WO2023062831A1 - Flow cytometer, position calculating method, and program - Google Patents

Flow cytometer, position calculating method, and program Download PDF

Info

Publication number
WO2023062831A1
WO2023062831A1 PCT/JP2021/038289 JP2021038289W WO2023062831A1 WO 2023062831 A1 WO2023062831 A1 WO 2023062831A1 JP 2021038289 W JP2021038289 W JP 2021038289W WO 2023062831 A1 WO2023062831 A1 WO 2023062831A1
Authority
WO
WIPO (PCT)
Prior art keywords
depth direction
channel
light
flow
intensity
Prior art date
Application number
PCT/JP2021/038289
Other languages
French (fr)
Japanese (ja)
Inventor
亨 今井
啓晃 安達
Original Assignee
シンクサイト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シンクサイト株式会社 filed Critical シンクサイト株式会社
Priority to PCT/JP2021/038289 priority Critical patent/WO2023062831A1/en
Publication of WO2023062831A1 publication Critical patent/WO2023062831A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers

Definitions

  • the present invention relates to a flow cytometer, a position calculation method, and a program.
  • a flow cytometer or an imaging device in which the observation target is illuminated by structured illumination light having a predetermined illumination pattern and the observation target is detected.
  • a cytometer has been developed.
  • ghost cytometry technology is known (Patent Document 2).
  • Ghost cytometry technology irradiates an object moving in a channel with a randomly structured illumination pattern, enabling high-speed acquisition of morphological information on the object with higher resolution than conventional flow cytometers. .
  • the displacement of the streamline means that the position of the object to be observed flowing with the fluid flowing in the channel is relatively shifted in the width direction of the channel with respect to the structured illumination pattern, or It means that the position is relatively shifted in the depth direction of the channel.
  • a measurement method such as a flow cytometer, in which an object to be observed flows together with a fluid for measurement, the streamline along which the object to be observed flows is affected by pressure fluctuations of the fluid, etc., so it is extremely difficult to precisely control its behavior. difficult.
  • the degree of positional deviation of the streamlines is the deviation of, for example, the structured illumination pattern applied to the flow channel, which changes by about the pixel size in the depth direction of the flow channel.
  • the positional deviation of the streamline which is a problem in the present invention, is a deviation of the pixel size of the structured detection position on the channel, and the deviation of the streamline in the depth direction of the channel is about several micrometers. be.
  • the present invention has been made in view of the above points, and provides a flow cytometer capable of detecting the passage position of an object to be observed in a channel in the depth direction, a method for calculating the depth direction position in the channel, and a program. do.
  • the depth direction of the channel in the present invention is a direction orthogonal to the length direction of the fluid flow and the width direction of the channel in the channel through which the object to be observed flows.
  • the present invention has been made to solve the above problems, and one aspect of the present invention is a microfluidic device comprising a channel in which an object to be observed can flow together with a fluid, and a microfluidic device that irradiates the channel with illumination light.
  • a light source a photodetector for detecting in time series the intensity of signal light emitted from the observation target when the observation target flowing through the flow path is irradiated with illumination light, and the signal detected by the photodetector.
  • An information generating device that generates optical information indicating one or more of the shape, form, and structure of the observation object based on the intensity of light, and a channel position that controls the position of the channel in the depth direction.
  • a depth which is a position in the depth direction of the channel when the object to be observed passes through the channel, based on a time-series change in the intensity of the signal light detected by the photodetector; and an arithmetic device for detecting a directional position, wherein the arithmetic device detects the signal light at a predetermined detection position in the channel to detect the depth direction position.
  • a signal intensity acquisition unit for acquiring electronic data of changes in intensity over time; a scanning unit that performs scanning processing; a position calculation unit that calculates the depth direction position based on the electronic data; an output unit that outputs position information indicating the depth direction position calculated by the position calculation unit;
  • a flow cytometer comprising:
  • a spatial light modulator is installed in an optical path between the light source and the photodetector to structure either the illumination light or the signal light. It further comprises a part.
  • the spatial light modulating section is arranged in an optical path between the light source and the flow path, and the light source is structured by the spatial light modulating section.
  • the illumination light is applied to the channel.
  • the detection position is set by the illumination light that has been subjected to structuring processing by the spatial light modulator in the flow path.
  • the spatial light modulator is arranged in an optical path between the flow channel and the photodetector, and the photodetector transmits the structured signal light.
  • the intensity of the received signal light is detected in time series.
  • the spatial light modulator includes a mask having a light transmission region that transmits light, and the light transmission region is located at the plurality of detection positions in the flow channel. and the computing device detects the depth based on the temporal change in the intensity of the signal light emitted by the observation object detected at the plurality of detection positions of the flow path. Detect directional position.
  • the channel position control device controls the depth direction of the channel based on the information indicating the depth direction position output by the output unit. position control.
  • the arithmetic device includes a determination unit that determines the observation object based on the optical information generated by the information generation device, and the output unit outputs a position determination unit that determines whether the depth direction position indicated by the position information is within a predetermined range in the depth direction in the flow channel, wherein the determination unit is configured to determine whether the position determination unit Based on the determination result, the observation object flowing within the predetermined range is determined.
  • the determining unit learns a relationship between a learning observation object and the optical information about the learning observation object.
  • the observation object is discriminated based on the generated inference model and the optical information generated by the information generation device, and the learning observation object is an observation object flowing within the predetermined range.
  • a microfluidic device including a channel in which an observation target can flow together with a fluid, a light source for irradiating the channel with illumination light, and an illumination light directed to the observation target flowing through the channel.
  • a photodetector that detects in time series the intensity of the signal light emitted from the observation object when is irradiated, and the shape, form, and shape of the observation object based on the intensity of the signal light detected by the photodetector. or an information generating device that generates optical information indicating one or more of the structures, a channel position control device that controls the position of the channel in the depth direction, and the signal light detected by the photodetector.
  • a flow cytometer comprising a computing device that detects a depth direction position, which is a position in the depth direction of the channel when the observation object passes through the channel, based on time-series changes in intensity,
  • a position calculation method for detecting the depth direction position wherein electrons of the time change of the intensity of the signal light detected at a predetermined detection position in the flow path for detecting the depth direction position a process of acquiring data, a process of moving the channel in the depth direction via the channel position control device to perform a scanning process for acquiring the electronic data at different depth positions
  • a position calculation method comprising: a position calculation process of calculating the depth direction position based on data; and an output process of outputting position information indicating the depth direction position calculated in the position calculation process.
  • a microfluidic device including a channel in which an observation target can flow together with a fluid, a light source for irradiating the channel with illumination light, and an illumination light directed to the observation target flowing through the channel.
  • a photodetector that detects in time series the intensity of the signal light emitted from the observation object when is irradiated, and the shape, form, and shape of the observation object based on the intensity of the signal light detected by the photodetector. or an information generating device that generates optical information indicating one or more of the structures, a flow channel position control device that controls the position of the flow channel in the depth direction, and the signal light detected by the photodetector.
  • a flow cytometer comprising a computing device that detects a depth direction position, which is a position in the depth direction of the channel when the observation object passes through the channel, based on the time-series change in intensity
  • a computing device that executes a position calculation process for detecting a depth direction position is provided with a time change of the intensity of the signal light detected at a predetermined detection position in the flow path for detecting the depth direction position.
  • the present invention it is possible to detect the passage position of the observation target in the depth direction in the channel.
  • FIG. 4 is a diagram showing an example of a front view of a calibration pattern according to the first embodiment of the present invention.
  • FIG. 4 It is a figure which shows an example of the side view of the calibration pattern which concerns on the 1st Embodiment of this invention.
  • FIG. 4 is a diagram showing an example of a front view of a calibration pattern according to the first embodiment of the present invention.
  • FIG. It is a figure which shows an example of the side view of the calibration pattern which concerns on the 1st Embodiment of this invention.
  • FIG. 4 is a diagram showing an example of a side view of the positional relationship between the calibration pattern and the imaging lens that constitutes the optical system for photodetection according to the first embodiment of the present invention; It is a figure which shows an example of the measurement signal which shows the time change of the intensity
  • FIG. 4 is a diagram showing an example of a relationship between a depth direction position and an index of intensity of signal light according to the first embodiment of the present invention; It is a figure which shows an example of a structure of the arithmetic unit which concerns on the 1st Embodiment of this invention.
  • FIG. 12 is a diagram showing an example of regions according to the sixth embodiment of the present invention
  • FIG. 10 is a diagram showing an example of a learning cell region according to the sixth embodiment of the present invention
  • FIG. 1 is a diagram showing an example of a flow cytometer 1 according to this embodiment.
  • a flow cytometer consists of a microfluidic device that has a channel in which an object to be observed can flow together with a fluid, a light source that irradiates the channel with illumination light, and an object to be observed that flows through the channel and is irradiated with the illumination light. and a photodetector for detecting signal light emitted from an object, and the object to be observed, which flows in the channel together with the fluid, is optically measured while moving in the channel.
  • the flow cytometer 1 includes a microfluidic device 2, a light source 3, a spatial light modulator 4, a photodetection optical system 5, a photodetector 6, a DAQ (Data Acquisition) device 7, and a personal computer (PC) 8 .
  • the microfluidic device 2 comprises a channel 20 through which the cells C can flow together with the fluid.
  • the flow velocity of the fluid flowing through the channel 20 is a constant flow velocity regardless of the types of cells C to be flowed or individual differences.
  • the microfluidic device 2 sequentially flows a plurality of cells into the flow path 20, the number of cells passing through the irradiation position of the illumination light in the flow path 20 is one at a time.
  • Cell C is an example of an observation object. Note that the object to be observed is not limited to the cell C, and may be a fine particle or the like as another example.
  • FIG. 1 shows an xyz coordinate system as a three-dimensional orthogonal coordinate system.
  • the x-axis direction is the width direction of the channel 20 .
  • the y-axis direction is the length direction of the channel 20 .
  • the z-axis direction is a direction orthogonal to the channel 20 and is the depth direction of the channel 20 .
  • Fluid flow in channel 20 causes cell C to move in the +y direction of the y-axis. That is, the length direction of the channel 20 is the direction in which the cells C move along with the flow of the fluid in the channel 20 .
  • the width direction of the flow path 20 can be expressed as a direction perpendicular to both the optical axis of the illumination light applied to the flow path and the lengthwise direction of the flow of the fluid.
  • the light source 3 and spatial light modulator 4 function as structured illumination.
  • This structured illumination illuminates the channel 20 with structured illumination light SLE as described below.
  • Illumination light LE emitted from the light source 3 is converted into structured illumination light SLE through the spatial light modulator 4 and irradiated to the irradiation position of the flow path 20 .
  • the illumination light LE emitted from the light source 3 by the spatial light modulator 4 may be coherent light or incoherent light.
  • the illumination light LE emitted by the light source 3 is, for example, coherent light.
  • the spatial light modulator 4 is arranged on the optical path between the light source 3 and the photodetector 6 .
  • the spatial light modulator 4 is arranged on the optical path between the light source 3 and the flow path 20 .
  • This arrangement configuration is also described as a structured lighting configuration.
  • the illumination light LE emitted from the light source 3 is structured by the spatial light modulator 4, and the channel 20 is irradiated with the structured illumination light SLE.
  • the structured illumination images the structured illumination light SLE as a structured illumination pattern 21 at the illumination position of the channel 20 .
  • focal plane in which the structured illumination pattern 21 imaged onto the illumination position is arranged is indicated as focal plane FP1.
  • the structured illumination pattern 21 in this embodiment includes an optical information generation pattern and a calibration pattern CP.
  • the optical information generation pattern is a pattern with which the channel 20 is irradiated in order to generate the optical information IC indicating the morphological information of the cell C which is the object to be observed.
  • the morphological information of the cell C is any one or more of the shape, morphology, and structure of the cell C.
  • the calibration pattern CP is a pattern arranged at a detection position for detecting the depth direction position PP through which the cell C, which is the object to be observed, passes through the channel 20 .
  • the depth direction position PP is the position in the depth direction of the channel 20 among the positions when the cell C passes through the channel 20, and is the position through which the cell C, which is the object to be observed, passes in the channel 20. , which indicates the displacement in the depth direction.
  • the direction of depth in the flow path 20 coincides with the direction of the optical axis OX of the optical system for photodetection 5, and is the direction of the z-axis.
  • the direction of the optical axis OX of the optical system for light detection 5 may be simply referred to as the direction of the optical axis OX.
  • the calibration pattern CP is included in the structured illumination pattern 21 on which the structured illumination light SLE is imaged in the channel 20.
  • the structured illumination composed of the light source 3 and the spatial light modulator 4 is an illumination optical system that illuminates, with structured light, a plurality of detection positions for the photodetector 6 to detect the depth direction position PP. is an example.
  • the position where the calibration pattern CP is arranged in the channel 20 to detect the depth direction position PP of the cell C, which is the object to be observed, is also called the detection position. Details of the calibration pattern CP will be described later.
  • FIG. 2 is a diagram showing an example of the spatial light modulator 4 according to this embodiment.
  • the spatial light modulator 4 includes a spatial light modulator 40 , a first lens 41 , a spatial filter 42 , a second lens 43 and an objective lens 44 .
  • the spatial light modulator 40, the first lens 41, the spatial filter 42, the second lens 43, and the objective lens 44 are arranged in this order from the side closer to the light source 3 and the light detection unit. It is placed on the optical path between the device 6 and the device 6 .
  • the spatial light modulator 40 structures incident light. Structuring the incident light means changing the optical characteristics of the incident light for each of a plurality of regions included in the plane of incidence of the incident light.
  • the spatial light modulator 40 structures the illumination light LE and transforms it into structured illumination light SLE.
  • the spatial light modulator 40 is an optical element that changes the spatial distribution of incident light to change the optical characteristics of the incident light, and makes it possible to control the light irradiation pattern and irradiate the light.
  • the light-incident surface of the spatial light modulator 40 has a plurality of regions, and the optical characteristics of the illumination light LE are individually converted in each of the plurality of regions through which the illumination light LE passes.
  • the optical characteristics of the transmitted light are different in a plurality of regions with respect to the optical characteristics of the incident light.
  • the optical properties of incident light are, for example, properties related to any one or more of intensity, wavelength, phase, and polarization state. Note that the optical characteristics are not limited to these.
  • the spatial light modulator 40 is, for example, a diffractive optical element (DOE), a spatial light modulator (SLM), a digital mirror device (DMD), or a plurality of devices with different optical characteristics. Films, etc., on which areas are printed on the surface are included. Note that when the illumination light LE emitted by the light source 3 is incoherent light, the spatial light modulator 40 is a DMD.
  • the spatial light modulator 40 is, as an example, a DOE, which is an optical element that controls the diffraction phenomenon of light by means of the formed minute shape.
  • the light is the illumination light LE.
  • the light-transmitting region of the spatial light modulator 40 is referred to as a transmission region.
  • the position irradiated with the structured illumination light SLE in the channel 20 is also referred to as the irradiation position.
  • the irradiation position corresponds to the transmissive area of the spatial light modulator 40 .
  • the shape and size of the transmissive region of the spatial light modulator 40 are common to the transmissive regions of the spatial light modulators 40 .
  • the shape of the transmissive area is, for example, a square. This square has one side of equal length in the transmissive area of spatial light modulator 40 .
  • Cells C that have passed through the irradiation position emit light when fluorescent molecules are excited by the structured illumination light SLE.
  • the fluorescence resulting from this emission is an example of the signal light LS emitted from the cells C flowing through the channel 20 when the cells C are irradiated with the structured illumination light SLE.
  • Other examples of the signal light LS include transmitted light from the structured illumination light SLE transmitted through the cell C, scattered light from the structured illumination light SLE scattered by the cell C, and combined structured illumination light SLE with other light. Includes interfering light.
  • the shape and size of the transmission region of the spatial light modulator 40 are not limited to a square as long as they are uniform within the transmission region, and the size can be freely changed.
  • the shape of the transmissive region may be other polygons, circles, or the like, for example.
  • the first lens 41 converges the structured illumination light SLE transmitted through the spatial light modulator 40 onto the spatial filter 42 .
  • the spatial filter 42 removes components corresponding to spatially varying noise from the structured illumination light SLE condensed by the first lens 41, thereby bringing the intensity distribution of the structured illumination light SLE closer to the Gaussian distribution.
  • the second lens 43 collimates the structured illumination light SLE from which noise has been removed by the spatial filter 42 .
  • the objective lens 44 collects the structured illumination light SLE collimated by the second lens 43 and focuses it on the irradiation position of the channel 20 .
  • the objective lens 44 may be a dry objective lens or an immersion objective lens.
  • An immersion objective lens is an oil immersion lens, a water immersion lens, or the like.
  • the light detection optical system 5 is an optical mechanism for condensing the signal light LS from the cells C onto the photodetector 6, and includes an imaging lens 50 (not shown) in its configuration.
  • the signal light LS from the cell C is fluorescence, transmitted light, scattered light, or interference light.
  • the imaging lens 50 converges the signal light LS from the cell C to the position of the photodetector 6 .
  • the imaging lens 50 does not need to form an image as long as the signal light LS from the cell C is focused on the position of the photodetector 6, but the signal light LS is focused on the position of the photodetector 6. It is more preferable to be placed at the imaging position.
  • the photodetection optical system 5 may further include a dichroic mirror or a wavelength selective filter.
  • the photodetector 6 detects the signal light LS condensed by the imaging lens 50 .
  • the photodetector 6 detects the signal light LS and converts it into an electrical signal.
  • the photodetector 6 is, for example, a photomultiplier tube (PMT: Photomultiplier Tube).
  • the photodetector 6 detects the intensity of the signal light LS condensed by the imaging lens 50 in time series. As described above, the signal light LS is emitted from the cells C flowing through the channel 20 when the cells C are irradiated with the structured illumination light SLE.
  • the photodetector 6 detects in time series the intensity of the signal light LS emitted from the cells C flowing through the channel 20 when the cells C are irradiated with the structured illumination light SLE.
  • the photodetector 6 may be a single sensor composed of a single light-receiving element, or may be a multi-sensor composed of a plurality of light-receiving elements.
  • the DAQ device 7 converts the electrical signal pulses output by the photodetector 6 into electronic data for each pulse.
  • the electronic data includes sets of time and intensity of electrical signal pulses.
  • DAQ device 7 is, for example, an oscilloscope.
  • the PC 8 has the functions of an information generating device and an arithmetic device.
  • the PC 8 As an information generating device, the PC 8 generates optical information IC regarding the morphology of the cell C based on electronic data output from the DAQ device 7 .
  • the optical information IC is optical information indicating morphological information of cells.
  • the PC 8 also stores the generated optical information IC.
  • the process of storing the optical information IC generated by the PC 8 is also referred to as recording.
  • PC8 is an example of an information generating device.
  • the cell C passing through the channel 20 is illuminated by the structured illumination configuration, and the signal light LS from the cell C is detected by the photodetector 6 .
  • the optical information IC is information indicating time-series changes in the intensity of the signal light LS from the cell C as a waveform. This waveform and the morphology of the cell C correspond, and the optical information IC can be used to identify the cell C.
  • the optical information IC is used, for example, in machine learning as teacher data for learning the relationship between the morphology of the cell C and the waveform signal, and the obtained inference model is used to identify the cell C from the waveform signal measured during inference. is done.
  • the spatial light modulator 4 installed between the light source 3 and the microfluidic device 2 performs structured processing for converting illumination light into structured illumination.
  • the structured illumination is applied to the channel 20 included in the microfluidic device 2, and the optical information IC for identifying the cell C is obtained by detecting the signal light LS emitted by the observation target (cell C) with the photodetector 6. .
  • Acquisition of optical information for identifying cells C through the structuring of light by the spatial light modulator as described above means that optical information is acquired or generated through structuring processing by the spatial light modulator in the following description. It should also be stated.
  • the structuring process by the spatial light modulator 4 is performed as a process of converting the illumination light LE into the structured illumination light SLE by the configuration of the structured illumination.
  • the PC 8 is described as an example of an information generation device that generates optical information IC indicating the form information of the observed object based on the intensity of the signal light LS detected by the photodetector 6 .
  • the PC 8 as an arithmetic unit, is based on the parameter of the time change of the intensity of the signal light LS detected at the detection position where the depth direction position PP is detected. Calculate the position PP.
  • the detection position is a position where the channel is irradiated with the illumination of the calibration pattern CP in order to detect the depth direction position PP of the cell C passing through the channel.
  • a signal light LS emitted from C is detected by a photodetector 6 via a photodetection optical system 5 .
  • the illumination of the calibration pattern CP is included in the structured illumination for acquiring the optical information IC, and the channel 20 is irradiated with the structured illumination pattern 21 .
  • the PC 8 is an example of a computing device, and calculates the depth direction position PP of the cell C based on the temporal change in intensity of the detected signal light LS.
  • the channel position control device 9 controls the position of the channel 20 in the depth direction.
  • the direction of the optical axis OX and the depth direction of the channel 20 match.
  • the depth direction of the channel 20 is the direction of the z-axis.
  • the channel position control device 9 is, for example, a driver that drives a piezo stage on which the channel 20 is placed.
  • the channel position control device 9 moves the channel 20 in the direction of the optical axis OX, continuously acquires the signal of the time change of the intensity of the signal light LS at various positions in the direction of the optical axis of the channel 20, and determines the depth.
  • a directional position PP is calculated.
  • the flow channel position control device 9 performs feedback control on positional deviation of the flow line FX along which the cell C moves in the depth direction of the flow channel, based on the depth direction position PP of the cell C calculated by the PC 8. .
  • FIG. 3 is a diagram showing an example of a front view of the calibration pattern CP1 irradiated onto the channel 20.
  • a front view is a view when the calibration pattern CP1 is viewed from the direction of the optical axis OX (z-axis direction).
  • FIG. 4 is a diagram showing an example of a side view of the calibration pattern CP1 irradiated onto the channel 20. As shown in FIG. A side view is a view when the calibration pattern CP1 is viewed from the horizontal direction HX (x-axis direction).
  • FIG. 5 is a diagram showing an example of a side view of the positional relationship between the calibration pattern CP1 according to the present embodiment and the imaging lens 50 forming the optical system for photodetection 5 (not shown).
  • the calibration pattern CP1 is included in the structured illumination pattern 21 with which the channel 20 is irradiated, and is imaged as part of the structured illumination pattern 21 in the channel 20 .
  • the calibration pattern CP1 is applied to the flow path 20 as a linear pattern parallel to the horizontal direction HX (x-axis direction) when viewed from the direction of the optical axis OX (z-axis direction). Note that FIG. 3 does not show the positions of the optical information generating patterns included in the structured illumination pattern 21 .
  • FIG. 4 shows the position of the calibration pattern CP1 when viewed from the horizontal direction HX (x-axis direction).
  • the calibration pattern CP1 is imaged on the focal plane FP1 when viewed in the horizontal direction HX, and is indicated by a circle in FIG. 4 for simplicity.
  • the focal plane FP1 is a focal plane on which the calibration pattern CP1 is imaged in the channel 20 .
  • the calibration pattern CP1 is imaged at the position P2, which is the depth direction position PP of the cell C2 moving in the channel 20 along the streamline FX2. It should be noted that the positions of the optical information generating patterns included in the structured illumination pattern 21 are likewise not shown in FIG.
  • FIG. 4 and 5 are diagrams when the channel 20 is viewed from the horizontal direction HX (x-axis direction), and when the cell C passes through the vicinity of the detection position, which depth position does it pass? are shown in three examples.
  • the cell C moves in the channel 20 along the streamline of the flowing fluid, but the cell C1, cell C2, and cell C3 move through positions P1, P2, and P3, which have different depth direction positions PP near the detection positions, respectively.
  • Cells C migrate by passing streamlines (streamline FX1, streamline FX2, and streamline FX3, respectively).
  • streamline FX1, streamline FX2, and streamline FX3, respectively are diagrams when the channel 20 is viewed from the horizontal direction HX (x-axis direction), and when the cell C passes through the vicinity of the detection position, which depth position does it pass? are shown in three examples.
  • the cell C moves in the channel 20 along the streamline of the flowing fluid, but the cell C1, cell C2, and cell C3 move through positions P1, P2, and P3, which have different depth direction positions PP near the detection
  • the calibration pattern CP1 is imaged in the channel at position P2, and the position P1 is a position farther from the imaging lens 50 than the position P2 (that is, a position shallower in the channel in the optical axis OX direction).
  • the position P3 is closer to the imaging lens 50 than the position P2 (that is, the position deeper in the flow path in the optical axis OX direction).
  • the position P2 is between the positions P1 and P3.
  • the calibration pattern CP is arranged upstream of the streamline FX relative to the optical information generation pattern (not shown) in the direction of the flow path (y-axis direction) indicated by the streamline FX as an example. However, it may be arranged on the downstream side of the streamline FX from the optical information generation pattern.
  • FIG. 6 is a diagram showing an example of the measurement signal SG indicating temporal changes in the intensity of the signal light LS according to this embodiment.
  • the electronic data representing the temporal change in the intensity of the signal light LS as a waveform is referred to as the measurement signal SG.
  • FIG. 6(A) shows the measurement signal SG3 in the case of the cell C3 that has moved in the channel 20 along the streamline FX3 and passed through the position P3.
  • FIG. 6B shows the measurement signal SG2 in the case of the cell C2 that has moved in the channel 20 along the streamline FX2 and passed through the position P2.
  • FIG. 6(C) shows the measurement signal SG1 in the case of the cell C1 that has moved in the channel 20 along the streamline FX1 and passed through the position P1.
  • the peak value and peak width of the measurement signal are used as indicators of the intensity of the signal light LS used to calculate the depth direction position.
  • the peak value of the measurement signal is the maximum value of the amplitude of the measurement signal.
  • the peak width of the measurement signal is, for example, a time width such as a full width half maximum (FWHM) in which the signal amplitude is equal to or greater than a predetermined threshold.
  • the peak width of the measurement signal may be a feature quantity (for example, variance in Gaussian curve fitting) indicating the spread of the measurement signal in the time direction obtained by curve fitting.
  • another index such as the area of the peak (peak area) can be used as the index of the intensity of the signal light LS.
  • the index of the intensity of the signal light LS used for calculating the depth direction position is also referred to as a parameter.
  • the peak value H3 of the measurement signal SG3 is smaller than the peak value H2 of the measurement signal SG2.
  • the width W3 of the measurement signal SG3 is wider than the width W2 of the measurement signal SG2.
  • the shape of the measurement signal SG1 and the shape of the measurement signal SG3 are the same, the peak value H1 of the measurement signal SG1 is equal to the peak value H3 of the measurement signal SG3, and the width W1 of the measurement signal SG1 is equal to the width W3 of the measurement signal SG3. equal.
  • the peak value and width of the measurement signal SG may be collectively referred to as the profile of the measurement signal SG.
  • FIG. 7 shows the relationship between the magnitude of the values included in the profiles of the measurement signal SG1, the measurement signal SG2, and the measurement signal SG3 and the depth direction position PP of the cell C.
  • FIG. 7 is a diagram showing an example of the relationship between the depth direction position PP and the magnitude of values included in the profile of the measurement signal SG according to this embodiment.
  • FIG. 7 shows an example in which the values included in the profile of the measurement signal SG are the peak value and width.
  • the depth direction position PP of the cell C is farther in the depth direction from the position P2 where the calibration pattern CP is imaged in the channel, the depth direction position PP of the cell C matches the position P2.
  • the peak value of the measurement signal SG becomes smaller and the width becomes wider as compared with the case where the measurement signal SG is held.
  • the depth direction position PP where the peak value of the measurement signal SG is maximum and the width is minimum corresponds to the position P2 where the calibration pattern CP is imaged in the channel 20 .
  • the calibration pattern CP1 is imaged at the position where the depth direction position PP is the position P2. Therefore, by detecting the difference from the maximum value of the peak value of the measurement signal SG and/or the difference from the minimum value of the width, the displacement in the depth direction from the position P2 of the streamline where the cell C flows is detected. can.
  • the displacement of the streamline in the depth direction means that the passage position of the object to be observed flowing along with the fluid flowing in the flow channel 20 is relatively displaced in the direction of the depth direction position PP. At the same time, it is relatively shifted in the direction of the optical axis OX of the optical system for photodetection.
  • the positional deviation in the optical axis OX direction of the position where the observation object flows in the flow path 20 is calculated using the two parameters of the peak value and the peak width of the measurement signal SG. may be detected.
  • the peak value multiplied by the reciprocal of the width is used as the new parameter.
  • the depth direction position PP at which the new parameter becomes the maximum value corresponds to the depth direction position where the irradiation light of the calibration pattern forms an image in the channel 20, and that position (position P2 in FIG. 5).
  • the measurement signal SG of the signal light LS emitted from the cell C moving along the streamline FX passing through has the largest peak value and a sharp shape with a narrow width.
  • the displacement of the streamline in the direction of the optical axis OX can be detected. Further, the displacement of the streamline in the direction of the optical axis OX can be detected by combining either one of the two parameters, or a combination thereof, and a new parameter obtained by performing calculation using the two parameters. good.
  • the channel 20 through which the cells C pass is irradiated with the structured illumination light SLE, and the signal light LS emitted from the cells C by irradiation with the calibration pattern CP included in the structured illumination light SLE is detected by the photodetector.
  • the optical information IC of the cell C and the depth direction position PP of the cell C can be calculated simultaneously.
  • the calibration pattern CP for detecting the depth direction position PP of the cell C contained in the structured illumination light SLE is imaged on the focal plane FP1 inside the channel 20 .
  • the calibration pattern CP1 is applied to the cell C moving at a certain position in the depth direction along the streamline FX in the channel 20, and the position in the depth direction of the channel when the cell C passes through the channel 20. function as a detection position for detecting the depth direction position PP.
  • the calibration pattern CP is irradiated onto the cell C passing through the channel 20 in this way, and the peak value and width of the measurement signal SG showing the temporal change in the intensity of the signal light LS from the cell C as a waveform.
  • FIG. 8 is a diagram showing an example of the configuration of the arithmetic device 10 according to this embodiment.
  • the arithmetic unit 10 is implemented as a function of the PC8.
  • the computing device 10 includes a control section 11 .
  • the control unit 11 includes, for example, a CPU (Central Processing Unit), GPU (Graphics Processing Unit), FPGA (Field-Programmable Gate Array), etc., and performs various calculations and exchanges of information.
  • the control unit 11 includes a signal strength acquisition unit 110 , a position calculation unit 111 , an output unit 112 and a scanning unit 113 .
  • the signal strength acquisition unit 110, the position calculation unit 111, the output unit 112, and the scan unit 113 are modules implemented by, for example, the CPU reading a program from a ROM (Read Only Memory) and executing processing. be.
  • the signal strength acquisition unit 110 acquires electronic data D output from the DAQ device 7 .
  • the electronic data D is electronic data of the measurement signal SG, which is the temporal change in the intensity of the signal light LS detected by the photodetector 6 in the calibration pattern CP. In the following description, obtaining electronic data D is also referred to as obtaining a signal.
  • the position calculator 111 calculates the depth direction position PP of the cell C based on the electronic data D acquired by the signal intensity acquirer 110 .
  • the output unit 112 outputs position information IP indicating the depth direction position PP calculated by the position calculation unit 111 to the flow channel position control device 9 .
  • the scanning unit 113 performs scanning processing for calculating the depth direction position PP.
  • This scanning process is a process of moving the channel 20 in the direction of the optical axis OX via the channel position control device 9 and continuously acquiring signals at various positions in the direction of the optical axis of the channel 20 .
  • the direction of the optical axis OX is the depth direction of the channel 20, and obtaining a signal means obtaining the electronic data D of the measurement signal SG.
  • FIG. 9 is a diagram showing an example of position calculation processing according to the present embodiment.
  • the computing device 10 executes each step of the position calculation process described below at predetermined intervals after the cells C start flowing through the channel 20 .
  • a predetermined cycle is a cycle of a certain period of time, such as 10 minutes.
  • the calculation device 10 may execute the position calculation process each time a predetermined number of cells C flow through the channel 20 instead of the predetermined cycle.
  • the predetermined number is 1000, for example. These predetermined period and predetermined number may be set according to the flow velocity of the fluid flowing through the channel 20 .
  • Step S10 The scanning unit 113 sets a predetermined position in the direction of the optical axis OX of the channel 20 as a scanning position. After setting the scanning position, the scanning unit 113 moves to the scanning position where the position of the flow path 20 in the optical axis direction is set via the flow path position control device 9 . When the processing of moving the flow path 20 to the scanning position in the direction of the optical axis OX is completed, the scanning unit 113 supplies a signal indicating the completion of the processing to the signal intensity acquiring unit 110 .
  • step S10 which is executed for the first time after the position calculation process is started, the scanning unit 113 sets the scanning position to the position in the direction of the optical axis OX where the channel 20 is currently set.
  • the scanning unit 113 changes the scanning position by a predetermined distance from the previous scanning position in step S10 from the second time onward.
  • the scanning unit 113 increases the scanning position by a predetermined distance from the previous scanning position.
  • the predetermined distance is, for example, a distance of approximately 5 micrometers.
  • the scanning unit 113 moves the scanning position in the optical axis direction by the distance from the previous scanning process, and acquires the next signal.
  • the scan unit 113 sets the next scan position to the position of the channel 20 in the direction of the optical axis OX, for example. set to the lowest position.
  • the scanning unit 113 may decrease the scanning position by a predetermined distance from the previous scanning position in step S10 for the second and subsequent times.
  • the scanning unit 113 may set the scanning position to the highest position or the lowest position that can be set for the position of the flow channel 20 in the direction of the optical axis OX. good.
  • Step S20 The signal intensity acquisition unit 110 acquires the signal output from the DAQ device 7 when the process of moving the flow path 20 to the scan position in the optical axis OX direction is completed. That is, the signal strength acquisition unit 110 acquires the electronic data D of the measurement signal SG. The signal strength acquisition unit 110 supplies the acquired electronic data D to the position calculation unit 111 .
  • Step S30 When signal acquisition ends in step S20, the scanning unit 113 determines whether or not the scanning process is completed.
  • the scanning unit 113 determines that the scanning process has been completed (step S30; YES)
  • the position of the flow path 20 in the direction of the optical axis OX is changed to the position before starting the scanning process via the flow path position control device 9. back to After that, the control unit 11 executes the process of step S40.
  • the control unit 11 returns to step S10, changes the scanning position, and executes the signal acquisition step again.
  • Signal acquisition in the scanning process is performed a preset number of times. The preset number of times is, for example, about five times.
  • Step S40 The position calculator 111 calculates the depth direction position PP of the cell C based on the electronic data D acquired by the signal intensity acquirer 110 in the scanning process.
  • the position calculation unit 111 supplies position information IP indicating the calculated depth direction position PP to the output unit 112 .
  • the signal intensity acquisition unit 110 generates one measurement signal SG for one cell C as electronic data representing the temporal waveform of the signal light intensity.
  • the position calculation unit 111 calculates the peak value of the measurement signal SG at the depth direction position PP where the peak value of the measurement signal SG is maximum, and the current position of the flow path 20 in the optical axis direction. is compared with the peak value of the measured signal SG. In addition, based on the electronic data D, the position calculation unit 111 obtains the width of the measurement signal SG at the depth direction position PP where the width of the measurement signal SG is minimum and the current position in the depth direction of the flow path 20. and the width of the measured signal SG obtained.
  • the position calculation unit 111 calculates the depth direction position PP of the cell C as a relative position with respect to the position P2 where the calibration pattern CP is imaged in the channel 20 based on the comparison results. As described above, the peak value of the measurement signal SG is maximized when the depth direction position PP coincides with the position P2 where the calibration pattern CP is imaged in the channel 20 . Also, the width of the measurement signal SG is minimized when the depth direction position PP coincides with the position P2 where the calibration pattern CP is imaged in the channel 20 .
  • the position calculation unit 111 calculates the depth direction position PP of the cell C based on the electronic data D.
  • the electronic data D here is the measurement signal SG, which is electronic data relating to the waveform of the temporal change in the intensity of the signal light LS detected at the detection position of the calibration pattern CP. That is, the position calculation unit 111 calculates the depth direction position PP, which is the relative position of the cell C in the direction of the optical axis OX in the flow path 20, at the detection position as a parameter of the time change of the intensity of the signal light LS. calculated using
  • the position calculator 111 calculates the depth direction position PP based on both the peak value and the width of the measurement signal SG has been described, but the present invention is not limited to this.
  • the position calculator 111 may calculate the depth direction position PP based on at least one of the peak value and the width of the measurement signal SG.
  • Step S ⁇ b>50 The output unit 112 outputs the position information IP indicating the depth direction position PP calculated by the position calculation unit 111 to the channel position control device 9 . With this, the arithmetic device 10 ends the position calculation process.
  • the channel position control device 9 controls the position of the channel 20 in the depth direction, that is, the position in the optical axis OX direction, based on the acquired position information IP.
  • the flow channel position control device 9 adjusts the depth direction of the flow channel, for example.
  • the position of the flow path 20 in the depth direction is changed so that the position of the focal plane FP1 matches the position of the focal plane FP1.
  • the channel position control device 9 performs feedback control with respect to the positional deviation of the stream line FX along which the cells move in the depth direction of the channel.
  • the flow channel position control device 9 controls the position of the flow channel 20 in the depth direction based on the position information IP indicating the depth direction position PP output by the output unit 112. For example, the position information The depth direction position of the flow path 20 is changed so that the depth direction position PP indicated by IP coincides with the position of the calibration pattern CP1 on which the illumination light applied to the flow path 20 forms an image.
  • the position calculation unit 111 may calculate the depth direction position PP each time the signal intensity acquisition unit 110 acquires a signal in parallel with the scanning process. In this case, the position calculator 111 determines the maximum peak value or the minimum width of the profile of the measurement signal SG in parallel with the scanning process.
  • the scanning unit 113 ends the scanning process when the position calculating unit 111 can determine the maximum value of the peak value or the minimum value of the width for the profile of the measurement signal SG.
  • the scanning unit 113 may change the scanning position according to the increase or decrease in the peak value or width of the measurement signal SG. .
  • the scan unit 113 sets the next scan position in the direction opposite to the direction currently being changed.
  • the scanning unit 113 sets the next scanning position in the direction opposite to the direction currently being changed.
  • the position calculation unit 111 may determine the maximum peak value or minimum width value for the profile of the measurement signal SG instead of the maximum peak value or minimum width value.
  • the scanning unit 113 ends the scanning process when the position calculating unit 111 can determine the maximum value of the peak value or the minimum value of the width for the profile of the measurement signal SG.
  • the position calculator 111 may generate an average of measurement signals for a predetermined number of cells C as the measurement signal SG.
  • the depth direction position PP is not limited to this.
  • the depth direction position PP may be calculated as an absolute position by comparing with the profile of the measurement signal SG measured in advance. In that case, as an example, the profile of the measurement signal SG measured in advance is such that the position where the cells move along the streamline FX coincides with the position where the calibration pattern CP is imaged in the channel. Measured by setting 20 depth positions.
  • the computing device 10 stores profiles of the measurement signals SG measured in advance.
  • the output unit 112 outputs the position information IP to the notification unit that notifies the displacement of the streamline.
  • the notification unit notifies the positional deviation of the streamline when it is determined that the positional deviation of the streamline has occurred based on the position information IP.
  • the structured illumination pattern 21 includes the optical information generation pattern and the calibration pattern CP, and the illumination light for the optical information generation pattern and the illumination light for the calibration pattern CP are Although an example of simultaneous irradiation has been described, the present invention is not limited to this. As a modification of this embodiment, the illumination light for the optical information generation pattern and the illumination light for the calibration pattern CP may be emitted at different times.
  • the calibration pattern CP of the structured illumination pattern 21 is used only during calibration for measuring the streamline deviation in the channel 20 of the cell C, and only the optical information generation pattern is used during discrimination of the cell C for structuring. It is also possible to irradiate the illumination pattern 21 separately.
  • illumination light for the calibration pattern CP may be illuminated during calibration, and illumination light for the optical information generation pattern may be illuminated during cell C discrimination.
  • illumination light irradiation it is also possible to illuminate the calibration pattern CP as an unstructured illumination pattern.
  • the range of structured illumination irradiated during discrimination of the cell C is compared to the case where the illumination light for the optical information generation pattern and the illumination light for the calibration pattern CP are simultaneously irradiated. It is possible to make the region shorter, and the throughput of the flow cytometer 1 can be improved.
  • the flow cytometer 1 includes a microfluidic device 2 having a channel 20 in which an observation target (cell C in this embodiment) can flow together with a fluid; An imaging lens 50 that forms an image of the signal light LS from the cell C) in this embodiment, and a photodetector 6 that detects the intensity of the signal light LS from the observation target (cell C in this embodiment) in time series.
  • It is a flow cytometer comprising a device (PC8 in this embodiment) and an arithmetic device (PC8 in this embodiment).
  • the microfluidic device 2 detects a depth direction position PP, which is the position in the depth direction when the object to be observed (the cell C in this embodiment) passes through the channel 20.
  • a position (calibration pattern CP in this embodiment) is arranged.
  • the arithmetic device includes a signal strength acquisition section 110 , a scanning section 113 , a position calculation section 111 and an output section 112 .
  • the signal intensity acquisition unit 110 detects the time change of the intensity of the signal light LS detected at a predetermined detection position (the position of the calibration pattern CP1 in this embodiment) in the flow channel 20 in order to detect the depth direction position PP.
  • Electronic data D of (measurement signal SG in this embodiment) is acquired.
  • the scanning unit 113 moves the channel 20 in the depth direction via the channel position control device 9 and performs scanning processing for acquiring the electronic data D at different depth positions.
  • the position calculator 111 calculates the depth direction position PP based on the electronic data D.
  • the output unit 112 outputs position information IP indicating the depth direction position PP calculated by the position calculation unit 111 .
  • the detection position for detecting the depth direction position PP is installed at a predetermined position in the flow channel 20, and the signal light LS detected at the detection position Since the depth direction position PP can be calculated using the parameter of the time change of the intensity of , it is possible to detect the change in the depth direction of the passage position when the observation target passes through the channel.
  • a detection position for detecting the depth direction position PP is installed in the flow channel 20, and illumination light forming an image at that position is irradiated to the observation object and emitted from there. By detecting the temporal change in the intensity of the signal light LS that is emitted, it is possible to directly measure the depth direction position PP when the object to be observed passes through the channel using a simple configuration.
  • the position calculation unit 111 calculates any of the parameters such as the peak value, width, or area of the time change of the intensity of the signal light LS (measurement signal SG in this embodiment). 1 or more is used to calculate the depth direction position PP.
  • the depth direction position is determined based on at least one of the peak value of the time change of the intensity of the signal light LS and the width. Since PP can be calculated, it is easier to measure the passage in the depth direction when the object to be observed passes through the flow channel than when it is not based on at least one of the peak value of the time change of the intensity of the signal light LS and the width. Position can be detected.
  • the light that illuminates the detection position (the position of the calibration pattern CP1 in this embodiment) for the photodetector 6 to detect the depth direction position PP, and the observation target Structured common light is used as light used for illumination for generating optical information IC indicating morphological information of an object (cell C in this embodiment).
  • the detection position for detecting the depth direction position PP can be included in the structured illumination for acquiring the optical information IC of the observation object, the depth A plurality of detection positions for detecting the depth direction position PP can be set without separately providing an optical system for setting a plurality of detection positions for detecting the direction position PP.
  • the flow cytometer 1 includes the channel position control device 9 .
