WO2023054106A1 - High-frequency module - Google Patents

High-frequency module Download PDF

Info

Publication number
WO2023054106A1
WO2023054106A1 PCT/JP2022/035142 JP2022035142W WO2023054106A1 WO 2023054106 A1 WO2023054106 A1 WO 2023054106A1 JP 2022035142 W JP2022035142 W JP 2022035142W WO 2023054106 A1 WO2023054106 A1 WO 2023054106A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection terminal
switch
filter
terminal
frequency module
Prior art date
Application number
PCT/JP2022/035142
Other languages
French (fr)
Japanese (ja)
Inventor
壮央 竹内
智弘 佐野
弘嗣 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023054106A1 publication Critical patent/WO2023054106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention relates to high frequency modules.
  • uplink MIMO Multiple-Input and Multiple-Output
  • UL Uplink
  • the present invention provides a high frequency module capable of improving the quality of feedback signals for monitoring the power and/or phase of transmission signals in multiple transmission paths.
  • a high-frequency module is a high-frequency module compatible with UL-MIMO in a first band, and has a module substrate and a passband disposed on the module substrate and including at least part of the first band.
  • a first directional coupler having a port, a first output port connected to the first antenna connection terminal, and a first coupling port connected to the first external connection terminal; and a second direction arranged on the module substrate.
  • a sexual coupler having a second input port connected to a second filter having a passband that includes at least a portion of the first band; a second output port connected to a second antenna connection terminal; a second directional coupler having a second coupling port connected to the external connection terminal or the second external connection terminal.
  • a high-frequency module is a high-frequency module compatible with UL-MIMO in a first band, and has a module substrate and a passband disposed on the module substrate and including at least part of the first band.
  • a first directional coupler having a port, a first output port connected to the first antenna connection terminal, and a first coupling port connected to the first external connection terminal; and a second direction arranged on the module substrate.
  • a sexual coupler having a second input port connected to a third external connection terminal for receiving a transmission signal of a first band from the outside of the high frequency module, a second output port connected to a second antenna connection terminal, and a second directional coupler having a second coupling port connected to the first external connection terminal or the second external connection terminal.
  • the high-frequency module it is possible to improve the quality of feedback signals for monitoring the power and/or phase of transmission signals in a plurality of transmission paths.
  • FIG. 1 is a circuit configuration diagram of a high-frequency module and a communication device according to Embodiment 1.
  • FIG. FIG. 2 is a circuit state diagram of the high-frequency module showing the connection state of the high-frequency module according to the first embodiment at the time of UL-MIMO.
  • FIG. 3 is a circuit state diagram of the high-frequency module according to the first embodiment, showing a first connection state at the time of UL-SISO of the high-frequency module.
  • FIG. 4 is a circuit state diagram of the high-frequency module according to the first embodiment, showing a second connection state during UL-SISO of the high-frequency module.
  • FIG. 5 is a circuit state diagram of the high-frequency module showing the first connection state during interband CA of the high-frequency module according to the first embodiment.
  • FIG. 6 is a circuit state diagram of the high-frequency module showing a second connection state during interband CA of the high-frequency module according to the first embodiment.
  • 7 is a plan view of the high-frequency module according to Embodiment 1.
  • FIG. 8 is a plan view of the high-frequency module according to Embodiment 1.
  • FIG. 9 is a cross-sectional view of the high-frequency module according to Embodiment 1.
  • FIG. 10 is a circuit configuration diagram of a high-frequency module and a communication device according to Embodiment 2.
  • FIG. FIG. 11 is a circuit configuration diagram of a radio frequency module and a communication device, showing a connection state of the radio frequency module according to Embodiment 2 during UL-MIMO.
  • FIG. 12 is a circuit configuration diagram of a radio frequency module and a communication device showing a first connection state of the radio frequency module according to Embodiment 2 at UL-SISO.
  • FIG. 13 is a circuit configuration diagram of a radio frequency module and a communication device, showing a second connection state in UL-SISO of the radio frequency module according to the second embodiment.
  • FIG. 14 is a circuit configuration diagram of a high-frequency module and a communication device according to Embodiment 3.
  • each drawing is a schematic diagram that has been appropriately emphasized, omitted, or adjusted in proportion to show the present invention, and is not necessarily strictly illustrated, and the actual shape, positional relationship, and ratio may differ.
  • substantially the same configurations are denoted by the same reference numerals, and redundant description may be omitted or simplified.
  • the x-axis and the y-axis are axes orthogonal to each other on a plane parallel to the main surface of the module substrate.
  • the x-axis is parallel to the first side of the module substrate
  • the y-axis is parallel to the second side orthogonal to the first side of the module substrate.
  • the z-axis is an axis perpendicular to the main surface of the module substrate, and its positive direction indicates an upward direction and its negative direction indicates a downward direction.
  • connection includes not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit elements.
  • Connected between A and B means connected to both A and B between A and B, in addition to being connected in series with the path connecting A and B , is connected between the path and ground.
  • the component is placed on the board includes placing the component in the board in addition to placing the component on the main surface of the board.
  • the component is arranged on the main surface of the board means that the component is arranged in contact with the main surface of the board, and that the component is arranged above the main surface without contacting the main surface. (eg, a component is laminated onto another component placed in contact with a major surface).
  • the component is arranged on the main surface of the substrate may include that the component is arranged in a concave portion formed in the main surface.
  • Components are located within a substrate means that, in addition to encapsulating components within a module substrate, all of the components are located between major surfaces of the substrate, but some of the components are located between major surfaces of the substrate. Including not covered by the substrate and only part of the component being placed in the substrate.
  • terms such as “parallel” and “perpendicular” that indicate the relationship between elements, terms that indicate the shape of elements such as “rectangular”, and numerical ranges do not represent only strict meanings, It means that an error of a substantially equivalent range, for example, several percent, is also included.
  • FIG. 1 is a circuit configuration diagram of a high frequency module 1 and a communication device 5 according to this embodiment.
  • the communication device 5 corresponds to a so-called user terminal (UE: User Equipment), and is typically a mobile phone, a smart phone, a tablet computer, or the like.
  • UE User Equipment
  • Such a communication device 5 includes a high frequency module 1 , antennas 2 a and 2 b , RFIC (Radio Frequency Integrated Circuit) 3 , and BBIC (Baseband Integrated Circuit) 4 .
  • the high frequency module 1 transmits high frequency signals between the antennas 2a and 2b and the RFIC 3. Specifically, the high-frequency module 1 is compatible with UL-MIMO of band A, and can simultaneously transmit signals of band A from antennas 2a and 2b. The internal configuration of the high frequency module 1 will be described later.
  • the antennas 2a and 2b are connected to antenna connection terminals 101 and 102 of the high frequency module 1, respectively. Each of the antennas 2a and 2b receives a high frequency signal from the high frequency module 1 and outputs it to the outside.
  • the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 performs signal processing such as up-conversion on the transmission signal input from the BBIC 4 , and outputs the high-frequency transmission signal generated by the signal processing to the transmission path of the high-frequency module 1 . Further, the RFIC 3 has a control section that controls the switches, amplifiers, etc. of the high-frequency module 1 . Some or all of the functions of the RFIC 3 as a control unit may be configured outside the RFIC 3, for example, in the BBIC 4 or the high frequency module 1. FIG.
  • the BBIC 4 is a baseband signal processing circuit that performs signal processing using an intermediate frequency band that is lower in frequency than the high frequency signal transmitted by the high frequency module 1 .
  • Signals processed by the BBIC 4 include, for example, image signals for image display and/or audio signals for calling through a speaker.
  • the antennas 2a and 2b and the BBIC 4 are not essential components.
  • the high-frequency module 1 includes power amplifiers (PA) 11 and 12, directional couplers 31 and 32, switches (SW) 51 to 54, filters 61 to 63, and an antenna connection terminal 101. , 102 , high frequency input terminals 111 and 112 , and feedback terminals 121 and 122 .
  • the antenna connection terminal 101 is an example of a first antenna connection terminal, and is connected to the antenna 2a outside the high frequency module 1.
  • the antenna connection terminal 102 is an example of a second antenna connection terminal, and is connected to the antenna 2b outside the high frequency module 1 .
  • the high-frequency input terminal 111 is an input terminal for receiving transmission signals of bands A and B from the outside of the high-frequency module 1 (here, the RFIC 3).
  • the high-frequency input terminal 112 is an example of a third external connection terminal, and is an input terminal for receiving a band A transmission signal from the outside of the high-frequency module 1 (here, the RFIC 3).
  • Bands A and B are examples of the first band and the second band, respectively, and are wireless access technologies (RAT (Radio Access Technology) is a frequency band for communication systems built using RAT. Note that band B is a frequency band in which simultaneous transmission with band A is possible. Examples of communication systems that can be used include, but are not limited to, 5GNR (5th Generation New Radio) systems, LTE (Long Term Evolution) systems, and WLAN (Wireless Local Area Network) systems.
  • 5GNR Fifth Generation New Radio
  • LTE Long Term Evolution
  • WLAN Wireless Local Area Network
  • band A a frequency division duplex (FDD) band can be used, for example, Band1, Band3, Band8, Band20, Band28 or Band71 for LTE, or n1, n3 for 5GNR. , n8, n20, n28 or n71 can be used.
  • a time division duplex (TDD) band can be used, for example, Band40, Band41 or Band46 for LTE, or n40, n41, n46, n77 for 5GNR, n78, n79, n96, n102 or n104 can also be used. Band A is not limited to these bands.
  • the feedback terminals 121 and 122 are examples of a first external connection terminal and a second external connection terminal, respectively.
  • the feedback terminals 121 and 122 are output terminals for feeding back part of the transmission signals of the bands A and B to the outside of the high frequency module 1 (here, the RFIC 3).
  • the power amplifier 11 is an example of a first power amplifier and is connected between the high frequency input terminal 111 and the filters 61 and 63 .
  • the power amplifier 11 can amplify transmission signals of bands A and B using a power supply voltage supplied from the outside of the high frequency module 1 .
  • the power amplifier 12 is an example of a second power amplifier and is connected between the high frequency input terminal 112 and the filter 62 .
  • the power amplifier 12 can amplify the transmission signal of band A using the power supply voltage supplied from the outside of the high frequency module 1 .
  • the directional coupler 31 is an example of a first directional coupler and is connected between the filters 61 and 63 and the antenna connection terminal 101 .
  • directional coupler 31 is a unidirectional coupler having three ports. Specifically, the directional coupler 31 has an input port 311 , an output port 312 and a coupled port 313 .
  • the input port 311 is an example of a first input port and is connected to the filters 61 and 63 via the switch 51.
  • the input port 311 receives the band A transmission signal that has passed through the filter 61 and the band B transmission signal that has passed through the filter 63 .
  • a coupling port 313 is an example of a first coupling port and is connected to the feedback terminal 121 . A part of the transmission signal of band A and a part of the transmission signal of band B input to the input port 311 are extracted from the coupling port 313 .
  • the output port 312 is an example of a first output port and is connected to the antenna connection terminal 101 .
  • the other part of the transmission signal of band A and the other part of the transmission signal of band B input to the input port 311 are output from the output port 312 .
  • the directional coupler 32 is an example of a second directional coupler and is connected between the filter 62 and the antenna connection terminal 102 .
  • the directional coupler 32 is a unidirectional coupler with three ports.
  • the directional coupler 32 has an input port 321 , an output port 322 and a coupling port 323 .
  • the input port 321 is an example of a second input port and is connected to the filter 62 via the switch 51.
  • a band A transmission signal that has passed through the filter 62 is input to the input port 321 .
  • a coupling port 323 is an example of a second coupling port and is connected to the feedback terminal 122 . A portion of the band A transmission signal input to the input port 321 is extracted from the coupling port 323 .
  • the output port 322 is an example of a second output port and is connected to the antenna connection terminal 102 .
  • the output port 322 outputs the other part of the band A transmission signal input to the input port 321 .
  • the directional couplers 31 and 32 are not limited to unidirectional couplers.
  • directional couplers 31 and/or 32 may be bidirectional couplers having four ports.
  • the directional couplers 31 and/or 32 can extract part of the backward propagating transmission signal (reflected wave) and feed it back to the RFIC 3 .
  • the switch 51 is an example of a first switch and is connected between the filters 61-63 and the antenna connection terminals 101 and 102.
  • the switch 51 is composed of, for example, a multi-connection switch circuit. Specifically, the switch 51 has terminals 511-515. Terminal 511 is connected to input port 311 of directional coupler 31 and is connected to antenna connection terminal 101 via directional coupler 31 . Terminal 512 is connected to input port 321 of directional coupler 32 and is connected to antenna connection terminal 102 via directional coupler 32 . Terminals 513-515 are connected to filters 61-63, respectively.
  • the switch 51 can connect each of the terminals 511 and 512 to at least one of the terminals 513 to 515 based on a control signal from the RFIC 3, for example. That is, the switch 51 can connect each of the antenna connection terminals 101 and 102 to at least one of the filters 61-63.
  • the switch 52 is an example of a second switch and is connected between the coupling port 313 of the directional coupler 31 and the feedback terminal 121.
  • the switch 52 is configured by, for example, an SPST (Single-Pole Single-Throw) type switch circuit. Specifically, switch 52 has terminals 521 and 522 . Terminal 521 is connected to coupling port 313 . Terminal 522 is connected to feedback terminal 121 .
  • the switch 52 can switch between connection and non-connection between the terminals 521 and 522 based on a control signal from the RFIC 3, for example. That is, the switch 52 can switch connection and disconnection between the coupling port 313 and the feedback terminal 121 .
  • switch 52 may connect coupling port 313 to feedback terminal 121 in situations where switch 51 connects antenna connection terminal 101 to at least one of filters 61 and 63 .
  • switch 52 may not connect coupling port 313 to feedback terminal 121 in situations where antenna connection terminal 101 is not connected to either of filters 61 and 63 by switch 51 .
  • the switch 53 is an example of a third switch and is connected between the coupling port 323 of the directional coupler 32 and the feedback terminal 122.
  • the switch 53 is configured by, for example, an SPST type switch circuit. Specifically, the switch 53 has terminals 531 and 532 . Terminal 531 is connected to coupling port 323 . Terminal 532 is connected to feedback terminal 122 .
  • the switch 53 can switch connection and non-connection between the terminals 531 and 532 based on a control signal from the RFIC 3, for example. That is, the switch 53 can switch connection and disconnection between the coupling port 323 and the feedback terminal 122 .
  • switch 53 may connect coupling port 323 to feedback terminal 122 in situations where antenna connection terminal 102 is not connected to filter 62 by switch 51 .
  • a switch 54 is connected between the power amplifier 11 and the filters 61 and 63 .
  • the switch 54 is configured by, for example, an SPDT (Single-Pole Double-Throw) type switch circuit. Specifically, the switch 54 has terminals 541-543. Terminal 541 is connected to the output end of power amplifier 11 . Terminal 542 is connected to filter 61 . Terminal 543 is connected to filter 63 .
  • the switch 54 can connect the terminal 541 to either of the terminals 542 and 543 based on a control signal from the RFIC 3, for example. That is, the switch 54 can switch the connection of the power amplifier 11 between the filters 61 and 63 .
  • the filter 61 is an example of a first filter and is connected between the power amplifier 11 and the antenna connection terminals 101 and 102 . Specifically, one end of the filter 61 is connected to the terminal 542 of the switch 54 and the other end of the filter 61 is connected to the terminal 513 of the switch 51 .
  • the filter 61 has a passband that includes at least part of band A. For example, if band A is the FDD band, filter 61 has a passband that includes the uplink operating band of band A. FIG. Also for example, if band A is the TDD band, filter 61 has a passband that includes all of band A.
  • the filter 62 is an example of a second filter and is connected between the power amplifier 12 and the antenna connection terminals 101 and 102 . Specifically, one end of the filter 62 is connected to the output end of the power amplifier 12 and the other end of the filter 62 is connected to the terminal 514 of the switch 51 .
  • the filter 62 has a passband that includes at least part of the band A, similar to the filter 61 .
  • band A is the FDD frequency band
  • filter 62 has a passband that includes the band A uplink operating band.
  • band A is the TDD frequency band
  • filter 62 has a passband that includes all of band A.
  • the filter 63 is an example of a third filter and is connected between the power amplifier 11 and the antenna connection terminals 101 and 102 . Specifically, one end of the filter 63 is connected to the terminal 543 of the switch 54 and the other end of the filter 63 is connected to the terminal 515 of the switch 51 .
  • the filter 63 has a passband that includes at least part of the band B. For example, if band B is the FDD frequency band, filter 63 has a passband that includes the band B uplink operating band. Also for example, if band B is the TDD frequency band, filter 63 has a passband that includes all of band B. FIG.
  • the circuit configuration of the high-frequency module 1 in FIG. 1 is an example, and is not limited to this.
  • the high frequency module 1 does not have to support band B.
  • the high frequency module 1 does not have to have the switch 54 and the filter 63 .
  • the high-frequency module 1 may not include the switch 51 and may not include the switches 52 and/or 53 .
  • the directional coupler 31 may be connected between the filter 61 and the switch 51
  • the directional coupler 32 may be connected between the filter 62 and the switch 51 .
  • FIG. 2 is a circuit state diagram of the high frequency module 1 showing the connection state of the high frequency module 1 according to the present embodiment at the time of UL-MIMO.
  • dashed arrows represent the flow of high-frequency signals.
  • the RFIC 3 can realize the connection state shown in FIG. 2 by controlling each switch of the high frequency module 1 .
  • switch 51 connects terminal 511 to terminal 513 and terminal 512 to terminal 514 .
  • the switch 52 connects the terminal 521 to the terminal 522
  • the switch 53 connects the terminal 531 to the terminal 532 .
  • switch 54 connects terminal 541 to terminal 542 .
