WO2023063280A1 - Film underfill material, resin composition for film underfill material, method for manufacturing semiconductor chip with resin composition layer using film underfill material, method for manufacturing substrate for mounting semiconductor chip with resin composition layer, and method for manufacturing semiconductor device - Google Patents

Film underfill material, resin composition for film underfill material, method for manufacturing semiconductor chip with resin composition layer using film underfill material, method for manufacturing substrate for mounting semiconductor chip with resin composition layer, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2023063280A1
WO2023063280A1 PCT/JP2022/037762 JP2022037762W WO2023063280A1 WO 2023063280 A1 WO2023063280 A1 WO 2023063280A1 JP 2022037762 W JP2022037762 W JP 2022037762W WO 2023063280 A1 WO2023063280 A1 WO 2023063280A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
underfill material
group
resin composition
composition layer
Prior art date
Application number
PCT/JP2022/037762
Other languages
French (fr)
Japanese (ja)
Inventor
源希 杉山
孝幸 亀井
勝利 猪原
健太郎 高野
剛 木田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023063280A1 publication Critical patent/WO2023063280A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to an underfill material and a resin composition, and more specifically, a semiconductor chip with a resin composition layer, a substrate for mounting a semiconductor chip with a resin composition layer, and a film-like underfill material that can be used for a semiconductor device. And, a resin composition for a film-like underfill material, a method for manufacturing a semiconductor chip with a resin composition layer using the film-like underfill material, a method for manufacturing a substrate for mounting a semiconductor chip with a resin composition layer, and a semiconductor It relates to a method of manufacturing an apparatus.
  • semiconductor chips hereinafter sometimes abbreviated as “chips”
  • semiconductor chip mounting substrates hereinafter sometimes abbreviated as “substrates”
  • flip-chip mounting has attracted attention.
  • the gap between the chip and the substrate is filled with an underfill material, which is then hardened.
  • an underfill material also referred to as a pre-applied underfill material
  • Such a film-like underfill material includes, for example, an underfill material using a radically polymerizable monomer as the main resin, a resin having transparency and undergoing a cross-linking reaction, a compound having flux activity, an inorganic filler, and the like. (For example, see Patent Documents 1 and 2 below).
  • a semiconductor chip or the like is provided with a positioning mark, also called an alignment mark, on its surface, and the mark is recognized by a camera or the like for positioning, and then mounted on a substrate or the like. Since the recognizability of such alignment marks also affects the yield rate and the like in the production of semiconductor chips with resin composition layers, etc., the recognition rate of alignment marks has been improved in recent years, as in the invention described in Patent Document 2. Techniques to improve it are being considered.
  • the present invention provides a film-like underfill material that can be easily and accurately mounted on an object laminated with a resin composition layer, and a film-like underfill material used for producing the film-like underfill material.
  • the present invention includes the following contents.
  • a film-like underfill material comprising a base film,
  • the film-like underfill material has a light transmittance of 20 to 90% at a wavelength of 600 nm, and
  • a film-like underfill material wherein the difference between the light transmittance of the base film at a wavelength of 600 nm and the light transmittance of the film-like underfill material at a wavelength of 600 nm is 2 to 80%.
  • the visible light absorber (B) is a quinone-based, aminoketone-based, cationic, cyanine-based, phthalocyanine-based, quinacdrine-based, diaryl/triarylmethane-based, fulgide, azo-based, squarylium-based, oxonol-based, benzylidene-based, nitro system, nitroso-based, thiazole-based, indigoid-based, and at least one compound selected from the group of combinations thereof, according to any one of ⁇ 1> to ⁇ 3> Film type underfill material.
  • thermosetting resin (A) contains at least one selected from the group consisting of a maleimide compound, a citraconimide compound, and a combination thereof. underfill material.
  • the maleimide compound includes 2,2′-bis ⁇ 4-(4-maleimidophenoxy)phenyl ⁇ propane, 1,2-bis(maleimido)ethane, 1,4-bis(maleimido)butane, 1,6-bis( maleimide) hexane, N,N'-1,3-phenylenedimaleimide, N,N'-1,4-phenylenedimaleimide, N-phenylmaleimide, a maleimide compound represented by the following formula (3), the following formula ( A bismaleimide compound containing a structural unit represented by 4) and maleimide groups at both ends, a maleimide compound represented by the following formula (5), a maleimide compound represented by the following formula (6), and a following formula (7) ), and at least one selected from the group consisting of combinations thereof, the film-like underfill material according to ⁇ 6>.
  • n3 represents an integer of 1 to 30.
  • R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms, or a linear or branched alkenylene group having 2 to 16 carbon atoms.
  • R 12 represents a carbon number A linear or branched alkylene group of 1 to 16, or a linear or branched alkenylene group of 2 to 16 carbon atoms, wherein each R 13 is independently a hydrogen atom or a represents a linear or branched alkyl group, or a linear or branched alkenyl group having 2 to 16 carbon atoms, n 5 represents an integer of 1 to 10.)
  • each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group.
  • each R 9 independently represents a hydrogen atom or a methyl group.
  • each R 10 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • n 4 represents an integer of 1 to 10.
  • each R 10 independently represents a hydrogen atom or a methyl group, and n 2 represents an integer of 1 or more.
  • the maleimide compound is 2,2′-bis ⁇ 4-(4-maleimidophenoxy)phenyl ⁇ propane, the maleimide compound represented by the formula (3), the structural unit represented by the formula (4) and both ends a bismaleimide compound containing a maleimide group in, a maleimide compound represented by the above formula (5), a maleimide compound represented by the above formula (6), a maleimide compound represented by the above formula (7), and these
  • ⁇ 9> The film-like underfill material according to any one of ⁇ 1> to ⁇ 8>, further comprising an inorganic filler (C).
  • ⁇ 10> The film-like underfill material according to ⁇ 9> above, wherein the inorganic filler (C) has an average particle size of 400 nm or less.
  • the inorganic filler (C) contains at least one selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, magnesium hydroxide, and combinations thereof. > or the film-like underfill material according to ⁇ 10>.
  • ⁇ 12> Any of ⁇ 9> to ⁇ 11>, wherein the content of the inorganic filler (C) is 10 to 500 parts by mass with respect to the total amount of 100 parts by mass of the thermosetting resin (A) The film-like underfill material described.
  • the inorganic filler (C) has an average particle size of 400 nm or less,
  • the inorganic filler (C) contains at least one selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, magnesium hydroxide, and combinations thereof,
  • ⁇ 14> The film-like underfill material according to any one of ⁇ 1> to ⁇ 13>, further comprising a flux activator (D).
  • ⁇ 15> The film-like underfill material according to ⁇ 14>, wherein the flux activator (D) contains a rosin-based resin.
  • the flux activator (D) contains a rosin-based resin.
  • ⁇ 16> The film-like underfill material according to any one of ⁇ 1> to ⁇ 15>, further comprising a curing catalyst (E).
  • ⁇ 17> The film-like underfill material according to ⁇ 16> above, wherein the curing catalyst (E) contains at least one selected from the group consisting of organic peroxides, imidazole compounds, and combinations thereof.
  • ⁇ 18> The film-like underfill material according to any one of ⁇ 1> to ⁇ 17>, further comprising a curing agent (F).
  • ⁇ 19> The film-like underfill material according to ⁇ 18>, wherein the curing agent (F) contains an aminotriazine novolac resin.
  • a method for producing a semiconductor chip with a resin composition layer using the film-like underfill material according to any one of ⁇ 1> to ⁇ 19>.
  • ⁇ 23> A method for manufacturing a semiconductor device, using the film-like underfill material according to any one of ⁇ 1> to ⁇ 19>.
  • a film-like underfill material that is excellent in handleability and can easily and accurately mount an object on which a resin composition layer is laminated, and a film-like underfill material used for producing the film-like underfill material.
  • a method for manufacturing a semiconductor chip with a resin composition layer using a resin composition for a fill material and a film-like underfill material, a method for manufacturing a substrate for mounting a semiconductor chip with a resin composition layer, and a method for manufacturing a semiconductor device. can provide.
  • this embodiment A mode for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described below.
  • the following embodiment is an example for explaining the present invention, and the present invention is not limited only to this embodiment.
  • (meth)acryloxy means both “acryloxy” and its corresponding "methacryloxy”
  • (meth)acrylonitrile means “acrylonitrile” and its corresponding "methacrylonitrile”.
  • (meth)acrylic means both “acrylic” and its corresponding "methacrylic”
  • (meth)acrylate means both “acrylate” and its corresponding "methacrylate”.
  • (meth)allyl means both “allyl” and the corresponding "methallyl”.
  • “ ⁇ ” in the present specification unless otherwise specified, means that the numerical values at both ends are included as the upper limit and the lower limit, and the unit is the same for the upper limit and the lower limit. .
  • the film-like underfill material (hereinafter sometimes simply referred to as "underfill material") of the present embodiment comprises a resin composition layer containing a thermosetting resin (A) and a visible light absorber (B), A film-like underfill material comprising a material film, wherein the light transmittance of the film-like underfill material at a wavelength of 600 nm is 20 to 90%, and the light transmittance of the base film at a wavelength of 600 nm The difference from the light transmittance at a wavelength of 600 nm of the film-like underfill material is 2 to 80%.
  • the "film-like underfill material” is a laminate containing a base film and a resin composition layer, and is an object such as a semiconductor wafer (hereinafter sometimes abbreviated as "wafer”).
  • the "resin composition layer” means a material that functions as a so-called underfill material that fills the gap between the chip and the substrate by peeling the base film from the resin composition layer.
  • a resin composition layer is a non-conductive film, and is also called Non-Conductive Film (NCF).
  • NCF Non-Conductive Film
  • the resin composition layer in the present embodiment can be produced using the resin composition for a film-like underfill material of the present embodiment described below (hereinafter sometimes simply referred to as "resin composition”). .
  • the underfill material of this embodiment has a base film and a resin composition layer provided on the base film.
  • a resin composition in an uncured state (A stage) can be applied to a substrate film and then semi-cured (B stage) can be used.
  • the uncured state (A stage) refers to a state in which the resin composition is not substantially cured and is not gelled.
  • the resin composition before being applied to the substrate film is, for example, a mixture of constituent components of the resin composition (which may or may not contain a solvent), or a varnish obtained by dissolving or dispersing the mixture in a solvent. It is in an uncured state (A stage).
  • the semi-cured state (B stage) means that each component contained in the resin composition layer has not actively started to react (cured), but the resin composition layer is in a dry state, that is, the adhesiveness. It refers to the state in which the solvent is volatilized by heating to the extent that it is not heated, and the state in which the solvent is volatilized without curing even without heating is also included.
  • the light transmittance of the film-like underfill material at a wavelength of 600 nm is 20 to 90%.
  • the light transmittance at a wavelength of 600 nm of the resin composition layer of the film-like underfill material can also be in the range of 20 to 90%. Therefore, when placed on a semiconductor chip with a camera or the like, it is possible to accurately and quickly recognize the alignment marks provided on the surface of the chip or the like via the resin composition layer. As a result, when the semiconductor chip with the resin composition layer is mounted on a substrate or the like, it can be easily and accurately arranged on the object.
  • foreign matter may be mixed between the base film and the resin composition layer or in the resin composition during the manufacturing process of the underfill material.
  • the presence of such foreign matter may affect the performance of the underfill material, such as film-forming properties and insulation reliability of the resin composition layer.
  • foreign matter inspection using a defect inspection machine or the like is often performed after the underfill material is produced.
  • the foreign matter inspection is preferably performed on the underfill material as it is, that is, on the state of the laminate of the base film and the resin composition layer.
  • foreign matter inspection by an inspection machine usually requires a certain degree of transmittance of the underfill material. Since the light transmittance of the underfill material of this embodiment is in the range of 20 to 90%, the foreign matter inspection described above can be performed.
  • the light transmittance of the underfill material in the present embodiment is preferably 40 to 90%, more preferably 50 to 90%, from the viewpoint of compatibility with a camera with a small amount of light and higher accuracy of the foreign matter inspection described above.
  • the light transmittance of the base film at a wavelength of 600 nm is not particularly limited, but 20% to 90% is preferable, and 40% to 90% is more preferable, from the viewpoint of further increasing the accuracy of foreign matter inspection.
  • the light transmittance of the resin composition layer (NCF) at a wavelength of 600 nm is a small amount of light. 20 to 90% is preferable, and 40 to 90% is more preferable, from the viewpoint of compatibility with a camera and higher accuracy of the foreign matter inspection described above.
  • the light transmittance of the underfill material, the base film and the resin composition layer can be measured, for example, by the method described in Examples below. Specifically, numerical values measured at room temperature (25° C.) using a spectral colorimeter can be employed. again.
  • As the light transmittance of each underfill material, base film, and NCF for example, a sample with a width of 5 cm and a length of 5 cm is prepared, and an average value obtained by measuring arbitrary points of the sample can be adopted (for example, , mean value of 5 points, etc.).
  • the underfill material of this embodiment is based on the light transmittance at each wavelength of 600 nm, it is easily available and can be widely applied to various alignment mark recognition devices such as cameras with high versatility. is.
  • the underfill material of the present embodiment contains a visible light absorber (B) in the resin composition layer, and the difference between the light transmittance of the base film at a wavelength of 600 nm and the light transmittance of the underfill material at a wavelength of 600 nm is 2 to 80%.
  • the difference between the light transmittance of the base film at a wavelength of 600 nm and the light transmittance of the underfill material at a wavelength of 600 nm there is a difference in light transmittance between the base film and the resin composition layer.
  • the base film surface of the film and the resin composition layer surface of the film can be easily distinguished by visual recognition with the naked eye, that is, the visibility is excellent. As a result, it does not take time to recognize the base film surface and the resin composition layer surface, it is possible to improve the handleability of the underfill material, and it can be easily arranged on a target such as a target wafer. becomes possible.
  • the difference between the light transmittance of the base film and the light transmittance of the underfill material is more preferably 5 to 80%, particularly preferably 10 to 80%, from the viewpoint of better visibility.
  • the difference between the light transmittance [T 1 ] of the base film at a wavelength of 600 nm and the light transmittance [T 0 ] of the underfill material at a wavelength of 600 nm is
  • the laminated structure of the underfill material is particularly limited as long as the light transmittance of the underfill material and the difference between the light transmittance and the light transmittance of the base film satisfy the above-described relationship.
  • it may have an intermediate layer between the base film and the resin composition layer.
  • the intermediate layer include a release layer provided on the substrate film.
  • the base film is a film with a release layer
  • the release layer is peeled off together with the base film after the base film is peeled off. can be regarded as the above-mentioned "light transmittance of the base film".
  • the base film is not particularly limited, but for example, a polymer film can be used.
  • Polymer film materials include, for example, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polybutene, polybutadiene, ethylene-propylene copolymer, Vinyl resins such as polymethylpentene, ethylene-vinyl acetate copolymers, and ethylene-vinyl alcohol copolymers; polyurethane resins; polyimide resins; and polyamide resins.
  • films containing these resins and release films obtained by applying a release agent to the surface of these films can be used.
  • films containing one or more resins selected from polyester resins, polyimide resins, and polyamide resins, or release films obtained by applying a release agent to the surface of these films are preferable, and polyester A film containing polyethylene terephthalate, which is a type of resin, or a release film obtained by applying a release agent to the surface of a film containing polyethylene terephthalate is more preferable.
  • the thickness of the base film is not particularly limited, and can be adjusted as appropriate from the viewpoint of achieving the light transmittance described above. It is preferably 10 to 100 ⁇ m from the viewpoint of good stability of the coating thickness and good transportability of the underfill material. In addition, the lower limit of the thickness of the base film is more preferably 10 ⁇ m or more, further preferably 20 ⁇ m or more, and even more preferably 25 ⁇ m or more from the viewpoint of ensuring a sufficient yield in manufacturing the underfill material. is even more preferred.
  • the upper limit of the thickness of the base film is 100 ⁇ m, considering that the base film does not exist as a component of the semiconductor device in the end and is peeled off in the middle of the process and from the viewpoint of the manufacturing cost of the underfill material. It is preferably 80 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 50 ⁇ m or less.
  • the resin composition layer contains a thermosetting resin (A) and a visible light absorber (B).
  • the resin composition layer contains, if necessary, one or more selected from the group consisting of an inorganic filler (C), a flux activator (D), a curing catalyst (E), a curing agent (F), and combinations thereof. may contain
  • the resin composition layer can be formed using a film-like underfill resin composition containing at least a thermosetting resin (A) and a visible light absorber (B).
  • the resin composition for the film-like underfill material may also contain an inorganic filler (C), a flux activator (D), a curing catalyst (E), a curing agent (F), and a combination thereof, if necessary. It may contain one or more selected from the group consisting of:
  • the resin composition layer is preferably in a semi-cured state (B stage) as described above.
  • the minimum melt viscosity in a semi-cured state (B stage) can usually be 50,000 Pa ⁇ s or less.
  • the lower limit of the lowest melt viscosity can be, for example, 10 Pa ⁇ s or more.
  • the minimum melt viscosity of the resin composition layer can be measured by the following method. That is, using a laminator, a resin composition layer is laminated to obtain a resin piece having a thickness of about 0.4 to 0.6 mm. (trade name)), the minimum melt viscosity can be measured.
  • a disposable parallel plate with a plate diameter of 8 mm is used, and in the range of 40 ° C. to 300 ° C., the temperature increase rate is 10 ° C./min, the frequency is 10.0 rad / sec, and the strain is 0.1%.
  • the value obtained by measuring the minimum melt viscosity of the resin piece can be regarded as the minimum melt viscosity of the resin composition layer.
  • the method of forming the resin composition layer on the base film to produce the underfill material of the present embodiment is not particularly limited.
  • a varnish obtained by dissolving or dispersing a resin composition containing a thermosetting resin (A) and a visible light absorber (B) in an organic solvent is applied to the surface of the base film. , heating and/or drying under reduced pressure to remove the solvent and solidify the resin composition to form a resin composition layer.
  • the drying conditions are not particularly limited, but the content ratio of the organic solvent to the resin composition layer is usually 10 parts by mass or less, preferably 5 parts by mass or less with respect to the total mass (100 parts by mass) of the resin composition layer. It is preferable to dry it as much as possible.
  • the conditions for achieving such drying also vary depending on the type and amount of organic solvent in the varnish.
  • drying is performed for 2 to 15 minutes under heating conditions of 90 to 160°C under 1 atmosphere. is a guideline.
  • the thickness of the resin composition layer in the underfill material of the present embodiment is such that it can exhibit a light transmittance that can achieve the light transmittance of the underfill material described above. Although it varies depending on the content of 5 A range of ⁇ 500 ⁇ m is preferred, a range of 5 to 100 ⁇ m is more preferred, and a range of 5 to 50 ⁇ m is particularly preferred.
  • thermosetting resin (A) The resin composition layer contains a thermosetting resin (A).
  • thermosetting resin (A) any known thermosetting resin can be appropriately employed as long as it can exhibit a transmittance that can achieve the light transmittance of the above-mentioned underfill material and the like.
  • the type of thermosetting resin (A) is not particularly limited, but examples include maleimide compounds, citraconimide compounds, epoxy resins, oxetane resins, phenolic resins, (meth)acrylate resins, unsaturated polyester resins, diallyl. Examples include phthalate resins, and among these, it is preferable to include at least one selected from the group consisting of maleimide compounds, citraconimide compounds, and combinations thereof.
  • the thermosetting resin (A) preferably does not show reactivity with the flux activator (D) described below.
  • a thermosetting resin (A) can be used individually by 1 type or in mixture of 2 or more types.
  • thermosetting resin (A) a compound (A1) having a relatively high molecular weight and a compound (A2) having a relatively low molecular weight can be used together.
  • compound (A1) having a relatively high molecular weight when compound (A1) having a relatively high molecular weight is used, the stress generated during curing shrinkage during semiconductor chip mounting or thermal curing (during post-curing) is alleviated.
  • compound (A2) having a relatively low molecular weight it is possible to improve the cross-linking density during semiconductor chip mounting or post-curing.
  • thermosetting resin (A) includes a maleimide compound (AA-1) having a weight average molecular weight of 3,000 or more and 9,500 or less, a citraconimide compound (AB -1), and at least one or more selected from the group of combinations thereof, a maleimide compound (AA-2) having a weight average molecular weight of 300 or more and less than 3,000, and a weight average molecular weight of 300 or more and less than 3,000
  • the citraconimide compound (AB-2) and at least one selected from the group of combinations thereof can be used in combination.
  • the compound (A1) preferably contains a maleimide compound (AA-1), since it provides even better low void properties and chip adhesion.
  • the compound (A2) preferably contains a maleimide compound (AA-2), since even more excellent low void property and chip adhesiveness can be obtained.
  • the maleimide compound (AA-1) preferably has a weight-average molecular weight of 3,200 or more and 8,000 or less, since it provides even better low-void properties and chip adhesion. It is more preferably 300 or more and 6,000 or less.
  • the weight average molecular weight is preferably 3,200 or more and 8,000 or less, since even more excellent low void properties and chip adhesiveness can be obtained. , 300 or more and 6,000 or less.
  • the weight average molecular weight of the maleimide compound (AA-2) is preferably 350 or more and 2,800 or less, preferably 400 or more and It is more preferably 500 or less.
  • the citraconimide compound (AB-2) the weight average molecular weight is preferably 350 or more and 2,800 or less, and 400 or more and 2 , 500 or less.
  • maleimide compound Compared to epoxy resins and the like, the maleimide compound is less likely to react with the flux activator during storage or heat treatment, and the flux activator is less likely to be deactivated.
  • the maleimide compound is not particularly limited as long as it is a resin or compound having one or more maleimide groups in the molecule.
  • a maleimide compound can be used 1 type or in mixture of 2 or more types.
  • maleimide compounds include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 4,4-diphenylmethanebismaleimide, bis(3,5-dimethyl-4-maleimidephenyl ) methane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bis(3,5-diethyl-4-maleimidophenyl)methane, phenylmethanemaleimide, o-phenylenebismaleimide, m-phenylenebismaleimide , p-phenylenebismaleimide, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethanebismaleimide, 4-methyl- 1,3-phenylenebismaleimide, 1,6-bismaleimide-(2,2,4-diphen
  • thermosetting resin (A) a prepolymer obtained by polymerizing a maleimide compound, a prepolymer obtained by polymerizing a maleimide compound with another compound such as an amine compound, etc. may be used. It can also be contained in the resin composition.
  • the maleimide compound is not particularly limited, but 2,2'-bis ⁇ 4-(4-maleimidophenoxy)phenyl ⁇ propane, 1 , 2-bis(maleimido)ethane, 1,4-bis(maleimido)butane, 1,6-bis(maleimido)hexane, N,N'-1,3-phenylenedimaleimide, N,N'-1,4 -Phenylenedimaleimide, N-phenylmaleimide, a maleimide compound represented by the following formula (3), a bismaleimide compound containing a structural unit represented by the following formula (4) and maleimide groups at both ends, the following formula ( 5), a maleimide compound represented by the following formula (6), a maleimide compound represented by the following formula (7), and at least one selected from the group of combinations thereof.
  • a maleimide compound represented by the following formula (3) a structural unit represented by the following formula (4) and at both ends
  • a bismaleimide compound containing a maleimide group a maleimide compound represented by the following formula (5), a maleimide compound represented by the following formula (6), a maleimide compound represented by the following formula (7), and combinations thereof It is more preferable to include at least one selected from the group of
  • n3 represents an integer of 1-30.
  • R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms.
  • R 12 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms.
  • Each R 13 independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 16 carbon atoms, or a linear or branched alkenyl group having 2 to 16 carbon atoms.
  • n5 represents an integer of 1-10. Details of the structural unit represented by formula (4) will be described later.
  • each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group.
  • Each R9 independently represents a hydrogen atom or a methyl group.
  • each R 10 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • n4 represents an integer of 1-10.
  • R 10 is preferably a hydrogen atom.
  • each R 10 independently represents a hydrogen atom or a methyl group
  • n 2 represents an integer of 1 or more, preferably an integer of 1-10.
  • the bismaleimide compound may have a plurality of structural units represented by formula (4), in which case R 11 , R 12 and R in the plurality of structural units represented by formula (4) 13 may be the same or different. Further, the bismaleimide compound differs in at least one of R 11 , R 12 , and R 13 in the structural unit represented by formula (4) and the number of structural units of formula (4) in the bismaleimide compound. It may be a mixture of compounds.
  • R 11 is a linear or branched alkylene group having 1 to 16 carbon atoms, or a linear or branched alkylene group having 2 to 16 carbon atoms. Indicates an alkenylene group.
  • R 11 is preferably a linear or branched alkylene group because the resin composition has a suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be controlled appropriately.
  • a linear alkylene group is more preferred.
  • the number of carbon atoms in the alkylene group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be more suitably controlled, and 4. ⁇ 12 is more preferred.
  • Linear or branched alkylene groups include, for example, methylene group, ethylene group, propylene group, 2,2-dimethylpropylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group and decylene group.
  • the number of carbon atoms in the alkenylene group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting, and the increase in melt viscosity during mounting can be more suitably controlled. ⁇ 12 is more preferred.
  • Linear or branched alkenylene groups include, for example, vinylene group, 1-methylvinylene group, arylene group, propenylene group, isopropenylene group, 1-butenylene group, 2-butenylene group, 1-pentenylene group, 2 -pentenylene group, isopentylene group, cyclopentenylene group, cyclohexenylene group, dicyclopentadienylene group and the like.
  • R 12 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms. .
  • R 12 is preferably a linear or branched alkylene group because the resin composition has a suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be controlled appropriately.
  • a linear alkylene group is more preferable.
  • the number of carbon atoms in the alkylene group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be more suitably controlled, and 4. ⁇ 12 is more preferred.
  • the above R 11 can be referred to.
  • the number of carbon atoms in the alkenylene group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting, and the increase in melt viscosity during mounting can be more suitably controlled. ⁇ 12 is more preferred.
  • the linear or branched alkenylene group the above R 11 can be referred to.
  • R 11 and R 12 may be the same or different, but from the viewpoint of easier synthesis of the bismaleimide compound, they are preferably the same. preferable.
  • each R 13 is independently a hydrogen atom, a linear or branched alkyl group having 1 to 16 carbon atoms, or a linear or branched alkyl group having 2 to 16 carbon atoms. It represents a branched alkenyl group.
  • Each of R 13 is independently a hydrogen atom or a linear chain having 1 to 16 carbon atoms, because the resin composition has a suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be suitably controlled.
  • a linear or branched alkyl group is preferable, and among R 13 , 1 to 5 groups (R 13 ) are linear or branched alkyl groups having 1 to 16 carbon atoms, and the remaining groups ( R 13 ) is more preferably a hydrogen atom, and among R 13 , 1 to 3 groups (R 13 ) are linear or branched alkyl groups having 1 to 16 carbon atoms, and the remaining groups ( More preferably, R 13 ) is a hydrogen atom.
  • the number of carbon atoms in the alkyl group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be more suitably controlled, and 4. ⁇ 12 is more preferred.
  • Linear or branched alkyl groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, 1-ethylpropyl group, n-butyl group, 2-butyl group, isobutyl group and tert-butyl.
  • n-pentyl group 2-pentyl group, tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, n-heptyl, n-octyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylpentan-3-yl, and n-nonyl groups.
  • the number of carbon atoms in the alkenyl group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be more suitably controlled. ⁇ 12 is more preferred.
  • Linear or branched alkenyl groups include, for example, vinyl group, allyl group, 4-pentenyl group, isopropenyl group, isopentenyl group, 2-heptenyl group, 2-octenyl group, and 2-nonenyl group. be done.
  • n 5 represents an integer of 1-10.
  • a bismaleimide compound has maleimide groups at both ends of its molecular chain. Both ends mean both ends in the molecular chain of the bismaleimide compound. , at the chain end of R 11 , at the chain end at the N atom of the maleimide ring, or at both ends.
  • the bismaleimide compound may have maleimide groups other than both ends of the molecular chain.
  • the maleimide group is represented by the following formula (8), and the N atom is bonded to the molecular chain of the bismaleimide compound.
  • the maleimide groups bonded to the bismaleimide compound may all be the same or different, but the maleimide groups at both ends of the molecular chain are preferably the same.
  • each R 11 independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. Both R 11 are preferably hydrogen atoms from the viewpoint of reacting more favorably with the resin (A).
  • the number of carbon atoms in the alkyl group is preferably 1 to 3, more preferably 1 to 2, from the viewpoint of more preferably reacting with the resin (A).
  • the above R 13 can be referred to as the linear or branched alkyl group.
  • Examples of such bismaleimide compounds include maleimide compounds represented by the following formula (9). These compounds can be used singly or in combination of two or more compounds having different repeating numbers of a in formula (9).
  • a represents an integer of 1-10. a is preferably an integer of 1 to 6, since the resin composition has a more suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be more suitably controlled.
  • the maleimide compound represented by formula (9) may be a mixture of compounds in which a is different.
  • the maleimide compound represented by the above formula (3) and the structure represented by the above formula (4) can be obtained, since even more excellent low void property and chip adhesiveness can be obtained.
  • a bismaleimide compound containing maleimide groups at both ends of the unit and the molecular chain is preferred.
  • maleimide compound (AA-2) As the maleimide compound (AA-2), a maleimide compound represented by the above formula (5) and a maleimide represented by the above formula (6) can be obtained, since even more excellent low void property and chip adhesiveness can be obtained. A compound is preferred.
  • maleimide compound a commercially available product may be used.
  • MIZ-001 manufactured by Nippon Kayaku Co., Ltd. (trade name, represented by the formula (9) Weight average molecular weight: 3,900) containing maleimide compounds.
  • the maleimide compound represented by formula (5) include BMI-70 (trade name; bis-(3-ethyl-5-methyl-4-maleimidophenyl)methane manufactured by K.I. Kasei Co., Ltd., molecular weight: 550).
  • Examples of the maleimide compound represented by formula (6) include MIR-3000-70MT (trade name, manufactured by Nippon Kayaku Co., Ltd., where all R 10 in formula (6) are hydrogen atoms and n 4 is weight average molecular weight: 1,050), which is a mixture of 1 to 10.
  • Examples of the maleimide compound represented by formula (7) include BMI-2300 (trade name) manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • the citraconimide compound is not particularly limited. -(4-citraconimidophenoxy)phenyl]propane, bis(3,5-dimethyl-4-citraconimidophenyl)methane, bis(3-ethyl-5-methyl-4-citraconimidophenyl)methane, bis(3, 5-diethyl-4-citraconimidophenyl)methane, 1,3-xylylenebis(citraconimide), N-[3-bis(trimethylsilyl)amino-1-propyl]citraconimide, N-[3-bis(triethylsilyl) amino-1-propyl]citraconimide, N-[3-bis(triphenylsilyl)amino-1-propyl]citraconimide, N,N'-(m-phenylenedimethylene)dicitraconimide, and N-[3
  • the above bismaleimide compound can be referred to.
  • the details of the structure of formula (4) are as described above, and the citraconimide group has the structure of formula (8) except that at least one group of R 11 is a methyl group in formula (8). can refer to.
  • a citraconimide compound can be used 1 type or in mixture of 2 or more types.
  • the citraconimide compound represented by the following formula (10) can obtain better solubility in organic solvents and more excellent low void properties and chip adhesion.
  • a compound, a biscitraconimide compound containing a structural unit represented by the above formula (4) and a citraconimide group at both ends of the molecular chain, a citraconimide compound represented by the following formula (11), and the following formula (12) It preferably contains a citraconimide compound represented by.
  • citraconimide compound (AB-1) a citraconimide compound represented by the following formula (10), and a citraconimide compound represented by the above formula (4), since even more excellent low void properties and chip adhesiveness can be obtained. It is preferably a biscitraconimide compound containing a structural unit and citraconimide groups at both ends of the molecular chain.
  • n6 represents an integer of 1-30.
  • citraconimide compound (AB-2) As the citraconimide compound (AB-2), a citraconimide compound represented by the following formula (11) and a citraconimide compound represented by the following formula (12) can be obtained, since even better low void properties and chip adhesiveness can be obtained. is preferably a citraconimide compound.
  • each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group.
  • Each R9 independently represents a hydrogen atom or a methyl group.
  • each R 10 independently represents a hydrogen atom or a methyl group, and n 4 represents an integer of 1 or more, preferably an integer of 1-10.
  • R 10 is preferably a hydrogen atom.
  • the content (total amount) of the thermosetting resin (A) in the resin composition layer is not particularly limited. It is preferably 25 parts by mass or more, more preferably 40 parts by mass or more, and even more preferably 50 parts by mass or more with respect to 100 parts by mass.
  • the upper limit of the content (total amount) of the thermosetting resin (A) is not particularly limited. More preferably, it is 90 parts by mass or less.
  • resin component as used herein includes not only the thermosetting resin (A), but also the curing agent (F) and the flux activator (D) when resins are used. It is intended not to include the agent (B), the curing catalyst (E), and the like.
  • the content of the compound (A1) is It is preferably 40 to 90 parts by mass, more preferably 42 to 85 parts by mass, and preferably 45 to 80 parts by mass with respect to a total of 100 parts by mass of (A1) and compound (A2). More preferred.
  • the content of compound (A2) is preferably 10 to 60 parts by mass, more preferably 15 to 58 parts by mass, with respect to 100 parts by mass in total of compound (A1) and compound (A2). More preferably, it is 20 to 55 parts by mass.
  • the thermosetting resin (A) contains the maleimide compound (AA-1) and the maleimide compound (AA-2), even more excellent low void property and chip adhesiveness can be obtained, so the maleimide compound (AA -1) content is preferably 40 to 90 parts by mass, preferably 42 to 85 parts by mass, with respect to the total 100 parts by mass of compound (AA-1) and compound (AA-2). is more preferable, and 45 to 80 parts by mass is even more preferable.