  • the flow channel 20 is moved in the direction of the optical axis OX by the flow channel position control device 9, and scanning processing is performed to continuously acquire signals at various positions in the direction of the optical axis of the flow channel 20.
  • a directional position PP is calculated.
  • the channel position control device 9 further controls the position of the channel 20 in the depth direction based on the information indicating the depth direction position PP output by the output unit 112 .
  • the flow cytometer 1 can control the depth direction position of the channel 20 based on the information indicating the depth direction position PP. Any misalignment that occurs can be corrected in a timely manner.
  • the photodetection optical system according to the present embodiment is referred to as a photodetection optical system 5a
  • the imaging lens included in the photodetection optical system 5a is referred to as an imaging lens 50a
  • the arithmetic device according to the present embodiment is referred to as an arithmetic device 10a.
  • the configuration of the flow cytometer 1a according to the present embodiment and the configuration of the flow cytometer 1 according to the first embodiment differ in that the number of calibration patterns CPa in the flow channel 20a is different, and that the flow cytometer 20a is irradiated.
  • the respective calibration patterns CPa are arranged at different focal plane positions on which the structured illumination light is imaged in the flow path, and the position calculation processing of the arithmetic device 10a is the position calculation processing of the arithmetic device 10. are the same except that they are different.
  • the description of the same functions as those of the first embodiment will be omitted, and the description of the second embodiment will focus on the portions that differ from those of the first embodiment.
  • FIG. 10 is a diagram showing an example of a front view of the calibration pattern CPa (a view of the channel 20a viewed from the z-axis direction) according to this embodiment.
  • FIG. 11 is a diagram showing an example of a side view of the calibration pattern CPa (a view of the channel 20a viewed from the x-axis direction) according to this embodiment.
  • FIGS. 10 and 11 show an example in which there are two calibration patterns CPa that are irradiated onto the channel 20a. Note that FIG. 10 does not show the positions of the optical information generating patterns included in the structured illumination pattern 21, as in FIG. 3 described above.
  • the calibration pattern CPa consists of two calibration patterns CP1a and CP2a.
  • the calibration pattern CP1a and the calibration pattern CP2a are linear patterns in the width direction of the channel 20a, and are arranged substantially parallel to the horizontal direction HX (x-axis direction).
  • the calibration pattern CP1a and the calibration pattern CP2a are arranged at positions different from each other with respect to the flow line FX direction (y-axis direction) along which the cells C move in the channel 20a, which is the length direction of the channel.
  • the calibration pattern CP1a and the calibration pattern CP2a may be arranged either upstream or downstream of the optical information generation pattern (not shown) in the length direction of the flow path. and the calibration pattern CP2a.
  • FIG. 11 is a diagram showing an example of a side view of the calibration pattern CPa irradiated onto the channel 20a. 10, FIG. 11 does not show the positions of the optical information generating patterns included in the structured illumination pattern 21.
  • FIG. The calibration patterns CPa when viewed from the horizontal direction HX (x-axis direction) are respectively imaged on different focal planes FPa within the flow path.
  • the calibration pattern CP2a to be imaged is indicated by a circle in the drawing for the sake of simplification of its position.
  • the focal plane FPa is a focal plane on which the calibration pattern CPa is imaged on the channel 20a.
  • the calibration pattern CP1a and the calibration pattern CP2a are arranged on different focal planes in the direction of the optical axis OX (z-axis direction) in the channel 20a, and the depth direction positions PP of the channels are different.
  • FIG. 11 shows cells C1 passing through the channel 20a along the streamline FX1 whose depth direction position PP is the position P1, and cells C1 passing through the channel 20a along the streamline FX2 whose depth direction position PP is the position P2. and a cell C3 passing through the channel 20a along the streamline FX3 whose depth direction position PP is the position P3.
  • the position PP in the depth direction of the calibration pattern CP1a is the position P3 where the cell C3 passes through the channel by the streamline FX3.
  • the depth direction position PP of the calibration pattern CP2a is the position P1 through which the cell C1 passes by the streamline FX1.
  • a position P2 through which the cell C2 passes due to the flow line FX2 is an intermediate depth position between the positions P1 and P3 in the depth direction position PP of the channel 20a.
  • the depth direction A calibration pattern CP1a and a calibration pattern CP2a are arranged as a plurality of detection positions for detecting the position PP.
  • FIG. 12 is a diagram showing an example of the measurement signal SG indicating temporal changes in the intensity of the signal light LS according to the second embodiment.
  • the signal light LS here is signal light emitted from the cells C moving in the channel 20a by irradiation with the calibration pattern CPa.
  • FIG. 12A shows the measurement signal SG13 detected by the calibration pattern CP1a installed in the channel 20a and the calibration signal SG13 when the cell C passes through the position P3 as the depth direction position PP in the channel 20a.
  • FIG. 12B shows the measurement signal SG12 detected by the calibration pattern CP1a installed in the channel 20a and the calibration signal SG12 when the cell C passes through the position P2 as the depth direction position PP in the channel 20a. and a measurement signal SG22 detected by the motion pattern CP2a.
  • FIG. 12C shows the measurement signal SG11 detected by the calibration pattern CP1a installed in the channel 20a and the calibration signal SG11 detected by the calibration pattern CP1a installed in the channel 20a when the cell C passes through the position P1 as the depth direction position PP in the channel. and a measurement signal SG21 detected by the pattern CP2a.
  • the measurement signal SG detected by the calibration pattern CPa installed in the channel 20a is the calibration pattern CPa for measuring the depth position of the cell C imaged at a preset position in the channel 20a. is irradiated to the irradiation position of the channel 20a, and the signal light emitted from the cells by the irradiation of the illumination light is detected by the photodetector.
  • the measurement signal SG13 and the measurement signal SG21 have the same shape.
  • the measurement signal SG12 and the measurement signal SG22 have the same shape.
  • the measurement signal SG11 and the measurement signal SG23 have the same shape.
  • the peak values of the measurement signal SG13, the measurement signal SG12, and the measurement signal SG11 are higher in the order of the measurement signal SG13, the measurement signal SG12, and the measurement signal SG11.
  • the widths of the measurement signal SG13, the measurement signal SG12, and the measurement signal SG11 are narrower in the order of the measurement signal SG13, the measurement signal SG12, and the measurement signal SG11.
  • the peak value and width of the measured signal are in the depth direction in which the cell C passes through the channel. It differs depending on the position PP.
  • the ratio of the peak value of the measurement signal SG detected by the calibration pattern CP1a to the peak value of the measurement signal SG detected by the calibration pattern CP2a is referred to as peak value ratio R1.
  • a ratio of the width of the measurement signal SG detected by the calibration pattern CP1a to the width of the measurement signal SG detected by the calibration pattern CP2a is referred to as a width ratio R2.
  • FIG. 13 shows the relationship between the peak value ratio R1 of the measurement signal SG detected at a plurality of detection positions and the depth direction position PP, and the relationship between the width ratio R2 and the depth direction position PP.
  • FIG. 13 is a diagram showing an example of the relationship between the peak value ratio R1 of the measurement signal SG and the depth direction position PP and the relationship between the width ratio R2 and the depth direction position PP according to this embodiment.
  • the peak value ratio R1 and the width ratio R2 of the measurement signal SG change according to the depth direction position PP of the cell C, respectively.
  • the peak value ratio R1 of the measurement signal SG monotonously decreases as the depth direction position PP of the cell C becomes shallower from the position P3 to the position P1.
  • the width ratio R2 of the measurement signal SG monotonously increases as the depth direction position PP of the cell C becomes shallower from the position P3 to the position P1. That is, the peak value ratio R1 and the width ratio R2 of the measurement signal SG correspond to the depth direction position PP of the cell C on a one-to-one basis. Therefore, the depth direction position PP of the cell C can be calculated based on the peak value ratio R1 and the width ratio R2 of the measurement signal SG.
  • the present invention is not limited to this.
  • a peak area can also be used as another indicator of the intensity of the signal light LS.
  • two examples of calibration patterns are described, it is also possible to use a larger number of calibration patterns.
  • FIG. 14 is a diagram illustrating an example of position calculation processing according to the present embodiment. Note that the processes of steps S110 and S130 are the same as the processes of steps S20 and S50 in FIG. 9, and therefore description thereof is omitted.
  • a position calculation unit included in the arithmetic device 10a is referred to as a position calculation unit 111a.
  • Each unit of the arithmetic device 10a other than the position calculation unit 111a is the same as that of the arithmetic device 10.
  • FIG. 14 is a diagram illustrating an example of position calculation processing according to the present embodiment. Note that the processes of steps S110 and S130 are the same as the processes of steps S20 and S50 in FIG. 9, and therefore description thereof is omitted.
  • a position calculation unit included in the arithmetic device 10a is referred to as a position calculation unit 111a.
  • Each unit of the arithmetic device 10a other than the position calculation unit 111a is the same as that of the arithmetic device 10.
  • Step S120 The position calculation unit 111a calculates the depth direction position PP of the cell C based on the electronic data D acquired by the signal intensity acquisition unit 110.
  • FIG. The position calculation unit 111a supplies the output unit 112 with position information IP indicating the calculated depth direction position PP.
  • the position calculator 111a calculates the depth direction position PP based on at least one of the peak value ratio R1 and the width ratio R2.
  • the position calculator 111a compares the peak value ratio R1 and a predetermined value for the peak value ratio R1, and calculates the depth direction position based on the difference between the peak value ratio R1 and the predetermined value for the peak value ratio R1. Calculate PP.
  • the position calculation unit 111a compares the width ratio R2 and a predetermined value for the width ratio R2, and calculates the depth direction position PP based on the difference between the width ratio R2 and the predetermined value for the width ratio R2. calculate.
  • the arithmetic unit 10a can use pre-measured peak value ratio or width ratio values as the predetermined value for the peak value ratio R1 and the predetermined value for the width ratio R2, in which case those values remember.
  • the position calculation unit 111a calculates new parameters obtained as a result of calculation using the peak value ratio R1 and the width ratio R2 based on the electronic data D, and the depth direction position based on the calculated parameters. PP may be calculated.
  • the new parameter is, for example, a value obtained by multiplying the peak value ratio R1 by the reciprocal of the width ratio R2.
  • the position calculation unit 111a calculates the average value of the depth direction position PP calculated based on the peak value ratio R1 and the depth direction position PP calculated based on the width ratio R2 as the depth direction position PP. do.
  • the position calculator 111a may set at least one of the depth direction position PP calculated based on the peak value ratio R1 and the depth direction position PP calculated based on the width ratio R2 as the depth direction position PP. .
  • the peak value ratio R1 and the width ratio R2 are values based on the measurement signal SG detected in the calibration pattern CP1a and the measurement signal SG detected in the calibration pattern CP2a. Therefore, in the flow cytometer 1a according to the present embodiment, each signal light LS is detected at a plurality of detection positions for detecting the depth direction position PP, and parameters derived from the detected plurality of measurement signals SG are used. Then, the position calculator 111 calculates the depth direction position PP.
  • a plurality of detection positions (in the present embodiment, calibration The positions of the pattern CP1a and the calibration pattern CP2a) are arranged, and the illumination light of the calibration pattern CPa irradiated to detect the depth direction position PP of the cell C is imaged at that position.
  • the signal light LS emitted from the cell C by irradiation with the calibration pattern CPa is detected at each of a plurality of detection positions (the positions of the calibration pattern CP1a and the calibration pattern CP2a in this embodiment), and is detected by the photodetector 6.
  • the position calculator 111 calculates the depth direction position PP of the observed object using the parameter of the time change of the intensity of the signal light LS (in this embodiment, the measurement signal SG).
  • the calibration pattern CPa imaged at a plurality of detection positions arranged at different positions with respect to the direction of the optical axis OX and the length direction of the channel 20a. Since the depth direction position PP can be calculated based on the time change of the intensity of the signal light LS irradiated and detected at each detection position, the depth direction position PP can be calculated in comparison with the case where only one detection position is arranged. Fluctuations can be captured accurately, and when generating optical information indicating the structure of an object to be observed, it is possible to accurately correct the influence of displacement of streamlines and/or to effectively correct the position of the flow path. .
  • the flow path 20a is installed so as to be orthogonal to the direction of the optical axis OX.
  • a calibration pattern CPa for detecting a depth direction position PP imaged at a plurality of measurement positions (positions of the calibration pattern CP1a and the calibration pattern CP2a in the second embodiment) is irradiated, and the observation object is An example of detecting the time change in the intensity of the signal light LS emitted by (the measurement signal SG in this embodiment) and calculating the depth direction position PP has been described.
  • the flow path is installed to be inclined with respect to the direction of the optical axis OX.
  • different depth direction positions PP can be set on the same focal plane where the illumination light on the flow path forms an image for the calibration pattern irradiated to detect the depth direction position PP.
  • a plurality of detection positions that can be detected can be installed.
  • the flow cytometer according to this embodiment is called a flow cytometer 1b, and the channel is called a channel 20b.
  • the calibration pattern according to this embodiment is called a calibration pattern CPb.
  • the optical axis according to this embodiment is referred to as optical axis OXb, and the arithmetic device is referred to as arithmetic device 10b.
  • the configuration of the flow cytometer 1b according to the present embodiment and the configuration of the flow cytometer 1 according to the first embodiment are different except that the channel 20b is installed tilted with respect to the direction of the optical axis OXb. It is the same. Since the channel 20b is inclined with respect to the direction of the optical axis OXb, the depth direction of the channel 20 is inclined with respect to the direction of the optical axis OXb. Also, the configuration of the arithmetic device 10b according to the present embodiment is the same as the configuration of the arithmetic device 10a according to the second embodiment. A description of the same functions as those of the first and second embodiments will be omitted, and a description of the third embodiment will focus on portions that differ from those of the first and second embodiments.
  • FIG. 15 is a diagram showing an example of a side view of the calibration pattern CPb in the channel 20b according to this embodiment (a view of the channel 20b viewed from the x-axis direction). It should be noted that the positions of the optical information generating patterns included in the structured illumination pattern 21 are not shown in FIG. 15 as well.
  • the length direction (y-axis direction) of the channel 20b is inclined with respect to the direction of the optical axis OXb.
  • the calibration pattern CPb is obliquely irradiated to the channel 20b from the direction of the optical axis OXb, and is imaged on the focal plane FP1b in the channel.
  • the depth direction position PP of the streamlines FX1, FX2, and FX3 in the channel 20b is the position where the cells C1, C2, and C3 pass along the flow of the streamlines FX1, FX2, and FX3 in FIG. are the same.
  • the detection position for detecting the depth direction position PP in the depth direction (z-axis direction) of the channel 20b is set at the position of the calibration pattern CP1b and the calibration pattern CP2b on the same focal plane FP1b. are indicated by circles in the figure.
  • the depth direction (z-axis direction) of the channel 20b is inclined with respect to the direction of the optical axis OXb.
  • the calibration pattern CPb is imaged at two positions of the calibration pattern CP1b and the calibration pattern CP2b.
  • the calibration pattern CPb irradiated at the position of the calibration pattern CP1b or the position of the calibration pattern CP2b is irradiated as a linear pattern parallel to the horizontal direction HX (x-axis direction).
  • the calibration pattern CP1b and the calibration pattern CP2b are arranged at different positions in the length direction of the channel 20b.
  • the calibration pattern CP1b and the calibration pattern CP2b are imaged on a common focal plane FP1b with respect to the direction of the optical axis OXb. It is only tilted. Therefore, the calibration pattern CP1b and the calibration pattern CP2b are arranged at different positions in the depth direction (z-axis direction) of the channel 20b.
  • the relative positional relationship of the imaging positions of the calibration pattern CP1b and the calibration pattern CP2b shown in FIG. This is the same as the positional relationship relative to the channel 20a.
  • the calibration pattern CP1b and the calibration pattern CP2b shown in FIG. 15 are arranged at mutually different positions in the depth direction of the channel 20b. placed on the common focal plane FP1b of the illumination light.
  • the calibration pattern CP1a and the calibration pattern CP2a shown in FIG. 11 are positioned on different focal planes of the illumination light that irradiates the channel 20b in the direction of the optical axis OX.
  • the arithmetic device 10b executes the position calculation process in the same manner as the position calculation process of the arithmetic device 10a shown in FIG.
  • the measurement signal SG at the detection positions of the calibration pattern CP1b and the calibration pattern CP2b shown in FIG. 15 is shown in FIG.
  • the shape of the signal is different from that of the measurement signal SG detected at the detection positions of the calibration pattern CP1a and the calibration pattern CP2a shown. Therefore, in the position calculation processing of the arithmetic device 10b, the predetermined value for the peak value ratio R1 and the predetermined value for the width ratio R2 are different values from the values used in the position calculation processing of the arithmetic device 10a shown in FIG. is used.
  • the flow path 20b is installed tilting with respect to the direction of the optical axis OXb of the illumination light.
  • a plurality of detection positions for detecting a depth direction position are set to different depths on one focal plane FP1 of the calibration pattern CPb irradiated to the channel 20b. Since it can be installed at the position PP in the depth direction, the light source 3 and the spatial light modulator 4 can be arranged in a complicated manner so that the depth direction position PP of the flow channel 20b and the position in the length direction of the flow channel 20b are different.
  • a plurality of detection positions for detecting positions in the depth direction can be easily installed with a simpler structure than when a plurality of detection positions with different focal planes are installed.
  • the calibration pattern is an optical information generation pattern for generating the optical information. is combined with and the irradiation position on the flow channel is irradiated, and the detection position for detecting the depth direction position PP where the cell passes through the flow channel is arranged at the position where the calibration pattern on the flow channel is imaged. bottom.
  • the spatial light modulator is provided between the channel and the photodetector, and the position of the cell in the depth direction in the channel is provided between the channel and the photodetector.
  • optical information relating to the morphological information of the observed object can be obtained from the signal light detected through the light-transmitting region arranged on the mask that constitutes the spatial light modulator. That is, in the present embodiment, the structuring process of the signal light is performed by the structure of structured detection, and the information generating device acquires the optical information using the signal light structured through the structuring process.
  • the signal light subjected to the structuring process by the spatial light modulator arranged on the optical path between the channel and the photodetector as in this embodiment is also referred to as structured signal light.
  • the position in the depth direction through which the observation target passes in the channel uses the arrangement pattern of the light transmission regions of the mask that constitutes the spatial light modulator provided between the channel and the photodetector.
  • this embodiment may also be referred to as a form in which the calibration pattern is arranged by a mask. That is, in this embodiment, the detection position for detecting the position in the depth direction where the object to be observed passes through the channel is provided by the spatial light modulation section arranged by the structure of structured detection.
  • a flow cytometer according to this embodiment is called a flow cytometer 1c, and a channel is called a channel 20c.
  • a flow cytometer 1c there is no need to install structured illumination for acquiring optical information or a detection position for detecting the depth direction position PP as illumination for illuminating the flow cytometer in the flow cytometer.
  • the configuration of the flow cytometer 1c according to the present embodiment and the configuration of the flow cytometer 1 according to the first embodiment are different from the configuration of the flow cytometer 1c according to the first embodiment. Except for the point that the information generation pattern and the calibration pattern CP for detecting the depth direction position are not included, and the point that the mask 51c is arranged in the optical path between the flow path 20c and the photodetector 6
  • the configuration is similar. That is, the flow cytometer 1 is configured for structured illumination, while the flow cytometer 1c is configured for structured detection.
  • the position of the channel 20c in the depth direction can be controlled by the channel position control device based on the detected depth direction position PP of the cell C.
  • the position of the mask is controlled based on the detected depth direction position PP. It is possible to provide a mechanism for
  • FIG. 16 is a diagram showing an example of a side view (a view of the flow path 20c viewed from the x-axis direction) of the disposition of the mask 51c according to this embodiment.
  • the light transmitting portion of the mask 51c through which the signal light for generating the optical information IC of the mask 51c is transmitted is not shown in the drawing. It has not been.
  • a mask 51 c is provided between the channel 20 c and the photodetector 6 .
  • a lens 49 is provided between the mask 51c and the channel 20c, and an imaging lens 50 is provided between the mask 51c and the photodetector 6, respectively.
  • the lens 49 and the mask 51c constitute a spatial light modulating section 4c (not shown).
  • the photodetection optical system 5 is composed of the imaging lens 50, but it may further include a dichroic mirror or a wavelength selective filter.
  • the illumination light LE from the light source is applied to the cell C passing through the irradiation position, and the signal light LS emitted from the cell C is detected by the photodetector 6 via the spatial light modulator 4c (not shown).
  • the signal light LS is subjected to structuring processing by the spatial light modulator 4c (not shown). That is, the signal light LS is converted into structured signal light via the spatial light modulator 4c.
  • the electrical signal pulse output by the photodetector 6 is further converted into electronic data to generate optical information IC indicating cell morphological information.
  • the depth direction position PP of cells C passing through the channel 20c is detected using the arrangement pattern of the light transmission regions of the mask 51c provided in the spatial light modulator 4c (not shown).
  • the surface of the mask 51c on the lens 49 side has a region for transmitting light, and the light transmitting region of the mask 51c is a detection position in the flow channel for detecting the depth direction position PP installed in the flow channel 20c. and the lens 49 are arranged at optically conjugate positions.
  • the structured signal light LS is further converted into electronic data, and the time variation of signal light intensity is obtained as a measurement signal SG.
  • a cell C moving along the streamline FX in the channel 20c forms a clearer image in the light transmission region of the mask 51c when passing near the detection position, and moves on the streamline FX away from the detection position. Since the image in the light-transmitting region of the mask 51c becomes more blurred when the mask 51c is detected, the temporal change in the intensity of the signal light LS detected by the photodetector 6 also changes at the depth direction position PP of the cell passing through the channel 20c. Varies accordingly.
  • a detection position for detecting the depth direction position PP is set at a position in the flow channel that is conjugate with the light transmission regions by a mask pattern that is an arrangement pattern of the light transmission regions arranged on the mask 51c.
  • the shape of the measurement signal SG based on the signal light LS detected through the light transmission region of the mask 51c changes depending on the distance between the detection position and the cell C passing through. It is possible to calculate the depth direction position PP of the cell C passing through.
  • this embodiment is referred to as a form in which the calibration pattern is arranged by the mask, and the detection position arranged in the flow channel by the mask pattern is expressed as the position of the calibration pattern.
  • the surface of the mask 51c on which the light transmission regions are arranged is expressed as a mask pattern surface MP1c.
  • the cells C moving by the streamlines FX flowing through the positions P1, P2, and P3 with different depth direction positions PP of the channel 20c are indicated as cells C1, C2, and C3, respectively.
  • the mask 51c has a region that transmits light and a region that does not transmit light on its mask pattern surface MP1c.
  • the mask pattern surface MP1c is positioned by the lens 49 at a position ICP1c optically conjugate with the calibration pattern position CP1c, which is one detection position on the streamline FX1, and another detection position on the streamline FX3c.
  • a region that transmits light is arranged at a position ICP2c that is optically conjugate with the position CP2c of the calibration pattern. For example, it is a region that does not transmit light.
  • the position of ICP1c which is optically conjugate with the position CP1c of the calibration pattern on the streamline FX1c, and the position CP2c of the calibration pattern on the streamline FX3c.
  • the mask pattern is designed to place a light-transmitting region at the position of ICP2c, which is an optically conjugate position. That is, in the mode in which the calibration pattern is arranged by the mask, the positions of the light transmission regions of the mask 51c (the positions of ICP1c and ICP2c in FIG. 16) are the predetermined detection positions ( In FIG.
  • the positions CP1c and CP2c) of the calibration pattern are placed in an optically conjugate positional relationship, so that the signal light LS emitted when the cell C passes near the detection position passes through the optical system 5 for detection. detected by the photodetector 6 via the As a result, the first to third detection positions arranged on different streamlines are irradiated with illumination light for detecting the depth direction position PP, and the depth direction position PP of the passing cell C is calculated. As in the case of the embodiment, it is possible to detect the depth positions of cells passing through predetermined positions as detection positions.
  • the light transmitted through the light transmission region of the mask 51c is further collected by the photodetector 6 via the imaging lens 50, and the photodetector 6 detects the intensity of the signal light LS in time series.
  • the photodetector 6 passes light through a region of the mask 51c at a position forming an image with the position CPc of the calibration pattern, which is a plurality of detection positions of the flow channel 20c.
  • the intensity of the signal light LS is detected in time series.
  • the position where the photodetector 6 is arranged is preferably the position where the mask pattern of the mask 51c is imaged by the imaging lens 50. ) can be sufficiently collected.
  • FIG. 17 is a diagram showing an example of a front view of the mask 51c according to this embodiment.
  • a front view is a view seen from the flow path 20c side (z-axis direction).
  • FIG. 18 is a diagram showing an example of a side view of the mask 51c according to this embodiment.
  • a side view is a view seen from the lateral side (x-axis direction) along the optical axis OX.
  • the mask 51c has an opening 511c and an opening 512c as regions for transmitting light on a surface 515c, which is a surface on the lens 49 side.
  • the surface 515c is the mask pattern surface MP1c.
  • the position of the light transmission portion through which the signal light for generating the optical information IC of the mask 51c is transmitted is shown in the drawings. Not listed. Therefore, although the mask 51c in the drawing is described as having a configuration in which light does not pass through regions other than the openings 511c and 512c on the mask pattern plane MP1c, in the actual configuration, a signal for generating the optical information IC is used. There is a light transmitting portion through which light is transmitted.
  • the mask 51c has grooves 513c and 514c on the back side of the surface 515c.
  • a groove portion 513c and a groove portion 514c are provided in the opening portion 511c and the surface opposite to the surface 515c of the opening portion 512c, respectively.
  • both the opening and the groove are regions through which signal light is transmitted, but the opening is designed to have a smaller light-transmitting region than the groove.
  • the channel 20c is arranged at a predetermined angle with respect to the surface of the mask 51c.
  • FX illustrated as streamlines FX1, FX2, and FX3 in FIG. 16
  • the measurement signal SG which is the time change of the intensity of the signal light LS detected by the photodetector 6, depends on the distance between the detection position CPc of the calibration pattern in the channel 20c and the passing cell C. and its shape changes.
  • the photodetector 6 when the signal light LS transmitted through the position ICP1c, which is the position optically conjugate with the position CP1c of the calibration pattern on the streamline FX1 of the mask 51c, is measured by the photodetector 6, in the first embodiment, , the further the depth direction position PP of the cell C passing through the channel 20 is from the streamline FX1, the more the depth direction position PP of the cell C coincides with the streamline FX1.
  • the peak value of the measurement signal SG detected by the photodetector 6 via becomes smaller and the width becomes wider.
  • the arithmetic device 10c executes the position calculation process in the same manner as the position calculation process of the arithmetic device 10a shown in FIG.
  • the flow cytometer 1c further includes the mask 51c between the channel 20c and the photodetector 6.
  • a plurality of light transmission regions arranged on the mask 51c are arranged at optically conjugate positions via a lens 49 with a detection position for detecting the depth direction position PP of the flow path 20c, and the photodetector 6
  • the intensity of the signal light LS emitted from the cell C passing near the detection position is detected in time series via the light-transmitting region of the mask 51c.
  • the structure of the mask 51c provided between the channel 20c and the photodetector 6 allows cells to be detected at the plurality of predetermined positions as detection positions. It becomes possible to detect the depth direction position PP of the channel through which C passes.
  • the arrangement pattern of the openings on the mask pattern surface MP1c of the mask 51c is used to detect the depth direction position PP through which the cells C pass in the channel 20c.
  • a calibration pattern position is set.
  • the depth direction position PP can be detected by placing the mask 51c between the channel 20 and the photodetector 6. Therefore, the optical information IC There is no need to install an optical information generation pattern for generating and a calibration pattern for detecting the depth direction position PP. .
  • a fifth embodiment of the present invention will be described in detail below with reference to the drawings.
  • a plurality of openings which are light transmission regions of the mask, are provided on the mask pattern surface on one side of the mask, and the direction of the stream line along which the cells move in the channel is inclined with respect to the mask pattern surface of the mask. was prepared.
  • the direction of the flow line of the flow channel is set parallel to the direction of the mask pattern surface of the mask, and the plurality of openings of the mask are provided at different positions with respect to the direction of the optical axis of the optical system for photodetection.
  • the flow cytometer according to this embodiment is called a flow cytometer 1d
  • the channel is called a channel 20d.
  • the mask according to this embodiment is called a mask 51d.
  • the configuration of the flow cytometer 1d according to the present embodiment and the configuration of the flow cytometer 1c according to the fourth embodiment are such that the positions of the plurality of openings of the mask 51d are aligned in the direction of the optical axis of the optical system for photodetection. They are the same except that they are different from each other and that the channel 20d is provided substantially parallel to the direction of the mask pattern surface MPd of the mask 51d.
  • the description of the same functions as those of the fourth embodiment will be omitted, and the description of the fifth embodiment will focus on the portions that differ from those of the fourth embodiment.
  • FIG. 19 is a diagram showing an example of a side view (a view of the flow path 20d viewed from the x-axis direction) of the disposition of the mask 51d according to this embodiment.
  • the light transmitting portion of the mask 51d through which the signal light for generating the optical information IC of the mask 51d is transmitted is not shown in the figure. It has not been.
  • the lens 49, the mask 51d, and the imaging lens 51 are arranged in this order on the optical path between the flow path 20d and the photodetector 6.
  • the lens 49 and the mask 51d constitute the spatial light modulator 4d
  • the imaging lens 50 constitutes the optical system 5 for photodetection.
  • the depth direction of the flow path and the direction of the optical axis OX of the optical system for photodetection match.
  • FIG. 20 is a diagram showing an example of a front view of the mask 51d according to this embodiment.
  • the front view is a view of the mask 51d viewed from the flow channel 20d side (z-axis direction).
  • FIG. 21 is a side view of the mask 51d according to this embodiment.
  • a side view is a view of the mask 51d viewed from the lateral side (x-axis direction) along the optical axis OX.
  • the mask 51d has an opening 511d as a light-transmitting region on the surface 515d side.
  • the mask 51d also has openings 512d on the back side of the surface 515d as regions through which light is transmitted.
  • FIGS. 20 and 21 for the purpose of explaining the embodiment in which the calibration pattern is arranged by the mask, the position of the light transmitting portion through which the signal light for generating the optical information IC of the mask 51d is transmitted is shown in the drawings. Not listed. Therefore, although the mask 51d in the drawing is described as having a structure that does not transmit light except for the openings 511d and 512d, the actual structure is such that the signal light for generating the optical information IC is transmitted. part exists.
  • the mask 51d has grooves 513d on the back side of the surface 515d.
  • the opening 511d is provided at a position corresponding to the groove 513d on the surface 515d.
  • the mask 51d has grooves 514d on the surface 515d.
  • the opening 512d is provided at a position corresponding to the groove 514d on the back side of the surface 515d.
  • the surface of the surface 515d corresponds to the mask pattern surface MP1d
  • the surface behind the surface 515d corresponds to the mask pattern surface MP2d. That is, in the mask 51c, both the surface of the surface 515d and the surface on the back side of the surface 515d are mask pattern surfaces MPd.
  • both the openings and the grooves are regions through which the signal light is transmitted, but in any mask pattern surface, the openings are designed to have smaller light-transmitting regions than the grooves.
  • the opening 511d and the opening 512d are provided at different depth positions in the thickness direction of the mask 51d.
  • the direction of the thickness of the mask 51d is the direction of the optical axis OX
  • the mask 51d is provided with a plurality of light transmission regions at different positions with respect to the direction of the optical axis OX.
  • the masks 51d are provided at different positions in the depth direction of the flow path as regions for transmitting light. It will have a plurality of openings that are aligned with each other.
  • the mask pattern surface MPd on the mask 51d is set in a direction orthogonal to the direction of the optical axis OX along which the signal light LS emitted from the cells C travels.
  • a lens 49 is provided between the mask 51d and the channel 20d, and an imaging lens 50 is provided between the mask 51d and the photodetector 6, respectively.
  • the spatial light modulator 5d (not shown) is composed of a lens 49 and a mask 51d
  • the photodetection optical system 5 (not shown) is composed of an imaging lens 50.
  • Optical system 5 may further comprise a dichroic mirror or a wavelength selective filter.
  • the passage 20d is irradiated with illumination light LE (not shown) from a light source (not shown).
  • the signal light LS emitted from cells passing through the position irradiated with the illumination light LE is focused on the photodetector 6 via the spatial light modulator 4d and the photodetection optical system 5 .
  • the mask 51d constituting the spatial light modulation section 4d has an opening at a position optically conjugate with the position CPd of the calibration pattern, which is the position for detecting the depth direction position PP of the cells passing through the channel 20d. Due to this configuration, the signal light LS emitted by the cell C is detected by the photodetector 6 through the opening, which is the light transmission region of the mask 51d.
  • the mask 51d has the opening 511d and the opening 512d provided at different positions in the depth direction of the flow channel as light transmitting regions.
  • the mask 51d has an opening 511d at a position ICP1d that is optically conjugate with the position CP1d of the calibration pattern on the streamline FX1 on the mask pattern surface MP1d.
  • openings 512d are provided at positions of ICP2d that are optically conjugate with the position CP2d of the calibration pattern on the streamline FX3. That is, in the present embodiment, the flow cytometer 1d has detection positions (calibration pattern positions CP1d and CP2d in FIG. The positions of the light transmission regions of the mask 51d (in FIG.
  • the positions of ICP1d and ICP2d corresponding to the openings of the mask 51d) are set at positions forming an image forming relationship. Therefore, similarly to the case of calculating the depth direction position PP of the cell C by irradiating the calibration pattern to the detection positions set at different depth direction positions PP, the signal light transmitted through the light transmission region of the mask 51d By detecting LS with the photodetector 6, it becomes possible to detect the depth direction position PP of the cell passing through a predetermined position as the detection position.
  • the measurement measured by the photodetector 6 is more effective than when the depth direction position PP of the cell C coincides with the position of the streamline FX1.
  • the signal SG has a smaller peak value and a wider width.
  • the depth direction position PP of the cell C separates from the position of the streamline FX3.
  • the peak value of the measurement signal SG measured by the photodetector 6 becomes smaller and the width becomes wider.
  • openings are provided in different mask pattern surfaces MPd of the mask 51d, respectively, and the signal light LS emitted from the cells C flowing through the flow channel is set at different positions along the optical axis OX direction.
  • the depth direction position PP of the cell C in the channel 20d is detected by detecting with the photodetector 6 through the opening.
  • the mask 51d has a plurality of openings (in this embodiment, openings It has a portion 511d and an opening 512d).
  • the flow cytometer 1d detects the depth direction position PP through which the cells C pass in the channel 20d without tilting the channel 20d with respect to the mask pattern surface MPd of the mask 51d.
  • the calibration pattern position CP1d on the streamline FX1 and the calibration pattern position CP2d on the streamline FX3 can be set at different positions with respect to the direction of the optical axis OX, and the configuration , the depth direction position PP through which the cell C passes in the channel 20d can be detected.
  • the flow cytometer according to this embodiment is called a flow cytometer 1e
  • the arithmetic device is called an arithmetic device 10e.
  • the configuration of the flow cytometer 1e is, as an example, the same as the configuration of the flow cytometer 1 according to the first embodiment except that the arithmetic device 10 is different. A description of the same functions as those of the first embodiment will be omitted, and a description of the sixth embodiment will focus on portions that differ from those of the first embodiment.
  • the configuration of the flow cytometer 1e is the same as that of the flow cytometers according to the second, third, fourth, and fifth embodiments other than the first embodiment except for the configuration of the arithmetic device 10e. It may be the same.
  • FIG. 22 is a diagram showing an example of the configuration of an arithmetic device 10e according to this embodiment. Comparing the arithmetic device 10e (FIG. 22) according to the present embodiment with the arithmetic device 10 (FIG. 8) according to the first embodiment, an optical information acquisition unit 114e, a position determination unit 115e, a determination unit 116e, and a learning unit 117e , and storage unit 118e.
  • the functions of the other components are the same as in the first embodiment.
  • control unit 11e includes an optical information acquisition unit 114e, a position determination unit 115e, a determination unit 116e, a learning unit 117e, and a storage unit 118e. Prepare.
  • the optical information acquisition unit 114e acquires the optical information IC generated by the PC8.
  • the position determination unit 115e determines whether the depth direction position PP of the cell C indicated by the position information IP output by the output unit 112 is within a predetermined range in the flow path in the direction of the optical axis OX.
  • the direction of the optical axis OX is the depth direction of the channel.
  • the discrimination unit 116e discriminates the cell C based on the optical information IC generated by the PC 8 based on machine learning. Based on the determination result of the position determination unit 115e, the determination unit 116e determines the cells C flowing within the region Z1, which is a predetermined range.
  • FIG. 23 is a diagram showing an example of the area Z1 according to this embodiment.
  • the depth direction position PP of the cell C flowing through the channel 20 is measured when passing through the channel 20, and the range of possible values for the depth direction position of the channel 20 is divided into predetermined sections.
  • 10 is a histogram showing the number of cells C for which the measured value of the depth direction position is included in a predetermined section in each predetermined section when the number of the cells C is included in the predetermined section.
  • the determination unit 116e determines the optical information IC of the cells C corresponding to the measurement values passing through the range included in the region Z1.
  • the region Z1 extends to a section including a position shifted by a predetermined distance from the initial passage position of the cell C in the depth direction position PP of the cell C passing through the channel 20. is a line segment of
  • the position determining unit 115e determines that the cells C flowing through the flow path 20 are included in the region corresponding to the region Z1 based on the measured value of the amount related to the depth direction position PP instead of the depth direction position PP. It may be determined whether or not The area corresponding to the area Z1 is the area corresponding to the area Z1 in the line segment on which the measured value for the depth direction position PP is displayed.
  • the learning unit 117e executes machine learning.
  • the learning unit 117e learns the relationship between the learning cell and the optical information IC about the learning cell.
  • the machine learning performed by the learning unit 117e is, for example, deep learning.
  • the cells C are measured using the flow cytometer 1e, and machine learning is performed using the measured values of the cells C flowing in the region Z1 of the channel 20 during measurement.
  • region Z1 of the flow path 20 when the cell C for learning was measured using the flow cytometer 1e may also be called a cell for learning.
  • FIG. 24 is a diagram showing an example of a region Z1 for learning cells according to this embodiment.
  • FIG. 24(A) shows the depth direction position PP at which the cell C passed through the channel 20 when the flow cytometer 1e was used to perform learning measurement in order to perform machine learning on the cell C. is measured, and the range of values that can be taken for the depth direction position of the channel is divided into predetermined sections, and the number of cells C that include the measured value of the depth direction position in the predetermined section is calculated for each predetermined section is a histogram shown in . For comparison, in FIG.
  • FIG. 11 shows a histogram showing the number of cells C whose depth direction position measurement values are included in a predetermined section for each predetermined section;
  • the information about the learning cells C used by the learning unit 117e during learning is the optical information IC acquired from the cells C flowing in the region Z1. Also, this region Z1 is the same as the region Z1 in which the cell C to be discriminated by the discrimination unit 116e at the time of inference flows. In other words, the learning cell is the cell C flowing in the same region Z1 as the region Z1 in which the cell C to be determined by the determination unit 116e flows.
  • the storage unit 118e stores various information.
  • Information stored in the storage unit 118e includes the learning result LDe.
  • the learning result LDe is the result of learning performed by the learning unit 117e.
  • the learning result LDe is previously learned and stored in the storage unit 118e.
  • FIG. 25 is a diagram showing an example of cell discrimination processing according to this embodiment.
  • the cell discrimination processing shown in FIG. 25 is executed for one cell C.
  • the cell discrimination process performed on a plurality of cells flowing through the channel 20 is repeatedly performed on a plurality of cells with the cell discrimination process shown in FIG. 25 as one unit.
  • Step S210 The position determination unit 115e acquires the position information IP output by the output unit 112.
  • FIG. Step S220 The position determination unit 115e determines whether the depth direction position PP of the cell C indicated by the position information IP output by the output unit 112 is within the region Z1, which is a predetermined range in the depth direction of the channel 20. judge.
  • step S220 determines that the depth direction position PP of the cell C is within the region Z1 in the depth direction of the channel 20 (step S220; YES)
  • the control unit 11e executes the process of step S230.
  • the control unit 11e terminates the cell discrimination process.
  • Step S230 The optical information acquisition unit 114e acquires the optical information IC generated by the PC8.
  • the optical information acquisition unit 114e supplies the acquired optical information IC to the determination unit 116e.
  • Step S240 The discrimination unit 116e discriminates the cell C based on the learning result LDe and the optical information IC generated by the PC8.
  • the learning result LDe is the result of learning the relationship between the learning cell and the optical information about the learning cell.
  • the learning result LDe indicates a neural network trained to output cell types when optical information is input.
  • the determination unit 116e inputs the optical information IC generated by the PC 8 to the neural network indicated by the learning result LDe.
  • the determination unit 116e determines whether or not the type of cell output by the neural network indicated by the learning result LDe is the desired type of cell.
  • the processing in step S240 is executed when the position determination unit 115e determines in the processing in step S220 that the depth direction position PP of the cell C passing through the channel 20 is within the region Z1 in the direction of the optical axis OX. be.
  • the determination unit 116e determines the cells C flowing within the region Z1, which is a predetermined range, as determination targets based on the determination result of the position determination unit 115e.
  • Step S250 The determination unit 116e outputs the determination result to an external device via the output unit 112.
  • the external device is, for example, a sorting unit that sorts the cells C.
  • the flow cytometer 1e When the flow cytometer 1e is equipped with a sorting section, the flow cytometer 1e functions as a cell sorter. With this, the arithmetic device 10 ends the cell discrimination processing.
  • Machine learning may be performed by an external device.
  • the arithmetic device 10e acquires the learning result of the machine learning performed by the external device from the external device, stores it in the storage unit 118e, and uses it for the cell discrimination process.
  • the computing device includes a determination unit 116e and a position determination unit 115e.
  • the discrimination unit 116e discriminates an observation target (cell C in this embodiment) based on optical information IC generated by an information generation device (PC 8 in this embodiment).
  • the position determination unit 115e determines that the depth direction position PP of the cell C passing through the channel 20 indicated by the position information IP output by the output unit 112 is within a predetermined range (region Z1 in this embodiment) in the direction of the optical axis OX. It is determined whether or not it is within Based on the determination result of the position determination unit 115e, the determination unit 116e determines an observation object (cell C in this embodiment) flowing within a predetermined range (region Z1 in this embodiment) as a determination target.
  • the flow cytometer 1e With this configuration, in the flow cytometer 1e according to the present embodiment, only the observation target flowing within the predetermined range in the flow path 20 can be identified, so that the analysis result (optical information IC ) can be reduced depending on the displacement of the streamlines in the depth direction.
  • gating can be performed based on the position information IP indicating the depth direction position PP to obtain complete data. It is possible to realize stable data analysis with less variation compared to .
  • the determination unit 116e determines the relationship between the learning observation target (learning cell in this embodiment) and the optical information IC for the learning observation target.
  • the object to be observed (cell C in this embodiment) is discriminated based on the inference model based on the learned learning result LDe and the optical information IC generated by the information generating device (PC 8 in this embodiment).
  • the learning observation object (learning cell in this embodiment) is an observation object (cell in this embodiment) flowing within a predetermined range (region Z1 in this embodiment).
  • inference based on the learning result LDe obtained by learning the relationship between the observation object flowing within the predetermined range and the optical information IC about the learning observation object Since the discrimination process can be executed based on the model, the influence of the displacement of the streamline in the optical axis direction in the learning result LDe can be reduced compared to the case where the observation target for learning is not limited to the observation target flowing within a predetermined range. Therefore, it is possible to prevent the accuracy of machine learning based on the learning result LDe from deteriorating due to the displacement of the streamline in the optical axis direction.
  • a part of the arithmetic device 10 or the arithmetic device 10e in the above-described embodiment for example, the signal strength acquisition unit 110, the position calculation unit 111, the output unit 112, the scanning unit 113, the optical information acquisition unit 114e, and the position determination unit 115e , the determination unit 116e, and the learning unit 117e may be realized by a computer.
  • a program for realizing this control function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the “computer system” referred to here is a computer system incorporated in the arithmetic device 10 or the arithmetic device 10e, and includes hardware such as an OS and peripheral devices.
  • the term “computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” means a medium that dynamically stores a program for a short period of time, such as a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • arithmetic device 10 or the arithmetic device 10e in the above-described embodiments may be implemented as an integrated circuit such as an LSI (Large Scale Integration). Each functional block of the arithmetic device 10 or the arithmetic device 10e may be individually processorized, or part or all of them may be integrated and processorized.
  • the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor.
  • an integration circuit technology that replaces LSI appears due to advances in semiconductor technology, an integrated circuit based on this technology may be used.
  • SYMBOLS 1 Flow cytometer, 20... Flow path, 2... Microfluidic device, 50... Imaging lens, 6... Photodetector, 8... PC, 10... Arithmetic device, CP... Calibration pattern, C... Cell, OX... Optical axis, PP... depth direction position, SG... measurement signal, LS... signal light, IC... optical information