  • the first transmission signal of band A is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 61, the switch 51, the directional coupler 31 and the antenna connection terminal 101. transmitted. At this time, part of the first transmission signal of band A is fed back from the directional coupler 31 to the RFIC 3 via the switch 52 and the feedback terminal 121 . Further, the second transmission signal of band A is transmitted from RFIC 3 to antenna 2b via high frequency input terminal 112, power amplifier 12, filter 62, switch 51, directional coupler 32 and antenna connection terminal . At this time, part of the second transmission signal of band A is fed back from the directional coupler 32 to the RFIC 3 via the switch 53 and the feedback terminal 122 .
  • FIG. 3 is a circuit state diagram of the high-frequency module 1 according to the present embodiment, showing the first connection state of the high-frequency module 1 during UL-SISO.
  • dashed arrows represent the flow of high-frequency signals.
  • the RFIC 3 can realize the connection state shown in FIG. 3 by controlling each switch of the high frequency module 1 .
  • switch 51 connects terminal 511 to terminal 513 but does not connect terminal 512 to terminal 514 .
  • the switch 52 connects the terminal 521 to the terminal 522 , but the switch 53 does not connect the terminal 531 to the terminal 532 .
  • switch 54 connects terminal 541 to terminal 542 .
  • the transmission signal of band A is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 61, the switch 51, the directional coupler 31 and the antenna connection terminal 101. be.
  • part of the band A transmission signal is fed back from the directional coupler 31 to the RFIC 3 via the switch 52 and the feedback terminal 121 .
  • a sounding reference signal (SRS) may be transmitted.
  • FIG. 4 is a circuit state diagram of the high-frequency module 1 according to the present embodiment, showing the second connection state of the high-frequency module 1 at the time of UL-SISO.
  • dashed arrows represent the flow of high-frequency signals.
  • the RFIC 3 can realize the connection state shown in FIG. 4 by controlling each switch of the high frequency module 1 .
  • switch 51 connects terminal 512 to terminal 514 but does not connect terminal 511 to terminal 513 .
  • the switch 53 connects the terminal 531 to the terminal 532 , but the switch 52 does not connect the terminal 521 to the terminal 522 .
  • switch 54 does not connect terminal 541 to terminal 542 .
  • the transmission signal of band A is transmitted from the RFIC 3 to the antenna 2b via the high frequency input terminal 112, the power amplifier 12, the filter 62, the switch 51, the directional coupler 32 and the antenna connection terminal 102.
  • part of the band A transmission signal is fed back from the directional coupler 32 to the RFIC 3 via the switch 53 and the feedback terminal 122 .
  • the SRS may be transmitted in the connection state of FIG.
  • FIG. 5 is a circuit state diagram of the high-frequency module 1 according to the present embodiment, showing a first connection state during interband CA of the high-frequency module 1. As shown in FIG. In FIG. 5, dashed arrows represent the flow of high-frequency signals.
  • the RFIC 3 can realize the connection state shown in FIG. 5 by controlling each switch of the high frequency module 1 .
  • switch 51 connects terminal 511 to terminal 515 and terminal 512 to terminal 514 .
  • the switch 52 connects the terminal 521 to the terminal 522
  • the switch 53 connects the terminal 531 to the terminal 532 .
  • switch 54 connects terminal 541 to terminal 543 .
  • the transmission signal of band B is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 63, the switch 51, the directional coupler 31 and the antenna connection terminal 101. be.
  • part of the transmission signal of band B is fed back from the directional coupler 31 to the RFIC 3 via the switch 52 and the feedback terminal 121 .
  • the band A transmission signal is transmitted from the RFIC 3 to the antenna 2b via the high frequency input terminal 112, the power amplifier 12, the filter 62, the switch 51, the directional coupler 32 and the antenna connection terminal .
  • part of the band A transmission signal is fed back from the directional coupler 32 to the RFIC 3 via the switch 53 and the feedback terminal 122 .
  • DC Dual Connectivity
  • BS Base Station
  • DC has EN-DC (E-UTRAN New Radio - Dual Connectivity) for simultaneous communication with LTE base station and NR base station and NR-DC (New Radio-Dual Connectivity) for simultaneous communication with two NR base stations Radio - Dual Connectivity) and is not limited to these.
  • the high-frequency module 1 and the communication device 5 can be used in the same connection state as above.
  • the directional couplers 31 and 32 can feed back parts of the transmitted signals of two different power classes to the RFIC 3 respectively.
  • FIG. 6 is a circuit state diagram of the high-frequency module 1 according to the present embodiment, showing a second connection state during interband CA of the high-frequency module 1. As shown in FIG. In FIG. 6, dashed arrows represent the flow of high-frequency signals.
  • the RFIC 3 can realize the connection state shown in FIG. 6 by controlling each switch of the high frequency module 1 .
  • switch 51 connects terminal 511 to both terminals 514 and 515 .
  • the switch 52 connects the terminal 521 to the terminal 522 .
  • switch 54 connects terminal 541 to terminal 543 .
  • the transmission signal of band B is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 63, the switch 51, the directional coupler 31 and the antenna connection terminal 101.
  • the transmission signal of band A is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 112, the power amplifier 12, the filter 62, the switch 51, the directional coupler 31 and the antenna connection terminal 101.
  • FIG. At this time, part of the transmission signals of bands A and B are fed back from the directional coupler 31 to the RFIC 3 via the switch 52 and the feedback terminal 121 .
  • FIG. 7 is a plan view of the high frequency module 1 according to this embodiment.
  • FIG. 8 is a plan view of the high-frequency module 1 according to the present embodiment, and is a perspective view of the main surface 91b side of the module substrate 91 from the z-axis positive side.
  • FIG. 9 is a cross-sectional view of the high frequency module 1 according to this embodiment. The cross section of the high-frequency module 1 in FIG. 9 is taken along line viii-viii in FIGS. 7 and 8. FIG.
  • FIGS. 7 and 8 letters representing circuits mounted on each electronic component are attached so that the arrangement relationship of each electronic component can be easily understood. , the character does not have to be attached. 7 to 9, wirings connecting a plurality of electronic components arranged on the module substrate 91 are omitted except for some. 7 and 8, illustration of a resin member 93 covering a plurality of electronic components and a shield electrode layer 94 covering the surface of the resin member 93 are omitted.
  • the high-frequency module 1 includes a module substrate 91, a resin member 93, a shield electrode layer 94, and a plurality of land electrodes 150, in addition to a plurality of electronic components including a plurality of circuit elements shown in FIG. .
  • the module substrate 91 has main surfaces 91a and 91b facing each other.
  • a ground electrode layer 92 is formed in the module substrate 91 . 7 and 8, the module substrate 91 has a rectangular shape in plan view, but is not limited to this shape.
  • LTCC low temperature co-fired ceramics
  • HTCC high temperature co-fired ceramics
  • a component-embedded substrate, a substrate having a redistribution layer (RDL), a printed substrate, or the like can be used, but is not limited to these.
  • the power amplifiers 11 and 12 are made of at least one of gallium arsenide (GaAs), silicon germanium (SiGe) and gallium nitride (GaN), for example. Thereby, high-quality power amplifiers 11 and 12 can be realized.
  • a part of the power amplifiers 11 and 12 may be configured using CMOS (Complementary Metal Oxide Semiconductor), and more specifically, may be manufactured by an SOI (Silicon on Insulator) process. This makes it possible to manufacture the power amplifiers 11 and 12 at low cost.
  • CMOS Complementary Metal Oxide Semiconductor
  • directional couplers 31 and 32 Two electronic components each including directional couplers 31 and 32 (hereinafter simply referred to as directional couplers 31 and 32) are arranged on the main surface 91a of the module substrate 91.
  • the directional couplers 31 and 32 can be, for example, ceramic multilayer components, but are not limited to this. Note that the directional couplers 31 and/or 32 may be arranged inside the module substrate 91 . For example, directional couplers 31 and/or 32 may be formed in inner layers of module substrate 91 .
  • An integrated circuit (IC) 50 including switches 51 to 54 is arranged on the main surface 91 a of the module substrate 91 .
  • the integrated circuit 50 is configured using CMOS, for example, and may be specifically manufactured by an SOI process.
  • switches 51 to 54 may not be included in one integrated circuit 50.
  • switches 51 and 54 may be included in one integrated circuit and switches 52 and 53 may be included in another integrated circuit.
  • filters 61 to 63 Three electronic components including filters 61 to 63 (hereinafter simply referred to as filters 61 to 63) are arranged on main surface 91a of module substrate 91.
  • FIG. Each of the filters 61 to 63 is configured using, for example, a surface acoustic wave (SAW) filter, a bulk acoustic wave (BAW) filter, an LC resonance filter, or a dielectric filter. Also, it is not limited to these.
  • the filters 61 to 63 do not have to be mounted on separate electronic components.
  • the filters 61-63 may be mounted as one electronic component on one substrate.
  • the resin member 93 covers the main surface 91a and at least part of the plurality of electronic components on the main surface 91a.
  • the resin member 93 has a function of ensuring reliability such as mechanical strength and moisture resistance of the plurality of electronic components on the main surface 91a. Note that the resin member 93 may not be included in the high frequency module 1 .
  • the multiple land electrodes 150 function as multiple external connection terminals. Specifically, the multiple land electrodes 150 include land electrodes functioning as ground terminals in addition to the antenna connection terminals 101 and 102, the high frequency input terminals 111 and 112, and the feedback terminals 121 and 122. A plurality of land electrodes 150 are electrically connected to a plurality of electronic components arranged on main surface 91 a through via conductors (not shown) formed in module substrate 91 .
  • the plurality of land electrodes 150 may not be used as the plurality of external connection terminals.
  • a plurality of bump electrodes or a plurality of post electrodes may be used as a plurality of external connection terminals.
  • the high-frequency module 1 is a high-frequency module 1 compatible with band A UL-MIMO, and includes a module substrate 91 and at least part of band A, which is arranged on the module substrate 91. a power amplifier 11 located on the module substrate 91 and connected to the filter 61; and a directional coupler 31 located on the module substrate 91 and connected to the filter 61.
  • a directional coupler 31 having an input port 311, an output port 312 connected to the antenna connection terminal 101, and a coupling port 313 connected to the feedback terminal 121, and the directional coupler 32 arranged on the module substrate 91.
  • a directional coupler 32 having .323.
  • the high-frequency module 1 is a high-frequency module 1 compatible with band A UL-MIMO, and includes a module substrate 91 and at least a filter 61 having a passband including a part thereof; a power amplifier 11 arranged on the module substrate 91 and connected to the filter 61; an input port 311 arranged on the module substrate 91 and connected to the filter 61; A directional coupler 31 having an output port 312 connected to 101 and a coupling port 313 connected to a feedback terminal 121; A directional coupler 32 having an input port 321 connected to the high frequency input terminal 112 , an output port 322 connected to the antenna connection terminal 102 , and a coupling port 323 connected to the feedback terminal 121 or 122 .
  • directional couplers 31 and 32 connected to different transmission paths are arranged on one module board 91 . Therefore, it is easier to reduce the difference in the characteristics of the two paths of feedback signals from the directional couplers 31 and 32 to the RFIC 3 than when the directional couplers 31 and 32 are arranged on different module substrates. In the two feedback signals, the influence of different path characteristics can be reduced, and the quality of the feedback signals for monitoring the power and/or phase of the transmission signals in the two transmission paths can be improved. .
  • the high-frequency module 1 may further include a filter 62 arranged on the module substrate 91 and a power amplifier 12 arranged on the module substrate 91 and connected to the filter 62. .
  • the power amplifier 12 and the filter 62 can be arranged on the same module substrate 91 as the power amplifier 11 and the filter 61, which contributes to miniaturization of the communication device 5.
  • the coupling port 323 may be connected to the feedback terminal 122 .
  • the coupling port 323 of the directional coupler 32 is connected to the feedback terminal 122 different from the feedback terminal 121 to which the coupling port 313 of the directional coupler 31 is connected. Therefore, the feedback signal from the directional coupler 31 and the feedback signal from the directional coupler 32 can be separately transmitted to the RFIC 3, and the quality of the feedback signal can be improved.
  • the high-frequency module 1 is further arranged on the module substrate 91, and the switch 51 connected between the filters 61 and 62 and the antenna connection terminals 101 and 102 is arranged on the module substrate 91. and a switch 52 connected between the coupling port 313 and the feedback terminal 121 , and a switch 53 located on the module substrate 91 and connected between the coupling port 323 and the feedback terminal 122 .
  • the switch 51 can switch between connection and disconnection between the filters 61 and 62 and the antenna connection terminals 101 and 102 .
  • the switch 52 can switch between connection and disconnection between the directional coupler 31 and the feedback terminal 121 .
  • the switch 53 can switch between connection and disconnection between the directional coupler 32 and the feedback terminal 122 .
  • the switch 52 (i) connects the coupling port 313 to the feedback terminal 121 in a situation where the antenna connection terminal 101 is connected to the filter 61 by the switch 51 .
  • the coupling port 313 may not be connected to the feedback terminal 121;
  • coupling port 323 may be connected to feedback terminal 122; and
  • coupling Port 323 may not be connected to feedback terminal 122 .
  • connection and non-connection between the directional couplers 31 and 32 and the feedback terminals 121 and 122 by the switches 52 and 53 is performed by the filters 61 and 62 and the antenna connection terminals 101 and 102 by the switch 51.
  • the switches 52 and 53 may be included in one integrated circuit 50 in the high-frequency module 1 according to the present embodiment.
  • Embodiment 2 differs from the first embodiment mainly in that there is one feedback terminal.
  • the present embodiment will be described below with reference to FIGS. 10 and 11, focusing on the differences from the first embodiment.
  • FIG. 10 is a circuit configuration diagram of a high frequency module 1A and a communication device 5A according to this embodiment.
  • the communication device 5A is the same as the communication device 5 according to the first embodiment, except that the high frequency module 1A is provided instead of the high frequency module 1, so the description is omitted.
  • the high frequency module 1A includes power amplifiers 11 and 12, directional couplers 31 and 32, switches 51, 52A and 54, filters 61 to 63, antenna connection terminals 101 and 102, and high frequency input terminals 111 and 112. , and a feedback terminal 121A.
  • the feedback terminal 121A is an example of a first external connection terminal, and is an output terminal for feeding back part of the transmission signals of bands A and B to the outside of the high frequency module 1A (here, the RFIC 3).
  • the switch 52A is an example of a second switch and is connected between the coupling port 313 of the directional coupler 31 and the coupling port 323 of the directional coupler 32 and the feedback terminal 121A.
  • the switch 52A is configured by, for example, a multi-connection switch circuit. Specifically, the switch 52A has terminals 521A to 523A. Terminal 521A is connected to feedback terminal 121A. Terminal 522 A is connected to coupling port 313 . Terminal 523 A is connected to coupling port 323 .
  • the switch 52A can connect the terminal 521A to one or both of the terminals 522A and 523A based on a control signal from the RFIC 3, for example. That is, the switch 52A can switch connection and disconnection of the coupling port 313 and the feedback terminal 121A, and can switch connection and disconnection of the coupling port 323 and the feedback terminal 121A. For example, in situations where switch 51 connects antenna connection terminal 101 to at least one of filters 61 and 63, switch 52A may connect coupling port 313 to feedback terminal 121A. On the other hand, in situations where antenna connection terminal 101 is not connected to either of filters 61 and 63 by switch 51, switch 52A may not connect coupling port 313 to feedback terminal 121A.
  • the switch 52A may connect the coupling port 323 to the feedback terminal 121A.
  • switch 52A may not connect coupling port 323 to feedback terminal 121A.
  • FIG. 11 is a circuit state diagram of the high frequency module 1A showing the connection state of the high frequency module 1A according to the present embodiment during UL-MIMO.
  • the dashed arrows represent the flow of high frequency signals.
  • the RFIC 3 can realize the connection state shown in FIG. 11 by controlling each switch of the high frequency module 1A.
  • switch 51 connects terminal 511 to terminal 513 and terminal 512 to terminal 514 .
  • Switch 52A also connects terminal 521A to both terminals 522A and 523A.
  • switch 54 connects terminal 541 to terminal 542 .
  • the first transmission signal of band A is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 61, the switch 51, the directional coupler 31 and the antenna connection terminal 101. transmitted.
  • part of the first transmission signal of band A is fed back from the directional coupler 31 to the RFIC 3 via the switch 52A and the feedback terminal 121A.
  • the second transmission signal of band A is transmitted from RFIC 3 to antenna 2b via high frequency input terminal 112, power amplifier 12, filter 62, switch 51, directional coupler 32 and antenna connection terminal .
  • part of the second transmission signal of band A is fed back from the directional coupler 32 to the RFIC 3 via the switch 52A and the feedback terminal 121A. That is, in the present embodiment, part of the first transmission signal and part of the second transmission signal are fed back via one feedback terminal 121A.
  • the switch 52A connects the terminal 521A to both the terminals 522A and 523A at the same time, but it is not limited to this.
  • switch 52A may connect terminal 521A to terminal 523A before and/or after connecting terminal 521A to terminal 522A. That is, switch 52A may switch the connection of feedback terminal 121A between coupling ports 313 and 323 over time.
  • FIG. 12 is a circuit state diagram of the high frequency module 1A showing the first connection state of the high frequency module 1A according to the present embodiment during UL-SISO.
  • dashed arrows represent the flow of high-frequency signals.
  • the RFIC 3 can realize the connection state shown in FIG. 12 by controlling each switch of the high frequency module 1A.
  • switch 51 connects terminal 511 to terminal 513 but does not connect terminal 512 to terminal 514 .
  • the switch 52A connects the terminal 521A to the terminal 522A, but does not connect to the terminal 523A.
  • switch 54 connects terminal 541 to terminal 542 .
  • the transmission signal of band A is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 61, the switch 51, the directional coupler 31 and the antenna connection terminal 101. be.