  • the content of the maleimide compound (AA-2) is preferably 10 to 60 parts by mass with respect to a total of 100 parts by mass of the compound (AA-1) and the compound (AA-2), and 15 to 60 parts by mass. It is more preferably 58 parts by mass, and even more preferably 20 to 55 parts by mass.
  • thermosetting resin (A) contains the citraconimide compound (AB-1) and the citraconimide compound (AB-2), even more excellent low void properties and chip adhesion can be obtained.
  • the content of the compound (AB-1) is preferably 40 to 90 parts by mass, preferably 42 to 85 parts by mass, with respect to the total 100 parts by mass of the compound (AB-1) and the compound (AB-2). and more preferably 45 to 80 parts by mass.
  • the content of the citraconimide compound (AB-2) is preferably 10 to 60 parts by mass with respect to a total of 100 parts by mass of the compound (AB-1) and the compound (AB-2). It is more preferably up to 58 parts by mass, and even more preferably 20 to 55 parts by mass.
  • the resin composition layer contains a visible light absorbent (B).
  • the type of visible light absorbent (B) contained in the resin composition layer is selected, and the content of the visible light absorbent (B) and the film thickness of the resin composition layer are adjusted.
  • the light transmittance of the underfill material and the resin composition layer can be set within a desired range.
  • inorganic fine particles having a relatively large particle size such as silica having an average particle size of more than 400 nm, but inorganic fine particles having a large particle size settle during storage. The storage stability of the varnish is deteriorated.
  • the visible light absorbent (B) is not particularly limited as long as it is a material that can absorb visible light.
  • a material that can absorb visible light For example, at least one selected from the group consisting of organic dyes, organic pigments, and combinations thereof can be used.
  • organic dyes and organic pigments include, but are not limited to, quinone, aminoketone, cationic, cyanine, phthalocyanine, quinacdrine, diaryl/triarylmethane, fulgide, azo, and squarylium. system, oxonol, benzylidene, nitro, nitroso, thiazole, indigoid, and at least one compound selected from the group consisting of combinations thereof, and thermosetting From the viewpoint of suppressing reaction with other components such as resin (A), at least one compound selected from the group consisting of quinones, aminoketones, and combinations thereof is preferred.
  • organic dye Specific examples of organic dyes are not particularly limited, but the following azo dyes, mordant dyes, reactive dyes, and acid dyes can be exemplified. Among the following organic dyes, black dyes are preferable as the organic dye in the present embodiment from the viewpoint of a wide absorption wavelength range.
  • Kayaset Black AN Direct Brilliant Pink B (CI Direct Red9) Kayarus Light Red F5G (CI Direct Red225) Direct Light Rose FR (CI Direct Red227) Summit Supra Turquoise Blue G (C.I. Direct Blue86) Direct Supra Blue FFRL (C.I. Direct Blue 108) Kayarus Cupro Green G (CI Direct Green 59) Direct Fast Black B (C.I.
  • Mordant Blue29 Mordant Green L (CI Mordant Green 17) Chrome Green 3B-N (CI Mordant Green28) Mordant Brown KS (C.I. Mordant Brown 15) Chrome Brown LE (CI Mordant Brown 19) Chrome Brown RH (CI Mordant Brown 33) Chrome Black P2B (C.I. Mordant Black7) Chrome Black PLW (CI Mordant Black 9) Chrome Black ET-1 (C.I. Mordant Black 11)
  • Reactive Orange64 Remazol Golden Yellow RNL gran 150% (CI Reactive Orange 107) Drimaren Rubinol X3LR CDG (C.I. Reactive Red55) Brilliant Red G SPL (C.I. Reactive Red 112) Brilliant Red 7BF Liq 25% (C.I. Reactive Red 114) Lanasol Red 2G (CI Reactive Red 116) Levafix Scarlet E-2GA gran (C.I. Reactive Red124) Levafix Brilliant Red E-4BA gran (CI Reactive Red158)
  • Remazol Black RL 133% (CI Reactive Black 31) Remazol Deep Black N 150% (CI Reactive Black 31) Acid Quinoline Yellow WS H/C (C.I. Acid Yellow 3) Kayacyl Yellow GG 80 (C.I. Acid Yellow 17) Tartrazine NS conc (CI Acid Yellow 23) Suminol Fast Yellow R conc. (C.I. Acid Yellow 25) Kayanol Milling Yellow O (C.I. Acid Yellow 38) Suminol Milling Yellow MR (C.I. Acid Yellow 42) Aminyl Yellow E-3GL (C.I. Acid Yellow 49) Suminol Fast Yellow G (B) (C.I. Acid Yellow 61) Erionyl Yellow B-4G (C.I.
  • Acid Yellow79 Kayanol Yellow N5G (C.I. Acid Yellow 110) Lanyl Yellow G ex cc (C.I. Acid Yellow 116) Kayakalan Yellow GL 143 (C.I. Acid Yellow 121) Kayanol Milling Yellow 5GW (CI Acid Yellow 127) Lanacron Yellow N-2GL KWL (C.I. Acid Yellow 129) Erionyl Golden Yellow MR-02 (C.I. Acid Yellow 151) Tectilon Yellow 2G 200% (CI Acid Yellow 169) Lanacron Yellow S-2G-01 KWL (C.I. Acid Yellow 220) Telon Yellow RLN micro (C.I.
  • Acid Yellow 230 Tectilon Yellow 3R 200% (CI Acid Yellow 246) Chuganol Fast Yellow 5GL (CI Acid Yellow 40:1) Solar Orange (CI Acid Orange 7) Solar Light Orange GX (C.I. Acid Orange 10) Chuganol Milling Brown 5R (C.I. Acid Orange 51) Chuganol Milling Orange SG (CI Acid Orange 56) Kayanol Yellow N3R (C.I. Acid Orange 67) Aminyl Yellow E-3RL (C.I. Acid Orange 67) Lanyl Orange R 200% (CI Acid Orange 88) Chuganol Milling Orange GSN 150% (CI Acid Orange 95) Suminol Milling Orange GN (N) (C.I. Acid Orange 95) Isolan Orange K-RLS (C.I.
  • Acid Orange 10 Telon Orange AGT 01 (C.I. Acid Orange 116) Lanyl Orange 2R e/c (C.I. Acid Orange 120) Supralan Orange S-RL (C.I. Acid Orange 166) Lanasyn Yellow M-2RL 180 (C.I. Acid Orange 180) Nylosan Orange NRL 250 (C.I. Acid Orange 250)
  • Acid Red 131) Lanyl Red GG (CI Acid Red 211) Lanyl Red B (CI Acid Red 215) Lanasyn Bordeaux M-RLA200 (C.I. Acid Red217) Suminol Milling Brilliant Red B conc. N (CI Acid Red 249) Aminyl Red E-3BL (CI Acid Red257) Telon Red M-BL (CI Acid Red260) Chugai Aminol Fast Pink R (C.I. Acid Red289) Nylosan Red N-2RBL SGR (C.I. Acid Red336) Telon Red FRL micro (C.I. Acid Red337) Lanasyn Red MG (C.I.
  • Acid Blue 258 Telon Blue AFN (CI Acid Blue 264) Tectilon Blue 4R-01 200% (C.I. Acid Blue 277:1) Nylosan B Blue N-FL SGR180 (C.I. Acid Blue278) Nylosan Blue N-5GL SGR 200 (C.I. Acid Blue 280) Kayalax Navy R (C.I. Acid Blue 300) Nylosan Blue N-BLN (C.I. Acid Blue 350) Lanacron Blue N-3GL Acid Green V (CI Acid Green 16) Chuganol Cyanine Green G (CI Acid Green 25)
  • the content of the visible light absorber (B) in the resin composition layer is appropriately adjusted according to the type thereof in order to adjust the transmittance described above, so the content is not limited. , for example, from the viewpoint of insulation reliability, film durability, etc., it is preferably 0.01 to 10 parts by mass, and 0.05 to 5 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting resin (A) parts is more preferable, and 0.05 to 2 parts by mass is even more preferable.
  • the resin composition layer preferably further contains an inorganic filler (C) in order to improve flame resistance, improve thermal conductivity, and reduce the coefficient of thermal expansion.
  • an inorganic filler (C) By using the inorganic filler (C), the flame resistance and thermal conductivity of the underfill material can be improved, and the coefficient of thermal expansion can be reduced.
  • the average particle size of the inorganic filler (C) is not particularly limited. From the standpoint of improving the , and coping with narrower pitches of electrodes arranged on a chip and narrower gaps between electrodes, the thickness is preferably 400 nm or less, more preferably 300 nm or less, and particularly preferably 1 to 100 nm.
  • the "average particle size" of the inorganic filler (C) shall mean the median size of the inorganic filler (C).
  • the median diameter is the volume of particles on the larger particle diameter side and the volume of particles on the smaller particle diameter side when the particle size distribution of powder is divided into two based on a certain particle size. means a particle size such that each accounts for 50% of the total powder.
  • the average particle size (median size) of the inorganic filler (C) is measured by a wet laser diffraction/scattering method.
  • the inorganic filler (C) examples include, but are not limited to, silica such as natural silica, fused silica, amorphous silica, and hollow silica; aluminum compounds such as boehmite, aluminum hydroxide, alumina, and aluminum nitride; magnesium oxide; Calcium compounds such as calcium carbonate and calcium sulfate; Molybdenum compounds such as molybdenum oxide and zinc molybdate; Boron nitride; Barium sulfate; Talc such as natural talc and calcined talc; glass such as short fiber glass, spherical glass, and fine powder glass (eg, E glass, T glass, D glass);
  • metal particles of gold, silver, nickel, copper, tin alloys, and palladium are used as the inorganic filler (C).
  • the inorganic filler (C) includes silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, and magnesium oxide from the viewpoint of improving the flame resistance of the resin composition layer and reducing the coefficient of thermal expansion.
  • magnesium hydroxide and combinations thereof preferably at least one selected from the group consisting of silica, alumina, and boron nitride, more preferably containing at least one selected from the group consisting of silica, alumina, and boron nitride. is more preferred.
  • silica examples include SFP-120MC (trade name) and SFP-130MC (trade name) manufactured by Denka Corporation; 0.3 ⁇ m SX-CM1 (trade name) and 0.3 ⁇ m SX- EM1 (trade name), 0.3 ⁇ m SV-EM1 (trade name), SC1050-MLQ (trade name), SC2050-MNU (trade name), SC2050-MTX (trade name), 2.2 ⁇ m SC6103-SQ (trade name), SE2053-SQ (trade name), Y50SZ-AM1 (trade name), YA050C-MJE (trade name), YA050C-MJM (trade name), YA050C-MJF (trade name), and YA050C-MJA (trade name) be done.
  • These inorganic fillers (C) can be used singly or in an appropriate mixture of two or more.
  • the inorganic filler (C) may be surface-treated with a silane coupling agent.
  • the silane coupling agent used for surface treatment of the inorganic filler (C) is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances.
  • vinyltrimethoxysilane and vinylsilane-based silane coupling agents such as ⁇ -(meth)acryloxypropyltrimethoxysilane; phenylaminosilane-based silane coupling agents such as N-phenyl-3-aminopropyltrimethoxysilane; phenylsilane-based silane coupling agents such as methoxyphenylsilane; and imidazolesilane-based silane coupling agents.
  • silane coupling agents can be used singly or in admixture of two or more.
  • the content of the inorganic filler (C) is not particularly limited, but from the viewpoint of ensuring insulation reliability and sufficient flux activity during mounting, the total amount of the thermosetting resin (A) is 100 mass. It is preferably 10 to 500 parts by mass, more preferably 25 to 400 parts by mass, even more preferably 30 to 300 parts by mass. The upper limit of the content of the inorganic filler (C) may be 250 parts by mass.
  • the resin composition layer preferably further contains a flux activator (D) in order to exhibit flux activity in flip-chip mounting.
  • the flux activator (D) is not particularly limited as long as it is an organic compound having one or more acidic sites in its molecule.
  • As the acidic site for example, a phosphoric acid group, a phenolic hydroxyl group, a carboxyl group, and a sulfonic acid group are preferable.
  • a phenolic hydroxyl group or a carboxyl group is more preferable from the viewpoint of more effectively preventing metal migration and corrosion.
  • the flux activator (D) can be used singly or in an appropriate mixture of two or more.
  • the flux activator (D) is not particularly limited, it preferably has an acid dissociation constant pKa of 3.8 or more and 15.0 or less from the viewpoint of sufficiently removing the oxide film on the joint. It is more preferably 4.0 or more and 14.0 or less from the viewpoint of compatibility between the storage stability of the filler material and the flux activity.
  • the molecular weight of the flux activator (D) is not particularly limited. From the viewpoint of preventing volatilization of the activator (D), the molecular weight is preferably 200 or more, more preferably 250 or more. From the viewpoint of having motility as a flux activator and obtaining sufficient flux activity, the molecular weight of the flux activator (D) is preferably 8000 or less, more preferably 1000 or less, and 600 or less. It is even more preferable to have
  • Examples of the flux activator (D) include, but are not limited to, abietic acid, neoabietic acid, dehydroabietic acid, pimaric acid, isopimaric acid, parastric acid, diphenolic acid, dihydroabietic acid, tetrahydroabietic acid, hydrogenation Rosin resins such as rosin esters and rosin-modified maleic acid resins; N,N'-bis(salicylidene)-1,2-propanediamine, N,N'-bis(salicylidene)-1,3-propanediamine, etc. diamine series; phenolphthalin.
  • These flux activators (D) are preferable from the viewpoint of excellent solubility in solvents and excellent storage stability of varnishes and underfill materials.
  • the flux activator (D) is dehydroabietic acid, diphenolic acid, dihydroabietic acid, tetrahydroabietic acid, hydrogenated rosin ester, rosin-modified
  • At least one selected from the group consisting of maleic acid resin, N,N'-bis(salicylidene)-1,2-propanediamine, and N,N'-bis(salicylidene)-1,3-propanediamine is more preferable, and it is particularly preferable to contain a rosin-based resin.
  • the flux activator (D) is more preferably a hydrogenated rosin ester in terms of obtaining even better flux activity.
  • a commercially available product can be used as the flux activator (D).
  • rosin-based resins include Pine Crystal (registered trademark, hereinafter the same) series KR-85 (trade name, hereinafter the same), KR-612, KR-614, KE-100, KE-311, PE-590, KE-359, KE-604, KR-120, KR-140, KR-614, D-6011, and KR-50M; Marquid No. 32 (manufactured by Arakawa Chemical Industries, Ltd.) and the like.
  • the content of the flux activator (D) in the resin composition layer is not particularly limited, but from the viewpoint of ensuring insulation reliability and sufficient flux activity during mounting, the total amount of the thermosetting resin (A) is 100 mass. It is preferably 3 to 70 parts by mass, more preferably 5 to 50 parts by mass, even more preferably 8 to 40 parts by mass.
  • the resin composition layer may further contain a curing catalyst (E).
  • a curing catalyst (E) By including the curing catalyst (E) in the resin composition layer, the polymerization rate of the thermosetting resin (A) can be more suitably controlled, and a resin composition with moderate moldability tends to be obtained.
  • the curing catalyst is not particularly limited as long as it is a compound capable of promoting polymerization of the thermosetting resin (A). Curing catalyst (E) can be used individually by 1 type or in mixture of 2 or more types.
  • the curing catalyst (E) is not particularly limited, but examples include organic peroxides, imidazole compounds, azo compounds, and tertiary amines such as triethylamine and tributylamine. Among these, from the viewpoint of obtaining a good polymerization rate and obtaining a good curing rate, it is preferable that at least one selected from the group consisting of organic peroxides, imidazole compounds, and combinations thereof is included, and an organic More preferably, it contains both a peroxide and an imidazole compound.
  • the content of the curing catalyst (E) in the resin composition layer is not particularly limited, but from the viewpoint of obtaining a good curing speed, it is 0.02 per 100 parts by mass of the total amount of the thermosetting resin (A). It is preferably 10 parts by mass, more preferably 0.05 to 8 parts by mass.
  • organic peroxide The organic peroxide according to the present embodiment is not particularly limited as long as it is a compound that releases an active substance (radical) capable of polymerizing the thermosetting resin (A) by heat, and is a known organic peroxide. can be used.
  • An organic peroxide can be used individually by 1 type or in mixture of 2 or more types.
  • the 10-hour half-life temperature of the organic peroxide is not particularly limited, but is preferably 100°C or higher, and more preferably 110°C or higher from the viewpoint of productivity. It is preferable that the organic peroxide satisfies the 10-hour half-life temperature in the above range, since it is possible to increase the temperature of the solvent removal step during production.
  • organic peroxides include dicumyl peroxide, di(2-tert-butylperoxyisopropyl)benzene, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-dimethyl-2,5 - Ketone peroxides of bis(tert-butylperoxy)hexyne-3, benzoyl peroxide, di-t-butyl peroxide, methyl ethyl ketone peroxide, and cyclohexanone peroxide; 1,1-di(t-butylperoxy)cyclohexane , and peroxyketals of 2,2-di(4,4-di(t-butylperoxy)cyclohexyl)propane; tert-butyl hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide Peroxides and hydroperoxides of t-butyl hydro
  • the content of the organic peroxide is not particularly limited, but from the viewpoint of obtaining a better polymerization speed and curing speed, , preferably 0.02 to 10 parts by mass, more preferably 0.05 to 8 parts by mass.
  • the imidazole compound is not particularly limited as long as it can promote polymerization of the thermosetting resin (A), and known imidazole compounds can be used.
  • An imidazole compound can be used 1 type or in mixture of 2 or more types.
  • imidazole compounds include 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 2,4,5-triphenylimidazole, triethylamine and tributylamine. Tertiary amines, as well as their derivatives are included. Among them, 2-ethyl-4-methylimidazole is preferred because it is easier to control the reaction speed and curing speed.
  • the content of the imidazole compound is not particularly limited, but from the viewpoint that the adjustment of the polymerization rate and the curing rate becomes easier, the total amount of the thermosetting resin (A) is 100 parts by mass. It is preferably 0.02 to 10 parts by mass, more preferably 0.05 to 8 parts by mass.
  • the azo compound is not particularly limited as long as it can accelerate the polymerization of the thermosetting resin (A), and known azo compounds can be used. Azo compounds can be used singly or in combination of two or more. Examples of azo compounds include 2,2'-azobisbutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), and 2,2'-azobis(4-methoxy-2,4- dimethylvaleronitrile) and the like.
  • the content of the azo compound is not particularly limited, but from the point of view that the adjustment of the polymerization rate and the curing rate becomes easier, the total amount of the thermosetting resin (A) is 100 parts by mass. It is preferably 0.02 to 10 parts by mass, more preferably 0.05 to 8 parts by mass.
  • the resin composition layer may further contain a curing agent (F).
  • the curing agent (F) is used for the purpose of improving the curability of the thermosetting resin (A), adjusting the curing speed of the thermosetting resin (A), and the like.
  • the curing agent (F) a known one can be appropriately selected according to the type of the thermosetting resin (A) used, and examples thereof include phenol resins, amines, thiols and the like.
  • the content of the curing agent (F) is not particularly limited. It is preferably 3 to 80 parts by mass, more preferably 5 to 70 parts by mass, and particularly preferably 15 to 50 parts by mass, based on 100 parts by mass in total with the curing agent (F).
  • an aminotriazine novolac resin can be used as the curing agent (F).
  • an aminotriazine novolak resin when used as a curing agent (F) for a resin composition containing a maleimide compound or a citraconimide compound as a main component, the aminotriazine novolak resin has a triazine skeleton, and thus maleimide groups and/or or can react well with citraconimide groups. Therefore, for example, the aminotriazine novolac resin can be used to cure the thermosetting resin while suitably controlling the radical polymerization reaction rate.
  • the aminotriazine novolac resin since the aminotriazine novolac resin has a novolak skeleton bonded to the triazine skeleton, it can contain many hydroxy groups and amino groups even after curing. Therefore, even after curing, good chemical bonding occurs between these groups and the silanol groups of the chip, so that the chip adhesion of the resin composition layer can be improved.
  • the resin composition layer can contain an aminotriazine novolak resin from the viewpoint of reducing voids and improving chip adhesion.
  • an aminotriazine novolak resin a known resin can be used as long as it is a phenol formaldehyde resin (phenol resin) having a triazine ring in the molecule.
  • phenol resin phenol formaldehyde resin
  • Such aminotriazine novolac resins can be prepared by known methods, for example, by modifying phenolic resins with nitrogen compounds such as melamine. Aminotriazine novolac resins may be used singly or in admixture of two or more.
  • the content of the aminotriazine novolak resin is preferably 5 to 70 parts by mass with respect to the total of 100 parts by mass of the aminotriazine novolak resin and the thermosetting resin (A), and is more excellent. 15 to 50 parts by mass is more preferable, and 20 to 40 parts by mass is particularly preferable, since low voids and chip adhesion can be obtained.
  • the weight average molecular weight of the aminotriazine novolac resin is preferably 300 to 9,500, more preferably 500 to 5,000, because it provides even better low void properties and chip adhesion. more preferred.
  • a weight average molecular weight is a value of standard polystyrene conversion calculated
  • the aminotriazine novolac resin preferably has a nitrogen content of 10 to 25% by mass based on 100% by mass of the aminotriazine novolac resin, because it provides even better low void properties and chip adhesion. It is more preferable to be 15 to 20% by mass, since further excellent chip adhesiveness can be obtained together with further excellent low void property.
  • the hydroxy group equivalent means mg of potassium hydroxide required to acetylate the hydroxy groups contained in 1 g of the aminotriazine novolac resin. Specifically, it is measured according to JIS K 0070.
  • the aminotriazine novolac resin is selected from the group consisting of the compounds represented by the following formula (1) and the compounds represented by the following formula (2), since even more excellent low void property and chip adhesiveness can be obtained. It is preferable to include one or more of the
  • each R 1 independently represents a hydrogen atom, a methyl group, or an ethyl group. It is preferable that each R 1 is independently a hydrogen atom or a methyl group, since further excellent low void property and chip adhesion can be obtained.
  • l, m, and n each independently represent an integer of 0 to 10; It is preferable that l, m and n are each independently an integer of 1 to 6, since even better low void property and chip adhesion can be obtained.
  • (l+m+n) represents an integer of 1-20.
  • (l+m+n) is preferably an integer of 3 to 18, since even better low void property and chip adhesion can be obtained.
  • the compound represented by formula (1) is, for example, a compound having different functional groups and the number of R 1 in formula (1), a compound having different numbers of l, m, and n, and the number of (l + m + n) may be a mixture containing compounds having different
  • each R 2 independently represents a hydrogen atom, a methyl group, or an ethyl group. It is preferable that each R 2 is independently a hydrogen atom or a methyl group, since further excellent low void property and chip adhesion can be obtained.
  • o, p, q, r, and s each independently represent an integer of 0 to 10; Each of o, p, q, r, and s is preferably an integer of 1 to 4, because even better low void property and chip adhesion can be obtained.
  • (o+p+q+r+s) represents an integer of 1-20.
  • (o+p+q+r+s) is preferably an integer of 5 to 20, since even better low void property and chip adhesion can be obtained.
  • the compounds represented by formula (2) include, for example, compounds having different functional groups and the number of R 2 in formula (2), compounds having different numbers of o, p, q, r, and s, ( It may be a mixture containing compounds having different numbers of o+p+q+r+s).
  • the aminotriazine novolac resin is a mixture of the compound represented by the formula (1) and the compound represented by the formula (2). is more preferred.
  • the mass ratio of the compound represented by formula (1) and the compound represented by formula (2) (formula ( The ratio of the compound represented by 1) (parts by mass): the compound represented by formula (2) (parts by mass)) is preferably 50:50 to 90:10, and 60:40 to 85:15. is more preferable.
  • aminotriazine novolac resin a commercially available product may be used. -7054 (trade name) and LA-7751 (trade name).
  • the resin composition layer may contain one or two or more other components in addition to the thermosetting resin (A), the visible light absorbent (B), and the like.
  • other components include, but are not particularly limited to, flexibility imparting components.
  • the flexibility imparting component is not particularly limited as long as it is a component capable of imparting flexibility to the layer containing the resin composition. Examples of such components include thermosetting resin (A), visible light absorber (B), inorganic filler (C), flux activator (D), curing catalyst (E), and curing agent (F).
  • Polyimide polyamideimide, polystyrene, polyolefin, styrene-butadiene rubber (SBR), isoprene rubber (IR), butadiene rubber (BR), (meth)acrylonitrile butadiene rubber (NBR), polyurethane, polypropylene, (meth) acrylic Thermoplastic polymer compounds such as oligomers, (meth)acrylic polymers, and silicone resins can be mentioned. These flexibility-imparting components can be used singly or in admixture of two or more.
  • the resin composition layer may contain, as another component, a silane coupling agent for the purpose of further improving the adhesiveness of the interface between the resin component and the inorganic filler (C) and the moisture absorption and heat resistance.
  • Silane coupling agents include, for example, vinyltrimethoxysilane and vinylsilane-based silane coupling agents such as ⁇ -(meth)acryloxypropyltrimethoxysilane; phenylaminosilanes such as N-phenyl-3-aminopropyltrimethoxysilane.
  • silane coupling agents phenylsilane-based silane coupling agents such as trimethoxyphenylsilane; and imidazole silane-based silane coupling agents.
  • silane coupling agents can be used singly or in admixture of two or more.
  • its content is not particularly limited, but from the viewpoint of further improving moisture absorption and heat resistance and further reducing the amount of volatilization during flip chip mounting, the total amount of the thermosetting resin (A) It is preferably 0.02 to 20 parts by mass with respect to 100 parts by mass.
  • the resin composition layer may contain a wetting and dispersing agent as another component for the purpose of further improving the manufacturability of the film-like underfill material and further improving the dispersibility of the filler.
  • the wetting and dispersing agent is not particularly limited as long as it is a wetting and dispersing agent generally used for paints and the like.
  • BYK-Chemie Japan Co., Ltd. DISPERBYK (registered trademark) -110 (trade name), -111 (trade name), -180 (trade name), -161 (trade name), BYK-W996 ( (trade name), W9010 (trade name), and W903 (trade name).
  • wetting and dispersing agents can be used singly or in admixture of two or more.
  • a wetting and dispersing agent When a wetting and dispersing agent is used, its content is not particularly limited, but from the viewpoint of further improving the manufacturability of the film-like underfill material, it is 0.1 per 100 parts by mass of the inorganic filler (C). It is preferably 5 parts by mass, more preferably 0.5 to 3 parts by mass.
  • the total amount thereof preferably satisfies the above ratio.
  • the resin composition layer may contain various additives for various purposes as long as the desired properties are not impaired.
  • Additives include, for example, thickeners, lubricants, defoamers, leveling agents, brighteners, flame retardants, and ion trapping agents. These additives can be used singly or in admixture of two or more.
  • the content of the other additives in the resin composition layer is not particularly limited, but is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting resin (A).
  • the resin composition for a film-like underfill material of the present embodiment contains a thermosetting resin (A), a visible light absorber (B), etc., and as long as a composition having the above composition is obtained,
  • the method is not particularly limited.
  • the resin composition comprises, for example, a thermosetting resin (A) and a visible light absorber (B), and optionally an inorganic filler (C), a flux activator (D), and a curing catalyst (E).
  • the curing agent (F), and other components can be appropriately mixed. If necessary, these components may be dissolved or dispersed in an organic solvent to form a varnish.
  • a varnish can be suitably used when producing a film-like underfill material.
  • a specific method for manufacturing the film-like underfill material the above-described method for manufacturing a laminate and Examples described later can be referred to.
  • the resin composition for the film-like underfill material of the present embodiment can be suitably used for producing the resin composition layer of the film-like underfill material of the present embodiment, but the present embodiment is limited to this. However, it is also applicable to film-like underfill materials other than the film-like underfill material of the present embodiment.
  • the organic solvent is not particularly limited as long as it can suitably dissolve or disperse the above components and does not impair the effects of the present invention.
  • organic solvents include alcohols such as methanol, ethanol, and propanol; ketones such as acetone, methyl ethyl ketone (hereinafter sometimes abbreviated as "MEK”), and methyl isobutyl ketone; dimethylacetamide, and dimethylformamide.
  • amides such as; aromatic hydrocarbons such as toluene and xylene.
  • the film-like underfill material of the present embodiment can be suitably used as an underfill material for semiconductor chips and substrates for mounting semiconductor chips.
  • a semiconductor chip with a resin composition layer includes a semiconductor chip and a layer including a resin composition layer laminated on the semiconductor chip.
  • a substrate for mounting a semiconductor chip with a resin composition layer includes a substrate for mounting a semiconductor chip and a layer including a resin composition layer laminated on the substrate for mounting a semiconductor chip.
  • a semiconductor chip with a resin composition layer can be manufactured using the film-like underfill material of this embodiment described above.
  • the method for producing a semiconductor chip with a resin composition layer is not particularly limited.
  • the resin composition layers of the material are laminated so that they face each other, then the base film of the film-like underfill material is peeled off, and then singulated with a dicing saw or the like to form a semiconductor chip with a resin composition layer.
  • the film-like underfill material of the present embodiment can be used to manufacture a semiconductor chip mounting board with a resin composition layer.
  • the method for producing a substrate for mounting a semiconductor chip with a resin composition layer is not particularly limited. It is obtained by bonding the layers so that they face each other, and then peeling off the base film of the film-like underfill material.
  • the method for bonding the film-like underfill material of the present embodiment to a semiconductor wafer or semiconductor chip mounting substrate is not particularly limited, but a vacuum pressure laminator can be preferably used. In this case, it is preferable to apply pressure to the film-like underfill material of the present embodiment via an elastic body such as rubber to bond them together.
  • the lamination conditions are not particularly limited as long as they are conditions generally used in the industry, but for example, a temperature of 50 to 140° C., a contact pressure in the range of 1 to 11 kgf/cm 2 and an atmospheric pressure reduction of 20 hPa or less. done below.
  • the bonded film-like underfill material may be smoothed by hot pressing with a metal plate.
  • the lamination process and the smoothing process can be performed continuously by a commercially available vacuum pressure laminator.
  • the film-like underfill material attached to the semiconductor wafer or the semiconductor-mounted chip mounting substrate is subjected to removal of the base film before flip-chip mounting of the chip.
  • a semiconductor device can be configured using the semiconductor chip with the resin composition layer and/or the substrate for mounting a semiconductor chip with the resin composition layer.
  • a semiconductor device can be manufactured using the film-like underfill material of this embodiment.
  • the semiconductor device includes a semiconductor chip with a resin composition layer and/or a substrate for mounting a semiconductor chip with a resin composition layer.
  • a method for manufacturing a semiconductor device is not particularly limited, but an example thereof includes a method of mounting a semiconductor chip with a resin composition layer on a substrate for mounting a semiconductor chip.
  • a semiconductor chip may be mounted on the substrate for mounting a semiconductor chip with a resin composition layer.
  • a flip chip bonder compatible with the thermocompression bonding method is preferably used.
  • the case of flip-chip mounting a semiconductor chip on a substrate for mounting a semiconductor chip is described for the sake of convenience.
  • a substrate other than a chip mounting substrate is also possible.
  • the resin composition layer can be used as a bonding portion between a semiconductor wafer and a semiconductor chip when mounting a semiconductor chip on a semiconductor wafer, or as a chip laminate for connecting semiconductor chips via TSV (Through Silicon Via) or the like.
  • TSV Through Silicon Via
  • thermosetting resin (A) a bismaleimide compound (long-chain maleimide; MIZ-001 (trade name), Nippon Kayaku Co., Ltd., containing a maleimide compound represented by formula (9), in formula (9) is a mixture of 1 to 6 (integer)) 70 parts by mass, bis-(3-ethyl-5-methyl-4-maleimidophenyl)methane (phenylene-type maleimide; BMI-70 (trade name), Kay Ai Kasei Co., Ltd.) 10 parts by mass; As a visible light absorber (B), black dye (Kayaset Black AN (trade name, Nippon Kayaku Co., Ltd.)) 0.1 parts by mass; As an inorganic filler (C), slurry silica (YA050C-MJM (trade name), Admatechs Co., Ltd., phenylaminosilane-treated silica, solid content 50% by
  • LA-1356 (trade name, DIC Corporation), which is an aminotriazine novolac resin, is a compound represented by the above formula (1) (a mixture of compounds represented by formula (1), and the mixture Among them, R 1 is each independently a hydrogen atom or a methyl group, 1, m, and n are each independently an integer of 1 to 6, and (l+m+n) is an integer of 3 to 18.
  • the mass ratio (formula (1): formula (2)) of the compound (mixture) represented by formula (1) and the compound (mixture) represented by formula (2) is 65 (mass parts): 35 (mass parts).
  • the resulting varnish (resin composition) was applied to a 38 ⁇ m-thick polyethylene terephthalate film (base film; release agent thickness: 0.1 ⁇ m, TR1-38 (trade name, Unitika Co., Ltd.) and dried by heating at 100° C. for 5 minutes under 1 atmosphere to obtain a film-like underfill material in which a resin composition layer having a thickness of 16.5 ⁇ m is formed on the base film. Obtained.
  • the thickness of the resin composition layer is determined by measuring the thickness of the film-like underfill material using a micrometer (MDH-25M, manufactured by Mitutoyo Co., Ltd.). Calculated excluding film thickness.
  • Example 2 A film-like underfill material was obtained in the same manner as in Example 1, except that the thickness of the resin composition layer was changed to 43 ⁇ m in “Preparation of film-like underfill material”.
  • Example 3 In “Preparation of resin composition (varnish)", the amount of black dye used was changed to 0.3 parts by mass, and in “Preparation of film-like underfill material”, the thickness of the resin composition layer was changed to 16.0 ⁇ m. A film-like underfill material was obtained in the same manner as in Example 1 except that
  • Example 4 A film-like underfill material was obtained in the same manner as in Example 3, except that the thickness of the resin composition layer was changed to 35 ⁇ m in “Preparation of film-like underfill material”.
  • Example 5 In “Preparation of resin composition (varnish)", except that the amount of black dye used was changed to 0.5 parts by mass, and the thickness of the resin composition layer was changed to 17.0 ⁇ m in the preparation of the film-like underfill material. A film-like underfill material was obtained in the same manner as in Example 1.
  • Example 6 A film-like underfill material was obtained in the same manner as in Example 5, except that the thickness of the resin composition layer was changed to 30 ⁇ m in “Preparation of film-like underfill material”.
  • Example 7 In “Preparation of resin composition (varnish)", the amount of black dye used was changed to 0.7 parts by mass, and in “Preparation of film-like underfill material”, the thickness of the resin composition layer was changed to 17.0 ⁇ m. A film-like underfill material was obtained in the same manner as in Example 1 except that
  • Example 8 A film-like underfill material was obtained in the same manner as in Example 7, except that the thickness of the resin composition layer was changed to 33 ⁇ m in the preparation of “Preparation of film-like underfill material”.
  • Example 9 In “Preparation of resin composition (varnish)", the amount of black dye used was changed to 1.0 parts by mass, and in “Preparation of film-like underfill material”, the thickness of the resin composition layer was changed to 17.0 ⁇ m. A film-like underfill material was obtained in the same manner as in Example 1 except that
  • Example 10 A film-like underfill material was obtained in the same manner as in Example 9, except that the thickness of the resin composition layer was changed to 33 ⁇ m in “Preparation of film-like underfill material”.
  • Example 11 In “Preparation of resin composition (varnish)", except that the amount of black dye used was changed to 2.0 parts by mass, and the thickness of the resin composition layer was changed to 18.0 ⁇ m in the production of film-like underfill material. A film-like underfill material was obtained in the same manner as in Example 1.
  • the light transmittance of this sample B at 600 nm was measured at room temperature with a spectral colorimeter (SD6000 (trade name), manufactured by JASCO Corporation), and the "light transmittance of the base film at a wavelength of 600 nm" was measured. T1 .
  • SD6000 spectral colorimeter
  • the film-shaped underfill material obtained in each example and comparative example was attached to a substrate for mounting a semiconductor chip (WALTS Co., Ltd., WALTS-KIT CC80 (W)-0105JY (trade name)) having an alignment mark,
  • the base film is peeled off from the resin composition layer, and the alignment marks on the substrate are observed from the resin composition layer side with a camera equipped with a flip chip bonder (LFB-2301 (trade name), Shinkawa Co., Ltd.).
  • the recognizability of the alignment mark was evaluated according to the criteria of . ⁇ standard> A: Alignment marks could be recognized. C: Alignment marks could not be recognized.
  • NCF visibility The film-like underfill material obtained in each example and comparative example was visually observed to confirm which of the front and back sides of the film-like underfill material was the resin composition layer (NCF), and the NCF was visually recognized according to the following criteria. evaluated for gender. ⁇ standard> A: The surface of the resin composition layer (NCF) was easily recognized (in less than 3 seconds). B: It took 3 seconds or longer to recognize the surface of the resin composition layer (NCF). C: It was difficult to recognize the surface of the resin composition layer (NCF).
  • the film-like underfill material of the present embodiment is excellent in handleability and can be easily and accurately arranged on an object such as a wafer. It is suitably used as a material for substrates, semiconductor devices, and methods for producing these.