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

This flow cytometer comprises: a micro fluid device; a light source; a photodetector that detects, in a time series, the intensities of signal lights emitted from objects to be observed due to illumination light that irradiates the objects to be measured flowing through a flow path; an information generating device that generates optical information indicating the structures of the objects to be measured on the basis of the intensities of the signal lights; a computing device; and a flow path position control device. The computing device comprises: a signal intensity acquiring unit that acquires electronic data of time changes of the intensities of the signal lights detected on the basis of predetermined detection positions in the flow path for detecting the position in the depth direction in the flow path when the objects to be measured pass through the flow path; a scanning unit that performs a scanning process for acquiring the electronic data at different depth positions by causing the flow path to move in the depth direction; a position calculating unit that calculates the positions in the depth direction on the basis of the electronic data; and an output unit that outputs position information indicating the positions in the depth direction calculated by the position calculating unit.

Description

フローサイトメータ、位置算出方法、及びプログラムFlow cytometer, position calculation method, and program
 本発明は、フローサイトメータ、位置算出方法、及びプログラムに関する。 The present invention relates to a flow cytometer, a position calculation method, and a program.
 従来、観測対象物を蛍光染色し、この蛍光輝度や散乱光の総量によって観測対象物の特徴を評価するフローサイトメトリー法や、このフローサイトメトリー法を用いたフローサイトメータが知られている(例えば、特許文献1)。しかしながら、こうした蛍光輝度や散乱光の総量など限定的な情報に基づく測定法では、細胞の形態情報や細胞内のオルガネラの形状等の二次元空間的な測定対象の特徴を捉え評価に利用することが困難であった。一方、観測対象物となる細胞・細菌等の微粒子を画像によって評価する蛍光顕微鏡やイメージングサイトメータが知られているが、こうしたイメージング装置は、撮像速度に限界があり、また高価でサイズも大きいという問題点があった。 Conventionally, a flow cytometry method that fluorescently stains an observation object and evaluates the characteristics of the observation object from the fluorescence brightness and the total amount of scattered light, and a flow cytometer that uses this flow cytometry method are known ( For example, Patent Document 1). However, in measurement methods based on limited information such as fluorescence intensity and total amount of scattered light, it is difficult to capture two-dimensional spatial features of the measurement target, such as cell morphology information and the shape of intracellular organelles, and use them for evaluation. was difficult. On the other hand, fluorescence microscopes and imaging cytometers are known that use images to evaluate microparticles such as cells and bacteria, which are objects of observation. There was a problem.
 そこで、高速、高感度、低コストかつコンパクトなイメージング装置を提供するため、観測対象物が所定の照明パターンをもつ構造化された照明光によって照明され観測対象物が検出されるフローサイトメータやイメージングサイトメータが開発されている。この方法の一例として、例えば、ゴーストサイトメトリー技術が知られている(特許文献2)。ゴーストサイトメトリー技術では、流路中を移動する観測対象物にランダムに構造化された照明パターンを照射することにより、従来のフローサイトメータより高い解像度で観測対象物の形態情報を高速に取得できる。 Therefore, in order to provide a high-speed, high-sensitivity, low-cost, and compact imaging device, a flow cytometer or an imaging device in which the observation target is illuminated by structured illumination light having a predetermined illumination pattern and the observation target is detected. A cytometer has been developed. As an example of this method, for example, ghost cytometry technology is known (Patent Document 2). Ghost cytometry technology irradiates an object moving in a channel with a randomly structured illumination pattern, enabling high-speed acquisition of morphological information on the object with higher resolution than conventional flow cytometers. .
特開2011-099848号公報JP 2011-099848 A 国際公開第2017/073737号WO2017/073737
 しかしながら、ランダムな構造化された照明パターンによる検出は、流線の位置ずれに対して特に敏感である。ここで流線の位置ずれとは、流路を流れる流体と共に流れる観測対象物の位置が構造化された照明パターンに対して流路の幅方向に相対的にずれること、または、観測対象物の位置が流路の深さ方向に相対的にずれることをいう。フローサイトメータのように観測対象物を流体と共に流して測定する測定方法では、観測対象物が流れる流線は流体の圧力変動などにより影響されるため、その挙動を精密に制御することは非常に難しい。そこでフローサイトメータにおける測定に際しては、観測開始時や観測途中において、流線の位置ずれを検知し、流線の位置ずれに対して流路の位置を補正することが求められている。特に、ランダムに構造化された照明光により観測対象物を照射して観測対象物から発せられる光を信号光として検出することで測定の精密化と高速化が実現されているフローサイトメータでは、流線の位置ずれをリアルタイムにモニターし、生じている流線の位置ずれを補正して測定を行うこと、あるいは流路の位置ずれを補正して流路の位置を修正することは、測定結果のばらつきを抑えデータの再現性を担保するために必要であった。なお本発明において問題にしている流線の位置ずれの程度は、例えば流路に照射される構造化照明パターンが流路の深さ方向にピクセルサイズ程度変化するずれである。本発明において問題にしている流線の位置ずれとは、流路上の構造化された検出位置のピクセルサイズ程度のずれであり、流線が流路の深さ方向に数マイクロメートル程度ずれることである。 However, detection with random structured illumination patterns is particularly sensitive to streamline misalignment. Here, the displacement of the streamline means that the position of the object to be observed flowing with the fluid flowing in the channel is relatively shifted in the width direction of the channel with respect to the structured illumination pattern, or It means that the position is relatively shifted in the depth direction of the channel. In a measurement method such as a flow cytometer, in which an object to be observed flows together with a fluid for measurement, the streamline along which the object to be observed flows is affected by pressure fluctuations of the fluid, etc., so it is extremely difficult to precisely control its behavior. difficult. Therefore, when performing measurement with a flow cytometer, it is required to detect the displacement of the streamlines at the start of observation or during the observation, and to correct the position of the flow channel for the displacement of the streamlines. In particular, in flow cytometers, precision and high-speed measurements are realized by irradiating an object to be observed with randomly structured illumination light and detecting the light emitted from the object to be observed as signal light. Monitoring the displacement of the streamlines in real time, correcting the positional displacement of the streamlines and performing the measurement, or correcting the positional displacement of the flow channels and correcting the position of the flow channels, can improve the measurement results. This was necessary in order to suppress the variation in the data and ensure the reproducibility of the data. In the present invention, the degree of positional deviation of the streamlines is the deviation of, for example, the structured illumination pattern applied to the flow channel, which changes by about the pixel size in the depth direction of the flow channel. The positional deviation of the streamline, which is a problem in the present invention, is a deviation of the pixel size of the structured detection position on the channel, and the deviation of the streamline in the depth direction of the channel is about several micrometers. be.
 本発明は上記の点に鑑みてなされたものであり、観測対象物の流路における深さ方向の通過位置を検出できるフローサイトメータ、流路における深さ方向位置算出の方法、及びプログラムを提供する。ここで本発明における流路の深さ方向とは、観測対象物が流れる流路において、流体が流れる長さ方向及び流路の幅方向と直交する方向である。 The present invention has been made in view of the above points, and provides a flow cytometer capable of detecting the passage position of an object to be observed in a channel in the depth direction, a method for calculating the depth direction position in the channel, and a program. do. Here, the depth direction of the channel in the present invention is a direction orthogonal to the length direction of the fluid flow and the width direction of the channel in the channel through which the object to be observed flows.
 本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、観測対象物が流体と共に流れ得る流路を備えるマイクロ流体装置と、前記流路に照明光を照射する光源と、前記流路を流れる前記観測対象物に照明光が照射されて前記観測対象物から発せられる信号光の強度を時系列に検出する光検出器と、前記光検出器が検出する前記信号光の強度に基づいて前記観測対象物の形状、形態、または構造のうちいずれか1以上を示す光学情報を生成する情報生成装置と、前記流路の深さ方向の位置を制御する流路位置制御装置と、前記光検出器が検出する前記信号光の強度の時系列変化に基づいて前記観測対象物が前記流路を通過する際の前記流路の深さ方向についての位置である深さ方向位置を検出する演算装置と、を備えるフローサイトメータであって、前記演算装置は、前記深さ方向位置を検出するために前記流路において予め定められた検出位置において検出する前記信号光の強度の時間変化の電子データを取得する信号強度取得部と、前記流路位置制御装置を介して前記流路を深さ方向に移動させて異なった深さ位置で前記電子データを取得するためのスキャン処理を行うスキャン部と、前記電子データに基づいて前記深さ方向位置を算出する位置算出部と、前記位置算出部が算出した前記深さ方向位置を示す位置情報を出力する出力部と、を備えるフローサイトメータである。 The present invention has been made to solve the above problems, and one aspect of the present invention is a microfluidic device comprising a channel in which an object to be observed can flow together with a fluid, and a microfluidic device that irradiates the channel with illumination light. a light source, a photodetector for detecting in time series the intensity of signal light emitted from the observation target when the observation target flowing through the flow path is irradiated with illumination light, and the signal detected by the photodetector. An information generating device that generates optical information indicating one or more of the shape, form, and structure of the observation object based on the intensity of light, and a channel position that controls the position of the channel in the depth direction. a depth, which is a position in the depth direction of the channel when the object to be observed passes through the channel, based on a time-series change in the intensity of the signal light detected by the photodetector; and an arithmetic device for detecting a directional position, wherein the arithmetic device detects the signal light at a predetermined detection position in the channel to detect the depth direction position. a signal intensity acquisition unit for acquiring electronic data of changes in intensity over time; a scanning unit that performs scanning processing; a position calculation unit that calculates the depth direction position based on the electronic data; an output unit that outputs position information indicating the depth direction position calculated by the position calculation unit; A flow cytometer comprising:
 また、本発明の一態様は、上記のフローサイトメータにおいて、前記光源と前記光検出器との間の光路に設置されて、前記照明光または前記信号光のいずれかを構造化する空間光変調部をさらに備える。 Further, according to one aspect of the present invention, in the flow cytometer described above, a spatial light modulator is installed in an optical path between the light source and the photodetector to structure either the illumination light or the signal light. It further comprises a part.
 また、本発明の一態様は、上記のフローサイトメータにおいて、前記空間光変調部が前記光源と前記流路との間の光路に配置され、前記光源は前記空間光変調部により構造化された前記照明光を前記流路に照射する。 Further, according to one aspect of the present invention, in the flow cytometer described above, the spatial light modulating section is arranged in an optical path between the light source and the flow path, and the light source is structured by the spatial light modulating section. The illumination light is applied to the channel.
 また、本発明の一態様は、上記のフローサイトメータにおいて、前記流路において、前記検出位置が、前記空間光変調部によって構造化処理された前記照明光により設置される。 Further, according to one aspect of the present invention, in the above-described flow cytometer, the detection position is set by the illumination light that has been subjected to structuring processing by the spatial light modulator in the flow path.
 また、本発明の一態様は、上記のフローサイトメータにおいて、前記空間光変調部が前記流路と前記光検出器との間の光路に配置され、前記光検出器は前記信号光が構造化された信号光の強度を時系列に検出する。 Further, according to one aspect of the present invention, in the flow cytometer described above, the spatial light modulator is arranged in an optical path between the flow channel and the photodetector, and the photodetector transmits the structured signal light. The intensity of the received signal light is detected in time series.
 また、本発明の一態様は、上記のフローサイトメータにおいて、前記空間光変調部は、光を透過させる光透過領域を有するマスクを含み、前記光透過領域は前記流路の複数の前記検出位置と結像関係を成す位置に配置され、前記演算装置は、前記流路の複数の前記検出位置において検出される前記観測対象物により発せられる前記信号光の強度の時間変化に基づいて前記深さ方向位置を検出する。 Further, according to one aspect of the present invention, in the flow cytometer described above, the spatial light modulator includes a mask having a light transmission region that transmits light, and the light transmission region is located at the plurality of detection positions in the flow channel. and the computing device detects the depth based on the temporal change in the intensity of the signal light emitted by the observation object detected at the plurality of detection positions of the flow path. Detect directional position.
 また、本発明の一態様は、上記のフローサイトメータにおいて、前記流路位置制御装置は、前記出力部が出力する前記深さ方向位置を示す情報に基づいて、前記流路の深さ方向の位置を制御する。 Further, according to one aspect of the present invention, in the flow cytometer described above, the channel position control device controls the depth direction of the channel based on the information indicating the depth direction position output by the output unit. position control.
 また、本発明の一態様は、上記のフローサイトメータにおいて、前記演算装置は、前記情報生成装置が生成する前記光学情報に基づいて前記観測対象物を判別する判別部と、前記出力部が出力する前記位置情報が示す前記深さ方向位置が前記流路における深さ方向について所定の範囲内であるか否かを判定する位置判定部とをさらに備え、前記判別部は、前記位置判定部の判定結果に基づいて、前記所定の範囲内を流れる前記観測対象物を判別対象とする。 In one aspect of the present invention, in the flow cytometer described above, the arithmetic device includes a determination unit that determines the observation object based on the optical information generated by the information generation device, and the output unit outputs a position determination unit that determines whether the depth direction position indicated by the position information is within a predetermined range in the depth direction in the flow channel, wherein the determination unit is configured to determine whether the position determination unit Based on the determination result, the observation object flowing within the predetermined range is determined.
 また、本発明の一態様は、上記のフローサイトメータにおいて、前記判別部は、学習用の観測対象物と、前記学習用の観測対象物についての前記光学情報との関係が学習されることにより作成される推論モデルと、前記情報生成装置が生成する前記光学情報とに基づいて前記観測対象物を判別し、前記学習用の観測対象物が前記所定の範囲内を流れる観測対象物である。 Further, according to one aspect of the present invention, in the above-described flow cytometer, the determining unit learns a relationship between a learning observation object and the optical information about the learning observation object. The observation object is discriminated based on the generated inference model and the optical information generated by the information generation device, and the learning observation object is an observation object flowing within the predetermined range.
 また、本発明の一態様は、観測対象物が流体と共に流れ得る流路を備えるマイクロ流体装置と、前記流路に照明光を照射する光源と、前記流路を流れる前記観測対象物に照明光が照射されて前記観測対象物から発せられる信号光の強度を時系列に検出する光検出器と、前記光検出器が検出する前記信号光の強度に基づいて前記観測対象物の形状、形態、または構造のうちいずれか1以上を示す光学情報を生成する情報生成装置と、記流路の深さ方向の位置を制御する流路位置制御装置と、前記光検出器が検出する前記信号光の強度の時系列変化に基づいて前記観測対象物が前記流路を通過する際の前記流路の深さ方向についての位置である深さ方向位置を検出する演算装置とを備えるフローサイトメータにおいて、前記深さ方向位置を検出するための位置算出方法であって、前記深さ方向位置を検出するために前記流路において予め定められた検出位置において検出する前記信号光の強度の時間変化の電子データを取得する過程と、前記流路位置制御装置を介して前記流路を深さ方向に移動させて異なった深さ位置で前記電子データを取得するためのスキャン処理を行う過程と、前記電子データに基づいて前記深さ方向位置を算出する位置算出の過程と、前記位置算出の過程において算出された前記深さ方向位置を示す位置情報を出力する出力過程と、を有する位置算出方法である。 According to another aspect of the present invention, there is provided a microfluidic device including a channel in which an observation target can flow together with a fluid, a light source for irradiating the channel with illumination light, and an illumination light directed to the observation target flowing through the channel. A photodetector that detects in time series the intensity of the signal light emitted from the observation object when is irradiated, and the shape, form, and shape of the observation object based on the intensity of the signal light detected by the photodetector. or an information generating device that generates optical information indicating one or more of the structures, a channel position control device that controls the position of the channel in the depth direction, and the signal light detected by the photodetector. A flow cytometer comprising a computing device that detects a depth direction position, which is a position in the depth direction of the channel when the observation object passes through the channel, based on time-series changes in intensity, A position calculation method for detecting the depth direction position, wherein electrons of the time change of the intensity of the signal light detected at a predetermined detection position in the flow path for detecting the depth direction position a process of acquiring data, a process of moving the channel in the depth direction via the channel position control device to perform a scanning process for acquiring the electronic data at different depth positions, A position calculation method comprising: a position calculation process of calculating the depth direction position based on data; and an output process of outputting position information indicating the depth direction position calculated in the position calculation process. .
 また、本発明の一態様は、観測対象物が流体と共に流れ得る流路を備えるマイクロ流体装置と、前記流路に照明光を照射する光源と、前記流路を流れる前記観測対象物に照明光が照射されて前記観測対象物から発せられる信号光の強度を時系列に検出する光検出器と、前記光検出器が検出する前記信号光の強度に基づいて前記観測対象物の形状、形態、または構造のうちいずれか1以上を示す光学情報を生成する情報生成装置と、前記流路の深さ方向の位置を制御する流路位置制御装置と、前記光検出器が検出する前記信号光の強度の時系列変化に基づいて前記観測対象物が前記流路を通過する際の前記流路の深さ方向についての位置である深さ方向位置を検出する演算装置とを備えるフローサイトメータにおいて前記深さ方向位置を検出するための位置算出処理を実行する演算装置に、前記深さ方向位置を検出するために前記流路において予め定められた検出位置において検出する前記信号光の強度の時間変化の電子データを取得するステップと、前記流路位置制御装置を介して前記流路を深さ方向に移動させて異なった深さ位置で前記電子データを取得するためのスキャン処理を行うステップと、前記電子データに基づいて前記深さ方向位置を算出する位置算出のステップと、前記位置算出のステップにおいて算出された前記深さ方向位置を示す位置情報を出力する出力ステップと、を実行させるためのプログラムである。 According to another aspect of the present invention, there is provided a microfluidic device including a channel in which an observation target can flow together with a fluid, a light source for irradiating the channel with illumination light, and an illumination light directed to the observation target flowing through the channel. A photodetector that detects in time series the intensity of the signal light emitted from the observation object when is irradiated, and the shape, form, and shape of the observation object based on the intensity of the signal light detected by the photodetector. or an information generating device that generates optical information indicating one or more of the structures, a flow channel position control device that controls the position of the flow channel in the depth direction, and the signal light detected by the photodetector. A flow cytometer comprising a computing device that detects a depth direction position, which is a position in the depth direction of the channel when the observation object passes through the channel, based on the time-series change in intensity A computing device that executes a position calculation process for detecting a depth direction position is provided with a time change of the intensity of the signal light detected at a predetermined detection position in the flow path for detecting the depth direction position. a step of acquiring the electronic data of, moving the channel in the depth direction via the channel position control device and performing a scanning process for acquiring the electronic data at different depth positions; for executing a position calculation step of calculating the depth direction position based on the electronic data, and an output step of outputting position information indicating the depth direction position calculated in the position calculation step; It's a program.
 本発明によれば、観測対象物の流路における深さ方向の通過位置を検出できる。 According to the present invention, it is possible to detect the passage position of the observation target in the depth direction in the channel.
本発明の第1の実施形態に係るフローサイトメータの一例を示す図である。It is a figure showing an example of a flow cytometer concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る空間光変調部の一例を示す図である。It is a figure which shows an example of the spatial-light-modulation part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るキャリブレーションパターンの正面図の一例を示す図である。FIG. 4 is a diagram showing an example of a front view of a calibration pattern according to the first embodiment of the present invention; FIG. 本発明の第1の実施形態に係るキャリブレーションパターンの側面図の一例を示す図である。It is a figure which shows an example of the side view of the calibration pattern which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るキャリブレーションパターンと光検出用光学系を構成する結像レンズとの位置関係の側面図の一例を示す図である。FIG. 4 is a diagram showing an example of a side view of the positional relationship between the calibration pattern and the imaging lens that constitutes the optical system for photodetection according to the first embodiment of the present invention; 本発明の第1の実施形態に係る信号光の強度の時間変化を示す計測信号の一例を示す図である。It is a figure which shows an example of the measurement signal which shows the time change of the intensity|strength of the signal light which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る深さ方向位置と信号光の強度の指標との関係の一例を示す図である。FIG. 4 is a diagram showing an example of a relationship between a depth direction position and an index of intensity of signal light according to the first embodiment of the present invention; 本発明の第1の実施形態に係る演算装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the arithmetic unit which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る位置算出処理の一例を示す図である。It is a figure which shows an example of the position calculation process which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るキャリブレーションパターンの正面図の一例を示す図である。It is a figure which shows an example of the front view of the calibration pattern which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るキャリブレーションパターンの側面図の一例を示す図である。It is a figure which shows an example of the side view of the calibration pattern which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る信号光の強度の時間変化を示す計測信号の一例を示す図である。It is a figure which shows an example of the measurement signal which shows the time change of the intensity|strength of the signal light which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るピーク値比率と深さ方向位置との関係、及び幅比率と深さ方向位置との関係の一例を示す図である。It is a figure which shows an example of the relationship between the peak value ratio and the depth direction position, and the relationship between the width ratio and the depth direction position which concern on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る位置算出処理の一例を示す図である。It is a figure which shows an example of the position calculation process which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るキャリブレーションパターンの側面図の一例を示す図である。It is a figure which shows an example of the side view of the calibration pattern which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るマスクの配置の側面図の一例を示す図である。It is a figure which shows an example of the side view of arrangement|positioning of the mask based on the 4th Embodiment of this invention. 本発明の第4の実施形態に係るマスクの正面図の一例を示す図である。It is a figure which shows an example of the front view of the mask which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係るマスクの側面図の一例を示す図である。It is a figure which shows an example of the side view of the mask based on the 4th Embodiment of this invention. 本発明の第5の実施形態に係るマスクの配置の側面図の一例を示す図である。It is a figure which shows an example of the side view of arrangement|positioning of the mask based on the 5th Embodiment of this invention. 本発明の第5の実施形態に係るマスクの正面図の一例を示す図である。It is a figure which shows an example of the front view of the mask which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係るマスクの側面図の一例を示す図である。It is a figure which shows an example of the side view of the mask based on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る演算装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the arithmetic unit based on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る領域の一例を示す図である。FIG. 12 is a diagram showing an example of regions according to the sixth embodiment of the present invention; 本発明の第6の実施形態に係る学習用の細胞の領域の一例を示す図である。FIG. 10 is a diagram showing an example of a learning cell region according to the sixth embodiment of the present invention; 本発明の第6の実施形態に係る細胞判別処理の一例を示す図である。It is a figure which shows an example of the cell discrimination|determination process which concerns on the 6th Embodiment of this invention.
(第1の実施形態)
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。図1は、本実施形態に係るフローサイトメータ1の一例を示す図である。フローサイトメータとは、観測対象物が流体と共に流れ得る流路を備えるマイクロ流体装置と、流路に照明光を照射する光源と、流路を流れる観測対象物に照明光が照射されて観測対象物から発せられる信号光を検出する光検出器とを少なくとも備える測定機器であり、流路を流体とともに流れる観測対象物は流路内を移動しながら光学的に測定される。本実施形態に係るフローサイトメータ1は、マイクロ流体装置2と、光源3と、空間光変調部4と、光検出用光学系5と、光検出器6、DAQ(Data Acquisition)デバイス7と、パーソナルコンピュータ(PC:Personal Computer)8とを備える。
(First embodiment)
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an example of a flow cytometer 1 according to this embodiment. A flow cytometer consists of a microfluidic device that has a channel in which an object to be observed can flow together with a fluid, a light source that irradiates the channel with illumination light, and an object to be observed that flows through the channel and is irradiated with the illumination light. and a photodetector for detecting signal light emitted from an object, and the object to be observed, which flows in the channel together with the fluid, is optically measured while moving in the channel. The flow cytometer 1 according to this embodiment includes a microfluidic device 2, a light source 3, a spatial light modulator 4, a photodetection optical system 5, a photodetector 6, a DAQ (Data Acquisition) device 7, and a personal computer (PC) 8 .
 マイクロ流体装置2は、細胞Cが流体と共に流れ得る流路20を備える。流路20を流れる流体の流速は、流す細胞Cの種類や個体差によらず一定の流速である。また、マイクロ流体装置2は、流路20に複数の細胞を逐次流すが、流路20の照明光の照射位置を一度に通過する細胞の個数は1個である。細胞Cは、観測対象物の一例である。なお、観測対象物は、細胞Cに限られず、他の例として微粒子などであってもよい。 The microfluidic device 2 comprises a channel 20 through which the cells C can flow together with the fluid. The flow velocity of the fluid flowing through the channel 20 is a constant flow velocity regardless of the types of cells C to be flowed or individual differences. In addition, although the microfluidic device 2 sequentially flows a plurality of cells into the flow path 20, the number of cells passing through the irradiation position of the illumination light in the flow path 20 is one at a time. Cell C is an example of an observation object. Note that the object to be observed is not limited to the cell C, and may be a fine particle or the like as another example.
 ここで図1には、3次元直交座標系として、xyz座標系を示す。本実施形態において、x軸方向は、流路20の幅方向である。また、y軸方向は、流路20の長さ方向である。z軸方向は、流路20と直交する方向であって、流路20の深さ方向である。流路20内の流体の流れは、y軸方向の+y方向に細胞Cを移動させる。すなわち、流路20の長さ方向は流路20を流体の流れとともに細胞Cが移動する方向である。また、流路20の幅方向は、換言すれば、流路に照射される照明光の光軸と、流体が流れる長さ方向との両方に垂直な方向と表現できる。 Here, FIG. 1 shows an xyz coordinate system as a three-dimensional orthogonal coordinate system. In this embodiment, the x-axis direction is the width direction of the channel 20 . Also, the y-axis direction is the length direction of the channel 20 . The z-axis direction is a direction orthogonal to the channel 20 and is the depth direction of the channel 20 . Fluid flow in channel 20 causes cell C to move in the +y direction of the y-axis. That is, the length direction of the channel 20 is the direction in which the cells C move along with the flow of the fluid in the channel 20 . In other words, the width direction of the flow path 20 can be expressed as a direction perpendicular to both the optical axis of the illumination light applied to the flow path and the lengthwise direction of the flow of the fluid.
 光源3、及び空間光変調部4は、構造化照明として機能する。この構造化照明は、以下で説明するように流路20に対して構造化照明光SLEを照射する。
 光源3から発せられた照明光LEは、空間光変調部4を通じて構造化された構造化照明光SLEに変換され、流路20の照射位置に照射される。照明光LEは空間光変調部4により光源3が発する照明光LEは、コヒーレント光であっても、インコヒーレント光であってもよい。本実施形態では、光源3が発する照明光LEは、一例として、コヒーレント光である。
The light source 3 and spatial light modulator 4 function as structured illumination. This structured illumination illuminates the channel 20 with structured illumination light SLE as described below.
Illumination light LE emitted from the light source 3 is converted into structured illumination light SLE through the spatial light modulator 4 and irradiated to the irradiation position of the flow path 20 . The illumination light LE emitted from the light source 3 by the spatial light modulator 4 may be coherent light or incoherent light. In this embodiment, the illumination light LE emitted by the light source 3 is, for example, coherent light.
 空間光変調部4は、光源3と、光検出器6との間の光路上に配置される。本実施形態では、空間光変調部4は、光源3と流路20との間の光路上に配置される。この配置の構成を、構造化照明の構成とも記載する。光源3から照射される照明光LEは空間光変調部4によって構造化され、構造化照明光SLEが流路20に照射される。ここで構造化照明は、流路20の照射位置において、構造化照明光SLEを構造化照明パターン21として結像させる。図1では、照射位置に結像する構造化照明パターン21が配置される焦点面が焦点面FP1として示されている。 The spatial light modulator 4 is arranged on the optical path between the light source 3 and the photodetector 6 . In this embodiment, the spatial light modulator 4 is arranged on the optical path between the light source 3 and the flow path 20 . This arrangement configuration is also described as a structured lighting configuration. The illumination light LE emitted from the light source 3 is structured by the spatial light modulator 4, and the channel 20 is irradiated with the structured illumination light SLE. The structured illumination here images the structured illumination light SLE as a structured illumination pattern 21 at the illumination position of the channel 20 . In FIG. 1, the focal plane in which the structured illumination pattern 21 imaged onto the illumination position is arranged is indicated as focal plane FP1.
 本実施形態における構造化照明パターン21には、光学情報生成パターンと、キャリブレーションパターンCPとが含まれる。光学情報生成パターンは、観測対象物である細胞Cの形態情報を示す光学情報ICを生成するため流路20に照射されるパターンである。細胞Cの形態情報とは、細胞Cの形状、形態、または構造のうちいずれか1以上である。キャリブレーションパターンCPは、観測対象物である細胞Cが流路20において通過する深さ方向位置PPを検出するための検出位置に配置されるパターンである。深さ方向位置PPとは、細胞Cが流路20を通過する際の位置のうち流路20の深さ方向についての位置であり、観測対象物である細胞Cが流路20において通過する位置のうち深さ方向についてのずれを示す位置である。本実施形態では、流路20における深さの方向は光検出用光学系5の光軸OXの方向と一致しており、z軸の方向である。なお、以降この光検出用光学系5の光軸OXの方向を単に光軸OXの方向と呼ぶことがある。 The structured illumination pattern 21 in this embodiment includes an optical information generation pattern and a calibration pattern CP. The optical information generation pattern is a pattern with which the channel 20 is irradiated in order to generate the optical information IC indicating the morphological information of the cell C which is the object to be observed. The morphological information of the cell C is any one or more of the shape, morphology, and structure of the cell C. The calibration pattern CP is a pattern arranged at a detection position for detecting the depth direction position PP through which the cell C, which is the object to be observed, passes through the channel 20 . The depth direction position PP is the position in the depth direction of the channel 20 among the positions when the cell C passes through the channel 20, and is the position through which the cell C, which is the object to be observed, passes in the channel 20. , which indicates the displacement in the depth direction. In this embodiment, the direction of depth in the flow path 20 coincides with the direction of the optical axis OX of the optical system for photodetection 5, and is the direction of the z-axis. Hereinafter, the direction of the optical axis OX of the optical system for light detection 5 may be simply referred to as the direction of the optical axis OX.
 上述したように、本実施形態では、キャリブレーションパターンCPは、構造化照明光SLEが流路20において結像される構造化照明パターン21に含まれる。光源3、及び空間光変調部4によって構成される構造化照明は、光検出器6が深さ方向位置PPを検出するための複数の検出位置を構造化された光によってそれぞれ照明する照明光学系の一例である。光検出器6が深さ方向位置PPを検出するためのキャリブレーションパターンCPを照明する光と、観測対象物である細胞Cの形態情報を示す光学情報ICを生成するための照明に用いられる光とには、構造化された共通の光が用いられる。 As described above, in the present embodiment, the calibration pattern CP is included in the structured illumination pattern 21 on which the structured illumination light SLE is imaged in the channel 20. The structured illumination composed of the light source 3 and the spatial light modulator 4 is an illumination optical system that illuminates, with structured light, a plurality of detection positions for the photodetector 6 to detect the depth direction position PP. is an example. Light that illuminates the calibration pattern CP for the photodetector 6 to detect the depth direction position PP, and light that is used for illumination to generate the optical information IC indicating the morphological information of the cell C that is the object to be observed. and use a structured common light.
 以下の説明では、観測対象物である細胞Cの深さ方向位置PPを検出するため流路20においてキャリブレーションパターンCPが配置される位置を、検出位置ともいう。キャリブレーションパターンCPの詳細については後述する。 In the following description, the position where the calibration pattern CP is arranged in the channel 20 to detect the depth direction position PP of the cell C, which is the object to be observed, is also called the detection position. Details of the calibration pattern CP will be described later.
 ここで図2を参照し、空間光変調部4について説明する。図2は、本実施形態に係る空間光変調部4の一例を示す図である。空間光変調部4は、空間光変調器40と、第1レンズ41と、空間フィルター42と、第2レンズ43と、対物レンズ44とを備える。空間光変調部4において、空間光変調器40と、第1レンズ41と、空間フィルター42と、第2レンズ43と、対物レンズ44とは、光源3に近い側からこの順に光源3と光検出器6との間の光路上に配置される。 Here, the spatial light modulator 4 will be described with reference to FIG. FIG. 2 is a diagram showing an example of the spatial light modulator 4 according to this embodiment. The spatial light modulator 4 includes a spatial light modulator 40 , a first lens 41 , a spatial filter 42 , a second lens 43 and an objective lens 44 . In the spatial light modulator 4, the spatial light modulator 40, the first lens 41, the spatial filter 42, the second lens 43, and the objective lens 44 are arranged in this order from the side closer to the light source 3 and the light detection unit. It is placed on the optical path between the device 6 and the device 6 .
 空間光変調器40は、入射光を構造化する。入射光を構造化するとは、入射光の入射面に含まれる複数の領域ごとに入射光の光特性を変化させることである。空間光変調器40は、照明光LEを構造化し、構造化照明光SLEに変換する。空間光変調器40は、入射される光の空間的な分布を変化させ入射光の光特性を変化させる光学素子で、光照射のパターンを制御して光を照射することを可能にする。空間光変調器40の光が入射する面は、複数の領域を有しており、照明光LEの光特性は通過する複数の領域でそれぞれ個別に変換される。すなわち、空間光変調器40を透過した光では、入射光の光特性に対して、透過光の光特性が複数の領域で互いに異なるように変化している。入射光の光特性とは、例えば、強度、波長、位相、及び偏光状態のいずれか1つ以上に関する特性である。なお、光特性は、これらに限定されない。空間光変調器40は、例えば、回折光学素子(DOE:Diffractive Optical Element)、空間光変調器(SLM:Spatial Light Modulator)、デジタルミラーデバイス(DMD:Digital Micromirror Device)や、光特性が異なる複数の領域が表面に印刷されるフィルムなどが含まれる。なお、光源3が発する照明光LEがインコヒーレント光である場合、空間光変調器40は、DMDである。 The spatial light modulator 40 structures incident light. Structuring the incident light means changing the optical characteristics of the incident light for each of a plurality of regions included in the plane of incidence of the incident light. The spatial light modulator 40 structures the illumination light LE and transforms it into structured illumination light SLE. The spatial light modulator 40 is an optical element that changes the spatial distribution of incident light to change the optical characteristics of the incident light, and makes it possible to control the light irradiation pattern and irradiate the light. The light-incident surface of the spatial light modulator 40 has a plurality of regions, and the optical characteristics of the illumination light LE are individually converted in each of the plurality of regions through which the illumination light LE passes. In other words, in the light transmitted through the spatial light modulator 40, the optical characteristics of the transmitted light are different in a plurality of regions with respect to the optical characteristics of the incident light. The optical properties of incident light are, for example, properties related to any one or more of intensity, wavelength, phase, and polarization state. Note that the optical characteristics are not limited to these. The spatial light modulator 40 is, for example, a diffractive optical element (DOE), a spatial light modulator (SLM), a digital mirror device (DMD), or a plurality of devices with different optical characteristics. Films, etc., on which areas are printed on the surface are included. Note that when the illumination light LE emitted by the light source 3 is incoherent light, the spatial light modulator 40 is a DMD.
 本実施形態では、空間光変調器40は、一例として、形成された微細形状によって光の回折現象を制御する光学素子であるDOEである。ここで光とは、照明光LEである。以下の説明では、空間光変調器40の光を透過させる領域を透過領域と記載する。 In the present embodiment, the spatial light modulator 40 is, as an example, a DOE, which is an optical element that controls the diffraction phenomenon of light by means of the formed minute shape. Here, the light is the illumination light LE. In the following description, the light-transmitting region of the spatial light modulator 40 is referred to as a transmission region.
 以下の説明では、流路20における構造化照明光SLEが照射される位置のことを、照射位置とも記載する。本実施形態では、照射位置は、空間光変調器40の透過領域に対応する。この空間光変調器40の透過領域の形状及び大きさは、空間光変調器40が有する透過領域について共通である。透過領域の形状は、一例として、正方形である。この正方形は、空間光変調器40が有する透過領域では等しい長さの1辺をもつ。照射位置を通過した細胞Cは、構造化照明光SLEによって蛍光分子が励起されることにより発光する。この発光による蛍光は、流路20を流れる細胞Cに構造化照明光SLEが照射されて細胞Cから発せられる信号光LSの一例である。信号光LSの別の例には、構造化照明光SLEが細胞Cを透過した透過光、構造化照明光SLEが細胞Cによって散乱された散乱光、構造化照明光SLEと他の光との干渉光が含まれる。 In the following description, the position irradiated with the structured illumination light SLE in the channel 20 is also referred to as the irradiation position. In this embodiment, the irradiation position corresponds to the transmissive area of the spatial light modulator 40 . The shape and size of the transmissive region of the spatial light modulator 40 are common to the transmissive regions of the spatial light modulators 40 . The shape of the transmissive area is, for example, a square. This square has one side of equal length in the transmissive area of spatial light modulator 40 . Cells C that have passed through the irradiation position emit light when fluorescent molecules are excited by the structured illumination light SLE. The fluorescence resulting from this emission is an example of the signal light LS emitted from the cells C flowing through the channel 20 when the cells C are irradiated with the structured illumination light SLE. Other examples of the signal light LS include transmitted light from the structured illumination light SLE transmitted through the cell C, scattered light from the structured illumination light SLE scattered by the cell C, and combined structured illumination light SLE with other light. Includes interfering light.
 なお、空間光変調器40の透過領域の形状及び大きさは、透過領域内で統一されていれば形状は正方形に限らず、大きさも自由に変えられる。透過領域の形状は、例えば他の多角形や円などであってもよい。 It should be noted that the shape and size of the transmission region of the spatial light modulator 40 are not limited to a square as long as they are uniform within the transmission region, and the size can be freely changed. The shape of the transmissive region may be other polygons, circles, or the like, for example.
 第1レンズ41は、空間光変調器40を透過した構造化照明光SLEを空間フィルター42に集光する。
 空間フィルター42は、第1レンズ41によって集光された構造化照明光SLEを、空間的に変化する雑音に相当する成分を除去することによって、構造化照明光SLEの強度分布をガウス分布に近づける。
 第2レンズ43は、空間フィルター42によって雑音が除去された構造化照明光SLEを平行光にする。
 対物レンズ44は、第2レンズ43によって平行光にされた構造化照明光SLEを集光し、流路20の照射位置に合焦させる。
 なお、対物レンズ44は、ドライ対物レンズあっても、液浸対物レンズであってもよい。液浸対物レンズとは、油浸レンズや、水浸レンズなどである。
The first lens 41 converges the structured illumination light SLE transmitted through the spatial light modulator 40 onto the spatial filter 42 .
The spatial filter 42 removes components corresponding to spatially varying noise from the structured illumination light SLE condensed by the first lens 41, thereby bringing the intensity distribution of the structured illumination light SLE closer to the Gaussian distribution. .
The second lens 43 collimates the structured illumination light SLE from which noise has been removed by the spatial filter 42 .
The objective lens 44 collects the structured illumination light SLE collimated by the second lens 43 and focuses it on the irradiation position of the channel 20 .
The objective lens 44 may be a dry objective lens or an immersion objective lens. An immersion objective lens is an oil immersion lens, a water immersion lens, or the like.
 図1に戻ってフローサイトメータ1の構成の説明を続ける。
 光検出用光学系5は、細胞Cからの信号光LSを光検出器6に集光させるための光学的な仕組みであり、結像レンズ50(不図示)を構成に含む。細胞Cからの信号光LSは、蛍光や、透過光、散乱光、干渉光である。結像レンズ50は細胞Cからの信号光LSを光検出器6の位置に集光する。なお、結像レンズ50は、細胞Cからの信号光LSを光検出器6の位置に集光しさえすれば結像させなくてもよいが、信号光LSを光検出器6の位置に結像させる位置に配置されるのがより好ましい。また、光検出用光学系5は、さらにダイクロイックミラーや波長選択的なフィルターを備えてもよい。
Returning to FIG. 1, the description of the configuration of the flow cytometer 1 is continued.
The light detection optical system 5 is an optical mechanism for condensing the signal light LS from the cells C onto the photodetector 6, and includes an imaging lens 50 (not shown) in its configuration. The signal light LS from the cell C is fluorescence, transmitted light, scattered light, or interference light. The imaging lens 50 converges the signal light LS from the cell C to the position of the photodetector 6 . The imaging lens 50 does not need to form an image as long as the signal light LS from the cell C is focused on the position of the photodetector 6, but the signal light LS is focused on the position of the photodetector 6. It is more preferable to be placed at the imaging position. Also, the photodetection optical system 5 may further include a dichroic mirror or a wavelength selective filter.
 光検出器6は、結像レンズ50によって集光された信号光LSを検出する。ここで光検出器6は、信号光LSを検出して電気信号に変換する。光検出器6は、一例として、光電子増倍管(PMT:Photomultiplier Tube)である。光検出器6は、結像レンズ50によって集光された信号光LSの強度を時系列に検出する。上述したように信号光LSは、流路20を流れる細胞Cに構造化照明光SLEが照射されて細胞Cから発せられる。つまり、光検出器6は、流路20を流れる細胞Cに構造化照明光SLEが照射されて細胞Cから発せられる信号光LSの強度を時系列に検出する。光検出器6は、単一の受光素子で構成されるシングルセンサーであってもよいし、複数の受光素子で構成されるマルチセンサーであってもよい。 The photodetector 6 detects the signal light LS condensed by the imaging lens 50 . Here, the photodetector 6 detects the signal light LS and converts it into an electrical signal. The photodetector 6 is, for example, a photomultiplier tube (PMT: Photomultiplier Tube). The photodetector 6 detects the intensity of the signal light LS condensed by the imaging lens 50 in time series. As described above, the signal light LS is emitted from the cells C flowing through the channel 20 when the cells C are irradiated with the structured illumination light SLE. That is, the photodetector 6 detects in time series the intensity of the signal light LS emitted from the cells C flowing through the channel 20 when the cells C are irradiated with the structured illumination light SLE. The photodetector 6 may be a single sensor composed of a single light-receiving element, or may be a multi-sensor composed of a plurality of light-receiving elements.
 DAQデバイス7は、光検出器6が出力する電気信号パルスを、パルス毎に電子データに変換する。電子データには、時間と、電気信号パルスの強度との組が含まれる。DAQデバイス7は、一例として、オシロスコープである。 The DAQ device 7 converts the electrical signal pulses output by the photodetector 6 into electronic data for each pulse. The electronic data includes sets of time and intensity of electrical signal pulses. DAQ device 7 is, for example, an oscilloscope.
 本実施形態で、PC8は情報生成装置と演算装置との機能を備える。情報生成装置として、PC8は、DAQデバイス7から出力される電子データに基づいて、細胞Cの形態に関する光学情報ICを生成する。光学情報ICは細胞の形態情報を示す光学情報である。PC8は、さらに生成した光学情報ICを記憶する。以下の説明では、PC8が生成した光学情報ICを記憶する処理をレコーディングとも記載する。PC8は、情報生成装置の一例である。 In this embodiment, the PC 8 has the functions of an information generating device and an arithmetic device. As an information generating device, the PC 8 generates optical information IC regarding the morphology of the cell C based on electronic data output from the DAQ device 7 . The optical information IC is optical information indicating morphological information of cells. The PC 8 also stores the generated optical information IC. In the following description, the process of storing the optical information IC generated by the PC 8 is also referred to as recording. PC8 is an example of an information generating device.
 本実施形態では構造化照明の構成により流路20を通過する細胞Cが照射され、細胞Cからの信号光LSが光検出器6により検出される。光学情報ICは、本実施形態では、この細胞Cからの信号光LSの強度の時系列変化を波形として示す情報である。この波形と細胞Cの形態とは対応しており、光学情報ICは細胞Cを識別するために用いることができる。光学情報ICは、例えば機械学習において、細胞Cの形態と波形信号との関係を学習するための教師データとして用いられ、得られた推論モデルを用いて推論時に測定した波形信号から細胞Cの識別が行われる。 In this embodiment, the cell C passing through the channel 20 is illuminated by the structured illumination configuration, and the signal light LS from the cell C is detected by the photodetector 6 . In the present embodiment, the optical information IC is information indicating time-series changes in the intensity of the signal light LS from the cell C as a waveform. This waveform and the morphology of the cell C correspond, and the optical information IC can be used to identify the cell C. The optical information IC is used, for example, in machine learning as teacher data for learning the relationship between the morphology of the cell C and the waveform signal, and the obtained inference model is used to identify the cell C from the waveform signal measured during inference. is done.
 本実施形態では、構造化照明の構成により光源3とマイクロ流体装置2との間に設置される空間光変調部4により照明光を構造化照明に変換する構造化処理が施されている。構造化照明はマイクロ流体装置2に含まれる流路20に照射され、観測対象物(細胞C)が発する信号光LSを光検出器6で検出し細胞Cを識別する光学情報ICが取得される。前記のように空間光変調部による光の構造化を経て細胞Cを識別する光学情報を取得することを、以降の説明では空間光変調部による構造化処理を経て光学情報が取得されるあるいは生成されるとも記載する。本実施形態は、空間光変調部4による構造化処理が構造化照明の構成により照明光LEを構造化照明光SLEに変換する処理として施されている。また、PC8は、光検出器6が検出する信号光LSの強度に基づいて観測対象物の形態情報を示す光学情報ICを生成する情報生成装置の一例として記載されている。 In the present embodiment, the spatial light modulator 4 installed between the light source 3 and the microfluidic device 2 performs structured processing for converting illumination light into structured illumination. The structured illumination is applied to the channel 20 included in the microfluidic device 2, and the optical information IC for identifying the cell C is obtained by detecting the signal light LS emitted by the observation target (cell C) with the photodetector 6. . Acquisition of optical information for identifying cells C through the structuring of light by the spatial light modulator as described above means that optical information is acquired or generated through structuring processing by the spatial light modulator in the following description. It should also be stated. In this embodiment, the structuring process by the spatial light modulator 4 is performed as a process of converting the illumination light LE into the structured illumination light SLE by the configuration of the structured illumination. Also, the PC 8 is described as an example of an information generation device that generates optical information IC indicating the form information of the observed object based on the intensity of the signal light LS detected by the photodetector 6 .
 またPC8は、演算装置として、深さ方向位置PPを検出する検出位置において検出される信号光LSの強度の時間変化のパラメータに基づいて細胞Cが流路を移動する際に通過する深さ方向位置PPを算出する。ここで前記検出位置は、流路内を通過する細胞Cの深さ方向位置PPを検出するためキャリブレーションパターンCPの照明が流路に照射される位置であり、キャリブレーションパターンCPの照射により細胞Cから発せられる信号光LSは光検出用光学系5を介し光検出器6で検出される。本実施形態では、キャリブレーションパターンCPの照明は光学情報ICを取得するための構造化照明に含まれて構造化照明パターン21として流路20に照射される。PC8は、演算装置の一例であり、検出される信号光LSの強度の時間変化に基づいて細胞Cの深さ方向位置PPを算出する。 In addition, the PC 8, as an arithmetic unit, is based on the parameter of the time change of the intensity of the signal light LS detected at the detection position where the depth direction position PP is detected. Calculate the position PP. Here, the detection position is a position where the channel is irradiated with the illumination of the calibration pattern CP in order to detect the depth direction position PP of the cell C passing through the channel. A signal light LS emitted from C is detected by a photodetector 6 via a photodetection optical system 5 . In the present embodiment, the illumination of the calibration pattern CP is included in the structured illumination for acquiring the optical information IC, and the channel 20 is irradiated with the structured illumination pattern 21 . The PC 8 is an example of a computing device, and calculates the depth direction position PP of the cell C based on the temporal change in intensity of the detected signal light LS.