  • part of the transmission signal of band A is fed back from the directional coupler 31 to the RFIC 3 via the switch 52A and the feedback terminal 121A.
  • FIG. 13 is a circuit state diagram of the high frequency module 1A showing the second connection state of the high frequency module 1A according to the present embodiment during UL-SISO.
  • dashed arrows represent the flow of high-frequency signals.
  • the RFIC 3 can realize the connection state shown in FIG. 13 by controlling each switch of the high frequency module 1A.
  • switch 51 connects terminal 512 to terminal 514 but does not connect terminal 511 to terminal 513 .
  • the switch 52A connects the terminal 521A to the terminal 523A, but does not connect to the terminal 522A.
  • switch 54 does not connect terminal 541 to terminal 542 .
  • the transmission signal of band A is transmitted from the RFIC 3 to the antenna 2b via the high frequency input terminal 112, the power amplifier 12, the filter 62, the switch 51, the directional coupler 32 and the antenna connection terminal 102.
  • part of the transmission signal of band A is fed back from the directional coupler 32 to the RFIC 3 via the switch 52A and the feedback terminal 121A.
  • the coupling port 323 may be connected to the feedback terminal 121A.
  • the coupling port 323 of the directional coupler 32 is connected to the same feedback terminal 121A as the feedback terminal 121A to which the coupling port 313 of the directional coupler 31 is connected. Therefore, it is easier to reduce the difference in the characteristics of the two paths of the feedback signal from the directional couplers 31 and 32 to the RFIC 3, and the feedback for monitoring the power and/or phase of the transmitted signal in the two transmission paths. Signal quality can be improved.
  • the high-frequency module 1A further includes a switch 51 connected between the filters 61 and 62 and the antenna connection terminals 101 and 102, and between the coupling ports 313 and 323 and the feedback terminal 121A. and a switch 52A connected to the .
  • the switch 51 can switch between connection and disconnection between the filters 61 and 62 and the antenna connection terminals 101 and 102 .
  • the switch 52A can switch connection and disconnection between the directional coupler 31 and the feedback terminal 121A, and switch connection and disconnection between the directional coupler 32 and the feedback terminal 121A.
  • the switch 52A is configured such that (i) the switch 51 connects the antenna connection terminal 101 to the filter 61 and connects the antenna connection terminal 102 to the filter 62; (ii) the switch 51 connects the antenna connection terminal 101 to the filter 61 and the antenna connection terminal 102 is not connected to the filter 62; (iii) the antenna connection terminal 101 is not connected to the filter 61 by the switch 51; and In situations where the antenna connection terminal 102 is connected to the filter 62, the coupling port 313 may not be connected to the feedback terminal 121A and the coupling port 323 may be connected to the feedback terminal 121A; When the connection terminal 101 is not connected to the filter 61 and the antenna connection terminal 102 is not connected to the filter 62, the coupling port 313 is not connected to the feedback terminal 121A and the coupling port 323 is connected to the feedback terminal 121A. No need to connect.
  • connection and non-connection between the directional couplers 31 and 32 and the feedback terminal 121A by the switch 52A is switched between the filters 61 and 62 and the antenna connection terminals 101 and 102 by the switch 51. and non-connection switching. Therefore, unnecessary feedback signals can be suppressed from being fed back to the RFIC 3, and the quality of feedback signals can be improved.
  • the switch 52A may switch the connection of the feedback terminal 121A between the coupling port 313 and the coupling port 323 over time in (i).
  • two feedback signals from the two directional couplers 31 and 32 can be separated in time and fed back to the RFIC 3 via one feedback terminal 121A. Therefore, interference between two feedback signals can be eliminated, and the quality of feedback signals can be improved.
  • Embodiment 3 differs from the first embodiment mainly in that the power amplifier 12 and the filter 62 are arranged on separate module substrates.
  • the present embodiment will be described below, focusing on the differences from the first embodiment.
  • FIG. 14 is a circuit configuration diagram of the high frequency modules 1B and 6 and the communication device 5B according to this embodiment.
  • the communication device 5B corresponds to a so-called UE, and is typically a mobile phone, smart phone, tablet computer, or the like.
  • a communication device 5B includes high frequency modules 1B and 6, antennas 2a and 2b, RFIC 3, and BBIC 4.
  • the antennas 2a and 2b and the BBIC 4 are not essential components in the communication device 5B according to the present embodiment.
  • the high frequency module 1B does not include the power amplifier 12 and the filter 62, and includes a high frequency input terminal 113 instead of the high frequency input terminal 112.
  • FIG. 14 the high frequency module 1B does not include the power amplifier 12 and the filter 62, and includes a high frequency input terminal 113 instead of the high frequency input terminal 112.
  • the high-frequency input terminal 113 is an example of a third external connection terminal, and is a terminal for receiving a band A transmission signal from the outside of the high-frequency module 1B (here, the high-frequency module 6). High frequency input terminal 113 is connected to terminal 514 of switch 51 .
  • the high frequency module 6 includes a power amplifier 12, a filter 62, a high frequency input terminal 112, and a high frequency output terminal 131.
  • the high-frequency output terminal 131 is a terminal for supplying a band A transmission signal to the outside of the high-frequency module 6 (here, the high-frequency module 1B).
  • the high frequency output terminal 131 is connected to the filter 62 inside the high frequency module 6 and connected to the high frequency input terminal 113 of the high frequency module 1B outside the high frequency module 6 .
  • the band A transmission signal amplified by the power amplifier 12 is transmitted from the high frequency output terminal 131 to the high frequency input terminal 113 .
  • the high-frequency module 1B includes the high-frequency input terminal 113 that receives the amplified transmission signal of band A from the outside.
  • the power amplifier 12 and the filter 62 need only be included in the high frequency module 6 different from the high frequency module 1B, the heat generated from the power amplifiers 11 and 12 can be dispersed and the heat can be efficiently dissipated from the separate high frequency modules. can be done.
  • the high-frequency module and communication device according to the present invention have been described above based on the embodiments, the high-frequency module and communication device according to the present invention are not limited to the above-described embodiments. Another embodiment realized by combining arbitrary constituent elements in the above embodiment, and a modification obtained by applying various modifications that a person skilled in the art can think of without departing from the scope of the present invention to the above embodiment, the present invention also includes various devices incorporating the high-frequency module.
  • an impedance matching circuit may be inserted between power amplifier 11 and filters 61 and/or 63 .
  • an impedance matching circuit may be inserted between power amplifier 12 and filter 62 .
  • the communication device has two antennas for 2x2 UL-MIMO, but the number of antennas is not limited to two.
  • a communication device may be equipped with four antennas for 4x4 UL-MIMO.
  • the radio frequency module may comprise four directional couplers respectively connected to the four transmission paths.
  • a double-sided mounting board may be used.
  • the directional coupler may be arranged on either of the main surfaces 91a and 91b.
  • the high-frequency module does not support reception of high-frequency signals, but is not limited to this. That is, the radio frequency module may be capable of receiving radio frequency signals in addition to transmitting them.
  • the high frequency module may include a receive filter, a low noise amplifier, and the like.
  • the present invention can be widely used in communication equipment such as mobile phones as a high-frequency module arranged in the front end section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

A high-frequency module (1) supports UL-MIMO for a band A, and comprises: a module board (91); a filter (61) having a passband including at least a portion of band A; a power amplifier (11) connected to the filter (61); a directional coupler (31) having an input port (311) connected to the filter (61), an output port (312) connected to an antenna connection terminal (101), and a coupling port (313) connected to a feedback terminal (121); and a directional coupler (32) having an input port (321) connected to a filter (62) having a passband including at least a portion of band A, an output port (322) connected to an antenna connection terminal (102), and a coupling port (323) connected to a feedback terminal (121 or 122).

Description

高周波モジュールhigh frequency module
 本発明は、高周波モジュールに関する。 The present invention relates to high frequency modules.
 携帯電話などの移動体通信機器において、複数のアンテナを用いてマルチパス伝搬を実現するMIMO(Multiple-Input and Multiple-Output)への対応が進められている。例えば、特許文献1に記載の通信装置では、メインモジュールとMIMOモジュールとを用いてアップリンク(UL:Uplink)MIMOが実現される。 In mobile communication devices such as mobile phones, support for MIMO (Multiple-Input and Multiple-Output), which realizes multipath propagation using multiple antennas, is being promoted. For example, in the communication device described in Patent Literature 1, uplink (UL: Uplink) MIMO is realized using a main module and a MIMO module.
国際公開第2019/065419号WO2019/065419
 このような通信装置では、UL-MIMOの通信品質の向上のために、複数の送信経路において送信信号のパワー及び/又は位相を監視するためのフィードバック信号の品質向上が要求される。 In such communication devices, in order to improve the communication quality of UL-MIMO, it is required to improve the quality of feedback signals for monitoring the power and/or phase of transmission signals in multiple transmission paths.
 そこで、本発明は、複数の送信経路において送信信号のパワー及び/又は位相を監視するためのフィードバック信号の品質を向上させることができる高周波モジュールを提供する。 Therefore, the present invention provides a high frequency module capable of improving the quality of feedback signals for monitoring the power and/or phase of transmission signals in multiple transmission paths.
 本発明の一態様に係る高周波モジュールは、第1バンドのUL-MIMOに対応する高周波モジュールであって、モジュール基板と、モジュール基板に配置され、第1バンドの少なくとも一部を含む通過帯域を有する第1フィルタと、モジュール基板に配置され、第1フィルタに接続される第1電力増幅器と、モジュール基板に配置された第1方向性結合器であって、第1フィルタに接続される第1入力ポート、第1アンテナ接続端子に接続される第1出力ポート、及び、第1外部接続端子に接続される第1結合ポートを有する第1方向性結合器と、モジュール基板に配置された第2方向性結合器であって、第1バンドの少なくとも一部を含む通過帯域を有する第2フィルタに接続される第2入力ポート、第2アンテナ接続端子に接続される第2出力ポート、及び、第1外部接続端子又は第2外部接続端子に接続される第2結合ポートを有する第2方向性結合器と、を備える。 A high-frequency module according to an aspect of the present invention is a high-frequency module compatible with UL-MIMO in a first band, and has a module substrate and a passband disposed on the module substrate and including at least part of the first band. A first filter, a first power amplifier located on the module substrate and connected to the first filter, and a first directional coupler located on the module substrate and having a first input connected to the first filter. a first directional coupler having a port, a first output port connected to the first antenna connection terminal, and a first coupling port connected to the first external connection terminal; and a second direction arranged on the module substrate. a sexual coupler having a second input port connected to a second filter having a passband that includes at least a portion of the first band; a second output port connected to a second antenna connection terminal; a second directional coupler having a second coupling port connected to the external connection terminal or the second external connection terminal.
 本発明の一態様に係る高周波モジュールは、第1バンドのUL-MIMOに対応する高周波モジュールであって、モジュール基板と、モジュール基板に配置され、第1バンドの少なくとも一部を含む通過帯域を有する第1フィルタと、モジュール基板に配置され、第1フィルタに接続される第1電力増幅器と、モジュール基板に配置された第1方向性結合器であって、第1フィルタに接続される第1入力ポート、第1アンテナ接続端子に接続される第1出力ポート、及び、第1外部接続端子に接続される第1結合ポートを有する第1方向性結合器と、モジュール基板に配置された第2方向性結合器であって、高周波モジュールの外部から第1バンドの送信信号を受ける第3外部接続端子に接続される第2入力ポート、第2アンテナ接続端子に接続される第2出力ポート、及び、第1外部接続端子又は第2外部接続端子に接続される第2結合ポートを有する第2方向性結合器と、を備える。 A high-frequency module according to an aspect of the present invention is a high-frequency module compatible with UL-MIMO in a first band, and has a module substrate and a passband disposed on the module substrate and including at least part of the first band. A first filter, a first power amplifier located on the module substrate and connected to the first filter, and a first directional coupler located on the module substrate and having a first input connected to the first filter. a first directional coupler having a port, a first output port connected to the first antenna connection terminal, and a first coupling port connected to the first external connection terminal; and a second direction arranged on the module substrate. a sexual coupler having a second input port connected to a third external connection terminal for receiving a transmission signal of a first band from the outside of the high frequency module, a second output port connected to a second antenna connection terminal, and a second directional coupler having a second coupling port connected to the first external connection terminal or the second external connection terminal.
 本発明の一態様に係る高周波モジュールによれば、複数の送信経路において送信信号のパワー及び/又は位相を監視するためのフィードバック信号の品質を向上させることができる。 According to the high-frequency module according to one aspect of the present invention, it is possible to improve the quality of feedback signals for monitoring the power and/or phase of transmission signals in a plurality of transmission paths.
図1は、実施の形態1に係る高周波モジュール及び通信装置の回路構成図である。FIG. 1 is a circuit configuration diagram of a high-frequency module and a communication device according to Embodiment 1. FIG. 図2は、実施の形態1に係る高周波モジュールのUL-MIMO時の接続状態を示す高周波モジュールの回路状態図である。FIG. 2 is a circuit state diagram of the high-frequency module showing the connection state of the high-frequency module according to the first embodiment at the time of UL-MIMO. 図3は、実施の形態1に係る高周波モジュールのUL-SISO時の第1接続状態を示す高周波モジュールの回路状態図である。FIG. 3 is a circuit state diagram of the high-frequency module according to the first embodiment, showing a first connection state at the time of UL-SISO of the high-frequency module. 図4は、実施の形態1に係る高周波モジュールのUL-SISO時の第2接続状態を示す高周波モジュールの回路状態図である。FIG. 4 is a circuit state diagram of the high-frequency module according to the first embodiment, showing a second connection state during UL-SISO of the high-frequency module. 図5は、実施の形態1に係る高周波モジュールのインターバンドCA時の第1接続状態を示す高周波モジュールの回路状態図である。FIG. 5 is a circuit state diagram of the high-frequency module showing the first connection state during interband CA of the high-frequency module according to the first embodiment. 図6は、実施の形態1に係る高周波モジュールのインターバンドCA時の第2接続状態を示す高周波モジュールの回路状態図である。FIG. 6 is a circuit state diagram of the high-frequency module showing a second connection state during interband CA of the high-frequency module according to the first embodiment. 図7は、実施の形態1に係る高周波モジュールの平面図である。7 is a plan view of the high-frequency module according to Embodiment 1. FIG. 図8は、実施の形態1に係る高周波モジュールの平面図である。8 is a plan view of the high-frequency module according to Embodiment 1. FIG. 図9は、実施の形態1に係る高周波モジュールの断面図である。9 is a cross-sectional view of the high-frequency module according to Embodiment 1. FIG. 図10は、実施の形態2に係る高周波モジュール及び通信装置の回路構成図である。FIG. 10 is a circuit configuration diagram of a high-frequency module and a communication device according to Embodiment 2. FIG. 図11は、実施の形態2に係る高周波モジュールのUL-MIMO時の接続状態を示す高周波モジュール及び通信装置の回路構成図である。FIG. 11 is a circuit configuration diagram of a radio frequency module and a communication device, showing a connection state of the radio frequency module according to Embodiment 2 during UL-MIMO. 図12は、実施の形態2に係る高周波モジュールのUL-SISO時の第1接続状態を示す高周波モジュール及び通信装置の回路構成図である。FIG. 12 is a circuit configuration diagram of a radio frequency module and a communication device showing a first connection state of the radio frequency module according to Embodiment 2 at UL-SISO. 図13は、実施の形態2に係る高周波モジュールのUL-SISO時の第2接続状態を示す高周波モジュール及び通信装置の回路構成図である。FIG. 13 is a circuit configuration diagram of a radio frequency module and a communication device, showing a second connection state in UL-SISO of the radio frequency module according to the second embodiment. 図14は、実施の形態3に係る高周波モジュール及び通信装置の回路構成図である。FIG. 14 is a circuit configuration diagram of a high-frequency module and a communication device according to Embodiment 3. FIG.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the embodiments described below are all comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement of components, connection forms, and the like shown in the following embodiments are examples, and are not intended to limit the present invention.
 なお、各図は、本発明を示すために適宜強調、省略、又は比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、及び比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡素化される場合がある。 In addition, each drawing is a schematic diagram that has been appropriately emphasized, omitted, or adjusted in proportion to show the present invention, and is not necessarily strictly illustrated, and the actual shape, positional relationship, and ratio may differ. In each figure, substantially the same configurations are denoted by the same reference numerals, and redundant description may be omitted or simplified.
 以下の各図において、x軸及びy軸は、モジュール基板の主面と平行な平面上で互いに直交する軸である。具体的には、平面視においてモジュール基板が矩形状を有する場合、x軸は、モジュール基板の第1辺に平行であり、y軸は、モジュール基板の第1辺と直交する第2辺に平行である。また、z軸は、モジュール基板の主面に垂直な軸であり、その正方向は上方向を示し、その負方向は下方向を示す。 In each figure below, the x-axis and the y-axis are axes orthogonal to each other on a plane parallel to the main surface of the module substrate. Specifically, when the module substrate has a rectangular shape in plan view, the x-axis is parallel to the first side of the module substrate, and the y-axis is parallel to the second side orthogonal to the first side of the module substrate. is. Also, the z-axis is an axis perpendicular to the main surface of the module substrate, and its positive direction indicates an upward direction and its negative direction indicates a downward direction.
 本発明の回路構成において、「接続される」とは、接続端子及び/又は配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。「A及びBの間に接続される」とは、A及びBの間でA及びBの両方に接続されることを意味し、A及びBを結ぶ経路に直列に接続されることに加えて、当該経路とグランドとの間に接続されることを含む。 In the circuit configuration of the present invention, "connected" includes not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit elements. "Connected between A and B" means connected to both A and B between A and B, in addition to being connected in series with the path connecting A and B , is connected between the path and ground.
