common to both the API invoker 101A and API invoker 101B will be simply described as processing of the API invoker 101.
  • API invoker 101 The API invoker 101 is connectable with the CCF 102 and the APD 103 and registered (onboarded) with the CCF 102 in advance.
  • the API invoker 101 may be a third-party application, or may be an application operated by the same provider that provides the CCF 102 and APD 103 .
  • a security method is agreed between the API invoker 101 and the CCF 102.
  • the Client Credential method specified in OAuth 2.0 is used.
  • API calls are authorized only by client (API invoker) authentication.
  • API invoker 101 If the API invoker 101 is authenticated and authorized by the CCF 102, it will be able to call the API, that is, access the AEF (API exposing function) 103-1 in the APD 103.
  • AEF API exposing function
  • the API invoker 101 accesses the AEF 103-1 (API call)
  • the API invoker 103-1 permits or rejects the API call (hereinafter also referred to as "permission"). is notified.
  • the API invoker 101 is also notified of a value indicating the reason for the rejection (cause value).
  • the API invoker 101 may perform a predetermined operation such as calling the API again after a certain period of time. Also, the API invoker 101 may determine subsequent operations based on the cause value. For example, if the cause value indicates that changing the QoS for an existing communication is unacceptable, the API invoker 101 may establish a new communication flow with the desired QoS instead of making the API call. .
  • the CCF 102 manages applications capable of calling APIs, and upon receiving an API call authorization request from the API invoker 101 , verifies the authorization request and authenticates/authorizes the API invoker 101 .
  • the CCF 102 statically manages this authentication/authorization of the API invoker 101 mainly by the ID (identifier) of the API invoker 101 and authentication information.
  • the CCF 102 is set with the upper limit number of API invokers that can call APIs that affect the service quality of a specific UE, and the IDs of the API invokers that have called APIs for the UE are listed together with the registration time. It is saved (see FIG. 7). This list is hereinafter referred to as an "API invoker list”.
  • the CCF 102 dynamically manages whether or not to call an API according to the API invoker list, and when it receives an inquiry about whether or not to call a new API from the AEF 103-1, it checks the API invoker list and decides whether to call the API. Judge whether or not it is possible.
  • the CCF 102 permits API calls from the target API invoker 101 . If the ID of the target API invoker 101 is not saved in the API invoker list, the CCF 102 adds the ID of the target API invoker 101 to the API invoker list.
  • the CCF 102 rejects API calls from the target API invoker 101.
  • the CCF 102 notifies the AEF 103-1 of the judgment result after judging whether or not the new API can be called.
  • the AEF 103-1 When the AEF 103-1 receives the judgment result about whether or not the API call is permitted from the CCF 102, it notifies the API invoker 101 of whether or not the API call is permitted. When API calls are permitted, the AEF 103-1 performs processing for API calls, such as notifying the Core Network of API contents such as QoS.
  • first sequence of CAPIF that is, the sequence until the API invoker 101 calls the API will be described with reference to FIG. It is assumed that the API invoker 101 has been registered (onboarded) in the CCF 102 in advance, and that a security method has been agreed between the API invoker 101 and the CCF 102 .
  • the API invoker 101 transmits an API call authorization request to the CCF 102. At that time, the API invoker 101 also transmits authentication information to the CCF 102 .
  • the CCF 102 verifies the authorization request from the API invoker 101 and performs authentication processing for the API invoker 101.
  • the CCF 102 transmits API call authorization information, specifically an access token, in S103.
  • the API invoker 101 uses the authorization information (access token) to call the API and access the AEF 103-1.
  • FIG. 5 an upper limit number of API invokers capable of invoking APIs that affect the service quality of a specific UE is set in advance, and the ID of the API invoker that has invoked the API for the UE is included in the API invoker list. saved in the format In FIGS. 5 and 6, it is assumed that the upper limit number of API invokers is set to one. 5 is in the state (initial state) of FIG. 7A, and the API invoker list at the start of the sequence in FIG. 6 is in the state of FIG. 7B.
  • FIG. 5 shows the sequence when the API invoker 101A, in the initial state (FIG. 7A), calls an API requesting QoS that realizes high-speed, large-capacity communication for downloading a large amount of data in the background.
  • the API invoker 101A calls the AEF 103-1 for an API requesting QoS that realizes high-speed, large-capacity communication.
  • the AEF 103-1 notifies the CCF 102 of the called API and the UE whose service quality is affected by the API, and inquires whether the API can be called.
  • the CCF 102 checks the API invoker list and determines whether the API can be called. In the case of FIG. 5, since the number of API invokers in the API invoker list shown in FIG. 7A has not reached the upper limit number "1", the CCF 102 permits calling of the API.
  • the CCF 102 also stores the ID [apiinvoker_a] of the API invoker 101A together with the registration time in the API invoker list (see FIG. 7B).
  • the CCF 102 notifies the AEF 103-1 of the confirmation result of the API invoker list, that is, the determination result of permitting the API call.
  • the AEF 103-1 notifies the API invoker 101A of permission to call the API.
  • the AEF 103-1 performs processing for API calls, such as notifying the Core Network of API contents such as QoS.
  • the API invoker 101A can perform high-speed, large-capacity communication in the background.
  • FIG. 6 shows the state after the API invoker 101A calls the API (FIG. 7B), which realizes low-latency communication for comfortable play without time lag in competitive games, etc. This is the sequence when calling an API requesting QoS.
  • the API invoker 101B calls the API requesting QoS that realizes low-delay communication to the AEF 103-1.
  • the AEF 103-1 notifies the CCF 102 of the called API and the UE whose service quality is affected by the API, and inquires whether the API can be called.
  • the CCF 102 checks the API invoker list and determines whether the API can be called. In the case of FIG. 6, the number of API invokers in the API invoker list shown in FIG. reject the call.
  • the CCF 102 notifies the AEF 103-1 of the result of checking the API invoker list, that is, the result of the decision to refuse to call the API.
  • the AEF 103-1 notifies the API invoker 101B of its refusal to call the API.
  • the CCF 102 starts a timer when the ID of the API invoker 101A is added to the API invoker list (registration time), and when the timer counts a predetermined time (for example, 30 minutes), the ID of the API invoker 101A is added to the API invoker list. You can remove it from the list. Also, the CCF 102 may delete the ID of the API invoker 101A from the API invoker list based on instructions from the API invoker 101A. In this case, the API invoker list reverts to the state of Figure 7A.
  • the API invoker 101B may start a timer when it receives a notification to the effect that the API call is to be rejected, and call the API again when the timer counts a predetermined time (for example, 30 minutes). At that time, if the ID of the API invoker 101A has been deleted from the API invoker list, the API call is permitted.
  • the API invoker 101B will be able to perform low-delay communication in the background.
  • the upper limit of the number of API invokers capable of calling an API for a specific UE is preset in the CCF, and the CCF calls the API for the UE. Save the ID of the API invoker. Then, when a new API is called, the CCF detects that the ID of the API invoker that called the API is not saved and the number of API invokers has reached the upper limit. reject the call to
  • the CCF manages the upper limit number of API invokers that can call an API for a specific UE
  • the present disclosure is not limited to this, and the AEF manages the upper limit number. You may In this case, the AEF does not make an inquiry to the CCF, judges whether the API call is permitted or not, and notifies the API invoker that called the API of the judgment result.
  • the CCF stores the IDs of the API invokers that have called the API in a list format. IDs of invokers may be managed in a format other than a list.
  • Terminal 10, base station 20 and NEF 30A-4 (30B-4) include the functionality described in the above example.
  • the terminal 10, base station 20 and NEF 30A-4 (30B-4) may include only some of the functions described in the above examples.
  • FIG. 8 is a diagram illustrating an example of a functional configuration of terminal 10 according to an embodiment of the present disclosure.
  • the terminal 10 includes a transmitting section 510, a receiving section 520, a setting section 530, and a control section 540.
  • the functional configuration shown in FIG. 8 is merely an example. As long as the operation according to the embodiment of the present disclosure can be executed, the functional division and the name of the functional unit may be anything.
  • the transmission unit 510 generates a transmission signal from transmission data and wirelessly transmits the generated transmission signal.
  • the receiving unit 520 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal.
  • the receiving unit 520 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, etc. transmitted from the base station 20 .
  • the transmitting unit 510 as D2D communication, to the other terminal 10, PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the receiving unit 520 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from other terminals 10 .
  • the setting unit 530 stores various setting information received from the base station 20 by the receiving unit 520 in a storage device (storage unit), and reads the setting information from the storage device as necessary.
  • the setting unit 530 also stores preset information that is set in advance in the storage device.
  • the contents of the configuration information and the preconfiguration information may include, for example, information related to PDU sessions.
  • the setting unit 530 may be included in the control unit 540 .
  • the control unit 540 controls the terminal 10 as a whole.
  • the control unit 540 performs control related to communication by a PDU session or the like, as described in the above examples.
  • a functional unit related to signal transmission in control unit 540 may be included in transmitting unit 510
  • a functional unit related to signal reception in control unit 540 may be included in receiving unit 520 .
  • FIG. 9 is a diagram illustrating an example of a functional configuration of base station 20 according to an embodiment of the present disclosure.
  • the base station 20 includes a transmitting section 610, a receiving section 620, a setting section 630, and a control section 640.
  • the functional configuration shown in FIG. 9 is merely an example. As long as the operation according to the embodiment of the present disclosure can be executed, the functional division and the name of the functional unit may be anything.
  • the transmission unit 610 includes a function of generating a signal to be transmitted to the terminal 10 and wirelessly transmitting the generated signal.
  • the transmitter 610 also transmits inter-network node messages to other network nodes.
  • the transmission unit 610 transmits the user data transmitted from the terminal 10 to the DH 50 as necessary.
  • the receiving unit 620 includes a function of receiving various signals transmitted from the terminal 10 and acquiring, for example, higher layer information from the received signals.
  • the transmitting unit 610 has a function of transmitting NRPSS, NR-SSS, NR-PBCH, DL/UL control signals, etc. to the terminal 10 .
  • the receiver 620 also receives inter-network node messages from other network nodes.
  • the setting unit 630 stores preset information set in advance and various kinds of setting information to be transmitted to the terminal 10 in a storage device (storage unit), and reads preset information and setting information from the storage device as needed.
  • the contents of the preset information and the configuration information may include, for example, node connection information, information related to PDU sessions, and the like. Note that the setting unit 630 may be included in the control unit 640 .
  • the control unit 640 controls the base station 20 as a whole. In particular, as described in the above example, the control unit 640 controls communication by a PDU session or the like (in particular, transmission of user data transmitted from the terminal 10 to the DH 50 based on a notification from another network node). I do. Also, the control unit 640 controls communication with the terminal 10 based on the terminal capability report regarding the radio parameters received from the terminal 10 .
  • a functional unit related to signal transmission in control unit 640 may be included in transmitting unit 610 , and a functional unit related to signal reception in control unit 640 may be included in receiving unit 620 .
  • FIG. 10 is a diagram showing an example of a functional configuration of NEF 30A-4 (30B-4) according to an embodiment of the present disclosure.
  • the NEF 30A-4 (30B-4) comprises a transmitting section 710, a receiving section 720, a setting section 730, and a control section 740.
  • the functional configuration shown in FIG. 10 is merely an example. As long as the operation according to the embodiment of the present disclosure can be executed, the functional division and the name of the functional unit may be anything.
  • the transmission unit 710 includes a function of generating a signal to be transmitted and transmitting the generated signal to the network.
  • the receiving unit 720 includes a function of receiving various signals and acquiring, for example, higher layer information from the received signals.
  • the setting unit 730 stores preset information and setting information set in advance in a storage device (storage unit), and reads preset information and setting information from the storage device as needed. Note that the setting unit 730 may be included in the control unit 740 .
  • the control unit 740 controls the entire NEF 30A-4 (30B-4).
  • a functional unit related to signal transmission in control unit 740 may be included in transmitting unit 710
  • a functional unit related to signal reception in control unit 740 may be included in receiving unit 720 .
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • a base station, a terminal, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of a terminal, base station, data hub access support, and other network nodes according to an embodiment of the present disclosure;
  • the terminal 10, base station 20 and NEF 30A-4 (30B-4) described above physically include a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. It may be configured as a computer device.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the terminal 10, base station 20 and NEF 30A-4 (30B-4) may be configured to include one or more of each device shown in the figure, or may be configured to include some devices without may be configured.
  • Each function in terminal 10, base station 20 and NEF 30A-4 (30B-4) is performed by processor 1001 by loading predetermined software (program) onto hardware such as processor 1001 and memory 1002, It is realized by controlling communication by the communication device 1004 and controlling at least one of data reading and writing in the memory 1002 and the storage 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 540 , the control unit 640 , the control unit 740 and the like described above may be realized by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • the control unit 740 of the NEF 30A-4 (30B-4) are stored in the memory 1002 and may be implemented by a control program that runs on the processor 1001.
  • other functional blocks may be similarly implemented.
  • FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrical Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting unit 510 , the receiving unit 520 , the transmitting unit 610 , the receiving unit 620 , the transmitting unit 710 , the receiving unit 720 and the like described above may be implemented by the communication device 1004 .
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the terminal 10, the base station 20 and the NEF 30A-4 (30B-4) include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA ( Field Programmable Gate Array) may be included, and part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021-2029. , an information service unit 2012 and a communication module 2013 .
  • a communication device mounted on vehicle 2001 may be applied to communication module 2013, for example.
  • the driving unit 2002 is configured by, for example, an engine, a motor, or a hybrid of the engine and the motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031 , a memory (ROM, RAM) 2032 and a communication port (IO port) 2033 . Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010 .
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • the signals from the various sensors 2021 to 2029 include the current signal from the current sensor 2021 that senses the current of the motor, the rotation speed signal of the front and rear wheels acquired by the rotation speed sensor 2022, and the front wheel acquired by the air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal obtained by vehicle speed sensor 2024, acceleration signal obtained by acceleration sensor 2025, accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, brake pedal sensor 2026 obtained by There are a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service unit 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various types of information such as driving information, traffic information, and entertainment information, and one or more devices for controlling these devices. ECU.
  • the information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide passengers of the vehicle 2001 with various multimedia information and multimedia services.
  • Driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), camera, positioning locator (e.g., GNSS, etc.), map information (e.g., high-definition (HD) map, automatic driving vehicle (AV) map, etc. ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, AI processors, etc., to prevent accidents and reduce the driver's driving load. and one or more ECUs for controlling these devices.
  • the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via communication ports.
  • the communication module 2013 communicates with the vehicle 2001 through the communication port 2033, the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, the axle 2009, the electronic Data is transmitted and received between the microprocessor 2031 and memory (ROM, RAM) 2032 in the control unit 2010 and the sensors 2021-29.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 2013 may be internal or external to electronic control unit 2010 .
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 receives the rotation speed signal of the front and rear wheels obtained by the rotation speed sensor 2022, the air pressure signal of the front and rear wheels obtained by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal obtained by the sensor 2027 and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by the object detection sensor 2028 are also transmitted to an external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service unit 2012 provided in the vehicle 2001 .
  • Communication module 2013 also stores various information received from external devices in memory 2032 available to microprocessor 2031 .
  • the microprocessor 2031 controls the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, and the axle 2009 provided in the vehicle 2001.
  • sensors 2021 to 2029 and the like may be controlled.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), NR (New Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • Base station operation Certain operations that are described in this disclosure as being performed by a base station may also be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc. (including but not limited to).
  • MME or S-GW network nodes other than the base station
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • (input/output direction) Information and the like can be output from the upper layer (or lower layer) to the lower layer (or higher layer). It may be input and output via multiple network nodes.
  • Input/output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Information, signal Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system As used in this disclosure, the terms “system” and “network” are used interchangeably.
  • radio resources may be indexed.
  • Base station wireless base station
  • base station radio base station
  • radio base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • RRH indoor small base station
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • terminal In this disclosure, terms such as “Mobile Station (MS),” “user terminal,” “User Equipment (UE),” “terminal,” etc. may be used interchangeably. .
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of a base station and a mobile station may be called a transmitter, a receiver, a communication device, and the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 10 may have the functions of the base station 20 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a terminal in the present disclosure may be read as a base station.
  • the base station 20 may have the functions of the terminal 10 described above.
  • determining may encompass a wide variety of actions.
  • “Judgement”, “determining” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “decision” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that something has been "determined” or “decided”.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or connection between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as Pilot according to the applicable standard.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • radio frame configuration for example, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • one slot or one minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. may be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a certain numerology in a certain carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • One aspect of the present disclosure is useful for mobile communication systems.
  • UE terminal
  • gNB base station
  • 30A-4, 30B-4 NEF Network Exposure Function
  • 101 API invokers
  • CCF CAPIF Core Function
  • APD APD
  • APF API publishing function
  • AMF AMF