Abstract

This film underfill material includes a resin composition layer including a thermosetting resin (A) and a visible light-absorbing agent (B), and a base film. The light transmittance of the film underfill material at a wavelength of 600 nm is 20-90%, and the difference between the light transmittance of the base film at a wavelength of 600 nm and the light transmittance of the film underfill material at a wavelength of 600 nm is 2-80%.

Description

フィルム状アンダーフィル材、及び、フィルム状アンダーフィル材用樹脂組成物、並びに、フィルム状アンダーフィル材を用いた樹脂組成物層付き半導体チップの製造方法、樹脂組成物層付き半導体チップ搭載用基板の製造方法、及び、半導体装置の製造方法A film-like underfill material, a resin composition for a film-like underfill material, a method for producing a semiconductor chip with a resin composition layer using the film-like underfill material, and a substrate for mounting a semiconductor chip with a resin composition layer Manufacturing method and semiconductor device manufacturing method
 本発明は、アンダーフィル材、及び、樹脂組成物に関し、詳しくは、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置に使用可能なフィルム状アンダーフィル材、及び、フィルム状アンダーフィル材用樹脂組成物、並びに、フィルム状アンダーフィル材を用いた樹脂組成物層付き半導体チップの製造方法、樹脂組成物層付き半導体チップ搭載用基板の製造方法、及び、半導体装置の製造方法に関する。 The present invention relates to an underfill material and a resin composition, and more specifically, a semiconductor chip with a resin composition layer, a substrate for mounting a semiconductor chip with a resin composition layer, and a film-like underfill material that can be used for a semiconductor device. And, a resin composition for a film-like underfill material, a method for manufacturing a semiconductor chip with a resin composition layer using the film-like underfill material, a method for manufacturing a substrate for mounting a semiconductor chip with a resin composition layer, and a semiconductor It relates to a method of manufacturing an apparatus.
 従来、半導体装置の小型化、及び高性能化に伴い、半導体チップ(以下、「チップ」と略す場合がある。)を半導体チップ搭載用基板(以下、「基板」と略す場合がある。)に搭載する方法として、フリップチップ実装が注目されている。フリップチップ実装においては、チップと基板とを接合した後、チップと基板との間隙にアンダーフィル材を充填し、硬化させる工法が一般的である。また、チップ又は基板にアンダーフィル材(プリアプライドアンダーフィル材ともいう)を充填した後、チップと、アンダーフィル材と、基板とを接合させる工法もある。 Conventionally, semiconductor chips (hereinafter sometimes abbreviated as "chips") have been used as semiconductor chip mounting substrates (hereinafter sometimes abbreviated as "substrates") as semiconductor devices have become smaller and more sophisticated. As a mounting method, flip-chip mounting has attracted attention. In flip-chip mounting, after bonding a chip and a substrate, the gap between the chip and the substrate is filled with an underfill material, which is then hardened. There is also a method of filling a chip or a substrate with an underfill material (also referred to as a pre-applied underfill material) and then bonding the chip, the underfill material, and the substrate.
 近年、アンダーフィル材としては、プリアプライドアンダーフィル材用途等として、フィルム状のアンダーフィル材の需要が高まってきている。このようなフィルム状のアンダーフィル材としては、例えば、主樹脂にラジカル重合性モノマーを使用したアンダーフィル材や、透明性を有し、架橋反応な樹脂、フラックス活性を有する化合物、無機充填材等を含む、半導体用フィルムなどの技術が挙げられる(例えば、下記特許文献1及び2参照)。  In recent years, as an underfill material, demand for film-like underfill materials has been increasing for applications such as pre-applied underfill materials. Such a film-like underfill material includes, for example, an underfill material using a radically polymerizable monomer as the main resin, a resin having transparency and undergoing a cross-linking reaction, a compound having flux activity, an inorganic filler, and the like. (For example, see Patent Documents 1 and 2 below).
特表2015-503220号公報Japanese Patent Publication No. 2015-503220 特開2009-239128号公報Japanese Patent Application Laid-Open No. 2009-239128
 半導体チップ等はその表面上にアライメントマークとも称される位置合わせマークが設けられており、当該マークをカメラ等で認識させて位置決めを行い、基板等に実装される。このようなアライメントマークの認識性は、樹脂組成物層付き半導体チップ等の作製時における歩留まり率などにも影響することから、特許文献2に記載の発明のように、近年アライメントマークの認識率を高めるための技術が検討されている。 A semiconductor chip or the like is provided with a positioning mark, also called an alignment mark, on its surface, and the mark is recognized by a camera or the like for positioning, and then mounted on a substrate or the like. Since the recognizability of such alignment marks also affects the yield rate and the like in the production of semiconductor chips with resin composition layers, etc., the recognition rate of alignment marks has been improved in recent years, as in the invention described in Patent Document 2. Techniques to improve it are being considered.
 一方、アライメントマークの認識性を高めるためには樹脂組成物層の光線透過率を高めることが考えられる。しかし、樹脂組成物層の光線透過率を高めた結果、樹脂組成物の光線透過率が高くなりすぎたり、樹脂組成物層の光線透過率とアンダーフィル材に用いられる基材フィルムの光線透過率との差が小さくなると、基材フィルムの表裏いずれに樹脂組成物層が存在するかを目視によって判断することが困難となり、NCFの取り扱い性やNCF配置時の作業効率が著しく低下する。
 以上から、取り扱い性に優れ、樹脂組成物層付き半導体チップを容易且つ正確に実装可能なフィルム状アンダーフィル材の開発が求められている。
On the other hand, increasing the light transmittance of the resin composition layer is conceivable in order to improve the recognizability of the alignment mark. However, as a result of increasing the light transmittance of the resin composition layer, the light transmittance of the resin composition becomes too high, or the light transmittance of the resin composition layer and the light transmittance of the base film used for the underfill material If the difference between is small, it becomes difficult to visually determine whether the resin composition layer is present on the front or back of the base film, and the handling of the NCF and the work efficiency during NCF placement are significantly reduced.
From the above, there is a demand for the development of a film-like underfill material that is excellent in handleability and allows easy and accurate mounting of a semiconductor chip with a resin composition layer.
 本発明は、上述の課題を解決すべく、樹脂組成物層を積層した対象物を容易且つ正確に実装可能なフィルム状アンダーフィル材、及び、当該フィルム状アンダーフィル材の作製に用いられるフィルム状アンダーフィル材用樹脂組成物、並びに、フィルム状アンダーフィル材を用いた樹脂組成物層付き半導体チップの製造方法、樹脂組成物層付き半導体チップ搭載用基板の製造方法、及び、半導体装置の製造方法を提供することを目的とする。 In order to solve the above-described problems, the present invention provides a film-like underfill material that can be easily and accurately mounted on an object laminated with a resin composition layer, and a film-like underfill material used for producing the film-like underfill material. Resin composition for underfill material, method for producing semiconductor chip with resin composition layer using film-like underfill material, method for producing substrate for mounting semiconductor chip with resin composition layer, and method for producing semiconductor device intended to provide
 本発明者らは、従来技術が有する前記課題を解決するために鋭意検討した結果、特定の樹脂組成物が、前記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies aimed at solving the problems of the prior art, the present inventors have found that a specific resin composition can solve the problems, and have completed the present invention.
 すなわち、本発明は以下の内容を含む。
<1>
 熱硬化性樹脂(A)及び可視光吸収剤(B)を含む樹脂組成物層と、
 基材フィルムと、を含むフィルム状アンダーフィル材であって、
 前記フィルム状アンダーフィル材の波長600nmにおける光線透過率が20~90%であり、かつ、
 前記基材フィルムの波長600nmにおける光線透過率と前記フィルム状アンダーフィル材の波長600nmにおける光線透過率との差が2~80%である、フィルム状アンダーフィル材。
<2>
 前記樹脂組成物層の厚みが、5~500μmの範囲である、前記<1>に記載のフィルム状アンダーフィル材。
<3>
 前記可視光吸収剤(B)が、有機染料、有機顔料、及びこれらの組み合わせの群から選択される少なくとも1種である、前記<1>又は前記<2>に記載のフィルム状アンダーフィル材。
<4>
 前記可視光吸収剤(B)が、キノン系、アミノケトン系、カチオン系、シアニン系、フタロシアニン系、キナクドリン系、ジアリール・トリアリールメタン系、フルギド、アゾ系、スクアリリウム系、オキソノール系、ベンジリデン系、ニトロ系、ニトロソ系、チアゾール系、インジゴイド系、及びこれらの組み合わせの群から選択される少なくとも1種から選ばれる少なくとも1種の化合物を含む、前記<1>~前記<3>のいずれかに記載のフィルム状アンダーフィル材。
<5>
 前記可視光吸収剤(B)が、キノン系、アミノケトン系、及びこれらの組み合わせの群から選択される少なくとも1種の化合物を含む、前記<1>~前記<4>のいずれかに記載のフィルム状アンダーフィル材。
<6>
 前記熱硬化性樹脂(A)が、マレイミド化合物、シトラコンイミド化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含む、前記<1>~前記<5>のいずれかに記載のフィルム状アンダーフィル材。
<7>
 前記マレイミド化合物が、2,2’-ビス{4-(4-マレイミドフェノキシ)フェニル}プロパン、1,2-ビス(マレイミド)エタン、1,4-ビス(マレイミド)ブタン、1,6-ビス(マレイミド)ヘキサン、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N-フェニルマレイミド、下記式(3)で表されるマレイミド化合物、下記式(4)で表される構成単位と両末端にマレイミド基とを含有するビスマレイミド化合物、下記式(5)で表されるマレイミド化合物、下記式(6)で表されるマレイミド化合物、下記式(7)で表されるマレイミド化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含む、前記<6>に記載のフィルム状アンダーフィル材。
Figure JPOXMLDOC01-appb-C000006

 
(式(3)中、nは、1~30の整数を示す。)
Figure JPOXMLDOC01-appb-C000007

 
(式(4)中、R11は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R12は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R13は、各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示す。nは、1~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000008

 
(式(5)中、Rは、各々独立に、水素原子、メチル基、又はエチル基を示す。Rは、各々独立に、水素原子又はメチル基を示す。)
Figure JPOXMLDOC01-appb-C000009

 
(式(6)中、R10は、各々独立に、水素原子、炭素数1~5のアルキル基、又はフェニル基を示す。nは、1~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000010

 
(式(7)中、R10は、各々独立に、水素原子又はメチル基を示し、nは、1以上の整数を示す。)
<8>
 前記マレイミド化合物が、2,2’-ビス{4-(4-マレイミドフェノキシ)フェニル}プロパン、前記式(3)で表されるマレイミド化合物、前記式(4)で表される構成単位と両末端にマレイミド基とを含有するビスマレイミド化合物、前記式(5)で表されるマレイミド化合物、前記式(6)で表されるマレイミド化合物、前記式(7)で表されるマレイミド化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含む、前記<7>に記載のフィルム状アンダーフィル材。
<9>
 無機充填材(C)をさらに含む、前記<1>~前記<8>のいずれかに記載のフィルム状アンダーフィル材。
<10>
 前記無機充填材(C)の平均粒子径が、400nm以下である、前記<9>に記載のフィルム状アンダーフィル材。
<11>
 前記無機充填材(C)がシリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、水酸化マグネシウム、及びこれらの組み合わせの群から選択される少なくとも1種を含む、前記<9>又は前記<10>に記載のフィルム状アンダーフィル材。
<12>
 前記無機充填材(C)の含有量が、前記熱硬化性樹脂(A)の総量100質量部に対して、10~500質量部である、前記<9>~前記<11>のいずれかに記載のフィルム状アンダーフィル材。
<13>
 前記無機充填材(C)の平均粒子径が、400nm以下であり、
 前記無機充填材(C)がシリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、水酸化マグネシウム、及びこれらの組み合わせの群から選択される少なくとも1種を含み、
 前記無機充填材(C)の含有量が、前記熱硬化性樹脂(A)の総量100質量部に対して、10~500質量部である、前記<9>に記載のフィルム状アンダーフィル材。
<14>
 フラックス活性剤(D)をさらに含む、前記<1>~前記<13>のいずれかに記載のフィルム状アンダーフィル材。
<15>
 前記フラックス活性剤(D)が、ロジン系樹脂を含む、前記<14>に記載のフィルム状アンダーフィル材。
<16>
 硬化触媒(E)をさらに含む、前記<1>~前記<15>のいずれかに記載のフィルム状アンダーフィル材。
<17>
 前記硬化触媒(E)が、有機過酸化物、イミダゾール化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含む、前記<16>に記載のフィルム状アンダーフィル材。
<18>
 硬化剤(F)をさらに含む、前記<1>~前記<17>のいずれかに記載のフィルム状アンダーフィル材。
<19>
 前記硬化剤(F)が、アミノトリアジンノボラック樹脂を含む、前記<18>に記載のフィルム状アンダーフィル材。
<20>
 熱硬化性樹脂(A)と、可視光吸収剤(B)と、を含むフィルム状アンダーフィル材用樹脂組成物。
<21>
 前記<1>~前記<19>のいずれかに記載のフィルム状アンダーフィル材を用いる、樹脂組成物層付き半導体チップの製造方法。
<22>
 前記<1>~前記<19>のいずれかに記載のフィルム状アンダーフィル材を用いる、樹脂組成物層付き半導体チップ搭載用基板の製造方法。
<23>
 前記<1>~前記<19>のいずれかに記載のフィルム状アンダーフィル材を用いる、半導体装置の製造方法。
That is, the present invention includes the following contents.
<1>
a resin composition layer containing a thermosetting resin (A) and a visible light absorber (B);
A film-like underfill material comprising a base film,
The film-like underfill material has a light transmittance of 20 to 90% at a wavelength of 600 nm, and
A film-like underfill material, wherein the difference between the light transmittance of the base film at a wavelength of 600 nm and the light transmittance of the film-like underfill material at a wavelength of 600 nm is 2 to 80%.
<2>
The film-like underfill material according to <1>, wherein the thickness of the resin composition layer is in the range of 5 to 500 μm.
<3>
The film-like underfill material according to <1> or <2>, wherein the visible light absorber (B) is at least one selected from the group consisting of organic dyes, organic pigments, and combinations thereof.
<4>
The visible light absorber (B) is a quinone-based, aminoketone-based, cationic, cyanine-based, phthalocyanine-based, quinacdrine-based, diaryl/triarylmethane-based, fulgide, azo-based, squarylium-based, oxonol-based, benzylidene-based, nitro system, nitroso-based, thiazole-based, indigoid-based, and at least one compound selected from the group of combinations thereof, according to any one of <1> to <3> Film type underfill material.
<5>
The film according to any one of <1> to <4>, wherein the visible light absorber (B) contains at least one compound selected from the group consisting of quinones, aminoketones, and combinations thereof. shaped underfill material.
<6>
The film form according to any one of <1> to <5>, wherein the thermosetting resin (A) contains at least one selected from the group consisting of a maleimide compound, a citraconimide compound, and a combination thereof. underfill material.
<7>
The maleimide compound includes 2,2′-bis{4-(4-maleimidophenoxy)phenyl}propane, 1,2-bis(maleimido)ethane, 1,4-bis(maleimido)butane, 1,6-bis( maleimide) hexane, N,N'-1,3-phenylenedimaleimide, N,N'-1,4-phenylenedimaleimide, N-phenylmaleimide, a maleimide compound represented by the following formula (3), the following formula ( A bismaleimide compound containing a structural unit represented by 4) and maleimide groups at both ends, a maleimide compound represented by the following formula (5), a maleimide compound represented by the following formula (6), and a following formula (7) ), and at least one selected from the group consisting of combinations thereof, the film-like underfill material according to <6>.
Figure JPOXMLDOC01-appb-C000006


(In formula (3), n3 represents an integer of 1 to 30.)
Figure JPOXMLDOC01-appb-C000007


(In formula (4), R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms, or a linear or branched alkenylene group having 2 to 16 carbon atoms. R 12 represents a carbon number A linear or branched alkylene group of 1 to 16, or a linear or branched alkenylene group of 2 to 16 carbon atoms, wherein each R 13 is independently a hydrogen atom or a represents a linear or branched alkyl group, or a linear or branched alkenyl group having 2 to 16 carbon atoms, n 5 represents an integer of 1 to 10.)
Figure JPOXMLDOC01-appb-C000008


(In formula (5), each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group. Each R 9 independently represents a hydrogen atom or a methyl group.)
Figure JPOXMLDOC01-appb-C000009


(In formula (6), each R 10 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group. n 4 represents an integer of 1 to 10.)
Figure JPOXMLDOC01-appb-C000010