 本発明の部品配置において、「部品が基板に配置される」とは、部品が基板の主面上に配置されることに加えて、部品が基板内に配置されることを含む。「部品が基板の主面上に配置される」とは、部品が基板の主面に接触して配置されることに加えて、部品が主面と接触せずに当該主面の上方に配置されること(例えば、部品が主面と接触して配置された他の部品上に積層されること)を含む。また、「部品が基板の主面上に配置される」は、主面に形成された凹部に部品が配置されることを含んでもよい。「部品が基板内に配置される」とは、部品がモジュール基板内にカプセル化されることに加えて、部品の全部が基板の両主面の間に配置されているが部品の一部が基板に覆われていないこと、及び、部品の一部のみが基板内に配置されていることを含む。また、「平行」及び「垂直」などの要素間の関係性を示す用語、及び、「矩形」などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の誤差をも含むことを意味する。 In the component placement of the present invention, "the component is placed on the board" includes placing the component in the board in addition to placing the component on the main surface of the board. "The component is arranged on the main surface of the board" means that the component is arranged in contact with the main surface of the board, and that the component is arranged above the main surface without contacting the main surface. (eg, a component is laminated onto another component placed in contact with a major surface). Also, "the component is arranged on the main surface of the substrate" may include that the component is arranged in a concave portion formed in the main surface. "Components are located within a substrate" means that, in addition to encapsulating components within a module substrate, all of the components are located between major surfaces of the substrate, but some of the components are located between major surfaces of the substrate. Including not covered by the substrate and only part of the component being placed in the substrate. In addition, terms such as "parallel" and "perpendicular" that indicate the relationship between elements, terms that indicate the shape of elements such as "rectangular", and numerical ranges do not represent only strict meanings, It means that an error of a substantially equivalent range, for example, several percent, is also included.
 (実施の形態1)
 [1.1 高周波モジュール1及び通信装置5の回路構成]
 実施の形態1に係る高周波モジュール1及びそれを備える通信装置5の回路構成について、図1を参照しながら説明する。図1は、本実施の形態に係る高周波モジュール1及び通信装置5の回路構成図である。
(Embodiment 1)
[1.1 Circuit configuration of high-frequency module 1 and communication device 5]
A circuit configuration of a high-frequency module 1 according to Embodiment 1 and a communication device 5 including the same will be described with reference to FIG. FIG. 1 is a circuit configuration diagram of a high frequency module 1 and a communication device 5 according to this embodiment.
 [1.1.1 通信装置5の回路構成]
 まず、通信装置5について説明する。通信装置5は、いわゆるユーザ端末(UE:User Equipment)に相当し、典型的には、携帯電話、スマートフォン、タブレットコンピュータ等である。このような通信装置5は、高周波モジュール1と、アンテナ2a及び2bと、RFIC(Radio Frequency Integrated Circuit)3と、BBIC(Baseband Integrated Circuit)4と、を備える。
[1.1.1 Circuit Configuration of Communication Device 5]
First, the communication device 5 will be described. The communication device 5 corresponds to a so-called user terminal (UE: User Equipment), and is typically a mobile phone, a smart phone, a tablet computer, or the like. Such a communication device 5 includes a high frequency module 1 , antennas 2 a and 2 b , RFIC (Radio Frequency Integrated Circuit) 3 , and BBIC (Baseband Integrated Circuit) 4 .
 高周波モジュール1は、アンテナ2a及び2bとRFIC3との間で高周波信号を伝送する。具体的には、高周波モジュール1は、バンドAのUL-MIMOに対応しており、アンテナ2a及び2bから同時にバンドAの信号を送信することができる。高周波モジュール1の内部構成については後述する。 The high frequency module 1 transmits high frequency signals between the antennas 2a and 2b and the RFIC 3. Specifically, the high-frequency module 1 is compatible with UL-MIMO of band A, and can simultaneously transmit signals of band A from antennas 2a and 2b. The internal configuration of the high frequency module 1 will be described later.
 アンテナ2a及び2bは、高周波モジュール1のアンテナ接続端子101及び102にそれぞれ接続される。アンテナ2a及び2bの各々は、高周波モジュール1から高周波信号を受信して外部に出力する。 The antennas 2a and 2b are connected to antenna connection terminals 101 and 102 of the high frequency module 1, respectively. Each of the antennas 2a and 2b receives a high frequency signal from the high frequency module 1 and outputs it to the outside.
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、BBIC4から入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、高周波モジュール1の送信経路に出力する。また、RFIC3は、高周波モジュール1が有するスイッチ及び増幅器等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部又は全部は、RFIC3の外部に構成されてもよく、例えば、BBIC4又は高周波モジュール1に構成されてもよい。 The RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 performs signal processing such as up-conversion on the transmission signal input from the BBIC 4 , and outputs the high-frequency transmission signal generated by the signal processing to the transmission path of the high-frequency module 1 . Further, the RFIC 3 has a control section that controls the switches, amplifiers, etc. of the high-frequency module 1 . Some or all of the functions of the RFIC 3 as a control unit may be configured outside the RFIC 3, for example, in the BBIC 4 or the high frequency module 1. FIG.
 BBIC4は、高周波モジュール1が伝送する高周波信号よりも低周波の中間周波数帯域を用いて信号処理するベースバンド信号処理回路である。BBIC4で処理される信号としては、例えば、画像表示のための画像信号、及び/又は、スピーカを介した通話のために音声信号が用いられる。 The BBIC 4 is a baseband signal processing circuit that performs signal processing using an intermediate frequency band that is lower in frequency than the high frequency signal transmitted by the high frequency module 1 . Signals processed by the BBIC 4 include, for example, image signals for image display and/or audio signals for calling through a speaker.
 なお、本実施の形態に係る通信装置5において、アンテナ2a及び2bとBBIC4とは、必須の構成要素ではない。 In addition, in the communication device 5 according to the present embodiment, the antennas 2a and 2b and the BBIC 4 are not essential components.
 [1.1.2 高周波モジュール1の回路構成]
 次に、高周波モジュール1について説明する。図1に示すように、高周波モジュール1は、電力増幅器(PA)11及び12と、方向性結合器31及び32と、スイッチ(SW)51~54と、フィルタ61~63と、アンテナ接続端子101及び102と、高周波入力端子111及び112と、フィードバック端子121及び122と、を備える。
[1.1.2 Circuit Configuration of High-Frequency Module 1]
Next, the high frequency module 1 will be explained. As shown in FIG. 1, the high-frequency module 1 includes power amplifiers (PA) 11 and 12, directional couplers 31 and 32, switches (SW) 51 to 54, filters 61 to 63, and an antenna connection terminal 101. , 102 , high frequency input terminals 111 and 112 , and feedback terminals 121 and 122 .
 アンテナ接続端子101は、第1アンテナ接続端子の一例であり、高周波モジュール1の外部でアンテナ2aに接続される。アンテナ接続端子102は、第2アンテナ接続端子の一例であり、高周波モジュール1の外部でアンテナ2bに接続される。 The antenna connection terminal 101 is an example of a first antenna connection terminal, and is connected to the antenna 2a outside the high frequency module 1. The antenna connection terminal 102 is an example of a second antenna connection terminal, and is connected to the antenna 2b outside the high frequency module 1 .
 高周波入力端子111は、高周波モジュール1の外部(ここではRFIC3)から、バンドA及びBの送信信号を受けるための入力端子である。高周波入力端子112は、第3外部接続端子の一例であり、高周波モジュール1の外部(ここではRFIC3)から、バンドAの送信信号を受けるための入力端子である。 The high-frequency input terminal 111 is an input terminal for receiving transmission signals of bands A and B from the outside of the high-frequency module 1 (here, the RFIC 3). The high-frequency input terminal 112 is an example of a third external connection terminal, and is an input terminal for receiving a band A transmission signal from the outside of the high-frequency module 1 (here, the RFIC 3).
 バンドA及びBは、それぞれ第1バンド及び第2バンドの一例であり、標準化団体など(例えば3GPP(登録商標)及びIEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのための周波数バンドである。なお、バンドBは、バンドAと同時送信可能な周波数バンドである。通信システムとしては、例えば5GNR(5th Generation New Radio)システム、LTE(Long Term Evolution)システム及びWLAN(Wireless Local Area Network)システム等を用いることができるが、これに限定されない。 Bands A and B are examples of the first band and the second band, respectively, and are wireless access technologies ( RAT (Radio Access Technology) is a frequency band for communication systems built using RAT. Note that band B is a frequency band in which simultaneous transmission with band A is possible. Examples of communication systems that can be used include, but are not limited to, 5GNR (5th Generation New Radio) systems, LTE (Long Term Evolution) systems, and WLAN (Wireless Local Area Network) systems.
 バンドAとしては、周波数分割複信(FDD:Frequency Division Duplex)バンドを用いることができ、例えば、LTEのためのBand1、Band3、Band8、Band20、Band28若しくはBand71、又は、5GNRのためのn1、n3、n8、n20、n28若しくはn71を用いることができる。また、バンドAとして、時分割複信(TDD:Time Division Duplex)バンドを用いることもでき、例えば、LTEのためのBand40、Band41若しくはBand46、又は、5GNRのためのn40、n41、n46、n77、n78、n79、n96、n102若しくはn104を用いることもできる。なお、バンドAは、これらのバンドに限定されない。 As band A, a frequency division duplex (FDD) band can be used, for example, Band1, Band3, Band8, Band20, Band28 or Band71 for LTE, or n1, n3 for 5GNR. , n8, n20, n28 or n71 can be used. Also, as band A, a time division duplex (TDD) band can be used, for example, Band40, Band41 or Band46 for LTE, or n40, n41, n46, n77 for 5GNR, n78, n79, n96, n102 or n104 can also be used. Band A is not limited to these bands.
 フィードバック端子121及び122は、それぞれ、第1外部接続端子及び第2外部接続端子の一例である。フィードバック端子121及び122は、高周波モジュール1の外部(ここではRFIC3)に、バンドA及びBの送信信号の一部をフィードバックするための出力端子である。 The feedback terminals 121 and 122 are examples of a first external connection terminal and a second external connection terminal, respectively. The feedback terminals 121 and 122 are output terminals for feeding back part of the transmission signals of the bands A and B to the outside of the high frequency module 1 (here, the RFIC 3).
 電力増幅器11は、第1電力増幅器の一例であり、高周波入力端子111とフィルタ61及び63との間に接続される。電力増幅器11は、高周波モジュール1の外部から供給される電源電圧を用いてバンドA及びBの送信信号を増幅することができる。 The power amplifier 11 is an example of a first power amplifier and is connected between the high frequency input terminal 111 and the filters 61 and 63 . The power amplifier 11 can amplify transmission signals of bands A and B using a power supply voltage supplied from the outside of the high frequency module 1 .
 電力増幅器12は、第2電力増幅器の一例であり、高周波入力端子112とフィルタ62との間に接続される。電力増幅器12は、高周波モジュール1の外部から供給される電源電圧を用いてバンドAの送信信号を増幅することができる。 The power amplifier 12 is an example of a second power amplifier and is connected between the high frequency input terminal 112 and the filter 62 . The power amplifier 12 can amplify the transmission signal of band A using the power supply voltage supplied from the outside of the high frequency module 1 .
 方向性結合器31は、第1方向性結合器の一例であり、フィルタ61及び63とアンテナ接続端子101との間に接続される。本実施の形態では、方向性結合器31は、3つのポートを有する単方向性結合器である。具体的には、方向性結合器31は、入力ポート(input port)311と、出力ポート(output port)312と、結合ポート(coupled port)313と、を有する。 The directional coupler 31 is an example of a first directional coupler and is connected between the filters 61 and 63 and the antenna connection terminal 101 . In this embodiment, directional coupler 31 is a unidirectional coupler having three ports. Specifically, the directional coupler 31 has an input port 311 , an output port 312 and a coupled port 313 .
 入力ポート311は、第1入力ポートの一例であり、スイッチ51を介してフィルタ61及び63に接続される。入力ポート311には、フィルタ61を通過したバンドAの送信信号とフィルタ63を通過したバンドBの送信信号とが入力される。 The input port 311 is an example of a first input port and is connected to the filters 61 and 63 via the switch 51. The input port 311 receives the band A transmission signal that has passed through the filter 61 and the band B transmission signal that has passed through the filter 63 .
 結合ポート313は、第1結合ポートの一例であり、フィードバック端子121に接続される。結合ポート313からは、入力ポート311に入力されたバンドAの送信信号の一部及びバンドBの送信信号の一部が取り出される。 A coupling port 313 is an example of a first coupling port and is connected to the feedback terminal 121 . A part of the transmission signal of band A and a part of the transmission signal of band B input to the input port 311 are extracted from the coupling port 313 .
 出力ポート312は、第1出力ポートの一例であり、アンテナ接続端子101に接続される。出力ポート312からは、入力ポート311に入力されたバンドAの送信信号の他部及びバンドBの送信信号の他部が出力される。 The output port 312 is an example of a first output port and is connected to the antenna connection terminal 101 . The other part of the transmission signal of band A and the other part of the transmission signal of band B input to the input port 311 are output from the output port 312 .
 方向性結合器32は、第2方向性結合器の一例であり、フィルタ62とアンテナ接続端子102との間に接続される。本実施の形態では、方向性結合器32は、3つのポートを有する単方向性結合器である。具体的には、方向性結合器32は、入力ポート321と、出力ポート322と、結合ポート323と、を有する。 The directional coupler 32 is an example of a second directional coupler and is connected between the filter 62 and the antenna connection terminal 102 . In this embodiment, the directional coupler 32 is a unidirectional coupler with three ports. Specifically, the directional coupler 32 has an input port 321 , an output port 322 and a coupling port 323 .
 入力ポート321は、第2入力ポートの一例であり、スイッチ51を介してフィルタ62に接続される。入力ポート321には、フィルタ62を通過したバンドAの送信信号が入力される。 The input port 321 is an example of a second input port and is connected to the filter 62 via the switch 51. A band A transmission signal that has passed through the filter 62 is input to the input port 321 .
 結合ポート323は、第2結合ポートの一例であり、フィードバック端子122に接続される。結合ポート323からは、入力ポート321に入力されたバンドAの送信信号の一部が取り出される。 A coupling port 323 is an example of a second coupling port and is connected to the feedback terminal 122 . A portion of the band A transmission signal input to the input port 321 is extracted from the coupling port 323 .
 出力ポート322は、第2出力ポートの一例であり、アンテナ接続端子102に接続される。出力ポート322からは、入力ポート321に入力されたバンドAの送信信号の他部が出力される。 The output port 322 is an example of a second output port and is connected to the antenna connection terminal 102 . The output port 322 outputs the other part of the band A transmission signal input to the input port 321 .
 なお、方向性結合器31及び32は、単方向性結合器に限定されない。例えば、方向性結合器31及び/又は32は、4つのポートを有する双方向性結合器であってもよい。この場合、方向性結合器31及び/又は32は、逆方向に伝搬する送信信号(反射波)の一部を取り出してRFIC3にフィードバックすることができる。 The directional couplers 31 and 32 are not limited to unidirectional couplers. For example, directional couplers 31 and/or 32 may be bidirectional couplers having four ports. In this case, the directional couplers 31 and/or 32 can extract part of the backward propagating transmission signal (reflected wave) and feed it back to the RFIC 3 .
 スイッチ51は、第1スイッチの一例であり、フィルタ61~63とアンテナ接続端子101及び102との間に接続される。スイッチ51は、例えばマルチ接続型のスイッチ回路で構成される。具体的には、スイッチ51は、端子511~515を有する。端子511は、方向性結合器31の入力ポート311に接続され、方向性結合器31を介してアンテナ接続端子101に接続される。端子512は、方向性結合器32の入力ポート321に接続され、方向性結合器32を介してアンテナ接続端子102に接続される。端子513~515は、フィルタ61~63にそれぞれ接続される。 The switch 51 is an example of a first switch and is connected between the filters 61-63 and the antenna connection terminals 101 and 102. The switch 51 is composed of, for example, a multi-connection switch circuit. Specifically, the switch 51 has terminals 511-515. Terminal 511 is connected to input port 311 of directional coupler 31 and is connected to antenna connection terminal 101 via directional coupler 31 . Terminal 512 is connected to input port 321 of directional coupler 32 and is connected to antenna connection terminal 102 via directional coupler 32 . Terminals 513-515 are connected to filters 61-63, respectively.
 この接続構成において、スイッチ51は、例えばRFIC3からの制御信号に基づいて、端子511及び512の各々を端子513~515の少なくとも1つに接続することができる。つまり、スイッチ51は、アンテナ接続端子101及び102の各々をフィルタ61~63の少なくとも1つに接続することができる。 In this connection configuration, the switch 51 can connect each of the terminals 511 and 512 to at least one of the terminals 513 to 515 based on a control signal from the RFIC 3, for example. That is, the switch 51 can connect each of the antenna connection terminals 101 and 102 to at least one of the filters 61-63.
 スイッチ52は、第2スイッチの一例であり、方向性結合器31の結合ポート313とフィードバック端子121との間に接続される。スイッチ52は、例えばSPST(Single-Pole Single-Throw)型のスイッチ回路で構成される。具体的には、スイッチ52は、端子521及び522を有する。端子521は、結合ポート313に接続される。端子522は、フィードバック端子121に接続される。 The switch 52 is an example of a second switch and is connected between the coupling port 313 of the directional coupler 31 and the feedback terminal 121. The switch 52 is configured by, for example, an SPST (Single-Pole Single-Throw) type switch circuit. Specifically, switch 52 has terminals 521 and 522 . Terminal 521 is connected to coupling port 313 . Terminal 522 is connected to feedback terminal 121 .