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This network node determines whether to permit or reject calling of a new application programming interface (API), on the basis of the upper limit of the number of applications for which an API can be called, and registered applications, and notifies of the permission or rejection of calling of the API.

Description

ネットワークノード及び通信方法Network node and communication method
 本開示は、ネットワークノード及び通信方法に関する。 The present disclosure relates to network nodes and communication methods.
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「5G」あるいは「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術の検討が行われている。 In the 3GPP (3rd Generation Partnership Project), 5G or NR (New Radio) and NR (New Radio) are being used in order to further increase the system capacity, further increase the data transmission speed, and further reduce the delay in the wireless section. A wireless communication system called "5G" (hereinafter, the wireless communication system is referred to as "5G" or "NR") is under study. In 5G, various radio technologies are being studied in order to meet the requirements of realizing a throughput of 10 Gbps or more and keeping the delay in the radio section to 1 ms or less.
 NRでは、LTE(Long Term Evolution)のネットワークアーキテクチャにおけるコアネットワークであるEPC(Evolved Packet Core)に対応する5GC(5G Core Network)及びLTEのネットワークアーキテクチャにおけるRAN(Radio Access Network)であるE-UTRAN(Evolved Universal Terrestrial Radio Access Network)に対応するNG-RAN(Next Generation - Radio Access Network)を含むネットワークアーキテクチャが検討されている(非特許文献1参照)。 In NR, 5GC (5G Core Network) corresponding to EPC (Evolved Packet Core) which is the core network in LTE (Long Term Evolution) network architecture and E-UTRAN (RAN (Radio Access Network) in LTE network architecture ( A network architecture including NG-RAN (Next Generation-Radio Access Network) corresponding to Evolved Universal Terrestrial Radio Access Network) is under consideration (see Non-Patent Document 1).
 また、例えば、5GシステムにおけるNEF(Network Exposure Function)とAF(Application Function)との間等で用いられるNorthboundインタフェースをCAPIF(Common API Framework)により構成するアーキテクチャ(以下、「CAPIFアーキテクチャ」という)が検討されている(非特許文献2、3、4参照)。CAPIFは、3GPPで提供されるすべてのAPI(Application Programming Interface)に適用されうるフレームワークとして規定されている。 Also, for example, an architecture (hereinafter referred to as "CAPIF architecture") that configures the Northbound interface used between NEF (Network Exposure Function) and AF (Application Function) in 5G systems with CAPIF (Common API Framework) is under consideration. (See Non-Patent Documents 2, 3, and 4). CAPIF is defined as a framework that can be applied to all APIs (Application Programming Interfaces) provided by 3GPP.
 3GPPコアネットワークでは外部のアプリケーション向けにAPIを開放しており、CAPIFにおいて、サードパーティーのアプリケーションは、APIを呼び出すことができる。  The 3GPP core network opens APIs for external applications, and CAPIF allows third-party applications to call the APIs.
 しかしながら、複数のアプリケーションから連続してAPIの呼び出しがあった場合のCAPIFの制御については検討の余地がある。  However, there is room for further investigation regarding CAPIF control when API calls are made consecutively from multiple applications.
 本開示の一態様は、複数のアプリケーションから連続してAPIの呼び出しがあった場合において、後から呼び出したAPIによって先に呼び出したAPIによる設定が意図せず変更されることを防ぐことができるネットワークノード及び通信方法を提供する。 One aspect of the present disclosure is a network that can prevent unintentional change of settings by an API called earlier by an API called later when API calls are made in succession from a plurality of applications. A node and communication method are provided.
 本開示の一態様に係るネットワークノードは、API(Application Programming Interface)の呼び出しが可能なアプリケーションの上限数、及び、登録されたアプリケーションに基づいて、新たなAPIの呼び出しの許可又は拒絶を判断する制御部と、前記APIの呼び出しの許可又は拒絶を通知する送信部と、を具備する。 A network node according to an aspect of the present disclosure controls to determine permission or rejection of a new API call based on the upper limit number of applications that can call an API (Application Programming Interface) and registered applications. and a transmission unit for notifying permission or refusal of calling the API.
 本開示の一態様に係る通信方法は、ネットワークノードが、API(Application Programming Interface)の呼び出しが可能なアプリケーションの上限数、及び、登録されたアプリケーションに基づいて、新たなAPIの呼び出しの許可又は拒絶を判断し、前記新たなAPIの呼び出しの許可又は拒絶を通知する。 In a communication method according to an aspect of the present disclosure, a network node permits or denies new API calls based on the upper limit number of applications that can call APIs (Application Programming Interface) and registered applications. is determined, and permission or refusal of calling the new API is notified.
通信システムの例を説明するための図である。1 is a diagram for explaining an example of a communication system; FIG. ローミング環境下の通信システムの他の例を説明するための図である。FIG. 4 is a diagram for explaining another example of a communication system under roaming environment; CAPIFアーキテクチャを説明するための図である。1 is a diagram for explaining a CAPIF architecture; FIG. CAPIFの第1シーケンスを説明するための図である。FIG. 4 is a diagram for explaining the first sequence of CAPIF; FIG. CAPIFの第2シーケンスを説明するための図である。FIG. 4 is a diagram for explaining a second sequence of CAPIF; FIG. CAPIFの第2シーケンスを説明するための図である。FIG. 4 is a diagram for explaining a second sequence of CAPIF; FIG. API invokerリストの一例を示す図である。FIG. 10 is a diagram showing an example of an API invoker list; 本開示の一実施の形態に係る端末の機能構成の一例を示す図である。1 is a diagram illustrating an example of a functional configuration of a terminal according to an embodiment of the present disclosure; FIG. 本開示の一実施の形態に係る基地局の機能構成の一例を示す図である。It is a diagram showing an example of a functional configuration of a base station according to an embodiment of the present disclosure. 本開示の一実施の形態に係るNEFの機能構成の一例を示す図である。2 is a diagram illustrating an example of a functional configuration of NEF according to an embodiment of the present disclosure; FIG. 本開示の一実施の形態に係る端末、基地局、データハブアクセスサポート装置又は他のネットワークノードのハードウェア構成の一例を示す図である。2 is a diagram illustrating an example of hardware configuration of a terminal, base station, data hub access support device, or other network node according to an embodiment of the present disclosure; FIG. 本発明の実施の形態における車両の構成の一例を示す図である。It is a figure showing an example of composition of vehicles in an embodiment of the invention.
 (本発明に至った経緯)
 スマ-トフォン内のアプリケ-ション等であるAPI invokerは、CCF(CAPIF Core Function)に登録(onboarding)される。CCFは、その登録情報に基づいてAPI invokerの認証・認可を行う。API invokerは、CCFからAPIの呼び出しの認可を受けると、APD(API provider domain)内のAEF(API exposing function)に対してAPIの呼び出しを行う。AEFは、QoS等のAPIの内容をCore Networkに通知する等の、APIの呼び出しに対応する処理を行う。
(Circumstances leading to the present invention)
An API invoker, such as an application in a smartphone, is registered (onboarded) in a CCF (CAPIF Core Function). The CCF authenticates/authorizes the API invoker based on the registration information. When the API invoker receives authorization to call an API from the CCF, it calls an API to an AEF (API exposing function) within an APD (API provider domain). The AEF performs processing corresponding to API calls, such as notifying the Core Network of API contents such as QoS.
 複数のAPI invokerのそれぞれからAPIの呼び出しが連続して(所定時間内に)行われた場合、AEFは、各APIの呼び出しに対応する処理を順に行う。 When API calls are made continuously (within a predetermined time) from each of a plurality of API invokers, the AEF sequentially performs processing corresponding to each API call.
 複数のAPI invokerからのAPIの呼び出しが競合する場合、例えば、同一の通信路に適用され、互いに性質の異なるQoSを要求するAPIの呼び出しが連続して行われた場合には、後から呼び出しが行われたAPIのQoSがCore Networkの通信路に反映(上書き)される。 If API calls from multiple API invokers compete, for example, if API calls that apply to the same communication path and require different QoS properties are made in succession, the call will The API QoS performed is reflected (overwritten) in the Core Network communication path.
 例えば、アプリケーションAが、バックグラウンドで大量のデータをダウンロードするための高速大容量通信を実現するQoSを要求するAPIの呼び出しを行い、その後に、アプリケーションBが、対戦型ゲーム等で時間的なラグがなく快適にプレーするための低遅延通信を実現するQosを要求するAPIの呼び出しを行ったとする。この場合、Core Networkの通信路上では、アプリケーションAが要求した高速大容量通信のQoSが、アプリケーションBが要求した低遅延通信のQoSに上書きされることになる。 For example, application A calls an API requesting QoS that realizes high-speed, large-capacity communication for downloading a large amount of data in the background. Suppose that an API requesting QoS for achieving low-delay communication for comfortable playing is performed. In this case, the QoS for high-speed, large-capacity communication requested by application A is overwritten by the QoS for low-delay communication requested by application B on the communication path of the Core Network.
 これにより、アプリケーションAはバックグラウンドで高速大容量通信を継続することができなくなる。 As a result, application A will not be able to continue high-speed, large-capacity communication in the background.
 本発明者は、この課題に着目し、本発明をするに至った。 The inventor focused on this problem and came to the present invention.
 以下、図面を参照して本開示の実施の形態について説明する。なお、以下で説明する実施の形態は一例であり、本開示が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present disclosure will be described below with reference to the drawings. The embodiments described below are examples, and the embodiments to which the present disclosure is applied are not limited to the following embodiments.
 本開示の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用されてよい。当該既存技術は、例えば既存のLTE又は既存の5Gであるが、既存のLTE又は既存の5Gに限られない。 For the operation of the wireless communication system according to the embodiment of the present disclosure, existing technology may be used as appropriate. The existing technology is, for example, existing LTE or existing 5G, but is not limited to existing LTE or existing 5G.
 また、以下の説明では、現在のところ5Gの規格書(又はLTEの規格書)に記載されているノード名、信号名等を使用しているが、これらと同様の機能を有するノード名、信号名等がこれらとは異なる名称で呼ばれてもよい。 In addition, in the following description, the node names, signal names, etc. described in the 5G standard (or LTE standard) are currently used, but node names and signal names having the same functions as these are used. Names, etc. may be called by names different from these.
 例えば、以下で説明する本開示の実施の形態では、既存のLTEで使用されているSS(Synchronization Signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical Broadcast Channel)、PRACH(Physical Random Access Channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用することがある。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH、NR-PDCCH、NR-PDSCH、NR-PUCCH、NR-PUSCH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記するわけではない。 For example, in the embodiments of the present disclosure described below, SS (Synchronization Signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical Broadcast Channel), PRACH (Physical Random Access Channel), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), PUCCH (Physical Uplink Control Channel), PUSCH (Physical Uplink Shared Channel) and other terms may be used. Also, the above terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, NR-PDCCH, NR-PDSCH, NR-PUCCH, NR-PUSCH, and the like. However, even a signal used for NR is not necessarily specified as "NR-".
 (システム構成例A)
 図1は、通信システム1Aの例を説明するための図である。図1に示すように、通信システム1Aは、例えば、UE10A(User Equipment:(ユーザ)端末あるいは(ユーザ)ノードと呼ばれてもよい)と、複数のネットワークノード20A、30A-1~30A-10(NF(Network Function)と呼ばれてもよい)、40Aと、から構成される。以下、機能ごとに1つのネットワークノードが対応するものとするが、1つのネットワークノードが複数の機能を実現してもよいし、複数のネットワークノードが1つの機能を実現してもよい。また、以下に記載する「接続」は、論理的な接続であってもよいし、物理的な接続であってもよい。
(System configuration example A)
FIG. 1 is a diagram for explaining an example of a communication system 1A. As shown in FIG. 1, the communication system 1A includes, for example, a UE 10A (User Equipment: may be called a (user) terminal or a (user) node), a plurality of network nodes 20A, 30A-1 to 30A-10 (which may be called NF (Network Function)) and 40A. Hereinafter, one network node corresponds to each function, but one network node may implement a plurality of functions, or a plurality of network nodes may implement one function. Also, the "connection" described below may be a logical connection or a physical connection.
 NG-RAN(Next Generation - Radio Access Network)20Aは、無線アクセス機能を有するネットワークノードであり、例えばgNB(next generation Node B)(基地局と呼ばれてもよい)であってよい。NG-RAN20Aは、UE10A、AMF(Access and Mobility Management Function)30A-1及びUPF(User Plane Function)40Aと接続される。 The NG-RAN (Next Generation - Radio Access Network) 20A is a network node with radio access functionality, and may be, for example, a gNB (next generation Node B) (which may also be called a base station). NG-RAN 20A is connected to UE 10A, AMF (Access and Mobility Management Function) 30A-1 and UPF (User Plane Function) 40A.
 AMF30A-1は、RANインタフェースの終端、NAS(Non-Access Stratum)の終端、登録管理、接続管理、到達性管理、モビリティ管理等の機能を有するネットワークノードである。AMF30A-1は、UE10A、NG-RAN20A、SMF(Session Management function)30A-2、NSSF(Network Slice Selection Function)30A-3、NEF(Network Exposure Function)30A-4、NRF(Network Repository Function)30A-5、UDM(Unified Data Management)30A-6、AUSF(Authentication Server Function)30A-7、PCF(Policy Control Function)30A-8、AF(Application Function)30A-9及びNWDAF(Network Data Analytics Function)30A-10と接続される。なお、AMF30A-1はアクセス・モビリティ管理装置と呼ばれてもよい。 AMF30A-1 is a network node having functions such as RAN interface termination, NAS (Non-Access Stratum) termination, registration management, connection management, reachability management, and mobility management. AMF 30A-1 includes UE 10A, NG-RAN 20A, SMF (Session Management function) 30A-2, NSSF (Network Slice Selection Function) 30A-3, NEF (Network Exposure Function) 30A-4, NRF (Network Repository Function) 30A- 5, UDM (Unified Data Management) 30A-6, AUSF (Authentication Server Function) 30A-7, PCF (Policy Control Function) 30A-8, AF (Application Function) 30A-9 and NWDAF (Network Data Analytics Function) 30A- 10. Note that the AMF 30A-1 may also be called an access mobility management device.
 AMF30A-1、SMF30A-2、NSSF30A-3、NEF30A-4、NRF30A-5、UDM30A-6、AUSF30A-7、PCF30A-8、AF30A-9及びNWDAF30A-10は、各々のサービスに基づくインタフェースNamf、Nsmf、Nnssf、Nnef、Nnrf、Nudm、Nausf、Npcf、Naf及びNnwdafをそれぞれ介して相互に接続されるネットワークノードである。 AMF30A-1, SMF30A-2, NSSF30A-3, NEF30A-4, NRF30A-5, UDM30A-6, AUSF30A-7, PCF30A-8, AF30A-9 and NWDAF30A-10 are interfaces Namf, Nsmf , Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf and Nnwdaf, respectively.