(In formula (7), each R 10 independently represents a hydrogen atom or a methyl group, and n 2 represents an integer of 1 or more.)
<8>
The maleimide compound is 2,2′-bis{4-(4-maleimidophenoxy)phenyl}propane, the maleimide compound represented by the formula (3), the structural unit represented by the formula (4) and both ends a bismaleimide compound containing a maleimide group in, a maleimide compound represented by the above formula (5), a maleimide compound represented by the above formula (6), a maleimide compound represented by the above formula (7), and these The film-like underfill material according to <7> above, including at least one selected from the group of combinations.
<9>
The film-like underfill material according to any one of <1> to <8>, further comprising an inorganic filler (C).
<10>
The film-like underfill material according to <9> above, wherein the inorganic filler (C) has an average particle size of 400 nm or less.
<11>
<9, wherein the inorganic filler (C) contains at least one selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, magnesium hydroxide, and combinations thereof. > or the film-like underfill material according to <10>.
<12>
Any of <9> to <11>, wherein the content of the inorganic filler (C) is 10 to 500 parts by mass with respect to the total amount of 100 parts by mass of the thermosetting resin (A) The film-like underfill material described.
<13>
The inorganic filler (C) has an average particle size of 400 nm or less,
The inorganic filler (C) contains at least one selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, magnesium hydroxide, and combinations thereof,
The film-like underfill material according to <9>, wherein the content of the inorganic filler (C) is 10 to 500 parts by mass with respect to the total amount of 100 parts by mass of the thermosetting resin (A).
<14>
The film-like underfill material according to any one of <1> to <13>, further comprising a flux activator (D).
<15>
The film-like underfill material according to <14>, wherein the flux activator (D) contains a rosin-based resin.
<16>
The film-like underfill material according to any one of <1> to <15>, further comprising a curing catalyst (E).
<17>
The film-like underfill material according to <16> above, wherein the curing catalyst (E) contains at least one selected from the group consisting of organic peroxides, imidazole compounds, and combinations thereof.
<18>
The film-like underfill material according to any one of <1> to <17>, further comprising a curing agent (F).
<19>
The film-like underfill material according to <18>, wherein the curing agent (F) contains an aminotriazine novolac resin.
<20>
A resin composition for a film-like underfill material containing a thermosetting resin (A) and a visible light absorbent (B).
<21>
A method for producing a semiconductor chip with a resin composition layer, using the film-like underfill material according to any one of <1> to <19>.
<22>
A method for producing a substrate for mounting a semiconductor chip with a resin composition layer, using the film-like underfill material according to any one of <1> to <19>.
<23>
A method for manufacturing a semiconductor device, using the film-like underfill material according to any one of <1> to <19>.
 本発明によれば、取り扱い性に優れ、樹脂組成物層を積層した対象物を容易且つ正確に実装可能なフィルム状アンダーフィル材、及び、当該フィルム状アンダーフィル材の作製に用いられるフィルム状アンダーフィル材用樹脂組成物、並びに、フィルム状アンダーフィル材を用いた樹脂組成物層付き半導体チップの製造方法、樹脂組成物層付き半導体チップ搭載用基板の製造方法、及び、半導体装置の製造方法を提供することができる。 According to the present invention, there is provided a film-like underfill material that is excellent in handleability and can easily and accurately mount an object on which a resin composition layer is laminated, and a film-like underfill material used for producing the film-like underfill material. A method for manufacturing a semiconductor chip with a resin composition layer using a resin composition for a fill material and a film-like underfill material, a method for manufacturing a substrate for mounting a semiconductor chip with a resin composition layer, and a method for manufacturing a semiconductor device. can provide.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。 A mode for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described below. In addition, the following embodiment is an example for explaining the present invention, and the present invention is not limited only to this embodiment.
 なお、本実施形態において、「(メタ)アクリロキシ」とは「アクリロキシ」及びそれに対応する「メタクリロキシ」の両方を意味し、「(メタ)アクリロニトリル」とは「アクリロニトリル」及びそれに対応する「メタアクリロニトリル」の両方を意味し、「(メタ)アクリル」とは「アクリル」及びそれに対応する「メタクリル」の両方を意味し、「(メタ)アクリレート」とは「アクリレート」及びそれに対応する「メタクリレート」の両方を意味し、「(メタ)アリル」とは「アリル」及びそれに対応する「メタアリル」の両方を意味する。
 また、本明細書における「~」とは、特に断りがない場合、その両端の数値を上限値、及び下限値として含む意味であり、当該上限値及び下限値で単位は同一であるものとする。
In the present embodiment, "(meth)acryloxy" means both "acryloxy" and its corresponding "methacryloxy", and "(meth)acrylonitrile" means "acrylonitrile" and its corresponding "methacrylonitrile". and "(meth)acrylic" means both "acrylic" and its corresponding "methacrylic", and "(meth)acrylate" means both "acrylate" and its corresponding "methacrylate". and "(meth)allyl" means both "allyl" and the corresponding "methallyl".
In addition, "~" in the present specification, unless otherwise specified, means that the numerical values at both ends are included as the upper limit and the lower limit, and the unit is the same for the upper limit and the lower limit. .
《フィルム状アンダーフィル材》
 本実施形態のフィルム状アンダーフィル材(以下、単に「アンダーフィル材」と称することがある)は、熱硬化性樹脂(A)及び可視光吸収剤(B)を含む樹脂組成物層と、基材フィルムと、を含むフィルム状アンダーフィル材であって、前記フィルム状アンダーフィル材の波長600nmにおける光線透過率が20~90%であり、かつ、前記基材フィルムの波長600nmにおける光線透過率と前記フィルム状アンダーフィル材の波長600nmにおける光線透過率との差が2~80%である。
《Film type underfill material》
The film-like underfill material (hereinafter sometimes simply referred to as "underfill material") of the present embodiment comprises a resin composition layer containing a thermosetting resin (A) and a visible light absorber (B), A film-like underfill material comprising a material film, wherein the light transmittance of the film-like underfill material at a wavelength of 600 nm is 20 to 90%, and the light transmittance of the base film at a wavelength of 600 nm The difference from the light transmittance at a wavelength of 600 nm of the film-like underfill material is 2 to 80%.
 本実施形態において「フィルム状アンダーフィル材」は、基材フィルムと、樹脂組成物層と、を含む積層体であり、半導体ウェハ(以下、「ウェハ」と略す場合がある。)等の対象物にラミネートされた後、基材フィルムを樹脂組成物層から剥離することによって、「樹脂組成物層」がチップと基板との間を充填する所謂アンダーフィル材として機能する材料を意味する。また、樹脂組成物層は、非導電性フィルムであり、Non Conductive Film(NCF)とも称される。
 また、本実施形態における樹脂組成物層は、後述する本実施形態のフィルム状アンダーフィル材用樹脂組成物(以下、単に「樹脂組成物」と称することがある)を用いて作製することができる。
In the present embodiment, the "film-like underfill material" is a laminate containing a base film and a resin composition layer, and is an object such as a semiconductor wafer (hereinafter sometimes abbreviated as "wafer"). After lamination, the "resin composition layer" means a material that functions as a so-called underfill material that fills the gap between the chip and the substrate by peeling the base film from the resin composition layer. Moreover, a resin composition layer is a non-conductive film, and is also called Non-Conductive Film (NCF).
In addition, the resin composition layer in the present embodiment can be produced using the resin composition for a film-like underfill material of the present embodiment described below (hereinafter sometimes simply referred to as "resin composition"). .
 本実施形態のアンダーフィル材は、基材フィルムと、当該基材フィルム上に設けられた樹脂組成物層を有する。樹脂組成物層は、例えば、未硬化状態(Aステージ)の樹脂組成物を基材フィルムに塗布後、半硬化状態(Bステージ)としたものを使用することができる。なお、本実施形態において、未硬化状態(Aステージ)とは、樹脂組成物がほぼ硬化しておらず、ゲル化していない状態を称する。基材フィルムに塗布する前の樹脂組成物は、例えば、樹脂組成物の構成成分の混合物(溶媒を含んでも含まなくてもよい)、又は該混合物を溶媒に溶解又は分散させたワニスの形態であり、未硬化状態(Aステージ)である。また、半硬化状態(Bステージ)とは、樹脂組成物層中に含まれる各成分が、積極的に反応(硬化)を始めてはいないが、樹脂組成物層が乾燥状態、すなわち、粘着性がない程度まで、加熱して溶媒を揮発させている状態を称し、加熱しなくても硬化せずに溶媒が揮発したのみの状態も含まれる。 The underfill material of this embodiment has a base film and a resin composition layer provided on the base film. For the resin composition layer, for example, a resin composition in an uncured state (A stage) can be applied to a substrate film and then semi-cured (B stage) can be used. In addition, in this embodiment, the uncured state (A stage) refers to a state in which the resin composition is not substantially cured and is not gelled. The resin composition before being applied to the substrate film is, for example, a mixture of constituent components of the resin composition (which may or may not contain a solvent), or a varnish obtained by dissolving or dispersing the mixture in a solvent. It is in an uncured state (A stage). In addition, the semi-cured state (B stage) means that each component contained in the resin composition layer has not actively started to react (cured), but the resin composition layer is in a dry state, that is, the adhesiveness. It refers to the state in which the solvent is volatilized by heating to the extent that it is not heated, and the state in which the solvent is volatilized without curing even without heating is also included.
(光線透過率)
 本実施形態のアンダーフィル材は、フィルム状アンダーフィル材の波長600nmにおける光線透過率(以下、単に「アンダーフィル材の光線透過率」と称することがある)が20~90%であるため、当該フィルム状アンダーフィル材の樹脂組成物層の波長600nmにおける光線透過率も20~90%の範囲とすることができる。
 このため、カメラ等により半導体チップ上に配置された際に樹脂組成物層を介してチップ等の表面に設けられたアライメントマークを正確且つ迅速に認識することが可能である。これにより、樹脂組成物層付き半導体チップを基板等に実装する際に、対象上に容易且つ正確に配置することが可能となる。
 また、アンダーフィル材の製造過程において、基材フィルムと樹脂組成物層の間や樹脂組成物内に異物が混入することがある。このような異物の存在は、樹脂組成物層の成膜性や絶縁信頼性などアンダーフィル材の性能にも影響を与える可能性がある。このため、アンダーフィル材の性能を担保すべく、アンダーフィル材を作製した後に欠点検査機等を用いた異物検査の実施が多く行われている。一方、当該異物検査は、アンダーフィル材のまま、即ち、基材フィルムと樹脂組成物層との積層体の状態で行われることが好ましい。また、検査機による異物検査には、通常、アンダーフィル材にある程度の透過率が求められる。本実施形態のアンダーフィル材の光線透過率は20~90%の範囲内にあるため、上述の異物検査の実施が可能である。
(light transmittance)
In the underfill material of the present embodiment, the light transmittance of the film-like underfill material at a wavelength of 600 nm (hereinafter sometimes simply referred to as "light transmittance of the underfill material") is 20 to 90%. The light transmittance at a wavelength of 600 nm of the resin composition layer of the film-like underfill material can also be in the range of 20 to 90%.
Therefore, when placed on a semiconductor chip with a camera or the like, it is possible to accurately and quickly recognize the alignment marks provided on the surface of the chip or the like via the resin composition layer. As a result, when the semiconductor chip with the resin composition layer is mounted on a substrate or the like, it can be easily and accurately arranged on the object.
In addition, foreign matter may be mixed between the base film and the resin composition layer or in the resin composition during the manufacturing process of the underfill material. The presence of such foreign matter may affect the performance of the underfill material, such as film-forming properties and insulation reliability of the resin composition layer. For this reason, in order to ensure the performance of the underfill material, foreign matter inspection using a defect inspection machine or the like is often performed after the underfill material is produced. On the other hand, the foreign matter inspection is preferably performed on the underfill material as it is, that is, on the state of the laminate of the base film and the resin composition layer. In addition, foreign matter inspection by an inspection machine usually requires a certain degree of transmittance of the underfill material. Since the light transmittance of the underfill material of this embodiment is in the range of 20 to 90%, the foreign matter inspection described above can be performed.
 本実施形態におけるアンダーフィル材の光線透過率は、光量の小さいカメラへの対応、上述の異物検査の精度をより高める観点から、40~90%が好ましく、50~90%がさらに好ましい。 The light transmittance of the underfill material in the present embodiment is preferably 40 to 90%, more preferably 50 to 90%, from the viewpoint of compatibility with a camera with a small amount of light and higher accuracy of the foreign matter inspection described above.
 本実施形態のアンダーフィル材において、基材フィルムの波長600nmにおける光線透過率(以下、単に「基材フィルムの光線透過率」と称することがある)は、特に限定されるものではないが、上述の異物検査の精度をより高める観点から、20~90%が好ましく、40~90%がさらに好ましい。
 同様に特に限定されるものではないが、樹脂組成物層(NCF)の波長600nmにおける光線透過率(以下、単に「樹脂組成物層の光線透過率」と称することがある)は、光量の小さいカメラへの対応、上述の異物検査の精度をより高める観点から、20~90%が好ましく、40~90%がさらに好ましい。
In the underfill material of the present embodiment, the light transmittance of the base film at a wavelength of 600 nm (hereinafter sometimes simply referred to as "light transmittance of the base film") is not particularly limited, but 20% to 90% is preferable, and 40% to 90% is more preferable, from the viewpoint of further increasing the accuracy of foreign matter inspection.
Similarly, although not particularly limited, the light transmittance of the resin composition layer (NCF) at a wavelength of 600 nm (hereinafter sometimes simply referred to as "light transmittance of the resin composition layer") is a small amount of light. 20 to 90% is preferable, and 40 to 90% is more preferable, from the viewpoint of compatibility with a camera and higher accuracy of the foreign matter inspection described above.
 アンダーフィル材、基材フィルム及び樹脂組成物層の光線透過率は、例えば、後述する実施例に記載の方法によって測定することができる。具体的には、分光色彩計を用い、室温(25℃)下にて測定した数値を採用することできる。また。各アンダーフィル材、基材フィルム及びNCFの光線透過率としては、例えば、各々幅5cm×長さ5cmのサンプルを作製し、サンプルの任意の点を測定した平均値を採用することができる(例えば、5点の平均値等)。
 また、本実施形態のアンダーフィル材は、各波長600nmにおける光線透過率を基準とするため、入手が容易であり且つ汎用性が高いカメラ等の種々のアライメントマーク認識装置に幅広く適用することが可能である。
The light transmittance of the underfill material, the base film and the resin composition layer can be measured, for example, by the method described in Examples below. Specifically, numerical values measured at room temperature (25° C.) using a spectral colorimeter can be employed. again. As the light transmittance of each underfill material, base film, and NCF, for example, a sample with a width of 5 cm and a length of 5 cm is prepared, and an average value obtained by measuring arbitrary points of the sample can be adopted (for example, , mean value of 5 points, etc.).
In addition, since the underfill material of this embodiment is based on the light transmittance at each wavelength of 600 nm, it is easily available and can be widely applied to various alignment mark recognition devices such as cameras with high versatility. is.
(基材フィルムの光線透過率とアンダーフィル材の光線透過率との差)
 本実施形態のアンダーフィル材は、樹脂組成物層に可視光吸収剤(B)を含み、且つ、基材フィルムの波長600nmにおける光線透過率とアンダーフィル材の波長600nmにおける光線透過率との差が2~80%である。このように、基材フィルムの波長600nmにおける光線透過率とアンダーフィル材の波長600nmにおける光線透過率との差がある場合、基材フィルムと樹脂組成物層との光線透過率とに差が生じており、肉眼による視認によってフィルムの基材フィルム面と樹脂組成物層面とを容易に識別することが可能であり、即ち、視認性に優れる。これにより、基材フィルム面及び樹脂組成物層面の認識に時間を要することがなく、アンダーフィル材の取り扱い性を向上させることができ、且つ、対象となるウェハ等の対象上に容易に配置することが可能となる。本実施形態における基材フィルムの光線透過率とアンダーフィル材の光線透過率との差は、視認性がより優れる観点から、5~80%がさらに好ましく、10~80%が特に好ましい。
(Difference between light transmittance of base film and light transmittance of underfill material)
The underfill material of the present embodiment contains a visible light absorber (B) in the resin composition layer, and the difference between the light transmittance of the base film at a wavelength of 600 nm and the light transmittance of the underfill material at a wavelength of 600 nm is 2 to 80%. Thus, when there is a difference between the light transmittance of the base film at a wavelength of 600 nm and the light transmittance of the underfill material at a wavelength of 600 nm, there is a difference in light transmittance between the base film and the resin composition layer. The base film surface of the film and the resin composition layer surface of the film can be easily distinguished by visual recognition with the naked eye, that is, the visibility is excellent. As a result, it does not take time to recognize the base film surface and the resin composition layer surface, it is possible to improve the handleability of the underfill material, and it can be easily arranged on a target such as a target wafer. becomes possible. In the present embodiment, the difference between the light transmittance of the base film and the light transmittance of the underfill material is more preferably 5 to 80%, particularly preferably 10 to 80%, from the viewpoint of better visibility.
 基材フィルムの波長600nmにおける光線透過率[T]とアンダーフィル材の波長600nmにおける光線透過率[T]との差は、|T-T|であり、これらの差の絶対値を基準に判断される。 The difference between the light transmittance [T 1 ] of the base film at a wavelength of 600 nm and the light transmittance [T 0 ] of the underfill material at a wavelength of 600 nm is |T 1 −T 0 |, and the absolute value of these differences. is judged on the basis of
 なお、本実施形態において、アンダーフィル材の積層構造は、アンダーフィル材の光線透過率及び当該光線透過率と基材フィルムの光線透過率との差が上述の関係を満たしていれば特に制限されるものではなく、例えば、基材フィルムと樹脂組成物層との間に中間層を有するものであってもよい。中間層としては、例えば、基材フィルムに設けられた離型層等が挙げられる。例えば、基材フィルムが離型層付きフィルムの場合には基材フィルム剥離後に離型層は基材フィルムと共に剥離されるものであるため、“離型層を有する基材フィルム”全体の透過率を、上述の“基材フィルムの光線透過率”とみなすことができる。 In the present embodiment, the laminated structure of the underfill material is particularly limited as long as the light transmittance of the underfill material and the difference between the light transmittance and the light transmittance of the base film satisfy the above-described relationship. For example, it may have an intermediate layer between the base film and the resin composition layer. Examples of the intermediate layer include a release layer provided on the substrate film. For example, if the base film is a film with a release layer, the release layer is peeled off together with the base film after the base film is peeled off. can be regarded as the above-mentioned "light transmittance of the base film".
〈基材フィルム〉
 基材フィルムとしては、特に限定されないが、例えば、高分子フィルムを使用することができる。高分子フィルムの材質としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリブチレンテレフタレート等のポリエステル系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、エチレン-プロピレン共重合体、ポリメチルペンテン、エチレン-酢酸ビニル共重合体、及びエチレン-ビニルアルコール共重合体などのビニル系樹脂;ポリウレタン系樹脂;ポリイミド系樹脂;ポリアミド系樹脂等が挙げられる。基材フィルムとしては、これらの樹脂を含有するフィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルムを用いることができる。これらの中でも、ポリエステル系樹脂、ポリイミド系樹脂、及びポリアミド系樹脂から選択される1種以上の樹脂を含有するフィルム、あるいはこれらのフィルムの表面に離型剤を塗布した離型フィルムが好ましく、ポリエステル系樹脂の一種である、ポリエチレンテレフタレートを含有するフィルム、又はポリエチレンテレフタレートを含有するフィルムの表面に離型剤を塗布した離型フィルムがより好ましい。
<Base film>
The base film is not particularly limited, but for example, a polymer film can be used. Polymer film materials include, for example, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polybutene, polybutadiene, ethylene-propylene copolymer, Vinyl resins such as polymethylpentene, ethylene-vinyl acetate copolymers, and ethylene-vinyl alcohol copolymers; polyurethane resins; polyimide resins; and polyamide resins. As the base film, films containing these resins and release films obtained by applying a release agent to the surface of these films can be used. Among these, films containing one or more resins selected from polyester resins, polyimide resins, and polyamide resins, or release films obtained by applying a release agent to the surface of these films are preferable, and polyester A film containing polyethylene terephthalate, which is a type of resin, or a release film obtained by applying a release agent to the surface of a film containing polyethylene terephthalate is more preferable.
 基材フィルムの厚さは、特に限定されず、上述の光線透過率を達成する観点で適宜調整可能だが、アンダーフィル材の製造が容易である点、例えば、基材フィルムに樹脂組成物を塗布する場合の塗布厚の良好な安定性と、アンダーフィル材の良好な搬送性の点から、10~100μmであることが好ましい。
 また、基材フィルムの厚さの下限としては、アンダーフィル材を製造する際の歩留りを十分に確保できる点から、10μm以上であることがより好ましく、20μm以上であることが更に好ましく、25μm以上であることが更により好ましい。基材フィルムの厚さの上限としては、基材フィルムが最終的に半導体装置の構成部材として存在することなく、工程の途中で剥離される点と、アンダーフィル材の製造コストの点から、100μm以下であることが好ましく、80μm以下であることが更に好ましく、50μm以下であることが更により好ましい。
The thickness of the base film is not particularly limited, and can be adjusted as appropriate from the viewpoint of achieving the light transmittance described above. It is preferably 10 to 100 μm from the viewpoint of good stability of the coating thickness and good transportability of the underfill material.
In addition, the lower limit of the thickness of the base film is more preferably 10 μm or more, further preferably 20 μm or more, and even more preferably 25 μm or more from the viewpoint of ensuring a sufficient yield in manufacturing the underfill material. is even more preferred. The upper limit of the thickness of the base film is 100 μm, considering that the base film does not exist as a component of the semiconductor device in the end and is peeled off in the middle of the process and from the viewpoint of the manufacturing cost of the underfill material. It is preferably 80 μm or less, more preferably 50 μm or less, even more preferably 50 μm or less.
〈樹脂組成物層〉
 樹脂組成物層は、熱硬化性樹脂(A)及び可視光吸収剤(B)を含む。樹脂組成物層は、必要に応じて、無機充填材(C)、フラックス活性剤(D)、硬化触媒(E)、硬化剤(F)、及びその組み合わせからなる群より選択される1種以上を含んでいてもよい。本実施形態において、樹脂組成物層は、少なくとも、熱硬化性樹脂(A)及び可視光吸収剤(B)を含むフィルム状アンダーフィル材用樹脂組成物を用いて形成することができる。なお、フィルム状アンダーフィル材用樹脂組成物も同様に、必要に応じて、無機充填材(C)、フラックス活性剤(D)、硬化触媒(E)、硬化剤(F)、及びその組み合わせからなる群より選択される1種以上を含んでいてもよい。
<Resin composition layer>
The resin composition layer contains a thermosetting resin (A) and a visible light absorber (B). The resin composition layer contains, if necessary, one or more selected from the group consisting of an inorganic filler (C), a flux activator (D), a curing catalyst (E), a curing agent (F), and combinations thereof. may contain In this embodiment, the resin composition layer can be formed using a film-like underfill resin composition containing at least a thermosetting resin (A) and a visible light absorber (B). Similarly, the resin composition for the film-like underfill material may also contain an inorganic filler (C), a flux activator (D), a curing catalyst (E), a curing agent (F), and a combination thereof, if necessary. It may contain one or more selected from the group consisting of:
 本実施形態のアンダーフィル材は、プリアプライドアンダーフィル材用として好適であることから、上述のように、樹脂組成物層は、半硬化状態(Bステージ)であることが好ましい。本実施形態において、半硬化状態(Bステージ)の最低溶融粘度は、通常、50,000Pa・s以下とすることができる。また、最低溶融粘度の下限は、例えば、10Pa・s以上とすることができる。 Since the underfill material of the present embodiment is suitable for pre-applied underfill material, the resin composition layer is preferably in a semi-cured state (B stage) as described above. In the present embodiment, the minimum melt viscosity in a semi-cured state (B stage) can usually be 50,000 Pa·s or less. Also, the lower limit of the lowest melt viscosity can be, for example, 10 Pa·s or more.
 本実施形態において、樹脂組成物層の最低溶融粘度は、次の方法で測定することができる。
 すなわち、ラミネータを用いて、樹脂組成物層を積層し、厚み0.4~0.6mm程度の樹脂片を得て、この樹脂片をサンプルとして使用し、レオメータ(サーモフィッシャーサイエンティフィック社製HAAKEMARS60(商品名))により、最低溶融粘度を測定することができる。当該測定にはプレート径8mmのディスポーサブルパラレルプレートを使用し、40℃~300℃の範囲において、昇温速度10℃/分、周波数10.0rad/秒、及び歪0.1%の条件下で、樹脂片の最低溶融粘度を測定した値を樹脂組成物層の最低溶融粘度とみなすことができる。
In this embodiment, the minimum melt viscosity of the resin composition layer can be measured by the following method.
That is, using a laminator, a resin composition layer is laminated to obtain a resin piece having a thickness of about 0.4 to 0.6 mm. (trade name)), the minimum melt viscosity can be measured. For the measurement, a disposable parallel plate with a plate diameter of 8 mm is used, and in the range of 40 ° C. to 300 ° C., the temperature increase rate is 10 ° C./min, the frequency is 10.0 rad / sec, and the strain is 0.1%. The value obtained by measuring the minimum melt viscosity of the resin piece can be regarded as the minimum melt viscosity of the resin composition layer.
 基材フィルム上に、樹脂組成物層を形成して本実施形態のアンダーフィル材を製造する方法としては、特に限定されない。そのような製造方法としては、例えば、熱硬化性樹脂(A)及び可視光吸収剤(B)を含む樹脂組成物を有機溶媒に溶解又は分散させたワニスを、基材フィルムの表面に塗布し、加熱及び/又は減圧下で乾燥し、溶媒を除去して樹脂組成物を固化させて、樹脂組成物層を形成する手法が挙げられる。乾燥条件は、特に限定されないが、樹脂組成物層に対する有機溶媒の含有比率が、樹脂組成物層の総質量(100質量部)に対して、通常10質量部以下、好ましくは5質量部以下となるように乾燥させることが好ましい。かかる乾燥を達成する条件は、ワニス中の有機溶媒の種類と配合量によっても異なる。例えば、熱硬化性樹脂(A)の総量100質量部に対して、10~200質量部のメチルエチルケトンを含むワニスの場合、1気圧下で90~160℃の加熱条件下で2~15分間の乾燥が目安となる。 The method of forming the resin composition layer on the base film to produce the underfill material of the present embodiment is not particularly limited. As such a production method, for example, a varnish obtained by dissolving or dispersing a resin composition containing a thermosetting resin (A) and a visible light absorber (B) in an organic solvent is applied to the surface of the base film. , heating and/or drying under reduced pressure to remove the solvent and solidify the resin composition to form a resin composition layer. The drying conditions are not particularly limited, but the content ratio of the organic solvent to the resin composition layer is usually 10 parts by mass or less, preferably 5 parts by mass or less with respect to the total mass (100 parts by mass) of the resin composition layer. It is preferable to dry it as much as possible. The conditions for achieving such drying also vary depending on the type and amount of organic solvent in the varnish. For example, in the case of a varnish containing 10 to 200 parts by mass of methyl ethyl ketone with respect to 100 parts by mass of the total amount of the thermosetting resin (A), drying is performed for 2 to 15 minutes under heating conditions of 90 to 160°C under 1 atmosphere. is a guideline.
 本実施形態のアンダーフィル材における樹脂組成物層の厚さは、上述のアンダーフィル材等の光線透過率を達成できる程度の透過率を発揮できるものであり、後述の可視光吸収剤(B)の含有量によっても変動するが、樹脂組成物層の乾燥時に、比較的低分子量の揮発分をより良好に除去する観点、及びアンダーフィル材としての機能をより有効かつ確実に奏する観点から、5~500μmの範囲が好ましく、5~100μmの範囲がさらに好ましく、5~50μmの範囲が特に好ましい。 The thickness of the resin composition layer in the underfill material of the present embodiment is such that it can exhibit a light transmittance that can achieve the light transmittance of the underfill material described above. Although it varies depending on the content of 5 A range of ˜500 μm is preferred, a range of 5 to 100 μm is more preferred, and a range of 5 to 50 μm is particularly preferred.
〔熱硬化性樹脂(A)〕
 樹脂組成物層は、熱硬化性樹脂(A)を含む。熱硬化性樹脂(A)は、上述のアンダーフィル材等の光線透過率を達成できる程度の透過率を発揮でき、且つ、熱硬化性の樹脂であれば公知のものを適宜採用することができる。熱硬化性樹脂(A)の種類は、特に限定されるものではないが、例えば、マレイミド化合物、シトラコンイミド化合物、エポキシ樹脂、オキセタン樹脂、フェノール樹脂、(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等が挙げられ、この中でも、マレイミド化合物、シトラコンイミド化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含むことが好ましい。
 熱硬化性樹脂(A)は、後述のフラックス活性剤(D)と反応性を示さないことが好ましい。また、熱硬化性樹脂(A)は、1種を単独で又は2種以上を混合して使用することができる。
[Thermosetting resin (A)]
The resin composition layer contains a thermosetting resin (A). As the thermosetting resin (A), any known thermosetting resin can be appropriately employed as long as it can exhibit a transmittance that can achieve the light transmittance of the above-mentioned underfill material and the like. . The type of thermosetting resin (A) is not particularly limited, but examples include maleimide compounds, citraconimide compounds, epoxy resins, oxetane resins, phenolic resins, (meth)acrylate resins, unsaturated polyester resins, diallyl. Examples include phthalate resins, and among these, it is preferable to include at least one selected from the group consisting of maleimide compounds, citraconimide compounds, and combinations thereof.
The thermosetting resin (A) preferably does not show reactivity with the flux activator (D) described below. Moreover, a thermosetting resin (A) can be used individually by 1 type or in mixture of 2 or more types.
 熱硬化性樹脂(A)は、比較的高分子量である化合物(A1)と比較的低分子量である化合物(A2)を併用することができる。例えば、比較的高分子量である化合物(A1)を用いると、半導体チップ実装時又は熱硬化時(ポストキュア時)の硬化収縮の際に発生する応力が緩和される。また、例えば、比較的低分子量である化合物(A2)を用いると、半導体チップ実装時又はポストキュア時に架橋密度を向上させることができる。 For the thermosetting resin (A), a compound (A1) having a relatively high molecular weight and a compound (A2) having a relatively low molecular weight can be used together. For example, when compound (A1) having a relatively high molecular weight is used, the stress generated during curing shrinkage during semiconductor chip mounting or thermal curing (during post-curing) is alleviated. Further, for example, by using the compound (A2) having a relatively low molecular weight, it is possible to improve the cross-linking density during semiconductor chip mounting or post-curing.
 さらに、熱硬化性樹脂(A)は、重量平均分子量が3,000以上9,500以下のマレイミド化合物(AA-1)、重量平均分子量が3,000以上9,500以下のシトラコンイミド化合物(AB-1)、及びこれらの組み合わせの群から選択される少なくとも1種以上と、重量平均分子量が300以上3,000未満のマレイミド化合物(AA-2)及び重量平均分子量が300以上3,000未満のシトラコンイミド化合物(AB-2)か及びこれらの組み合わせの群から選択される少なくとも1種以上と、を組み合わせて用いることができる。
 化合物(A1)としては、より一層優れた低ボイド性及びチップ接着性が得られることから、マレイミド化合物(AA-1)を含むことが好ましい。また、化合物(A2)としては、より一層優れた低ボイド性及びチップ接着性が得られることから、マレイミド化合物(AA-2)を含むことが好ましい。
Furthermore, the thermosetting resin (A) includes a maleimide compound (AA-1) having a weight average molecular weight of 3,000 or more and 9,500 or less, a citraconimide compound (AB -1), and at least one or more selected from the group of combinations thereof, a maleimide compound (AA-2) having a weight average molecular weight of 300 or more and less than 3,000, and a weight average molecular weight of 300 or more and less than 3,000 The citraconimide compound (AB-2) and at least one selected from the group of combinations thereof can be used in combination.
The compound (A1) preferably contains a maleimide compound (AA-1), since it provides even better low void properties and chip adhesion. In addition, the compound (A2) preferably contains a maleimide compound (AA-2), since even more excellent low void property and chip adhesiveness can be obtained.
 マレイミド化合物(AA-1)としては、更により一層優れた低ボイド性及びチップ接着性が得られることから、その重量平均分子量は、3,200以上8,000以下であることが好ましく、3,300以上6,000以下であることがより好ましい。
 シトラコンイミド化合物(AB-1)としては、更により一層優れた低ボイド性及びチップ接着性が得られることから、その重量平均分子量は、3,200以上8,000以下であることが好ましく、3,300以上6,000以下であることがより好ましい。
 マレイミド化合物(AA-2)としては、更により一層優れた低ボイド性及びチップ接着性が得られることから、その重量平均分子量は、350以上2,800以下であることが好ましく、400以上2,500以下であることがより好ましい。
 シトラコンイミド化合物(AB-2)としては、更により一層優れた低ボイド性及びチップ接着性が得られることから、その重量平均分子量は、350以上2,800以下であることが好ましく、400以上2,500以下であることがより好ましい。
The maleimide compound (AA-1) preferably has a weight-average molecular weight of 3,200 or more and 8,000 or less, since it provides even better low-void properties and chip adhesion. It is more preferably 300 or more and 6,000 or less.
As the citraconimide compound (AB-1), the weight average molecular weight is preferably 3,200 or more and 8,000 or less, since even more excellent low void properties and chip adhesiveness can be obtained. , 300 or more and 6,000 or less.
The weight average molecular weight of the maleimide compound (AA-2) is preferably 350 or more and 2,800 or less, preferably 400 or more and It is more preferably 500 or less.
As the citraconimide compound (AB-2), the weight average molecular weight is preferably 350 or more and 2,800 or less, and 400 or more and 2 , 500 or less.
(マレイミド化合物)
 マレイミド化合物は、エポキシ樹脂等と比較して、保管時や加熱処理によるフラックス活性剤との反応が著しく進行しにくく、フラックス活性剤の失活が発生しにくい。
 マレイミド化合物としては、分子中に1個以上のマレイミド基を有する樹脂又は化合物であれば、特に限定されない。マレイミド化合物は、1種又は2種以上を混合して使用することができる。
 このようなマレイミド化合物としては、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、4,4-ジフェニルメタンビスマレイミド、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、フェニルメタンマレイミド、o-フェニレンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4-ジフェニルエーテルビスマレイミド、4,4-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、ポリフェニルメタンマレイミド、ノボラック型マレイミド化合物、ビフェニルアラルキル型マレイミド化合物、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、1,2-ビス(マレイミド)エタン、1,4-ビス(マレイミド)ブタン、1,6-ビス(マレイミド)ヘキサン、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N-フェニルマレイミド、下記式(3)で表されるマレイミド化合物、下記式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物、下記式(5)で表されるマレイミド化合物、下記式(6)で表されるマレイミド化合物、及び下記式(7)で表されるマレイミド化合物などが挙げられる。熱硬化性樹脂(A)としては、マレイミド化合物を重合して得られるプレポリマー、及びマレイミド化合物をアミン化合物等の他の化合物と重合して得られるプレポリマー等の形で、本実施形態に係る樹脂組成物に含有させることもできる。
(maleimide compound)
Compared to epoxy resins and the like, the maleimide compound is less likely to react with the flux activator during storage or heat treatment, and the flux activator is less likely to be deactivated.
The maleimide compound is not particularly limited as long as it is a resin or compound having one or more maleimide groups in the molecule. A maleimide compound can be used 1 type or in mixture of 2 or more types.
Examples of such maleimide compounds include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 4,4-diphenylmethanebismaleimide, bis(3,5-dimethyl-4-maleimidephenyl ) methane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bis(3,5-diethyl-4-maleimidophenyl)methane, phenylmethanemaleimide, o-phenylenebismaleimide, m-phenylenebismaleimide , p-phenylenebismaleimide, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethanebismaleimide, 4-methyl- 1,3-phenylenebismaleimide, 1,6-bismaleimide-(2,2,4-trimethyl)hexane, 4,4-diphenyletherbismaleimide, 4,4-diphenylsulfonebismaleimide, 1,3-bis(3 -maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene, polyphenylmethane maleimide, novolak-type maleimide compounds, biphenylaralkyl-type maleimide compounds, 2,2-bis(4-(4-maleimidophenoxy)phenyl ) propane, 1,2-bis(maleimido)ethane, 1,4-bis(maleimido)butane, 1,6-bis(maleimido)hexane, N,N'-1,3-phenylenedimaleimide, N,N' -1,4-phenylenedimaleimide, N-phenylmaleimide, a maleimide compound represented by the following formula (3), a bis containing a structural unit represented by the following formula (4) and maleimide groups at both ends of the molecular chain Maleimide compounds, maleimide compounds represented by the following formula (5), maleimide compounds represented by the following formula (6), maleimide compounds represented by the following formula (7), and the like. As the thermosetting resin (A), a prepolymer obtained by polymerizing a maleimide compound, a prepolymer obtained by polymerizing a maleimide compound with another compound such as an amine compound, etc. may be used. It can also be contained in the resin composition.
 マレイミド化合物としては、特に限定されるものではないが、有機溶媒に対してより優れた溶解性が得られる点から、2,2’-ビス{4-(4-マレイミドフェノキシ)フェニル}プロパン、1,2-ビス(マレイミド)エタン、1,4-ビス(マレイミド)ブタン、1,6-ビス(マレイミド)ヘキサン、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N-フェニルマレイミド、下記式(3)で表されるマレイミド化合物、下記式(4)で表される構成単位と両末端にマレイミド基とを含有するビスマレイミド化合物、下記式(5)で表されるマレイミド化合物、下記式(6)で表されるマレイミド化合物、下記式(7)で表されるマレイミド化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含むことが好ましく、さらに、2,2’-ビス{4-(4-マレイミドフェノキシ)フェニル}プロパン、下記式(3)で表されるマレイミド化合物、下記式(4)で表される構成単位と両末端にマレイミド基とを含有するビスマレイミド化合物、下記式(5)で表されるマレイミド化合物、下記式(6)で表されるマレイミド化合物、下記式(7)で表されるマレイミド化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含むことがより好ましい。 The maleimide compound is not particularly limited, but 2,2'-bis{4-(4-maleimidophenoxy)phenyl}propane, 1 , 2-bis(maleimido)ethane, 1,4-bis(maleimido)butane, 1,6-bis(maleimido)hexane, N,N'-1,3-phenylenedimaleimide, N,N'-1,4 -Phenylenedimaleimide, N-phenylmaleimide, a maleimide compound represented by the following formula (3), a bismaleimide compound containing a structural unit represented by the following formula (4) and maleimide groups at both ends, the following formula ( 5), a maleimide compound represented by the following formula (6), a maleimide compound represented by the following formula (7), and at least one selected from the group of combinations thereof. Preferably, further, 2,2'-bis{4-(4-maleimidophenoxy)phenyl}propane, a maleimide compound represented by the following formula (3), a structural unit represented by the following formula (4) and at both ends A bismaleimide compound containing a maleimide group, a maleimide compound represented by the following formula (5), a maleimide compound represented by the following formula (6), a maleimide compound represented by the following formula (7), and combinations thereof It is more preferable to include at least one selected from the group of
Figure JPOXMLDOC01-appb-C000011

 
Figure JPOXMLDOC01-appb-C000011

 
 式(3)中、nは、1~30の整数を示す。 In formula (3), n3 represents an integer of 1-30.
Figure JPOXMLDOC01-appb-C000012

 
Figure JPOXMLDOC01-appb-C000012

 
 式(4)中、R11は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R12は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R13は、各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示す。nは、1~10の整数を示す。
 なお、式(4)で表される構成単位の詳細については、後述する。
In formula (4), R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms. R 12 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms. Each R 13 independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 16 carbon atoms, or a linear or branched alkenyl group having 2 to 16 carbon atoms. n5 represents an integer of 1-10.
Details of the structural unit represented by formula (4) will be described later.
Figure JPOXMLDOC01-appb-C000013

 
Figure JPOXMLDOC01-appb-C000013

 
 式(5)中、Rは、各々独立に、水素原子、メチル基、又はエチル基を示す。Rは、各々独立に、水素原子又はメチル基を示す。 In formula (5), each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group. Each R9 independently represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000014

 
Figure JPOXMLDOC01-appb-C000014

 
 式(6)中、R10は、各々独立に、水素原子、炭素数1~5のアルキル基、又はフェニル基を示す。nは、1~10の整数を示す。R10は、水素原子であることが好ましい。 In formula (6), each R 10 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group. n4 represents an integer of 1-10. R 10 is preferably a hydrogen atom.
Figure JPOXMLDOC01-appb-C000015

 
Figure JPOXMLDOC01-appb-C000015

 
 式(7)中、R10は、各々独立に、水素原子又はメチル基を示し、nは、1以上の整数を示し、好ましくは1~10の整数を示す。 In formula (7), each R 10 independently represents a hydrogen atom or a methyl group, and n 2 represents an integer of 1 or more, preferably an integer of 1-10.
 次いで、式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物の構造について説明する。 Next, the structure of the bismaleimide compound containing the structural unit represented by formula (4) and maleimide groups at both ends of the molecular chain will be described.
 ビスマレイミド化合物は、複数の式(4)で表される構成単位を有していてもよく、この場合、複数の式(4)で表される構成単位中のR11、R12、及びR13は、それぞれ同一であっても、異なっていてもよい。また、ビスマレイミド化合物は、式(4)で表される構成単位中のR11、R12、及びR13、並びにビスマレイミド化合物における式(4)の構成単位の数のうちの少なくとも1つが異なる化合物の混合物であってもよい。 The bismaleimide compound may have a plurality of structural units represented by formula (4), in which case R 11 , R 12 and R in the plurality of structural units represented by formula (4) 13 may be the same or different. Further, the bismaleimide compound differs in at least one of R 11 , R 12 , and R 13 in the structural unit represented by formula (4) and the number of structural units of formula (4) in the bismaleimide compound. It may be a mixture of compounds.
 ビスマレイミド化合物の式(4)で表される構成単位において、R11は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R11としては、チップ実装時において樹脂組成物が好適な粘度を有し、実装時の溶融粘度の上昇が好適に制御できる点から、直鎖状若しくは分岐状のアルキレン基であることが好ましく、直鎖状のアルキレン基であることがより好ましい。 In the structural unit represented by formula (4) of the bismaleimide compound, R 11 is a linear or branched alkylene group having 1 to 16 carbon atoms, or a linear or branched alkylene group having 2 to 16 carbon atoms. Indicates an alkenylene group. R 11 is preferably a linear or branched alkylene group because the resin composition has a suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be controlled appropriately. A linear alkylene group is more preferred.
 アルキレン基の炭素数としては、チップ実装時において樹脂組成物がより好適な粘度を有し、実装時の溶融粘度の上昇をより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、2,2-ジメチルプロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、ウンデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ネオペンチレン基、ジメチルブチレン基、メチルヘキシレン基、エチルヘキシレン基、ジメチルヘキシレン基、トリメチルヘキシレン基、メチルヘプチレン基、ジメチルヘプチレン基、トリメチルヘプチレン基、テトラメチルヘプチレン基、エチルヘプチレン基、メチルオクチレン基、メチルノニレン基、メチルデシレン基、メチルドデシレン基、メチルウンデシレン基、メチルトリデシレン基、メチルテトラデシレン基、及びメチルペンタデシレン基が挙げられる。
The number of carbon atoms in the alkylene group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be more suitably controlled, and 4. ~12 is more preferred.
Linear or branched alkylene groups include, for example, methylene group, ethylene group, propylene group, 2,2-dimethylpropylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group and decylene group. group, dodecylene group, undecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, neopentylene group, dimethylbutylene group, methylhexylene group, ethylhexylene group, dimethylhexylene group, trimethylhexylene group, methylheptylene group, dimethylheptylene group, trimethylheptylene group, tetramethylheptylene group, ethylheptylene group, methyloctylene group, methylnonylene group, methyldecylene group, methyldodecylene group, methylundecylene group, methyltridecylene group, methyltetradecylene group , and methylpentadecylene groups.
 アルケニレン基の炭素数としては、チップ実装時において樹脂組成物がより好適な粘度を有し、実装時の溶融粘度の上昇をより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルケニレン基としては、例えば、ビニレン基、1-メチルビニレン基、アリレン基、プロペニレン基、イソプロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、イソペンチレン基、シクロペンテニレン基、シクロヘキセニレン基、及びジシクロペンタジエニレン基等が挙げられる。
The number of carbon atoms in the alkenylene group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting, and the increase in melt viscosity during mounting can be more suitably controlled. ~12 is more preferred.
Linear or branched alkenylene groups include, for example, vinylene group, 1-methylvinylene group, arylene group, propenylene group, isopropenylene group, 1-butenylene group, 2-butenylene group, 1-pentenylene group, 2 -pentenylene group, isopentylene group, cyclopentenylene group, cyclohexenylene group, dicyclopentadienylene group and the like.
 式(4)で表される構成単位において、R12は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R12としては、チップ実装時において樹脂組成物が好適な粘度を有し、実装時の溶融粘度の上昇が好適に制御できる点から、直鎖状若しくは分岐状のアルキレン基であることが好ましく、直鎖状のアルキレン基であることがより好ましい。 In the structural unit represented by formula (4), R 12 represents a linear or branched alkylene group having 1 to 16 carbon atoms or a linear or branched alkenylene group having 2 to 16 carbon atoms. . R 12 is preferably a linear or branched alkylene group because the resin composition has a suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be controlled appropriately. A linear alkylene group is more preferable.
 アルキレン基の炭素数としては、チップ実装時において樹脂組成物がより好適な粘度を有し、実装時の溶融粘度の上昇をより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルキレン基としては、前記のR11が参照できる。
The number of carbon atoms in the alkylene group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be more suitably controlled, and 4. ~12 is more preferred.
As the linear or branched alkylene group, the above R 11 can be referred to.
 アルケニレン基の炭素数としては、チップ実装時において樹脂組成物がより好適な粘度を有し、実装時の溶融粘度の上昇をより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルケニレン基としては、前記のR11が参照できる。
The number of carbon atoms in the alkenylene group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting, and the increase in melt viscosity during mounting can be more suitably controlled. ~12 is more preferred.
As the linear or branched alkenylene group, the above R 11 can be referred to.
 式(4)で表される構成単位において、R11と、R12とは、同一であっても異なっていてもよいが、ビスマレイミド化合物をより容易に合成できる点から、同一であることが好ましい。 In the structural unit represented by formula (4), R 11 and R 12 may be the same or different, but from the viewpoint of easier synthesis of the bismaleimide compound, they are preferably the same. preferable.
 式(4)で表される構成単位において、R13は、各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示す。R13は、チップ実装時において樹脂組成物が好適な粘度を有し、実装時の溶融粘度の上昇が好適に制御できる点から、各々独立に、水素原子、又は炭素数1~16の直鎖状若しくは分岐状のアルキル基であることが好ましく、R13のうち、1~5の基(R13)が炭素数1~16の直鎖状若しくは分岐状のアルキル基であり、残りの基(R13)が水素原子であることがより好ましく、R13のうち、1~3の基(R13)が炭素数1~16の直鎖状若しくは分岐状のアルキル基であり、残りの基(R13)が水素原子であることが更に好ましい。 In the structural unit represented by formula (4), each R 13 is independently a hydrogen atom, a linear or branched alkyl group having 1 to 16 carbon atoms, or a linear or branched alkyl group having 2 to 16 carbon atoms. It represents a branched alkenyl group. Each of R 13 is independently a hydrogen atom or a linear chain having 1 to 16 carbon atoms, because the resin composition has a suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be suitably controlled. A linear or branched alkyl group is preferable, and among R 13 , 1 to 5 groups (R 13 ) are linear or branched alkyl groups having 1 to 16 carbon atoms, and the remaining groups ( R 13 ) is more preferably a hydrogen atom, and among R 13 , 1 to 3 groups (R 13 ) are linear or branched alkyl groups having 1 to 16 carbon atoms, and the remaining groups ( More preferably, R 13 ) is a hydrogen atom.
 アルキル基の炭素数としては、チップ実装時において樹脂組成物がより好適な粘度を有し、実装時の溶融粘度の上昇をより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、1-エチルプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2,2-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、n-へプチル基、n-オクチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2-メチルペンタン-3-イル基、及びn-ノニル基が挙げられる。
The number of carbon atoms in the alkyl group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be more suitably controlled, and 4. ~12 is more preferred.
Linear or branched alkyl groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, 1-ethylpropyl group, n-butyl group, 2-butyl group, isobutyl group and tert-butyl. group, n-pentyl group, 2-pentyl group, tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, n-heptyl, n-octyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylpentan-3-yl, and n-nonyl groups.
 アルケニル基の炭素数としては、チップ実装時において樹脂組成物がより好適な粘度を有し、実装時の溶融粘度の上昇をより好適に制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
 直鎖状若しくは分岐状のアルケニル基としては、例えば、ビニル基、アリル基、4-ペンテニル基、イソプロペニル基、イソペンテニル基、2-ヘプテニル基、2-オクテニル基、及び2-ノネニル基が挙げられる。
The number of carbon atoms in the alkenyl group is preferably 2 to 14, since the resin composition has a more suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be more suitably controlled. ~12 is more preferred.
Linear or branched alkenyl groups include, for example, vinyl group, allyl group, 4-pentenyl group, isopropenyl group, isopentenyl group, 2-heptenyl group, 2-octenyl group, and 2-nonenyl group. be done.
 式(4)で表される構成単位において、n5は、1~10の整数を示す。 In the structural unit represented by formula (4), n 5 represents an integer of 1-10.
 ビスマレイミド化合物は、分子鎖の両末端にマレイミド基を有する。両末端とは、ビスマレイミド化合物の分子鎖において両方の末端を意味し、例えば、式(4)で表される構成単位が、ビスマレイミド化合物の分子鎖の末端にある場合には、マレイミド基は、R11の分子鎖の末端に有するか、マレイミド環のN原子における分子鎖の末端に有するか、又は両方の末端に有することを意味する。ビスマレイミド化合物は、分子鎖の両末端以外に、マレイミド基を有していてもよい。
 マレイミド基は、下記式(8)で表され、N原子がビスマレイミド化合物の分子鎖に結合している。また、ビスマレイミド化合物に結合されるマレイミド基は、全て同一であっても異なっていてもよいが、分子鎖の両末端のマレイミド基は同一であることが好ましい。
A bismaleimide compound has maleimide groups at both ends of its molecular chain. Both ends mean both ends in the molecular chain of the bismaleimide compound. , at the chain end of R 11 , at the chain end at the N atom of the maleimide ring, or at both ends. The bismaleimide compound may have maleimide groups other than both ends of the molecular chain.
The maleimide group is represented by the following formula (8), and the N atom is bonded to the molecular chain of the bismaleimide compound. In addition, the maleimide groups bonded to the bismaleimide compound may all be the same or different, but the maleimide groups at both ends of the molecular chain are preferably the same.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(8)中、R11は、各々独立に、水素原子、又は炭素数1~4の直鎖状若しくは分岐状のアルキル基を示す。R11は、より好適に樹脂(A)と反応する点から、両方ともに水素原子であることが好ましい。
 アルキル基の炭素数としては、より好適に樹脂(A)と反応する点から、1~3であることが好ましく、1~2であることがより好ましい。
 直鎖状若しくは分岐状のアルキル基としては、前記のR13が参照できる。
In formula (8), each R 11 independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. Both R 11 are preferably hydrogen atoms from the viewpoint of reacting more favorably with the resin (A).
The number of carbon atoms in the alkyl group is preferably 1 to 3, more preferably 1 to 2, from the viewpoint of more preferably reacting with the resin (A).
The above R 13 can be referred to as the linear or branched alkyl group.
 このようなビスマレイミド化合物としては、例えば、下記式(9)で表されるマレイミド化合物が挙げられる。これらは、1種を単独で、あるいは式(9)中のaの繰り返し数が異なる2種以上の化合物を適宜混合して使用することも可能である。 Examples of such bismaleimide compounds include maleimide compounds represented by the following formula (9). These compounds can be used singly or in combination of two or more compounds having different repeating numbers of a in formula (9).
Figure JPOXMLDOC01-appb-C000017