 この接続構成において、スイッチ52は、例えばRFIC3からの制御信号に基づいて、端子521及び522の間の接続及び非接続を切り替えることができる。つまり、スイッチ52は、結合ポート313及びフィードバック端子121の間の接続及び非接続を切り替えることができる。例えば、スイッチ51によってアンテナ接続端子101がフィルタ61及び63の少なくとも一方に接続されている状況において、スイッチ52は、結合ポート313をフィードバック端子121に接続してもよい。一方、スイッチ51によってアンテナ接続端子101がフィルタ61及び63のいずれにも接続されていない状況において、スイッチ52は、結合ポート313をフィードバック端子121に接続しなくてもよい。 In this connection configuration, the switch 52 can switch between connection and non-connection between the terminals 521 and 522 based on a control signal from the RFIC 3, for example. That is, the switch 52 can switch connection and disconnection between the coupling port 313 and the feedback terminal 121 . For example, switch 52 may connect coupling port 313 to feedback terminal 121 in situations where switch 51 connects antenna connection terminal 101 to at least one of filters 61 and 63 . On the other hand, switch 52 may not connect coupling port 313 to feedback terminal 121 in situations where antenna connection terminal 101 is not connected to either of filters 61 and 63 by switch 51 .
 スイッチ53は、第3スイッチの一例であり、方向性結合器32の結合ポート323とフィードバック端子122との間に接続される。スイッチ53は、例えばSPST型のスイッチ回路で構成される。具体的には、スイッチ53は、端子531及び532を有する。端子531は、結合ポート323に接続される。端子532は、フィードバック端子122に接続される。 The switch 53 is an example of a third switch and is connected between the coupling port 323 of the directional coupler 32 and the feedback terminal 122. The switch 53 is configured by, for example, an SPST type switch circuit. Specifically, the switch 53 has terminals 531 and 532 . Terminal 531 is connected to coupling port 323 . Terminal 532 is connected to feedback terminal 122 .
 この接続構成において、スイッチ53は、例えばRFIC3からの制御信号に基づいて、端子531及び532の間の接続及び非接続を切り替えることができる。つまり、スイッチ53は、結合ポート323及びフィードバック端子122の間の接続及び非接続を切り替えることができる。例えば、スイッチ51によってアンテナ接続端子102がフィルタ62に接続されている状況において、スイッチ53は、結合ポート323をフィードバック端子122に接続してもよい。一方、スイッチ51によってアンテナ接続端子102がフィルタ62に接続されていない状況において、スイッチ53は、結合ポート323をフィードバック端子122に接続しなくてもよい。 In this connection configuration, the switch 53 can switch connection and non-connection between the terminals 531 and 532 based on a control signal from the RFIC 3, for example. That is, the switch 53 can switch connection and disconnection between the coupling port 323 and the feedback terminal 122 . For example, in situations where antenna connection terminal 102 is connected to filter 62 by switch 51 , switch 53 may connect coupling port 323 to feedback terminal 122 . On the other hand, switch 53 may not connect coupling port 323 to feedback terminal 122 in situations where antenna connection terminal 102 is not connected to filter 62 by switch 51 .
 スイッチ54は、電力増幅器11とフィルタ61及び63との間に接続される。スイッチ54は、例えばSPDT(Single-Pole Double-Throw)型のスイッチ回路で構成される。具体的には、スイッチ54は、端子541~543を有する。端子541は、電力増幅器11の出力端に接続される。端子542は、フィルタ61に接続される。端子543は、フィルタ63に接続される。 A switch 54 is connected between the power amplifier 11 and the filters 61 and 63 . The switch 54 is configured by, for example, an SPDT (Single-Pole Double-Throw) type switch circuit. Specifically, the switch 54 has terminals 541-543. Terminal 541 is connected to the output end of power amplifier 11 . Terminal 542 is connected to filter 61 . Terminal 543 is connected to filter 63 .
 この接続構成において、スイッチ54は、例えばRFIC3からの制御信号に基づいて、端子541を端子542及び543のいずれかに接続することができる。つまり、スイッチ54は、電力増幅器11の接続をフィルタ61及び63の間で切り替えることができる。 In this connection configuration, the switch 54 can connect the terminal 541 to either of the terminals 542 and 543 based on a control signal from the RFIC 3, for example. That is, the switch 54 can switch the connection of the power amplifier 11 between the filters 61 and 63 .
 フィルタ61は、第1フィルタの一例であり、電力増幅器11とアンテナ接続端子101及び102との間に接続される。具体的には、フィルタ61の一端は、スイッチ54の端子542に接続され、フィルタ61の他端は、スイッチ51の端子513に接続される。 The filter 61 is an example of a first filter and is connected between the power amplifier 11 and the antenna connection terminals 101 and 102 . Specifically, one end of the filter 61 is connected to the terminal 542 of the switch 54 and the other end of the filter 61 is connected to the terminal 513 of the switch 51 .
 また、フィルタ61は、バンドAの少なくとも一部を含む通過帯域を有する。例えば、バンドAがFDDバンドである場合、フィルタ61は、バンドAのアップリンク動作バンド(uplink operating band)を含む通過帯域を有する。また例えば、バンドAがTDDバンドである場合、フィルタ61は、バンドA全体を含む通過帯域を有する。 Also, the filter 61 has a passband that includes at least part of band A. For example, if band A is the FDD band, filter 61 has a passband that includes the uplink operating band of band A. FIG. Also for example, if band A is the TDD band, filter 61 has a passband that includes all of band A.
 フィルタ62は、第2フィルタの一例であり、電力増幅器12とアンテナ接続端子101及び102との間に接続される。具体的には、フィルタ62の一端は、電力増幅器12の出力端に接続され、フィルタ62の他端は、スイッチ51の端子514に接続される。 The filter 62 is an example of a second filter and is connected between the power amplifier 12 and the antenna connection terminals 101 and 102 . Specifically, one end of the filter 62 is connected to the output end of the power amplifier 12 and the other end of the filter 62 is connected to the terminal 514 of the switch 51 .
 また、フィルタ62は、フィルタ61と同様に、バンドAの少なくとも一部を含む通過帯域を有する。例えば、バンドAがFDD周波数バンドである場合、フィルタ62は、バンドAのアップリンク動作バンドを含む通過帯域を有する。また例えば、バンドAがTDD周波数バンドである場合、フィルタ62は、バンドA全体を含む通過帯域を有する。 Also, the filter 62 has a passband that includes at least part of the band A, similar to the filter 61 . For example, if band A is the FDD frequency band, filter 62 has a passband that includes the band A uplink operating band. Also for example, if band A is the TDD frequency band, filter 62 has a passband that includes all of band A.
 フィルタ63は、第3フィルタの一例であり、電力増幅器11とアンテナ接続端子101及び102との間に接続される。具体的には、フィルタ63の一端は、スイッチ54の端子543に接続され、フィルタ63の他端は、スイッチ51の端子515に接続される。 The filter 63 is an example of a third filter and is connected between the power amplifier 11 and the antenna connection terminals 101 and 102 . Specifically, one end of the filter 63 is connected to the terminal 543 of the switch 54 and the other end of the filter 63 is connected to the terminal 515 of the switch 51 .
 また、フィルタ63は、バンドBの少なくとも一部を含む通過帯域を有する。例えば、バンドBがFDD周波数バンドである場合、フィルタ63は、バンドBのアップリンク動作バンドを含む通過帯域を有する。また例えば、バンドBがTDD周波数バンドである場合、フィルタ63は、バンドB全体を含む通過帯域を有する。 Also, the filter 63 has a passband that includes at least part of the band B. For example, if band B is the FDD frequency band, filter 63 has a passband that includes the band B uplink operating band. Also for example, if band B is the TDD frequency band, filter 63 has a passband that includes all of band B. FIG.
 なお、図1の高周波モジュール1の回路構成は、一例であり、これに限定されない。例えば、高周波モジュール1は、バンドBに対応しなくてもよい、この場合、高周波モジュール1は、スイッチ54及びフィルタ63を備えなくてよい。また例えば、高周波モジュール1は、スイッチ51を備えなくてもよく、スイッチ52及び/又は53を備えなくてもよい。また、方向性結合器31は、フィルタ61とスイッチ51との間に接続されてもよく、方向性結合器32は、フィルタ62とスイッチ51との間に接続されてもよい。 Note that the circuit configuration of the high-frequency module 1 in FIG. 1 is an example, and is not limited to this. For example, the high frequency module 1 does not have to support band B. In this case, the high frequency module 1 does not have to have the switch 54 and the filter 63 . Further, for example, the high-frequency module 1 may not include the switch 51 and may not include the switches 52 and/or 53 . Also, the directional coupler 31 may be connected between the filter 61 and the switch 51 , and the directional coupler 32 may be connected between the filter 62 and the switch 51 .
 [1.2 高周波モジュール1の接続状態]
 次に、高周波モジュール1及び通信装置5の接続状態について、図2~図6を参照しながら説明する。
[1.2 Connection State of High-Frequency Module 1]
Next, the state of connection between the high-frequency module 1 and the communication device 5 will be described with reference to FIGS. 2 to 6. FIG.
 [1.2.1 UL-MIMO時の接続状態]
 まず、高周波モジュール1及び通信装置5のUL-MIMO時の接続状態について、図2を参照しながら説明する。図2は、本実施の形態に係る高周波モジュール1のUL-MIMO時の接続状態を示す高周波モジュール1の回路状態図である。なお、図2において、破線矢印は、高周波信号の流れを表す。
[1.2.1 Connection status during UL-MIMO]
First, the connection state of the high-frequency module 1 and the communication device 5 during UL-MIMO will be described with reference to FIG. FIG. 2 is a circuit state diagram of the high frequency module 1 showing the connection state of the high frequency module 1 according to the present embodiment at the time of UL-MIMO. In FIG. 2, dashed arrows represent the flow of high-frequency signals.
 RFIC3は、高周波モジュール1の各スイッチを制御することで、図2の接続状態を実現することができる。この接続状態では、スイッチ51は、端子511を端子513に接続し、端子512を端子514に接続する。また、スイッチ52は、端子521を端子522に接続し、スイッチ53は、端子531を端子532に接続する。さらに、スイッチ54は、端子541を端子542に接続する。 The RFIC 3 can realize the connection state shown in FIG. 2 by controlling each switch of the high frequency module 1 . In this connected state, switch 51 connects terminal 511 to terminal 513 and terminal 512 to terminal 514 . Also, the switch 52 connects the terminal 521 to the terminal 522 , and the switch 53 connects the terminal 531 to the terminal 532 . In addition, switch 54 connects terminal 541 to terminal 542 .
 その結果、バンドAの第1送信信号は、RFIC3から、高周波入力端子111、電力増幅器11、スイッチ54、フィルタ61、スイッチ51、方向性結合器31及びアンテナ接続端子101を介して、アンテナ2aに伝送される。このとき、バンドAの第1送信信号の一部は、方向性結合器31から、スイッチ52及びフィードバック端子121を介して、RFIC3にフィードバックされる。さらに、バンドAの第2送信信号は、RFIC3から、高周波入力端子112、電力増幅器12、フィルタ62、スイッチ51、方向性結合器32及びアンテナ接続端子102を介して、アンテナ2bに伝送される。このとき、バンドAの第2送信信号の一部は、方向性結合器32から、スイッチ53及びフィードバック端子122を介して、RFIC3にフィードバックされる。 As a result, the first transmission signal of band A is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 61, the switch 51, the directional coupler 31 and the antenna connection terminal 101. transmitted. At this time, part of the first transmission signal of band A is fed back from the directional coupler 31 to the RFIC 3 via the switch 52 and the feedback terminal 121 . Further, the second transmission signal of band A is transmitted from RFIC 3 to antenna 2b via high frequency input terminal 112, power amplifier 12, filter 62, switch 51, directional coupler 32 and antenna connection terminal . At this time, part of the second transmission signal of band A is fed back from the directional coupler 32 to the RFIC 3 via the switch 53 and the feedback terminal 122 .
 [1.2.2 UL-SISO(Single-Input and Single-Output)時の第1接続状態]
 次に、高周波モジュール1及び通信装置5のUL-SISO時の第1接続状態について、図3を参照しながら説明する。図3は、本実施の形態に係る高周波モジュール1のUL-SISO時の第1接続状態を示す高周波モジュール1の回路状態図である。なお、図3において、破線矢印は、高周波信号の流れを表す。
[1.2.2 First connection state at UL-SISO (Single-Input and Single-Output)]
Next, the first connection state of the high-frequency module 1 and the communication device 5 at UL-SISO will be described with reference to FIG. FIG. 3 is a circuit state diagram of the high-frequency module 1 according to the present embodiment, showing the first connection state of the high-frequency module 1 during UL-SISO. In FIG. 3, dashed arrows represent the flow of high-frequency signals.
 RFIC3は、高周波モジュール1の各スイッチを制御することで、図3の接続状態を実現することができる。この接続状態では、スイッチ51は、端子511を端子513に接続するが、端子512を端子514に接続しない。また、スイッチ52は、端子521を端子522に接続するが、スイッチ53は、端子531を端子532に接続しない。さらに、スイッチ54は、端子541を端子542に接続する。 The RFIC 3 can realize the connection state shown in FIG. 3 by controlling each switch of the high frequency module 1 . In this connected state, switch 51 connects terminal 511 to terminal 513 but does not connect terminal 512 to terminal 514 . Also, the switch 52 connects the terminal 521 to the terminal 522 , but the switch 53 does not connect the terminal 531 to the terminal 532 . In addition, switch 54 connects terminal 541 to terminal 542 .
 その結果、バンドAの送信信号は、RFIC3から、高周波入力端子111、電力増幅器11、スイッチ54、フィルタ61、スイッチ51、方向性結合器31及びアンテナ接続端子101を介して、アンテナ2aに伝送される。このとき、バンドAの送信信号の一部は、方向性結合器31から、スイッチ52及びフィードバック端子121を介して、RFIC3にフィードバックされる。 As a result, the transmission signal of band A is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 61, the switch 51, the directional coupler 31 and the antenna connection terminal 101. be. At this time, part of the band A transmission signal is fed back from the directional coupler 31 to the RFIC 3 via the switch 52 and the feedback terminal 121 .
 なお、図3の接続状態では、サウンディング参照信号(SRS:Sounding Reference Signal)が送信されてもよい。 Note that in the connection state of FIG. 3, a sounding reference signal (SRS) may be transmitted.
 [1.2.3 UL-SISO(Single-Input and Single-Output)時の第2接続状態]
 次に、高周波モジュール1及び通信装置5のUL-SISO時の第2接続状態について、図4を参照しながら説明する。図4は、本実施の形態に係る高周波モジュール1のUL-SISO時の第2接続状態を示す高周波モジュール1の回路状態図である。なお、図4において、破線矢印は、高周波信号の流れを表す。
[1.2.3 Second connection state at UL-SISO (Single-Input and Single-Output)]
Next, the second connection state of the high-frequency module 1 and the communication device 5 at UL-SISO will be described with reference to FIG. FIG. 4 is a circuit state diagram of the high-frequency module 1 according to the present embodiment, showing the second connection state of the high-frequency module 1 at the time of UL-SISO. In FIG. 4, dashed arrows represent the flow of high-frequency signals.
 RFIC3は、高周波モジュール1の各スイッチを制御することで、図4の接続状態を実現することができる。この接続状態では、スイッチ51は、端子512を端子514に接続するが、端子511を端子513に接続しない。また、スイッチ53は、端子531を端子532に接続するが、スイッチ52は、端子521を端子522に接続しない。さらに、スイッチ54は、端子541を端子542に接続しない。 The RFIC 3 can realize the connection state shown in FIG. 4 by controlling each switch of the high frequency module 1 . In this connected state, switch 51 connects terminal 512 to terminal 514 but does not connect terminal 511 to terminal 513 . Also, the switch 53 connects the terminal 531 to the terminal 532 , but the switch 52 does not connect the terminal 521 to the terminal 522 . Further, switch 54 does not connect terminal 541 to terminal 542 .
 その結果、バンドAの送信信号は、RFIC3から、高周波入力端子112、電力増幅器12、フィルタ62、スイッチ51、方向性結合器32及びアンテナ接続端子102を介して、アンテナ2bに伝送される。このとき、バンドAの送信信号の一部は、方向性結合器32から、スイッチ53及びフィードバック端子122を介して、RFIC3にフィードバックされる。 As a result, the transmission signal of band A is transmitted from the RFIC 3 to the antenna 2b via the high frequency input terminal 112, the power amplifier 12, the filter 62, the switch 51, the directional coupler 32 and the antenna connection terminal 102. At this time, part of the band A transmission signal is fed back from the directional coupler 32 to the RFIC 3 via the switch 53 and the feedback terminal 122 .
 なお、図4の接続状態では、SRSが送信されてもよい。 It should be noted that the SRS may be transmitted in the connection state of FIG.
 [1.2.4 インターバンドCA(Carrier Aggregation)時の第1接続状態]
 次に、高周波モジュール1及び通信装置5のインターバンドCA時の第1接続状態について、図5を参照しながら説明する。図5は、本実施の形態に係る高周波モジュール1のインターバンドCA時の第1接続状態を示す高周波モジュール1の回路状態図である。なお、図5において、破線矢印は、高周波信号の流れを表す。
[1.2.4 First connection state during interband CA (Carrier Aggregation)]
Next, the first connection state of the high-frequency module 1 and the communication device 5 during interband CA will be described with reference to FIG. FIG. 5 is a circuit state diagram of the high-frequency module 1 according to the present embodiment, showing a first connection state during interband CA of the high-frequency module 1. As shown in FIG. In FIG. 5, dashed arrows represent the flow of high-frequency signals.
 RFIC3は、高周波モジュール1の各スイッチを制御することで、図5の接続状態を実現することができる。この接続状態では、スイッチ51は、端子511を端子515に接続し、端子512を端子514に接続する。また、スイッチ52は、端子521を端子522に接続し、スイッチ53は、端子531を端子532に接続する。さらに、スイッチ54は、端子541を端子543に接続する。 The RFIC 3 can realize the connection state shown in FIG. 5 by controlling each switch of the high frequency module 1 . In this connected state, switch 51 connects terminal 511 to terminal 515 and terminal 512 to terminal 514 . Also, the switch 52 connects the terminal 521 to the terminal 522 , and the switch 53 connects the terminal 531 to the terminal 532 . Further, switch 54 connects terminal 541 to terminal 543 .