 流路位置制御装置9は、流路20の深さ方向の位置を制御する。本実施形態では、光軸OXの方向と、流路20の深さ方向とは一致している。図1に示す例では、流路20の深さ方向は、z軸の方向である。流路位置制御装置9は、一例として、流路20が載置されるピエゾステージを駆動するドライバである。流路位置制御装置9により流路20を光軸OX方向に移動させ、流路20の光軸方向の様々な位置において信号光LSの強度の時間変化のシグナルを連続的に取得して深さ方向位置PPが算出される。さらに流路位置制御装置9は、PC8が算出した細胞Cの深さ方向位置PPに基づいて、細胞Cが移動する流線FXの流路の深さ方向の位置ずれに対してフィードバック制御を行なう。 The channel position control device 9 controls the position of the channel 20 in the depth direction. In this embodiment, the direction of the optical axis OX and the depth direction of the channel 20 match. In the example shown in FIG. 1, the depth direction of the channel 20 is the direction of the z-axis. The channel position control device 9 is, for example, a driver that drives a piezo stage on which the channel 20 is placed. The channel position control device 9 moves the channel 20 in the direction of the optical axis OX, continuously acquires the signal of the time change of the intensity of the signal light LS at various positions in the direction of the optical axis of the channel 20, and determines the depth. A directional position PP is calculated. Further, the flow channel position control device 9 performs feedback control on positional deviation of the flow line FX along which the cell C moves in the depth direction of the flow channel, based on the depth direction position PP of the cell C calculated by the PC 8. .
[キャリブレーションパターン]
 上述したように、本実施形態では、流路20において細胞Cが流路を移動する際に通過する深さ方向(図1のz軸の方向)の位置である深さ方向位置PPを検出するために、流路20の予め定められた位置にキャリブレーションパターンCPが配置される。
 ここで図3から図5を参照し、本実施形態に係るキャリブレーションパターンCP1について説明する。図3は、流路20に照射されるキャリブレーションパターンCP1の正面図の一例を示す図である。正面図とは、キャリブレーションパターンCP1を光軸OXの方向(z軸方向)からみた場合の図である。図4は、流路20に照射されるキャリブレーションパターンCP1の側面図の一例を示す図である。側面図とは、キャリブレーションパターンCP1を水平方向HX(x軸方向)からみた場合の図である。図5は、本実施形態に係るキャリブレーションパターンCP1と光検出用光学系5(不図示)を構成する結像レンズ50との位置関係の側面図の一例を示す図である。
[Calibration pattern]
As described above, in the present embodiment, the depth direction position PP, which is the position in the depth direction (z-axis direction in FIG. 1) through which the cell C passes when moving through the channel 20, is detected. For this purpose, a calibration pattern CP is arranged at a predetermined position in the channel 20. As shown in FIG.
Here, the calibration pattern CP1 according to this embodiment will be described with reference to FIGS. 3 to 5. FIG. FIG. 3 is a diagram showing an example of a front view of the calibration pattern CP1 irradiated onto the channel 20. As shown in FIG. A front view is a view when the calibration pattern CP1 is viewed from the direction of the optical axis OX (z-axis direction). FIG. 4 is a diagram showing an example of a side view of the calibration pattern CP1 irradiated onto the channel 20. As shown in FIG. A side view is a view when the calibration pattern CP1 is viewed from the horizontal direction HX (x-axis direction). FIG. 5 is a diagram showing an example of a side view of the positional relationship between the calibration pattern CP1 according to the present embodiment and the imaging lens 50 forming the optical system for photodetection 5 (not shown).
 本実施形態では、上述したようにキャリブレーションパターンCP1は、流路20に照射される構造化照明パターン21に含まれ、流路20において構造化照明パターン21の一部として結像される。図3に示すように、キャリブレーションパターンCP1は、光軸OXの方向(z軸方向)からみると水平方向HX(x軸方向)に平行な直線上のパターンとして流路20に照射される。なお、図3には構造化照明パターン21に含まれる光学情報生成パターンの位置は示されていない。 In the present embodiment, as described above, the calibration pattern CP1 is included in the structured illumination pattern 21 with which the channel 20 is irradiated, and is imaged as part of the structured illumination pattern 21 in the channel 20 . As shown in FIG. 3, the calibration pattern CP1 is applied to the flow path 20 as a linear pattern parallel to the horizontal direction HX (x-axis direction) when viewed from the direction of the optical axis OX (z-axis direction). Note that FIG. 3 does not show the positions of the optical information generating patterns included in the structured illumination pattern 21 .
 図4では、水平方向HX(x軸方向)からみた場合のキャリブレーションパターンCP1の位置が示されている。キャリブレーションパターンCP1は水平方向HXから見ると焦点面FP1上で結像しており、図4では簡単のために円で示されている。焦点面FP1とは、流路20においてキャリブレーションパターンCP1が結像される焦点面である。図4では、流路20を流線FX2に沿って移動する細胞C2の深さ方向位置PPである位置P2にキャリブレーションパターンCP1が結像している。なお、同様に図4には構造化照明パターン21に含まれる光学情報生成パターンの位置は示されていない。 FIG. 4 shows the position of the calibration pattern CP1 when viewed from the horizontal direction HX (x-axis direction). The calibration pattern CP1 is imaged on the focal plane FP1 when viewed in the horizontal direction HX, and is indicated by a circle in FIG. 4 for simplicity. The focal plane FP1 is a focal plane on which the calibration pattern CP1 is imaged in the channel 20 . In FIG. 4, the calibration pattern CP1 is imaged at the position P2, which is the depth direction position PP of the cell C2 moving in the channel 20 along the streamline FX2. It should be noted that the positions of the optical information generating patterns included in the structured illumination pattern 21 are likewise not shown in FIG.
 図4及び図5は、水平方向HX(x軸方向)から流路20を見た場合の図であり、細胞Cが検出位置付近を通過する場合に、いずれの深さの位置を通過するかを3通りの例で示している。細胞Cは流れる流体の流線に沿って流路20を移動するが、細胞C1、細胞C2、細胞C3は、それぞれ検出位置付近において深さ方向位置PPが異なる位置P1、位置P2、位置P3を通過する流線(それぞれ流線FX1、流線FX2、流線FX3)により移動する細胞Cである。図4では位置P2に、キャリブレーションパターンCP1が流路内で結像し、位置P1は、位置P2よりも結像レンズ50から遠い位置(即ち、光軸OX方向に流路の浅い位置)となる。位置P3は、位置P2よりも結像レンズ50に近い位置(即ち、光軸OX方向に流路の深い位置)となる。本実施形態では、簡単のため、位置P2は位置P1と位置P3との中間にあるとして説明する。 4 and 5 are diagrams when the channel 20 is viewed from the horizontal direction HX (x-axis direction), and when the cell C passes through the vicinity of the detection position, which depth position does it pass? are shown in three examples. The cell C moves in the channel 20 along the streamline of the flowing fluid, but the cell C1, cell C2, and cell C3 move through positions P1, P2, and P3, which have different depth direction positions PP near the detection positions, respectively. Cells C migrate by passing streamlines (streamline FX1, streamline FX2, and streamline FX3, respectively). In FIG. 4, the calibration pattern CP1 is imaged in the channel at position P2, and the position P1 is a position farther from the imaging lens 50 than the position P2 (that is, a position shallower in the channel in the optical axis OX direction). Become. The position P3 is closer to the imaging lens 50 than the position P2 (that is, the position deeper in the flow path in the optical axis OX direction). In this embodiment, for the sake of simplicity, it is assumed that the position P2 is between the positions P1 and P3.
 なお、本実施形態では、キャリブレーションパターンCPは、一例として流線FXで示される流路の方向(y軸方向)について光学情報生成パターン(不図示)よりも流線FXの上流側に配置されているが、光学情報生成パターンよりも流線FXの下流側に配置されてもよい。 In the present embodiment, the calibration pattern CP is arranged upstream of the streamline FX relative to the optical information generation pattern (not shown) in the direction of the flow path (y-axis direction) indicated by the streamline FX as an example. However, it may be arranged on the downstream side of the streamline FX from the optical information generation pattern.
[信号光と深さ方向位置との関係]
 ここで図6及び図7を参照し、信号光LSと深さ方向位置PPとの関係について説明する。図6は、本実施形態に係る信号光LSの強度の時間変化を示す計測信号SGの一例を示す図である。なお、信号光LSの強度の時間変化を波形として示した電子データを計測信号SGという。図6(A)は、流線FX3に沿って流路20内を移動し、位置P3を通過した細胞C3の場合の計測信号SG3を示す。図6(B)は、流線FX2に沿って流路20内を移動し、位置P2を通過した細胞C2の場合の計測信号SG2を示す。図6(C)は、流線FX1に沿って流路20内を移動し、位置P1を通過した細胞C1の場合の計測信号SG1を示す。
[Relationship between signal light and depth direction position]
Here, the relationship between the signal light LS and the depth direction position PP will be described with reference to FIGS. 6 and 7. FIG. FIG. 6 is a diagram showing an example of the measurement signal SG indicating temporal changes in the intensity of the signal light LS according to this embodiment. Note that the electronic data representing the temporal change in the intensity of the signal light LS as a waveform is referred to as the measurement signal SG. FIG. 6(A) shows the measurement signal SG3 in the case of the cell C3 that has moved in the channel 20 along the streamline FX3 and passed through the position P3. FIG. 6B shows the measurement signal SG2 in the case of the cell C2 that has moved in the channel 20 along the streamline FX2 and passed through the position P2. FIG. 6(C) shows the measurement signal SG1 in the case of the cell C1 that has moved in the channel 20 along the streamline FX1 and passed through the position P1.
 本実施形態では深さ方向位置の算出に用いられる信号光LSの強度の指標として計測信号のピーク値およびピーク幅が用いられる例について説明する。計測信号のピーク値とは、計測信号の振幅の大きさの最大値である。計測信号のピーク幅とは、例えば、半値幅(FWHM:full width half maximum)などシグナル振幅が所定の閾値以上となる時間幅である。計測信号のピーク幅は、カーブフィッティングをして得られる計測信号の時間方向の広がりを示す特徴量(例えば、ガウシアンカーブフィッティングにおける分散)などであってもよい。なお、信号光LSの強度の指標としてピークの面積(ピークエリア)など他の指標を用いることもできる。なお以下の説明では、深さ方向位置の算出に用いられる信号光LSの強度の指標をパラメータとも記載する。 In the present embodiment, an example will be described in which the peak value and peak width of the measurement signal are used as indicators of the intensity of the signal light LS used to calculate the depth direction position. The peak value of the measurement signal is the maximum value of the amplitude of the measurement signal. The peak width of the measurement signal is, for example, a time width such as a full width half maximum (FWHM) in which the signal amplitude is equal to or greater than a predetermined threshold. The peak width of the measurement signal may be a feature quantity (for example, variance in Gaussian curve fitting) indicating the spread of the measurement signal in the time direction obtained by curve fitting. It should be noted that another index such as the area of the peak (peak area) can be used as the index of the intensity of the signal light LS. In the following description, the index of the intensity of the signal light LS used for calculating the depth direction position is also referred to as a parameter.
 計測信号SG3のピーク値H3は、計測信号SG2のピーク値H2よりも小さい。一方、計測信号SG3の幅W3は、計測信号SG2の幅W2よりも広い。計測信号SG1の形状と、計測信号SG3の形状とは同じであり、計測信号SG1のピーク値H1は計測信号SG3のピーク値H3と等しく、計測信号SG1の幅W1は計測信号SG3の幅W3と等しい。
 以下の説明においては、計測信号SGのピーク値と幅とをまとめて、計測信号SGのプロファイルという場合がある。
The peak value H3 of the measurement signal SG3 is smaller than the peak value H2 of the measurement signal SG2. On the other hand, the width W3 of the measurement signal SG3 is wider than the width W2 of the measurement signal SG2. The shape of the measurement signal SG1 and the shape of the measurement signal SG3 are the same, the peak value H1 of the measurement signal SG1 is equal to the peak value H3 of the measurement signal SG3, and the width W1 of the measurement signal SG1 is equal to the width W3 of the measurement signal SG3. equal.
In the following description, the peak value and width of the measurement signal SG may be collectively referred to as the profile of the measurement signal SG.
 計測信号SG1、計測信号SG2、及び計測信号SG3のプロファイルに含まれる値の大きさと、細胞Cの深さ方向位置PPとの関係を図7に示す。図7は、本実施形態に係る深さ方向位置PPと計測信号SGのプロファイルに含まれる値の大きさとの関係の一例を示す図である。図7では、計測信号SGのプロファイルに含まれる値がピーク値、及び幅である場合の一例が示されている。細胞Cの深さ方向位置PPが、深さ方向において、キャリブレーションパターンCPが流路内で結像する位置である位置P2から離れるほど、細胞Cの深さ方向位置PPが位置P2と一致している場合に比べて、計測信号SGのピーク値は小さくなり、幅は広くなる。 FIG. 7 shows the relationship between the magnitude of the values included in the profiles of the measurement signal SG1, the measurement signal SG2, and the measurement signal SG3 and the depth direction position PP of the cell C. FIG. 7 is a diagram showing an example of the relationship between the depth direction position PP and the magnitude of values included in the profile of the measurement signal SG according to this embodiment. FIG. 7 shows an example in which the values included in the profile of the measurement signal SG are the peak value and width. As the depth direction position PP of the cell C is farther in the depth direction from the position P2 where the calibration pattern CP is imaged in the channel, the depth direction position PP of the cell C matches the position P2. The peak value of the measurement signal SG becomes smaller and the width becomes wider as compared with the case where the measurement signal SG is held.
 計測信号SGのピーク値が最大となりかつ幅が最小となる深さ方向位置PPが、流路20においてキャリブレーションパターンCPが結像する位置P2に対応する。図5の例では、深さ方向位置PPが位置P2の位置にキャリブレーションパターンCP1が結像している。したがって、計測信号SGのピーク値の最大値との差、及び/または幅の最小値との差を検出することによって、細胞Cが流れる流線の位置P2からの深さ方向の位置ずれを検出できる。流線の深さ方向の位置ずれとは、流路を流れる流体と共に流れる観測対象物の流路20における通過位置が深さ方向位置PPの方向に相対的にずれることであり、本実施形態では同時に光検出用光学系の光軸OX方向に相対的にずれることである。 The depth direction position PP where the peak value of the measurement signal SG is maximum and the width is minimum corresponds to the position P2 where the calibration pattern CP is imaged in the channel 20 . In the example of FIG. 5, the calibration pattern CP1 is imaged at the position where the depth direction position PP is the position P2. Therefore, by detecting the difference from the maximum value of the peak value of the measurement signal SG and/or the difference from the minimum value of the width, the displacement in the depth direction from the position P2 of the streamline where the cell C flows is detected. can. The displacement of the streamline in the depth direction means that the passage position of the object to be observed flowing along with the fluid flowing in the flow channel 20 is relatively displaced in the direction of the depth direction position PP. At the same time, it is relatively shifted in the direction of the optical axis OX of the optical system for photodetection.
 また、流路20において観測対象物が流れる位置の光軸OX方向の位置ずれは、計測信号SGのピーク値とピーク幅の二つのパラメータを使って演算をした結果得られる新たなパラメータを使って検出してもよい。例えば、ピーク値に幅の逆数をかけた値を、新たなパラメータとして使用する。この場合、この新たなパラメータが最大値となる深さ方向位置PPが流路20においてキャリブレーションパターンの照射光が結像する深さ方向の位置に対応し、その位置(図5では位置P2)を通過する流線FXに沿って移動する細胞Cから発せられる信号光LSの計測信号SGが最もピーク値が大きく幅が狭いシャープな形状になる。この新たなパラメータの最大値との差を検出することによって、流線の光軸OX方向の位置ずれを検出できる。さらに、二つのパラメータのうちいずれか一方、またはそれらの組み合わせと、二つのパラメータを使って演算をした得られる新たなパラメータとを組み合わせて流線の光軸OX方向の位置ずれを検出してもよい。 Further, the positional deviation in the optical axis OX direction of the position where the observation object flows in the flow path 20 is calculated using the two parameters of the peak value and the peak width of the measurement signal SG. may be detected. For example, the peak value multiplied by the reciprocal of the width is used as the new parameter. In this case, the depth direction position PP at which the new parameter becomes the maximum value corresponds to the depth direction position where the irradiation light of the calibration pattern forms an image in the channel 20, and that position (position P2 in FIG. 5). The measurement signal SG of the signal light LS emitted from the cell C moving along the streamline FX passing through has the largest peak value and a sharp shape with a narrow width. By detecting the difference from the maximum value of this new parameter, the displacement of the streamline in the direction of the optical axis OX can be detected. Further, the displacement of the streamline in the direction of the optical axis OX can be detected by combining either one of the two parameters, or a combination thereof, and a new parameter obtained by performing calculation using the two parameters. good.
 以上のように、細胞Cが通過する流路20に構造化照明光SLEを照射し、構造化照明光SLEに含まれるキャリブレーションパターンCPの照射により細胞Cから発せられる信号光LSを光検出器で検出することで、細胞Cの光学情報ICと同時に細胞Cの深さ方向位置PPを算出することができる。その際、構造化照明光SLEに含まれる細胞Cの深さ方向位置PPを検出するためのキャリブレーションパターンCPは、流路20内の焦点面FP1で結像される。キャリブレーションパターンCP1は、流路20内の流線FXに沿ってある深さ方向位置を移動する細胞Cに照射され、細胞Cが流路20を通過する際の流路の深さ方向の位置である深さ方向位置PPを検出するための検出位置として機能する。本明細書中では、このように流路20を通過する細胞CにキャリブレーションパターンCPを照射し、細胞Cからの信号光LSの強度の時間変化を波形として示す計測信号SGのピーク値や幅等のパラメータを用いて細胞Cの深さ方向位置PPを算出することを、流路20に深さ方向位置PPを検出するための検出位置を予め定められた位置に設置し、その検出位置において検出する信号光LSの強度の時間変化のパラメータに基づいて流路内を細胞Cが通過する深さ方向位置を算出するとも表現する。 As described above, the channel 20 through which the cells C pass is irradiated with the structured illumination light SLE, and the signal light LS emitted from the cells C by irradiation with the calibration pattern CP included in the structured illumination light SLE is detected by the photodetector. , the optical information IC of the cell C and the depth direction position PP of the cell C can be calculated simultaneously. At that time, the calibration pattern CP for detecting the depth direction position PP of the cell C contained in the structured illumination light SLE is imaged on the focal plane FP1 inside the channel 20 . The calibration pattern CP1 is applied to the cell C moving at a certain position in the depth direction along the streamline FX in the channel 20, and the position in the depth direction of the channel when the cell C passes through the channel 20. function as a detection position for detecting the depth direction position PP. In this specification, the calibration pattern CP is irradiated onto the cell C passing through the channel 20 in this way, and the peak value and width of the measurement signal SG showing the temporal change in the intensity of the signal light LS from the cell C as a waveform. By calculating the depth direction position PP of the cell C using parameters such as It is also expressed as calculating the depth direction position where the cell C passes through the channel based on the parameter of the time change of the intensity of the detected signal light LS.
[演算装置]
 ここで図8を参照し、検出位置において検出する信号光LSの強度の時間変化のパラメータに基づいて細胞Cの深さ方向位置PPを算出する演算装置10の構成について説明する。図8は、本実施形態に係る演算装置10の構成の一例を示す図である。本実施形態では、演算装置10は、PC8の機能として実現される。
[Arithmetic unit]
Here, with reference to FIG. 8, the configuration of the arithmetic unit 10 that calculates the depth direction position PP of the cell C based on the parameter of the time change of the intensity of the signal light LS detected at the detection position will be described. FIG. 8 is a diagram showing an example of the configuration of the arithmetic device 10 according to this embodiment. In this embodiment, the arithmetic unit 10 is implemented as a function of the PC8.
 演算装置10は、制御部11を備える。制御部11は、例えばCPU(Central Processing Unit)や、GPU(Graphics Processing Unit)、FPGA(field-programmable gate array)などを備えており、種々の演算や情報の授受を行う。制御部11は、信号強度取得部110と、位置算出部111と、出力部112と、スキャン部113とを備える。信号強度取得部110と、位置算出部111と、出力部112と、スキャン部113とはそれぞれ、例えばCPUがROM(Read Only Memory)からプログラムを読み込んで処理を実行することにより実現されるモジュールである。 The computing device 10 includes a control section 11 . The control unit 11 includes, for example, a CPU (Central Processing Unit), GPU (Graphics Processing Unit), FPGA (Field-Programmable Gate Array), etc., and performs various calculations and exchanges of information. The control unit 11 includes a signal strength acquisition unit 110 , a position calculation unit 111 , an output unit 112 and a scanning unit 113 . The signal strength acquisition unit 110, the position calculation unit 111, the output unit 112, and the scan unit 113 are modules implemented by, for example, the CPU reading a program from a ROM (Read Only Memory) and executing processing. be.
 信号強度取得部110は、DAQデバイス7から出力される電子データDを取得する。電子データDは、光検出器6がキャリブレーションパターンCPにおいて検出する信号光LSの強度の時間変化である計測信号SGの電子データである。以下の説明では、電子データDを取得することを、シグナルを取得するとも記載する。
 位置算出部111は、信号強度取得部110が取得する電子データDに基づいて細胞Cの深さ方向位置PPを算出する。
 出力部112は、位置算出部111が算出した深さ方向位置PPを示す位置情報IPを流路位置制御装置9に出力する。
The signal strength acquisition unit 110 acquires electronic data D output from the DAQ device 7 . The electronic data D is electronic data of the measurement signal SG, which is the temporal change in the intensity of the signal light LS detected by the photodetector 6 in the calibration pattern CP. In the following description, obtaining electronic data D is also referred to as obtaining a signal.
The position calculator 111 calculates the depth direction position PP of the cell C based on the electronic data D acquired by the signal intensity acquirer 110 .
The output unit 112 outputs position information IP indicating the depth direction position PP calculated by the position calculation unit 111 to the flow channel position control device 9 .
 スキャン部113は、深さ方向位置PPを算出するためのスキャン処理を行う。このスキャン処理とは、流路位置制御装置9を介して流路20を光軸OX方向に移動させ、流路20の光軸方向の様々な位置において連続的にシグナルを取得する処理である。なお、光軸OX方向とは、本実施形態では、流路20の深さ方向であり、シグナルを取得するとは計測信号SGの電子データDを取得することである。 The scanning unit 113 performs scanning processing for calculating the depth direction position PP. This scanning process is a process of moving the channel 20 in the direction of the optical axis OX via the channel position control device 9 and continuously acquiring signals at various positions in the direction of the optical axis of the channel 20 . In this embodiment, the direction of the optical axis OX is the depth direction of the channel 20, and obtaining a signal means obtaining the electronic data D of the measurement signal SG.
[演算装置の位置算出処理]
 次に図9を参照し、演算装置10の位置算出処理について説明する。図9は、本実施形態に係る位置算出処理の一例を示す図である。演算装置10は、以降に説明する位置算出処理の各ステップを流路20に細胞Cが流され始めてから所定の周期ごとに実行する。所定の周期とは、例えば10分間などの一定の時間の周期である。また、演算装置10は、所定の周期に代えて、細胞Cが所定の個数だけ流路20を流れる度に位置算出処理を実行してもよい。所定の個数とは、例えば1000個である。これら所定の周期や所定の個数は、流路20を流れる流体の流速に応じて設定されてよい。
[Position calculation processing of arithmetic unit]
Next, with reference to FIG. 9, the position calculation processing of the calculation device 10 will be described. FIG. 9 is a diagram showing an example of position calculation processing according to the present embodiment. The computing device 10 executes each step of the position calculation process described below at predetermined intervals after the cells C start flowing through the channel 20 . A predetermined cycle is a cycle of a certain period of time, such as 10 minutes. Further, the calculation device 10 may execute the position calculation process each time a predetermined number of cells C flow through the channel 20 instead of the predetermined cycle. The predetermined number is 1000, for example. These predetermined period and predetermined number may be set according to the flow velocity of the fluid flowing through the channel 20 .
ステップS10:スキャン部113は、流路20の光軸OX方向のある所定の位置をスキャン位置として設定する。スキャン部113は、スキャン位置を設定すると、流路位置制御装置9を介して流路20の光軸方向の位置を設定したスキャン位置に移動する。スキャン部113は、流路20を光軸OX方向についてスキャン位置に移動させる処理が完了すると、処理が完了したことを示す信号を信号強度取得部110に供給する。 Step S10: The scanning unit 113 sets a predetermined position in the direction of the optical axis OX of the channel 20 as a scanning position. After setting the scanning position, the scanning unit 113 moves to the scanning position where the position of the flow path 20 in the optical axis direction is set via the flow path position control device 9 . When the processing of moving the flow path 20 to the scanning position in the direction of the optical axis OX is completed, the scanning unit 113 supplies a signal indicating the completion of the processing to the signal intensity acquiring unit 110 .
 スキャン部113は、位置算出処理が開始されて初めて実行されるステップS10において、スキャン位置を流路20が現在設定されている光軸OX方向の位置に設定する。スキャン部113は、2回目以降のステップS10において、スキャン位置を前回のスキャン位置から所定の距離だけ変化させる。スキャン部113は、例えば、スキャン位置を前回のスキャン位置から所定の距離だけ増加させる。所定の距離とは、例えば、5マイクロメートル程度の距離である。スキャン部113は、前回のスキャン処理から前記距離だけスキャン位置を光軸方向に移動させて次回のシグナル取得を行う。
 スキャン部113は、スキャン位置が流路20の光軸OX方向の位置について設定された最も高い位置に達した場合、例えば、次回のスキャン位置を流路20の光軸OX方向の位置について設定された最も低い位置に設定する。これにより、スキャン開始位置から高い位置と低い位置の両方の方向についてスキャン処理してシグナル取得を行うことができる。
In step S10, which is executed for the first time after the position calculation process is started, the scanning unit 113 sets the scanning position to the position in the direction of the optical axis OX where the channel 20 is currently set. The scanning unit 113 changes the scanning position by a predetermined distance from the previous scanning position in step S10 from the second time onward. For example, the scanning unit 113 increases the scanning position by a predetermined distance from the previous scanning position. The predetermined distance is, for example, a distance of approximately 5 micrometers. The scanning unit 113 moves the scanning position in the optical axis direction by the distance from the previous scanning process, and acquires the next signal.
When the scan position reaches the highest position set for the position of the channel 20 in the direction of the optical axis OX, the scan unit 113 sets the next scan position to the position of the channel 20 in the direction of the optical axis OX, for example. set to the lowest position. As a result, signals can be obtained by performing scanning processing in both directions from the scan start position to the high position and the low position.
 なお、スキャン部113は、2回目以降のステップS10において、スキャン位置を前回のスキャン位置から所定の距離だけ減少させてもよい。
 スキャン部113は、位置算出処理が開始されて初めて実行されるステップS10において、スキャン位置を流路20の光軸OX方向の位置について設定可能な最も高い位置、または最も低い位置に設定してもよい。
Note that the scanning unit 113 may decrease the scanning position by a predetermined distance from the previous scanning position in step S10 for the second and subsequent times.
In step S10, which is executed for the first time after the position calculation process is started, the scanning unit 113 may set the scanning position to the highest position or the lowest position that can be set for the position of the flow channel 20 in the direction of the optical axis OX. good.
ステップS20:信号強度取得部110は、流路20を光軸OX方向についてスキャン位置に移動させる処理が完了すると、DAQデバイス7から出力されるシグナルを取得する。つまり、信号強度取得部110は、計測信号SGの電子データDを取得する。信号強度取得部110は、取得した電子データDを位置算出部111に供給する。 Step S20: The signal intensity acquisition unit 110 acquires the signal output from the DAQ device 7 when the process of moving the flow path 20 to the scan position in the optical axis OX direction is completed. That is, the signal strength acquisition unit 110 acquires the electronic data D of the measurement signal SG. The signal strength acquisition unit 110 supplies the acquired electronic data D to the position calculation unit 111 .
ステップS30:ステップS20においてシグナルの取得が終了すると、スキャン部113は、スキャン処理が完了したか否かを判定する。スキャン部113は、スキャン処理が完了したと判定する場合(ステップS30;YES)、流路位置制御装置9を介して流路20の光軸OX方向の位置を、スキャン処理を開始する前の位置に戻す。その後、制御部11は、ステップS40の処理を実行する。
 一方、スキャン部113が、スキャン処理が完了していないと判定する場合(ステップS30;NO)、制御部11は、ステップS10に戻り、スキャン位置を変更しシグナル取得のステップを再度実行する。なおスキャン処理におけるシグナル取得は予め設定される回数だけ行われる。予め設定される回数とは例えば5回程度の回数である。
Step S30: When signal acquisition ends in step S20, the scanning unit 113 determines whether or not the scanning process is completed. When the scanning unit 113 determines that the scanning process has been completed (step S30; YES), the position of the flow path 20 in the direction of the optical axis OX is changed to the position before starting the scanning process via the flow path position control device 9. back to After that, the control unit 11 executes the process of step S40.
On the other hand, when the scanning unit 113 determines that the scanning process has not been completed (step S30; NO), the control unit 11 returns to step S10, changes the scanning position, and executes the signal acquisition step again. Signal acquisition in the scanning process is performed a preset number of times. The preset number of times is, for example, about five times.
ステップS40:位置算出部111は、スキャン処理において信号強度取得部110が取得する電子データDに基づいて細胞Cの深さ方向位置PPを算出する。位置算出部111は、算出した深さ方向位置PPを示す位置情報IPを出力部112に供給する。信号強度取得部110は、信号光強度の経時的な波形を示す電子データとして、1個の細胞Cについて1つの計測信号SGを生成する。 Step S40: The position calculator 111 calculates the depth direction position PP of the cell C based on the electronic data D acquired by the signal intensity acquirer 110 in the scanning process. The position calculation unit 111 supplies position information IP indicating the calculated depth direction position PP to the output unit 112 . The signal intensity acquisition unit 110 generates one measurement signal SG for one cell C as electronic data representing the temporal waveform of the signal light intensity.
 位置算出部111は、電子データDに基づいて、計測信号SGのピーク値が最大となる深さ方向位置PPにおける計測信号SGのピーク値と、流路20の光軸方向の現在の位置において得られた計測信号SGのピーク値とを比較する。また、位置算出部111は、電子データDに基づいて、計測信号SGの幅が最小となる深さ方向位置PPにおける計測信号SGの幅と、流路20の深さ方向の現在の位置において得られた計測信号SGの幅とを比較する。 Based on the electronic data D, the position calculation unit 111 calculates the peak value of the measurement signal SG at the depth direction position PP where the peak value of the measurement signal SG is maximum, and the current position of the flow path 20 in the optical axis direction. is compared with the peak value of the measured signal SG. In addition, based on the electronic data D, the position calculation unit 111 obtains the width of the measurement signal SG at the depth direction position PP where the width of the measurement signal SG is minimum and the current position in the depth direction of the flow path 20. and the width of the measured signal SG obtained.
 位置算出部111は、それらの比較結果に基づいて、流路20においてキャリブレーションパターンCPが結像する位置P2に対する相対位置として、細胞Cの深さ方向位置PPを算出する。ここで上述したように、計測信号SGのピーク値は、深さ方向位置PPが流路20においてキャリブレーションパターンCPが結像する位置P2と一致する場合に最大となる。また、計測信号SGの幅は、深さ方向位置PPが流路20においてキャリブレーションパターンCPが結像する位置P2と一致する場合に最小となる。 The position calculation unit 111 calculates the depth direction position PP of the cell C as a relative position with respect to the position P2 where the calibration pattern CP is imaged in the channel 20 based on the comparison results. As described above, the peak value of the measurement signal SG is maximized when the depth direction position PP coincides with the position P2 where the calibration pattern CP is imaged in the channel 20 . Also, the width of the measurement signal SG is minimized when the depth direction position PP coincides with the position P2 where the calibration pattern CP is imaged in the channel 20 .
 ここで上述したように、位置算出部111は、電子データDに基づいて細胞Cの深さ方向位置PPを算出する。ここでの電子データDは、キャリブレーションパターンCPの検出位置において検出する信号光LSの強度の時間変化の波形に関する電子データである計測信号SGである。つまり、位置算出部111は、細胞Cの流路20における光軸OXの方向についての相対的位置である深さ方向位置PPを、検出位置において検出する信号光LSの強度の時間変化のパラメータを用いて算出する。 Here, as described above, the position calculation unit 111 calculates the depth direction position PP of the cell C based on the electronic data D. The electronic data D here is the measurement signal SG, which is electronic data relating to the waveform of the temporal change in the intensity of the signal light LS detected at the detection position of the calibration pattern CP. That is, the position calculation unit 111 calculates the depth direction position PP, which is the relative position of the cell C in the direction of the optical axis OX in the flow path 20, at the detection position as a parameter of the time change of the intensity of the signal light LS. calculated using
 なお、本実施形態では、位置算出部111が計測信号SGのピーク値と、幅との両方に基づいて深さ方向位置PPを算出する場合の一例について説明したが、これに限らない。位置算出部111は、位置算出部111が計測信号SGのピーク値、または幅のうち少なくとも一方に基づいて深さ方向位置PPを算出してもよい。 In this embodiment, an example in which the position calculator 111 calculates the depth direction position PP based on both the peak value and the width of the measurement signal SG has been described, but the present invention is not limited to this. The position calculator 111 may calculate the depth direction position PP based on at least one of the peak value and the width of the measurement signal SG.
ステップS50:出力部112は、位置算出部111が算出した深さ方向位置PPを示す位置情報IPを流路位置制御装置9に出力する。
 以上で、演算装置10は、位置算出処理を終了する。
Step S<b>50 : The output unit 112 outputs the position information IP indicating the depth direction position PP calculated by the position calculation unit 111 to the channel position control device 9 .
With this, the arithmetic device 10 ends the position calculation process.
 流路位置制御装置9は、出力部112から位置情報IPを取得すると、取得した位置情報IPに基づいて流路20の深さ方向の位置、即ち光軸OX方向の位置を制御する。流路位置制御装置9は、位置情報IPが示す深さ方向位置PPが流路20に照射されるキャリブレーションパターンCPが結像する位置P2からずれている場合、例えば、流路の深さ方向の位置が焦点面FP1の位置と一致するように流路20の深さ方向の位置を変更する。つまり、流路位置制御装置9は細胞が移動する流線FXの流路の深さ方向の位置ずれに対してフィードバック制御を行う。
 上述したように、流路位置制御装置9は、出力部112が出力する深さ方向位置PPを示す位置情報IPに基づいて流路20の深さ方向の位置を制御して、例えば、位置情報IPが示す深さ方向位置PPが流路20に照射された照明光が結像するキャリブレーションパターンCP1の位置と一致するように流路20の深さ方向の位置を変更する。
When the position information IP is acquired from the output unit 112, the channel position control device 9 controls the position of the channel 20 in the depth direction, that is, the position in the optical axis OX direction, based on the acquired position information IP. When the depth direction position PP indicated by the position information IP is deviated from the position P2 where the calibration pattern CP projected onto the flow channel 20 is imaged, the flow channel position control device 9 adjusts the depth direction of the flow channel, for example. The position of the flow path 20 in the depth direction is changed so that the position of the focal plane FP1 matches the position of the focal plane FP1. In other words, the channel position control device 9 performs feedback control with respect to the positional deviation of the stream line FX along which the cells move in the depth direction of the channel.
As described above, the flow channel position control device 9 controls the position of the flow channel 20 in the depth direction based on the position information IP indicating the depth direction position PP output by the output unit 112. For example, the position information The depth direction position of the flow path 20 is changed so that the depth direction position PP indicated by IP coincides with the position of the calibration pattern CP1 on which the illumination light applied to the flow path 20 forms an image.
 なお、上述した位置算出処理においては、スキャン処理が終了した後に、位置算出部111が深さ方向位置PPを算出する場合の一例について説明したが、これに限らない。位置算出部111は、スキャン処理に並行して信号強度取得部110がシグナルを取得する度に深さ方向位置PPを算出してもよい。
 その場合、位置算出部111は、スキャン処理に並行して、計測信号SGのプロファイルについて、ピーク値の最大値、または幅の最小値を判定する。スキャン部113は、位置算出部111が計測信号SGのプロファイルについて、ピーク値の最大値、または幅の最小値が判定できた場合に、スキャン処理を終了する。
In addition, in the position calculation process described above, an example in which the position calculation unit 111 calculates the depth direction position PP after the scan process is completed has been described, but the present invention is not limited to this. The position calculation unit 111 may calculate the depth direction position PP each time the signal intensity acquisition unit 110 acquires a signal in parallel with the scanning process.
In this case, the position calculator 111 determines the maximum peak value or the minimum width of the profile of the measurement signal SG in parallel with the scanning process. The scanning unit 113 ends the scanning process when the position calculating unit 111 can determine the maximum value of the peak value or the minimum value of the width for the profile of the measurement signal SG.
 また、位置算出部111がスキャン処理に並行して深さ方向位置PPを算出する場合、スキャン部113は、計測信号SGのピーク値または幅の増減に応じて、スキャン位置を変更してもよい。その場合、例えば、スキャン部113は、計測信号SGのピーク値が減少する傾向にある場合、次回のスキャン位置を、現在変化させている方向とは逆の方向に設定する。あるいは、スキャン部113は、計測信号SGの幅が増加する傾向にある場合、次回のスキャン位置を、現在変化させている方向とは逆の方向に設定する。 Further, when the position calculation unit 111 calculates the depth direction position PP in parallel with the scanning process, the scanning unit 113 may change the scanning position according to the increase or decrease in the peak value or width of the measurement signal SG. . In that case, for example, when the peak value of the measurement signal SG tends to decrease, the scan unit 113 sets the next scan position in the direction opposite to the direction currently being changed. Alternatively, when the width of the measurement signal SG tends to increase, the scanning unit 113 sets the next scanning position in the direction opposite to the direction currently being changed.
 また、位置算出部111は、計測信号SGのプロファイルについて、ピーク値の最大値、または幅の最小値に代えて、ピーク値の極大値、または幅の極小値を判定してもよい。その場合、スキャン部113は、位置算出部111が計測信号SGのプロファイルについて、ピーク値の極大値、または幅の極小値が判定できた場合に、スキャン処理を終了する。 Further, the position calculation unit 111 may determine the maximum peak value or minimum width value for the profile of the measurement signal SG instead of the maximum peak value or minimum width value. In this case, the scanning unit 113 ends the scanning process when the position calculating unit 111 can determine the maximum value of the peak value or the minimum value of the width for the profile of the measurement signal SG.
 また、上述した位置算出処理においては、1個の細胞Cについて1つの計測信号SGが生成される場合の一例について説明したが、これに限らない。位置算出部111は、所定の数の細胞Cについての計測信号の平均を計測信号SGとして生成してもよい。 Also, in the position calculation process described above, an example of the case where one measurement signal SG is generated for one cell C has been described, but the present invention is not limited to this. The position calculator 111 may generate an average of measurement signals for a predetermined number of cells C as the measurement signal SG.
 深さ方向位置PPは、これまで流路20に照射されるキャリブレーションパターンCPが結像する位置に対する相対位置として算出される場合の例について説明したが、これに限らない。深さ方向位置PPは、予め測定された計測信号SGのプロファイルと比較して絶対位置として算出されてもよい。その場合、一例として、予め測定される計測信号SGのプロファイルは、キャリブレーションパターンCPが流路内で結像する位置に細胞が流線FXに沿って移動する位置が一致するように予め流路20の深さの方向の位置を設定して測定される。演算装置10は、予め測定された計測信号SGのプロファイルをそれぞれ記憶しておく。 Although an example in which the depth direction position PP is calculated as a relative position with respect to the image-forming position of the calibration pattern CP projected onto the channel 20 has been described so far, the depth direction position PP is not limited to this. The depth direction position PP may be calculated as an absolute position by comparing with the profile of the measurement signal SG measured in advance. In that case, as an example, the profile of the measurement signal SG measured in advance is such that the position where the cells move along the streamline FX coincides with the position where the calibration pattern CP is imaged in the channel. Measured by setting 20 depth positions. The computing device 10 stores profiles of the measurement signals SG measured in advance.
 またなお、上述した位置算出処理においては、位置情報IPが流路位置制御装置9に出力されて、流線の位置ずれに対してフィードバック制御が実行される場合の例について説明したが、これに限らない。流線の位置ずれに対するフィードバック制御の代わりに、流線の位置ずれが報知される処理が実行されてもよい。流線の位置ずれが報知される処理が実行される場合、出力部112は、流線の位置ずれを報知する報知部に位置情報IPを出力する。報知部は、位置情報IPに基づいて、流線の位置ずれが発生していると判定した場合、流線の位置ずれを報知する。 In addition, in the above-described position calculation processing, an example in which the position information IP is output to the flow path position control device 9 and feedback control is performed with respect to the displacement of the streamline has been described. Not exclusively. Instead of the feedback control for the positional deviation of the streamline, a process of notifying the positional deviation of the streamline may be executed. When the process of notifying the displacement of the streamline is executed, the output unit 112 outputs the position information IP to the notification unit that notifies the displacement of the streamline. The notification unit notifies the positional deviation of the streamline when it is determined that the positional deviation of the streamline has occurred based on the position information IP.
 なお本実施形態では、構造化照明パターン21に、光学情報生成パターンと、キャリブレーションパターンCPとが含まれて、光学情報生成パターンのための照明光とキャリブレーションパターンCPのための照明光とが同時に照射される場合の一例について説明したが、これに限らない。本実施形態の変形例として光学情報生成パターンのための照明光とキャリブレーションパターンCPのための照明光とは互い異なる時期において照射されてもよい。例えば、構造化照明パターン21のうちキャリブレーションパターンCPを細胞Cの流路20における流線ずれを測定するキャリブレーション時のみ使用し、細胞Cの判別時には光学情報生成パターンのみを使用して構造化照明パターン21を分けて照射することも可能である。つまり、キャリブレーション時にはキャリブレーションパターンCPのための照明光が照明され、細胞Cの判別時には光学情報生成パターンのための照明光が照明されてもよい。なお本変形例における照明光の照射では、キャリブレーションパターンCPを構造化されていない照明パターンとして照明することも可能である。この変形例の構成により、細胞Cの判別時に照射される構造化照明の範囲を、光学情報生成パターンのための照明光とキャリブレーションパターンCPのための照明光とが同時に照射される場合に比べてより短い領域とすることができ、フローサイトメータ1のスループット向上が可能になる。 Note that in the present embodiment, the structured illumination pattern 21 includes the optical information generation pattern and the calibration pattern CP, and the illumination light for the optical information generation pattern and the illumination light for the calibration pattern CP are Although an example of simultaneous irradiation has been described, the present invention is not limited to this. As a modification of this embodiment, the illumination light for the optical information generation pattern and the illumination light for the calibration pattern CP may be emitted at different times. For example, the calibration pattern CP of the structured illumination pattern 21 is used only during calibration for measuring the streamline deviation in the channel 20 of the cell C, and only the optical information generation pattern is used during discrimination of the cell C for structuring. It is also possible to irradiate the illumination pattern 21 separately. That is, illumination light for the calibration pattern CP may be illuminated during calibration, and illumination light for the optical information generation pattern may be illuminated during cell C discrimination. It should be noted that in the illumination light irradiation in this modification, it is also possible to illuminate the calibration pattern CP as an unstructured illumination pattern. With the configuration of this modified example, the range of structured illumination irradiated during discrimination of the cell C is compared to the case where the illumination light for the optical information generation pattern and the illumination light for the calibration pattern CP are simultaneously irradiated. It is possible to make the region shorter, and the throughput of the flow cytometer 1 can be improved.
[第1の実施形態のまとめ]
 以上に説明したように、本実施形態に係るフローサイトメータ1は、観測対象物(本実施形態において細胞C)が流体と共に流れ得る流路20を備えるマイクロ流体装置2と、観測対象物(本実施形態において細胞C)からの信号光LSを結像する結像レンズ50と、観測対象物(本実施形態において細胞C)からの信号光LSの強度を時系列に検出する光検出器6と、光検出器6が検出する信号光LSの強度に基づいて観測対象物(本実施形態において細胞C)の形状、形態、または構造のうちいずれか1以上を示す光学情報ICを生成する情報生成装置(本実施形態においてPC8)と、演算装置(本実施形態においてPC8)と、を備えるフローサイトメータである。
 マイクロ流体装置2は、流路20において、観測対象物(本実施形態において細胞C)が流路20において通過する際の深さ方向についての位置である深さ方向位置PPを検出するための検出位置(本実施形態においてキャリブレーションパターンCP)が配置される。
 演算装置(本実施形態においてPC8)は、信号強度取得部110と、スキャン部113と、位置算出部111と、出力部112とを備える。
 信号強度取得部110は、深さ方向位置PPを検出するために流路20において予め定められた検出位置(本実施形態においてキャリブレーションパターンCP1の位置)において検出する信号光LSの強度の時間変化(本実施形態において計測信号SG)の電子データDを取得する。
 スキャン部113は、流路位置制御装置9を介して流路20を深さ方向に移動させて異なった深さ位置で電子データDを取得するためのスキャン処理を行う。
 位置算出部111は、電子データDに基づいて深さ方向位置PPを算出する。
 出力部112は、位置算出部111が算出した深さ方向位置PPを示す位置情報IPを出力する。
[Summary of the first embodiment]
As described above, the flow cytometer 1 according to the present embodiment includes a microfluidic device 2 having a channel 20 in which an observation target (cell C in this embodiment) can flow together with a fluid; An imaging lens 50 that forms an image of the signal light LS from the cell C) in this embodiment, and a photodetector 6 that detects the intensity of the signal light LS from the observation target (cell C in this embodiment) in time series. , information generation for generating optical information IC indicating any one or more of the shape, form, or structure of the observation object (cell C in this embodiment) based on the intensity of the signal light LS detected by the photodetector 6 It is a flow cytometer comprising a device (PC8 in this embodiment) and an arithmetic device (PC8 in this embodiment).
In the channel 20, the microfluidic device 2 detects a depth direction position PP, which is the position in the depth direction when the object to be observed (the cell C in this embodiment) passes through the channel 20. A position (calibration pattern CP in this embodiment) is arranged.
The arithmetic device (PC 8 in this embodiment) includes a signal strength acquisition section 110 , a scanning section 113 , a position calculation section 111 and an output section 112 .
The signal intensity acquisition unit 110 detects the time change of the intensity of the signal light LS detected at a predetermined detection position (the position of the calibration pattern CP1 in this embodiment) in the flow channel 20 in order to detect the depth direction position PP. Electronic data D of (measurement signal SG in this embodiment) is acquired.
The scanning unit 113 moves the channel 20 in the depth direction via the channel position control device 9 and performs scanning processing for acquiring the electronic data D at different depth positions.
The position calculator 111 calculates the depth direction position PP based on the electronic data D. FIG.
The output unit 112 outputs position information IP indicating the depth direction position PP calculated by the position calculation unit 111 .
 この構成により、本実施形態に係るフローサイトメータ1では、流路20内の予め定められた位置に深さ方向位置PPを検出するための検出位置が設置され、検出位置において検出する信号光LSの強度の時間変化のパラメータを用いて深さ方向位置PPを算出できるため、観測対象物が流路を通過した際における通過位置の深さ方向の変動を検出できる。
 本実施形態に係るフローサイトメータ1では、流路20において深さ方向位置PPを検出するための検出位置を設置し、その位置に結像する照明光を観測対象物に照射してそこから発せられる信号光LSの強度の時間変化を検出することによって、簡便な構成を用いて観測対象物が流路内を通過する際における深さ方向位置PPを直接的に測定できる。
With this configuration, in the flow cytometer 1 according to the present embodiment, the detection position for detecting the depth direction position PP is installed at a predetermined position in the flow channel 20, and the signal light LS detected at the detection position Since the depth direction position PP can be calculated using the parameter of the time change of the intensity of , it is possible to detect the change in the depth direction of the passage position when the observation target passes through the channel.
In the flow cytometer 1 according to the present embodiment, a detection position for detecting the depth direction position PP is installed in the flow channel 20, and illumination light forming an image at that position is irradiated to the observation object and emitted from there. By detecting the temporal change in the intensity of the signal light LS that is emitted, it is possible to directly measure the depth direction position PP when the object to be observed passes through the channel using a simple configuration.
 また、本実施形態に係るフローサイトメータ1では、位置算出部111は、信号光LSの強度の時間変化(本実施形態において計測信号SG)のピーク値、幅、または面積等のパラメータうちいずれか1以上を用いて深さ方向位置PPを算出する。 In addition, in the flow cytometer 1 according to this embodiment, the position calculation unit 111 calculates any of the parameters such as the peak value, width, or area of the time change of the intensity of the signal light LS (measurement signal SG in this embodiment). 1 or more is used to calculate the depth direction position PP.
 この構成により、本実施形態に係るフローサイトメータ1では、深さ方向位置PPに対応する情報として信号光LSの強度の時間変化のピーク値、または幅のうち少なくとも一方に基づいて深さ方向位置PPを算出できるため、信号光LSの強度の時間変化のピーク値、または幅のうち少なくとも一方に基づかない場合に比べて、簡便に観測対象物が流路を通過する際における深さ方向の通過位置を検出できる。 With this configuration, in the flow cytometer 1 according to the present embodiment, as information corresponding to the depth direction position PP, the depth direction position is determined based on at least one of the peak value of the time change of the intensity of the signal light LS and the width. Since PP can be calculated, it is easier to measure the passage in the depth direction when the object to be observed passes through the flow channel than when it is not based on at least one of the peak value of the time change of the intensity of the signal light LS and the width. Position can be detected.
 また、本実施形態に係るフローサイトメータ1では、光検出器6が深さ方向位置PPを検出するための検出位置(本実施形態においてキャリブレーションパターンCP1の位置)を照明する光と、観測対象物(本実施形態において細胞C)の形態情報を示す光学情報ICを生成するための照明に用いられる光とには、構造化された共通の光が用いられる。 Further, in the flow cytometer 1 according to the present embodiment, the light that illuminates the detection position (the position of the calibration pattern CP1 in this embodiment) for the photodetector 6 to detect the depth direction position PP, and the observation target Structured common light is used as light used for illumination for generating optical information IC indicating morphological information of an object (cell C in this embodiment).
 この構成により、本実施形態に係るフローサイトメータ1では、深さ方向位置PPを検出するための検出位置を観測対象物の光学情報ICを取得する構造化照明に含めて設置できるため、深さ方向位置PPを検出するための複数の検出位置を設置するための光学系を別途備えることなく深さ方向位置PPを検出するための複数の検出位置を設置できる。 With this configuration, in the flow cytometer 1 according to the present embodiment, since the detection position for detecting the depth direction position PP can be included in the structured illumination for acquiring the optical information IC of the observation object, the depth A plurality of detection positions for detecting the depth direction position PP can be set without separately providing an optical system for setting a plurality of detection positions for detecting the direction position PP.