 SMF30A-2は、セッション管理、UEのIP(Internet Protocol)アドレス割り当て及び管理、DHCP(Dynamic Host Configuration Protocol)機能、ARP(Address Resolution Protocol)プロキシ、ローミング機能等の機能を有するネットワークノードである。なお、SMF30A-2はセッション管理装置と呼ばれてもよい。 SMF30A-2 is a network node that has functions such as session management, UE IP (Internet Protocol) address assignment and management, DHCP (Dynamic Host Configuration Protocol) function, ARP (Address Resolution Protocol) proxy, and roaming function. Note that the SMF 30A-2 may be called a session management device.
 NSSF30A-3は、UEが接続するネットワークスライスの選択、許可されるNSSAI(Network Slice Selection Assistance Information)の決定、設定されるNSSAIの決定、UEが接続するAMFセットの決定等の機能を有するネットワークノードである。 NSSF 30A-3 is a network node that has functions such as selecting a network slice to which the UE connects, determining the allowed NSSAI (Network Slice Selection Assistance Information), determining the NSSAI to be set, and determining the AMF set to which the UE connects. is.
 NEF30A-4は、他のNFに能力及びイベントを通知する機能を有するネットワークノードである。 The NEF 30A-4 is a network node that has the function of notifying other NFs of capabilities and events.
 NRF30A-5は、サービスを提供するNFインスタンスを発見する機能を有するネットワークノードである。 NRF 30A-5 is a network node that has the function of discovering NF instances that provide services.
 UDM30A-6は、加入者データ及び認証データを管理するネットワークノードである。UDM30A-6は、当該データを保持するUDR(User Data Repository)と接続される。 The UDM 30A-6 is a network node that manages subscriber data and authentication data. UDM 30A-6 is connected to a UDR (User Data Repository) that holds the data.
 AUSF30A-7は、UDRに保持されている加入者データに対して加入者/UE10を認証するネットワークノードである。 AUSF 30A-7 is a network node that authenticates subscribers/UEs 10 against subscriber data held in UDR.
 PCF30A-8は、ネットワークのポリシ制御を行う機能を有するネットワークノードである。 The PCF 30A-8 is a network node that has the function of performing network policy control.
 AF30A-9は、アプリケーションサーバを制御する機能を有するネットワークノードである。 AF30A-9 is a network node that has the function of controlling the application server.
 NWDAF30A-10は、ネットワークによって取得されるデータを収集及び分析し、分析結果を提供するネットワークノードである。 NWDAF30A-10 is a network node that collects and analyzes data acquired by the network and provides analysis results.
 UPF40Aは、NG-RAN20及びDN(Data Network)50Aと相互接続する外部に対するPDU(Protocol Data Unit)セッションポイント、パケットのルーティング及びフォワーディング、ユーザプレーンのQoS(Quality of Service)ハンドリング等の機能を有するネットワークノードであり、ユーザデータの送受信等を行う。なお、UPF40Aはユーザプレーン装置と呼ばれてもよい。 UPF 40A is a network that has functions such as PDU (Protocol Data Unit) session point for the outside that interconnects with NG-RAN 20 and DN (Data Network) 50A, packet routing and forwarding, user plane QoS (Quality of Service) handling, etc. A node that transmits and receives user data. Note that the UPF 40A may also be called a user plane device.
 例えば、あるUPF40A及びDN50Aは、ネットワークスライスを構成してよい。本開示の実施の形態に係る無線通信ネットワークでは、複数のネットワークスライスが構築されている。なお、1つのUPF40Aが1つのネットワークスライスを運用してもよいし、1つのUPF40Aが複数のネットワークスライスを運用してもよい。 For example, one UPF 40A and DN 50A may constitute a network slice. A plurality of network slices are constructed in the wireless communication network according to the embodiment of the present disclosure. One UPF 40A may operate one network slice, or one UPF 40A may operate a plurality of network slices.
 また、UPF40Aは、物理的には例えば1つ又は複数のコンピュータ(サーバ等)であり、当該コンピュータのハードウェアリソース(CPU、メモリ、ハードディスク、ネットワークインタフェース等)を論理的に統合・分割してできる複数のリソースをリソースプールとみなし、当該リソースプールにそれぞれのリソースをネットワークスライスとして使用することができる。UPF40Aがネットワークスライスを運用するとは、例えば、ネットワークスライスとリソースとの対応付けの管理、当該リソースの起動・停止、当該リソースの動作状況の監視等を行うことである。 Also, the UPF 40A is physically one or more computers (servers, etc.), and can be made by logically integrating and dividing the hardware resources (CPU, memory, hard disk, network interface, etc.) of the computer. A plurality of resources can be viewed as a resource pool and each resource can be used as a network slice for the resource pool. The UPF 40A operating the network slice means, for example, managing the correspondence between the network slice and the resource, starting/stopping the resource, monitoring the operation status of the resource, and the like.
 (システム構成例B)
 図2は、ローミング環境下の通信システム1Bの例を説明するための図である。図2に示すように、通信システム1Bは、例えば、ユーザが使用する通信端末(ノード)であるUE10Bと、複数のネットワークノード20B、30B-1~30B-12、40Bと、から構成される。
(System configuration example B)
FIG. 2 is a diagram for explaining an example of the communication system 1B under the roaming environment. As shown in FIG. 2, the communication system 1B includes, for example, a UE 10B, which is a communication terminal (node) used by a user, and a plurality of network nodes 20B, 30B-1 to 30B-12, 40B.
 通信システム1Bは、5Gネットワークシステムに含まれるシステムであり、UE10Bに対して、データ通信によりネットワークサービスを提供するシステムである。ネットワークサービスとは、通信サービス(専用線サービス等)やアプリケーションサービス(動画配信、エンベデッド装置等のセンサ装置を利用したサービス)等のネットワーク資源を用いたサービスをいう。 The communication system 1B is a system included in the 5G network system, and is a system that provides network services to the UE 10B through data communication. Network services refer to services using network resources, such as communication services (dedicated line services, etc.) and application services (video distribution, services using sensor devices such as embedded devices).
 また、図2では、UE10Bがローミング環境であることを前提としている。UE10がローミング環境であるとは、UE10の使用者が契約する事業者のネットワーク(ホームネットワーク)であるHPLMN(Home Public Land Mobile Network)とは異なりUE10Bが在圏するネットワーク(在圏ネットワーク)であるVPLMN(Visited Public Land Mobile Network)にアクセスして通信を行っている状態であることを示す。 Also, in FIG. 2, it is assumed that the UE 10B is in a roaming environment. The UE 10 is in a roaming environment, which is different from the HPLMN (Home Public Land Mobile Network) which is the network (home network) of the operator to which the user of the UE 10 has a contract. Indicates that the VPLMN (Visited Public Land Mobile Network) is being accessed for communication.
 通信システム1BのVPLMNは、UE10B、(R)AN((Radio) Access Network)20B、AMF(Access and Mobility Management Function)30B-1、SMF(Session Management function)30B-2、NSSF(Network Slice Selection Function)30B-3、NEF(Network Exposure Function)30B-4、NRF(Network Repository Function)30B-5、PCF(Policy Control Function)30B-8、NSACF(Network Slice Admission Control Function)30B-10、SEPP(Security Edge Protection Proxy)30B-12、UPF(User Plane Function)40Bと、から構成される。 The VPLMN of the communication system 1B includes UE 10B, (R) AN ((Radio) Access Network) 20B, AMF (Access and Mobility Management Function) 30B-1, SMF (Session Management function) 30B-2, NSSF (Network Slice Selection Function ) 30B-3, NEF (Network Exposure Function) 30B-4, NRF (Network Repository Function) 30B-5, PCF (Policy Control Function) 30B-8, NSACF (Network Slice Admission Control Function) 30B-10, SEPP (Security Edge Protection Proxy) 30B-12 and UPF (User Plane Function) 40B.
 また、通信システム1BのHPLMNは、SMF30B-2、NSSF30B-3、NEF30B-4、NRF30B-5、UDM(Unified Data Management)30B-6、AUSF(Authentication Server Function)30B-7、PCF30B-8、AF(Application Function)30B-9、NSACF30B-10、NSSAAF(Network Slice Specific Authentication and Authorization Function)30B-11、SEPP30B-12、UPF40Bと、から構成される。 The HPLMN of the communication system 1B includes SMF30B-2, NSSF30B-3, NEF30B-4, NRF30B-5, UDM (Unified Data Management) 30B-6, AUSF (Authentication Server Function) 30B-7, PCF30B-8, AF (Application Function) 30B-9, NSACF 30B-10, NSSAAF (Network Slice Specific Authentication and Authorization Function) 30B-11, SEPP 30B-12, and UPF 40B.
 (R)AN20Bは、無線アクセス機能を有するネットワークノードであり、例えばgNB(next generation Node B)(基地局と呼ばれてもよい)であってよい。 The (R)AN 20B is a network node with radio access functionality, and may be, for example, a gNB (next generation Node B) (which may also be called a base station).
 AMF30B-1は、RANインタフェースの終端、NAS(Non-Access Stratum)の終端、登録管理、接続管理、到達性管理、モビリティ管理等の機能を有するネットワークノードである。 AMF30B-1 is a network node having functions such as RAN interface termination, NAS (Non-Access Stratum) termination, registration management, connection management, reachability management, and mobility management.
 SMF30B-2は、セッション管理、UEのIP(Internet Protocol)アドレス割り当て及び管理、DHCP(Dynamic Host Configuration Protocol)機能、ARP(Address Resolution Protocol)プロキシ、ローミング機能等の機能を有するネットワークノードである。 SMF30B-2 is a network node that has functions such as session management, UE IP (Internet Protocol) address assignment and management, DHCP (Dynamic Host Configuration Protocol) function, ARP (Address Resolution Protocol) proxy, and roaming function.
 NSSF30B-3は、UEが接続するネットワークスライスの選択、許可されるNSSAI(Network Slice Selection Assistance Information)の決定、設定されるNSSAIの決定、UEが接続するAMFセットの決定等の機能を有するネットワークノードである。 NSSF 30B-3 selects the network slice to which the UE connects, determines the allowed NSSAI (Network Slice Selection Assistance Information), determines the NSSAI to be set, determines the AMF set to which the UE connects, etc. A network node with functions such as is.
 NEF30B-4は、他のNFに能力及びイベントを通知する機能を有するネットワークノードである。 The NEF 30B-4 is a network node that has the function of notifying other NFs of capabilities and events.
 NRF30B-5は、サービスを提供するNFインスタンスを発見する機能を有するネットワークノードである。  NRF30B-5 is a network node that has the function of discovering NF instances that provide services.
 UDM30B-6は、加入者データ及び認証データを管理するネットワークノードである。UDM30B-6は、当該データを保持するUDR(User Data Repository)と接続される。 The UDM 30B-6 is a network node that manages subscriber data and authentication data. The UDM 30B-6 is connected to a UDR (User Data Repository) holding the data.
 AUSF30B-7は、UDRに保持されている加入者データに対して加入者/UE10Bを認証するネットワークノードである。  AUSF 30B-7 is a network node that authenticates the subscriber/UE 10B against the subscriber data held in the UDR.
 PCF30B-8は、ネットワークのポリシ制御を行う機能を有するネットワークノードである。 PCF 30B-8 is a network node that has the function of performing network policy control.
 AF30B-9は、アプリケーションサーバを制御する機能を有するネットワークノードである。 AF30B-9 is a network node that has the function of controlling the application server.
 NSACF30B-10Bは、ネットワークスライスの承認を制御する機能を有するネットワークノードである。 NSACF 30B-10B is a network node that has the function of controlling network slice approval.
 NSSAAF30B-11は、ネットワークスライスの認証・認可を制御する機能を有するネットワークノードである。 NSSAAF 30B-11 is a network node that has the function of controlling network slice authentication and authorization.
 SEPP30B-12は、事業者間の制御プレーンのやり取りにおいて、メッセージのフィルタリング及びポリシ制限を制御するプロキシを有するネットワークノードである。なお、VPLMN側のSEPP30B-12をvSEPP30B-12vと記載し、HPLMN側のSEPP30B-12をhSEPP30B-12hと記載する。vSEPP30B-12v及びhSEPP30B-12hは、VPLMNとHPLMNとの間において送受信されるメッセージ(HTTP Request、HTTP Response等)のセキュリティ及びインテグリティに関する機能を提供する。 SEPP 30B-12 is a network node with a proxy that controls message filtering and policy restrictions in inter-operator control plane exchanges. The SEPP30B-12 on the VPLMN side is described as vSEPP30B-12v, and the SEPP30B-12 on the HPLMN side is described as hSEPP30B-12h. vSEPP 30B-12v and hSEPP 30B-12h provide functions related to security and integrity of messages (HTTP Request, HTTP Response, etc.) sent and received between VPLMN and HPLMN.
 UPF40Bは、外部に対するPDU(Protocol Data Unit)セッションポイント、パケットのルーティング及びフォワーディング、ユーザプレーンのQoS(Quality of Service)ハンドリング等の機能を有するネットワークノードである。 The UPF 40B is a network node that has functions such as a PDU (Protocol Data Unit) session point to the outside, packet routing and forwarding, and user plane QoS (Quality of Service) handling.
 なお、N1、N2、N3、N4、N9は、ネットワークノード間のリファレンスポイントである。また、vSEPP30B-12vとhSEPP30B-12hとの間のN32は、VPLMNとHPLMNとの接続点におけるリファレンスポイントである。  N1, N2, N3, N4, and N9 are reference points between network nodes. Also, N32 between vSEPP30B-12v and hSEPP30B-12h is a reference point at the connection point between VPLMN and HPLMN.
 (R)AN20Bは、UE10B、AMF30B-1及びUPF40Bと接続される。 (R) AN 20B is connected to UE 10B, AMF 30B-1 and UPF 40B.
 VPLMNにおいて、AMF30B-1、SMF30B-2、NSSF30B-3、NEF30B-4、NRF30B-5、PCF30B-8、NSACF30B-10は、各々のサービスに基づくインタフェースNamf、Nsmf、Nnssf、Nnef、Nnrf、Npcf、Nsacfをそれぞれ介して相互に接続される。 In the VPLMN, AMF 30B-1, SMF 30B-2, NSSF 30B-3, NEF 30B-4, NRF 30B-5, PCF 30B-8, NSACF 30B-10 have respective service-based interfaces Namf, Nsmf, Nnssf, Nnef, Nnrf, Npcf, are connected to each other via Nsacf respectively.
 HPLMNにおいて、SMF30B-2、NSSF30B-3、NEF30B-4、NRF30B-5、UDM30B-6、AUSF30B-7、PCF30B-8、AF30B-9、NSACF30B-10、NSSAAF30B-11は、各々のサービスに基づくインタフェースNsmf、Nnssf、Nnef、Nnrf、Nudm、Nausf、Npcf、Naf、Nsacf、Nnssaafをそれぞれ介して相互に接続される。 In the HPLMN, SMF30B-2, NSSF30B-3, NEF30B-4, NRF30B-5, UDM30B-6, AUSF30B-7, PCF30B-8, AF30B-9, NSACF30B-10, NSSAAF30B-11 are interfaces based on each service. are interconnected via Nsmf, Nnssf, Nnef, Nnrf, Nudm, Nausf, Npcf, Naf, Nsacf, and Nnssaaf, respectively.
 vSEPP30B-12vは、VPLMNの、AMF30B-1、SMF30B-2、NSSF30B-3、NEF30B-4、NRF30B-5、PCF30B-8及びNSACF30B-10と接続し、N32を介してhSEPP30B-12hと接続する。 vSEPP30B-12v connects with VPLMN's AMF30B-1, SMF30B-2, NSSF30B-3, NEF30B-4, NRF30B-5, PCF30B-8 and NSACF30B-10, and connects with hSEPP30B-12h via N32.
 hSEPP30B-12hは、HPLMNの、SMF30B-2、NSSF30B-3、NEF30B-4、NRF30B-5、UDM30B-6、AUSF30B-7、PCF30B-8、AF30B-9、NSACF30B-10及びNSSAAF30B-11と接続し、N32を介してvSEPP30B-12vと接続する。 hSEPP30B-12h connects with HPLMN SMF30B-2, NSSF30B-3, NEF30B-4, NRF30B-5, UDM30B-6, AUSF30B-7, PCF30B-8, AF30B-9, NSACF30B-10 and NSSAAF30B-11. , N32 to vSEPP30B-12v.
 VPLMN側のUPF40Bは、(R)AN20B、SMF30B-2及びHPLMN側のUPF40Bと相互接続する。HPLMNのUPF40Bは、SMF30B-2及びDN(Data Network)50Bと相互接続する。 The UPF 40B on the VPLMN side interconnects with (R)AN 20B, SMF 30B-2 and UPF 40B on the HPLMN side. UPF 40B of HPLMN interconnects with SMF 30B-2 and DN (Data Network) 50B.
 (CAPIFアーキテクチャ)
 上述のNEF30A-4(30B-4)は、AF30A-9(30B-9)から呼び出し可能であるAPIを、CAPIFアーキテクチャを適用して実装することが検討されている。CAPIFアーキテクチャは、サービスAPI運用をサポートするメカニズムを提供し、例えば、APIの呼び出し元(API invoker)にAPIの提供者(API provider)から提供されるサービスAPIを発見させ、当該サービスAPIを使用する通信を可能とする。また、CAPIFアーキテクチャは、例えば、PLMNトラストドメインの外部からサービスAPIにアクセスするAPIの呼び出し元から、PLMNトラストドメインの接続形態(topology)を隠蔽するメカニズムを有する。
(CAPIF architecture)
The NEF 30A-4 (30B-4) described above is under consideration to implement an API that can be called from the AF 30A-9 (30B-9) by applying the CAPIF architecture. The CAPIF architecture provides a mechanism to support service API operation, for example, allows an API invoker to discover a service API provided by an API provider and use the service API. enable communication. The CAPIF architecture also has mechanisms to hide the topology of the PLMN trust domain, eg, from API callers accessing the service API from outside the PLMN trust domain.