 その結果、バンドBの送信信号は、RFIC3から、高周波入力端子111、電力増幅器11、スイッチ54、フィルタ63、スイッチ51、方向性結合器31及びアンテナ接続端子101を介して、アンテナ2aに伝送される。このとき、バンドBの送信信号の一部は、方向性結合器31から、スイッチ52及びフィードバック端子121を介して、RFIC3にフィードバックされる。さらに、バンドAの送信信号は、RFIC3から、高周波入力端子112、電力増幅器12、フィルタ62、スイッチ51、方向性結合器32及びアンテナ接続端子102を介して、アンテナ2bに伝送される。このとき、バンドAの送信信号の一部は、方向性結合器32から、スイッチ53及びフィードバック端子122を介して、RFIC3にフィードバックされる。 As a result, the transmission signal of band B is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 63, the switch 51, the directional coupler 31 and the antenna connection terminal 101. be. At this time, part of the transmission signal of band B is fed back from the directional coupler 31 to the RFIC 3 via the switch 52 and the feedback terminal 121 . Further, the band A transmission signal is transmitted from the RFIC 3 to the antenna 2b via the high frequency input terminal 112, the power amplifier 12, the filter 62, the switch 51, the directional coupler 32 and the antenna connection terminal . At this time, part of the band A transmission signal is fed back from the directional coupler 32 to the RFIC 3 via the switch 53 and the feedback terminal 122 .
 なお、ここでは、インターバンドCAについて説明しているが、デュアルコネクティビティ(DC:Dual Connectivity)でも、上記と同様の接続状態で高周波モジュール1及び通信装置5を用いることができる。DCとは、UEが非コロケーテッド(non-collocated)な2つの基地局(BS:Base Station)との同時通信を実現するための技術である。DCには、LTE基地局及びNR基地局との同時通信のためのEN-DC(E-UTRAN New Radio - Dual Connectivity)と、2つのNR基地局との同時通信のためのNR-DC(New Radio - Dual Connectivity)とがあるが、これらに限定されない。 Although inter-band CA is described here, the high-frequency module 1 and the communication device 5 can be used in the same connection state as described above even in dual connectivity (DC: Dual Connectivity). DC is a technology for UE to realize simultaneous communication with two non-collocated base stations (BS: Base Station). DC has EN-DC (E-UTRAN New Radio - Dual Connectivity) for simultaneous communication with LTE base station and NR base station and NR-DC (New Radio-Dual Connectivity) for simultaneous communication with two NR base stations Radio - Dual Connectivity) and is not limited to these.
 また、異なる2つのパワークラス(例えば、パワークラス2及び3)の信号を同時通信する場合にも、上記と同様の接続状態で高周波モジュール1及び通信装置5を用いることができる。この場合、方向結合器31及び32は、異なる2つのパワークラスの送信信号の一部をそれぞれRFIC3にフィードバックすることができる。 Also, when simultaneously communicating signals of two different power classes (for example, power classes 2 and 3), the high-frequency module 1 and the communication device 5 can be used in the same connection state as above. In this case, the directional couplers 31 and 32 can feed back parts of the transmitted signals of two different power classes to the RFIC 3 respectively.
 [1.2.5 インターバンドCA時の第2接続状態]
 次に、高周波モジュール1及び通信装置5のインターバンドCA時の第2接続状態について、図6を参照しながら説明する。図6は、本実施の形態に係る高周波モジュール1のインターバンドCA時の第2接続状態を示す高周波モジュール1の回路状態図である。なお、図6において、破線矢印は、高周波信号の流れを表す。
[1.2.5 Second connection state during interband CA]
Next, a second connection state during interband CA between the high-frequency module 1 and the communication device 5 will be described with reference to FIG. FIG. 6 is a circuit state diagram of the high-frequency module 1 according to the present embodiment, showing a second connection state during interband CA of the high-frequency module 1. As shown in FIG. In FIG. 6, dashed arrows represent the flow of high-frequency signals.
 RFIC3は、高周波モジュール1の各スイッチを制御することで、図6の接続状態を実現することができる。この接続状態では、スイッチ51は、端子511を端子514及び515の両方に接続する。また、スイッチ52は、端子521を端子522に接続する。さらに、スイッチ54は、端子541を端子543に接続する。 The RFIC 3 can realize the connection state shown in FIG. 6 by controlling each switch of the high frequency module 1 . In this connected state, switch 51 connects terminal 511 to both terminals 514 and 515 . Also, the switch 52 connects the terminal 521 to the terminal 522 . Further, switch 54 connects terminal 541 to terminal 543 .
 その結果、バンドBの送信信号は、RFIC3から、高周波入力端子111、電力増幅器11、スイッチ54、フィルタ63、スイッチ51、方向性結合器31及びアンテナ接続端子101を介して、アンテナ2aに伝送される。さらに、バンドAの送信信号は、RFIC3から、高周波入力端子112、電力増幅器12、フィルタ62、スイッチ51、方向性結合器31及びアンテナ接続端子101を介して、アンテナ2aに伝送される。このとき、バンドA及びBの送信信号の一部は、方向性結合器31から、スイッチ52及びフィードバック端子121を介して、RFIC3にフィードバックされる。 As a result, the transmission signal of band B is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 63, the switch 51, the directional coupler 31 and the antenna connection terminal 101. be. Furthermore, the transmission signal of band A is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 112, the power amplifier 12, the filter 62, the switch 51, the directional coupler 31 and the antenna connection terminal 101. FIG. At this time, part of the transmission signals of bands A and B are fed back from the directional coupler 31 to the RFIC 3 via the switch 52 and the feedback terminal 121 .
 [1.3 高周波モジュール1の部品配置]
 次に、以上のように構成された高周波モジュール1の部品配置について図7~図9を参照しながら具体的に説明する。
[1.3 Parts Arrangement of High-Frequency Module 1]
Next, the component arrangement of the high-frequency module 1 configured as described above will be specifically described with reference to FIGS. 7 to 9. FIG.
 図7は、本実施の形態に係る高周波モジュール1の平面図である。図8は、本実施の形態に係る高周波モジュール1の平面図であり、z軸正側からモジュール基板91の主面91b側を透視した図である。図9は、本実施の形態に係る高周波モジュール1の断面図である。図9における高周波モジュール1の断面は、図7及び図8のviii-viii線における断面である。 FIG. 7 is a plan view of the high frequency module 1 according to this embodiment. FIG. 8 is a plan view of the high-frequency module 1 according to the present embodiment, and is a perspective view of the main surface 91b side of the module substrate 91 from the z-axis positive side. FIG. 9 is a cross-sectional view of the high frequency module 1 according to this embodiment. The cross section of the high-frequency module 1 in FIG. 9 is taken along line viii-viii in FIGS. 7 and 8. FIG.
 なお、図7及び図8において、各電子部品の配置関係が容易に理解されるように、各電子部品に実装されている回路を表す文字が付されているが、実際の各電子部品には、当該文字は付されなくてもよい。また、図7~図9において、モジュール基板91に配置された複数の電子部品を接続する配線の図示が一部を除いて省略されている。また、図7及び図8において、複数の電子部品を覆う樹脂部材93、及び、樹脂部材93の表面を覆うシールド電極層94の図示が省略されている。 In FIGS. 7 and 8, letters representing circuits mounted on each electronic component are attached so that the arrangement relationship of each electronic component can be easily understood. , the character does not have to be attached. 7 to 9, wirings connecting a plurality of electronic components arranged on the module substrate 91 are omitted except for some. 7 and 8, illustration of a resin member 93 covering a plurality of electronic components and a shield electrode layer 94 covering the surface of the resin member 93 are omitted.
 高周波モジュール1は、図1に示された複数の回路素子を含む複数の電子部品に加えて、モジュール基板91と、樹脂部材93と、シールド電極層94と、複数のランド電極150と、を備える。 The high-frequency module 1 includes a module substrate 91, a resin member 93, a shield electrode layer 94, and a plurality of land electrodes 150, in addition to a plurality of electronic components including a plurality of circuit elements shown in FIG. .
 モジュール基板91は、互いに対向する主面91a及び91bを有する。モジュール基板91内には、グランド電極層92が形成されている。なお、図7及び図8において、モジュール基板91は、平面視において矩形状を有するが、この形状に限定されない。 The module substrate 91 has main surfaces 91a and 91b facing each other. A ground electrode layer 92 is formed in the module substrate 91 . 7 and 8, the module substrate 91 has a rectangular shape in plan view, but is not limited to this shape.
 モジュール基板91としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)基板もしくは高温同時焼成セラミックス(HTCC:High Temperature Co-fired Ceramics)基板、部品内蔵基板、再配線層(RDL:Redistribution Layer)を有する基板、又は、プリント基板等を用いることができるが、これらに限定されない。 As the module substrate 91, for example, a low temperature co-fired ceramics (LTCC) substrate or a high temperature co-fired ceramics (HTCC) substrate having a laminated structure of a plurality of dielectric layers, A component-embedded substrate, a substrate having a redistribution layer (RDL), a printed substrate, or the like can be used, but is not limited to these.
 電力増幅器11及び12をそれぞれ含む2つの電子部品(以下、単に電力増幅器11及び12という)は、モジュール基板91の主面91a上に配置されている。電力増幅器11及び12は、例えばガリウムヒ素(GaAs)、シリコンゲルマニウム(SiGe)及び窒化ガリウム(GaN)のうちの少なくとも1つで構成される。これにより、高品質な電力増幅器11及び12を実現することができる。なお、電力増幅器11及び12の一部をCMOS(Complementary Metal Oxide Semiconductor)を用いて構成してもよく、具体的にはSOI(Silicon on Insulator)プロセスにより製造されてもよい。これにより、電力増幅器11及び12を安価に製造することが可能となる。 Two electronic components including power amplifiers 11 and 12 (hereinafter simply referred to as power amplifiers 11 and 12) are arranged on the main surface 91a of the module substrate 91. The power amplifiers 11 and 12 are made of at least one of gallium arsenide (GaAs), silicon germanium (SiGe) and gallium nitride (GaN), for example. Thereby, high- quality power amplifiers 11 and 12 can be realized. A part of the power amplifiers 11 and 12 may be configured using CMOS (Complementary Metal Oxide Semiconductor), and more specifically, may be manufactured by an SOI (Silicon on Insulator) process. This makes it possible to manufacture the power amplifiers 11 and 12 at low cost.
 方向性結合器31及び32をそれぞれ含む2つの電子部品(以下、単に方向性結合器31及び32という)は、モジュール基板91の主面91a上に配置されている。方向性結合器31及び32としては、例えばセラミック多層部品を用いることができるが、これに限定されない。なお、方向性結合器31及び/又は32は、モジュール基板91内に配置されてもよい。例えば、方向性結合器31及び/又は32は、モジュール基板91の内層に形成されてもよい。 Two electronic components each including directional couplers 31 and 32 (hereinafter simply referred to as directional couplers 31 and 32) are arranged on the main surface 91a of the module substrate 91. The directional couplers 31 and 32 can be, for example, ceramic multilayer components, but are not limited to this. Note that the directional couplers 31 and/or 32 may be arranged inside the module substrate 91 . For example, directional couplers 31 and/or 32 may be formed in inner layers of module substrate 91 .
 スイッチ51~54を含む集積回路(IC:Integrated Circuit)50は、モジュール基板91の主面91a上に配置されている。集積回路50は、例えばCMOSを用いて構成され、具体的にはSOIプロセスにより製造されてもよい。 An integrated circuit (IC) 50 including switches 51 to 54 is arranged on the main surface 91 a of the module substrate 91 . The integrated circuit 50 is configured using CMOS, for example, and may be specifically manufactured by an SOI process.
 なお、スイッチ51~54は、1つの集積回路50に含まれなくてもよい。例えば、スイッチ51及び54が1つの集積回路に含まれ、スイッチ52及び53が別の1つの集積回路に含まれてもよい。 Note that the switches 51 to 54 may not be included in one integrated circuit 50. For example, switches 51 and 54 may be included in one integrated circuit and switches 52 and 53 may be included in another integrated circuit.
 フィルタ61~63をそれぞれ含む3つの電子部品(以下、単にフィルタ61~63という)は、モジュール基板91の主面91a上に配置されている。フィルタ61~63の各々は、例えば、弾性表面波(SAW:Surface Acoustic Wave)フィルタ、バルク弾性波(BAW:Bulk Acoustic Wave)フィルタ、LC共振フィルタ、及び誘電体フィルタのいずれを用いて構成されてもよく、さらには、これらには限定されない。 Three electronic components including filters 61 to 63 (hereinafter simply referred to as filters 61 to 63) are arranged on main surface 91a of module substrate 91. FIG. Each of the filters 61 to 63 is configured using, for example, a surface acoustic wave (SAW) filter, a bulk acoustic wave (BAW) filter, an LC resonance filter, or a dielectric filter. Also, it is not limited to these.
 なお、フィルタ61~63は、別々の電子部品に実装されなくてもよい。例えば、フィルタ61~63は、1つの基板に1つの電子部品として実装されてもよい。 Note that the filters 61 to 63 do not have to be mounted on separate electronic components. For example, the filters 61-63 may be mounted as one electronic component on one substrate.
 樹脂部材93は、主面91a及び主面91a上の複数の電子部品の少なくとも一部を覆っている。樹脂部材93は、主面91a上の複数の電子部品の機械強度及び耐湿性等の信頼性を確保する機能を有する。なお、樹脂部材93は、高周波モジュール1に含まれなくてもよい。 The resin member 93 covers the main surface 91a and at least part of the plurality of electronic components on the main surface 91a. The resin member 93 has a function of ensuring reliability such as mechanical strength and moisture resistance of the plurality of electronic components on the main surface 91a. Note that the resin member 93 may not be included in the high frequency module 1 .
 複数のランド電極150は、複数の外部接続端子として機能する。具体的には、複数のランド電極150は、アンテナ接続端子101及び102、高周波入力端子111及び112、並びに、フィードバック端子121及び122に加えて、グランド端子として機能するランド電極を含む。複数のランド電極150は、モジュール基板91内に形成されたビア導体(図示せず)などを介して、主面91a上に配置された複数の電子部品に電気的に接続される。 The multiple land electrodes 150 function as multiple external connection terminals. Specifically, the multiple land electrodes 150 include land electrodes functioning as ground terminals in addition to the antenna connection terminals 101 and 102, the high frequency input terminals 111 and 112, and the feedback terminals 121 and 122. A plurality of land electrodes 150 are electrically connected to a plurality of electronic components arranged on main surface 91 a through via conductors (not shown) formed in module substrate 91 .
 なお、複数の外部接続端子として、複数のランド電極150が用いられなくてもよい。例えば、複数のランド電極150の代わりに、複数のバンプ電極又は複数のポスト電極が複数の外部接続端子として用いられてもよい。 Note that the plurality of land electrodes 150 may not be used as the plurality of external connection terminals. For example, instead of the land electrodes 150, a plurality of bump electrodes or a plurality of post electrodes may be used as a plurality of external connection terminals.
 [1.4 効果など]
 以上のように、本実施の形態に係る高周波モジュール1は、バンドAのUL-MIMOに対応する高周波モジュール1であって、モジュール基板91と、モジュール基板91に配置され、バンドAの少なくとも一部を含む通過帯域を有するフィルタ61と、モジュール基板91に配置され、フィルタ61に接続される電力増幅器11と、モジュール基板91に配置された方向性結合器31であって、フィルタ61に接続される入力ポート311、アンテナ接続端子101に接続される出力ポート312、及び、フィードバック端子121に接続される結合ポート313を有する方向性結合器31と、モジュール基板91に配置された方向性結合器32であって、バンドAの少なくとも一部を含む通過帯域を有するフィルタ62に接続される入力ポート321、アンテナ接続端子102に接続される出力ポート322、及び、フィードバック端子121又は122に接続される結合ポート323を有する方向性結合器32と、を備える。
[1.4 Effect etc.]
As described above, the high-frequency module 1 according to the present embodiment is a high-frequency module 1 compatible with band A UL-MIMO, and includes a module substrate 91 and at least part of band A, which is arranged on the module substrate 91. a power amplifier 11 located on the module substrate 91 and connected to the filter 61; and a directional coupler 31 located on the module substrate 91 and connected to the filter 61. A directional coupler 31 having an input port 311, an output port 312 connected to the antenna connection terminal 101, and a coupling port 313 connected to the feedback terminal 121, and the directional coupler 32 arranged on the module substrate 91. an input port 321 connected to a filter 62 having a passband including at least part of band A, an output port 322 connected to the antenna connection terminal 102, and a coupling port connected to the feedback terminal 121 or 122. a directional coupler 32 having .323.
 また、視点を変えれば、本実施の形態に係る高周波モジュール1は、バンドAのUL-MIMOに対応する高周波モジュール1であって、モジュール基板91と、モジュール基板91に配置され、バンドAの少なくとも一部を含む通過帯域を有するフィルタ61と、モジュール基板91に配置され、フィルタ61に接続される電力増幅器11と、モジュール基板91に配置され、フィルタ61に接続される入力ポート311、アンテナ接続端子101に接続される出力ポート312、及び、フィードバック端子121に接続される結合ポート313を有する方向性結合器31と、モジュール基板91に配置され、高周波モジュール1の外部からバンドAの送信信号を受ける高周波入力端子112に接続される入力ポート321、アンテナ接続端子102に接続される出力ポート322、及び、フィードバック端子121又は122に接続される結合ポート323を有する方向性結合器32と、を備える。 From a different point of view, the high-frequency module 1 according to the present embodiment is a high-frequency module 1 compatible with band A UL-MIMO, and includes a module substrate 91 and at least a filter 61 having a passband including a part thereof; a power amplifier 11 arranged on the module substrate 91 and connected to the filter 61; an input port 311 arranged on the module substrate 91 and connected to the filter 61; A directional coupler 31 having an output port 312 connected to 101 and a coupling port 313 connected to a feedback terminal 121; A directional coupler 32 having an input port 321 connected to the high frequency input terminal 112 , an output port 322 connected to the antenna connection terminal 102 , and a coupling port 323 connected to the feedback terminal 121 or 122 .