 また、本実施形態に係るフローサイトメータ1では、流路位置制御装置9を備える。フローサイトメータ1では、流路位置制御装置9により流路20を光軸OX方向に移動させ、流路20の光軸方向の様々な位置において連続的にシグナルを取得するスキャン処理を行い深さ方向位置PPが算出される。流路位置制御装置9は、さらに、出力部112が出力する深さ方向位置PPを示す情報に基づいて流路20の深さ方向の位置を制御する。 In addition, the flow cytometer 1 according to this embodiment includes the channel position control device 9 . In the flow cytometer 1, the flow channel 20 is moved in the direction of the optical axis OX by the flow channel position control device 9, and scanning processing is performed to continuously acquire signals at various positions in the direction of the optical axis of the flow channel 20. A directional position PP is calculated. The channel position control device 9 further controls the position of the channel 20 in the depth direction based on the information indicating the depth direction position PP output by the output unit 112 .
 この構成により、本実施形態に係るフローサイトメータ1では、深さ方向位置PPを示す情報に基づいて流路20の深さ方向の位置を制御できるため、測定対象物の測定において深さ方向について生じる位置ずれを、適時に補正することができる。 With this configuration, the flow cytometer 1 according to the present embodiment can control the depth direction position of the channel 20 based on the information indicating the depth direction position PP. Any misalignment that occurs can be corrected in a timely manner.
(第2の実施形態)
 以下、図面を参照しながら本発明の第2の実施形態について詳しく説明する。
 上記第1の実施形態では、流路20において細胞が通過する深さ方向位置PPを検出するために、検出位置にキャリブレーションパターンCPが、流路において1つ配置される場合について説明をした。本実施形態では、キャリブレーションパターンCPが、流路において複数配置される場合について説明をする。
 本実施形態に係るフローサイトメータをフローサイトメータ1aといい、流路を流路20aという。また、本実施形態に係る光検出用光学系を光検出用光学系5aといい、光検出用光学系5aに含まれる結像レンズを結像レンズ50aという。また、本実施形態に係る演算装置を演算装置10aという。
(Second embodiment)
A second embodiment of the present invention will be described in detail below with reference to the drawings.
In the above-described first embodiment, a case has been described in which one calibration pattern CP is arranged at the detection position in the channel 20 in order to detect the depth direction position PP through which cells pass in the channel 20 . In this embodiment, a case in which a plurality of calibration patterns CP are arranged in the channel will be described.
The flow cytometer according to this embodiment is called a flow cytometer 1a, and the channel is called a channel 20a. Further, the photodetection optical system according to the present embodiment is referred to as a photodetection optical system 5a, and the imaging lens included in the photodetection optical system 5a is referred to as an imaging lens 50a. Also, the arithmetic device according to the present embodiment is referred to as an arithmetic device 10a.
 本実施形態に係るフローサイトメータ1aの構成と、第1の実施形態に係るフローサイトメータ1の構成とは、流路20aにおけるキャリブレーションパターンCPaの数が異なる点、及び流路20aに照射される構造化照明光が流路内において結像する互いに異なる焦点面の位置にそれぞれのキャリブレーションパターンCPaが配置されている点、及び演算装置10aの位置算出処理が演算装置10の位置算出処理とは異なる点以外は同様である。第1の実施形態と同じ機能の説明は省略し、第2の実施形態では、第1の実施形態と異なる部分を中心に説明する。 The configuration of the flow cytometer 1a according to the present embodiment and the configuration of the flow cytometer 1 according to the first embodiment differ in that the number of calibration patterns CPa in the flow channel 20a is different, and that the flow cytometer 20a is irradiated. The respective calibration patterns CPa are arranged at different focal plane positions on which the structured illumination light is imaged in the flow path, and the position calculation processing of the arithmetic device 10a is the position calculation processing of the arithmetic device 10. are the same except that they are different. The description of the same functions as those of the first embodiment will be omitted, and the description of the second embodiment will focus on the portions that differ from those of the first embodiment.
[キャリブレーションパターン]
 図10は、本実施形態に係るキャリブレーションパターンCPaの正面図(流路20aをz軸方向から見た図)の一例を示す図である。図11は、本実施形態に係るキャリブレーションパターンCPaの側面図(流路20aをx軸方向から見た図)の一例を示す図である。これらの図10及び図11では流路20aに照射されるキャリブレーションパターンCPaが2つある例が示されている。なお、上述した図3と同様に図10には構造化照明パターン21に含まれる光学情報生成パターンの位置は示されていない。
[Calibration pattern]
FIG. 10 is a diagram showing an example of a front view of the calibration pattern CPa (a view of the channel 20a viewed from the z-axis direction) according to this embodiment. FIG. 11 is a diagram showing an example of a side view of the calibration pattern CPa (a view of the channel 20a viewed from the x-axis direction) according to this embodiment. These FIGS. 10 and 11 show an example in which there are two calibration patterns CPa that are irradiated onto the channel 20a. Note that FIG. 10 does not show the positions of the optical information generating patterns included in the structured illumination pattern 21, as in FIG. 3 described above.
 図10に示すように、キャリブレーションパターンCPaは、キャリブレーションパターンCP1aとキャリブレーションパターンCP2aとの2つからなる。キャリブレーションパターンCP1aとキャリブレーションパターンCP2aとは、それぞれ流路20aの幅方向に直線状のパターンであり、水平方向HX(x軸方向)に略平行に配置されている。キャリブレーションパターンCP1aとキャリブレーションパターンCP2aとは、流路の長さ方向である細胞Cが流路20a内を移動する流線FXの方向(y軸方向)について互いに異なる位置に配置されている。
 なお、キャリブレーションパターンCP1aとキャリブレーションパターンCP2aは、流路の長さ方向について、光学情報生成パターン(不図示)の上流側あるいは下流側のいずれに配置されていてもよいが、キャリブレーションパターンCP1aとキャリブレーションパターンCP2aとの間に、光学情報生成パターンが配置されることが好ましい。
As shown in FIG. 10, the calibration pattern CPa consists of two calibration patterns CP1a and CP2a. The calibration pattern CP1a and the calibration pattern CP2a are linear patterns in the width direction of the channel 20a, and are arranged substantially parallel to the horizontal direction HX (x-axis direction). The calibration pattern CP1a and the calibration pattern CP2a are arranged at positions different from each other with respect to the flow line FX direction (y-axis direction) along which the cells C move in the channel 20a, which is the length direction of the channel.
Note that the calibration pattern CP1a and the calibration pattern CP2a may be arranged either upstream or downstream of the optical information generation pattern (not shown) in the length direction of the flow path. and the calibration pattern CP2a.
 図11は、流路20aに照射されるキャリブレーションパターンCPaの側面図の一例を示す図である。なお、図10と同様に図11には構造化照明パターン21に含まれる光学情報生成パターンの位置は示されていない。
 水平方向HX(x軸方向)からみた場合のキャリブレーションパターンCPaはそれぞれ流路内において異なった焦点面FPaで結像されており、焦点面FP1aに結像するキャリブレーションパターンCP1aと焦点面FP2aに結像するキャリブレーションパターンCP2aが図中にその位置が簡単のために円で示されている。焦点面FPaとは、キャリブレーションパターンCPaが流路20aで結像される焦点面である。キャリブレーションパターンCP1aとキャリブレーションパターンCP2aは、流路20a内において光軸OXの方向(z軸方向)について互いに異なった焦点面に配置され、流路の深さ方向位置PPがそれぞれ異なる。図11には、深さ方向位置PPが位置P1である流線FX1に沿って流路20aを通過する細胞C1と、深さ方向位置PPが位置P2である流線FX2に沿って流路20aを通過する細胞C2と、深さ方向位置PPが位置P3である流線FX3に沿って流路20aを通過する細胞C3の例が示されている。ここでキャリブレーションパターンCP1aの深さ方向位置PPは流路内を流線FX3により細胞C3が通過する位置P3である。キャリブレーションパターンCP2aの深さ方向位置PPは、流線FX1により細胞C1が通過する位置P1である。流線FX2により細胞C2が通過する位置P2は流路20aの深さ方向位置PPにおいて、位置P1と位置P3の中間の深さの位置である。
FIG. 11 is a diagram showing an example of a side view of the calibration pattern CPa irradiated onto the channel 20a. 10, FIG. 11 does not show the positions of the optical information generating patterns included in the structured illumination pattern 21. FIG.
The calibration patterns CPa when viewed from the horizontal direction HX (x-axis direction) are respectively imaged on different focal planes FPa within the flow path. The calibration pattern CP2a to be imaged is indicated by a circle in the drawing for the sake of simplification of its position. The focal plane FPa is a focal plane on which the calibration pattern CPa is imaged on the channel 20a. The calibration pattern CP1a and the calibration pattern CP2a are arranged on different focal planes in the direction of the optical axis OX (z-axis direction) in the channel 20a, and the depth direction positions PP of the channels are different. FIG. 11 shows cells C1 passing through the channel 20a along the streamline FX1 whose depth direction position PP is the position P1, and cells C1 passing through the channel 20a along the streamline FX2 whose depth direction position PP is the position P2. and a cell C3 passing through the channel 20a along the streamline FX3 whose depth direction position PP is the position P3. Here, the position PP in the depth direction of the calibration pattern CP1a is the position P3 where the cell C3 passes through the channel by the streamline FX3. The depth direction position PP of the calibration pattern CP2a is the position P1 through which the cell C1 passes by the streamline FX1. A position P2 through which the cell C2 passes due to the flow line FX2 is an intermediate depth position between the positions P1 and P3 in the depth direction position PP of the channel 20a.
 上述したように、本実施形態では、流路20aにおいて、流路20aの深さ方向(この実施形態では光軸OXの方向)及び流路20aの長さ方向について互いに異なる位置に、深さ方向位置PPを検出するための複数の検出位置として、キャリブレーションパターンCP1a及びキャリブレーションパターンCP2aが配置される。 As described above, in the present embodiment, in the flow channel 20a, at different positions in the depth direction of the flow channel 20a (the direction of the optical axis OX in this embodiment) and in the length direction of the flow channel 20a, the depth direction A calibration pattern CP1a and a calibration pattern CP2a are arranged as a plurality of detection positions for detecting the position PP.
[信号光と深さ方向位置との関係]
 ここで図12及び図13を参照し、第2の実施形態における信号光LSと深さ方向位置PPとの関係について説明する。図12は、第2の本実施形態に係る信号光LSの強度の時間変化を示す計測信号SGの一例を示す図である。なお、ここでの信号光LSは、キャリブレーションパターンCPaの照射により流路20aを移動する細胞Cから発せられる信号光である。
 図12(A)は、細胞Cが流路20a内の深さ方向位置PPとして位置P3を通過した場合に、流路20aに設置されるキャリブレーションパターンCP1aにより検出された計測信号SG13と、キャリブレーションパターンCP2aにより検出された計測信号SG23とを示す。図12(B)は、細胞Cが流路20a内の深さ方向位置PPとして位置P2を通過した場合に、流路20aに設置されるキャリブレーションパターンCP1aにより検出された計測信号SG12と、キャリブレーションパターンCP2aにより検出された計測信号SG22とを示す。図12(C)は、細胞Cが流路内の深さ方向位置PPとして位置P1を通過した場合に、流路20aに設置されるキャリブレーションパターンCP1aにより検出された計測信号SG11と、キャリブレーションパターンCP2aにより検出された計測信号SG21とを示す。ここで流路20aに設置されるキャリブレーションパターンCPaにより検出された計測信号SGとは、流路20aの予め設定された位置で結像する細胞Cの深さ位置測定のためのキャリブレーションパターンCPaの照明光を流路20aの照射位置に照射し、前記照明光の照射により細胞から発せられる信号光を光検出器で検出して得られる計測信号SGである。
[Relationship between signal light and depth direction position]
Here, the relationship between the signal light LS and the depth direction position PP in the second embodiment will be described with reference to FIGS. 12 and 13. FIG. FIG. 12 is a diagram showing an example of the measurement signal SG indicating temporal changes in the intensity of the signal light LS according to the second embodiment. Note that the signal light LS here is signal light emitted from the cells C moving in the channel 20a by irradiation with the calibration pattern CPa.
FIG. 12A shows the measurement signal SG13 detected by the calibration pattern CP1a installed in the channel 20a and the calibration signal SG13 when the cell C passes through the position P3 as the depth direction position PP in the channel 20a. and a measurement signal SG23 detected by the motion pattern CP2a. FIG. 12B shows the measurement signal SG12 detected by the calibration pattern CP1a installed in the channel 20a and the calibration signal SG12 when the cell C passes through the position P2 as the depth direction position PP in the channel 20a. and a measurement signal SG22 detected by the motion pattern CP2a. FIG. 12C shows the measurement signal SG11 detected by the calibration pattern CP1a installed in the channel 20a and the calibration signal SG11 detected by the calibration pattern CP1a installed in the channel 20a when the cell C passes through the position P1 as the depth direction position PP in the channel. and a measurement signal SG21 detected by the pattern CP2a. Here, the measurement signal SG detected by the calibration pattern CPa installed in the channel 20a is the calibration pattern CPa for measuring the depth position of the cell C imaged at a preset position in the channel 20a. is irradiated to the irradiation position of the channel 20a, and the signal light emitted from the cells by the irradiation of the illumination light is detected by the photodetector.
 図12の例では、計測信号SG13と、計測信号SG21とは、互いに同じ形状である。計測信号SG12と、計測信号SG22とは、互いに同じ形状である。計測信号SG11と、計測信号SG23とは、互いに同じ形状である。
 計測信号SG13、計測信号SG12、及び計測信号SG11それぞれのピーク値は、計測信号SG13、計測信号SG12、計測信号SG11の順に高い。計測信号SG13、計測信号SG12、及び計測信号SG11それぞれの幅は、計測信号SG13、計測信号SG12、計測信号SG11の順に狭い。
In the example of FIG. 12, the measurement signal SG13 and the measurement signal SG21 have the same shape. The measurement signal SG12 and the measurement signal SG22 have the same shape. The measurement signal SG11 and the measurement signal SG23 have the same shape.
The peak values of the measurement signal SG13, the measurement signal SG12, and the measurement signal SG11 are higher in the order of the measurement signal SG13, the measurement signal SG12, and the measurement signal SG11. The widths of the measurement signal SG13, the measurement signal SG12, and the measurement signal SG11 are narrower in the order of the measurement signal SG13, the measurement signal SG12, and the measurement signal SG11.
 キャリブレーションパターンCP1aにより検出された計測信号SGと、キャリブレーションパターンCP2aにより検出された計測信号SGとについて、計測されるシグナルのピーク値と幅は、細胞Cが流路内を通過する深さ方向位置PPによってそれぞれ異なる。
 以下の説明では、キャリブレーションパターンCP1aにより検出された計測信号SGのピーク値の、キャリブレーションパターンCP2aにより検出された計測信号SGのピーク値に対する比率を、ピーク値比率R1という。また、キャリブレーションパターンCP1aにより検出された計測信号SGの幅の、キャリブレーションパターンCP2aにより検出された計測信号SGの幅に対する比率を、幅比率R2という。
Regarding the measurement signal SG detected by the calibration pattern CP1a and the measurement signal SG detected by the calibration pattern CP2a, the peak value and width of the measured signal are in the depth direction in which the cell C passes through the channel. It differs depending on the position PP.
In the following description, the ratio of the peak value of the measurement signal SG detected by the calibration pattern CP1a to the peak value of the measurement signal SG detected by the calibration pattern CP2a is referred to as peak value ratio R1. A ratio of the width of the measurement signal SG detected by the calibration pattern CP1a to the width of the measurement signal SG detected by the calibration pattern CP2a is referred to as a width ratio R2.
 複数の検出位置において検出された計測信号SGのピーク値比率R1と深さ方向位置PPとの関係、及び幅比率R2と深さ方向位置PPとの関係を図13に示す。図13は、本実施形態に係る計測信号SGのピーク値比率R1と深さ方向位置PPとの関係、及び幅比率R2と深さ方向位置PPとの関係の一例を示す図である。 FIG. 13 shows the relationship between the peak value ratio R1 of the measurement signal SG detected at a plurality of detection positions and the depth direction position PP, and the relationship between the width ratio R2 and the depth direction position PP. FIG. 13 is a diagram showing an example of the relationship between the peak value ratio R1 of the measurement signal SG and the depth direction position PP and the relationship between the width ratio R2 and the depth direction position PP according to this embodiment.
 図13から計測信号SGのピーク値比率R1、及び幅比率R2はそれぞれ細胞Cの深さ方向位置PPに応じて変化することがわかる。計測信号SGのピーク値比率R1は、細胞Cの深さ方向位置PPが位置P3から位置P1と浅くなるにつれて単調に減少する。一方、計測信号SGの幅比率R2は、細胞Cの深さ方向位置PPが位置P3から位置P1と浅くなるにつれて単調に増加する。
 つまり、計測信号SGのピーク値比率R1、及び幅比率R2とはそれぞれ、細胞Cの深さ方向位置PPと1対1に対応している。したがって、計測信号SGのピーク値比率R1、及び幅比率R2に基づいて、細胞Cの深さ方向位置PPを算出できる。
It can be seen from FIG. 13 that the peak value ratio R1 and the width ratio R2 of the measurement signal SG change according to the depth direction position PP of the cell C, respectively. The peak value ratio R1 of the measurement signal SG monotonously decreases as the depth direction position PP of the cell C becomes shallower from the position P3 to the position P1. On the other hand, the width ratio R2 of the measurement signal SG monotonously increases as the depth direction position PP of the cell C becomes shallower from the position P3 to the position P1.
That is, the peak value ratio R1 and the width ratio R2 of the measurement signal SG correspond to the depth direction position PP of the cell C on a one-to-one basis. Therefore, the depth direction position PP of the cell C can be calculated based on the peak value ratio R1 and the width ratio R2 of the measurement signal SG.
 なお、上述した説明では深さ方向位置の算出に用いる信号光LSの強度の指標として計測信号のピーク値およびピーク幅が用いられる例について記載されているが、これに限らない。信号光LSの強度の指標としては他にピークエリアを用いることもできる。また、キャリブレーションパターンについては2本の例が記載されているが、さらに多くの数のキャリブレーションパターンを用いることも可能である。 Although the above description describes an example in which the peak value and peak width of the measurement signal are used as indices of the intensity of the signal light LS used to calculate the depth direction position, the present invention is not limited to this. A peak area can also be used as another indicator of the intensity of the signal light LS. Also, although two examples of calibration patterns are described, it is also possible to use a larger number of calibration patterns.
[演算装置の位置算出処理]
 次に図14を参照し、演算装置10aの位置算出処理について説明する。図14は、本実施形態に係る位置算出処理の一例を示す図である。なお、ステップS110、及びステップS130の各処理は、図9におけるステップS20、及びステップS50の各処理と同様であるため、説明を省略する。演算装置10aが備える位置算出部を位置算出部111aという。演算装置10aの位置算出部111a以外の各部については演算装置10と同様である。
[Position calculation processing of arithmetic unit]
Next, with reference to FIG. 14, the position calculation processing of the calculation device 10a will be described. FIG. 14 is a diagram illustrating an example of position calculation processing according to the present embodiment. Note that the processes of steps S110 and S130 are the same as the processes of steps S20 and S50 in FIG. 9, and therefore description thereof is omitted. A position calculation unit included in the arithmetic device 10a is referred to as a position calculation unit 111a. Each unit of the arithmetic device 10a other than the position calculation unit 111a is the same as that of the arithmetic device 10. FIG.
ステップS120:位置算出部111aは、信号強度取得部110が取得する電子データDに基づいて細胞Cの深さ方向位置PPを算出する。位置算出部111aは、算出した深さ方向位置PPを示す位置情報IPを出力部112に供給する。 Step S120: The position calculation unit 111a calculates the depth direction position PP of the cell C based on the electronic data D acquired by the signal intensity acquisition unit 110. FIG. The position calculation unit 111a supplies the output unit 112 with position information IP indicating the calculated depth direction position PP.
 位置算出部111aは、電子データDに基づいて、ピーク値比率R1、または幅比率R2の少なくとも一方に基づいて深さ方向位置PPを算出する。位置算出部111aは、ピーク値比率R1と、ピーク値比率R1に対する所定の値とを比較して、ピーク値比率R1と、ピーク値比率R1に対する所定の値との差に基づいて深さ方向位置PPを算出する。また、位置算出部111aは、幅比率R2と、幅比率R2に対する所定の値とを比較して、幅比率R2と、幅比率R2に対する所定の値との差に基づいて深さ方向位置PPを算出する。
 ここで演算装置10aは、ピーク値比率R1に対する所定の値、及び幅比率R2に対する所定の値として、予め測定されたピーク値比率あるいは幅比率の値を使用することができ、その場合それらの値を記憶しておく。
 なお、位置算出部111aは、電子データDに基づいて、ピーク値比率R1と幅比率R2とを使って演算をした結果得られる新たなパラメータを算出し、算出したパラメータに基づいて深さ方向位置PPを算出してもよい。新たなパラメータとは、例えば、ピーク値比率R1に幅比率R2の逆数を乗じた値である。
Based on the electronic data D, the position calculator 111a calculates the depth direction position PP based on at least one of the peak value ratio R1 and the width ratio R2. The position calculator 111a compares the peak value ratio R1 and a predetermined value for the peak value ratio R1, and calculates the depth direction position based on the difference between the peak value ratio R1 and the predetermined value for the peak value ratio R1. Calculate PP. Further, the position calculation unit 111a compares the width ratio R2 and a predetermined value for the width ratio R2, and calculates the depth direction position PP based on the difference between the width ratio R2 and the predetermined value for the width ratio R2. calculate.
Here, the arithmetic unit 10a can use pre-measured peak value ratio or width ratio values as the predetermined value for the peak value ratio R1 and the predetermined value for the width ratio R2, in which case those values remember.
Note that the position calculation unit 111a calculates new parameters obtained as a result of calculation using the peak value ratio R1 and the width ratio R2 based on the electronic data D, and the depth direction position based on the calculated parameters. PP may be calculated. The new parameter is, for example, a value obtained by multiplying the peak value ratio R1 by the reciprocal of the width ratio R2.
 位置算出部111aは、例えば、ピーク値比率R1に基づいて算出した深さ方向位置PPと、幅比率R2に基づいて算出した深さ方向位置PPとの平均値を、深さ方向位置PPとして算出する。なお、位置算出部111aは、ピーク値比率R1に基づいて算出した深さ方向位置PPと、幅比率R2に基づいて算出した深さ方向位置PPとの少なくとも一方を深さ方向位置PPとしてもよい。 For example, the position calculation unit 111a calculates the average value of the depth direction position PP calculated based on the peak value ratio R1 and the depth direction position PP calculated based on the width ratio R2 as the depth direction position PP. do. The position calculator 111a may set at least one of the depth direction position PP calculated based on the peak value ratio R1 and the depth direction position PP calculated based on the width ratio R2 as the depth direction position PP. .
 ここで上述したように、ピーク値比率R1及び幅比率R2は、キャリブレーションパターンCP1aにおいて検出された計測信号SGと、キャリブレーションパターンCP2aにおいて検出された計測信号SGとに基づく値である。したがって、本実施形態に係るフローサイトメータ1aでは、深さ方向位置PPを検出するための複数の検出位置においてそれぞれの信号光LSが検出され、検出された複数の計測信号SG導かれるパラメータを用いて位置算出部111が深さ方向位置PPを算出する。 As described above, the peak value ratio R1 and the width ratio R2 are values based on the measurement signal SG detected in the calibration pattern CP1a and the measurement signal SG detected in the calibration pattern CP2a. Therefore, in the flow cytometer 1a according to the present embodiment, each signal light LS is detected at a plurality of detection positions for detecting the depth direction position PP, and parameters derived from the detected plurality of measurement signals SG are used. Then, the position calculator 111 calculates the depth direction position PP.
[第2の実施形態のまとめ]
 以上に説明したように、本実施形態に係るフローサイトメータ1aでは、流路20aにおいて、光軸OXの方向及び流路20aの長さ方向について互いに異なる複数の検出位置(本実施形態においてキャリブレーションパターンCP1a及びキャリブレーションパターンCP2aの位置)が配置され、細胞Cの深さ方向位置PPを検出するため照射されるキャリブレーションパターンCPaの照明光がその位置に結像される。
 キャリブレーションパターンCPaの照射により細胞Cから発せられる信号光LSは、複数の検出位置(本実施形態においてキャリブレーションパターンCP1a及びキャリブレーションパターンCP2aの位置)においてそれぞれ検出され、光検出器6により検出される信号光LSの強度の時間変化(本実施形態において計測信号SG)のパラメータを用いて位置算出部111が観測対象物の深さ方向位置PPを算出する。
[Summary of the second embodiment]
As described above, in the flow cytometer 1a according to the present embodiment, in the channel 20a, a plurality of detection positions (in the present embodiment, calibration The positions of the pattern CP1a and the calibration pattern CP2a) are arranged, and the illumination light of the calibration pattern CPa irradiated to detect the depth direction position PP of the cell C is imaged at that position.
The signal light LS emitted from the cell C by irradiation with the calibration pattern CPa is detected at each of a plurality of detection positions (the positions of the calibration pattern CP1a and the calibration pattern CP2a in this embodiment), and is detected by the photodetector 6. The position calculator 111 calculates the depth direction position PP of the observed object using the parameter of the time change of the intensity of the signal light LS (in this embodiment, the measurement signal SG).
 この構成により、本実施形態に係るフローサイトメータ1aでは、光軸OXの方向及び流路20aの長さ方向について互いに異なる位置に配置された複数の検出位置に結像されたキャリブレーションパターンCPaが照射され、それぞれの検出位置において検出された信号光LSの強度の時間変化に基づいて深さ方向位置PPを算出できるため、検出位置が1つしか配置されない場合に比べて深さ方向位置PPの変動を正確に捉えられ、観測対象物の構造を示す光学情報を生成する際に流線の位置ずれの影響を精度よく補正すること、及びまたは流路位置の修正を効果的に行うことができる。 With this configuration, in the flow cytometer 1a according to the present embodiment, the calibration pattern CPa imaged at a plurality of detection positions arranged at different positions with respect to the direction of the optical axis OX and the length direction of the channel 20a. Since the depth direction position PP can be calculated based on the time change of the intensity of the signal light LS irradiated and detected at each detection position, the depth direction position PP can be calculated in comparison with the case where only one detection position is arranged. Fluctuations can be captured accurately, and when generating optical information indicating the structure of an object to be observed, it is possible to accurately correct the influence of displacement of streamlines and/or to effectively correct the position of the flow path. .
(第3の実施形態)
 以下、図面を参照しながら本発明の第3の実施形態について詳しく説明する。
 上記第2の実施形態では、流路20aは光軸OXの方向と直交するように設置され、流路を通過する観測対象物に光軸OXの方向及び流路20aの長さ方向について互いに異なる複数の測定位置(前記第2の実施形態ではキャリブレーションパターンCP1a及びキャリブレーションパターンCP2aの位置)で結像する深さ方向位置PPを検出するためのキャリブレーションパターンCPaを照射して、観測対象物が発する信号光LSの強度の時間変化(本実施形態において計測信号SG)を検出し深さ方向位置PPを算出する場合の例について説明をした。本実施形態では、流路が光軸OXの方向に対して傾いて設置されている。その構造により、本実施形態では、深さ方向位置PPを検出するために照射されるキャリブレーションパターンについて、流路上の照明光が結像する同じ焦点面上に、異なった深さ方向位置PPを検出できる複数の検出位置を設置することができる。
 本実施形態に係るフローサイトメータをフローサイトメータ1bといい、流路を流路20bという。本実施形態に係るキャリブレーションパターンをキャリブレーションパターンCPbという。また、本実施形態に係る光軸を光軸OXbといい、演算装置を演算装置10bという。
(Third Embodiment)
A third embodiment of the present invention will be described in detail below with reference to the drawings.
In the second embodiment, the flow path 20a is installed so as to be orthogonal to the direction of the optical axis OX. A calibration pattern CPa for detecting a depth direction position PP imaged at a plurality of measurement positions (positions of the calibration pattern CP1a and the calibration pattern CP2a in the second embodiment) is irradiated, and the observation object is An example of detecting the time change in the intensity of the signal light LS emitted by (the measurement signal SG in this embodiment) and calculating the depth direction position PP has been described. In this embodiment, the flow path is installed to be inclined with respect to the direction of the optical axis OX. Due to this structure, in the present embodiment, different depth direction positions PP can be set on the same focal plane where the illumination light on the flow path forms an image for the calibration pattern irradiated to detect the depth direction position PP. A plurality of detection positions that can be detected can be installed.
The flow cytometer according to this embodiment is called a flow cytometer 1b, and the channel is called a channel 20b. The calibration pattern according to this embodiment is called a calibration pattern CPb. Further, the optical axis according to this embodiment is referred to as optical axis OXb, and the arithmetic device is referred to as arithmetic device 10b.
 本実施形態に係るフローサイトメータ1bの構成と、第1の実施形態に係るフローサイトメータ1の構成とは、流路20bが光軸OXbの方向に対して傾いて設置されている点以外は同様である。流路20bが光軸OXbの方向に対して傾いるため、流路20の深さ方向は、光軸OXbの方向に対して傾いる。また、本実施形態に係る演算装置10bの構成は、第2の実施形態に係る演算装置10aの構成と同様である。第1の実施形態及び第2の実施形態と同じ機能の説明は省略し、第3の実施形態では、第1の実施形態及び第2の実施形態と異なる部分を中心に説明する。 The configuration of the flow cytometer 1b according to the present embodiment and the configuration of the flow cytometer 1 according to the first embodiment are different except that the channel 20b is installed tilted with respect to the direction of the optical axis OXb. It is the same. Since the channel 20b is inclined with respect to the direction of the optical axis OXb, the depth direction of the channel 20 is inclined with respect to the direction of the optical axis OXb. Also, the configuration of the arithmetic device 10b according to the present embodiment is the same as the configuration of the arithmetic device 10a according to the second embodiment. A description of the same functions as those of the first and second embodiments will be omitted, and a description of the third embodiment will focus on portions that differ from those of the first and second embodiments.
[キャリブレーションパターン]
 図15は、本実施形態に係る流路20bにおけるキャリブレーションパターンCPbの側面図(流路20bをx軸方向から見た図)の一例を示す図である。なお、同様に図15には構造化照明パターン21に含まれる光学情報生成パターンの位置は示されていない。
 流路20bの長さ方向(y軸方向)は、光軸OXbの方向に対して傾いている。キャリブレーションパターンCPbは光軸OXbの方向から斜めに流路20bに照射され、流路内の焦点面FP1bで結像される。図15では、観測対象物としては、流路の異なる深さ位置を通過する流線FX1、FX2、FX3の流れに沿って移動する細胞C1、細胞C2、細胞C3が例示されている。ここで流線FX1、FX2、FX3が流路20bにおける深さ方向位置PPは、図11においての流線FX1、FX2、FX3の流れに沿って細胞C1、細胞C2、細胞C3が通過する位置と同じである。流路20bの深さ方向(z軸方向)の深さ方向位置PPを検出する検出位置は、同じ焦点面FP1b上のキャリブレーションパターンCP1bとキャリブレーションパターンCP2bの位置に設置され、その位置が簡単のために図中に円で示されている。本実施形態では、第1の実施形態と異なり、流路20bの深さ方向(z軸方向)は光軸OXbの方向に対して傾いている。
[Calibration pattern]
FIG. 15 is a diagram showing an example of a side view of the calibration pattern CPb in the channel 20b according to this embodiment (a view of the channel 20b viewed from the x-axis direction). It should be noted that the positions of the optical information generating patterns included in the structured illumination pattern 21 are not shown in FIG. 15 as well.
The length direction (y-axis direction) of the channel 20b is inclined with respect to the direction of the optical axis OXb. The calibration pattern CPb is obliquely irradiated to the channel 20b from the direction of the optical axis OXb, and is imaged on the focal plane FP1b in the channel. FIG. 15 exemplifies a cell C1, a cell C2, and a cell C3 that move along the flow of streamlines FX1, FX2, and FX3 that pass through different depth positions of the flow path, as objects to be observed. Here, the depth direction position PP of the streamlines FX1, FX2, and FX3 in the channel 20b is the position where the cells C1, C2, and C3 pass along the flow of the streamlines FX1, FX2, and FX3 in FIG. are the same. The detection position for detecting the depth direction position PP in the depth direction (z-axis direction) of the channel 20b is set at the position of the calibration pattern CP1b and the calibration pattern CP2b on the same focal plane FP1b. are indicated by circles in the figure. In this embodiment, unlike the first embodiment, the depth direction (z-axis direction) of the channel 20b is inclined with respect to the direction of the optical axis OXb.
 図15に示すように、キャリブレーションパターンCPbは、キャリブレーションパターンCP1bとキャリブレーションパターンCP2bとの2つ位置で結像する。図中でキャリブレーションパターンCP1bの位置あるいはキャリブレーションパターンCP2bの位置に照射されるキャリブレーションパターンCPbは、それぞれ水平方向HX(x軸方向)には平行な直線上のパターンとして照射される。キャリブレーションパターンCP1bとキャリブレーションパターンCP2bとは、流路20bの長さ方向について互いに異なる位置に配置されている。 As shown in FIG. 15, the calibration pattern CPb is imaged at two positions of the calibration pattern CP1b and the calibration pattern CP2b. In the drawing, the calibration pattern CPb irradiated at the position of the calibration pattern CP1b or the position of the calibration pattern CP2b is irradiated as a linear pattern parallel to the horizontal direction HX (x-axis direction). The calibration pattern CP1b and the calibration pattern CP2b are arranged at different positions in the length direction of the channel 20b.
 キャリブレーションパターンCP1bとキャリブレーションパターンCP2bとは、光軸OXbの方向に対して共通の焦点面FP1b上に結像されるが、本実施形態では流路20bが焦点面FP1bに対して所定の角度だけ傾いて配置されている。そのため、キャリブレーションパターンCP1bとキャリブレーションパターンCP2bとは、流路20bの深さ方向(z軸方向)について互いに異なる位置に配置される。 The calibration pattern CP1b and the calibration pattern CP2b are imaged on a common focal plane FP1b with respect to the direction of the optical axis OXb. It is only tilted. Therefore, the calibration pattern CP1b and the calibration pattern CP2b are arranged at different positions in the depth direction (z-axis direction) of the channel 20b.
 ここで図15に示されるキャリブレーションパターンCP1bとキャリブレーションパターンCP2bの結像位置の流路20bに対する相対的な位置関係は、図11で示されたキャリブレーションパターンCP1aとキャリブレーションパターンCP2aの結像位置の流路20aに対する相対的な位置関係と同じである。上述したように、図15に示すキャリブレーションパターンCP1bとキャリブレーションパターンCP2bとは、流路20bの深さ方向に互いに異なる位置に配置されるが、光軸OXbの方向について流路20bを照射する照明光の共通の焦点面FP1b上に配置される。一方、図11に示したキャリブレーションパターンCP1aとキャリブレーションパターンCP2aは、光軸OXの方向について流路20bを照射する照明光のそれぞれ別の焦点面上に位置する。 Here, the relative positional relationship of the imaging positions of the calibration pattern CP1b and the calibration pattern CP2b shown in FIG. This is the same as the positional relationship relative to the channel 20a. As described above, the calibration pattern CP1b and the calibration pattern CP2b shown in FIG. 15 are arranged at mutually different positions in the depth direction of the channel 20b. placed on the common focal plane FP1b of the illumination light. On the other hand, the calibration pattern CP1a and the calibration pattern CP2a shown in FIG. 11 are positioned on different focal planes of the illumination light that irradiates the channel 20b in the direction of the optical axis OX.
 演算装置10bは、位置算出処理を、図14に示した演算装置10aの位置算出処理と同様に実行する。なお、図15に示すキャリブレーションパターンCP1b及びキャリブレーションパターンCP2bの検出位置において計測信号SGは、細胞Cが流路の同じ深さ方向位置PPの位置を通過した場合であっても、図12に示すキャリブレーションパターンCP1a及びキャリブレーションパターンCP2aの検出位置において検出される計測信号SGとはシグナルの形状が異なる。そのため、演算装置10bの位置算出処理では、ピーク値比率R1に対する所定の値、及び幅比率R2に対する所定の値は、図14に示した演算装置10aの位置算出処理において用いられる値とは異なる値が用いられる。 The arithmetic device 10b executes the position calculation process in the same manner as the position calculation process of the arithmetic device 10a shown in FIG. Note that the measurement signal SG at the detection positions of the calibration pattern CP1b and the calibration pattern CP2b shown in FIG. 15 is shown in FIG. The shape of the signal is different from that of the measurement signal SG detected at the detection positions of the calibration pattern CP1a and the calibration pattern CP2a shown. Therefore, in the position calculation processing of the arithmetic device 10b, the predetermined value for the peak value ratio R1 and the predetermined value for the width ratio R2 are different values from the values used in the position calculation processing of the arithmetic device 10a shown in FIG. is used.
[第3の実施形態のまとめ]
 以上に説明したように、本実施形態に係るフローサイトメータ1bでは、流路20bが照明光の光軸OXbの方向に対して傾いて設置されている。
 この構成により、本実施形態に係るフローサイトメータ1bでは、深さ方向位置を検出するための複数の検出位置を流路20bに照射されるキャリブレーションパターンCPbの1つの焦点面FP1上の異なる深さ方向位置PPの位置に設置できるため、光源3や空間光変調部4を複雑に配置して流路20bの深さ方向位置PPおよび流路20bの長さ方向の位置が異なる複数の位置に焦点面が異なる複数の検出位置を設置する場合に比べて、簡便により簡易な構造で深さ方向位置を検出するための複数の検出位置を設置できる。
[Summary of the third embodiment]
As described above, in the flow cytometer 1b according to the present embodiment, the flow path 20b is installed tilting with respect to the direction of the optical axis OXb of the illumination light.
With this configuration, in the flow cytometer 1b according to the present embodiment, a plurality of detection positions for detecting a depth direction position are set to different depths on one focal plane FP1 of the calibration pattern CPb irradiated to the channel 20b. Since it can be installed at the position PP in the depth direction, the light source 3 and the spatial light modulator 4 can be arranged in a complicated manner so that the depth direction position PP of the flow channel 20b and the position in the length direction of the flow channel 20b are different. A plurality of detection positions for detecting positions in the depth direction can be easily installed with a simpler structure than when a plurality of detection positions with different focal planes are installed.
(第4の実施形態)
 以下、図面を参照しながら本発明の第4の実施形態について詳しく説明する。
 上記第1、第2、及び第3の実施形態では、構造化照明の構成により観測対象物からの光学情報を生成する実施形態において、キャリブレーションパターンが光学情報を生成するための光学情報生成パターンと組み合わされて流路上の照射位置に照射され、流路上のキャリブレーションパターンが結像する位置に細胞が流路を通過する深さ方向位置PPを検出する検出位置が配置される場合について説明をした。本実施形態では、空間光変調部が流路と光検出器との間に設置され、細胞の流路における深さ方向位置が、流路と光検出器との間に備えられる空間光変調部を構成するマスクが有する光透過領域の配置パターンを利用して検出される場合について説明する。なお、本実施形態のように、空間光変調部が流路と光検出器との間の光路上に配置される配置の構成を、以降構造化検出の構成とも記載する。
(Fourth embodiment)
A fourth embodiment of the present invention will be described in detail below with reference to the drawings.
In the first, second, and third embodiments described above, in the embodiment in which the optical information from the observed object is generated by the structured illumination configuration, the calibration pattern is an optical information generation pattern for generating the optical information. is combined with and the irradiation position on the flow channel is irradiated, and the detection position for detecting the depth direction position PP where the cell passes through the flow channel is arranged at the position where the calibration pattern on the flow channel is imaged. bottom. In the present embodiment, the spatial light modulator is provided between the channel and the photodetector, and the position of the cell in the depth direction in the channel is provided between the channel and the photodetector. A case will be described in which detection is performed using the arrangement pattern of the light transmission regions of the mask that constitutes the . Note that, as in the present embodiment, the configuration in which the spatial light modulator is arranged on the optical path between the channel and the photodetector will also be referred to as the structured detection configuration hereinafter.
 構造化検出の構成では、空間光変調部を構成するマスクに配置される光透過領域を介して検出される信号光により観測対象物の形態情報に関する光学情報を取得することができる。即ち、本実施形態では、信号光の構造化処理が構造化検出の構成により施され、情報生成装置は前記構造化処理を経て構造化された信号光を用いて光学情報を取得する。本実施形態のように、流路と光検出器との間の光路上に配置される空間光変調部により構造化処理を施される信号光を構造化された信号光とも記載する。
 また本実施形態では、観測対象物が流路において通過する深さ方向位置が、流路と光検出器との間に備えられる空間光変調部を構成するマスクの光透過領域の配置パターンを利用して検出されるので、以下の説明ではこの実施形態をキャリブレーションパターンがマスクにより配置される形態とも呼ぶことがある。即ち本実施形態では、流路を観測対象物が通過する深さ方向位置を検出する検出位置が構造化検出の構成により配置される空間光変調部により設置される。
In the structured detection configuration, optical information relating to the morphological information of the observed object can be obtained from the signal light detected through the light-transmitting region arranged on the mask that constitutes the spatial light modulator. That is, in the present embodiment, the structuring process of the signal light is performed by the structure of structured detection, and the information generating device acquires the optical information using the signal light structured through the structuring process. The signal light subjected to the structuring process by the spatial light modulator arranged on the optical path between the channel and the photodetector as in this embodiment is also referred to as structured signal light.
In addition, in this embodiment, the position in the depth direction through which the observation target passes in the channel uses the arrangement pattern of the light transmission regions of the mask that constitutes the spatial light modulator provided between the channel and the photodetector. In the following description, this embodiment may also be referred to as a form in which the calibration pattern is arranged by a mask. That is, in this embodiment, the detection position for detecting the position in the depth direction where the object to be observed passes through the channel is provided by the spatial light modulation section arranged by the structure of structured detection.
 本実施形態に係るフローサイトメータをフローサイトメータ1cといい、流路を流路20cという。本実施形態では、光学情報を取得するための構造化照明の構成や深さ方向位置PPを検出するための検出位置を流路に照射する照明としてフローサイトメータに設置する必要はない。本実施形態に係るフローサイトメータ1cの構成と、第1の実施形態に係るフローサイトメータ1の構成とは、流路20cに照射される構造化照明パターン21に光学情報を取得するための光学情報生成パターンや深さ方向位置を検出するためのキャリブレーションパターンCPが含まれていない点、及び流路20cから光検出器6の間の光路にマスク51cが配置される点以外の基本的な構成は同様である。すなわち、フローサイトメータ1は構造化照明の構成となっているが、フローサイトメータ1cでは構造化検出の構成となっている。 A flow cytometer according to this embodiment is called a flow cytometer 1c, and a channel is called a channel 20c. In the present embodiment, there is no need to install structured illumination for acquiring optical information or a detection position for detecting the depth direction position PP as illumination for illuminating the flow cytometer in the flow cytometer. The configuration of the flow cytometer 1c according to the present embodiment and the configuration of the flow cytometer 1 according to the first embodiment are different from the configuration of the flow cytometer 1c according to the first embodiment. Except for the point that the information generation pattern and the calibration pattern CP for detecting the depth direction position are not included, and the point that the mask 51c is arranged in the optical path between the flow path 20c and the photodetector 6 The configuration is similar. That is, the flow cytometer 1 is configured for structured illumination, while the flow cytometer 1c is configured for structured detection.
 また、本実施形態のフローサイトメータでは、検出された細胞Cの深さ方向位置PPに基づいて流路20cの深さ方向の位置を流路位置制御装置により制御することができる。
さらにまた、本実施形態のフローサイトメータでは、細胞Cの流路20における深さ方向における流線ずれを補正する別の方法として、検出された深さ方向位置PPに基づいてマスクの位置を制御する機構を備えることができる。
Further, in the flow cytometer of the present embodiment, the position of the channel 20c in the depth direction can be controlled by the channel position control device based on the detected depth direction position PP of the cell C. FIG.
Furthermore, in the flow cytometer of this embodiment, as another method of correcting the streamline deviation in the depth direction in the channel 20 of the cells C, the position of the mask is controlled based on the detected depth direction position PP. It is possible to provide a mechanism for
 図16は、本実施形態に係るマスク51cの配置の側面図(流路20cをx軸方向から見た図)の一例を示す図である。なお図16では、キャリブレーションパターンがマスクにより配置される実施形態の説明のため、マスク51cの光学情報ICの生成のための信号光が透過するマスク51cにおける光透過部については図中には記載されていない。
 マスク51cは、流路20cと光検出器6との間に備えられる。マスク51cと流路20cとの間にはレンズ49が、マスク51cと光検出器6との間には結像レンズ50が、それぞれ備えられる。レンズ49とマスク51cは空間光変調部4c(不図示)を構成する。また、図16に示す例では、光検出用光学系5は結像レンズ50により構成されているが、さらにダイクロイックミラーや波長選択的なフィルターを備えてもよい。
FIG. 16 is a diagram showing an example of a side view (a view of the flow path 20c viewed from the x-axis direction) of the disposition of the mask 51c according to this embodiment. In FIG. 16, for the purpose of explaining the embodiment in which the calibration pattern is arranged by the mask, the light transmitting portion of the mask 51c through which the signal light for generating the optical information IC of the mask 51c is transmitted is not shown in the drawing. It has not been.
A mask 51 c is provided between the channel 20 c and the photodetector 6 . A lens 49 is provided between the mask 51c and the channel 20c, and an imaging lens 50 is provided between the mask 51c and the photodetector 6, respectively. The lens 49 and the mask 51c constitute a spatial light modulating section 4c (not shown). In addition, in the example shown in FIG. 16, the photodetection optical system 5 is composed of the imaging lens 50, but it may further include a dichroic mirror or a wavelength selective filter.
 光源からの照明光LEは、照射位置を通過する細胞Cに照射され、細胞Cから発せられる信号光LSは空間光変調部4c(不図示)を介して光検出器6により検出される。その際、信号光LSは空間光変調部4c(不図示)により構造化処理を施される。即ち、信号光LSは空間光変調部4cを介して構造化信号光に変換される。光検出器6により出力される電気信号パルスはさらに電子データに変換され、細胞の形態情報を示す光学情報ICが生成される。 The illumination light LE from the light source is applied to the cell C passing through the irradiation position, and the signal light LS emitted from the cell C is detected by the photodetector 6 via the spatial light modulator 4c (not shown). At that time, the signal light LS is subjected to structuring processing by the spatial light modulator 4c (not shown). That is, the signal light LS is converted into structured signal light via the spatial light modulator 4c. The electrical signal pulse output by the photodetector 6 is further converted into electronic data to generate optical information IC indicating cell morphological information.
 一方本実施形態では、細胞Cの流路20cを通過する深さ方向位置PPが、空間光変調部4c(不図示)に備えられるマスク51cが有する光透過領域の配置パターンを利用して検出される。マスク51cのレンズ49側の面は光を透過させる領域を有しており、マスク51cの光透過領域は流路20cに設置される深さ方向位置PPを検出するための流路内の検出位置とレンズ49を介して光学的に共役な位置に配置される。上記構成により、流路20cを通過する細胞Cが発する信号光LSは、空間光変調部4c(不図示)を介して構造化された信号光として光検出器6で検出される。構造化された信号光LSはさらに電子データに変換され、信号光強度の時間変化が計測信号SGとして取得される。流路20cを流線FXに沿って移動する細胞Cは、検出位置の近傍を通過する際にマスク51cの光透過領域でより鮮明な像を結び、検出位置から離れた流線FX上を移動する際にはマスク51cの光透過領域における像がより不鮮明となるため、光検出器6で検出される信号光LSの強度の時間変化も流路20cを通過する細胞の深さ方向位置PPに応じて変化する。 On the other hand, in the present embodiment, the depth direction position PP of cells C passing through the channel 20c is detected using the arrangement pattern of the light transmission regions of the mask 51c provided in the spatial light modulator 4c (not shown). be. The surface of the mask 51c on the lens 49 side has a region for transmitting light, and the light transmitting region of the mask 51c is a detection position in the flow channel for detecting the depth direction position PP installed in the flow channel 20c. and the lens 49 are arranged at optically conjugate positions. With the above configuration, the signal light LS emitted by the cells C passing through the channel 20c is detected by the photodetector 6 as structured signal light via the spatial light modulator 4c (not shown). The structured signal light LS is further converted into electronic data, and the time variation of signal light intensity is obtained as a measurement signal SG. A cell C moving along the streamline FX in the channel 20c forms a clearer image in the light transmission region of the mask 51c when passing near the detection position, and moves on the streamline FX away from the detection position. Since the image in the light-transmitting region of the mask 51c becomes more blurred when the mask 51c is detected, the temporal change in the intensity of the signal light LS detected by the photodetector 6 also changes at the depth direction position PP of the cell passing through the channel 20c. Varies accordingly.
 本実施形態では、マスク51cに配置される光透過領域の配置パターンであるマスクパターンにより光透過領域と共役な流路内の位置に深さ方向位置PPを検出する検出位置が設定される。マスク51cの光透過領域を介し検出された信号光LSにもとづく計測信号SGは、検出位置と通過する細胞Cとの距離に依存してその形状が変わるため、計測信号SGに基づいて流路20c内を通過する細胞Cの深さ方向位置PPを算出することができる。本明細書中では、本実施形態をキャリブレーションパターンがマスクにより配置される形態と呼び、マスクパターンにより流路に配置される検出位置をキャリブレーションパターンの位置と表現する。また、マスク51cの光透過領域が配置される側の面をマスクパターン面MP1cと表現する。また図16では、流路20cの深さ方向位置PPが異なる位置P1、位置P2、位置P3を流れる流線FXにより移動する細胞Cがそれぞれ細胞C1、細胞C2、細胞C3と記載されている。 In the present embodiment, a detection position for detecting the depth direction position PP is set at a position in the flow channel that is conjugate with the light transmission regions by a mask pattern that is an arrangement pattern of the light transmission regions arranged on the mask 51c. The shape of the measurement signal SG based on the signal light LS detected through the light transmission region of the mask 51c changes depending on the distance between the detection position and the cell C passing through. It is possible to calculate the depth direction position PP of the cell C passing through. In this specification, this embodiment is referred to as a form in which the calibration pattern is arranged by the mask, and the detection position arranged in the flow channel by the mask pattern is expressed as the position of the calibration pattern. Also, the surface of the mask 51c on which the light transmission regions are arranged is expressed as a mask pattern surface MP1c. In FIG. 16, the cells C moving by the streamlines FX flowing through the positions P1, P2, and P3 with different depth direction positions PP of the channel 20c are indicated as cells C1, C2, and C3, respectively.
 マスク51cは、そのマスクパターン面MP1cに光を透過させる領域と、光を透過させない領域とを有する。マスクパターン面MP1cは、図16では、レンズ49により、流線FX1上の1つの検出位置であるキャリブレーションパターンの位置CP1cと光学的に共役な位置ICP1cと、流線FX3c上のもう1つの検出位置であるキャリブレーションパターンの位置CP2cと光学的に共役な位置ICP2cに光を透過させる領域が配置され、それ以外の部分は、光学情報ICを取得するための光透過領域(不図示)を除けば、光を透過させない領域となっている。即ち、マスク51cのマスクパターン面MP1の面には、流線FX1c上のキャリブレーションパターンの位置CP1cと光学的に共役な位置であるICP1cの位置と、流線FX3c上キャリブレーションパターンの位置CP2cと光学的に共役な位置であるICP2cの位置とに、光を透過させる領域を配置するようにマスクパターンが設計されている。つまり、キャリブレーションパターンがマスクにより配置される形態では、マスク51cの光透過領域の位置(図16ではICP1cとICP2cの位置)が、流路20cの異なった流線上の予め定められた検出位置(図16ではキャリブレーションパターンの位置CP1cとCP2c)と光学的に共役な位置関係に設置されているため、細胞Cが検出位置近傍を通過する際に発する信号光LSが光検出用光学系5を介して光検出器6で検出される。それにより、異なった流線上に配置される検出位置に深さ方向位置PPを検出するための照明光を照射して通過する細胞Cの深さ方向位置PPを算出する第1から第3までの実施形態の場合と同様に、予め定められた位置を検出位置として通過する細胞の深さ位置を検出することができる。 The mask 51c has a region that transmits light and a region that does not transmit light on its mask pattern surface MP1c. In FIG. 16, the mask pattern surface MP1c is positioned by the lens 49 at a position ICP1c optically conjugate with the calibration pattern position CP1c, which is one detection position on the streamline FX1, and another detection position on the streamline FX3c. A region that transmits light is arranged at a position ICP2c that is optically conjugate with the position CP2c of the calibration pattern. For example, it is a region that does not transmit light. That is, on the mask pattern surface MP1 of the mask 51c, the position of ICP1c, which is optically conjugate with the position CP1c of the calibration pattern on the streamline FX1c, and the position CP2c of the calibration pattern on the streamline FX3c. The mask pattern is designed to place a light-transmitting region at the position of ICP2c, which is an optically conjugate position. That is, in the mode in which the calibration pattern is arranged by the mask, the positions of the light transmission regions of the mask 51c (the positions of ICP1c and ICP2c in FIG. 16) are the predetermined detection positions ( In FIG. 16, the positions CP1c and CP2c) of the calibration pattern are placed in an optically conjugate positional relationship, so that the signal light LS emitted when the cell C passes near the detection position passes through the optical system 5 for detection. detected by the photodetector 6 via the As a result, the first to third detection positions arranged on different streamlines are irradiated with illumination light for detecting the depth direction position PP, and the depth direction position PP of the passing cell C is calculated. As in the case of the embodiment, it is possible to detect the depth positions of cells passing through predetermined positions as detection positions.