 次に、CAPIFアーキテクチャについて図3を用いて説明する。図3に示すように、CAPIFは、API invoker101、CCF102、APD103から構成される。API invoker101は、APIの呼び出し元のアプリケーションであり、CCF102及びAPD103は、ネットワークノードである。 Next, the CAPIF architecture will be explained using FIG. As shown in FIG. 3, CAPIF is composed of API invoker 101, CCF 102, and APD 103. The API invoker 101 is an API caller application, and the CCF 102 and APD 103 are network nodes.
 APD103は、AEF103-1、APF(API publishing function)103-2、AMF(API management function)103-3の各機能(ネットワークノード)を有する。APD103は、AEF103-1を利用して、API invoker101のアクセスを認証・認可する。また、APD103は、APF103-2を利用してCCF102上でService APIを公開する。また、APD103は、AMF103-3を利用して、CCF102から受け取ったAPIの呼び出しのログの監査や、Service APIの状態の監視を行う。 The APD 103 has each function (network node) of AEF 103-1, APF (API publishing function) 103-2, and AMF (API management function) 103-3. The APD 103 uses the AEF 103-1 to authenticate/authorize the access of the API invoker 101. Also, the APD 103 publishes the Service API on the CCF 102 using the APF 103-2. The APD 103 also uses the AMF 103-3 to audit logs of API calls received from the CCF 102 and to monitor the status of Service APIs.
 CAPIFは、複数のAPI invoker101を含むことができる。図3では、CAPIFが、API invoker101A及びAPI invoker101Bの2つのAPI invoker101を含んでいる例を示す。例えば、API invoker101Aが、バックグラウンドで大量のデータをダウンロードするための高速大容量通信を行うアプリケーションであり、API invoker101Bが、対戦型ゲーム等で時間的なラグがなく快適にプレーするための低遅延通信を行うアプリケーションである。以下において、API invoker101A及びAPI invoker101Bの双方に共通する処理については、単にAPI invoker101の処理として説明する。 A CAPIF can contain multiple API invokers 101. FIG. 3 shows an example in which the CAPIF includes two API invokers 101, API invoker 101A and API invoker 101B. For example, API invoker 101A is an application that performs high-speed, large-capacity communication to download a large amount of data in the background, and API invoker 101B is a low-delay application that allows you to play competitive games comfortably without time lag. It is an application that communicates. In the following, processing common to both the API invoker 101A and API invoker 101B will be simply described as processing of the API invoker 101. FIG.
 (API invoker101)
 API invoker101は、CCF102及びAPD103と接続可能であり、CCF102に事前に登録(onboarding)される。なお、API invoker101は、サードパーティーのアプリケーションであってもよいし、CCF102やAPD103を提供している事業者と同じ事業者が運用するアプリケーションであってもよい。
(API invoker 101)
The API invoker 101 is connectable with the CCF 102 and the APD 103 and registered (onboarded) with the CCF 102 in advance. The API invoker 101 may be a third-party application, or may be an application operated by the same provider that provides the CCF 102 and APD 103 .
 また、API invoker101とCCF102との間でセキュリティメソッドが合意される。なお、このセキュリティメソッドには、例えばOAuth 2.0の中で規定されているClient Credential方式が用いられる。この方式では、クライアント(API invoker)の認証のみでAPIの呼び出しが認可される。 Also, a security method is agreed between the API invoker 101 and the CCF 102. For this security method, for example, the Client Credential method specified in OAuth 2.0 is used. In this method, API calls are authorized only by client (API invoker) authentication.
 API invoker101は、CCF102に認証・認可されれば、APIの呼び出し、すなわちAPD103内のAEF(API exposing function)103-1へのアクセスが可能となる。 If the API invoker 101 is authenticated and authorized by the CCF 102, it will be able to call the API, that is, access the AEF (API exposing function) 103-1 in the APD 103.
 API invoker101は、AEF103-1へのアクセス(APIの呼び出し)を行うと、AEF103-1から、APIの呼び出しに対する許可(allow)あるいは拒否(reject)(以下、「可否」と記載することもある)が通知される。なお、APIの呼び出しが拒否された場合、API invoker101には、拒否の理由を示す値(cause値)も併せて通知される。 When the API invoker 101 accesses the AEF 103-1 (API call), the API invoker 103-1 permits or rejects the API call (hereinafter also referred to as "permission"). is notified. When the API call is rejected, the API invoker 101 is also notified of a value indicating the reason for the rejection (cause value).
 API invoker101は、APIの呼び出しが拒否された場合、一定時間経過後に再びAPIの呼び出しを行う等の所定の動作を行ってもよい。また、API invoker101は、cause値に基づいて、その後の動作を決定してもよい。例えば、cause値が、既存の通信に対するQoSの変更は受け付けられないという理由を示す場合、API invoker101は、APIの呼び出しを行う代わりに、所望のQoSを持つ新たな通信フローを確立してもよい。 If the API invoker 101 rejects the API call, the API invoker 101 may perform a predetermined operation such as calling the API again after a certain period of time. Also, the API invoker 101 may determine subsequent operations based on the cause value. For example, if the cause value indicates that changing the QoS for an existing communication is unacceptable, the API invoker 101 may establish a new communication flow with the desired QoS instead of making the API call. .
 (CCF102)
 CCF102は、APIの呼び出しが可能なアプリケーションを管理し、API invoker101からAPIの呼び出しの認可要求を受信した場合、認可要求の検証を行い、API invoker101を認証・認可する。CCF102は、このAPI invoker101の認証・認可を、主にAPI invoker101のID(識別子)と認証情報によって静的に管理する。
(CCF102)
The CCF 102 manages applications capable of calling APIs, and upon receiving an API call authorization request from the API invoker 101 , verifies the authorization request and authenticates/authorizes the API invoker 101 . The CCF 102 statically manages this authentication/authorization of the API invoker 101 mainly by the ID (identifier) of the API invoker 101 and authentication information.
 また、CCF102には、特定のUEのサービス品質に影響するAPIの呼び出しが可能なAPI invokerの上限数が設定され、当該UEに対するAPIの呼び出しを行ったAPI invokerのIDが登録時刻と共にリスト形式で保存される(図7参照)。以下、当該リストを「API invokerリスト」と云う。 In addition, the CCF 102 is set with the upper limit number of API invokers that can call APIs that affect the service quality of a specific UE, and the IDs of the API invokers that have called APIs for the UE are listed together with the registration time. It is saved (see FIG. 7). This list is hereinafter referred to as an "API invoker list".
 CCF102は、API invokerリストに従ってAPIの呼び出しの可否を動的に管理し、AEF103-1から、新たなAPIの呼び出しに対する可否の問い合わせを受けた場合、API invokerリストを確認して当該APIの呼び出しの可否を判断する。 The CCF 102 dynamically manages whether or not to call an API according to the API invoker list, and when it receives an inquiry about whether or not to call a new API from the AEF 103-1, it checks the API invoker list and decides whether to call the API. Judge whether or not it is possible.
 具体的には、新たにAPIの呼び出しを行ったAPI invoker(以下、「対象API invoker」という)101のIDがAPI invokerリストに保存されている場合、あるいは、対象API invoker101のIDがAPI invokerリストに保存されていなくてもAPI invoker数が上限数に達していない場合、CCF102は、対象API invoker101からのAPIの呼び出しを許可する。なお、対象API invoker101のIDがAPI invokerリストに保存されていない場合、CCF102は、対象API invoker101のIDをAPI invokerリストに追加する。 Specifically, when the ID of the API invoker 101 that newly invoked the API (hereinafter referred to as the "target API invoker") is saved in the API invoker list, or when the ID of the target API invoker 101 is stored in the API invoker list , the number of API invokers does not reach the upper limit, the CCF 102 permits API calls from the target API invoker 101 . If the ID of the target API invoker 101 is not saved in the API invoker list, the CCF 102 adds the ID of the target API invoker 101 to the API invoker list.
 一方、対象API invoker101のIDがAPI invokerリストに保存されておらず、かつ、API invoker数が上限数に達している場合、CCF102は、対象API invoker101からのAPIの呼び出しを拒否する。 On the other hand, if the ID of the target API invoker 101 is not saved in the API invoker list and the number of API invokers has reached the upper limit, the CCF 102 rejects API calls from the target API invoker 101.
 CCF102は、新たなAPIの呼び出しの可否を判断した後、判断結果をAEF103-1に通知する。 The CCF 102 notifies the AEF 103-1 of the judgment result after judging whether or not the new API can be called.
 (AEF103-1の処理)
 AEF103-1は、API invoker101からAPIの呼び出しを受けると、CCF102に、呼び出されたAPIと当該APIによってサービス品質に影響を受けるUEとを通知すると共に、当該APIの呼び出しの可否の問い合わせを行う。
(Processing of AEF103-1)
When the AEF 103-1 receives an API call from the API invoker 101, the AEF 103-1 notifies the CCF 102 of the called API and the UE whose service quality is affected by the API, and inquires whether the API can be called.
 AEF103-1は、CCF102から、APIの呼び出しの可否についての判断結果を受けると、API invoker101に対して、APIの呼び出しの可否を通知する。また、APIの呼び出しを許可する場合、AEF103-1は、QoS等のAPIの内容をCore Networkに通知する等のAPIの呼び出しに対する処理を行う。 When the AEF 103-1 receives the judgment result about whether or not the API call is permitted from the CCF 102, it notifies the API invoker 101 of whether or not the API call is permitted. When API calls are permitted, the AEF 103-1 performs processing for API calls, such as notifying the Core Network of API contents such as QoS.
 (CAPIFの第1シーケンス)
 次に、CAPIFの第1シーケンス、すなわちAPI invoker101がAPIの呼び出しを行うまでのシーケンスについて図4を用いて説明する。なお、API invoker101がCCF102に事前に登録(onboarding)され、API invoker101とCCF102との間でセキュリティメソッドが合意されているものとする。
(first sequence of CAPIF)
Next, the first sequence of CAPIF, that is, the sequence until the API invoker 101 calls the API will be described with reference to FIG. It is assumed that the API invoker 101 has been registered (onboarded) in the CCF 102 in advance, and that a security method has been agreed between the API invoker 101 and the CCF 102 .
 まず、S101において、API invoker101が、CCF102に対して、APIの呼び出しの認可要求を送信する。その際、API invoker101は、CCF102に認証情報を併せて送信する。 First, in S101, the API invoker 101 transmits an API call authorization request to the CCF 102. At that time, the API invoker 101 also transmits authentication information to the CCF 102 .
 CCF102は、S102において、API invoker101からの認可要求を検証し、API invoker101の認証処理を行う。 In S102, the CCF 102 verifies the authorization request from the API invoker 101 and performs authentication processing for the API invoker 101.
 認証処理が完了すると、CCF102は、S103において、APIの呼び出しの認可情報、具体的にはアクセストークンを送信する。 When the authentication process is completed, the CCF 102 transmits API call authorization information, specifically an access token, in S103.
 API invoker101は、S104において、認可情報(アクセストークン)を使用してAPIの呼び出しを行い、AEF103-1にアクセスする。 In S104, the API invoker 101 uses the authorization information (access token) to call the API and access the AEF 103-1.
 (CAPIFの第2シーケンス)
 次に、CAPIFの第2シーケンス、すなわちAPI invoker101がAPI呼び出しを行った後のシーケンスについて図5、図6を用いて説明する。なお、CCF102には、事前に、特定のUEのサービス品質に影響するAPIの呼び出しが可能なAPI invokerの上限数が設定され、当該UEに対するAPIの呼び出しを行ったAPI invokerのIDがAPI invokerリスト形式で保存される。図5及び図6では、API invokerの上限数が1に設定されているとする。また、図5のシーケンスのスタート時のAPI invokerリストが図7Aの状態(初期状態)であり、図6のシーケンスのスタート時のAPI invokerリストが図7Bの状態であるとする。
(second sequence of CAPIF)
Next, the second sequence of CAPIF, that is, the sequence after the API invoker 101 calls the API will be described with reference to FIGS. 5 and 6. FIG. In the CCF 102, an upper limit number of API invokers capable of invoking APIs that affect the service quality of a specific UE is set in advance, and the ID of the API invoker that has invoked the API for the UE is included in the API invoker list. saved in the format In FIGS. 5 and 6, it is assumed that the upper limit number of API invokers is set to one. 5 is in the state (initial state) of FIG. 7A, and the API invoker list at the start of the sequence in FIG. 6 is in the state of FIG. 7B.
 図5は、API invoker101Aが、初期状態(図7A)において、バックグラウンドで大量のデータをダウンロードするための高速大容量通信を実現するQoSを要求するAPIの呼び出しを行う場合のシーケンスである。 FIG. 5 shows the sequence when the API invoker 101A, in the initial state (FIG. 7A), calls an API requesting QoS that realizes high-speed, large-capacity communication for downloading a large amount of data in the background.
 S201において、API invoker101Aが、AEF103-1に対して、高速大容量通信を実現するQoSを要求するAPIの呼び出しを行う。 In S201, the API invoker 101A calls the AEF 103-1 for an API requesting QoS that realizes high-speed, large-capacity communication.
 AEF103-1は、S202において、CCF102に対して、呼び出されたAPIと当該APIによってサービス品質に影響を受けるUEとを通知すると共に、当該APIの呼び出しの可否の問い合わせを行う。 In S202, the AEF 103-1 notifies the CCF 102 of the called API and the UE whose service quality is affected by the API, and inquires whether the API can be called.
 CCF102は、S203において、API invokerリストを確認して、当該APIの呼び出しの可否を判断する。図5の場合、図7Aに示すAPI invokerリストにおいてAPI invoker数が上限数「1」に達していないので、CCF102は、当該APIの呼び出しを許可する。また、CCF102は、API invoker101AのID[apiinvoker_a]を登録時刻と共にAPI invokerリストに保存する(図7B参照)。 In S203, the CCF 102 checks the API invoker list and determines whether the API can be called. In the case of FIG. 5, since the number of API invokers in the API invoker list shown in FIG. 7A has not reached the upper limit number "1", the CCF 102 permits calling of the API. The CCF 102 also stores the ID [apiinvoker_a] of the API invoker 101A together with the registration time in the API invoker list (see FIG. 7B).
 CCF102は、S204において、API invokerリストの確認結果、すなわち当該APIの呼び出しを許可する旨の判断結果をAEF103-1に通知する。 In S204, the CCF 102 notifies the AEF 103-1 of the confirmation result of the API invoker list, that is, the determination result of permitting the API call.
 AEF103-1は、S205において、API invoker101Aに、APIの呼び出しを許可する旨を通知する。また、AEF103-1は、QoS等のAPIの内容をCore Networkに通知する等のAPIの呼び出しに対する処理を行う。 In S205, the AEF 103-1 notifies the API invoker 101A of permission to call the API. In addition, the AEF 103-1 performs processing for API calls, such as notifying the Core Network of API contents such as QoS.
 この一連の処理により、API invoker101Aは、バックグラウンドで高速大容量通信を行うことができるようになる。 Through this series of processing, the API invoker 101A can perform high-speed, large-capacity communication in the background.
 図6は、API invoker101Bが、API invoker101AによりAPIの呼び出しが行われた後の状態(図7B)において、対戦型ゲーム等で時間的なラグがなく快適にプレーするための低遅延通信を実現するQosを要求するAPIの呼び出しを行う場合のシーケンスである。 FIG. 6 shows the state after the API invoker 101A calls the API (FIG. 7B), which realizes low-latency communication for comfortable play without time lag in competitive games, etc. This is the sequence when calling an API requesting QoS.
 S301において、API invoker101Bが、AEF103-1に対して、低遅延通信を実現するQoSを要求するAPIの呼び出しを行う。 In S301, the API invoker 101B calls the API requesting QoS that realizes low-delay communication to the AEF 103-1.
 AEF103-1は、S302において、CCF102に対して、呼び出されたAPIと当該APIによってサービス品質に影響を受けるUEとを通知すると共に、当該APIの呼び出しの可否の問い合わせを行う。 In S302, the AEF 103-1 notifies the CCF 102 of the called API and the UE whose service quality is affected by the API, and inquires whether the API can be called.