 これによれば、異なる送信経路に接続される方向性結合器31及び32が1つのモジュール基板91に配置される。したがって、方向性結合器31及び32が異なるモジュール基板に配置される場合よりも、方向性結合器31及び32からRFIC3までのフィードバック信号の2つの経路の特性の違いを減らすことが容易となる。2つのフィードバック信号において、経路の特性の違いによる影響を削減することができ、2つの送信経路において送信信号のパワー及び/又は位相を監視するためのフィードバック信号の品質を向上させることが可能となる。 According to this, directional couplers 31 and 32 connected to different transmission paths are arranged on one module board 91 . Therefore, it is easier to reduce the difference in the characteristics of the two paths of feedback signals from the directional couplers 31 and 32 to the RFIC 3 than when the directional couplers 31 and 32 are arranged on different module substrates. In the two feedback signals, the influence of different path characteristics can be reduced, and the quality of the feedback signals for monitoring the power and/or phase of the transmission signals in the two transmission paths can be improved. .
 また例えば、本実施の形態に係る高周波モジュール1は、さらに、モジュール基板91に配置されたフィルタ62と、モジュール基板91に配置され、フィルタ62に接続される電力増幅器12と、を備えてもよい。 Further, for example, the high-frequency module 1 according to the present embodiment may further include a filter 62 arranged on the module substrate 91 and a power amplifier 12 arranged on the module substrate 91 and connected to the filter 62. .
 これによれば、電力増幅器12及びフィルタ62を電力増幅器11及びフィルタ61と同じモジュール基板91に配置することができ、通信装置5の小型化に貢献することができる。 According to this, the power amplifier 12 and the filter 62 can be arranged on the same module substrate 91 as the power amplifier 11 and the filter 61, which contributes to miniaturization of the communication device 5.
 また例えば、本実施の形態に係る高周波モジュール1において、結合ポート323は、フィードバック端子122に接続されてもよい。 Further, for example, in the high-frequency module 1 according to this embodiment, the coupling port 323 may be connected to the feedback terminal 122 .
 これによれば、方向性結合器31の結合ポート313が接続されるフィードバック端子121と異なるフィードバック端子122に方向性結合器32の結合ポート323が接続される。したがって、方向性結合器31からのフィードバック信号と方向性結合器32からのフィードバック信号とを別々にRFIC3に伝送することができ、フィードバック信号の品質を向上させることができる。 According to this, the coupling port 323 of the directional coupler 32 is connected to the feedback terminal 122 different from the feedback terminal 121 to which the coupling port 313 of the directional coupler 31 is connected. Therefore, the feedback signal from the directional coupler 31 and the feedback signal from the directional coupler 32 can be separately transmitted to the RFIC 3, and the quality of the feedback signal can be improved.
 また例えば、本実施の形態に係る高周波モジュール1は、さらに、モジュール基板91に配置され、フィルタ61及び62とアンテナ接続端子101及び102との間に接続されるスイッチ51と、モジュール基板91に配置され、結合ポート313及びフィードバック端子121の間に接続されるスイッチ52と、モジュール基板91に配置され、結合ポート323及びフィードバック端子122の間に接続されるスイッチ53と、を備えてもよい。 Further, for example, the high-frequency module 1 according to the present embodiment is further arranged on the module substrate 91, and the switch 51 connected between the filters 61 and 62 and the antenna connection terminals 101 and 102 is arranged on the module substrate 91. and a switch 52 connected between the coupling port 313 and the feedback terminal 121 , and a switch 53 located on the module substrate 91 and connected between the coupling port 323 and the feedback terminal 122 .
 これによれば、スイッチ51により、フィルタ61及び62とアンテナ接続端子101及び102との間の接続及び非接続を切り替えることができる。また、スイッチ52により、方向性結合器31とフィードバック端子121との間の接続及び非接続を切り替えることができる。さらに、スイッチ53により、方向性結合器32とフィードバック端子122との間の接続及び非接続を切り替えることができる。 According to this, the switch 51 can switch between connection and disconnection between the filters 61 and 62 and the antenna connection terminals 101 and 102 . Also, the switch 52 can switch between connection and disconnection between the directional coupler 31 and the feedback terminal 121 . Furthermore, the switch 53 can switch between connection and disconnection between the directional coupler 32 and the feedback terminal 122 .
 また例えば、本実施の形態に係る高周波モジュール1において、スイッチ52は、(i)スイッチ51によってアンテナ接続端子101がフィルタ61に接続されている状況において、結合ポート313をフィードバック端子121に接続してもよく、(ii)スイッチ51によってアンテナ接続端子101がフィルタ61に接続されていない状況において、結合ポート313をフィードバック端子121に接続しなくてもよく、スイッチ53は、(iii)スイッチ51によってアンテナ接続端子102がフィルタ62に接続されている状況において、結合ポート323をフィードバック端子122に接続してもよく、(iv)スイッチ51によってアンテナ接続端子102がフィルタ62に接続されていない状況において、結合ポート323をフィードバック端子122に接続しなくてもよい。 Further, for example, in the high-frequency module 1 according to the present embodiment, the switch 52 (i) connects the coupling port 313 to the feedback terminal 121 in a situation where the antenna connection terminal 101 is connected to the filter 61 by the switch 51 . (ii) in situations where the antenna connection terminal 101 is not connected to the filter 61 by the switch 51, the coupling port 313 may not be connected to the feedback terminal 121; In situations where connection terminal 102 is connected to filter 62, coupling port 323 may be connected to feedback terminal 122; and (iv) in situations where antenna connection terminal 102 is not connected to filter 62 by switch 51, coupling Port 323 may not be connected to feedback terminal 122 .
 これによれば、スイッチ52及び53による方向性結合器31及び32とフィードバック端子121及び122との間の接続及び非接続の切り替えを、スイッチ51によるフィルタ61及び62とアンテナ接続端子101及び102との間の接続及び非接続の切り替えに連動させることができる。したがって、不要なフィードバック信号がRFIC3にフィードバックされることを抑制することができ、フィードバック信号の品質を向上させることができる。 According to this, switching between connection and non-connection between the directional couplers 31 and 32 and the feedback terminals 121 and 122 by the switches 52 and 53 is performed by the filters 61 and 62 and the antenna connection terminals 101 and 102 by the switch 51. can be interlocked with switching between connection and non-connection. Therefore, unnecessary feedback signals can be suppressed from being fed back to the RFIC 3, and the quality of feedback signals can be improved.
 また例えば、本実施の形態に係る高周波モジュール1において、スイッチ52及び53は、1つの集積回路50に含まれてもよい。 Also, for example, the switches 52 and 53 may be included in one integrated circuit 50 in the high-frequency module 1 according to the present embodiment.
 これによれば、スイッチ52及び53が1つの集積回路50に集積されるので、高周波モジュール1の小型化に貢献することができる。 According to this, since the switches 52 and 53 are integrated into one integrated circuit 50, it is possible to contribute to miniaturization of the high frequency module 1.
 (実施の形態2)
 次に、実施の形態2について説明する。本実施の形態では、フィードバック端子が1つである点が、上記実施の形態1と主として異なる。以下に、本実施の形態について、上記実施の形態1と異なる点を中心に図10及び図11を参照しながら説明する。
(Embodiment 2)
Next, Embodiment 2 will be described. This embodiment differs from the first embodiment mainly in that there is one feedback terminal. The present embodiment will be described below with reference to FIGS. 10 and 11, focusing on the differences from the first embodiment.
 [2.1 高周波モジュール1Aの回路構成]
 図10は、本実施の形態に係る高周波モジュール1A及び通信装置5Aの回路構成図である。なお、通信装置5Aは、高周波モジュール1の代わりに高周波モジュール1Aを備える点を除いて、実施の形態1に係る通信装置5と同様であるので説明を省略する。
[2.1 Circuit Configuration of High Frequency Module 1A]
FIG. 10 is a circuit configuration diagram of a high frequency module 1A and a communication device 5A according to this embodiment. Note that the communication device 5A is the same as the communication device 5 according to the first embodiment, except that the high frequency module 1A is provided instead of the high frequency module 1, so the description is omitted.
 高周波モジュール1Aは、電力増幅器11及び12と、方向性結合器31及び32と、スイッチ51、52A及び54と、フィルタ61~63と、アンテナ接続端子101及び102と、高周波入力端子111及び112と、フィードバック端子121Aと、を備える。 The high frequency module 1A includes power amplifiers 11 and 12, directional couplers 31 and 32, switches 51, 52A and 54, filters 61 to 63, antenna connection terminals 101 and 102, and high frequency input terminals 111 and 112. , and a feedback terminal 121A.
 フィードバック端子121Aは、第1外部接続端子の一例であり、高周波モジュール1Aの外部(ここではRFIC3)に、バンドA及びBの送信信号の一部をフィードバックするための出力端子である。 The feedback terminal 121A is an example of a first external connection terminal, and is an output terminal for feeding back part of the transmission signals of bands A and B to the outside of the high frequency module 1A (here, the RFIC 3).
 スイッチ52Aは、第2スイッチの一例であり、方向性結合器31の結合ポート313及び方向性結合器32の結合ポート323とフィードバック端子121Aとの間に接続される。スイッチ52Aは、例えばマルチ接続型のスイッチ回路で構成される。具体的には、スイッチ52Aは、端子521A~523Aを有する。端子521Aは、フィードバック端子121Aに接続される。端子522Aは、結合ポート313に接続される。端子523Aは、結合ポート323に接続される。 The switch 52A is an example of a second switch and is connected between the coupling port 313 of the directional coupler 31 and the coupling port 323 of the directional coupler 32 and the feedback terminal 121A. The switch 52A is configured by, for example, a multi-connection switch circuit. Specifically, the switch 52A has terminals 521A to 523A. Terminal 521A is connected to feedback terminal 121A. Terminal 522 A is connected to coupling port 313 . Terminal 523 A is connected to coupling port 323 .
 この接続構成において、スイッチ52Aは、例えばRFIC3からの制御信号に基づいて、端子521Aを端子522A及び523Aの一方又は両方に接続することができる。つまり、スイッチ52Aは、結合ポート313及びフィードバック端子121Aの接続及び非接続を切り替えることができ、結合ポート323及びフィードバック端子121Aの接続及び非接続を切り替えることができる。例えば、スイッチ51によってアンテナ接続端子101がフィルタ61及び63の少なくとも一方に接続されている状況において、スイッチ52Aは、結合ポート313をフィードバック端子121Aに接続してもよい。一方、スイッチ51によってアンテナ接続端子101がフィルタ61及び63のいずれにも接続されていない状況において、スイッチ52Aは、結合ポート313をフィードバック端子121Aに接続しなくてもよい。また例えば、スイッチ51によってアンテナ接続端子102がフィルタ62に接続されている状況において、スイッチ52Aは、結合ポート323をフィードバック端子121Aに接続してもよい。一方、スイッチ51によってアンテナ接続端子102がフィルタ62に接続されていない状況において、スイッチ52Aは、結合ポート323をフィードバック端子121Aに接続しなくてもよい。 In this connection configuration, the switch 52A can connect the terminal 521A to one or both of the terminals 522A and 523A based on a control signal from the RFIC 3, for example. That is, the switch 52A can switch connection and disconnection of the coupling port 313 and the feedback terminal 121A, and can switch connection and disconnection of the coupling port 323 and the feedback terminal 121A. For example, in situations where switch 51 connects antenna connection terminal 101 to at least one of filters 61 and 63, switch 52A may connect coupling port 313 to feedback terminal 121A. On the other hand, in situations where antenna connection terminal 101 is not connected to either of filters 61 and 63 by switch 51, switch 52A may not connect coupling port 313 to feedback terminal 121A. Also, for example, in a situation where the antenna connection terminal 102 is connected to the filter 62 by the switch 51, the switch 52A may connect the coupling port 323 to the feedback terminal 121A. On the other hand, in situations where antenna connection terminal 102 is not connected to filter 62 by switch 51, switch 52A may not connect coupling port 323 to feedback terminal 121A.
 [2.2 高周波モジュール1Aの接続状態]
 次に、高周波モジュール1A及び通信装置5Aの接続状態について、図11~図13を参照しながら説明する。
[2.2 Connection state of high frequency module 1A]
Next, the connection state of the high frequency module 1A and the communication device 5A will be described with reference to FIGS. 11 to 13. FIG.
 [2.2.1 UL-MIMO時の接続状態]
 まず、高周波モジュール1A及び通信装置5AのUL-MIMO時の接続状態について、図11を参照しながら説明する。図11は、本実施の形態に係る高周波モジュール1AのUL-MIMO時の接続状態を示す高周波モジュール1Aの回路状態図である。なお、図11において、破線矢印は、高周波信号の流れを表す。
[2.2.1 Connection status during UL-MIMO]
First, the connection state of the high-frequency module 1A and the communication device 5A during UL-MIMO will be described with reference to FIG. FIG. 11 is a circuit state diagram of the high frequency module 1A showing the connection state of the high frequency module 1A according to the present embodiment during UL-MIMO. In FIG. 11, the dashed arrows represent the flow of high frequency signals.
 RFIC3は、高周波モジュール1Aの各スイッチを制御することで、図11の接続状態を実現することができる。この接続状態では、スイッチ51は、端子511を端子513に接続し、端子512を端子514に接続する。また、スイッチ52Aは、端子521Aを端子522A及び523Aの両方に接続する。さらに、スイッチ54は、端子541を端子542に接続する。 The RFIC 3 can realize the connection state shown in FIG. 11 by controlling each switch of the high frequency module 1A. In this connected state, switch 51 connects terminal 511 to terminal 513 and terminal 512 to terminal 514 . Switch 52A also connects terminal 521A to both terminals 522A and 523A. In addition, switch 54 connects terminal 541 to terminal 542 .
 その結果、バンドAの第1送信信号は、RFIC3から、高周波入力端子111、電力増幅器11、スイッチ54、フィルタ61、スイッチ51、方向性結合器31及びアンテナ接続端子101を介して、アンテナ2aに伝送される。このとき、バンドAの第1送信信号の一部は、方向性結合器31から、スイッチ52A及びフィードバック端子121Aを介して、RFIC3にフィードバックされる。さらに、バンドAの第2送信信号は、RFIC3から、高周波入力端子112、電力増幅器12、フィルタ62、スイッチ51、方向性結合器32及びアンテナ接続端子102を介して、アンテナ2bに伝送される。このとき、バンドAの第2送信信号の一部は、方向性結合器32から、スイッチ52A及びフィードバック端子121Aを介して、RFIC3にフィードバックされる。つまり、本実施の形態では、1つのフィードバック端子121Aを介して、第1送信信号の一部と、第2送信信号の一部とがフィードバックされる。 As a result, the first transmission signal of band A is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 61, the switch 51, the directional coupler 31 and the antenna connection terminal 101. transmitted. At this time, part of the first transmission signal of band A is fed back from the directional coupler 31 to the RFIC 3 via the switch 52A and the feedback terminal 121A. Further, the second transmission signal of band A is transmitted from RFIC 3 to antenna 2b via high frequency input terminal 112, power amplifier 12, filter 62, switch 51, directional coupler 32 and antenna connection terminal . At this time, part of the second transmission signal of band A is fed back from the directional coupler 32 to the RFIC 3 via the switch 52A and the feedback terminal 121A. That is, in the present embodiment, part of the first transmission signal and part of the second transmission signal are fed back via one feedback terminal 121A.
 なお、図11では、スイッチ52Aは、端子521Aを端子522A及び523Aの両方に同時に接続しているが、これに限定されない。例えば、スイッチ52Aは、端子521Aを端子522Aに接続する前及び/又は後に、端子521Aを端子523Aに接続してもよい。つまり、スイッチ52Aは、フィードバック端子121Aの接続を結合ポート313及び323の間で時間とともに切り替えてもよい。 Note that in FIG. 11, the switch 52A connects the terminal 521A to both the terminals 522A and 523A at the same time, but it is not limited to this. For example, switch 52A may connect terminal 521A to terminal 523A before and/or after connecting terminal 521A to terminal 522A. That is, switch 52A may switch the connection of feedback terminal 121A between coupling ports 313 and 323 over time.
 [2.2.2 UL-SISO時の第1接続状態]
 次に、高周波モジュール1A及び通信装置5AのUL-SISO時の第1接続状態について、図12を参照しながら説明する。図12は、本実施の形態に係る高周波モジュール1AのUL-SISO時の第1接続状態を示す高周波モジュール1Aの回路状態図である。なお、図12において、破線矢印は、高周波信号の流れを表す。
[2.2.2 First connection state at UL-SISO]
Next, the first connection state of the high frequency module 1A and the communication device 5A at UL-SISO will be described with reference to FIG. FIG. 12 is a circuit state diagram of the high frequency module 1A showing the first connection state of the high frequency module 1A according to the present embodiment during UL-SISO. In FIG. 12, dashed arrows represent the flow of high-frequency signals.