 マスク51cの光透過領域を透過した光は、さらに結像レンズ50を介して光検出器6に集められ、光検出器6は信号光LSの強度を時系列に検出する。ここで、光検出器6は、マスク51cが有する領域のうち流路20cの複数の検出位置であるキャリブレーションパターンの位置CPcと結像関係を成す位置にある光を透過させる領域を介して、信号光LSの強度を時系列に検出する。ここで光検出器6が配置される位置は、マスク51cのマスクパターンが結像レンズ50によって結像される位置であることが好ましいが、マスク51cを介した光(例えば透過領域を透過した光)が十分量集光される位置であればよい。 The light transmitted through the light transmission region of the mask 51c is further collected by the photodetector 6 via the imaging lens 50, and the photodetector 6 detects the intensity of the signal light LS in time series. Here, the photodetector 6 passes light through a region of the mask 51c at a position forming an image with the position CPc of the calibration pattern, which is a plurality of detection positions of the flow channel 20c. The intensity of the signal light LS is detected in time series. Here, the position where the photodetector 6 is arranged is preferably the position where the mask pattern of the mask 51c is imaged by the imaging lens 50. ) can be sufficiently collected.
 ここで図17及び図18を参照し、マスク51cについて説明する。図17は、本実施形態に係るマスク51cの正面図の一例を示す図である。正面図とは、流路20cの側(z軸方向)から見た図である。図18は、本実施形態に係るマスク51cの側面図の一例を示す図である。側面図とは光軸OXに沿って横側(x軸方向)から見た図である。図17に示すように、マスク51cは、レンズ49側の面である表面515cに光を透過させる領域として開口部511cと、開口部512cとを有する。マスク51cでは、表面515cの面がマスクパターン面MP1cとなる。なお図17及び18においても、キャリブレーションパターンがマスクにより配置される実施形態の説明のため、マスク51cの光学情報ICの生成のための信号光が透過する光透過部の位置は図中には記載されていない。従って、図中のマスク51cはマスクパターン面MP1cにおいて開口部511c、及び開口部512c以外の領域は光を透過しない構成として記載されているが、実際の構成では光学情報ICの生成のための信号光が透過する光透過部が存在する。 The mask 51c will now be described with reference to FIGS. 17 and 18. FIG. FIG. 17 is a diagram showing an example of a front view of the mask 51c according to this embodiment. A front view is a view seen from the flow path 20c side (z-axis direction). FIG. 18 is a diagram showing an example of a side view of the mask 51c according to this embodiment. A side view is a view seen from the lateral side (x-axis direction) along the optical axis OX. As shown in FIG. 17, the mask 51c has an opening 511c and an opening 512c as regions for transmitting light on a surface 515c, which is a surface on the lens 49 side. In the mask 51c, the surface 515c is the mask pattern surface MP1c. In FIGS. 17 and 18 as well, for the purpose of explaining the embodiment in which the calibration pattern is arranged by the mask, the position of the light transmission portion through which the signal light for generating the optical information IC of the mask 51c is transmitted is shown in the drawings. Not listed. Therefore, although the mask 51c in the drawing is described as having a configuration in which light does not pass through regions other than the openings 511c and 512c on the mask pattern plane MP1c, in the actual configuration, a signal for generating the optical information IC is used. There is a light transmitting portion through which light is transmitted.
 図18に示すように、マスク51cは、表面515cの裏側に溝部513c、及び溝部514cを有する。開口部511cと、開口部512cの表面515cと反対の面には、それぞれ溝部513cと溝部514cとが設けられる。マスク51cにおいて開口部と溝部は共に信号光が透過する領域であるが、開口部は溝部よりも光を透過する領域が小さく設計されている。 As shown in FIG. 18, the mask 51c has grooves 513c and 514c on the back side of the surface 515c. A groove portion 513c and a groove portion 514c are provided in the opening portion 511c and the surface opposite to the surface 515c of the opening portion 512c, respectively. In the mask 51c, both the opening and the groove are regions through which signal light is transmitted, but the opening is designed to have a smaller light-transmitting region than the groove.
 図16に戻ってマスク51cの配置の説明を続ける。
 流路20cは、マスク51cの表面に対して所定の角度だけ傾いて配置される。流路20cを通過する細胞Cが流路20の深さ方向に異なる流線FX(図16では、流線FX1、流線FX2、流線FX3として例示)に沿って移動する場合、上述の通り、光検出器6により検出された信号光LSの強度の時間変化である計測信号SGは、検出位置である流路20c内のキャリブレーションパターンの位置CPcと通過する細胞Cとの距離に依存してその形状が変わる。
 ここでマスク51cの流線FX1上のキャリブレーションパターンの位置CP1cと光学的に共役な位置とである位置ICP1cを透過した信号光LSを光検出器6で計測した場合、第1の実施の例と同様に、流路20を通過する細胞Cの深さ方向位置PPが流線FX1から離れるほど、細胞Cの深さ方向位置PPが流線FX1と一致している場合に比べて、マスク51cを介して光検出器6で検出される計測信号SGのピーク値は小さくなり、幅は広くなる。
 マスク51cの流線FX3上の検出位置であるキャリブレーションパターンの位置CP2cと光学的に共役な位置とである位置ICP2cを透過した光を光検出器6で計測した場合にも、同様に、流路20c内を通過する細胞Cの深さ方向の通過位置が流線FX3に近い深さ方向位置PPを通過した時ほど、マスク51cを介して光検出器6で計測される計測信号SGのピーク値は高くなり、幅は狭くなる。
 演算装置10cは、位置算出処理を、図13に示した演算装置10aの位置算出処理と同様に実行する。
Returning to FIG. 16, the description of the arrangement of the mask 51c is continued.
The channel 20c is arranged at a predetermined angle with respect to the surface of the mask 51c. When the cells C passing through the channel 20c move along different streamlines FX (illustrated as streamlines FX1, FX2, and FX3 in FIG. 16) in the depth direction of the channel 20, as described above. , the measurement signal SG, which is the time change of the intensity of the signal light LS detected by the photodetector 6, depends on the distance between the detection position CPc of the calibration pattern in the channel 20c and the passing cell C. and its shape changes.
Here, when the signal light LS transmitted through the position ICP1c, which is the position optically conjugate with the position CP1c of the calibration pattern on the streamline FX1 of the mask 51c, is measured by the photodetector 6, in the first embodiment, , the further the depth direction position PP of the cell C passing through the channel 20 is from the streamline FX1, the more the depth direction position PP of the cell C coincides with the streamline FX1. The peak value of the measurement signal SG detected by the photodetector 6 via , becomes smaller and the width becomes wider.
Similarly, when the light transmitted through the position ICP2c, which is the position optically conjugate to the position CP2c of the calibration pattern, which is the detection position on the streamline FX3 of the mask 51c, is measured by the photodetector 6, the flow The peak of the measurement signal SG measured by the photodetector 6 through the mask 51c increases as the passage position in the depth direction of the cell C passing through the path 20c passes through the depth direction position PP closer to the streamline FX3. The higher the value, the narrower the width.
The arithmetic device 10c executes the position calculation process in the same manner as the position calculation process of the arithmetic device 10a shown in FIG.
[第4の実施形態のまとめ]
 以上に説明したように、本実施形態に係るフローサイトメータ1cでは、流路20cと光検出器6との間にマスク51cをさらに備える。マスク51cに配置される複数の光透過領域は、流路20cの深さ方向位置PPを検出するための検出位置とレンズ49を介して光学的に共役な位置に配置され、光検出器6は検出位置近傍を通過する細胞Cから発せられる信号光LSの強度を、マスク51cの光を前記透過させる領域を介して時系列に検出する。この構成により、本実施形態に係るフローサイトメータ1cでは、流路20cと光検出器6との間に備えられたマスク51cの構造により、上記予め定められた複数の位置を検出位置として、細胞Cが通過する流路の深さ方向位置PPを検出することが可能となる。上記実施形態で示されたフローサイトメータ1cの例では、マスク51cのマスクパターン面MP1cにおける開口部の配置パターンにより、流路20cにおいて細胞Cが通過する深さ方向位置PPを検出する検出位置であるキャリブレーションパターンの位置が設定される。
[Summary of the fourth embodiment]
As described above, the flow cytometer 1c according to this embodiment further includes the mask 51c between the channel 20c and the photodetector 6. As shown in FIG. A plurality of light transmission regions arranged on the mask 51c are arranged at optically conjugate positions via a lens 49 with a detection position for detecting the depth direction position PP of the flow path 20c, and the photodetector 6 The intensity of the signal light LS emitted from the cell C passing near the detection position is detected in time series via the light-transmitting region of the mask 51c. With this configuration, in the flow cytometer 1c according to the present embodiment, the structure of the mask 51c provided between the channel 20c and the photodetector 6 allows cells to be detected at the plurality of predetermined positions as detection positions. It becomes possible to detect the depth direction position PP of the channel through which C passes. In the example of the flow cytometer 1c shown in the above embodiment, the arrangement pattern of the openings on the mask pattern surface MP1c of the mask 51c is used to detect the depth direction position PP through which the cells C pass in the channel 20c. A calibration pattern position is set.
 本実施形態に係るフローサイトメータ1cでは、深さ方向位置PPを、流路20と光検出器6との間にマスク51cを設置することによって検出できるため、構造化照明の構成により光学情報ICを生成するための光学情報生成パターンと深さ方向位置PPを検出するためキャリブレーションパターンとを設置する必要がなく、照明光学系の設計の自由度を増すことができると共に装置をより小型化できる。 In the flow cytometer 1c according to the present embodiment, the depth direction position PP can be detected by placing the mask 51c between the channel 20 and the photodetector 6. Therefore, the optical information IC There is no need to install an optical information generation pattern for generating and a calibration pattern for detecting the depth direction position PP. .
(第5の実施形態)
 以下、図面を参照しながら本発明の第5の実施形態について詳しく説明する。
 上記第4の実施形態では、キャリブレーションパターンがマスクにより配置される形態の一例について説明した。第4の実施形態では、マスクの光透過領域である開口部はマスクの片側のマスクパターン面に複数設置され、流路を細胞が移動する流線の向きがマスクのマスクパターン面に対して傾いて備えられていた。本実施形態では、流路の流線の向きはマスクのマスクパターン面の方向と平行に設置され、マスクの複数の開口部は光検出用光学系の光軸の方向について互いに異なる位置に設けられている場合について説明する。
 本実施形態に係るフローサイトメータをフローサイトメータ1dといい、流路を流路20dという。本実施形態に係るマスクを、マスク51dという。
(Fifth embodiment)
A fifth embodiment of the present invention will be described in detail below with reference to the drawings.
In the fourth embodiment described above, an example of a form in which the calibration patterns are arranged using a mask has been described. In the fourth embodiment, a plurality of openings, which are light transmission regions of the mask, are provided on the mask pattern surface on one side of the mask, and the direction of the stream line along which the cells move in the channel is inclined with respect to the mask pattern surface of the mask. was prepared. In this embodiment, the direction of the flow line of the flow channel is set parallel to the direction of the mask pattern surface of the mask, and the plurality of openings of the mask are provided at different positions with respect to the direction of the optical axis of the optical system for photodetection. I will explain the case where
The flow cytometer according to this embodiment is called a flow cytometer 1d, and the channel is called a channel 20d. The mask according to this embodiment is called a mask 51d.
 本実施形態に係るフローサイトメータ1dの構成と、第4の実施形態に係るフローサイトメータ1cの構成とは、マスク51dの複数の開口部の位置が光検出用光学系の光軸の方向に互いに異なる点と、流路20dがマスク51dのマスクパターン面MPd面の方向に略平行に備えられる点以外は同様である。第4の実施形態と同じ機能の説明は省略し、第5の実施形態では、第4の実施形態と異なる部分を中心に説明する。 The configuration of the flow cytometer 1d according to the present embodiment and the configuration of the flow cytometer 1c according to the fourth embodiment are such that the positions of the plurality of openings of the mask 51d are aligned in the direction of the optical axis of the optical system for photodetection. They are the same except that they are different from each other and that the channel 20d is provided substantially parallel to the direction of the mask pattern surface MPd of the mask 51d. The description of the same functions as those of the fourth embodiment will be omitted, and the description of the fifth embodiment will focus on the portions that differ from those of the fourth embodiment.
 図19は、本実施形態に係るマスク51dの配置の側面図(流路20dをx軸方向から見た図)の一例を示す図である。なお図19でも、キャリブレーションパターンがマスクにより配置される実施形態の説明のため、マスク51dの光学情報ICの生成のための信号光が透過するマスク51dにおける光透過部については図中には記載されていない。
 本実施形態では、流路20dから光検出器6の間の光路に、レンズ49、マスク51d、結像レンズ51がこの順に配置される。図19の例では、レンズ49とマスク51dが空間光変調部4dを、結像レンズ50が光検出用光学系5を構成する。本実施形態では、流路の深さ方向と光検出用光学系の光軸OXの方向(Z軸方向)が一致する。
FIG. 19 is a diagram showing an example of a side view (a view of the flow path 20d viewed from the x-axis direction) of the disposition of the mask 51d according to this embodiment. In FIG. 19 as well, in order to explain the embodiment in which the calibration pattern is arranged by the mask, the light transmitting portion of the mask 51d through which the signal light for generating the optical information IC of the mask 51d is transmitted is not shown in the figure. It has not been.
In this embodiment, the lens 49, the mask 51d, and the imaging lens 51 are arranged in this order on the optical path between the flow path 20d and the photodetector 6. FIG. In the example of FIG. 19, the lens 49 and the mask 51d constitute the spatial light modulator 4d, and the imaging lens 50 constitutes the optical system 5 for photodetection. In this embodiment, the depth direction of the flow path and the direction of the optical axis OX of the optical system for photodetection (Z-axis direction) match.
 ここで図20及び図21を参照し、マスク51dについて説明する。図20は、本実施形態に係るマスク51dの正面図の一例を示す図である。正面図とは、マスク51dを流路20dの側(z軸方向)から見た図である。図21は、本実施形態に係るマスク51dの側面図である。側面図とは、マスク51dを光軸OXに沿って横側(x軸方向)から見た図である。図17と同様に、マスク51dは、表面515d側において光を透過させる領域として開口部511dを有する。一方、マスク51dは、表面515dの裏側の面にも光を透過させる領域として開口部512dを有する。なお図20及び21においても、キャリブレーションパターンがマスクにより配置される実施形態の説明のため、マスク51dの光学情報ICの生成のための信号光が透過する光透過部の位置は図中には記載されていない。従って、図中のマスク51dは、開口部511d、及び開口部512d以外は光を透過しない構成として記載されているが、実際の構成では光学情報ICの生成のための信号光が透過する光透過部が存在する。 The mask 51d will now be described with reference to FIGS. 20 and 21. FIG. FIG. 20 is a diagram showing an example of a front view of the mask 51d according to this embodiment. The front view is a view of the mask 51d viewed from the flow channel 20d side (z-axis direction). FIG. 21 is a side view of the mask 51d according to this embodiment. A side view is a view of the mask 51d viewed from the lateral side (x-axis direction) along the optical axis OX. Similar to FIG. 17, the mask 51d has an opening 511d as a light-transmitting region on the surface 515d side. On the other hand, the mask 51d also has openings 512d on the back side of the surface 515d as regions through which light is transmitted. In FIGS. 20 and 21 as well, for the purpose of explaining the embodiment in which the calibration pattern is arranged by the mask, the position of the light transmitting portion through which the signal light for generating the optical information IC of the mask 51d is transmitted is shown in the drawings. Not listed. Therefore, although the mask 51d in the drawing is described as having a structure that does not transmit light except for the openings 511d and 512d, the actual structure is such that the signal light for generating the optical information IC is transmitted. part exists.
 図21に示すように、マスク51dは、表面515dの裏側に溝部513dを有する。開口部511dは、表面515dの面の溝部513dに対応する位置に設けられる。一方、マスク51dは、表面515dの面に溝部514dを有する。開口部512dは、表面515dの裏側面の溝部514dに対応する位置に設けられる。マスク51dでは、表面515dの面がマスクパターン面MP1dに、表面515dの裏側の面がマスクパターン面MP2dに対応する。即ち、マスク51cでは、表面515dの面と表面515dの裏側の面の両方がマスクパターン面MPdとなる。マスク51dにおいて開口部と溝部は共に信号光が透過する領域であるが、いずれのマスクパターン面においても開口部は溝部よりも光を透過する領域が小さく設計されている。 As shown in FIG. 21, the mask 51d has grooves 513d on the back side of the surface 515d. The opening 511d is provided at a position corresponding to the groove 513d on the surface 515d. On the other hand, the mask 51d has grooves 514d on the surface 515d. The opening 512d is provided at a position corresponding to the groove 514d on the back side of the surface 515d. In the mask 51d, the surface of the surface 515d corresponds to the mask pattern surface MP1d, and the surface behind the surface 515d corresponds to the mask pattern surface MP2d. That is, in the mask 51c, both the surface of the surface 515d and the surface on the back side of the surface 515d are mask pattern surfaces MPd. In the mask 51d, both the openings and the grooves are regions through which the signal light is transmitted, but in any mask pattern surface, the openings are designed to have smaller light-transmitting regions than the grooves.
 開口部511dと、開口部512dとは、マスク51dの厚みの方向において互いに異なる深さの位置に設けられている。ここでマスク51dの厚みの方向は、光軸OXの方向であり、マスク51dは、複数の光透過領域が光軸OXの方向について互いに異なる位置に設けられている。本実施形態では、流路の深さ方向と光軸OXの方向(z軸方向)が一致するので、マスク51dは、光を透過させる領域として、流路の深さ方向について互いに異なる位置に設けられた複数の開口部を有することになる。 The opening 511d and the opening 512d are provided at different depth positions in the thickness direction of the mask 51d. Here, the direction of the thickness of the mask 51d is the direction of the optical axis OX, and the mask 51d is provided with a plurality of light transmission regions at different positions with respect to the direction of the optical axis OX. In the present embodiment, since the depth direction of the flow path and the direction of the optical axis OX (z-axis direction) match, the masks 51d are provided at different positions in the depth direction of the flow path as regions for transmitting light. It will have a plurality of openings that are aligned with each other.
 図19に戻ってマスク51dの配置の説明を続ける。
 本実施形態に係るフローサイトメータ1dでは、マスク51d上のマスクパターン面MPdは細胞Cから発せられる信号光LSが進む光軸OXの方向と直交する向きに設置されている。マスク51dと流路20dとの間にはレンズ49が、マスク51dと光検出器6との間には結像レンズ50が、それぞれ備えられる。図19に記載される例では、空間光変調部5d(不図示)はレンズ49とマスク51dにより、光検出用光学系5(不図示)は結像レンズ50により構成されるが、光検出用光学系5(不図示)はさらにダイクロイックミラーや波長選択的なフィルターを備えてもよい。
Returning to FIG. 19, the description of the arrangement of the mask 51d is continued.
In the flow cytometer 1d according to this embodiment, the mask pattern surface MPd on the mask 51d is set in a direction orthogonal to the direction of the optical axis OX along which the signal light LS emitted from the cells C travels. A lens 49 is provided between the mask 51d and the channel 20d, and an imaging lens 50 is provided between the mask 51d and the photodetector 6, respectively. In the example shown in FIG. 19, the spatial light modulator 5d (not shown) is composed of a lens 49 and a mask 51d, and the photodetection optical system 5 (not shown) is composed of an imaging lens 50. Optical system 5 (not shown) may further comprise a dichroic mirror or a wavelength selective filter.
 流路20dには光源(不図示)からの照明光LE(不図示)が照射される。照明光LEが照射される位置を通過する細胞から発せられる信号光LSは空間光変調部4d及び光検出用光学系5を介して光検出器6に集光される。空間光変調部4dを構成するマスク51dは、流路20dを通過する細胞の深さ方向位置PPを検出する位置であるキャリブレーションパターンの位置CPdと光学的に共役な位置に開口部を有しており、その構成により、細胞Cが発する信号光LSは、マスク51dの光透過領域である開口部を介して光検出器6で検出される。上述のように、マスク51dは、光を透過させる領域として、流路の深さ方向について互いに異なる位置に設けられた開口部511dと開口部512dを有する。マスク51dは、図19に示すように、マスクパターン面MP1dの面においては流線FX1上のキャリブレーションパターンの位置CP1dと光学的に共役な位置であるICP1dの位置に開口部511dが、マスクパターン面MP2dの面においては流線FX3上キャリブレーションパターンの位置CP2dと光学的に共役な位置であるICP2dの位置に開口部512dが、それぞれ設置されている。すなわち、本実施形態では、フローサイトメータ1dは、流路20dの異なった深さ方向位置PPの予め定められた位置に設置される検出位置(図19ではキャリブレーションパターンの位置CP1dとCP2d)と結像関係を成す位置に、マスク51dの光透過領域の位置(図19ではマスク51dの開口部にあたるICP1dとICP2dの位置)が設置される。そのため、異なった深さ方向位置PPに設置される検出位置にキャリブレーションパターンを照射して細胞Cの深さ方向位置PPを算出する場合と同様に、マスク51dの光透過領域を透過する信号光LSを光検出器6で検出することで、予め定められた位置を検出位置として通過する細胞の深さ方向位置PPを検出することが可能になる。その場合、先の実施形態と同様に、流線FX1上のキャリブレーションパターンの位置CP1dに対応する位置ICP1dに備えられる開口部511dを介する計測信号SGを計測した場合、流路20dを通過する細胞Cの深さ方向位置PPが流線FX1の位置から離れるほど、細胞Cの深さ方向位置PPが流線FX1の位置と一致している場合に比べて、光検出器6で計測される計測信号SGのピーク値は小さくなり、幅は広くなる。また、流線FX3上のキャリブレーションパターンの位置CP2dに対応する位置ICP2dに備えられる開口部512dを介する計測信号SGを計測した場合、細胞Cの深さ方向位置PPが流線FX3の位置から離れるほど、深さ方向位置PPが流線FX3の位置と一致している場合に比べて、光検出器6で計測される計測信号SGのピーク値は小さくなり、幅は広くなる。このように、フローサイトメータ1dでは、マスク51dの異なるマスクパターン面MPdにそれぞれ開口部を設け、流路を流れる細胞Cから発せられた信号光LSを、光軸OX方向について異なる位置に設置されている開口部を介して光検出器6で検出することで、流路20dにおける細胞Cの深さ方向位置PPが検出される。 The passage 20d is irradiated with illumination light LE (not shown) from a light source (not shown). The signal light LS emitted from cells passing through the position irradiated with the illumination light LE is focused on the photodetector 6 via the spatial light modulator 4d and the photodetection optical system 5 . The mask 51d constituting the spatial light modulation section 4d has an opening at a position optically conjugate with the position CPd of the calibration pattern, which is the position for detecting the depth direction position PP of the cells passing through the channel 20d. Due to this configuration, the signal light LS emitted by the cell C is detected by the photodetector 6 through the opening, which is the light transmission region of the mask 51d. As described above, the mask 51d has the opening 511d and the opening 512d provided at different positions in the depth direction of the flow channel as light transmitting regions. As shown in FIG. 19, the mask 51d has an opening 511d at a position ICP1d that is optically conjugate with the position CP1d of the calibration pattern on the streamline FX1 on the mask pattern surface MP1d. On the plane MP2d, openings 512d are provided at positions of ICP2d that are optically conjugate with the position CP2d of the calibration pattern on the streamline FX3. That is, in the present embodiment, the flow cytometer 1d has detection positions (calibration pattern positions CP1d and CP2d in FIG. The positions of the light transmission regions of the mask 51d (in FIG. 19, the positions of ICP1d and ICP2d corresponding to the openings of the mask 51d) are set at positions forming an image forming relationship. Therefore, similarly to the case of calculating the depth direction position PP of the cell C by irradiating the calibration pattern to the detection positions set at different depth direction positions PP, the signal light transmitted through the light transmission region of the mask 51d By detecting LS with the photodetector 6, it becomes possible to detect the depth direction position PP of the cell passing through a predetermined position as the detection position. In that case, as in the previous embodiment, when measuring the measurement signal SG through the opening 511d provided at the position ICP1d corresponding to the position CP1d of the calibration pattern on the streamline FX1, cells passing through the flow channel 20d As the depth direction position PP of the cell C is further away from the position of the streamline FX1, the measurement measured by the photodetector 6 is more effective than when the depth direction position PP of the cell C coincides with the position of the streamline FX1. The signal SG has a smaller peak value and a wider width. Further, when measuring the measurement signal SG through the opening 512d provided at the position ICP2d corresponding to the position CP2d of the calibration pattern on the streamline FX3, the depth direction position PP of the cell C separates from the position of the streamline FX3. As the depth direction position PP coincides with the position of the streamline FX3, the peak value of the measurement signal SG measured by the photodetector 6 becomes smaller and the width becomes wider. In this way, in the flow cytometer 1d, openings are provided in different mask pattern surfaces MPd of the mask 51d, respectively, and the signal light LS emitted from the cells C flowing through the flow channel is set at different positions along the optical axis OX direction. The depth direction position PP of the cell C in the channel 20d is detected by detecting with the photodetector 6 through the opening.
[第5の実施形態のまとめ]
 以上に説明したように、本実施形態に係るフローサイトメータ1dでは、マスク51dは、光透過領域として、光軸OXの方向について互いに異なる位置に設けられた複数の開口部(本実施形態において開口部511d及び開口部512d)を有する。
[Summary of the fifth embodiment]
As described above, in the flow cytometer 1d according to this embodiment, the mask 51d has a plurality of openings (in this embodiment, openings It has a portion 511d and an opening 512d).
 この構成により、本実施形態に係るフローサイトメータ1dでは、流路20dをマスク51dのマスクパターン面MPdに対して傾けることなく、流路20dにおいて細胞Cが通過する深さ方向位置PPを検出するための複数の検出位置(図19では流線FX1上のキャリブレーションパターンの位置CP1dと流線FX3上のキャリブレーションパターンの位置CP2d)を光軸OXの方向について互いに異なる位置に設置でき、その構成により流路20dにおいて細胞Cが通過する深さ方向位置PPを検出することができる。 With this configuration, the flow cytometer 1d according to the present embodiment detects the depth direction position PP through which the cells C pass in the channel 20d without tilting the channel 20d with respect to the mask pattern surface MPd of the mask 51d. (in FIG. 19, the calibration pattern position CP1d on the streamline FX1 and the calibration pattern position CP2d on the streamline FX3) can be set at different positions with respect to the direction of the optical axis OX, and the configuration , the depth direction position PP through which the cell C passes in the channel 20d can be detected.
(第6の実施形態)
 以下、図面を参照しながら本発明の第6の実施形態について詳しく説明する。
 本実施形態では、情報生成装置が生成する光学情報に基づいて流路を流れる細胞を判別する場合について説明をする。
 本実施形態に係るフローサイトメータをフローサイトメータ1eといい、演算装置を演算装置10eという。フローサイトメータ1eの構成は、一例として、上記第1の実施形態に係るフローサイトメータ1の構成と、演算装置10が異なる以外は同様である。第1の実施形態と同じ機能の説明は省略し、第6の実施形態では、第1の実施形態と異なる部分を中心に説明する。なお、フローサイトメータ1eの構成は、演算装置10e以外の構成については、上記第1の実施形態以外の第2、第3、第4、及び第5の実施形態に係るフローサイトメータの構成と同様であってもよい。
(Sixth embodiment)
A sixth embodiment of the present invention will be described in detail below with reference to the drawings.
In this embodiment, a case will be described in which cells flowing through a channel are discriminated based on optical information generated by an information generation device.
The flow cytometer according to this embodiment is called a flow cytometer 1e, and the arithmetic device is called an arithmetic device 10e. The configuration of the flow cytometer 1e is, as an example, the same as the configuration of the flow cytometer 1 according to the first embodiment except that the arithmetic device 10 is different. A description of the same functions as those of the first embodiment will be omitted, and a description of the sixth embodiment will focus on portions that differ from those of the first embodiment. The configuration of the flow cytometer 1e is the same as that of the flow cytometers according to the second, third, fourth, and fifth embodiments other than the first embodiment except for the configuration of the arithmetic device 10e. It may be the same.
[演算装置]
 図22は、本実施形態に係る演算装置10eの構成の一例を示す図である。本実施形態に係る演算装置10e(図22)と第1の実施形態に係る演算装置10(図8)とを比較すると、光学情報取得部114e、位置判定部115e、判別部116e、学習部117e、及び記憶部118eが異なる。ここで、他の構成要素(信号強度取得部110、位置算出部111、出力部112、及びスキャン部113)が持つ機能は第1の実施形態と同じである。
[Arithmetic unit]
FIG. 22 is a diagram showing an example of the configuration of an arithmetic device 10e according to this embodiment. Comparing the arithmetic device 10e (FIG. 22) according to the present embodiment with the arithmetic device 10 (FIG. 8) according to the first embodiment, an optical information acquisition unit 114e, a position determination unit 115e, a determination unit 116e, and a learning unit 117e , and storage unit 118e. Here, the functions of the other components (the signal strength acquisition unit 110, the position calculation unit 111, the output unit 112, and the scanning unit 113) are the same as in the first embodiment.
 制御部11eは、信号強度取得部110、位置算出部111、出力部112、及びスキャン部113に加え、光学情報取得部114e、位置判定部115e、判別部116e、学習部117e、及び記憶部118eを備える。 In addition to the signal intensity acquisition unit 110, the position calculation unit 111, the output unit 112, and the scan unit 113, the control unit 11e includes an optical information acquisition unit 114e, a position determination unit 115e, a determination unit 116e, a learning unit 117e, and a storage unit 118e. Prepare.
 光学情報取得部114eは、PC8によって生成される光学情報ICを取得する。
 位置判定部115eは、出力部112が出力する位置情報IPが示す細胞Cの深さ方向位置PPが光軸OXの方向について流路内の所定の範囲内であるか否かを判定する。光軸OXの方向とは流路の深さ方向である。
 判別部116eは、機械学習に基づいて、PC8が生成する光学情報ICに基づいて細胞Cを判別する。判別部116eは、位置判定部115eの判定結果に基づいて、所定の範囲である領域Z1内を流れる細胞Cを判別対象とする。
The optical information acquisition unit 114e acquires the optical information IC generated by the PC8.
The position determination unit 115e determines whether the depth direction position PP of the cell C indicated by the position information IP output by the output unit 112 is within a predetermined range in the flow path in the direction of the optical axis OX. The direction of the optical axis OX is the depth direction of the channel.
The discrimination unit 116e discriminates the cell C based on the optical information IC generated by the PC 8 based on machine learning. Based on the determination result of the position determination unit 115e, the determination unit 116e determines the cells C flowing within the region Z1, which is a predetermined range.
 ここで図23を参照し、領域Z1について説明する。図23は、本実施形態に係る領域Z1の一例を示す図である。図23では、流路20を流れる細胞Cについて、流路20を通過する際の深さ方向位置PPを測定し、流路20の深さ方向位置について取り得る値の範囲を所定の区間に区切った場合に、所定の区間に深さ方向位置の測定値が含まれる細胞Cの数を所定の区間毎に示すヒストグラムである。判別部116eは、流路20を通過する細胞Cのうち、領域Z1内に含まれる範囲の区分を通過する測定値に対応する細胞Cの光学情報ICを判別対象とする。
 領域Z1は、例えば図23で示されるように、流路20を通過する細胞Cの深さ方向位置PPにおいて、初期の細胞Cの通過位置を中心に所定の距離だけずれた位置を含む区分までの線分である。
Now, with reference to FIG. 23, the region Z1 will be described. FIG. 23 is a diagram showing an example of the area Z1 according to this embodiment. In FIG. 23, the depth direction position PP of the cell C flowing through the channel 20 is measured when passing through the channel 20, and the range of possible values for the depth direction position of the channel 20 is divided into predetermined sections. 10 is a histogram showing the number of cells C for which the measured value of the depth direction position is included in a predetermined section in each predetermined section when the number of the cells C is included in the predetermined section. Of the cells C passing through the channel 20, the determination unit 116e determines the optical information IC of the cells C corresponding to the measurement values passing through the range included in the region Z1.
As shown in FIG. 23, for example, the region Z1 extends to a section including a position shifted by a predetermined distance from the initial passage position of the cell C in the depth direction position PP of the cell C passing through the channel 20. is a line segment of
 なお、位置判定部115eは、深さ方向位置PPの測定値に代えて、深さ方向位置PPに関する量の測定値に基づいて、流路20を流れる細胞Cが領域Z1に対応する領域に含まれるか否かを判定してもよい。領域Z1に対応する領域とは、深さ方向位置PPに関する測定値が表示される線分において、領域Z1に対応する領域である。 Note that the position determining unit 115e determines that the cells C flowing through the flow path 20 are included in the region corresponding to the region Z1 based on the measured value of the amount related to the depth direction position PP instead of the depth direction position PP. It may be determined whether or not The area corresponding to the area Z1 is the area corresponding to the area Z1 in the line segment on which the measured value for the depth direction position PP is displayed.
 図22に戻って演算装置10eの構成の説明を続ける。
 学習部117eは、機械学習を実行する。学習部117eは、学習用の細胞と、学習用の細胞についての光学情報ICとの関係を学習する。学習部117eが実行する機械学習とは、一例として、深層学習である。
Returning to FIG. 22, the description of the configuration of the arithmetic unit 10e is continued.
The learning unit 117e executes machine learning. The learning unit 117e learns the relationship between the learning cell and the optical information IC about the learning cell. The machine learning performed by the learning unit 117e is, for example, deep learning.
 本実施形態では、フローサイトメータ1eを用いて細胞Cを測定し、測定時に流路20の領域Z1内を流れる細胞Cの測定値を用いて機械学習が実行される。以降本明細書では、フローサイトメータ1eを用いて学習用の細胞Cを測定した際に流路20の領域Z1内を流れた細胞について学習用細胞とも呼ぶことがある。 In this embodiment, the cells C are measured using the flow cytometer 1e, and machine learning is performed using the measured values of the cells C flowing in the region Z1 of the channel 20 during measurement. Henceforth, in this specification, the cell which flowed through the area|region Z1 of the flow path 20 when the cell C for learning was measured using the flow cytometer 1e may also be called a cell for learning.
 ここで図24を参照し、学習用細胞についての領域Z1についてさらに説明する。図24は、本実施形態に係る学習用細胞についての領域Z1の一例を示す図である。図24(A)には、細胞Cについて機械学習を実行するため、フローサイトメータ1eを用いて学習用の測定を行った際に、細胞Cが流路20内を通過した深さ方向位置PPを測定し、流路の深さ方向位置について取り得る値の範囲を所定の区間に区切った場合に、所定の区間に深さ方向位置の測定値が含まれる細胞Cの数を所定の区間毎に示すヒストグラムである。比較のために図24(B)に、機械学習の推論時において細胞Cが通過した深さ方向位置を測定し、深さ方向位置について取り得る値の範囲を所定の区間に区切った場合に、所定の区間に深さ方向位置の測定値が含まれる細胞Cの数を所定の区間毎に示すヒストグラムを示す。 Here, with reference to FIG. 24, the region Z1 for learning cells will be further described. FIG. 24 is a diagram showing an example of a region Z1 for learning cells according to this embodiment. FIG. 24(A) shows the depth direction position PP at which the cell C passed through the channel 20 when the flow cytometer 1e was used to perform learning measurement in order to perform machine learning on the cell C. is measured, and the range of values that can be taken for the depth direction position of the channel is divided into predetermined sections, and the number of cells C that include the measured value of the depth direction position in the predetermined section is calculated for each predetermined section is a histogram shown in . For comparison, in FIG. 24(B), when the depth direction position through which the cell C passed during machine learning inference is measured, and the range of possible values for the depth direction position is divided into predetermined sections, FIG. 11 shows a histogram showing the number of cells C whose depth direction position measurement values are included in a predetermined section for each predetermined section; FIG.
 本実施形態では、学習部117eが学習時に用いる学習用の細胞Cに関する情報は、領域Z1内を流れる細胞Cから取得した光学情報ICである。またこの領域Z1は、判別部116eが推論時に判別対象とする細胞Cが流れる領域Z1と同じである。つまり、学習用細胞とは、判別部116eが判別対象とする細胞Cが流れる領域Z1と同じ領域Z1内を流れる細胞Cである。 In this embodiment, the information about the learning cells C used by the learning unit 117e during learning is the optical information IC acquired from the cells C flowing in the region Z1. Also, this region Z1 is the same as the region Z1 in which the cell C to be discriminated by the discrimination unit 116e at the time of inference flows. In other words, the learning cell is the cell C flowing in the same region Z1 as the region Z1 in which the cell C to be determined by the determination unit 116e flows.
 図22に戻って演算装置10eの構成の説明を続ける。
 記憶部118eは、種々の情報を記憶する。記憶部118eが記憶する情報には、学習結果LDeが含まれる。学習結果LDeは、学習部117eによって学習が実行された結果である。学習結果LDeは、予め学習が実行されて記憶部118eに記憶される。
Returning to FIG. 22, the description of the configuration of the arithmetic unit 10e is continued.
The storage unit 118e stores various information. Information stored in the storage unit 118e includes the learning result LDe. The learning result LDe is the result of learning performed by the learning unit 117e. The learning result LDe is previously learned and stored in the storage unit 118e.
[細胞判別処理]
 次に図25を参照し、演算装置10eが細胞Cを判別する処理である細胞判別処理について説明する。図25は、本実施形態に係る細胞判別処理の一例を示す図である。図25に示す細胞判別処理は、1個の細胞Cに対して実行される。流路20を流れる複数の細胞に対して実行される細胞判別処理は、図25に示す細胞判別処理を1単位として複数の細胞に対して繰り返し実行される。
[Cell discrimination process]
Next, with reference to FIG. 25, a cell discrimination process, which is a process of discriminating a cell C by the arithmetic unit 10e, will be described. FIG. 25 is a diagram showing an example of cell discrimination processing according to this embodiment. The cell discrimination processing shown in FIG. 25 is executed for one cell C. In FIG. The cell discrimination process performed on a plurality of cells flowing through the channel 20 is repeatedly performed on a plurality of cells with the cell discrimination process shown in FIG. 25 as one unit.
ステップS210:位置判定部115eは、出力部112が出力する位置情報IPを取得する。
ステップS220:位置判定部115eは、出力部112が出力する位置情報IPが示す細胞Cの深さ方向位置PPが流路20の深さ方向において所定の範囲である領域Z1内であるか否かを判定する。
Step S210: The position determination unit 115e acquires the position information IP output by the output unit 112. FIG.
Step S220: The position determination unit 115e determines whether the depth direction position PP of the cell C indicated by the position information IP output by the output unit 112 is within the region Z1, which is a predetermined range in the depth direction of the channel 20. judge.
 位置判定部115eが、細胞Cの深さ方向位置PPが流路20の深さ方向について領域Z1内であると判定した場合(ステップS220;YES)、制御部11eはステップS230の処理を実行する。一方、位置判定部115eが、流路20を通過する細胞Cの深さ方向位置PPが流路20の深さ方向について領域Z1内でないと判定した場合(ステップS220;NO)、制御部11eは、細胞判別処理を終了する。 When the position determination unit 115e determines that the depth direction position PP of the cell C is within the region Z1 in the depth direction of the channel 20 (step S220; YES), the control unit 11e executes the process of step S230. . On the other hand, when the position determination unit 115e determines that the depth direction position PP of the cell C passing through the channel 20 is not within the region Z1 in the depth direction of the channel 20 (step S220; NO), the control unit 11e , terminate the cell discrimination process.
ステップS230:光学情報取得部114eは、PC8によって生成される光学情報ICを取得する。光学情報取得部114eは、取得した光学情報ICを判別部116eに供給する。 Step S230: The optical information acquisition unit 114e acquires the optical information IC generated by the PC8. The optical information acquisition unit 114e supplies the acquired optical information IC to the determination unit 116e.
ステップS240:判別部116eは、学習結果LDeと、PC8が生成する光学情報ICとに基づいて細胞Cを判別する。ここで上述したように、学習結果LDeは、学習用細胞と、学習用細胞についての光学情報との関係が学習された結果である。例えば、機械学習として深層学習が用いられる場合、学習結果LDeは、光学情報を入力すると細胞の種類を出力するように学習が行われたニューラルネットワークを示す。 Step S240: The discrimination unit 116e discriminates the cell C based on the learning result LDe and the optical information IC generated by the PC8. As described above, the learning result LDe is the result of learning the relationship between the learning cell and the optical information about the learning cell. For example, when deep learning is used as machine learning, the learning result LDe indicates a neural network trained to output cell types when optical information is input.
 判別部116eは、PC8が生成する光学情報ICを学習結果LDeが示すニューラルネットワークに入力する。判別部116eは、学習結果LDeが示すニューラルネットワークが出力する細胞の種類が、所望の細胞の種類であるか否かを判定する。 The determination unit 116e inputs the optical information IC generated by the PC 8 to the neural network indicated by the learning result LDe. The determination unit 116e determines whether or not the type of cell output by the neural network indicated by the learning result LDe is the desired type of cell.
 ステップS240における処理は、ステップS220の処理において位置判定部115eが、流路20を通過する細胞Cの深さ方向位置PPが光軸OXの方向について領域Z1内であると判定した場合に実行される。つまり、判別部116eは、位置判定部115eの判定結果に基づいて、所定の範囲である領域Z1内を流れる細胞Cを判別対象とする。 The processing in step S240 is executed when the position determination unit 115e determines in the processing in step S220 that the depth direction position PP of the cell C passing through the channel 20 is within the region Z1 in the direction of the optical axis OX. be. In other words, the determination unit 116e determines the cells C flowing within the region Z1, which is a predetermined range, as determination targets based on the determination result of the position determination unit 115e.
ステップS250:判別部116eは、判別結果を、出力部112を介して外部装置に出力する。ここで外部装置とは、例えば、細胞Cを分取する分取部である。フローサイトメータ1eが分取部を備える場合、フローサイトメータ1eは、セルソータとして機能する。
 以上で、演算装置10は、細胞判別処理を終了する。
Step S250: The determination unit 116e outputs the determination result to an external device via the output unit 112. FIG. Here, the external device is, for example, a sorting unit that sorts the cells C. As shown in FIG. When the flow cytometer 1e is equipped with a sorting section, the flow cytometer 1e functions as a cell sorter.
With this, the arithmetic device 10 ends the cell discrimination processing.
 なお、本実施形態では、学習部117eが演算装置10eに備えられて、演算装置10が機械学習を実行する場合の一例について説明したが、これに限らない。機械学習は、外部装置によって実行されてもよい。機械学習が外部装置によって実行される場合、演算装置10eは、外部装置によって機械学習が実行された学習結果を、外部装置から取得して記憶部118eに記憶させて、細胞判別処理に用いる。 In the present embodiment, an example in which the learning unit 117e is provided in the arithmetic device 10e and the arithmetic device 10 executes machine learning has been described, but the present invention is not limited to this. Machine learning may be performed by an external device. When machine learning is performed by an external device, the arithmetic device 10e acquires the learning result of the machine learning performed by the external device from the external device, stores it in the storage unit 118e, and uses it for the cell discrimination process.
[第6の実施形態のまとめ]
 以上に説明したように、本実施形態に係るフローサイトメータ1eでは、
 演算装置(本実施形態においてPC8)は、判別部116eと、位置判定部115eとを備える。
 判別部116eは、情報生成装置(本実施形態においてPC8)が生成する光学情報ICに基づいて観測対象物(本実施形態において細胞C)を判別する。
 位置判定部115eは、出力部112が出力する位置情報IPが示す流路20を通過する細胞Cの深さ方向位置PPが、光軸OXの方向について所定の範囲(本実施形態において領域Z1)内であるか否かを判定する。
 判別部116eは、位置判定部115eの判定結果に基づいて、所定の範囲(本実施形態において領域Z1)内を流れる観測対象物(本実施形態において細胞C)を判別対象とする。
[Summary of the sixth embodiment]
As described above, in the flow cytometer 1e according to this embodiment,
The computing device (the PC 8 in this embodiment) includes a determination unit 116e and a position determination unit 115e.
The discrimination unit 116e discriminates an observation target (cell C in this embodiment) based on optical information IC generated by an information generation device (PC 8 in this embodiment).
The position determination unit 115e determines that the depth direction position PP of the cell C passing through the channel 20 indicated by the position information IP output by the output unit 112 is within a predetermined range (region Z1 in this embodiment) in the direction of the optical axis OX. It is determined whether or not it is within
Based on the determination result of the position determination unit 115e, the determination unit 116e determines an observation object (cell C in this embodiment) flowing within a predetermined range (region Z1 in this embodiment) as a determination target.
 この構成により、本実施形態に係るフローサイトメータ1eでは、流路20において所定の範囲内を流れる観測対象物のみを判別対象とできるため、観測対象物を判別するための解析結果(光学情報IC)が流線の深さ方向の位置ずれに依存してばらつくことを低減できる。本実施形態に係るフローサイトメータ1eでは、深さ方向位置PPを示す位置情報IPを元にゲーティングを行い揃ったデータを得ることができるので、位置情報IPに基づいたゲーティングを行わない場合に比べてよりばらつきが抑えられた安定したデータ解析を実現できる。 With this configuration, in the flow cytometer 1e according to the present embodiment, only the observation target flowing within the predetermined range in the flow path 20 can be identified, so that the analysis result (optical information IC ) can be reduced depending on the displacement of the streamlines in the depth direction. In the flow cytometer 1e according to the present embodiment, gating can be performed based on the position information IP indicating the depth direction position PP to obtain complete data. It is possible to realize stable data analysis with less variation compared to .
 また、本実施形態に係るフローサイトメータ1eでは、判別部116eは、学習用の観測対象物(本実施形態において学習用細胞)と、学習用の観測対象物についての光学情報ICとの関係が学習された学習結果LDeに基づく推論モデルと、情報生成装置(本実施形態においてPC8)が生成する光学情報ICとに基づいて観測対象物(本実施形態において細胞C)を判別する。
 また、学習用の観測対象物(本実施形態において学習用細胞)とは、所定の範囲(本実施形態において領域Z1)内を流れる観測対象物(本実施形態において細胞)である。
Further, in the flow cytometer 1e according to the present embodiment, the determination unit 116e determines the relationship between the learning observation target (learning cell in this embodiment) and the optical information IC for the learning observation target. The object to be observed (cell C in this embodiment) is discriminated based on the inference model based on the learned learning result LDe and the optical information IC generated by the information generating device (PC 8 in this embodiment).
Further, the learning observation object (learning cell in this embodiment) is an observation object (cell in this embodiment) flowing within a predetermined range (region Z1 in this embodiment).
 この構成により、本実施形態に係るフローサイトメータ1eでは、所定の範囲内を流れる観測対象物と、学習用の観測対象物についての光学情報ICとの関係が学習された学習結果LDeに基づく推論モデルに基づいて判別処理を実行できるため、学習結果LDeにおける流線の光軸方向の位置ずれの影響を、学習用の観測対象物を所定の範囲内を流れる観測対象物に限定しない場合に比べて小さくできるため、学習結果LDeに基づく機械学習の精度が流線の光軸方向の位置ずれのために低下することを抑制できる。 With this configuration, in the flow cytometer 1e according to the present embodiment, inference based on the learning result LDe obtained by learning the relationship between the observation object flowing within the predetermined range and the optical information IC about the learning observation object Since the discrimination process can be executed based on the model, the influence of the displacement of the streamline in the optical axis direction in the learning result LDe can be reduced compared to the case where the observation target for learning is not limited to the observation target flowing within a predetermined range. Therefore, it is possible to prevent the accuracy of machine learning based on the learning result LDe from deteriorating due to the displacement of the streamline in the optical axis direction.
 なお、上述した実施形態における演算装置10、または演算装置10eの一部、例えば、信号強度取得部110、位置算出部111、出力部112、スキャン部113、光学情報取得部114e、位置判定部115e、判別部116e、及び学習部117eをコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、演算装置10、または演算装置10eに内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、上述した機能の一部を実現するためのものであってもよく、さらに上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 また、上述した実施形態における演算装置10、または演算装置10e一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。演算装置10、または演算装置10eの各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。
In addition, a part of the arithmetic device 10 or the arithmetic device 10e in the above-described embodiment, for example, the signal strength acquisition unit 110, the position calculation unit 111, the output unit 112, the scanning unit 113, the optical information acquisition unit 114e, and the position determination unit 115e , the determination unit 116e, and the learning unit 117e may be realized by a computer. In that case, a program for realizing this control function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. Note that the “computer system” referred to here is a computer system incorporated in the arithmetic device 10 or the arithmetic device 10e, and includes hardware such as an OS and peripheral devices. The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" means a medium that dynamically stores a program for a short period of time, such as a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a volatile memory inside a computer system that serves as a server or client in that case, which holds the program for a certain period of time. Further, the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
Further, part or all of the arithmetic device 10 or the arithmetic device 10e in the above-described embodiments may be implemented as an integrated circuit such as an LSI (Large Scale Integration). Each functional block of the arithmetic device 10 or the arithmetic device 10e may be individually processorized, or part or all of them may be integrated and processorized. Also, the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integration circuit technology that replaces LSI appears due to advances in semiconductor technology, an integrated circuit based on this technology may be used.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 Although one embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to the above, and various design changes, etc., can be made without departing from the gist of the present invention. It is possible to
1…フローサイトメータ、20…流路、2…マイクロ流体装置、50…結像レンズ、6…光検出器、8…PC、10…演算装置、CP…キャリブレーションパターン、C…細胞、OX…光軸、PP…深さ方向位置、SG…計測信号、LS…信号光、IC…光学情報 DESCRIPTION OF SYMBOLS 1... Flow cytometer, 20... Flow path, 2... Microfluidic device, 50... Imaging lens, 6... Photodetector, 8... PC, 10... Arithmetic device, CP... Calibration pattern, C... Cell, OX... Optical axis, PP... depth direction position, SG... measurement signal, LS... signal light, IC... optical information