 CCF102は、S303において、API invokerリストを確認して、当該APIの呼び出しの可否を判断する。図6の場合、図7Bに示すAPI invokerリストにおいてAPI invoker数が上限数「1」に達しており、かつ、API invoker101BのIDがAPI invokerリストに保存されていないので、CCF102は、当該APIの呼び出しを拒絶する。 In S303, the CCF 102 checks the API invoker list and determines whether the API can be called. In the case of FIG. 6, the number of API invokers in the API invoker list shown in FIG. reject the call.
 CCF102は、S304において、API invokerリストの確認結果、すなわち当該APIの呼び出しを拒絶する旨の判断結果をAEF103-1に通知する。 In S304, the CCF 102 notifies the AEF 103-1 of the result of checking the API invoker list, that is, the result of the decision to refuse to call the API.
 AEF103-1は、S305において、API invoker101Bに、APIの呼び出しを拒絶する旨を通知する。 In S305, the AEF 103-1 notifies the API invoker 101B of its refusal to call the API.
 この一連の処理により、Core Networkの通信路上で高速大容量通信のQoSが維持されるので、API invoker101Aは、バックグラウンドで高速大容量通信を継続することができるようになる。 This series of processes maintains the QoS of high-speed, large-capacity communication on the Core Network communication path, so the API invoker 101A can continue high-speed, large-capacity communication in the background.
 なお、CCF102は、API invoker101AのIDをAPI invokerリストに追加した時点(登録時刻)でタイマを起動し、当該タイマが所定時間(例えば30分)を計時した時点で、API invoker101AのIDをAPI invokerリストから削除してもよい。また、CCF102は、API invoker101Aからの指示に基づいて、API invoker101AのIDをAPI invokerリストから削除してもよい。この場合、API invokerリストは、図7Aの状態に戻る。 The CCF 102 starts a timer when the ID of the API invoker 101A is added to the API invoker list (registration time), and when the timer counts a predetermined time (for example, 30 minutes), the ID of the API invoker 101A is added to the API invoker list. You can remove it from the list. Also, the CCF 102 may delete the ID of the API invoker 101A from the API invoker list based on instructions from the API invoker 101A. In this case, the API invoker list reverts to the state of Figure 7A.
 API invoker101Bは、APIの呼び出しを拒絶する旨の通知を受けた時点でタイマを起動し、当該タイマが所定時間(例えば30分)を計時した時点で、再びAPIの呼び出しを行っても良い。その時点で、API invoker101AのIDがAPI invokerリストから削除されていれば、当該APIの呼び出しは許可される。 The API invoker 101B may start a timer when it receives a notification to the effect that the API call is to be rejected, and call the API again when the timer counts a predetermined time (for example, 30 minutes). At that time, if the ID of the API invoker 101A has been deleted from the API invoker list, the API call is permitted.
 これにより、API invoker101Bは、バックグラウンドで低遅延通信を行うことができるようになる。 As a result, the API invoker 101B will be able to perform low-delay communication in the background.
 <効果>
 このように、本実施の形態では、CCFに、特定のUEに対してAPIを呼び出し可能なAPI invokerの数の上限数を予め設定しておき、CCFが、当該UEに対するAPIの呼び出しを行ったAPI invokerのIDを保存する。そして、CCFは、新たなAPIの呼び出しがあった場合に、当該APIの呼び出しを行ったAPI invokerのIDが保存されておらず、かつ、API invoker数が上限数に達していると、当該APIの呼び出しを拒絶する。
<effect>
Thus, in the present embodiment, the upper limit of the number of API invokers capable of calling an API for a specific UE is preset in the CCF, and the CCF calls the API for the UE. Save the ID of the API invoker. Then, when a new API is called, the CCF detects that the ID of the API invoker that called the API is not saved and the number of API invokers has reached the upper limit. reject the call to
 これにより、QoSの変更等、APIの呼び出しによってUEのサービス品質が変わる場合において、後から呼び出したAPIによって先に呼び出したAPIによる設定が意図せず変更されることを防ぐことができる。 As a result, when the quality of service of the UE changes due to an API call such as QoS change, it is possible to prevent the later-called API from unintentionally changing the settings of the previously called API.
 なお、上記では、CCFが、特定のUEに対してAPIを呼び出し可能なAPI invokerの数の上限数を管理する例について説明したが、本開示はこれに限られず、AEFが当該上限数を管理してもよい。この場合、AEFは、CCFに問い合わせを行わず、APIの呼び出しの可否を判断し、APIの呼び出しを行ったAPI invokerに判断結果を通知する。 In the above, an example in which the CCF manages the upper limit number of API invokers that can call an API for a specific UE has been described, but the present disclosure is not limited to this, and the AEF manages the upper limit number. You may In this case, the AEF does not make an inquiry to the CCF, judges whether the API call is permitted or not, and notifies the API invoker that called the API of the judgment result.
 また、上記では、CCFが、APIの呼び出しを行ったAPI invokerのIDをリスト形式で保存する例について説明したが、本開示はこれに限られず、CCFあるいはAEFが、APIの呼び出しを行ったAPI invokerのIDをリスト以外の他の形式で管理してもよい。 In the above description, the CCF stores the IDs of the API invokers that have called the API in a list format. IDs of invokers may be managed in a format other than a list.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する端末10、基地局20及びNEF30A-4(30B-4)の機能構成例を説明する。端末10、基地局20及びNEF30A-4(30B-4)は、上記の例で説明した機能を含む。しかしながら、端末10、基地局20及びNEF30A-4(30B-4)は、上記の例で説明した機能のうちの一部の機能のみを含んでもよい。
(Device configuration)
Next, functional configuration examples of the terminal 10, the base station 20, and the NEF 30A-4 (30B-4) that execute the processes and operations described above will be described. Terminal 10, base station 20 and NEF 30A-4 (30B-4) include the functionality described in the above example. However, the terminal 10, base station 20 and NEF 30A-4 (30B-4) may include only some of the functions described in the above examples.
 <端末10>
 図8は、本開示の一実施の形態に係る端末10の機能構成の一例を示す図である。図8に示すように、端末10は、送信部510と、受信部520と、設定部530と、制御部540と、を備える。図8に示す機能構成は一例に過ぎない。本開示の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Terminal 10>
FIG. 8 is a diagram illustrating an example of a functional configuration of terminal 10 according to an embodiment of the present disclosure. As shown in FIG. 8, the terminal 10 includes a transmitting section 510, a receiving section 520, a setting section 530, and a control section 540. The functional configuration shown in FIG. 8 is merely an example. As long as the operation according to the embodiment of the present disclosure can be executed, the functional division and the name of the functional unit may be anything.
 送信部510は、送信データから送信信号を生成し、生成した送信信号を無線送信する。受信部520は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部520は、基地局20から送信されたNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部510は、D2D通信として、他の端末10に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部520は、他の端末10から、PSCCH、PSSCH、PSDCH、PSBCH等を受信する。 The transmission unit 510 generates a transmission signal from transmission data and wirelessly transmits the generated transmission signal. The receiving unit 520 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. The receiving unit 520 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, etc. transmitted from the base station 20 . Further, for example, the transmitting unit 510, as D2D communication, to the other terminal 10, PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc., and the receiving unit 520 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from other terminals 10 .
 設定部530は、受信部520により基地局20から受信した各種の設定情報を記憶装置(記憶部)に格納し、必要に応じて記憶装置から設定情報を読み出す。また、設定部530は、予め設定される事前設定情報も記憶装置に格納する。設定情報及び事前設定情報の内容は、例えば、PDUセッションに係る情報等を含んでよい。なお、設定部530は、制御部540に含まれてもよい。 The setting unit 530 stores various setting information received from the base station 20 by the receiving unit 520 in a storage device (storage unit), and reads the setting information from the storage device as necessary. The setting unit 530 also stores preset information that is set in advance in the storage device. The contents of the configuration information and the preconfiguration information may include, for example, information related to PDU sessions. Note that the setting unit 530 may be included in the control unit 540 .
 制御部540は、端末10全体の制御を行う。特に、制御部540は、上記の例で説明したように、PDUセッション等による通信に係る制御を行う。制御部540における信号送信に関する機能部は、送信部510に含まれてもよく、制御部540における信号受信に関する機能部は、受信部520に含まれてもよい。 The control unit 540 controls the terminal 10 as a whole. In particular, the control unit 540 performs control related to communication by a PDU session or the like, as described in the above examples. A functional unit related to signal transmission in control unit 540 may be included in transmitting unit 510 , and a functional unit related to signal reception in control unit 540 may be included in receiving unit 520 .
 <基地局20>
 図9は、本開示の一実施の形態に係る基地局20の機能構成の一例を示す図である。図9に示すように、基地局20は、送信部610と、受信部620と、設定部630と、制御部640と、を備える。図9に示す機能構成は一例に過ぎない。本開示の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Base station 20>
FIG. 9 is a diagram illustrating an example of a functional configuration of base station 20 according to an embodiment of the present disclosure. As shown in FIG. 9, the base station 20 includes a transmitting section 610, a receiving section 620, a setting section 630, and a control section 640. The functional configuration shown in FIG. 9 is merely an example. As long as the operation according to the embodiment of the present disclosure can be executed, the functional division and the name of the functional unit may be anything.
 送信部610は、端末10に送信する信号を生成し、生成した信号を無線送信する機能を含む。また、送信部610は、ネットワークノード間メッセージを他のネットワークノードに送信する。また、送信部610は、必要に応じて、端末10から送信されたユーザデータをDH50に送信する。受信部620は、端末10から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部610は、NRPSS、NR-SSS、NR-PBCH、DL/UL制御信号等を端末10に送信する機能を有する。また、受信部620は、ネットワークノード間メッセージを他のネットワークノードから受信する。 The transmission unit 610 includes a function of generating a signal to be transmitted to the terminal 10 and wirelessly transmitting the generated signal. The transmitter 610 also transmits inter-network node messages to other network nodes. Moreover, the transmission unit 610 transmits the user data transmitted from the terminal 10 to the DH 50 as necessary. The receiving unit 620 includes a function of receiving various signals transmitted from the terminal 10 and acquiring, for example, higher layer information from the received signals. Also, the transmitting unit 610 has a function of transmitting NRPSS, NR-SSS, NR-PBCH, DL/UL control signals, etc. to the terminal 10 . The receiver 620 also receives inter-network node messages from other network nodes.
 設定部630は、予め設定される事前設定情報、及び、端末10に送信する各種の設定情報を記憶装置(記憶部)に格納し、必要に応じて記憶装置から事前設定情報及び設定情報を読み出す。事前設定情報及び設定情報の内容は、例えば、ノードの接続情報、PDUセッションに係る情報等を含んでよい。なお、設定部630は、制御部640に含まれてもよい。 The setting unit 630 stores preset information set in advance and various kinds of setting information to be transmitted to the terminal 10 in a storage device (storage unit), and reads preset information and setting information from the storage device as needed. . The contents of the preset information and the configuration information may include, for example, node connection information, information related to PDU sessions, and the like. Note that the setting unit 630 may be included in the control unit 640 .
 制御部640は、基地局20全体の制御を行う。特に、制御部640は、上記の例で説明したように、PDUセッション等による通信(特に、他のネットワークノードからの通知に基づくDH50への端末10から送信されたユーザデータの送信)に係る制御を行う。また、制御部640は、端末10から受信した無線パラメータに関する端末能力報告に基づいて、端末10との通信を制御する。制御部640における信号送信に関する機能部は、送信部610に含まれてもよく、制御部640における信号受信に関する機能部は、受信部620に含まれてもよい。 The control unit 640 controls the base station 20 as a whole. In particular, as described in the above example, the control unit 640 controls communication by a PDU session or the like (in particular, transmission of user data transmitted from the terminal 10 to the DH 50 based on a notification from another network node). I do. Also, the control unit 640 controls communication with the terminal 10 based on the terminal capability report regarding the radio parameters received from the terminal 10 . A functional unit related to signal transmission in control unit 640 may be included in transmitting unit 610 , and a functional unit related to signal reception in control unit 640 may be included in receiving unit 620 .
 <NEFの構成>
 図10は、本開示の一実施の形態に係るNEF30A-4(30B-4)の機能構成の一例を示す図である。図10に示すように、NEF30A-4(30B-4)は、送信部710と、受信部720と、設定部730と、制御部740と、を備える。図10に示す機能構成は一例に過ぎない。本開示の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Configuration of NEF>
FIG. 10 is a diagram showing an example of a functional configuration of NEF 30A-4 (30B-4) according to an embodiment of the present disclosure. As shown in FIG. 10, the NEF 30A-4 (30B-4) comprises a transmitting section 710, a receiving section 720, a setting section 730, and a control section 740. The functional configuration shown in FIG. 10 is merely an example. As long as the operation according to the embodiment of the present disclosure can be executed, the functional division and the name of the functional unit may be anything.
 送信部710は、送信する信号を生成し、生成した信号をネットワークに送信する機能を含む。受信部720は、各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。 The transmission unit 710 includes a function of generating a signal to be transmitted and transmitting the generated signal to the network. The receiving unit 720 includes a function of receiving various signals and acquiring, for example, higher layer information from the received signals.
 設定部730は、予め設定される事前設定情報及び設定情報を記憶装置(記憶部)に格納し、必要に応じて記憶装置から事前設定情報及び設定情報を読み出す。なお、設定部730は、制御部740に含まれてもよい。 The setting unit 730 stores preset information and setting information set in advance in a storage device (storage unit), and reads preset information and setting information from the storage device as needed. Note that the setting unit 730 may be included in the control unit 740 .
 制御部740は、NEF30A-4(30B-4)全体の制御を行う。制御部740における信号送信に関する機能部は、送信部710に含まれてもよく、制御部740における信号受信に関する機能部は、受信部720に含まれてもよい。 The control unit 740 controls the entire NEF 30A-4 (30B-4). A functional unit related to signal transmission in control unit 740 may be included in transmitting unit 710 , and a functional unit related to signal reception in control unit 740 may be included in receiving unit 720 .