 
Figure JPOXMLDOC01-appb-C000017

 
 式(9)中、aは、1~10の整数を示す。aは、チップ実装時において樹脂組成物がより好適な粘度を有し、実装時の溶融粘度の上昇をより好適に制御できる点から、1~6の整数であることが好ましい。式(9)で表されるマレイミド化合物は、aが異なる化合物の混合物であってもよい。 In formula (9), a represents an integer of 1-10. a is preferably an integer of 1 to 6, since the resin composition has a more suitable viscosity during chip mounting and the increase in melt viscosity during mounting can be more suitably controlled. The maleimide compound represented by formula (9) may be a mixture of compounds in which a is different.
 マレイミド化合物(AA-1)としては、より一層優れた低ボイド性及びチップ接着性が得られることから、前記式(3)で表されるマレイミド化合物、及び前記式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物であることが好ましい。 As the maleimide compound (AA-1), the maleimide compound represented by the above formula (3) and the structure represented by the above formula (4) can be obtained, since even more excellent low void property and chip adhesiveness can be obtained. A bismaleimide compound containing maleimide groups at both ends of the unit and the molecular chain is preferred.
 マレイミド化合物(AA-2)としては、より一層優れた低ボイド性及びチップ接着性が得られることから、前記式(5)で表されるマレイミド化合物、及び前記式(6)で表されるマレイミド化合物であることが好ましい。 As the maleimide compound (AA-2), a maleimide compound represented by the above formula (5) and a maleimide represented by the above formula (6) can be obtained, since even more excellent low void property and chip adhesiveness can be obtained. A compound is preferred.
 マレイミド化合物としては、市販品を用いてもよく、2,2’-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパンとしては、例えば、ケイ・アイ化成(株)社製BMI-80(商品名)が挙げられる。式(3)で表されるマレイミド化合物としては、例えば、ケイ・アイ化成(株)製BMI-1000P(商品名、式(3)中のn3=14(平均値)、重量平均分子量:3,700)、ケイ・アイ化成(株)社製BMI-650P(商品名、式(3)中のn3=9(平均値))、ケイ・アイ化成(株)社製BMI-250P(商品名、式(3)中のn3=3~8(平均値))、ケイ・アイ化成(株)社製CUA-4(商品名、式(3)中のn3=1)等が挙げられる。式(4)で表される構成単位と分子鎖の両末端にマレイミド基とを含むビスマレイミド化合物としては、日本化薬(株)製MIZ-001(商品名、式(9)で表されるマレイミド化合物を含む、重量平均分子量:3,900)が挙げられる。式(5)で表されるマレイミド化合物としては、例えば、ケイ・アイ化成(株)製BMI-70(商品名;ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、分子量:550)が挙げられる。式(6)で表されるマレイミド化合物としては、例えば、日本化薬(株)社製MIR-3000-70MT(商品名、式(6)中のR10が全て水素原子であり、n4が1~10の混合物である、重量平均分子量:1,050)が挙げられる。式(7)で表されるマレイミド化合物としては、例えば、大和化成工業(株)社製BMI-2300(商品名)が挙げられる。 As the maleimide compound, a commercially available product may be used. first name). As the maleimide compound represented by formula (3), for example, BMI-1000P (trade name, n 3 in formula (3) = 14 (average value), weight average molecular weight: 3 , 700), K-I Kasei Co., Ltd. BMI-650P (trade name, n 3 = 9 (average value) in formula (3)), K-I Kasei Co., Ltd. BMI-250P (product name, n 3 = 3 to 8 (average value) in formula (3)), CUA-4 manufactured by K.I Kasei Co., Ltd. (trade name, n 3 = 1 in formula (3)), etc. be done. As the bismaleimide compound containing maleimide groups at both ends of the structural unit represented by the formula (4) and the molecular chain, MIZ-001 manufactured by Nippon Kayaku Co., Ltd. (trade name, represented by the formula (9) Weight average molecular weight: 3,900) containing maleimide compounds. Examples of the maleimide compound represented by formula (5) include BMI-70 (trade name; bis-(3-ethyl-5-methyl-4-maleimidophenyl)methane manufactured by K.I. Kasei Co., Ltd., molecular weight: 550). Examples of the maleimide compound represented by formula (6) include MIR-3000-70MT (trade name, manufactured by Nippon Kayaku Co., Ltd., where all R 10 in formula (6) are hydrogen atoms and n 4 is weight average molecular weight: 1,050), which is a mixture of 1 to 10. Examples of the maleimide compound represented by formula (7) include BMI-2300 (trade name) manufactured by Daiwa Kasei Kogyo Co., Ltd.
(シトラコンイミド化合物)
 シトラコンイミド化合物としては、特に限定されないが、例えば、o-フェニレンビスシトラコンイミド、m-フェニレンビスシトラコンイミド、p-フェニレンビスシトラコンイミド、4,4-ジフェニルメタンビスシトラコンイミド、2,2-ビス[4-(4-シトラコンイミドフェノキシ)フェニル]プロパン、ビス(3,5-ジメチル-4-シトラコンイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-シトラコンイミドフェニル)メタン、ビス(3,5-ジエチル-4-シトラコンイミドフェニル)メタン、1,3-キシリレンビス(シトラコンイミド)、N-[3-ビス(トリメチルシリル)アミノ-1-プロピル]シトラコンイミド、N-[3-ビス(トリエチルシリル)アミノ-1-プロピル]シトラコンイミド、N-[3-ビス(トリフェニルシリル)アミノ-1-プロピル]シトラコンイミド、N,N’-(m-フェニレンジメチレン)ジシトラコンイミド、及びN-[3-(メチリデンスクシンイミドメチル)ベンジル]シトラコンイミド、下記式(10)で表されるシトラコンイミド化合物、前記式(4)で表される構成単位と分子鎖の両末端にシトラコンイミド基とを含むビスシトラコンイミド化合物、下記式(11)で表されるシトラコンイミド化合物、及び下記式(12)で表されるシトラコンイミド化合物が挙げられる。なお、ビスシトラコンイミド化合物は、前記のビスマレイミド化合物を参照できる。式(4)の構造の詳細については前記のとおりであり、シトラコンイミド基については、前記式(8)において、R11の少なくとも1つの基がメチル基であること以外、式(8)の構造を参照できる。シトラコンイミド化合物は、1種又は2種以上を混合して使用することができる。
(Citraconimide compound)
The citraconimide compound is not particularly limited. -(4-citraconimidophenoxy)phenyl]propane, bis(3,5-dimethyl-4-citraconimidophenyl)methane, bis(3-ethyl-5-methyl-4-citraconimidophenyl)methane, bis(3, 5-diethyl-4-citraconimidophenyl)methane, 1,3-xylylenebis(citraconimide), N-[3-bis(trimethylsilyl)amino-1-propyl]citraconimide, N-[3-bis(triethylsilyl) amino-1-propyl]citraconimide, N-[3-bis(triphenylsilyl)amino-1-propyl]citraconimide, N,N'-(m-phenylenedimethylene)dicitraconimide, and N-[3 -(Methylidenesuccinimidemethyl)benzyl]citraconimide, a citraconimide compound represented by the following formula (10), a bis containing a structural unit represented by the above formula (4) and a citraconimide group at both ends of the molecular chain A citraconimide compound, a citraconimide compound represented by the following formula (11), and a citraconimide compound represented by the following formula (12) can be mentioned. As for the biscitraconimide compound, the above bismaleimide compound can be referred to. The details of the structure of formula (4) are as described above, and the citraconimide group has the structure of formula (8) except that at least one group of R 11 is a methyl group in formula (8). can refer to. A citraconimide compound can be used 1 type or in mixture of 2 or more types.
 シトラコンイミド化合物は、上述した中でも、有機溶媒に対してより優れた溶解性が得られ、一層優れた低ボイド性及びチップ接着性が得られる点から、下記式(10)で表されるシトラコンイミド化合物、前記式(4)で表される構成単位と分子鎖の両末端にシトラコンイミド基とを含むビスシトラコンイミド化合物、下記式(11)で表されるシトラコンイミド化合物、及び下記式(12)で表されるシトラコンイミド化合物を含むことが好ましい。 Among the above-mentioned citraconimide compounds, the citraconimide compound represented by the following formula (10) can obtain better solubility in organic solvents and more excellent low void properties and chip adhesion. a compound, a biscitraconimide compound containing a structural unit represented by the above formula (4) and a citraconimide group at both ends of the molecular chain, a citraconimide compound represented by the following formula (11), and the following formula (12) It preferably contains a citraconimide compound represented by.
 シトラコンイミド化合物(AB-1)としては、より一層優れた低ボイド性及びチップ接着性が得られることから、下記式(10)で表されるシトラコンイミド化合物、及び前記式(4)で表される構成単位と分子鎖の両末端にシトラコンイミド基とを含むビスシトラコンイミド化合物であることが好ましい。 As the citraconimide compound (AB-1), a citraconimide compound represented by the following formula (10), and a citraconimide compound represented by the above formula (4), since even more excellent low void properties and chip adhesiveness can be obtained. It is preferably a biscitraconimide compound containing a structural unit and citraconimide groups at both ends of the molecular chain.
Figure JPOXMLDOC01-appb-C000018

 
Figure JPOXMLDOC01-appb-C000018

 
 式(10)中、nは、1~30の整数を示す。 In formula (10), n6 represents an integer of 1-30.
 シトラコンイミド化合物(AB-2)としては、より一層優れた低ボイド性及びチップ接着性が得られることから、下記式(11)で表されるシトラコンイミド化合物、及び下記式(12)で表されるシトラコンイミド化合物であることが好ましい。 As the citraconimide compound (AB-2), a citraconimide compound represented by the following formula (11) and a citraconimide compound represented by the following formula (12) can be obtained, since even better low void properties and chip adhesiveness can be obtained. is preferably a citraconimide compound.
Figure JPOXMLDOC01-appb-C000019

 
Figure JPOXMLDOC01-appb-C000019

 
 式(11)中、Rは、各々独立に、水素原子、メチル基、又はエチル基を示す。Rは、各々独立に、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000020

 
In formula (11), each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group. Each R9 independently represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000020