Claims (11)

  1.  観測対象物が流体と共に流れ得る流路を備えるマイクロ流体装置と、
     前記流路に照明光を照射する光源と、
     前記流路を流れる前記観測対象物に照明光が照射されて前記観測対象物から発せられる信号光の強度を時系列に検出する光検出器と、
     前記光検出器が検出する前記信号光の強度に基づいて前記観測対象物の形状、形態、または構造のうちいずれか1以上を示す光学情報を生成する情報生成装置と、
     前記流路の深さ方向の位置を制御する流路位置制御装置と、
     前記光検出器が検出する前記信号光の強度の時系列変化に基づいて前記観測対象物が前記流路を通過する際の前記流路の深さ方向についての位置である深さ方向位置を検出する演算装置と、
     を備えるフローサイトメータであって、
     前記演算装置は、
     前記深さ方向位置を検出するために前記流路において予め定められた検出位置において検出する前記信号光の強度の時間変化の電子データを取得する信号強度取得部と、
     前記流路位置制御装置を介して前記流路を深さ方向に移動させて異なった深さ位置で前記電子データを取得するためのスキャン処理を行うスキャン部と、
     前記電子データに基づいて前記深さ方向位置を算出する位置算出部と、
     前記位置算出部が算出した前記深さ方向位置を示す位置情報を出力する出力部と、
     を備える
     フローサイトメータ。
    a microfluidic device comprising a channel through which an object to be observed can flow with the fluid;
    a light source that irradiates the flow path with illumination light;
    a photodetector that detects in time series the intensity of signal light emitted from the observation object flowing through the flow path when the observation object is irradiated with illumination light;
    an information generating device that generates optical information indicating at least one of the shape, form, and structure of the observation object based on the intensity of the signal light detected by the photodetector;
    a channel position control device that controls the position of the channel in the depth direction;
    Detecting a depth direction position, which is a position in the depth direction of the flow channel when the observation object passes through the flow channel, based on a time-series change in the intensity of the signal light detected by the photodetector. a computing device that
    A flow cytometer comprising
    The computing device is
    a signal intensity acquisition unit that acquires electronic data of changes over time in the intensity of the signal light detected at a predetermined detection position in the flow path to detect the depth direction position;
    a scanning unit that performs a scanning process for acquiring the electronic data at different depth positions by moving the channel in the depth direction via the channel position control device;
    a position calculation unit that calculates the depth direction position based on the electronic data;
    an output unit that outputs position information indicating the depth direction position calculated by the position calculation unit;
    A flow cytometer.
  2.  前記光源と前記光検出器との間の光路に設置されて、前記照明光または前記信号光のいずれかを構造化する空間光変調部をさらに備える
     請求項1に記載のフローサイトメータ。
    2. The flow cytometer of claim 1, further comprising a spatial light modulator located in the optical path between the light source and the photodetector for structuring either the illumination light or the signal light.
  3.  前記空間光変調部が前記光源と前記流路との間の光路に配置され、前記光源は前記空間光変調部により構造化された前記照明光を前記流路に照射する
     請求項2記載のフローサイトメータ。
    3. The flow according to claim 2, wherein the spatial light modulator is arranged in an optical path between the light source and the flow channel, and the light source irradiates the flow channel with the illumination light structured by the spatial light modulator. cytometer.
  4.  前記流路において、前記検出位置が、前記空間光変調部によって構造化処理された前記照明光により設置される
     請求項3に記載のフローサイトメータ。
    4. The flow cytometer according to claim 3, wherein in said flow path, said detection position is set by said illumination light structured by said spatial light modulator.
  5.  前記空間光変調部が前記流路と前記光検出器との間の光路に配置され、前記光検出器は前記信号光が構造化された信号光の強度を時系列に検出する
     請求項2記載のフローサイトメータ。
    3. The spatial light modulator according to claim 2, wherein the spatial light modulator is arranged in an optical path between the flow channel and the photodetector, and the photodetector detects in time series the intensity of the signal light in which the signal light is structured. flow cytometer.
  6.  前記空間光変調部は、光を透過させる光透過領域を有するマスクを含み、
     前記光透過領域は前記流路の複数の前記検出位置と結像関係を成す位置に配置され、
     前記演算装置は、前記流路の複数の前記検出位置において検出される前記観測対象物により発せられる前記信号光の強度の時間変化に基づいて前記深さ方向位置を検出する
     請求項5に記載のフローサイトメータ。
    The spatial light modulator includes a mask having a light transmission region that transmits light,
    The light transmission region is arranged at a position forming an imaging relationship with the plurality of detection positions of the flow channel,
    6. The depth direction position according to claim 5, wherein the arithmetic unit detects the depth direction position based on the time change of the intensity of the signal light emitted by the observation object detected at the plurality of detection positions of the flow path. flow cytometer.
  7.  前記流路位置制御装置は、前記出力部が出力する前記深さ方向位置を示す情報に基づいて、前記流路の深さ方向の位置を制御する
     請求項1または請求項2記載のフローサイトメータ。
    3. The flow cytometer according to claim 1, wherein the channel position control device controls the position of the channel in the depth direction based on the information indicating the depth direction position output by the output unit. .
  8.  前記演算装置は、
     前記情報生成装置が生成する前記光学情報に基づいて前記観測対象物を判別する判別部と、
     前記出力部が出力する前記位置情報が示す前記深さ方向位置が前記流路における深さ方向について所定の範囲内であるか否かを判定する位置判定部と
     をさらに備え、
     前記判別部は、前記位置判定部の判定結果に基づいて、前記所定の範囲内を流れる前記観測対象物を判別対象とする
     請求項1から請求項7のいずれか一項に記載のフローサイトメータ。
    The computing device is
    a discrimination unit that discriminates the observation object based on the optical information generated by the information generation device;
    a position determination unit that determines whether the depth direction position indicated by the position information output by the output unit is within a predetermined range in the depth direction of the flow channel,
    8. The flow cytometer according to any one of claims 1 to 7, wherein the determination unit determines the observation object flowing within the predetermined range based on the determination result of the position determination unit. .
  9.  前記判別部は、学習用の観測対象物と、前記学習用の観測対象物についての前記光学情報との関係が学習されることにより作成される推論モデルと、前記情報生成装置が生成する前記光学情報とに基づいて前記観測対象物を判別し、
     前記学習用の観測対象物が前記所定の範囲内を流れる観測対象物である
     請求項8に記載のフローサイトメータ。
    The determination unit includes an inference model created by learning a relationship between a learning observation target and the optical information about the learning observation target, and the optical information generated by the information generation device. determining the observation object based on the information;
    The flow cytometer according to claim 8, wherein the observation object for learning is an observation object flowing within the predetermined range.
  10.  観測対象物が流体と共に流れ得る流路を備えるマイクロ流体装置と、
     前記流路に照明光を照射する光源と、
     前記流路を流れる前記観測対象物に照明光が照射されて前記観測対象物から発せられる信号光の強度を時系列に検出する光検出器と、
     前記光検出器が検出する前記信号光の強度に基づいて前記観測対象物の形状、形態、または構造のうちいずれか1以上を示す光学情報を生成する情報生成装置と、前記流路の深さ方向の位置を制御する流路位置制御装置と、
     前記光検出器が検出する前記信号光の強度の時系列変化に基づいて前記観測対象物が前記流路を通過する際の前記流路の深さ方向についての位置である深さ方向位置を検出する演算装置と
     を備えるフローサイトメータにおいて、
     前記深さ方向位置を検出するための位置算出方法であって、
     前記深さ方向位置を検出するために前記流路において予め定められた検出位置において検出する前記信号光の強度の時間変化の電子データを取得する過程と、
     前記流路位置制御装置を介して前記流路を深さ方向に移動させて異なった深さ位置で前記電子データを取得するためのスキャン処理を行う過程と、
     前記電子データに基づいて前記深さ方向位置を算出する位置算出の過程と、
     前記位置算出の過程において算出された前記深さ方向位置を示す位置情報を出力する出力過程と、
     を有する位置算出方法。
    a microfluidic device comprising a channel through which an object to be observed can flow with the fluid;
    a light source that irradiates the flow path with illumination light;
    a photodetector that detects in time series the intensity of signal light emitted from the observation object flowing through the flow path when the observation object is irradiated with illumination light;
    an information generating device that generates optical information indicating at least one of the shape, form, and structure of the object to be observed based on the intensity of the signal light detected by the photodetector; and the depth of the flow path. a channel position control device for controlling the position of the direction;
    Detecting a depth direction position, which is a position in the depth direction of the flow channel when the observation object passes through the flow channel, based on a time-series change in the intensity of the signal light detected by the photodetector. and a flow cytometer comprising
    A position calculation method for detecting the depth direction position,
    a step of acquiring electronic data of changes over time in the intensity of the signal light detected at a predetermined detection position in the flow channel in order to detect the depth direction position;
    a step of moving the flow channel in the depth direction via the flow channel position control device and performing a scanning process for acquiring the electronic data at different depth positions;
    a position calculation process of calculating the depth direction position based on the electronic data;
    an output step of outputting position information indicating the depth direction position calculated in the position calculation process;
    A position calculation method having
  11.  観測対象物が流体と共に流れ得る流路を備えるマイクロ流体装置と、
     前記流路に照明光を照射する光源と、
     前記流路を流れる前記観測対象物に照明光が照射されて前記観測対象物から発せられる信号光の強度を時系列に検出する光検出器と、
     前記光検出器が検出する前記信号光の強度に基づいて前記観測対象物の形状、形態、または構造のうちいずれか1以上を示す光学情報を生成する情報生成装置と、前記流路の深さ方向の位置を制御する流路位置制御装置と、
     前記光検出器が検出する前記信号光の強度の時系列変化に基づいて前記観測対象物が前記流路を通過する際の前記流路の深さ方向についての位置である深さ方向位置を検出する演算装置と
     を備えるフローサイトメータにおいて前記深さ方向位置を検出するための位置算出処理を実行する演算装置に、
     前記深さ方向位置を検出するために前記流路において予め定められた検出位置において検出する前記信号光の強度の時間変化の電子データを取得するステップと、
     前記流路位置制御装置を介して前記流路を深さ方向に移動させて異なった深さ位置で前記電子データを取得するためのスキャン処理を行うステップと、
     前記電子データに基づいて前記深さ方向位置を算出する位置算出のステップと、
     前記位置算出のステップにおいて算出された前記深さ方向位置を示す位置情報を出力する出力ステップと、
     を実行させるためのプログラム。
    a microfluidic device comprising a channel through which an object to be observed can flow with the fluid;
    a light source that irradiates the flow path with illumination light;
    a photodetector that detects in time series the intensity of signal light emitted from the observation object flowing through the flow path when the observation object is irradiated with illumination light;
    an information generating device that generates optical information indicating at least one of the shape, form, and structure of the object to be observed based on the intensity of the signal light detected by the photodetector; and the depth of the flow path. a channel position control device for controlling the position of the direction;
    Detecting a depth direction position, which is a position in the depth direction of the flow channel when the observation object passes through the flow channel, based on a time-series change in the intensity of the signal light detected by the photodetector. A computing device for executing a position calculation process for detecting the depth direction position in a flow cytometer comprising
    a step of obtaining electronic data of changes over time in the intensity of the signal light detected at a predetermined detection position in the flow path for detecting the depth direction position;
    a step of moving the flow channel in the depth direction via the flow channel position control device and performing a scanning process for acquiring the electronic data at different depth positions;
    a position calculation step of calculating the depth direction position based on the electronic data;
    an output step of outputting position information indicating the depth direction position calculated in the position calculation step;
    program to run the
PCT/JP2021/038289 2021-10-15 2021-10-15 Flow cytometer, position calculating method, and program WO2023062831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038289 WO2023062831A1 (en) 2021-10-15 2021-10-15 Flow cytometer, position calculating method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038289 WO2023062831A1 (en) 2021-10-15 2021-10-15 Flow cytometer, position calculating method, and program