 (ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagrams used in the description of the above embodiments show blocks in units of functions. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局、端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本開示の一実施の形態に係る端末、基地局、データハブアクセスサポート及び他のネットワークノードのハードウェア構成の一例を示す図である。上述の端末10、基地局20及びNEF30A-4(30B-4)は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a terminal, etc. according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 11 is a diagram illustrating an example of hardware configurations of a terminal, base station, data hub access support, and other network nodes according to an embodiment of the present disclosure; The terminal 10, base station 20 and NEF 30A-4 (30B-4) described above physically include a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. It may be configured as a computer device.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。端末10、基地局20及びNEF30A-4(30B-4)のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the terminal 10, base station 20 and NEF 30A-4 (30B-4) may be configured to include one or more of each device shown in the figure, or may be configured to include some devices without may be configured.
 端末10、基地局20及びNEF30A-4(30B-4)における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in terminal 10, base station 20 and NEF 30A-4 (30B-4) is performed by processor 1001 by loading predetermined software (program) onto hardware such as processor 1001 and memory 1002, It is realized by controlling communication by the communication device 1004 and controlling at least one of data reading and writing in the memory 1002 and the storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部540、制御部640、制御部740などは、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, the control unit 540 , the control unit 640 , the control unit 740 and the like described above may be realized by the processor 1001 .
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、端末10の制御部540、基地局20の制御部640及びNEF30A-4(30B-4)の制御部740は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 540 of the terminal 10, the control unit 640 of the base station 20, and the control unit 740 of the NEF 30A-4 (30B-4) are stored in the memory 1002 and may be implemented by a control program that runs on the processor 1001. , other functional blocks may be similarly implemented. Although it has been explained that the above-described various processes are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be called an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送信部510、受信部520、送信部610、受信部620、送信部710、受信部720などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD). may consist of For example, the transmitting unit 510 , the receiving unit 520 , the transmitting unit 610 , the receiving unit 620 , the transmitting unit 710 , the receiving unit 720 and the like described above may be implemented by the communication device 1004 .
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、端末10、基地局20及びNEF30A-4(30B-4)は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the terminal 10, the base station 20 and the NEF 30A-4 (30B-4) include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA ( Field Programmable Gate Array) may be included, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 図12に車両2001の構成例を示す。図12に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 An example configuration of the vehicle 2001 is shown in FIG. As shown in FIG. 12, a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021-2029. , an information service unit 2012 and a communication module 2013 . Each aspect/embodiment described in the present disclosure may be applied to a communication device mounted on vehicle 2001, and may be applied to communication module 2013, for example.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The driving unit 2002 is configured by, for example, an engine, a motor, or a hybrid of the engine and the motor. The steering unit 2003 includes at least a steering wheel (also referred to as steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031 , a memory (ROM, RAM) 2032 and a communication port (IO port) 2033 . Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010 . The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 The signals from the various sensors 2021 to 2029 include the current signal from the current sensor 2021 that senses the current of the motor, the rotation speed signal of the front and rear wheels acquired by the rotation speed sensor 2022, and the front wheel acquired by the air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal obtained by vehicle speed sensor 2024, acceleration signal obtained by acceleration sensor 2025, accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, brake pedal sensor 2026 obtained by There are a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service unit 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various types of information such as driving information, traffic information, and entertainment information, and one or more devices for controlling these devices. ECU. The information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide passengers of the vehicle 2001 with various multimedia information and multimedia services.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 Driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), camera, positioning locator (e.g., GNSS, etc.), map information (e.g., high-definition (HD) map, automatic driving vehicle (AV) map, etc. ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, AI processors, etc., to prevent accidents and reduce the driver's driving load. and one or more ECUs for controlling these devices. In addition, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via communication ports. For example, the communication module 2013 communicates with the vehicle 2001 through the communication port 2033, the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, the axle 2009, the electronic Data is transmitted and received between the microprocessor 2031 and memory (ROM, RAM) 2032 in the control unit 2010 and the sensors 2021-29.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication. Communication module 2013 may be internal or external to electronic control unit 2010 . The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等についても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. In addition, the communication module 2013 receives the rotation speed signal of the front and rear wheels obtained by the rotation speed sensor 2022, the air pressure signal of the front and rear wheels obtained by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, and a shift lever. A shift lever operation signal obtained by the sensor 2027 and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by the object detection sensor 2028 are also transmitted to an external device via wireless communication.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service unit 2012 provided in the vehicle 2001 . Communication module 2013 also stores various information received from external devices in memory 2032 available to microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, and the axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029 and the like may be controlled.
 (情報の通知、シグナリング)
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
(notification of information, signaling)
Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
 (適用システム)
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(New Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
(Applicable system)
Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), NR (New Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
 (処理手順等)
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
(Processing procedure, etc.)
The processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 (基地局の動作)
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
(Base station operation)
Certain operations that are described in this disclosure as being performed by a base station may also be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc. (including but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 (入出力の方向)
 情報等(※「情報、信号」の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
(input/output direction)
Information and the like (*see the item “information, signal”) can be output from the upper layer (or lower layer) to the lower layer (or higher layer). It may be input and output via multiple network nodes.
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
(Handling of input/output information, etc.)
Input/output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
(Determination method)
The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
(software)
Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 (情報、信号)
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
(information, signal)
Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 (「システム」、「ネットワーク」)
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
("system", "network")
As used in this disclosure, the terms "system" and "network" are used interchangeably.
 (パラメータ、チャネルの名称)
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
(parameter, channel name)
In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in no way restrictive names. isn't it.
 (基地局(無線基地局))
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
(Base station (wireless base station))
In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", ""accesspoint","transmissionpoint","receptionpoint","transmission/receptionpoint","cell","sector","cellgroup", Terms such as "carrier" and "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH: Communication services can also be provided by Remote Radio Head)). The terms "cell" or "sector" refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
 (端末)
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
(terminal)
In this disclosure, terms such as “Mobile Station (MS),” “user terminal,” “User Equipment (UE),” “terminal,” etc. may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 (基地局/移動局)
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
(base station/mobile station)
At least one of a base station and a mobile station may be called a transmitter, a receiver, a communication device, and the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局20が有する機能を端末10が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 10 may have the functions of the base station 20 described above. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末10が有する機能を基地局20が有する構成としてもよい。 Similarly, a terminal in the present disclosure may be read as a base station. In this case, the base station 20 may have the functions of the terminal 10 described above.
 (用語の意味、解釈)
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
(Term meaning and interpretation)
As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Judgement", "determining" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "decision" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that something has been "determined" or "decided". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof mean any direct or indirect connection or connection between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
 (参照信号)
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
(reference signal)
The reference signal may be abbreviated as RS (Reference Signal), or may be referred to as Pilot according to the applicable standard.
 (「に基づいて」の意味)
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
(meaning "based on")
As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly specified otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 (「第1の」、「第2の」)
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
("first", "second")
Any reference to elements using the "first,""second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
 (手段)
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
(means)
The "unit" in the configuration of each device described above may be replaced with "means", "circuit", "device", or the like.
 (オープン形式)
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
(open format)
Where "include,""including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 (TTI等の時間単位、RBなどの周波数単位、無線フレーム構成)
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
(Time unit such as TTI, frequency unit such as RB, radio frame configuration)
A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a Transmission Time Interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. may That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and the short TTI (e.g., shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms A TTI having the above TTI length may be read instead.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each consist of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (RE: Resource Element). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP) (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a certain numerology in a certain carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or multiple BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc. can be varied.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 (態様のバリエーション等)
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
(Variation of mode, etc.)
Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching according to execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 本開示の一態様は、移動通信システムに有用である。 One aspect of the present disclosure is useful for mobile communication systems.
 10 UE(端末)
 20 gNB(基地局)
 30A-4、30B-4 NEF(Network Exposure Function)
 101 API invoker
 102 CCF(CAPIF Core Function)
 103 APD(API provider domain)
 103-1 AEF(API exposing function)
 103-2 APF(API publishing function)
 103-3 AMF(API management function)
 510、610、710 送信部
 520、620、720 受信部
 530、630,730 設定部
 540、640、740 制御部
10 UE (terminal)
20 gNB (base station)
30A-4, 30B-4 NEF (Network Exposure Function)
101 API invokers
102 CCF (CAPIF Core Function)
103 APDs (API provider domains)
103-1 AEF (API exposing function)
103-2 APF (API publishing function)
103-3 AMF (API management functions)
510, 610, 710 transmitter 520, 620, 720 receiver 530, 630, 730 setter 540, 640, 740 controller