 式(12)中、R10は、各々独立に、水素原子、又はメチル基を示し、n4は、1以上の整数を示し、好ましくは1~10の整数を示す。R10は、水素原子であることが好ましい。 In formula (12), each R 10 independently represents a hydrogen atom or a methyl group, and n 4 represents an integer of 1 or more, preferably an integer of 1-10. R 10 is preferably a hydrogen atom.
 樹脂組成物層における、熱硬化性樹脂(A)の含有量(総量)は、特に限定されないが、アンダーフィル材の硬化性、製造性及び樹脂組成物層の強度の観点から、樹脂成分の合計100質量部に対して、25質量部以上であることが好ましく、40質量部以上であることがより好ましく、50質量部以上であることが更に好ましい。熱硬化性樹脂(A)の含有量(総量)の上限は特に限定されないが、樹脂成分の合計100質量部に対して、100質量部以下であることが好ましく、95質量部以下であることがより好ましく、90質量部以下であることが更に好ましい。なお、ここでいう「樹脂成分」には、熱硬化性樹脂(A)の他、硬化剤(F)、フラックス活性剤(D)として樹脂が用いられる場合にはこれら樹脂を含み、可視光吸収剤(B)、硬化触媒(E)等は含まない趣旨である。 The content (total amount) of the thermosetting resin (A) in the resin composition layer is not particularly limited. It is preferably 25 parts by mass or more, more preferably 40 parts by mass or more, and even more preferably 50 parts by mass or more with respect to 100 parts by mass. The upper limit of the content (total amount) of the thermosetting resin (A) is not particularly limited. More preferably, it is 90 parts by mass or less. The term "resin component" as used herein includes not only the thermosetting resin (A), but also the curing agent (F) and the flux activator (D) when resins are used. It is intended not to include the agent (B), the curing catalyst (E), and the like.
 熱硬化性樹脂(A)として、化合物(A1)と化合物(A2)とを含む場合、より一層優れた低ボイド性及びチップ接着性が得られることから、化合物(A1)の含有量は、化合物(A1)と化合物(A2)との合計100質量部に対して、40~90質量部であることが好ましく、42~85質量部であることがより好ましく、45~80質量部であることが更に好ましい。また、化合物(A2)の含有量は、化合物(A1)と化合物(A2)との合計100質量部に対して、10~60質量部であることが好ましく、15~58質量部であることがより好ましく、20~55質量部であることが更に好ましい。 When the thermosetting resin (A) contains the compound (A1) and the compound (A2), even more excellent low void properties and chip adhesion are obtained, so the content of the compound (A1) is It is preferably 40 to 90 parts by mass, more preferably 42 to 85 parts by mass, and preferably 45 to 80 parts by mass with respect to a total of 100 parts by mass of (A1) and compound (A2). More preferred. The content of compound (A2) is preferably 10 to 60 parts by mass, more preferably 15 to 58 parts by mass, with respect to 100 parts by mass in total of compound (A1) and compound (A2). More preferably, it is 20 to 55 parts by mass.
 熱硬化性樹脂(A)として、マレイミド化合物(AA-1)とマレイミド化合物(AA-2)とを含む場合、より一層優れた低ボイド性及びチップ接着性が得られることから、マレイミド化合物(AA-1)の含有量は、化合物(AA-1)と化合物(AA-2)との合計100質量部に対して、40~90質量部であることが好ましく、42~85質量部であることがより好ましく、45~80質量部であることが更に好ましい。また、マレイミド化合物(AA-2)の含有量は、化合物(AA-1)と化合物(AA-2)との合計100質量部に対して、10~60質量部であることが好ましく、15~58質量部であることがより好ましく、20~55質量部であることが更に好ましい。 When the thermosetting resin (A) contains the maleimide compound (AA-1) and the maleimide compound (AA-2), even more excellent low void property and chip adhesiveness can be obtained, so the maleimide compound (AA -1) content is preferably 40 to 90 parts by mass, preferably 42 to 85 parts by mass, with respect to the total 100 parts by mass of compound (AA-1) and compound (AA-2). is more preferable, and 45 to 80 parts by mass is even more preferable. In addition, the content of the maleimide compound (AA-2) is preferably 10 to 60 parts by mass with respect to a total of 100 parts by mass of the compound (AA-1) and the compound (AA-2), and 15 to 60 parts by mass. It is more preferably 58 parts by mass, and even more preferably 20 to 55 parts by mass.
 熱硬化性樹脂(A)として、シトラコンイミド化合物(AB-1)とシトラコンイミド化合物(AB-2)とを含む場合、より一層優れた低ボイド性及びチップ接着性が得られることから、シトラコンイミド化合物(AB-1)の含有量は、化合物(AB-1)と化合物(AB-2)との合計100質量部に対して、40~90質量部であることが好ましく、42~85質量部であることがより好ましく、45~80質量部であることがより好ましい。また、シトラコンイミド化合物(AB-2)の含有量は、化合物(AB-1)と化合物(AB-2)との合計100質量部に対して、10~60質量部であることが好ましく、15~58質量部であることがより好ましく、20~55質量部であることが更に好ましい。 When the thermosetting resin (A) contains the citraconimide compound (AB-1) and the citraconimide compound (AB-2), even more excellent low void properties and chip adhesion can be obtained. The content of the compound (AB-1) is preferably 40 to 90 parts by mass, preferably 42 to 85 parts by mass, with respect to the total 100 parts by mass of the compound (AB-1) and the compound (AB-2). and more preferably 45 to 80 parts by mass. Further, the content of the citraconimide compound (AB-2) is preferably 10 to 60 parts by mass with respect to a total of 100 parts by mass of the compound (AB-1) and the compound (AB-2). It is more preferably up to 58 parts by mass, and even more preferably 20 to 55 parts by mass.
〔可視光吸収剤(B)〕
 樹脂組成物層は、可視光吸収剤(B)を含有する。本実施形態のアンダーフィル材は、樹脂組成物層に含まれる可視光吸収剤(B)の種類の選択、及び可視光吸収剤(B)含有量と樹脂組成物層の膜厚とを調整することにより、アンダーフィル材及び樹脂組成物層の光線透過率を所望の範囲とすることができる。例えば、樹脂組成物層の光線透過率を調整する目的で平均粒子径400nm超のシリカなど比較的粒子径の大きな無機微粒子を用いることも考えられるが、粒子径の大きな無機微粒子は保存時に沈降しやすく、ワニス保管安定性などが低下してしまう。このため、特に平均粒子径が400nm以下の無機充填材(C)を用いた場合には、可視光吸収剤(B)を用いて樹脂組成物層の光線透過率を調整することが、ワニス保管安定性等の観点で有利である。
[Visible light absorber (B)]
The resin composition layer contains a visible light absorbent (B). For the underfill material of the present embodiment, the type of visible light absorbent (B) contained in the resin composition layer is selected, and the content of the visible light absorbent (B) and the film thickness of the resin composition layer are adjusted. Thereby, the light transmittance of the underfill material and the resin composition layer can be set within a desired range. For example, for the purpose of adjusting the light transmittance of the resin composition layer, it is conceivable to use inorganic fine particles having a relatively large particle size such as silica having an average particle size of more than 400 nm, but inorganic fine particles having a large particle size settle during storage. The storage stability of the varnish is deteriorated. For this reason, especially when the inorganic filler (C) having an average particle size of 400 nm or less is used, adjusting the light transmittance of the resin composition layer using the visible light absorber (B) is effective for varnish storage. This is advantageous in terms of stability and the like.
 可視光吸収剤(B)としては、可視光を吸収できる材料であれば特に限定されないが、光線吸収効率、及び、熱硬化性樹脂(A)等他の成分との反応を抑制する観点から、例えば、有機染料、有機顔料、及びこれらの組み合わせの群から選択される少なくとも1種を用いることができる。 The visible light absorbent (B) is not particularly limited as long as it is a material that can absorb visible light. For example, at least one selected from the group consisting of organic dyes, organic pigments, and combinations thereof can be used.
 有機染料及び有機顔料としては、特に限定されるものではないが、例えば、キノン系、アミノケトン系、カチオン系、シアニン系、フタロシアニン系、キナクドリン系、ジアリール・トリアリールメタン系、フルギド、アゾ系、スクアリリウム系、オキソノール系、ベンジリデン系、ニトロ系、ニトロソ系、チアゾール系、インジゴイド系、及びこれらの組み合わせの群から選択される少なくとも1種から選ばれる少なくとも1種の化合物を用いることができ、熱硬化性樹脂(A)等他の成分との反応を抑制する観点から、キノン系、アミノケトン系、及びこれらの組み合わせの群から選択される少なくとも1種の化合物が好ましい。 Examples of organic dyes and organic pigments include, but are not limited to, quinone, aminoketone, cationic, cyanine, phthalocyanine, quinacdrine, diaryl/triarylmethane, fulgide, azo, and squarylium. system, oxonol, benzylidene, nitro, nitroso, thiazole, indigoid, and at least one compound selected from the group consisting of combinations thereof, and thermosetting From the viewpoint of suppressing reaction with other components such as resin (A), at least one compound selected from the group consisting of quinones, aminoketones, and combinations thereof is preferred.
(有機染料)
 有機染料の具体例としては、特に限定されるものでないが、例えば、以下のアゾ色素や媒染染料、反応染料、酸性染料を例示することができる。本実施形態における有機染料としては、吸収波長領域が広い観点から、下記の中でも黒色系の染料が好ましい。
Kayaset Black A-N
Direct Brilliant Pink B(C.I.Direct Red9)
Kayarus Light Red F5G(C.I.Direct Red225)
Direct Light Rose FR(C.I.Direct Red227)
Sumilight Supra Turquoise Blue G(C.I.Direct Blue86)
Direct Supra Blue FFRL(C.I.Direct Blue108)
Kayarus Cupro Green G(C.I.Direct Green59)
Direct Fast Black B(C.I.Direct Black22)
Sunchromine Yellow MR(C.I.Mordant Yellow3)
Chrome Yellow AS(C.I.Mordant Yellow5)
Chrome Yellow 3R(C.I.Mordant Yellow8)
Chrome Yellow PG(C.I.Mordant Yellow23)
Chrome Orange FL(C.I.Mordant Orange29)
Chrome Red B conc.(C.I.Mordant Red7)
Chrome Red 5G(C.I.Mordant Red19)
Sunchromine Brilliant Violet R conc.(C.I.Mordant Violet1:1)
Chrome Fine Violet R(C.I.Mordant Violet1)
Chrome Cyanine BXS(C.I.Mordant Blue1)
Mordant Blue B 120%(C.I.Mordant Blue13)
Chrome Cyanine BLA(C.I.Mordant Blue29)
Mordant Green L(C.I.Mordant Green17)
Chrome Green 3B-N(C.I.Mordant Green28)
Mordant Brown KS(C.I.Mordant Brown15)
Chrome Brown LE(C.I.Mordant Brown19)
Chrome Brown RH(C.I.Mordant Brown33)
Chrome Black P2B(C.I.Mordant Black7)
Chrome Black PLW(C.I.Mordant Black9)
Chrome Black ET-1(C.I.Mordant Black11)
(organic dye)
Specific examples of organic dyes are not particularly limited, but the following azo dyes, mordant dyes, reactive dyes, and acid dyes can be exemplified. Among the following organic dyes, black dyes are preferable as the organic dye in the present embodiment from the viewpoint of a wide absorption wavelength range.
Kayaset Black AN
Direct Brilliant Pink B (CI Direct Red9)
Kayarus Light Red F5G (CI Direct Red225)
Direct Light Rose FR (CI Direct Red227)
Summit Supra Turquoise Blue G (C.I. Direct Blue86)
Direct Supra Blue FFRL (C.I. Direct Blue 108)
Kayarus Cupro Green G (CI Direct Green 59)
Direct Fast Black B (C.I. Direct Black 22)
Sunchromine Yellow MR (CI Mordant Yellow 3)
Chrome Yellow AS (CI Mordant Yellow 5)
Chrome Yellow 3R (CI Mordant Yellow 8)
Chrome Yellow PG (CI Mordant Yellow 23)
Chrome Orange FL (CI Mordant Orange29)
Chrome Red B conc. (C.I. Mordant Red7)
Chrome Red 5G (CI Mordant Red19)
Sunchromine Brilliant Violet R conc. (C.I. Mordant Violet 1:1)
Chrome Fine Violet R (C.I. Mordant Violet 1)
Chrome Cyanine BXS (C.I. Mordant Blue 1)
Mordant Blue B 120% (CI Mordant Blue 13)
Chrome Cyanine BLA (C.I. Mordant Blue29)
Mordant Green L (CI Mordant Green 17)
Chrome Green 3B-N (CI Mordant Green28)
Mordant Brown KS (C.I. Mordant Brown 15)
Chrome Brown LE (CI Mordant Brown 19)
Chrome Brown RH (CI Mordant Brown 33)
Chrome Black P2B (C.I. Mordant Black7)
Chrome Black PLW (CI Mordant Black 9)
Chrome Black ET-1 (C.I. Mordant Black 11)
Chrome Navy CR 158%(C.I.Mordant Black17)
Chrome Light Grey G(C.I.Mordant Black38)
Chrome Bordeaux FB
Alizarine Chrome Brilliant Blue BL
Chrome Blue 2G
Sumifix Yellow GR 150%(C.I Reactive Yellow15)
Lanasol Yellow 4G(C.I Reactive Yellow39)
Sumifix Golden Yellow GG(A) 150%(C.I Reactive Yellow76)
Kayacion Yellow E-S4R(C.I Reactive Yellow84)
Novacron Yellow P-6GS gran(C.I Reactive Yellow95)
Kayacion Yellow E-SNA(C.I Reactive Yellow102)
Kayacion Yellow E-SN4G(C.I Reactive Yellow105)
Drimarene Yellow K-2R CDG(C.I Reactive Yellow125)
Sumifix Supra Yellow 3RF 150% gran(C.I Reactive Yellow145)
Sumifix Supra Brilliant Yellow 3GF 150% gr(C.I Reactive Yellow167)
Novacron Yellow C-R(C.I Reactive Yellow168)
Novcron Yellow C-5G(C.I Reactive Yellow175)
Kayacion Yellow CF-3RJ 150
Kayacion Yellow E-CM
Procion Orange PX-RN(C.I.Reactive Orange5)
Remazol Brilliant Orange 3R Special(C.I.Reactive Orange16)
Levafix Yellow E-3RL gran(C.I.Reactive Orange30)
Levafix Orange E-3GA gran(C.I.Reactive Orange64)
Remazol Golden Yellow RNL gran 150%(C.I.Reactive Orange107)
Drimaren Rubinol X3LR CDG(C.I.Reactive Red55)
Brilliant Red G SPL(C.I.Reactive Red112)
Brilliant Red 7BF Liq 25%(C.I.Reactive Red114)
Lanasol Red 2G(C.I.Reactive Red116)
Levafix Scarlet E-2GA gran(C.I.Reactive Red124)
Levafix Brilliant Red E-4BA gran(C.I.Reactive Red158)
Chrome Navy CR 158% (CI Mordant Black 17)
Chrome Light Gray G (C.I. Mordant Black38)
Chrome Bordeaux FB
Alizarine Chrome Brilliant Blue BL
Chrome Blue 2G
Sumifix Yellow GR 150% (CI Reactive Yellow 15)
Lanasol Yellow 4G (CI Reactive Yellow 39)
Sumifix Golden Yellow GG (A) 150% (CI Reactive Yellow76)
Kayacion Yellow E-S4R (C.I Reactive Yellow84)
Novacron Yellow P-6GS gran (CI Reactive Yellow 95)
Kayacion Yellow E-SNA (CI Reactive Yellow 102)
Kayacion Yellow E-SN4G (CI Reactive Yellow 105)
Drimarene Yellow K-2R CDG (CI Reactive Yellow 125)
Sumifix Supra Yellow 3RF 150% gran (C.I Reactive Yellow 145)
Sumifix Supra Brilliant Yellow 3GF 150% gr (C.I Reactive Yellow 167)
Novacron Yellow CR (C.I Reactive Yellow 168)
Novcron Yellow C-5G (C.I Reactive Yellow 175)
Kayacion Yellow CF-3RJ 150
Kayacion Yellow E-CM
Procion Orange PX-RN (CI Reactive Orange 5)
Remazol Brilliant Orange 3R Special (CI Reactive Orange 16)
Levafix Yellow E-3RL gran (CI Reactive Orange 30)
Levafix Orange E-3GA gran (C.I. Reactive Orange64)
Remazol Golden Yellow RNL gran 150% (CI Reactive Orange 107)
Drimaren Rubinol X3LR CDG (C.I. Reactive Red55)
Brilliant Red G SPL (C.I. Reactive Red 112)
Brilliant Red 7BF Liq 25% (C.I. Reactive Red 114)
Lanasol Red 2G (CI Reactive Red 116)
Levafix Scarlet E-2GA gran (C.I. Reactive Red124)
Levafix Brilliant Red E-4BA gran (CI Reactive Red158)
Levafix Brilliant Red E-6BA gran(C.I.Reactive Red159)
Remazol Brilliant Red F3B gran(C.I.Reactive Red180)
Supra Brilliant Red 3BF 150% gran(C.I.Reactive Red195)
Remazol Red RB 133%(C.I.Reactive Red198)
Supra Scarlet 2GF 150G(C.I.Reactive Red222)
Novacron Red P-6B Gran. 150%
Novacron Red C-2G
Kayacion Violet A-3R(C.I.Reactive Violet1)
Remazol Brill. Violet 5R(C.I.Reactive Violet5)
Drimaren Violet K-2RL CDG(C.I.Reactive Violet33)
Remazol Brill. Blue RN(C.I.Reactive Blue19)
Sumifix Turquoise Blue G(N) conc.(C.I.Reactive Blue21)
Novacron Blue P-3R IN(C.I.Reactive Blue49)
Lanasol Blue 3R(C.I.Reactive Blue50)
Drimarene Blue X-3LR CDG(C.I.Reactive Blue52)
Lanasol Blue 3G(C.I.Reactive Blue69)
Novacron Turquoise P-GR 150%(C.I.Reactive Blue72)
Drimarene Navy X-RBL CDG(C.I.Reactive Blue79)
Lanasol Blue 8G-01 150%(C.I.Reactive Blue185)
Drimarene Blue K-2RL CDG(C.I.Reactive Blue209)
Sumifix Supra Blue BRF 150% gran.(C.I.Reactive Blue221)
Sumifix Supra Navy Blue BF gran.(C.I.Reactive Blue222)
Sumifix Supra Turquoise Blue BGF(N)(C.I.Reactive Blue231)
Novacron Blue C-R(C.I.Reactive Blue235)
Kayacion Blue CF-GJ 150
Kayacion Blue CF-BL
Kayacin Marine E-CM
Kayacion Navy E-CM
Sumifix Supra Navy Blue 3GF 150% granLevafix Brown E-2R gran(C.I.Reactive Brown19)
Novacron Brown P-6R Gran. 150
Remazol Black B-N 150%(C.I.Reactive Black5)
Levafix Brilliant Red E-6BA gran (CI Reactive Red159)
Remazol Brilliant Red F3B gran (C.I. Reactive Red180)
Supra Brilliant Red 3BF 150% gran (C.I. Reactive Red195)
Remazol Red RB 133% (CI Reactive Red 198)
Supra Scarlet 2GF 150G (C.I. Reactive Red222)
Novacron Red P-6B Gran. 150%
Novacron Red C-2G
Kayacion Violet A-3R (C.I. Reactive Violet 1)
Remazol Brill. Violet 5R (C.I. Reactive Violet 5)
Drimaren Violet K-2RL CDG (CI Reactive Violet 33)
Remazol Brill. Blue RN (CI Reactive Blue 19)
Sumifix Turquoise Blue G(N) conc. (C.I. Reactive Blue21)
Novacron Blue P-3R IN (C.I. Reactive Blue49)
Lanasol Blue 3R (CI Reactive Blue 50)
Drimarene Blue X-3LR CDG (C.I. Reactive Blue52)
Lanasol Blue 3G (CI Reactive Blue 69)
Novacron Turquoise P-GR 150% (CI Reactive Blue72)
Dimarene Navy X-RBL CDG (C.I. Reactive Blue79)
Lanasol Blue 8G-01 150% (CI Reactive Blue 185)
Drimarene Blue K-2RL CDG (C.I. Reactive Blue 209)
Sumifix Supra Blue BRF 150% gran. (C.I. Reactive Blue221)
Sumifix Supra Navy Blue BF gran. (C.I. Reactive Blue222)
Sumifix Supra Turquoise Blue BGF(N) (C.I. Reactive Blue231)
Novacron Blue CR (C.I. Reactive Blue235)
Kayacion Blue CF-GJ150
Kayacion Blue CF-BL
Kayacin Marine E-CM
Kayacion Navy E-CM
Sumifix Supra Navy Blue 3GF 150% gran Levafix Brown E-2R gran (C.I. Reactive Brown 19)
Novacron Brown P-6R Gran. 150
Remazol Black BN 150% (C.I. Reactive Black5)
Remazol Black RL 133%(C.I.Reactive Black31)
Remazol Deep Black N 150%(C.I.Reactive Black31)
Acid Quinoline Yellow WS H/C(C.I.Acid Yellow3)
Kayacyl Yellow GG 80(C.I.Acid Yellow17)
Tartrazine NS conc(C.I.Acid Yellow23)
Suminol Fast Yellow R conc.(C.I.Acid Yellow25)
Kayanol Milling Yellow O(C.I.Acid Yellow38)
Suminol Milling Yellow MR(C.I.Acid Yellow42)
Aminyl Yellow E-3GL(C.I.Acid Yellow49)
Suminol Fast Yellow G (B)(C.I.Acid Yellow61)
Erionyl Yellow B-4G(C.I.Acid Yellow79)
Kayanol Yellow N5G(C.I.Acid Yellow110)
Lanyl Yellow G ex cc(C.I.Acid Yellow116)
Kayakalan Yellow GL 143(C.I.Acid Yellow121)
Kayanol Milling Yellow 5GW(C.I.Acid Yellow127)
Lanacron Yellow N-2GL KWL(C.I.Acid Yellow129)
Erionyl Golden Yellow M-R-02(C.I.Acid Yellow151)
Tectilon Yellow 2G 200%(C.I.Acid Yellow169)
Lanacron Yellow S-2G-01 KWL(C.I.Acid Yellow220)
Telon Yellow RLN micro(C.I.Acid Yellow230)
Tectilon Yellow 3R 200%(C.I.Acid Yellow246)
Chuganol Fast Yellow 5GL(C.I.Acid Yellow40:1)
Solar Orange(C.I.Acid Orange7)
Solar Light Orange GX(C.I.Acid Orange10)
Chuganol Milling Brown 5R(C.I.Acid Orange51)
Chuganol Milling OrangeSG(C.I.Acid Orange56)
Kayanol Yellow N3R(C.I.Acid Orange67)
Aminyl Yellow E-3RL(C.I.Acid Orange67)
Lanyl Orange R 200%(C.I.Acid Orange88)
Chuganol Milling Orange GSN 150%(C.I.Acid Orange95)
Suminol Milling Orange GN(N)(C.I.Acid Orange95)
Isolan Orange K-RLS(C.I.Acid Orange107)
Telon Orange AGT 01(C.I.Acid Orange116)
Lanyl Orange 2R e/c(C.I.Acid Orange120)
Supralan Orange S-RL(C.I.Acid Orange166)
Lanasyn Yellow M-2RL 180(C.I.Acid Orange180)
Nylosan Orange NRL 250(C.I.Acid Orange250)
Remazol Black RL 133% (CI Reactive Black 31)
Remazol Deep Black N 150% (CI Reactive Black 31)
Acid Quinoline Yellow WS H/C (C.I. Acid Yellow 3)
Kayacyl Yellow GG 80 (C.I. Acid Yellow 17)
Tartrazine NS conc (CI Acid Yellow 23)
Suminol Fast Yellow R conc. (C.I. Acid Yellow 25)
Kayanol Milling Yellow O (C.I. Acid Yellow 38)
Suminol Milling Yellow MR (C.I. Acid Yellow 42)
Aminyl Yellow E-3GL (C.I. Acid Yellow 49)
Suminol Fast Yellow G (B) (C.I. Acid Yellow 61)
Erionyl Yellow B-4G (C.I. Acid Yellow79)
Kayanol Yellow N5G (C.I. Acid Yellow 110)
Lanyl Yellow G ex cc (C.I. Acid Yellow 116)
Kayakalan Yellow GL 143 (C.I. Acid Yellow 121)
Kayanol Milling Yellow 5GW (CI Acid Yellow 127)
Lanacron Yellow N-2GL KWL (C.I. Acid Yellow 129)
Erionyl Golden Yellow MR-02 (C.I. Acid Yellow 151)
Tectilon Yellow 2G 200% (CI Acid Yellow 169)
Lanacron Yellow S-2G-01 KWL (C.I. Acid Yellow 220)
Telon Yellow RLN micro (C.I. Acid Yellow 230)
Tectilon Yellow 3R 200% (CI Acid Yellow 246)
Chuganol Fast Yellow 5GL (CI Acid Yellow 40:1)
Solar Orange (CI Acid Orange 7)
Solar Light Orange GX (C.I. Acid Orange 10)
Chuganol Milling Brown 5R (C.I. Acid Orange 51)
Chuganol Milling Orange SG (CI Acid Orange 56)
Kayanol Yellow N3R (C.I. Acid Orange 67)
Aminyl Yellow E-3RL (C.I. Acid Orange 67)
Lanyl Orange R 200% (CI Acid Orange 88)
Chuganol Milling Orange GSN 150% (CI Acid Orange 95)
Suminol Milling Orange GN (N) (C.I. Acid Orange 95)
Isolan Orange K-RLS (C.I. Acid Orange 107)
Telon Orange AGT 01 (C.I. Acid Orange 116)
Lanyl Orange 2R e/c (C.I. Acid Orange 120)
Supralan Orange S-RL (C.I. Acid Orange 166)
Lanasyn Yellow M-2RL 180 (C.I. Acid Orange 180)
Nylosan Orange NRL 250 (C.I. Acid Orange 250)
Lanasyn Orange M-RL p
Silk Scarlet(C.I.Acid Red9)
Brilliant Scarlet 3R conc.(C.I.Acid Red18)
Acid Rhodamine G Conc(C.I.Acid Red50)
Acid Rhodamine B Conc(C.I.Acid Red52)
Chugacid Red FCH(C.I.Acid Red73)
Chugacid Rubinol 3B 200%(C.I.Acid Red80)
Rocceline NS conc. 120%(C.I.Acid Red88)
Chuganol Anthracene Red G(C.I.Acid Red97)
Suminol Fast Red G (B)(C.I.Acid Red118)
Suminol Milling Brilliant Red 3BN (N) conc.(C.I.Acid Red131)
Lanyl Red GG(C.I.Acid Red211)
Lanyl Red B(C.I.Acid Red215)
Lanasyn Bordeaux M-RLA200(C.I.Acid Red217)
Suminol Milling Brilliant Red B conc. N(C.I.Acid Red249)
Aminyl Red E-3BL(C.I.Acid Red257)
Telon Red M-BL(C.I.Acid Red260)
Chugai Aminol Fast Pink R(C.I.Acid Red289)
Nylosan Red N-2RBL SGR(C.I.Acid Red336)
Telon Red FRL micro(C.I.Acid Red337)
Lanasyn Red M-G(C.I.Acid Red399)
Kayakalan Red BL
Nylosan Red EBL SGR 180
Kayanol Milling Red BW
Kayanol Milling Violet FBW(C.I.Acid Violet48)
Erionyl Red B-10B-01(C.I.Acid Violet54)
Chugai Aminol Fast Violet F6R(C.I.Acid Violet102)
Acid Pure Blue VX(C.I.Acid Blue1)
Acid Brilliant Blue AF-N(C.I.Acid Blue7)
Chugacid Light Blue A(C.I.Acid Blue25)
Kayanol Blue N2G(C.I.Acid Blue40)
Nylosan Blue E-GL p 250(C.I.Acid Blue72)
Chuganol Blue 6B 333%(C.I.Acid Blue83)
Chuganol Blue G 333%(C.I.Acid Blue90)
Kayanol Navy Blue R(C.I.Acid Blue92)
Lanasyn Orange M-RL p
Silk Scarlet (CI Acid Red9)
Brilliant Scarlet 3R conc. (C.I. Acid Red 18)
Acid Rhodamine G Conc (C.I. Acid Red50)
Acid Rhodamine B Conc (C.I. Acid Red52)
Chugacid Red FCH (C.I. Acid Red73)
Chugacid Rubinol 3B 200% (C.I. Acid Red80)
Rocceline NS conc. 120% (CI Acid Red88)
Chuganol Anthracene Red G (CI Acid Red97)
Suminol Fast Red G (B) (C.I. Acid Red 118)
Suminol Milling Brilliant Red 3BN (N) conc. (C.I. Acid Red 131)
Lanyl Red GG (CI Acid Red 211)
Lanyl Red B (CI Acid Red 215)
Lanasyn Bordeaux M-RLA200 (C.I. Acid Red217)
Suminol Milling Brilliant Red B conc. N (CI Acid Red 249)
Aminyl Red E-3BL (CI Acid Red257)
Telon Red M-BL (CI Acid Red260)
Chugai Aminol Fast Pink R (C.I. Acid Red289)
Nylosan Red N-2RBL SGR (C.I. Acid Red336)
Telon Red FRL micro (C.I. Acid Red337)
Lanasyn Red MG (C.I. Acid Red399)
Kayakalan Red BL
Nylosan Red EBL SGR 180
Kayanol Milling Red BW
Kayanol Milling Violet FBW (C.I. Acid Violet48)
Erionyl Red B-10B-01 (C.I. Acid Violet54)
Chugai Aminol Fast Violet F6R (CI Acid Violet 102)
Acid Pure Blue VX (C.I. Acid Blue 1)
Acid Brilliant Blue AF-N (C.I. Acid Blue7)
Chugacid Light Blue A (C.I. Acid Blue 25)
Kayanol Blue N2G (C.I. Acid Blue 40)
Nylosan Blue E-GL p 250 (C.I. Acid Blue 72)
Chuganol Blue 6B 333% (C.I. Acid Blue 83)
Chuganol Blue G 333% (C.I. Acid Blue90)
Kayanol Navy Blue R (C.I. Acid Blue 92)
Suminol Milling Brilliant Sky Blue SE (N)(C.I.Acid Blue112)
Suminol Milling Cyanine 5R (N)(C.I.Acid Blue113)
Kayanol Milling Blue GW(C.I.Acid Blue127)
Lanyl Brilliant Blue G ex cc(C.I.Acid Blue127:1)
Kayanol Blue NR(C.I.Acid Blue129)
Kayanol Milling Blue BW(C.I.Acid Blue138)
Kayanol Milling Blue 2RW(C.I.Acid Blue140)
Lanyl Blue 3G ex conc(C.I.Acid Blue171)
Nylosan Blue N-GL 150(C.I.Acid Blue230)
Tectilon Blue 6G 200%(C.I.Acid Blue258)
Telon Blue AFN(C.I.Acid Blue264)
Tectilon Blue 4R-01 200%(C.I.Acid Blue277:1)
Nylosan B Blue N-FL SGR180(C.I.Acid Blue278)
Nylosan Blue N-5GL SGR 200(C.I.Acid Blue280)
Kayalax Navy R(C.I.Acid Blue300)
Nylosan Blue N-BLN(C.I.Acid Blue350)
Lanacron Blue N-3GL
Acid Green V(C.I.Acid Green16)
Chuganol Cyanine Green G(C.I.Acid Green25)
Suminol Milling Brilliant Sky Blue SE (N) (C.I. Acid Blue 112)
Suminol Milling Cyanine 5R (N) (C.I. Acid Blue 113)
Kayanol Milling Blue GW (C.I. Acid Blue 127)
Lanyl Brilliant Blue G ex cc (C.I. Acid Blue 127:1)
Kayanol Blue NR (C.I. Acid Blue 129)
Kayanol Milling Blue BW (C.I. Acid Blue 138)
Kayanol Milling Blue 2RW (C.I. Acid Blue 140)
Lanyl Blue 3G ex conc (C.I. Acid Blue 171)
Nylosan Blue N-GL 150 (C.I. Acid Blue 230)
Tectilon Blue 6G 200% (C.I. Acid Blue 258)
Telon Blue AFN (CI Acid Blue 264)
Tectilon Blue 4R-01 200% (C.I. Acid Blue 277:1)
Nylosan B Blue N-FL SGR180 (C.I. Acid Blue278)
Nylosan Blue N-5GL SGR 200 (C.I. Acid Blue 280)
Kayalax Navy R (C.I. Acid Blue 300)
Nylosan Blue N-BLN (C.I. Acid Blue 350)
Lanacron Blue N-3GL
Acid Green V (CI Acid Green 16)
Chuganol Cyanine Green G (CI Acid Green 25)
 樹脂組成物層における、可視光吸収剤(B)の含有量は、上述の透過率を調整するためにその種類等に応じて適宜調整されるので、その含有量は限定されるものではないが、例えば、絶縁信頼性、膜耐久性等の観点から、熱硬化性樹脂(A)の総量100質量部に対して、0.01~10質量部であることが好ましく、0.05~5質量部であることがより好ましく、0.05~2質量部であることが更に好ましい。 The content of the visible light absorber (B) in the resin composition layer is appropriately adjusted according to the type thereof in order to adjust the transmittance described above, so the content is not limited. , For example, from the viewpoint of insulation reliability, film durability, etc., it is preferably 0.01 to 10 parts by mass, and 0.05 to 5 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting resin (A) parts is more preferable, and 0.05 to 2 parts by mass is even more preferable.
〔無機充填材(C)〕
 樹脂組成物層は、耐燃性の向上、熱伝導率の向上、及び熱膨張率の低減のため、無機充填材(C)を更に含むことが好ましい。無機充填材(C)を使用することにより、アンダーフィル材の耐燃性、及び熱伝導率を向上させ、熱膨張率を低減することができる。
[Inorganic filler (C)]
The resin composition layer preferably further contains an inorganic filler (C) in order to improve flame resistance, improve thermal conductivity, and reduce the coefficient of thermal expansion. By using the inorganic filler (C), the flame resistance and thermal conductivity of the underfill material can be improved, and the coefficient of thermal expansion can be reduced.
 無機充填材(C)の平均粒子径は、特に限定されないが、粒子径の大きい無機充填材を用いた場合の沈降によるワニス保管安定性低下を抑制し、樹脂組成物層の溶融粘度及び透明性を向上させ、また、チップに配列される電極の狭ピッチ化や電極間の狭ギャップ化に対応する観点からは、400nm以下が好ましく、300nm以下が更に好ましく、1~100nmが特に好ましい。
 なお、本実施形態において、無機充填材(C)の「平均粒子径」とは、無機充填材(C)のメジアン径を意味するものとする。ここでメジアン径とは、ある粒子径を基準として粉体の粒度分布を2つに分けた場合に、より粒子径が大きい側の粒子の体積と、より粒子径が小さい側の粒子の体積とが、全粉体の夫々50%を占めるような粒子径を意味する。無機充填材(C)の平均粒子径(メジアン径)は、湿式レーザー回折・散乱法により測定される。
The average particle size of the inorganic filler (C) is not particularly limited. From the standpoint of improving the , and coping with narrower pitches of electrodes arranged on a chip and narrower gaps between electrodes, the thickness is preferably 400 nm or less, more preferably 300 nm or less, and particularly preferably 1 to 100 nm.
In addition, in this embodiment, the "average particle size" of the inorganic filler (C) shall mean the median size of the inorganic filler (C). Here, the median diameter is the volume of particles on the larger particle diameter side and the volume of particles on the smaller particle diameter side when the particle size distribution of powder is divided into two based on a certain particle size. means a particle size such that each accounts for 50% of the total powder. The average particle size (median size) of the inorganic filler (C) is measured by a wet laser diffraction/scattering method.
 無機充填材(C)としては、特に限定されないが、例えば、天然シリカ、溶融シリカ、アモルファスシリカ、及び中空シリカ等のシリカ;ベーマイト、水酸化アルミニウム、アルミナ、及び窒化アルミニウム等のアルミニウム化合物;酸化マグネシウム、及び水酸化マグネシウム等のマグネシウム化合物;炭酸カルシウム、及び硫酸カルシウム等のカルシウム化合物;酸化モリブデン、及びモリブデン酸亜鉛等のモリブデン化合物;窒化ホウ素;硫酸バリウム;天然タルク、及び焼成タルク等のタルク;マイカ;短繊維状ガラス、球状ガラス、及び微粉末ガラス(例えば、Eガラス、Tガラス、Dガラス)等のガラスが挙げられる。また、樹脂組成物層に導電性又は異方導電性を付与したい場合には、無機充填材(C)として、例えば、金、銀、ニッケル、銅、錫合金、及びパラジウムの金属粒子を使用してもよい。 Examples of the inorganic filler (C) include, but are not limited to, silica such as natural silica, fused silica, amorphous silica, and hollow silica; aluminum compounds such as boehmite, aluminum hydroxide, alumina, and aluminum nitride; magnesium oxide; Calcium compounds such as calcium carbonate and calcium sulfate; Molybdenum compounds such as molybdenum oxide and zinc molybdate; Boron nitride; Barium sulfate; Talc such as natural talc and calcined talc; glass such as short fiber glass, spherical glass, and fine powder glass (eg, E glass, T glass, D glass); In addition, when it is desired to impart electrical conductivity or anisotropic electrical conductivity to the resin composition layer, metal particles of gold, silver, nickel, copper, tin alloys, and palladium, for example, are used as the inorganic filler (C). may
 これらの中でも、樹脂組成物層の耐燃性の向上及び熱膨張率の低減の観点から、無機充填材(C)としては、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、水酸化マグネシウム及びこれらの組み合わせの群から選択される少なくとも1種を含むことが好ましく、シリカ、アルミナ、及び窒化ホウ素からなる群より選択される少なくとも1種を含むことがより好ましく、その中でもシリカが更に好ましい。シリカとしては、例えば、デンカ(株)製のSFP-120MC(商品名)、及びSFP-130MC(商品名);(株)アドマテックス製の0.3μmSX-CM1(商品名)、0.3μmSX-EM1(商品名)、0.3μmSV-EM1(商品名)、SC1050-MLQ(商品名)、SC2050-MNU(商品名)、SC2050-MTX(商品名)、2.2μmSC6103-SQ(商品名)、SE2053-SQ(商品名)、Y50SZ-AM1(商品名)、YA050C-MJE(商品名)、YA050C-MJM(商品名)、YA050C-MJF(商品名)、及びYA050C-MJA(商品名)が挙げられる。 Among these, the inorganic filler (C) includes silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, and magnesium oxide from the viewpoint of improving the flame resistance of the resin composition layer and reducing the coefficient of thermal expansion. , magnesium hydroxide and combinations thereof, preferably at least one selected from the group consisting of silica, alumina, and boron nitride, more preferably containing at least one selected from the group consisting of silica, alumina, and boron nitride. is more preferred. Examples of silica include SFP-120MC (trade name) and SFP-130MC (trade name) manufactured by Denka Corporation; 0.3 μm SX-CM1 (trade name) and 0.3 μm SX- EM1 (trade name), 0.3 μm SV-EM1 (trade name), SC1050-MLQ (trade name), SC2050-MNU (trade name), SC2050-MTX (trade name), 2.2 μm SC6103-SQ (trade name), SE2053-SQ (trade name), Y50SZ-AM1 (trade name), YA050C-MJE (trade name), YA050C-MJM (trade name), YA050C-MJF (trade name), and YA050C-MJA (trade name) be done.
 これらの無機充填材(C)は、1種を単独で又は2種以上を適宜混合して使用することができる。 These inorganic fillers (C) can be used singly or in an appropriate mixture of two or more.
 無機充填材(C)は、シランカップリング剤で表面処理されたものを用いてもよい。無機充填材(C)の表面処理に用いられるシランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されない。例えば、ビニルトリメトキシシラン、及びγ-(メタ)アクリロキシプロピルトリメトキシシラン等のビニルシラン系シランカップリング剤;N-フェニル-3-アミノプロピルトリメトキシシラン等のフェニルアミノシラン系シランカップリング剤;トリメトキシフェニルシラン等のフェニルシラン系シランカップリング剤;イミダゾールシラン系シランカップリング剤が挙げられる。これらのシランカップリング剤は、1種を単独で又は2種以上を適宜混合して使用することができる。 The inorganic filler (C) may be surface-treated with a silane coupling agent. The silane coupling agent used for surface treatment of the inorganic filler (C) is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances. For example, vinyltrimethoxysilane and vinylsilane-based silane coupling agents such as γ-(meth)acryloxypropyltrimethoxysilane; phenylaminosilane-based silane coupling agents such as N-phenyl-3-aminopropyltrimethoxysilane; phenylsilane-based silane coupling agents such as methoxyphenylsilane; and imidazolesilane-based silane coupling agents. These silane coupling agents can be used singly or in admixture of two or more.
 樹脂組成物層において、無機充填材(C)の含有量は、特に限定されないが、絶縁信頼性、及び実装時に十分なフラックス活性を確保する観点から、熱硬化性樹脂(A)の総量100質量部に対して、10~500質量部であることが好ましく、25~400質量部であることがより好ましく、30~300質量部であることが更に好ましい。無機充填材(C)の含有量の上限は、250質量部であってもよい。 In the resin composition layer, the content of the inorganic filler (C) is not particularly limited, but from the viewpoint of ensuring insulation reliability and sufficient flux activity during mounting, the total amount of the thermosetting resin (A) is 100 mass. It is preferably 10 to 500 parts by mass, more preferably 25 to 400 parts by mass, even more preferably 30 to 300 parts by mass. The upper limit of the content of the inorganic filler (C) may be 250 parts by mass.
〔フラックス活性剤(D)〕
 樹脂組成物層は、フリップチップ実装においてフラックス活性を発現させるため、フラックス活性剤(D)をさらに含むことが好ましい。フラックス活性剤(D)は、分子中に1個以上の酸性部位を有する有機化合物であれば、特に限定されない。酸性部位としては、例えば、リン酸基、フェノール性水酸基、カルボキシル基、及びスルホン酸基が好ましく、樹脂組成物層をアンダーフィル材として用いた半導体装置において、接合部を構成するはんだや銅等の金属のマイグレーション、及び腐食をより有効に防止する観点から、フェノール性水酸基又はカルボキシル基がより好ましい。フラックス活性剤(D)は、1種を単独で又は2種以上を適宜混合して使用することができる。
[Flux activator (D)]
The resin composition layer preferably further contains a flux activator (D) in order to exhibit flux activity in flip-chip mounting. The flux activator (D) is not particularly limited as long as it is an organic compound having one or more acidic sites in its molecule. As the acidic site, for example, a phosphoric acid group, a phenolic hydroxyl group, a carboxyl group, and a sulfonic acid group are preferable. A phenolic hydroxyl group or a carboxyl group is more preferable from the viewpoint of more effectively preventing metal migration and corrosion. The flux activator (D) can be used singly or in an appropriate mixture of two or more.
 フラックス活性剤(D)は、特に限定されないが、接合部の酸化膜の除去を十分行う観点からに、酸解離定数pKaが、3.8以上15.0以下であることが好ましく、ワニス及びアンダーフィル材の保管安定性とフラックス活性の両立の観点から、4.0以上14.0以下であることがより好ましい。 Although the flux activator (D) is not particularly limited, it preferably has an acid dissociation constant pKa of 3.8 or more and 15.0 or less from the viewpoint of sufficiently removing the oxide film on the joint. It is more preferably 4.0 or more and 14.0 or less from the viewpoint of compatibility between the storage stability of the filler material and the flux activity.
 樹脂組成物層において、フラックス活性剤(D)の分子量は、特に限定されないが、フリップチップ実装においてフラックス活性が発現する前に揮発してしまうこと、すなわち接合部の酸化膜を除去する前にフラックス活性剤(D)が揮発してしまうことを防ぐ観点から、分子量は200以上であることが好ましく、250以上であることがより好ましい。フラックス活性剤としての運動性を有し、十分なフラックス活性を得る観点から、フラックス活性剤(D)の分子量は、8000以下であることが好ましく、1000以下であることがより好ましく、600以下であることが更に好ましい。 In the resin composition layer, the molecular weight of the flux activator (D) is not particularly limited. From the viewpoint of preventing volatilization of the activator (D), the molecular weight is preferably 200 or more, more preferably 250 or more. From the viewpoint of having motility as a flux activator and obtaining sufficient flux activity, the molecular weight of the flux activator (D) is preferably 8000 or less, more preferably 1000 or less, and 600 or less. It is even more preferable to have
 フラックス活性剤(D)としては、特に限定されないが、例えば、アビエチン酸、ネオアビエチン酸、デヒドロアビエチン酸、ピマール酸、イソピマール酸、パラストリン酸、ジフェノール酸、ジヒドロアビエチン酸、テトラヒドロアビエチン酸、水添ロジンエステル、及びロジン変性マレイン酸樹脂等のロジン系樹脂;N,N’-ビス(サリチリデン)-1,2-プロパンジアミン、及びN,N’-ビス(サリチリデン)-1,3-プロパンジアミン等のジアミン系;フェノールフタリンが挙げられる。これらのフラックス活性剤(D)は、溶媒への溶解性、ワニス及びアンダーフィル材の保管安定性に優れる点から、好ましい。 Examples of the flux activator (D) include, but are not limited to, abietic acid, neoabietic acid, dehydroabietic acid, pimaric acid, isopimaric acid, parastric acid, diphenolic acid, dihydroabietic acid, tetrahydroabietic acid, hydrogenation Rosin resins such as rosin esters and rosin-modified maleic acid resins; N,N'-bis(salicylidene)-1,2-propanediamine, N,N'-bis(salicylidene)-1,3-propanediamine, etc. diamine series; phenolphthalin. These flux activators (D) are preferable from the viewpoint of excellent solubility in solvents and excellent storage stability of varnishes and underfill materials.
 これらの中でも、熱硬化性樹脂(A)による失活を防ぐ観点から、フラックス活性剤(D)は、デヒドロアビエチン酸、ジフェノール酸、ジヒドロアビエチン酸、テトラヒドロアビエチン酸、水添ロジンエステル、ロジン変性マレイン酸樹脂、N,N’-ビス(サリチリデン)-1,2-プロパンジアミン、及びN,N’-ビス(サリチリデン)-1,3-プロパンジアミンからなる群より選択される少なくとも1種を含むことがより好ましく、ロジン系樹脂を含むことが特に好ましい。これらのフラックス活性剤は、比較的反応性が低いことから、熱硬化性樹脂(A)との反応がほとんど起こらず、酸化膜の除去に必要となる十分なフラックス活性が維持される観点から更に好ましい。また、より一層優れたフラックス活性が得られる点から、フラックス活性剤(D)は、水添ロジンエステルであることが、より更に好ましい。 Among these, from the viewpoint of preventing deactivation by the thermosetting resin (A), the flux activator (D) is dehydroabietic acid, diphenolic acid, dihydroabietic acid, tetrahydroabietic acid, hydrogenated rosin ester, rosin-modified At least one selected from the group consisting of maleic acid resin, N,N'-bis(salicylidene)-1,2-propanediamine, and N,N'-bis(salicylidene)-1,3-propanediamine is more preferable, and it is particularly preferable to contain a rosin-based resin. Since these flux activators have relatively low reactivity, they hardly react with the thermosetting resin (A), and from the viewpoint of maintaining sufficient flux activity necessary for removing the oxide film, preferable. In addition, the flux activator (D) is more preferably a hydrogenated rosin ester in terms of obtaining even better flux activity.
 フラックス活性剤(D)は、市販品を用いることができる。ロジン系樹脂としては、例えば、パインクリスタル(登録商標、以下同じ)シリーズのKR-85(商品名、以下同じ)、KR-612、KR-614、KE-100、KE-311、PE-590、KE-359、KE-604、KR-120、KR-140、KR-614、D-6011、及びKR-50M;マルキードNo32(以上、荒川化学工業株式会社製)等が挙げられる。 A commercially available product can be used as the flux activator (D). Examples of rosin-based resins include Pine Crystal (registered trademark, hereinafter the same) series KR-85 (trade name, hereinafter the same), KR-612, KR-614, KE-100, KE-311, PE-590, KE-359, KE-604, KR-120, KR-140, KR-614, D-6011, and KR-50M; Marquid No. 32 (manufactured by Arakawa Chemical Industries, Ltd.) and the like.
 樹脂組成物層における、フラックス活性剤(D)の含有量は、特に限定されないが、絶縁信頼性、及び実装時に十分なフラックス活性を確保する観点から、熱硬化性樹脂(A)の総量100質量部に対して、3~70質量部であることが好ましく、5~50質量部であることがより好ましく、8~40質量部であることが更に好ましい。 The content of the flux activator (D) in the resin composition layer is not particularly limited, but from the viewpoint of ensuring insulation reliability and sufficient flux activity during mounting, the total amount of the thermosetting resin (A) is 100 mass. It is preferably 3 to 70 parts by mass, more preferably 5 to 50 parts by mass, even more preferably 8 to 40 parts by mass.
〔硬化触媒(E)〕
 樹脂組成物層には、硬化触媒(E)をさらに含むことができる。樹脂組成物層が硬化触媒(E)を含むことにより、熱硬化性樹脂(A)の重合速度をより好適に制御でき、また、適度な成形性を有する樹脂組成物が得られる傾向にある。硬化触媒は、熱硬化性樹脂(A)の重合を促進できる化合物であれば、特に限定されない。硬化触媒(E)は、1種を単独で又は2種以上を混合して使用することができる。
[Curing catalyst (E)]
The resin composition layer may further contain a curing catalyst (E). By including the curing catalyst (E) in the resin composition layer, the polymerization rate of the thermosetting resin (A) can be more suitably controlled, and a resin composition with moderate moldability tends to be obtained. The curing catalyst is not particularly limited as long as it is a compound capable of promoting polymerization of the thermosetting resin (A). Curing catalyst (E) can be used individually by 1 type or in mixture of 2 or more types.
 硬化触媒(E)としては、特に限定されないが、例えば、有機過酸化物、イミダゾール化合物、アゾ化合物、並びにトリエチルアミン及びトリブチルアミン等の第3級アミンが挙げられる。これらの中でも、良好な重合速度が得られ、良好な硬化速度が得られる点から、有機過酸化物、イミダゾール化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含むことが好ましく、有機過酸化物及びイミダゾール化合物の両方を含むことがより好ましい。 The curing catalyst (E) is not particularly limited, but examples include organic peroxides, imidazole compounds, azo compounds, and tertiary amines such as triethylamine and tributylamine. Among these, from the viewpoint of obtaining a good polymerization rate and obtaining a good curing rate, it is preferable that at least one selected from the group consisting of organic peroxides, imidazole compounds, and combinations thereof is included, and an organic More preferably, it contains both a peroxide and an imidazole compound.
 樹脂組成物層における、硬化触媒(E)の含有量は、特に限定されないが、良好な硬化速度が得られる点から、熱硬化性樹脂(A)の総量100質量部に対して、0.02~10質量部であることが好ましく、0.05~8質量部であることがより好ましい。 The content of the curing catalyst (E) in the resin composition layer is not particularly limited, but from the viewpoint of obtaining a good curing speed, it is 0.02 per 100 parts by mass of the total amount of the thermosetting resin (A). It is preferably 10 parts by mass, more preferably 0.05 to 8 parts by mass.
(有機過酸化物)
 本実施形態に係る有機過酸化物は、熱により、熱硬化性樹脂(A)を重合させることができる活性物質(ラジカル)を放出する化合物であれば特に限定されず、公知の有機過酸化物を用いることができる。有機過酸化物は、1種を単独で又は2種以上を混合して使用することができる。
(organic peroxide)
The organic peroxide according to the present embodiment is not particularly limited as long as it is a compound that releases an active substance (radical) capable of polymerizing the thermosetting resin (A) by heat, and is a known organic peroxide. can be used. An organic peroxide can be used individually by 1 type or in mixture of 2 or more types.
 本実施形態において、有機過酸化物の10時間半減期温度は、特に限定されないが、100℃以上であることが好ましく、製造性の観点から、110℃以上であることがより好ましい。製造時の溶媒除去工程の高温化を図ることができるため、有機過酸化物は、前記の範囲の10時間半減期温度を満たすことが好ましい。 In the present embodiment, the 10-hour half-life temperature of the organic peroxide is not particularly limited, but is preferably 100°C or higher, and more preferably 110°C or higher from the viewpoint of productivity. It is preferable that the organic peroxide satisfies the 10-hour half-life temperature in the above range, since it is possible to increase the temperature of the solvent removal step during production.
 有機過酸化物としては、例えば、ジクミルパーオキサイド、ジ(2-tert-ブチルペルオキシイソプロピル)ベンゼン、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルペルオキシ)ヘキシン-3、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキシド、メチルエチルケトンパーオキサイド、及びシクロヘキサノンパーオキサイドのケトンパーオキサイド;1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、及び2,2-ジ(4,4-ジ(t-ブチルパーオキシ)シクロヘキシル)プロパンのパーオキシケタール;tert―ブチルハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、及びt-ブチルハイドロパーオキサイドのハイドロパーオキサイド;ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-へキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、α, α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、及びジ-t-ブチルパーオキサイドのジアルキルパーオキサイド;ジベンゾイルパーオキサイド、及びジ(4-メチルベンゾイル)パーオキサイドのジアシルパーオキサイド;ジ-n-プロピルパーオキシジカーボネート、及びジイソプロピルパーオキシジカーボネートのパーオキシジカーボネート;2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-へキシルパーオキシベンゾエート、t-ブチルパーオキシベンゾエート、及びt-ブチルパーオキシ-2-エチルヘキサノネートのパーオキシエステル等が挙げられる。より良好な反応速度及び硬化速度が得られる点から、ジクミルパーオキサイド、ジ(2-tert-ブチルペルオキシイソプロピル)ベンゼン、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルペルオキシ)ヘキシン-3、α, α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、及びtert―ブチルハイドロパーオキサイドからなる群より選択される少なくとも1種が、好ましい。 Examples of organic peroxides include dicumyl peroxide, di(2-tert-butylperoxyisopropyl)benzene, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-dimethyl-2,5 - Ketone peroxides of bis(tert-butylperoxy)hexyne-3, benzoyl peroxide, di-t-butyl peroxide, methyl ethyl ketone peroxide, and cyclohexanone peroxide; 1,1-di(t-butylperoxy)cyclohexane , and peroxyketals of 2,2-di(4,4-di(t-butylperoxy)cyclohexyl)propane; tert-butyl hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide Peroxides and hydroperoxides of t-butyl hydroperoxide; di(2-t-butylperoxyisopropyl)benzene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t- Butylcumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, α,α'-di(t-butylperoxy)diisopropyl dialkyl peroxide of benzene and di-t-butyl peroxide; dibenzoyl peroxide and diacyl peroxide of di(4-methylbenzoyl) peroxide; di-n-propylperoxydicarbonate and diisopropylperoxydicarbonate Peroxydicarbonates of carbonates; 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-hexylperoxybenzoate, t-butylperoxybenzoate, and t-butylperoxy-2-ethyl Peroxyester of hexanonate and the like can be mentioned. Dicumyl peroxide, di(2-tert-butylperoxyisopropyl)benzene, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5- at least one selected from the group consisting of dimethyl-2,5-bis(tert-butylperoxy)hexyne-3, α,α'-di(t-butylperoxy)diisopropylbenzene, and tert-butyl hydroperoxide is preferred.
 樹脂組成物層において、有機過酸化物の含有量は、特に限定されないが、より一層良好な重合速度及び硬化速度が得られる点から、熱硬化性樹脂(A)の総量100質量部に対して、0.02~10質量部であることが好ましく、0.05~8質量部であることがより好ましい。 In the resin composition layer, the content of the organic peroxide is not particularly limited, but from the viewpoint of obtaining a better polymerization speed and curing speed, , preferably 0.02 to 10 parts by mass, more preferably 0.05 to 8 parts by mass.
(イミダゾール化合物)
 イミダゾール化合物は、熱硬化性樹脂(A)の重合を促進できれば、特に限定されず、公知のイミダゾール化合物を用いることができる。イミダゾール化合物は、1種又は2種以上を混合して使用することができる。
(Imidazole compound)
The imidazole compound is not particularly limited as long as it can promote polymerization of the thermosetting resin (A), and known imidazole compounds can be used. An imidazole compound can be used 1 type or in mixture of 2 or more types.
 イミダゾール化合物としては、例えば、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2,4,5-トリフェニルイミダゾール、トリエチルアミン及びトリブチルアミン等の第3級アミン、並びにそれらの誘導体が挙げられる。中でも、反応速度及び硬化速度の調整がより容易である点から、2-エチル-4-メチルイミダゾールが好ましい。 Examples of imidazole compounds include 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 2,4,5-triphenylimidazole, triethylamine and tributylamine. Tertiary amines, as well as their derivatives are included. Among them, 2-ethyl-4-methylimidazole is preferred because it is easier to control the reaction speed and curing speed.
 樹脂組成物層において、イミダゾール化合物の含有量は、特に限定されないが、重合速度及び硬化速度の調整がより一層容易になる点から、熱硬化性樹脂(A)の総量100質量部に対して、0.02~10質量部であることが好ましく、0.05~8質量部であることがより好ましい。 In the resin composition layer, the content of the imidazole compound is not particularly limited, but from the viewpoint that the adjustment of the polymerization rate and the curing rate becomes easier, the total amount of the thermosetting resin (A) is 100 parts by mass. It is preferably 0.02 to 10 parts by mass, more preferably 0.05 to 8 parts by mass.
(アゾ化合物)
 アゾ化合物は、熱硬化性樹脂(A)の重合を促進できれば、特に限定されず、公知のアゾ化合物を用いることができる。アゾ化合物は、1種を単独で又は2種以上を混合して使用することができる。
 アゾ化合物としては、例えば、2,2'-アゾビスブチロニトリル、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、及び2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等が挙げられる。
(azo compound)
The azo compound is not particularly limited as long as it can accelerate the polymerization of the thermosetting resin (A), and known azo compounds can be used. Azo compounds can be used singly or in combination of two or more.
Examples of azo compounds include 2,2'-azobisbutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), and 2,2'-azobis(4-methoxy-2,4- dimethylvaleronitrile) and the like.
 樹脂組成物層において、アゾ化合物の含有量は、特に限定されないが、重合速度及び硬化速度の調整がより一層容易になる点から、熱硬化性樹脂(A)の総量100質量部に対して、0.02~10質量部であることが好ましく、0.05~8質量部であることがより好ましい。 In the resin composition layer, the content of the azo compound is not particularly limited, but from the point of view that the adjustment of the polymerization rate and the curing rate becomes easier, the total amount of the thermosetting resin (A) is 100 parts by mass. It is preferably 0.02 to 10 parts by mass, more preferably 0.05 to 8 parts by mass.
〔硬化剤(F)〕
 樹脂組成物層は、硬化剤(F)をさらに含んでいてもよい。硬化剤(F)は、熱硬化性樹脂(A)の硬化性を高める目的、熱硬化性樹脂(A)の硬化速度を調整する等の目的で用いられる。硬化剤(F)としては、用いる熱硬化性樹脂(A)の種類に応じて公知のものを適宜選定可能であるが、例えば、フェノール樹脂、アミン類、チオール類等が挙げられる。
[Curing agent (F)]
The resin composition layer may further contain a curing agent (F). The curing agent (F) is used for the purpose of improving the curability of the thermosetting resin (A), adjusting the curing speed of the thermosetting resin (A), and the like. As the curing agent (F), a known one can be appropriately selected according to the type of the thermosetting resin (A) used, and examples thereof include phenol resins, amines, thiols and the like.
 本実施形態において、硬化剤(F)の含有量は、特に限定されないが、熱硬化性樹脂(A)の硬化性、硬化速度の調整が容易になる点から、熱硬化性樹脂(A)と硬化剤(F)との合計100質量部に対して、3~80質量部であることが好ましく、5~70質量部であることがさらに好ましく、15~50質量部であることが特に好ましい。 In the present embodiment, the content of the curing agent (F) is not particularly limited. It is preferably 3 to 80 parts by mass, more preferably 5 to 70 parts by mass, and particularly preferably 15 to 50 parts by mass, based on 100 parts by mass in total with the curing agent (F).
(アミノトリアジンノボラック樹脂)
 また、特に限定されるものではないが、硬化剤(F)としては、例えば、アミノトリアジンノボラック樹脂を用いることができる。例えば、マレイミド化合物又はシトラコンイミド化合物を主成分とした樹脂組成物に対し硬化剤(F)としてアミノトリアジンノボラック樹脂を用いた場合、アミノトリアジンノボラック樹脂は、トリアジン骨格を有することから、マレイミド基及び/又はシトラコンイミド基と良好に反応することができる。そのため、例えば、アミノトリアジンノボラック樹脂によって熱硬化性樹脂のラジカル重合反応の速度を好適に制御しながら硬化させることができる。また、アミノトリアジンノボラック樹脂は、トリアジン骨格にノボラック骨格が結合しているので、硬化後においても、ヒドロキシ基及びアミノ基を多く含むことができる。そのため、硬化後においても、これらの基とチップのシラノール基とにおいて良好な化学結合が生じるため、樹脂組成物層のチップ接着性を向上させることができる。
(aminotriazine novolac resin)
Moreover, although not particularly limited, as the curing agent (F), for example, an aminotriazine novolac resin can be used. For example, when an aminotriazine novolak resin is used as a curing agent (F) for a resin composition containing a maleimide compound or a citraconimide compound as a main component, the aminotriazine novolak resin has a triazine skeleton, and thus maleimide groups and/or or can react well with citraconimide groups. Therefore, for example, the aminotriazine novolac resin can be used to cure the thermosetting resin while suitably controlling the radical polymerization reaction rate. In addition, since the aminotriazine novolac resin has a novolak skeleton bonded to the triazine skeleton, it can contain many hydroxy groups and amino groups even after curing. Therefore, even after curing, good chemical bonding occurs between these groups and the silanol groups of the chip, so that the chip adhesion of the resin composition layer can be improved.
 樹脂組成物層には、低ボイド性及びチップ接着性を向上させる観点から、アミノトリアジンノボラック樹脂を含めることができる。アミノトリアジンノボラック樹脂としては、分子内にトリアジン環を有するフェノールホルムアルデヒド樹脂(フェノール樹脂)であれば、公知の樹脂を用いることができる。このようなアミノトリアジンノボラック樹脂は、公知方法により調製でき、例えば、フェノール樹脂をメラミン等の窒素化合物で変性することで得られる。アミノトリアジンノボラック樹脂は、1種を単独で又は2種以上を適宜混合して使用することができる。 The resin composition layer can contain an aminotriazine novolak resin from the viewpoint of reducing voids and improving chip adhesion. As the aminotriazine novolak resin, a known resin can be used as long as it is a phenol formaldehyde resin (phenol resin) having a triazine ring in the molecule. Such aminotriazine novolac resins can be prepared by known methods, for example, by modifying phenolic resins with nitrogen compounds such as melamine. Aminotriazine novolac resins may be used singly or in admixture of two or more.
 樹脂組成物層において、アミノトリアジンノボラック樹脂の含有量は、アミノトリアジンノボラック樹脂と熱硬化性樹脂(A)との合計100質量部に対して、5~70質量部であることが好ましく、より優れた低ボイド性及びチップ接着性が得られることから、15~50質量部であることがさらに好ましく、20~40質量部であることが特に好ましい。 In the resin composition layer, the content of the aminotriazine novolak resin is preferably 5 to 70 parts by mass with respect to the total of 100 parts by mass of the aminotriazine novolak resin and the thermosetting resin (A), and is more excellent. 15 to 50 parts by mass is more preferable, and 20 to 40 parts by mass is particularly preferable, since low voids and chip adhesion can be obtained.
 アミノトリアジンノボラック樹脂としては、より一層優れた低ボイド性及びチップ接着性が得られることから、その重量平均分子量は、300~9,500であることが好ましく、500~5,000であることがより好ましい。なお、本実施形態において、重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法により求められる標準ポリスチレン換算の値である。 The weight average molecular weight of the aminotriazine novolac resin is preferably 300 to 9,500, more preferably 500 to 5,000, because it provides even better low void properties and chip adhesion. more preferred. In addition, in this embodiment, a weight average molecular weight is a value of standard polystyrene conversion calculated|required by GPC (gel permeation chromatography) method.
 アミノトリアジンノボラック樹脂としては、より一層優れた低ボイド性及びチップ接着性が得られることから、その窒素含有量は、アミノトリアジンノボラック樹脂100質量%中に、10~25質量%であることが好ましく、より一層優れた低ボイド性と共に、更に一層優れたチップ接着性が得られることから、15~20質量%であることがより好ましい。 The aminotriazine novolac resin preferably has a nitrogen content of 10 to 25% by mass based on 100% by mass of the aminotriazine novolac resin, because it provides even better low void properties and chip adhesion. It is more preferable to be 15 to 20% by mass, since further excellent chip adhesiveness can be obtained together with further excellent low void property.
 アミノトリアジンノボラック樹脂としては、より一層優れた低ボイド性及びチップ接着性が得られることから、そのヒドロキシ基当量は、80~200g/eq.であることが好ましく、100~180g/eq.であることがより好ましい。なお、本実施形態において、ヒドロキシ基当量とは、アミノトリアジンノボラック樹脂1g中に含まれるヒドロキシ基をアセチル化するために要する水酸化カリウムのmg数を示す。具体的には、JIS K 0070に従って、測定される。  As an aminotriazine novolac resin, further excellent low void properties and chip adhesiveness can be obtained, so its hydroxy group equivalent is 80 to 200 g/eq. is preferably 100 to 180 g/eq. is more preferable. In the present embodiment, the hydroxy group equivalent means mg of potassium hydroxide required to acetylate the hydroxy groups contained in 1 g of the aminotriazine novolac resin. Specifically, it is measured according to JIS K 0070.
 アミノトリアジンノボラック樹脂としては、更に一層優れた低ボイド性及びチップ接着性が得られることから、下記式(1)で表される化合物及び下記式(2)で表される化合物からなる群より選択される1種以上を含むことが好ましい。 The aminotriazine novolac resin is selected from the group consisting of the compounds represented by the following formula (1) and the compounds represented by the following formula (2), since even more excellent low void property and chip adhesiveness can be obtained. It is preferable to include one or more of the
Figure JPOXMLDOC01-appb-C000021