Publications (1)

Publication Number Publication Date
WO2023062831A1 true WO2023062831A1 (en) 2023-04-20

Family

ID=85988222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038289 WO2023062831A1 (en) 2021-10-15 2021-10-15 Flow cytometer, position calculating method, and program

Country Status (1)

Country Link
WO (1) WO2023062831A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145836A1 (en) * 2012-03-30 2013-10-03 ソニー株式会社 Microchip optical measuring device and optical position adjustment method for said device
WO2017073737A1 (en) * 2015-10-28 2017-05-04 国立大学法人東京大学 Analysis device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145836A1 (en) * 2012-03-30 2013-10-03 ソニー株式会社 Microchip optical measuring device and optical position adjustment method for said device
WO2017073737A1 (en) * 2015-10-28 2017-05-04 国立大学法人東京大学 Analysis device

Similar Documents

Publication Publication Date Title
US8675195B2 (en) Device for determining particle sizes
US7436507B2 (en) Method and apparatus for inspecting a pattern
JPH05346390A (en) Particle analyzer
US20060175561A1 (en) Particle shadow velocimetry
JPH0658928A (en) Particle analyzer
FR2636429A1 (en) APPARATUS FOR MEASURING PARTICLES
CN108780035A (en) Imaging device and imaging method
CN110389021A (en) Lenticular image generation system and refractive power and thickness determination and defect inspection method
JPH06186155A (en) Particle analyzer
CN113795778A (en) Self-calibrating and directional focusing system and method for infinity corrected microscopes
CA2487233A1 (en) Method and apparatus for particle measurement employing optical imaging
JP2022172075A (en) Optical flow cytometer for epi-fluorescence measurement
JP2001504592A (en) Distance measuring method and distance measuring device
WO2023062831A1 (en) Flow cytometer, position calculating method, and program
US20180045646A1 (en) System and method for three-dimensional micro particle tracking
JP2011002257A (en) Instrument and method for measuring spherical particle size
JP2022014302A (en) Flow cytometer, method for calculating position, and program
US8892400B2 (en) Method for evaluating fluorescence correlation spectroscopy measurement data
KR20200041079A (en) Apparatus for detecting plankton using depth of focus and method thereof
WO2023062830A1 (en) Flow cytometer, imaging device, position detection method, and program
JP7223752B2 (en) Particle size distribution measuring device and program for particle size distribution measuring device
JP7473185B2 (en) Flow cytometer, imaging device, position detection method, and program
WO2022239596A1 (en) Feature amount calculation device, feature amount calculation method, and program
US20230266229A1 (en) Flow cytometer, cell sorter, optical information generation method, and program
JP2746852B2 (en) Transmitted light measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960684

Country of ref document: EP

Kind code of ref document: A1