Claims (5)

  1.  API(Application Programming Interface)の呼び出しが可能なアプリケーションの上限数、及び、登録されたアプリケーションに基づいて、新たなAPIの呼び出しの許可又は拒絶を判断する制御部と、
     前記APIの呼び出しの許可又は拒絶を通知する送信部と、
     を具備するネットワークノード。
    a control unit that determines whether to permit or reject a new API call based on the upper limit of the number of applications that can call an API (Application Programming Interface) and the registered applications;
    a transmitting unit that notifies permission or refusal of calling the API;
    A network node comprising:
  2.  前記制御部は、前記新たなAPIの呼び出しを行ったアプリケーションが既に登録されている場合、あるいは、登録されているアプリケーションの数が前記上限数に達していない場合に、前記APIの呼び出しを許可する、
     請求項1に記載のネットワークノード。
    The control unit permits the API call when the application that has called the new API is already registered, or when the number of registered applications does not reach the upper limit. ,
    A network node according to claim 1.
  3.  前記制御部は、前記新たなAPIの呼び出しを行ったアプリケーションが登録されておらず、かつ、登録されているアプリケーションの数が前記上限数に達している場合に、前記APIの呼び出しを拒絶する、
     請求項1または2に記載のネットワークノード。
    The control unit rejects the API call when the application that has called the new API is not registered and the number of registered applications has reached the upper limit.
    3. A network node according to claim 1 or 2.
  4.  前記制御部は、過去の所定期間内にAPIの呼び出しを行ったアプリケーションの識別子をリストに保存し、前記リストに基づいて、前記新たなAPIの呼び出しを行ったアプリケーションが既に登録されているか否か、及び、登録されているアプリケーションの数が前記上限数に達しているか否かを判断する、
     請求項1から3のいずれか一項に記載のネットワークノード。
    The control unit stores identifiers of applications that have called the API within a predetermined period of time in the past in a list, and based on the list, determines whether the application that has called the new API has already been registered. , and determining whether the number of registered applications has reached the upper limit;
    A network node according to any one of claims 1 to 3.
  5.  ネットワークノードが、
     API(Application Programming Interface)の呼び出しが可能なアプリケーションの上限数、及び、登録されたアプリケーションに基づいて、新たなAPIの呼び出しの許可又は拒絶を判断し、
     前記新たなAPIの呼び出しの許可又は拒絶を通知する、
     通信方法。
    network node
    Based on the upper limit number of applications that can call APIs (Application Programming Interface) and registered applications, determine whether to permit or reject new API calls,
    Notifying the permission or refusal of calling the new API;
    Communication method.
PCT/JP2021/038818 2021-10-20 2021-10-20 Network node and communication method WO2023067742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038818 WO2023067742A1 (en) 2021-10-20 2021-10-20 Network node and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038818 WO2023067742A1 (en) 2021-10-20 2021-10-20 Network node and communication method