 
Figure JPOXMLDOC01-appb-C000021

 
 式(1)中、R1は、各々独立に、水素原子、メチル基、又はエチル基を示す。より一層優れた低ボイド性及びチップ接着性が得られることから、R1は、各々独立に、水素原子、又はメチル基であることが好ましい。l、m、及びnは、各々独立に、0~10の整数を示す。より一層優れた低ボイド性及びチップ接着性が得られることから、l、m、及びnは、各々独立に、1~6の整数であることが好ましい。(l+m+n)は、1~20の整数を示す。より一層優れた低ボイド性及びチップ接着性が得られることから、(l+m+n)は、3~18の整数であることが好ましい。なお、式(1)で表される化合物は、例えば、式(1)において、R1の官能基やその数が異なる化合物、l、m、及びnの数が異なる化合物、(l+m+n)の数が異なる化合物などを含む混合物であってもよい。 In formula (1), each R 1 independently represents a hydrogen atom, a methyl group, or an ethyl group. It is preferable that each R 1 is independently a hydrogen atom or a methyl group, since further excellent low void property and chip adhesion can be obtained. l, m, and n each independently represent an integer of 0 to 10; It is preferable that l, m and n are each independently an integer of 1 to 6, since even better low void property and chip adhesion can be obtained. (l+m+n) represents an integer of 1-20. (l+m+n) is preferably an integer of 3 to 18, since even better low void property and chip adhesion can be obtained. The compound represented by formula (1) is, for example, a compound having different functional groups and the number of R 1 in formula (1), a compound having different numbers of l, m, and n, and the number of (l + m + n) may be a mixture containing compounds having different
Figure JPOXMLDOC01-appb-C000022

 
Figure JPOXMLDOC01-appb-C000022

 
 式(2)中、R2は、各々独立に、水素原子、メチル基、又はエチル基を示す。より一層優れた低ボイド性及びチップ接着性が得られることから、R2は、各々独立に、水素原子、又はメチル基であることが好ましい。o、p、q、r、及びsは、各々独立に、0~10の整数を示す。より一層優れた低ボイド性及びチップ接着性が得られることから、o、p、q、r、及びsは、各々独立に、1~4の整数であることが好ましい。(o+p+q+r+s)は、1~20の整数を示す。より一層優れた低ボイド性及びチップ接着性が得られることから、(o+p+q+r+s)は、5~20の整数であることが好ましい。なお、式(2)で表される化合物は、例えば、式(2)において、R2の官能基やその数が異なる化合物、o、p、q、r、及びsの数が異なる化合物、(o+p+q+r+s)の数が異なる化合物などを含む混合物であってもよい。 In formula (2), each R 2 independently represents a hydrogen atom, a methyl group, or an ethyl group. It is preferable that each R 2 is independently a hydrogen atom or a methyl group, since further excellent low void property and chip adhesion can be obtained. o, p, q, r, and s each independently represent an integer of 0 to 10; Each of o, p, q, r, and s is preferably an integer of 1 to 4, because even better low void property and chip adhesion can be obtained. (o+p+q+r+s) represents an integer of 1-20. (o+p+q+r+s) is preferably an integer of 5 to 20, since even better low void property and chip adhesion can be obtained. The compounds represented by formula (2) include, for example, compounds having different functional groups and the number of R 2 in formula (2), compounds having different numbers of o, p, q, r, and s, ( It may be a mixture containing compounds having different numbers of o+p+q+r+s).
 更により一層優れた低ボイド性及びチップ接着性が得られることから、アミノトリアジンノボラック樹脂としては、式(1)で表される化合物と式(2)で表される化合物との混合物であることがより好ましい。このような混合物としては、更に一層優れた低ボイド性及びチップ接着性が得られることから、式(1)で表される化合物と式(2)で表される化合物との質量比(式(1)で表される化合物(質量部):式(2)で表される化合物(質量部))が、50:50~90:10であることが好ましく、60:40~85:15であることがより好ましい。 Further excellent low void property and chip adhesion are obtained, so that the aminotriazine novolac resin is a mixture of the compound represented by the formula (1) and the compound represented by the formula (2). is more preferred. As such a mixture, even more excellent low void property and chip adhesiveness can be obtained, so the mass ratio of the compound represented by formula (1) and the compound represented by formula (2) (formula ( The ratio of the compound represented by 1) (parts by mass): the compound represented by formula (2) (parts by mass)) is preferably 50:50 to 90:10, and 60:40 to 85:15. is more preferable.
 アミノトリアジンノボラック樹脂としては、市販品を用いてもよく、例えば、DIC(株)製のLA-1356(商品名)、LA-3018-50P(商品名)、LA-7052(商品名)、LA-7054(商品名)、LA-7751(商品名)が挙げられる。 As the aminotriazine novolac resin, a commercially available product may be used. -7054 (trade name) and LA-7751 (trade name).
 〔その他の成分〕
 樹脂組成物層は、熱硬化性樹脂(A)や可視光吸収剤(B)等に加えて、その他の成分を1種又は2種以上含んでいてもよい。
 その他の成分としては、特に限定されないが、例えば、可撓性付与成分が挙げられる。可撓性付与成分は、樹脂組成物を含む層に対して可撓性を付与できるような成分であれば、特に限定されない。このような成分としては、例えば、熱硬化性樹脂(A)、可視光吸収剤(B)、無機充填材(C)、フラックス活性剤(D)、硬化触媒(E)、硬化剤(F)以外の、ポリイミド、ポリアミドイミド、ポリスチレン、ポリオレフィン、スチレン-ブタジエンゴム(SBR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、(メタ)アクリロニトリルブタジエンゴム(NBR)、ポリウレタン、ポリプロピレン、(メタ)アクリルオリゴマー、(メタ)アクリルポリマー、及びシリコーン樹脂等の熱可塑性の高分子化合物が挙げられる。これらの可撓性付与成分は、1種を単独で又は2種以上を適宜混合して使用することができる。
[Other ingredients]
The resin composition layer may contain one or two or more other components in addition to the thermosetting resin (A), the visible light absorbent (B), and the like.
Examples of other components include, but are not particularly limited to, flexibility imparting components. The flexibility imparting component is not particularly limited as long as it is a component capable of imparting flexibility to the layer containing the resin composition. Examples of such components include thermosetting resin (A), visible light absorber (B), inorganic filler (C), flux activator (D), curing catalyst (E), and curing agent (F). Polyimide, polyamideimide, polystyrene, polyolefin, styrene-butadiene rubber (SBR), isoprene rubber (IR), butadiene rubber (BR), (meth)acrylonitrile butadiene rubber (NBR), polyurethane, polypropylene, (meth) acrylic Thermoplastic polymer compounds such as oligomers, (meth)acrylic polymers, and silicone resins can be mentioned. These flexibility-imparting components can be used singly or in admixture of two or more.
 また、樹脂組成物層は、その他の成分として、樹脂成分と無機充填材(C)との界面の接着性、及び吸湿耐熱性をより向上させることを目的として、シランカップリング剤を含むこともできる。シランカップリング剤としては、例えば、ビニルトリメトキシシラン、及びγ-(メタ)アクリロキシプロピルトリメトキシシラン等のビニルシラン系シランカップリング剤;N-フェニル-3-アミノプロピルトリメトキシシラン等のフェニルアミノシラン系シランカップリング剤;トリメトキシフェニルシラン等のフェニルシラン系シランカップリング剤;イミダゾールシラン系シランカップリング剤が挙げられる。これらのシランカップリング剤は、1種を単独で又は2種以上を適宜混合して使用することができる。
 シランカップリング剤を使用する場合、その含有量は、特に限定されないが、吸湿耐熱性の一層の向上、及びフリップチップ実装時の揮発量の一層の低減観点から熱硬化性樹脂(A)の総量100質量部に対して、0.02~20質量部であることが好ましい。
In addition, the resin composition layer may contain, as another component, a silane coupling agent for the purpose of further improving the adhesiveness of the interface between the resin component and the inorganic filler (C) and the moisture absorption and heat resistance. can. Silane coupling agents include, for example, vinyltrimethoxysilane and vinylsilane-based silane coupling agents such as γ-(meth)acryloxypropyltrimethoxysilane; phenylaminosilanes such as N-phenyl-3-aminopropyltrimethoxysilane. silane coupling agents; phenylsilane-based silane coupling agents such as trimethoxyphenylsilane; and imidazole silane-based silane coupling agents. These silane coupling agents can be used singly or in admixture of two or more.
When using a silane coupling agent, its content is not particularly limited, but from the viewpoint of further improving moisture absorption and heat resistance and further reducing the amount of volatilization during flip chip mounting, the total amount of the thermosetting resin (A) It is preferably 0.02 to 20 parts by mass with respect to 100 parts by mass.
 また、樹脂組成物層は、その他の成分として、フィルム状アンダーフィル材の製造性の一層の向上及び充填材の一層の分散性向上等の目的として、湿潤分散剤を含んでもよい。湿潤分散剤としては、一般に塗料等に使用されている湿潤分散剤であれば、特に限定されない。例えば、ビックケミー・ジャパン(株)製のDISPERBYK(登録商標)-110(商品名)、同-111(商品名)、同-180(商品名)、同-161(商品名)、BYK-W996(商品名)、同-W9010(商品名)、及び同-W903(商品名)が挙げられる。これらの湿潤分散剤は、1種を単独で又は2種以上を適宜混合して使用することができる。
 湿潤分散剤を使用する場合、その含有量は、特に限定されないが、フィルム状アンダーフィル材の製造性の一層向上の観点からは、無機充填材(C)100質量部に対して、0.1~5質量部とすることが好ましく、0.5~3質量部とすることがより好ましい。なお、2種以上の湿潤分散剤を併用する場合には、これらの合計量が前記比率を満たすことが好ましい。
In addition, the resin composition layer may contain a wetting and dispersing agent as another component for the purpose of further improving the manufacturability of the film-like underfill material and further improving the dispersibility of the filler. The wetting and dispersing agent is not particularly limited as long as it is a wetting and dispersing agent generally used for paints and the like. For example, BYK-Chemie Japan Co., Ltd. DISPERBYK (registered trademark) -110 (trade name), -111 (trade name), -180 (trade name), -161 (trade name), BYK-W996 ( (trade name), W9010 (trade name), and W903 (trade name). These wetting and dispersing agents can be used singly or in admixture of two or more.
When a wetting and dispersing agent is used, its content is not particularly limited, but from the viewpoint of further improving the manufacturability of the film-like underfill material, it is 0.1 per 100 parts by mass of the inorganic filler (C). It is preferably 5 parts by mass, more preferably 0.5 to 3 parts by mass. When two or more wetting and dispersing agents are used in combination, the total amount thereof preferably satisfies the above ratio.
 その他の成分として、樹脂組成物層は、所期の特性が損なわれない範囲において、種々の目的により、各種の添加剤を含有していてもよい。添加剤としては、例えば、増粘剤、滑剤、消泡剤、レベリング剤、光沢剤、難燃剤、及びイオントラップ剤が挙げられる。これらの添加剤は、1種を単独で又は2種以上を適宜混合して使用することができる。
 樹脂組成物層において、その他の添加剤の含有量は、特に限定されないが、通常、熱硬化性樹脂(A)の総量100質量部に対して、それぞれ0.01~10質量部である。
As other components, the resin composition layer may contain various additives for various purposes as long as the desired properties are not impaired. Additives include, for example, thickeners, lubricants, defoamers, leveling agents, brighteners, flame retardants, and ion trapping agents. These additives can be used singly or in admixture of two or more.
The content of the other additives in the resin composition layer is not particularly limited, but is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting resin (A).
〔フィルム状アンダーフィル材用樹脂組成物の調製方法〕
 上述の通り、本実施形態のフィルム状アンダーフィル材用樹脂組成物は、熱硬化性樹脂(A)や可視光吸収剤(B)等を含み、上述の組成を有するものが得られる限り、調製方法は特に限定されない。樹脂組成物は、例えば、熱硬化性樹脂(A)及び可視光吸収剤(B)と、必要に応じて、無機充填材(C)と、フラックス活性剤(D)と、硬化触媒(E)、硬化剤(F)と、その他の成分とを、適宜混合することにより調製できる。必要に応じて、これらの成分を有機溶媒に溶解又は分散させたワニスの形態としてもよい。ワニスは、フィルム状アンダーフィル材を作製する際に好適に使用することができる。フィルム状アンダーフィル材の具体的な製造方法については、上述の積層体の製造方法、及び後述の実施例を参考にできる。
 なお、本実施形態のフィルム状アンダーフィル材用樹脂組成物は、本実施形態のフィルム状アンダーフィル材の樹脂組成物層の作製に好適に用いることができるが、本実施形態はこれに限定されるものではなく、本実施形態のフィルム状アンダーフィル材以外のフィルム状アンダーフィル材にも適用可能である。
[Method for preparing resin composition for film-like underfill material]
As described above, the resin composition for a film-like underfill material of the present embodiment contains a thermosetting resin (A), a visible light absorber (B), etc., and as long as a composition having the above composition is obtained, The method is not particularly limited. The resin composition comprises, for example, a thermosetting resin (A) and a visible light absorber (B), and optionally an inorganic filler (C), a flux activator (D), and a curing catalyst (E). , the curing agent (F), and other components can be appropriately mixed. If necessary, these components may be dissolved or dispersed in an organic solvent to form a varnish. A varnish can be suitably used when producing a film-like underfill material. As for a specific method for manufacturing the film-like underfill material, the above-described method for manufacturing a laminate and Examples described later can be referred to.
The resin composition for the film-like underfill material of the present embodiment can be suitably used for producing the resin composition layer of the film-like underfill material of the present embodiment, but the present embodiment is limited to this. However, it is also applicable to film-like underfill materials other than the film-like underfill material of the present embodiment.
 有機溶媒は、前記の成分を各々好適に溶解又は分散させることができ、かつ、本発明の効果を損なわないものであれば特に限定されない。有機溶媒としては、例えば、メタノール、エタノール、及びプロパノール等のアルコール類;アセトン、メチルエチルケトン(以下、「MEK」と略す場合がある。)、及びメチルイソブチルケトン等のケトン類;ジメチルアセトアミド、及びジメチルホルムアミド等のアミド類;トルエン、及びキシレン等の芳香族炭化水素類が挙げられる。これらの有機溶媒は、1種を単独で又は2種以上を適宜混合して使用することができる。 The organic solvent is not particularly limited as long as it can suitably dissolve or disperse the above components and does not impair the effects of the present invention. Examples of organic solvents include alcohols such as methanol, ethanol, and propanol; ketones such as acetone, methyl ethyl ketone (hereinafter sometimes abbreviated as "MEK"), and methyl isobutyl ketone; dimethylacetamide, and dimethylformamide. amides such as; aromatic hydrocarbons such as toluene and xylene. These organic solvents can be used singly or in admixture of two or more.
[樹脂組成物層付き半導体チップ、及び樹脂組成物層付き半導体チップ搭載用基板]
 本実施形態のフィルム状アンダーフィル材は、半導体チップや半導体チップ搭載用基板のアンダーフィル材用として好適に用いることができる。
[Semiconductor chip with resin composition layer and substrate for mounting semiconductor chip with resin composition layer]
The film-like underfill material of the present embodiment can be suitably used as an underfill material for semiconductor chips and substrates for mounting semiconductor chips.
 例えば、樹脂組成物層付き半導体チップは、半導体チップと、その半導体チップに積層された樹脂組成物層を含む層とを備える。また、樹脂組成物層付き半導体チップ搭載用基板は、半導体チップ搭載用基板と、その半導体チップ搭載用基板に積層された樹脂組成物層を含む層とを備える。 For example, a semiconductor chip with a resin composition layer includes a semiconductor chip and a layer including a resin composition layer laminated on the semiconductor chip. A substrate for mounting a semiconductor chip with a resin composition layer includes a substrate for mounting a semiconductor chip and a layer including a resin composition layer laminated on the substrate for mounting a semiconductor chip.
 本実施形態の樹脂組成物層付き半導体チップの製造方法においては、上述した本実施形態のフィルム状アンダーフィル材を用いて、樹脂組成物層付き半導体チップを製造することができる。樹脂組成物層付き半導体チップを作製する方法としては、特に限定されないが、例えば、半導体ウェハの電極が形成された面、すなわち基板との接合が行われる面に、本実施形態のフィルム状アンダーフィル材の樹脂組成物層が対向するように貼り合わせ、次いでフィルム状アンダーフィル材の基材フィルムを剥離し、その後、ダイシングソー等による個片化を行うことで、樹脂組成物層付き半導体チップを得ることができる。また、本実施形態の樹脂組成物層付き半導体チップ搭載用基板の製造方法においては、本実施形態のフィルム状アンダーフィル材を用いて、樹脂組成物層付き半導体チップ搭載用基板を製造することができる。樹脂組成物層付き半導体チップ搭載用基板を作製する方法としては、特に限定されないが、例えば、半導体チップ搭載用基板のチップ搭載側の面に、本実施形態のフィルム状アンダーフィル材の樹脂組成物層が対向するよう貼り合わせ、次いでフィルム状アンダーフィル材の基材フィルムを剥離することで得られる。 In the method for manufacturing a semiconductor chip with a resin composition layer of this embodiment, a semiconductor chip with a resin composition layer can be manufactured using the film-like underfill material of this embodiment described above. The method for producing a semiconductor chip with a resin composition layer is not particularly limited. The resin composition layers of the material are laminated so that they face each other, then the base film of the film-like underfill material is peeled off, and then singulated with a dicing saw or the like to form a semiconductor chip with a resin composition layer. Obtainable. Further, in the method for manufacturing a semiconductor chip mounting board with a resin composition layer of the present embodiment, the film-like underfill material of the present embodiment can be used to manufacture a semiconductor chip mounting board with a resin composition layer. can. The method for producing a substrate for mounting a semiconductor chip with a resin composition layer is not particularly limited. It is obtained by bonding the layers so that they face each other, and then peeling off the base film of the film-like underfill material.
 本実施形態のフィルム状アンダーフィル材を半導体ウェハ又は半導体チップ搭載用基板に貼り合わせる方法としては、特に限定されないが、真空加圧式ラミネータを好適に使用することができる。この場合、本実施形態のフィルム状アンダーフィル材に対してゴム等の弾性体を介して加圧し、貼り合わせる方法が好ましい。ラミネート条件としては、当業界で一般に使用されている条件であれば、特に限定されないが、例えば、50~140℃の温度、1~11kgf/cm2の範囲の接触圧力、並びに20hPa以下の雰囲気減圧下で行われる。ラミネート工程の後に、金属板による熱プレスにより、貼り合わされたフィルム状アンダーフィル材の平滑化を行ってもよい。ラミネート工程、及び平滑化工程は、市販されている真空加圧式ラミネータによって連続的に行うことができる。半導体ウェハ又は半導体搭チップ載用基板に貼り付けられたフィルム状アンダーフィル材は、いずれの場合もチップのフリップチップ実装前までに基材フィルムの除去が行われる。 The method for bonding the film-like underfill material of the present embodiment to a semiconductor wafer or semiconductor chip mounting substrate is not particularly limited, but a vacuum pressure laminator can be preferably used. In this case, it is preferable to apply pressure to the film-like underfill material of the present embodiment via an elastic body such as rubber to bond them together. The lamination conditions are not particularly limited as long as they are conditions generally used in the industry, but for example, a temperature of 50 to 140° C., a contact pressure in the range of 1 to 11 kgf/cm 2 and an atmospheric pressure reduction of 20 hPa or less. done below. After the lamination step, the bonded film-like underfill material may be smoothed by hot pressing with a metal plate. The lamination process and the smoothing process can be performed continuously by a commercially available vacuum pressure laminator. In any case, the film-like underfill material attached to the semiconductor wafer or the semiconductor-mounted chip mounting substrate is subjected to removal of the base film before flip-chip mounting of the chip.
[半導体装置]
 上述の樹脂組成物層付き半導体チップ及び/又は樹脂組成物層付き半導体チップ搭載用基板を用いて、半導体装置を構成することができる。換言すると、本実施形態の半導体装置の製造方法では、本実施形態のフィルム状アンダーフィル材を用いて、半導体装置を製造することができる。具体的に、半導体装置は、樹脂組成物層付き半導体チップ及び/又は樹脂組成物層付き半導体チップ搭載用基板を備える。半導体装置を製造する方法は、特に限定されないが、例えば、樹脂組成物層付き半導体チップを半導体チップ搭載用基板に搭載する手法が挙げられる。また、樹脂組成物層付き半導体チップ搭載用基板に、半導体チップを搭載してもよい。樹脂組成物層付き半導体チップを半導体チップ搭載用基板に搭載する方法、及び半導体チップを樹脂組成物層付き半導体チップ搭載用基板に搭載する方法では、熱圧着工法に対応したフリップチップボンダを好適に使用することができる。また、本実施形態では半導体チップを半導体チップ搭載用基板にフリップチップ実装する場合を便宜的に説明しているが、半導体チップをフリップチップ実装しつつ、樹脂組成物層を適用する対象は、半導体チップ搭載用基板以外とすることも可能である。例えば、樹脂組成物層は、半導体ウェハ上へ半導体チップを搭載する際の半導体ウェハと半導体チップとの接合部や、TSV(Through Silicon Via)等を経由して半導体チップ間接続を行うチップ積層体の、各半導体チップ間の接合部に使用することも可能であり、いずれの場合も本実施形態の効果を得ることができる。
[Semiconductor device]
A semiconductor device can be configured using the semiconductor chip with the resin composition layer and/or the substrate for mounting a semiconductor chip with the resin composition layer. In other words, in the method for manufacturing a semiconductor device of this embodiment, a semiconductor device can be manufactured using the film-like underfill material of this embodiment. Specifically, the semiconductor device includes a semiconductor chip with a resin composition layer and/or a substrate for mounting a semiconductor chip with a resin composition layer. A method for manufacturing a semiconductor device is not particularly limited, but an example thereof includes a method of mounting a semiconductor chip with a resin composition layer on a substrate for mounting a semiconductor chip. Also, a semiconductor chip may be mounted on the substrate for mounting a semiconductor chip with a resin composition layer. In the method of mounting a semiconductor chip with a resin composition layer on a semiconductor chip mounting substrate and the method of mounting a semiconductor chip on a semiconductor chip mounting substrate with a resin composition layer, a flip chip bonder compatible with the thermocompression bonding method is preferably used. can be used. In addition, in the present embodiment, the case of flip-chip mounting a semiconductor chip on a substrate for mounting a semiconductor chip is described for the sake of convenience. A substrate other than a chip mounting substrate is also possible. For example, the resin composition layer can be used as a bonding portion between a semiconductor wafer and a semiconductor chip when mounting a semiconductor chip on a semiconductor wafer, or as a chip laminate for connecting semiconductor chips via TSV (Through Silicon Via) or the like. However, it is also possible to use it for the junction between each semiconductor chip, and the effect of this embodiment can be obtained in either case.
 以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。本実施形態は、以下の実施例によって何ら限定されるものではない。 Hereinafter, the present embodiment will be described more specifically using examples and comparative examples. This embodiment is not limited at all by the following examples.
[実施例1]
(樹脂組成物(ワニス)の調製)
 熱硬化性樹脂(A)として、ビスマレイミド化合物(長鎖マレイミド;MIZ-001(商品名)、日本化薬(株)、式(9)で表されるマレイミド化合物を含み、式(9)中のaは1~6(整数)の混合物である)70質量部、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン(フェニレン型マレイミド;BMI-70(商品名)、ケイ・アイ化成(株))10質量部と;
 可視光吸収剤(B)として、黒色染料(Kayaset Black A-N(商品名、日本化薬(株))0.1質量部と;、
 無機充填材(C)として、スラリーシリカ(YA050C-MJM(商品名)、(株)アドマテックス、フェニルアミノシラン処理シリカ、固形分50質量%、分散媒:MEK、平均粒子径:50nm)180質量部(不揮発分換算で90質量部)と;、
 フラックス活性剤(D)として、水添ロジンエステル(パインクリスタル(登録商標);KR-140(商品名)、荒川化学工業(株))25質量部と、
 硬化触媒(E)として、有機過酸化物であるα, α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン(パーブチル(登録商標)P、日本油脂(株)、10時間半減期温度:119.20℃)0.05質量部、及び、イミダゾール化合物である2-エチル-4-メチルイミダゾール(2E4MZ、四国化成工業(株))1質量部と;
 硬化剤(F)として、アミノトリアジンノボラック樹脂(フェノライト(登録商標);LA-1356(商品名、DIC(株))33.3質量部(不揮発分換算で20質量部)と、
を混合し、60℃の湯浴中で高速攪拌装置を用いて40分間撹拌し、別途MEKを添加して固形分濃度が60質量%のワニス(樹脂組成物)を得た。
 なお、アミノトリアジンノボラック樹脂であるLA-1356(商品名、DIC(株))は、上述の式(1)で表される化合物(式(1)で表される化合物の混合物であり、その混合物中には、Rが、各々独立に、水素原子又はメチル基であり、l、m、nが、各々独立に、1~6の整数であり、(l+m+n)が3~18の整数である化合物群が含まれる)と、式(2)で表される化合物(式(2)で表される化合物の混合物であり、その混合物中には、Rが、各々独立に、水素原子又はメチル基であり、o、p、q、r、及びsが、各々独立に、1~4の整数であり、(o+p+q+r+s)が5~20の整数である化合物群が含まれる)と、の混合物であり、混合物中、式(1)で表される化合物(混合物)と式(2)で表される化合物(混合物)との質量比(式(1):式(2))は、65(質量部):35(質量部)であった。
[Example 1]
(Preparation of resin composition (varnish))
As the thermosetting resin (A), a bismaleimide compound (long-chain maleimide; MIZ-001 (trade name), Nippon Kayaku Co., Ltd., containing a maleimide compound represented by formula (9), in formula (9) is a mixture of 1 to 6 (integer)) 70 parts by mass, bis-(3-ethyl-5-methyl-4-maleimidophenyl)methane (phenylene-type maleimide; BMI-70 (trade name), Kay Ai Kasei Co., Ltd.) 10 parts by mass;
As a visible light absorber (B), black dye (Kayaset Black AN (trade name, Nippon Kayaku Co., Ltd.)) 0.1 parts by mass;
As an inorganic filler (C), slurry silica (YA050C-MJM (trade name), Admatechs Co., Ltd., phenylaminosilane-treated silica, solid content 50% by mass, dispersion medium: MEK, average particle size: 50 nm) 180 parts by mass (90 parts by mass in terms of non-volatile content);
25 parts by mass of a hydrogenated rosin ester (Pine Crystal (registered trademark); KR-140 (trade name), Arakawa Chemical Industries, Ltd.) as a flux activator (D);
As a curing catalyst (E), an organic peroxide α,α'-di(t-butylperoxy)diisopropylbenzene (PERBUTYL (registered trademark) P, NOF Corporation, 10-hour half-life temperature: 119. 20 ° C.) 0.05 parts by mass, and an imidazole compound 2-ethyl-4-methylimidazole (2E4MZ, Shikoku Chemical Industry Co., Ltd.) 1 part by mass;
As a curing agent (F), aminotriazine novolak resin (Phenolite (registered trademark); LA-1356 (trade name, DIC Corporation)) 33.3 parts by mass (20 parts by mass in terms of non-volatile content),
and stirred for 40 minutes in a hot water bath at 60° C. using a high-speed stirrer, and MEK was separately added to obtain a varnish (resin composition) having a solid content concentration of 60% by mass.
Incidentally, LA-1356 (trade name, DIC Corporation), which is an aminotriazine novolac resin, is a compound represented by the above formula (1) (a mixture of compounds represented by formula (1), and the mixture Among them, R 1 is each independently a hydrogen atom or a methyl group, 1, m, and n are each independently an integer of 1 to 6, and (l+m+n) is an integer of 3 to 18. compound group) and a compound represented by formula (2) (a mixture of compounds represented by formula (2), in which R 2 is each independently a hydrogen atom or methyl group, o, p, q, r, and s are each independently an integer of 1 to 4, and (o + p + q + r + s) is an integer of 5 to 20) and a mixture of In the mixture, the mass ratio (formula (1): formula (2)) of the compound (mixture) represented by formula (1) and the compound (mixture) represented by formula (2) is 65 (mass parts): 35 (mass parts).
(フィルム状アンダーフィル材の作製)
 得られたワニス(樹脂組成物)を、表面に離型剤がコートされた厚さ38μmのポリエチレンテレフタレートフィルム(基材フィルム;離型剤の厚さ0.1μm、TR1-38(商品名、ユニチカ(株)))に塗布し、1気圧下、100℃で5分間加熱乾燥して、厚さが16.5μmである樹脂組成物層が基材フィルム上に形成されたフィルム状アンダーフィル材を得た。なお、樹脂組成物層の厚さは、フィルム状アンダーフィル材の厚さをマイクロメーター(MDH-25M、ミツトヨ(株)製)を用いて測定し、フィルム状アンダーフィル材の厚さから基材フィルムの厚さを除いて算出した。
(Preparation of film-like underfill material)
The resulting varnish (resin composition) was applied to a 38 μm-thick polyethylene terephthalate film (base film; release agent thickness: 0.1 μm, TR1-38 (trade name, Unitika Co., Ltd.) and dried by heating at 100° C. for 5 minutes under 1 atmosphere to obtain a film-like underfill material in which a resin composition layer having a thickness of 16.5 μm is formed on the base film. Obtained. The thickness of the resin composition layer is determined by measuring the thickness of the film-like underfill material using a micrometer (MDH-25M, manufactured by Mitutoyo Co., Ltd.). Calculated excluding film thickness.
[実施例2]
 “フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを43μmとした以外は実施例1と同様にしてフィルム状アンダーフィル材を得た。
[Example 2]
A film-like underfill material was obtained in the same manner as in Example 1, except that the thickness of the resin composition layer was changed to 43 μm in “Preparation of film-like underfill material”.
[実施例3]
 “樹脂組成物(ワニス)の調製”において、黒色染料の使用量を0.3質量部に変更し、“フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを16.0μmとした以外は実施例1と同様にしてフィルム状アンダーフィル材を得た。
[Example 3]
In "Preparation of resin composition (varnish)", the amount of black dye used was changed to 0.3 parts by mass, and in "Preparation of film-like underfill material", the thickness of the resin composition layer was changed to 16.0 μm. A film-like underfill material was obtained in the same manner as in Example 1 except that
[実施例4]
 “フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを35μmとした以外は実施例3と同様にしてフィルム状アンダーフィル材を得た。
[Example 4]
A film-like underfill material was obtained in the same manner as in Example 3, except that the thickness of the resin composition layer was changed to 35 μm in “Preparation of film-like underfill material”.
[実施例5]
 “樹脂組成物(ワニス)の調製”において、黒色染料の使用量を0.5質量部に変更し、フィルム状アンダーフィル材の作製において、樹脂組成物層の厚さを17.0μmとした以外は実施例1と同様にしてフィルム状アンダーフィル材を得た。
[Example 5]
In "Preparation of resin composition (varnish)", except that the amount of black dye used was changed to 0.5 parts by mass, and the thickness of the resin composition layer was changed to 17.0 μm in the preparation of the film-like underfill material. A film-like underfill material was obtained in the same manner as in Example 1.
[実施例6]
 “フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを30μmとした以外は実施例5と同様にしてフィルム状アンダーフィル材を得た。
[Example 6]
A film-like underfill material was obtained in the same manner as in Example 5, except that the thickness of the resin composition layer was changed to 30 μm in “Preparation of film-like underfill material”.
[実施例7]
 “樹脂組成物(ワニス)の調製”において、黒色染料の使用量を0.7質量部に変更し、“フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを17.0μmとした以外は実施例1と同様にしてフィルム状アンダーフィル材を得た。
[Example 7]
In "Preparation of resin composition (varnish)", the amount of black dye used was changed to 0.7 parts by mass, and in "Preparation of film-like underfill material", the thickness of the resin composition layer was changed to 17.0 µm. A film-like underfill material was obtained in the same manner as in Example 1 except that
[実施例8]
 “フィルム状アンダーフィル材の作製”の作製において、樹脂組成物層の厚さを33μmとした以外は実施例7と同様にしてフィルム状アンダーフィル材を得た。
[Example 8]
A film-like underfill material was obtained in the same manner as in Example 7, except that the thickness of the resin composition layer was changed to 33 μm in the preparation of “Preparation of film-like underfill material”.
[実施例9]
 “樹脂組成物(ワニス)の調製”において、黒色染料の使用量を1.0質量部に変更し、“フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを17.0μmとした以外は実施例1と同様にしてフィルム状アンダーフィル材を得た。
[Example 9]
In "Preparation of resin composition (varnish)", the amount of black dye used was changed to 1.0 parts by mass, and in "Preparation of film-like underfill material", the thickness of the resin composition layer was changed to 17.0 µm. A film-like underfill material was obtained in the same manner as in Example 1 except that
[実施例10]
 “フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを33μmとした以外は実施例9と同様にしてフィルム状アンダーフィル材を得た。
[Example 10]
A film-like underfill material was obtained in the same manner as in Example 9, except that the thickness of the resin composition layer was changed to 33 μm in “Preparation of film-like underfill material”.
[実施例11]
 “樹脂組成物(ワニス)の調製”において、黒色染料の使用量を2.0質量部に変更し、フィルム状アンダーフィル材の作製において、樹脂組成物層の厚さを18.0μmとした以外は実施例1と同様にしてフィルム状アンダーフィル材を得た。
[Example 11]
In "Preparation of resin composition (varnish)", except that the amount of black dye used was changed to 2.0 parts by mass, and the thickness of the resin composition layer was changed to 18.0 μm in the production of film-like underfill material. A film-like underfill material was obtained in the same manner as in Example 1.
[比較例1]
 “フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを41μmとした以外は実施例11と同様にしてフィルム状アンダーフィル材を得た。
[Comparative Example 1]
A film-like underfill material was obtained in the same manner as in Example 11, except that the thickness of the resin composition layer was changed to 41 μm in “Preparation of film-like underfill material”.
[比較例2]
 “樹脂組成物(ワニス)の調製”において、黒色染料を用いず、“フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを13.0μmとした以外は実施例1と同様にしてフィルム状アンダーフィル材を得た。
[Comparative Example 2]
In "Preparation of resin composition (varnish)", black dye was not used. A film-like underfill material was obtained.
[比較例3]
 “樹脂組成物(ワニス)の調製”において、黒色染料を用いず、且つ、無機充填材(C)として、スラリーシリカ(YA050C-MJM)に代えて、スラリーシリカ(メタクリル表面処理シリカ;5SM-CM2(商品名)、アドマテックス(株)製、固形分70質量%、分散媒:MEK、平均粒子径:500nm)128.6質量部(不揮発分換算で90質量部)を使用し、“フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを38μmとした以外は実施例1と同様にしてフィルム状アンダーフィル材を得た。
[Comparative Example 3]
In the "preparation of resin composition (varnish)", no black dye is used, and slurry silica (methacrylic surface-treated silica; 5SM-CM2 (trade name), manufactured by Admatechs Co., Ltd., solid content 70%, dispersion medium: MEK, average particle diameter: 500 nm) 128.6 parts by mass (90 parts by mass in terms of nonvolatile matter), "Film A film-like underfill material was obtained in the same manner as in Example 1, except that the thickness of the resin composition layer was changed to 38 μm in “Preparation of underfill material”.
[比較例4]
 “樹脂組成物(ワニス)の調製”において、黒色染料を用いず、無機充填材(C)として、スラリーシリカ(YA050C-MJM)の使用量を90質量部(不揮発分換算で45質量部)に変更し、さらに、スラリーシリカ(メタクリル表面処理シリカ;5SM-CM2)を64.3質量部(不揮発分換算で45質量部)加え、“フィルム状アンダーフィル材の作製”において、樹脂組成物層の厚さを35μmとした以外は実施例1と同様にしてフィルム状アンダーフィル材を得た。
[Comparative Example 4]
In the "preparation of the resin composition (varnish)", without using a black dye, the amount of slurry silica (YA050C-MJM) used as the inorganic filler (C) was changed to 90 parts by mass (45 parts by mass in terms of non-volatile matter). 64.3 parts by mass (45 parts by mass in terms of nonvolatile matter) of slurry silica (methacrylic surface-treated silica; 5SM-CM2) is added, and in "Preparation of film-like underfill material", the resin composition layer A film-like underfill material was obtained in the same manner as in Example 1, except that the thickness was changed to 35 μm.
《評価》
(1)透過率
(600nmでの光線透過率の測定)
 各実施例及び比較例で得られたフィルム状アンダーフィル材を幅5cm×長さ5cmに切り出し、サンプルAを作製した。このサンプルAの600nmでの光線透過率を、分光色彩計(SD6000(商品名)、日本分光(株)製)にて、室温下で測定し、“フィルム状アンダーフィル材の波長600nmにおける光線透過率”Tとした。
 同様に、各実施例及び比較例で用いた基材フィルムについて、幅5cm×長さ5cmに切り出し、サンプルBを作製した。このサンプルBの600nmでの光線透過率を、分光色彩計(SD6000(商品名)、日本分光(株)製)にて、室温下で測定し、“基材フィルムの波長600nmにおける光線透過率”Tとした。
"evaluation"
(1) Transmittance (measurement of light transmittance at 600 nm)
A sample A was prepared by cutting the film-like underfill material obtained in each example and comparative example into a size of 5 cm in width and 5 cm in length. The light transmittance of this sample A at 600 nm was measured at room temperature with a spectrocolorimeter (SD6000 (trade name), manufactured by JASCO Corporation), and the "light transmittance of the film-like underfill material at a wavelength of 600 nm rate "T 0 .
Similarly, the base film used in each example and comparative example was cut into a width of 5 cm and a length of 5 cm to prepare a sample B. The light transmittance of this sample B at 600 nm was measured at room temperature with a spectral colorimeter (SD6000 (trade name), manufactured by JASCO Corporation), and the "light transmittance of the base film at a wavelength of 600 nm" was measured. T1 .
(アンダーフィル材の光線透過率と基材フィルムの光線透過率と樹脂組成物層との差)
 各実施例及び比較例で基材フィルムの波長600nmにおける光線透過率[T]とアンダーフィル材の波長600nmにおける光線透過率[T]との差、|T-T|を算出した。なお、算出した結果、0未満となった数値には表中においてそのままマイナスを付して表示しているが、これらの値についてはその絶対値を基準に判断した。
(Difference between light transmittance of underfill material, light transmittance of base film, and resin composition layer)
In each example and comparative example, the difference between the light transmittance [T 1 ] of the base film at a wavelength of 600 nm and the light transmittance [T 0 ] of the underfill material at a wavelength of 600 nm, |T 1 −T 0 |, was calculated. . As a result of the calculation, numerical values less than 0 are indicated with a negative sign in the table, but these values were judged based on their absolute values.
(アライメントマーク認識性)
 各実施例及び比較例で得られたフィルム状アンダーフィル材を、アライメントマークを有する半導体チップ搭載用基板((株)ウォルツ製、WALTS-KIT CC80(W)-0105JY(商品名))に張り付け、樹脂組成物層から基材フィルムを剥離し、樹脂組成物層側から前記基板上のアライメントマークをフリップチップボンダ(LFB-2301(商品名)、(株)新川)搭載のカメラによって観察し、以下の基準に従いアライメントマークの認識性について評価した。
〈基準〉
 A:アライメントマークを認識出来た。
 C:アライメントマークを認識出来なかった。
(Alignment mark recognizability)
The film-shaped underfill material obtained in each example and comparative example was attached to a substrate for mounting a semiconductor chip (WALTS Co., Ltd., WALTS-KIT CC80 (W)-0105JY (trade name)) having an alignment mark, The base film is peeled off from the resin composition layer, and the alignment marks on the substrate are observed from the resin composition layer side with a camera equipped with a flip chip bonder (LFB-2301 (trade name), Shinkawa Co., Ltd.). The recognizability of the alignment mark was evaluated according to the criteria of .
<standard>
A: Alignment marks could be recognized.
C: Alignment marks could not be recognized.
(NCF視認性)
 各実施例及び比較例で得られたフィルム状アンダーフィル材を目視により観察し、フィルム状アンダーフィル材の表裏のいずれが樹脂組成物層(NCF)であるか確認し、以下の基準に従いNCF視認性について評価した。
〈基準〉
 A:樹脂組成物層(NCF)面を容易に(3秒未満)で認識できた。
 B:樹脂組成物層(NCF)面の認識に3秒以上要した。
 C:樹脂組成物層(NCF)面の認識が困難であった。
(NCF visibility)
The film-like underfill material obtained in each example and comparative example was visually observed to confirm which of the front and back sides of the film-like underfill material was the resin composition layer (NCF), and the NCF was visually recognized according to the following criteria. evaluated for gender.
<standard>
A: The surface of the resin composition layer (NCF) was easily recognized (in less than 3 seconds).
B: It took 3 seconds or longer to recognize the surface of the resin composition layer (NCF).
C: It was difficult to recognize the surface of the resin composition layer (NCF).
(2)ワニス保管安定性
 各実施例及び比較例で得られたワニス(樹脂組成物)を密閉容器内に25℃で1週間放置した後、容器底の沈降物有無を目視で確認した。沈降物が認められた場合、沈降物のみを分取して沈降物の質量を測定し、下記式にて1週間経過後の無機充填材沈降率を算出し、以下の基準に従って、ワニス保管安定性を評価した。
 無機充填材沈降率=沈降物の質量/無機充填材不揮発分配合量×100
〈基準〉
 A:目視で観察したところ沈降物が認められなかった。
 B:目視で沈降物が確認できたが無機充填材沈降率が5%未満であった。
 C:無機充填材沈降率が5%以上であった。
(2) Varnish Storage Stability After the varnishes (resin compositions) obtained in Examples and Comparative Examples were allowed to stand at 25° C. for one week in a closed container, the presence or absence of sediment on the bottom of the container was visually confirmed. If sediment is observed, only the sediment is collected and the mass of the sediment is measured, the inorganic filler sedimentation rate after one week is calculated by the following formula, and the varnish storage stability is determined according to the following criteria. evaluated the sex.
Inorganic filler sedimentation rate = mass of sediment / inorganic filler non-volatile content × 100
<standard>
A: No sediment was found by visual observation.
B: Sediment was visually confirmed, but the sedimentation rate of the inorganic filler was less than 5%.
C: The inorganic filler sedimentation rate was 5% or more.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 本実施形態のフィルム状アンダーフィル材は、取り扱い性に優れ、ウェハ等の対象上に容易且つ正確に配置可能であることから、樹脂組成物層付き半導体チップ、樹脂組成物層付き半導体チップ搭載用基板、及び半導体装置、並びにこれらの製造方法の材料として好適に用いられる。 The film-like underfill material of the present embodiment is excellent in handleability and can be easily and accurately arranged on an object such as a wafer. It is suitably used as a material for substrates, semiconductor devices, and methods for producing these.
 2021年10月15日に出願された日本国特許出願2021-169233号の開示、及び、2022年2月24日に出願された日本国特許出願2022-26833号の開示は、その全体が参照により本明細書に取り込まれる。
 また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 
The disclosure of Japanese Patent Application No. 2021-169233 filed on October 15, 2021, and the disclosure of Japanese Patent Application No. 2022-26833 filed on February 24, 2022 are referenced in their entireties. incorporated herein.
Further, all publications, patent applications and technical standards mentioned in the specification shall be referred to to the same extent as if each individual publication, patent application or technical standard were specifically and individually noted to be incorporated by reference. , incorporated herein by reference.

Claims (23)

  1.  熱硬化性樹脂(A)及び可視光吸収剤(B)を含む樹脂組成物層と、
     基材フィルムと、を含むフィルム状アンダーフィル材であって、
     前記フィルム状アンダーフィル材の波長600nmにおける光線透過率が20~90%であり、かつ、
     前記基材フィルムの波長600nmにおける光線透過率と前記フィルム状アンダーフィル材の波長600nmにおける光線透過率との差が2~80%である、フィルム状アンダーフィル材。
    a resin composition layer containing a thermosetting resin (A) and a visible light absorber (B);
    A film-like underfill material comprising a base film,
    The film-like underfill material has a light transmittance of 20 to 90% at a wavelength of 600 nm, and
    A film-like underfill material, wherein the difference between the light transmittance of the base film at a wavelength of 600 nm and the light transmittance of the film-like underfill material at a wavelength of 600 nm is 2 to 80%.
  2.  前記樹脂組成物層の厚みが、5~500μmの範囲である、請求項1に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 1, wherein the thickness of the resin composition layer is in the range of 5 to 500 µm.
  3.  前記可視光吸収剤(B)が、有機染料、有機顔料、及びこれらの組み合わせの群から選択される少なくとも1種である、請求項1に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 1, wherein the visible light absorbent (B) is at least one selected from the group consisting of organic dyes, organic pigments, and combinations thereof.
  4.  前記可視光吸収剤(B)が、キノン系、アミノケトン系、カチオン系、シアニン系、フタロシアニン系、キナクドリン系、ジアリール・トリアリールメタン系、フルギド、アゾ系、スクアリリウム系、オキソノール系、ベンジリデン系、ニトロ系、ニトロソ系、チアゾール系、インジゴイド系、及びこれらの組み合わせの群から選択される少なくとも1種から選ばれる少なくとも1種の化合物を含む、請求項1に記載のフィルム状アンダーフィル材。 The visible light absorber (B) is a quinone-based, aminoketone-based, cationic, cyanine-based, phthalocyanine-based, quinacdrine-based, diaryl/triarylmethane-based, fulgide, azo-based, squarylium-based, oxonol-based, benzylidene-based, nitro 2. The film-like underfill material according to claim 1, comprising at least one compound selected from at least one compound selected from the group consisting of nitroso-based, thiazole-based, indigoid-based, and combinations thereof.
  5.  前記可視光吸収剤(B)が、キノン系、アミノケトン系、及びこれらの組み合わせの群から選択される少なくとも1種の化合物を含む、請求項1に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 1, wherein the visible light absorbent (B) contains at least one compound selected from the group consisting of quinones, aminoketones, and combinations thereof.
  6.  前記熱硬化性樹脂(A)が、マレイミド化合物、シトラコンイミド化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含む、請求項1に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 1, wherein the thermosetting resin (A) contains at least one selected from the group consisting of maleimide compounds, citraconimide compounds, and combinations thereof.
  7.  前記マレイミド化合物が、2,2’-ビス{4-(4-マレイミドフェノキシ)フェニル}プロパン、1,2-ビス(マレイミド)エタン、1,4-ビス(マレイミド)ブタン、1,6-ビス(マレイミド)ヘキサン、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N-フェニルマレイミド、下記式(3)で表されるマレイミド化合物、下記式(4)で表される構成単位と両末端にマレイミド基とを含有するビスマレイミド化合物、下記式(5)で表されるマレイミド化合物、下記式(6)で表されるマレイミド化合物、下記式(7)で表されるマレイミド化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含む、請求項6に記載のフィルム状アンダーフィル材。
    Figure JPOXMLDOC01-appb-C000001

     
    (式(3)中、nは、1~30の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002

     
    (式(4)中、R11は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R12は炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R13は、各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示す。nは、1~10の整数を示す。)
    Figure JPOXMLDOC01-appb-C000003

     
    (式(5)中、Rは、各々独立に、水素原子、メチル基、又はエチル基を示す。Rは、各々独立に、水素原子又はメチル基を示す。)
    Figure JPOXMLDOC01-appb-C000004

     
    (式(6)中、R10は、各々独立に、水素原子、炭素数1~5のアルキル基、又はフェニル基を示す。nは、1~10の整数を示す。)
    Figure JPOXMLDOC01-appb-C000005

     
    (式(7)中、R10は、各々独立に、水素原子又はメチル基を示し、nは、1以上の整数を示す。)
    The maleimide compound includes 2,2′-bis{4-(4-maleimidophenoxy)phenyl}propane, 1,2-bis(maleimido)ethane, 1,4-bis(maleimido)butane, 1,6-bis( maleimide) hexane, N,N'-1,3-phenylenedimaleimide, N,N'-1,4-phenylenedimaleimide, N-phenylmaleimide, a maleimide compound represented by the following formula (3), the following formula ( A bismaleimide compound containing a structural unit represented by 4) and maleimide groups at both ends, a maleimide compound represented by the following formula (5), a maleimide compound represented by the following formula (6), and a following formula (7) ) and at least one selected from the group consisting of combinations thereof.
    Figure JPOXMLDOC01-appb-C000001


    (In formula (3), n3 represents an integer of 1 to 30.)
    Figure JPOXMLDOC01-appb-C000002


    (In formula (4), R 11 represents a linear or branched alkylene group having 1 to 16 carbon atoms, or a linear or branched alkenylene group having 2 to 16 carbon atoms. R 12 represents a carbon number A linear or branched alkylene group of 1 to 16, or a linear or branched alkenylene group of 2 to 16 carbon atoms, wherein each R 13 is independently a hydrogen atom or a represents a linear or branched alkyl group, or a linear or branched alkenyl group having 2 to 16 carbon atoms, n 5 represents an integer of 1 to 10.)
    Figure JPOXMLDOC01-appb-C000003


    (In formula (5), each R 8 independently represents a hydrogen atom, a methyl group, or an ethyl group. Each R 9 independently represents a hydrogen atom or a methyl group.)
    Figure JPOXMLDOC01-appb-C000004


    (In formula (6), each R 10 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group. n 4 represents an integer of 1 to 10.)
    Figure JPOXMLDOC01-appb-C000005


    (In formula (7), each R 10 independently represents a hydrogen atom or a methyl group, and n 2 represents an integer of 1 or more.)
  8.  前記マレイミド化合物が、2,2’-ビス{4-(4-マレイミドフェノキシ)フェニル}プロパン、前記式(3)で表されるマレイミド化合物、前記式(4)で表される構成単位と両末端にマレイミド基とを含有するビスマレイミド化合物、前記式(5)で表されるマレイミド化合物、前記式(6)で表されるマレイミド化合物、前記式(7)で表されるマレイミド化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含む、請求項7に記載のフィルム状アンダーフィル材。 The maleimide compound is 2,2′-bis{4-(4-maleimidophenoxy)phenyl}propane, the maleimide compound represented by the formula (3), the structural unit represented by the formula (4) and both ends a bismaleimide compound containing a maleimide group in, a maleimide compound represented by the above formula (5), a maleimide compound represented by the above formula (6), a maleimide compound represented by the above formula (7), and these The film-like underfill material according to claim 7, comprising at least one selected from the group of combinations.
  9.  無機充填材(C)をさらに含む、請求項1に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 1, further comprising an inorganic filler (C).
  10.  前記無機充填材(C)の平均粒子径が、400nm以下である、請求項9に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 9, wherein the inorganic filler (C) has an average particle size of 400 nm or less.
  11.  前記無機充填材(C)がシリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、水酸化マグネシウム、及びこれらの組み合わせの群から選択される少なくとも1種を含む、請求項9に記載のフィルム状アンダーフィル材。 Claim 9, wherein the inorganic filler (C) comprises at least one selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, magnesium hydroxide, and combinations thereof. The film-like underfill material according to .
  12.  前記無機充填材(C)の含有量が、前記熱硬化性樹脂(A)の総量100質量部に対して、10~500質量部である、請求項9に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 9, wherein the content of the inorganic filler (C) is 10 to 500 parts by mass with respect to the total amount of 100 parts by mass of the thermosetting resin (A).
  13.  前記無機充填材(C)の平均粒子径が、400nm以下であり、
     前記無機充填材(C)がシリカ、水酸化アルミニウム、アルミナ、ベーマイト、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、水酸化マグネシウム、及びこれらの組み合わせの群から選択される少なくとも1種を含み、
     前記無機充填材(C)の含有量が、前記熱硬化性樹脂(A)の総量100質量部に対して、10~500質量部である、請求項9に記載のフィルム状アンダーフィル材。
    The inorganic filler (C) has an average particle size of 400 nm or less,
    The inorganic filler (C) contains at least one selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, boron nitride, aluminum nitride, magnesium oxide, magnesium hydroxide, and combinations thereof,
    The film-like underfill material according to claim 9, wherein the content of the inorganic filler (C) is 10 to 500 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting resin (A).
  14.  フラックス活性剤(D)をさらに含む、請求項1に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 1, further comprising a flux activator (D).
  15.  前記フラックス活性剤(D)が、ロジン系樹脂を含む、請求項14に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 14, wherein the flux activator (D) contains a rosin-based resin.
  16.  硬化触媒(E)をさらに含む、請求項1に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 1, further comprising a curing catalyst (E).
  17.  前記硬化触媒(E)が、有機過酸化物、イミダゾール化合物、及びこれらの組み合わせの群から選択される少なくとも1種を含む、請求項16に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 16, wherein the curing catalyst (E) contains at least one selected from the group consisting of organic peroxides, imidazole compounds, and combinations thereof.
  18.  硬化剤(F)をさらに含む、請求項1に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 1, further comprising a curing agent (F).
  19.  前記硬化剤(F)が、アミノトリアジンノボラック樹脂を含む、請求項18に記載のフィルム状アンダーフィル材。 The film-like underfill material according to claim 18, wherein the curing agent (F) contains an aminotriazine novolak resin.
  20.  熱硬化性樹脂(A)と、可視光吸収剤(B)と、を含むフィルム状アンダーフィル材用樹脂組成物。 A resin composition for a film-like underfill material containing a thermosetting resin (A) and a visible light absorber (B).
  21.  請求項1~請求項19のいずれか一項に記載のフィルム状アンダーフィル材を用いる、樹脂組成物層付き半導体チップの製造方法。 A method for manufacturing a semiconductor chip with a resin composition layer, using the film-like underfill material according to any one of claims 1 to 19.
  22.  請求項1~請求項19のいずれか一項に記載のフィルム状アンダーフィル材を用いる、樹脂組成物層付き半導体チップ搭載用基板の製造方法。 A method for manufacturing a substrate for mounting a semiconductor chip with a resin composition layer, using the film-like underfill material according to any one of claims 1 to 19.
  23.  請求項1~請求項19のいずれか一項に記載のフィルム状アンダーフィル材を用いる、半導体装置の製造方法。 A method for manufacturing a semiconductor device using the film-like underfill material according to any one of claims 1 to 19.
PCT/JP2022/037762 2021-10-15 2022-10-11 Film underfill material, resin composition for film underfill material, method for manufacturing semiconductor chip with resin composition layer using film underfill material, method for manufacturing substrate for mounting semiconductor chip with resin composition layer, and method for manufacturing semiconductor device WO2023063280A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021169233 2021-10-15
JP2021-169233 2021-10-15
JP2022026833 2022-02-24
JP2022-026833 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023063280A1 true WO2023063280A1 (en) 2023-04-20

Family

ID=85987754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037762 WO2023063280A1 (en) 2021-10-15 2022-10-11 Film underfill material, resin composition for film underfill material, method for manufacturing semiconductor chip with resin composition layer using film underfill material, method for manufacturing substrate for mounting semiconductor chip with resin composition layer, and method for manufacturing semiconductor device

Country Status (2)

Country Link
TW (1) TW202334294A (en)
WO (1) WO2023063280A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074246A (en) * 2009-09-30 2011-04-14 Hitachi Chem Co Ltd Film like adhesive
JP2011140617A (en) * 2009-12-07 2011-07-21 Hitachi Chem Co Ltd Adhesive composition for forming underfill, adhesive sheet for forming underfill, and method for manufacturing semiconductor device
WO2020262585A1 (en) * 2019-06-28 2020-12-30 三菱瓦斯化学株式会社 Resin composition, resin sheet, layered product, semiconductor wafer with resin composition layer, substrate with resin composition layer for semiconductor mounting, and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074246A (en) * 2009-09-30 2011-04-14 Hitachi Chem Co Ltd Film like adhesive
JP2011140617A (en) * 2009-12-07 2011-07-21 Hitachi Chem Co Ltd Adhesive composition for forming underfill, adhesive sheet for forming underfill, and method for manufacturing semiconductor device
WO2020262585A1 (en) * 2019-06-28 2020-12-30 三菱瓦斯化学株式会社 Resin composition, resin sheet, layered product, semiconductor wafer with resin composition layer, substrate with resin composition layer for semiconductor mounting, and semiconductor device

Also Published As

Publication number Publication date
TW202334294A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
JP6429802B2 (en) Adhesive film
TW200426200A (en) B-stageable die attach adhesives
KR20210002451A (en) Resin composition, laminate, semiconductor wafer on which resin composition layer is formed, substrate for semiconductor mounting on which resin composition layer is formed, and semiconductor device
JP6930670B2 (en) Resin composition, resin sheet, laminate, semiconductor wafer with resin composition layer, semiconductor mounting substrate with resin composition layer, and semiconductor device
TW201815838A (en) Resin composition, laminate, semiconductor wafer with resin composition layer, semiconductor mounting substrate with resin composition layer, and semiconductor device
EP3467028B1 (en) Resin composition, laminate, semiconductor wafer with resin composition layer, substrate for mounting semiconductor with resin composition layer, and semiconductor device
WO2023063280A1 (en) Film underfill material, resin composition for film underfill material, method for manufacturing semiconductor chip with resin composition layer using film underfill material, method for manufacturing substrate for mounting semiconductor chip with resin composition layer, and method for manufacturing semiconductor device
WO2020262588A1 (en) Film, multilayer body, semiconductor wafer with film layer, substrate for mounting semiconductor with film layer, and semiconductor device
WO2023063282A1 (en) Resin composition, layered product, semiconductor chip with resin composition layer, substrate on which semiconductor chip with resin composition layer is to be mounted, and semiconductor device
WO2023063277A1 (en) Resin composition, laminate, semiconductor chip having resin composition layer, substrate for mounting semiconductor chip having resin composition layer, and semiconductor device
JP2023122840A (en) Resin composition, laminate, semiconductor chip with resin composition layer, substrate to be equipped with semiconductor chip with resin composition layer, and semiconductor device
JP2023122842A (en) Resin composition, laminate, semiconductor chip with resin composition layer, substrate to be equipped with semiconductor chip with resin composition layer, and semiconductor device
CN114127180B (en) Thin film, laminate, semiconductor wafer with thin film layer, substrate for mounting semiconductor with thin film layer, and semiconductor device
WO2020262581A1 (en) Film, laminate, semiconductor wafer with film layer, semiconductor mounting substrate with film layer, and semiconductor device
JP2024015839A (en) Resin composition, laminate, semiconductor chip with resin composition layer, semiconductor chip mounting substrate with resin composition layer, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554508

Country of ref document: JP