Publications (1)

Publication Number Publication Date
WO2023067742A1 true WO2023067742A1 (en) 2023-04-27

Family

ID=86057974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038818 WO2023067742A1 (en) 2021-10-20 2021-10-20 Network node and communication method

Country Status (1)

Country Link
WO (1) WO2023067742A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010288021A (en) * 2009-06-10 2010-12-24 Nippon Telegr & Teleph Corp <Ntt> Api gateway device, api providing method, and program for api gateway
US20210006496A1 (en) * 2018-03-21 2021-01-07 Huawei Technologies Co., Ltd. Application Programing Interface API Gateway Cluster Control Method and API Gateway Cluster

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010288021A (en) * 2009-06-10 2010-12-24 Nippon Telegr & Teleph Corp <Ntt> Api gateway device, api providing method, and program for api gateway
US20210006496A1 (en) * 2018-03-21 2021-01-07 Huawei Technologies Co., Ltd. Application Programing Interface API Gateway Cluster Control Method and API Gateway Cluster

Similar Documents

Publication Publication Date Title
JP7245266B2 (en) Network node, network system and notification method
WO2023067742A1 (en) Network node and communication method
WO2023152800A1 (en) Communication device, network node device, system, and communication method
WO2023084606A1 (en) Network node, resource owner device, system, and communication method
WO2023152846A1 (en) Network node and communication method
WO2023152847A1 (en) Network node and communication method
WO2023100237A1 (en) Network node and communication method
WO2023187905A1 (en) Communication device, network node device, and authorization control method
WO2024111070A1 (en) Network node device, communication system, and communication method
WO2023145032A1 (en) Network node, base station, core network, and communication method
WO2023021583A1 (en) Network node and communication method
WO2024079799A1 (en) Approval device, communication system, and approval method
WO2024079798A1 (en) Authorization device, communication system, and authorization method
WO2023145033A1 (en) Network node and communication method
WO2024079797A1 (en) User information disclosure device, communication system, and user information disclosure method
WO2023067814A1 (en) Network node and communication method
WO2023195111A1 (en) Network node and communication method
WO2023181425A1 (en) Network node and communication method
WO2023119386A1 (en) Network node
WO2024095490A1 (en) Network node and communication method
WO2023181424A1 (en) Network node and communication method
WO2024004156A1 (en) Network node, base station, and communication method
WO2023119385A1 (en) Network node
WO2023181422A1 (en) Network node and communication method
WO2023181423A1 (en) Network node and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961394

Country of ref document: EP

Kind code of ref document: A1