 RFIC3は、高周波モジュール1Aの各スイッチを制御することで、図12の接続状態を実現することができる。この接続状態では、スイッチ51は、端子511を端子513に接続するが、端子512を端子514に接続しない。また、スイッチ52Aは、端子521Aを端子522Aに接続するが、端子523Aには接続しない。さらに、スイッチ54は、端子541を端子542に接続する。 The RFIC 3 can realize the connection state shown in FIG. 12 by controlling each switch of the high frequency module 1A. In this connected state, switch 51 connects terminal 511 to terminal 513 but does not connect terminal 512 to terminal 514 . Also, the switch 52A connects the terminal 521A to the terminal 522A, but does not connect to the terminal 523A. In addition, switch 54 connects terminal 541 to terminal 542 .
 その結果、バンドAの送信信号は、RFIC3から、高周波入力端子111、電力増幅器11、スイッチ54、フィルタ61、スイッチ51、方向性結合器31及びアンテナ接続端子101を介して、アンテナ2aに伝送される。このとき、バンドAの送信信号の一部は、方向性結合器31から、スイッチ52A及びフィードバック端子121Aを介して、RFIC3にフィードバックされる。 As a result, the transmission signal of band A is transmitted from the RFIC 3 to the antenna 2a via the high frequency input terminal 111, the power amplifier 11, the switch 54, the filter 61, the switch 51, the directional coupler 31 and the antenna connection terminal 101. be. At this time, part of the transmission signal of band A is fed back from the directional coupler 31 to the RFIC 3 via the switch 52A and the feedback terminal 121A.
 [2.2.3 UL-SISO時の第2接続状態]
 次に、高周波モジュール1A及び通信装置5AのUL-SISO時の第2接続状態について、図13を参照しながら説明する。図13は、本実施の形態に係る高周波モジュール1AのUL-SISO時の第2接続状態を示す高周波モジュール1Aの回路状態図である。なお、図13において、破線矢印は、高周波信号の流れを表す。
[2.2.3 Second connection state at UL-SISO]
Next, the second connection state of the high-frequency module 1A and the communication device 5A at UL-SISO will be described with reference to FIG. FIG. 13 is a circuit state diagram of the high frequency module 1A showing the second connection state of the high frequency module 1A according to the present embodiment during UL-SISO. In FIG. 13, dashed arrows represent the flow of high-frequency signals.
 RFIC3は、高周波モジュール1Aの各スイッチを制御することで、図13の接続状態を実現することができる。この接続状態では、スイッチ51は、端子512を端子514に接続するが、端子511を端子513に接続しない。また、スイッチ52Aは、端子521Aを端子523Aに接続するが、端子522Aには接続しない。さらに、スイッチ54は、端子541を端子542に接続しない。 The RFIC 3 can realize the connection state shown in FIG. 13 by controlling each switch of the high frequency module 1A. In this connected state, switch 51 connects terminal 512 to terminal 514 but does not connect terminal 511 to terminal 513 . Also, the switch 52A connects the terminal 521A to the terminal 523A, but does not connect to the terminal 522A. Further, switch 54 does not connect terminal 541 to terminal 542 .
 その結果、バンドAの送信信号は、RFIC3から、高周波入力端子112、電力増幅器12、フィルタ62、スイッチ51、方向性結合器32及びアンテナ接続端子102を介して、アンテナ2bに伝送される。このとき、バンドAの送信信号の一部は、方向性結合器32から、スイッチ52A及びフィードバック端子121Aを介して、RFIC3にフィードバックされる。 As a result, the transmission signal of band A is transmitted from the RFIC 3 to the antenna 2b via the high frequency input terminal 112, the power amplifier 12, the filter 62, the switch 51, the directional coupler 32 and the antenna connection terminal 102. At this time, part of the transmission signal of band A is fed back from the directional coupler 32 to the RFIC 3 via the switch 52A and the feedback terminal 121A.
 [2.3 効果など]
 以上のように、本実施の形態に係る高周波モジュール1Aにおいて、結合ポート323は、フィードバック端子121Aに接続されてもよい。
[2.3 Effects, etc.]
As described above, in the high frequency module 1A according to the present embodiment, the coupling port 323 may be connected to the feedback terminal 121A.
 これによれば、方向性結合器31の結合ポート313が接続されるフィードバック端子121Aと同じフィードバック端子121Aに方向性結合器32の結合ポート323が接続される。したがって、方向性結合器31及び32からRFIC3までのフィードバック信号の2つの経路の特性の違いを減らすことがより容易となり、2つの送信経路において送信信号のパワー及び/又は位相を監視するためのフィードバック信号の品質を向上させることが可能となる。 According to this, the coupling port 323 of the directional coupler 32 is connected to the same feedback terminal 121A as the feedback terminal 121A to which the coupling port 313 of the directional coupler 31 is connected. Therefore, it is easier to reduce the difference in the characteristics of the two paths of the feedback signal from the directional couplers 31 and 32 to the RFIC 3, and the feedback for monitoring the power and/or phase of the transmitted signal in the two transmission paths. Signal quality can be improved.
 また例えば、本実施の形態に係る高周波モジュール1Aは、さらに、フィルタ61及び62とアンテナ接続端子101及び102との間に接続されるスイッチ51と、結合ポート313及び323とフィードバック端子121Aとの間に接続されるスイッチ52Aと、を備えてもよい。 Further, for example, the high-frequency module 1A according to the present embodiment further includes a switch 51 connected between the filters 61 and 62 and the antenna connection terminals 101 and 102, and between the coupling ports 313 and 323 and the feedback terminal 121A. and a switch 52A connected to the .
 これによれば、スイッチ51により、フィルタ61及び62とアンテナ接続端子101及び102との間の接続及び非接続を切り替えることができる。また、スイッチ52Aにより、方向性結合器31とフィードバック端子121Aとの間の接続及び非接続を切り替え、方向性結合器32とフィードバック端子121Aとの間の接続及び非接続を切り替えることができる。 According to this, the switch 51 can switch between connection and disconnection between the filters 61 and 62 and the antenna connection terminals 101 and 102 . The switch 52A can switch connection and disconnection between the directional coupler 31 and the feedback terminal 121A, and switch connection and disconnection between the directional coupler 32 and the feedback terminal 121A.
 また例えば、本実施の形態に係る高周波モジュール1Aにおいて、スイッチ52Aは、(i)スイッチ51によってアンテナ接続端子101がフィルタ61に接続され、かつ、アンテナ接続端子102がフィルタ62に接続されている状況において、結合ポート313及び323をフィードバック端子121Aに接続してもよく、(ii)スイッチ51によってアンテナ接続端子101がフィルタ61に接続され、かつ、アンテナ接続端子102がフィルタ62に接続されていない状況において、結合ポート313をフィードバック端子121Aに接続し、かつ、結合ポート323をフィードバック端子121Aに接続しなくてもよく、(iii)スイッチ51によってアンテナ接続端子101がフィルタ61に接続されず、かつ、アンテナ接続端子102がフィルタ62に接続されている状況において、結合ポート313をフィードバック端子121Aに接続せず、かつ、結合ポート323をフィードバック端子121Aに接続してもよく、(iv)スイッチ51によってアンテナ接続端子101がフィルタ61に接続されず、かつ、アンテナ接続端子102がフィルタ62に接続されていない状況において、結合ポート313をフィードバック端子121Aに接続せず、かつ、結合ポート323をフィードバック端子121Aに接続しなくてもよい。 Further, for example, in the high-frequency module 1A according to the present embodiment, the switch 52A is configured such that (i) the switch 51 connects the antenna connection terminal 101 to the filter 61 and connects the antenna connection terminal 102 to the filter 62; (ii) the switch 51 connects the antenna connection terminal 101 to the filter 61 and the antenna connection terminal 102 is not connected to the filter 62; (iii) the antenna connection terminal 101 is not connected to the filter 61 by the switch 51; and In situations where the antenna connection terminal 102 is connected to the filter 62, the coupling port 313 may not be connected to the feedback terminal 121A and the coupling port 323 may be connected to the feedback terminal 121A; When the connection terminal 101 is not connected to the filter 61 and the antenna connection terminal 102 is not connected to the filter 62, the coupling port 313 is not connected to the feedback terminal 121A and the coupling port 323 is connected to the feedback terminal 121A. No need to connect.
 これによれば、スイッチ52Aによる方向性結合器31及び32とフィードバック端子121Aとの間の接続及び非接続の切り替えを、スイッチ51によるフィルタ61及び62とアンテナ接続端子101及び102との間の接続及び非接続の切り替えに連動させることができる。したがって、不要なフィードバック信号がRFIC3にフィードバックされることを抑制することができ、フィードバック信号の品質を向上させることができる。 According to this, switching between connection and non-connection between the directional couplers 31 and 32 and the feedback terminal 121A by the switch 52A is switched between the filters 61 and 62 and the antenna connection terminals 101 and 102 by the switch 51. and non-connection switching. Therefore, unnecessary feedback signals can be suppressed from being fed back to the RFIC 3, and the quality of feedback signals can be improved.
 また例えば、本実施の形態に係る高周波モジュール1Aにおいて、スイッチ52Aは、(i)において、フィードバック端子121Aの接続を結合ポート313及び結合ポート323の間で時間とともに切り替えてもよい。 Further, for example, in the high-frequency module 1A according to the present embodiment, the switch 52A may switch the connection of the feedback terminal 121A between the coupling port 313 and the coupling port 323 over time in (i).
 これによれば、2つの方向性結合器31及び32からの2つのフィードバック信号を、時間で分離して1つのフィードバック端子121Aを介してRFIC3にフィードバックすることができる。したがって、2つのフィードバック信号の干渉を排除することができ、フィードバック信号の品質を向上させることができる。 According to this, two feedback signals from the two directional couplers 31 and 32 can be separated in time and fed back to the RFIC 3 via one feedback terminal 121A. Therefore, interference between two feedback signals can be eliminated, and the quality of feedback signals can be improved.
 (実施の形態3)
 次に、実施の形態3について説明する。本実施の形態では、電力増幅器12及びフィルタ62が別のモジュール基板に配置される点が、上記実施の形態1と主として異なる。以下に、本実施の形態について、上記実施の形態1と異なる点を中心に説明する。
(Embodiment 3)
Next, Embodiment 3 will be described. This embodiment differs from the first embodiment mainly in that the power amplifier 12 and the filter 62 are arranged on separate module substrates. The present embodiment will be described below, focusing on the differences from the first embodiment.
 [3.1 高周波モジュール1B及び6並びに通信装置5Bの回路構成]
 本実施の形態に係る高周波モジュール1B及び6並びにそれらを備える通信装置5Bの回路構成について、図14を参照しながら説明する。図14は、本実施の形態に係る高周波モジュール1B及び6並びに通信装置5Bの回路構成図である。
[3.1 Circuit configuration of high-frequency modules 1B and 6 and communication device 5B]
Circuit configurations of the high-frequency modules 1B and 6 according to the present embodiment and a communication device 5B including them will be described with reference to FIG. FIG. 14 is a circuit configuration diagram of the high frequency modules 1B and 6 and the communication device 5B according to this embodiment.
 [3.1.1 通信装置5Bの回路構成]
 まず、通信装置5Bについて説明する。通信装置5Bは、いわゆるUEに相当し、典型的には、携帯電話、スマートフォン、タブレットコンピュータ等である。このような通信装置5Bは、高周波モジュール1B及び6と、アンテナ2a及び2bと、RFIC3と、BBIC4と、を備える。
[3.1.1 Circuit Configuration of Communication Device 5B]
First, the communication device 5B will be described. The communication device 5B corresponds to a so-called UE, and is typically a mobile phone, smart phone, tablet computer, or the like. Such a communication device 5B includes high frequency modules 1B and 6, antennas 2a and 2b, RFIC 3, and BBIC 4.
 なお、本実施の形態に係る通信装置5Bにおいて、アンテナ2a及び2bとBBIC4とは、必須の構成要素ではない。 Note that the antennas 2a and 2b and the BBIC 4 are not essential components in the communication device 5B according to the present embodiment.
 [3.1.2 高周波モジュール1Bの回路構成]
 次に、高周波モジュール1Bについて説明する。図14に示すように、高周波モジュール1Bは、電力増幅器12及びフィルタ62を備えず、高周波入力端子112の代わりに高周波入力端子113を備える。
[3.1.2 Circuit Configuration of High Frequency Module 1B]
Next, the high frequency module 1B will be explained. As shown in FIG. 14, the high frequency module 1B does not include the power amplifier 12 and the filter 62, and includes a high frequency input terminal 113 instead of the high frequency input terminal 112. FIG.
 高周波入力端子113は、第3外部接続端子の一例であり、高周波モジュール1Bの外部(ここでは高周波モジュール6)から、バンドAの送信信号を受けるための端子である。高周波入力端子113は、スイッチ51の端子514に接続される。 The high-frequency input terminal 113 is an example of a third external connection terminal, and is a terminal for receiving a band A transmission signal from the outside of the high-frequency module 1B (here, the high-frequency module 6). High frequency input terminal 113 is connected to terminal 514 of switch 51 .
 [3.1.3 高周波モジュール6の回路構成]
 次に、高周波モジュール6について説明する。図14に示すように、高周波モジュール6は、電力増幅器12と、フィルタ62と、高周波入力端子112と、高周波出力端子131と、を備える。
[3.1.3 Circuit Configuration of High-Frequency Module 6]
Next, the high frequency module 6 will be explained. As shown in FIG. 14, the high frequency module 6 includes a power amplifier 12, a filter 62, a high frequency input terminal 112, and a high frequency output terminal 131.
 高周波出力端子131は、高周波モジュール6の外部(ここでは高周波モジュール1B)に、バンドAの送信信号を供給するための端子である。高周波出力端子131は、高周波モジュール6の内部でフィルタ62に接続され、高周波モジュール6の外部で高周波モジュール1Bの高周波入力端子113に接続される。これにより、高周波出力端子131から高周波入力端子113には、電力増幅器12で増幅されたバンドAの送信信号が伝送される。 The high-frequency output terminal 131 is a terminal for supplying a band A transmission signal to the outside of the high-frequency module 6 (here, the high-frequency module 1B). The high frequency output terminal 131 is connected to the filter 62 inside the high frequency module 6 and connected to the high frequency input terminal 113 of the high frequency module 1B outside the high frequency module 6 . As a result, the band A transmission signal amplified by the power amplifier 12 is transmitted from the high frequency output terminal 131 to the high frequency input terminal 113 .
 [3.2 効果など]
 以上のように、本実施の形態に係る高周波モジュール1Bは、増幅されたバンドAの送信信号を外部から受ける高周波入力端子113を備える。
[3.2 Effects, etc.]
As described above, the high-frequency module 1B according to the present embodiment includes the high-frequency input terminal 113 that receives the amplified transmission signal of band A from the outside.
 これによれば、高周波モジュール1Bとは異なる高周波モジュール6に電力増幅器12及びフィルタ62が含まれればよいので、電力増幅器11及び12からの発熱を分散して別々の高周波モジュールから効率よく放熱させることができる。 According to this, since the power amplifier 12 and the filter 62 need only be included in the high frequency module 6 different from the high frequency module 1B, the heat generated from the power amplifiers 11 and 12 can be dispersed and the heat can be efficiently dissipated from the separate high frequency modules. can be done.
 (他の実施の形態)
 以上、本発明に係る高周波モジュール及び通信装置について、実施の形態に基づいて説明したが、本発明に係る高周波モジュール及び通信装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波モジュールを内蔵した各種機器も本発明に含まれる。
(Other embodiments)
Although the high-frequency module and communication device according to the present invention have been described above based on the embodiments, the high-frequency module and communication device according to the present invention are not limited to the above-described embodiments. Another embodiment realized by combining arbitrary constituent elements in the above embodiment, and a modification obtained by applying various modifications that a person skilled in the art can think of without departing from the scope of the present invention to the above embodiment For example, the present invention also includes various devices incorporating the high-frequency module.
 例えば、上記各実施の形態に係る高周波モジュール及び通信装置の回路構成において、図面に開示された各回路素子及び信号経路を接続する経路の間に、別の回路素子及び配線などが挿入されてもよい。例えば、電力増幅器11とフィルタ61及び/又は63との間にインピーダンス整合回路が挿入されてもよい。同様に、電力増幅器12とフィルタ62との間にインピーダンス整合回路が挿入されてもよい。 For example, in the circuit configurations of the high-frequency module and the communication device according to the above-described embodiments, even if another circuit element and wiring are inserted between the paths connecting the circuit elements and signal paths disclosed in the drawings, good. For example, an impedance matching circuit may be inserted between power amplifier 11 and filters 61 and/or 63 . Similarly, an impedance matching circuit may be inserted between power amplifier 12 and filter 62 .
 また例えば、上記各実施の形態に係る通信装置は、2x2UL-MIMOのために2つのアンテナを備えていたが、アンテナの数は2つに限定されない。例えば、通信装置は、4x4UL-MIMOのために4つのアンテナを備えてもよい。この場合、高周波モジュールは、4つの送信経路にそれぞれ接続される4つの方向性結合器を備えてもよい。 Also, for example, the communication device according to each of the above embodiments has two antennas for 2x2 UL-MIMO, but the number of antennas is not limited to two. For example, a communication device may be equipped with four antennas for 4x4 UL-MIMO. In this case, the radio frequency module may comprise four directional couplers respectively connected to the four transmission paths.
 なお、上記各実施の形態において、モジュール基板91として、片面実装基板が用いられていたが、両面実装基板が用いられてもよい。この場合、方向性結合器は、主面91a及び91bのどちらに配置されてもよい。 Although a single-sided mounting board is used as the module board 91 in each of the above-described embodiments, a double-sided mounting board may be used. In this case, the directional coupler may be arranged on either of the main surfaces 91a and 91b.
 なお、上記各実施の形態において、高周波モジュールは、高周波信号の受信に対応していないが、これに限定されない。つまり、高周波モジュールは、高周波信号の送信に加えて、受信に対応してもよい。この場合、高周波モジュールは、受信フィルタ及び低雑音増幅器などを備えてもよい。 It should be noted that in each of the above embodiments, the high-frequency module does not support reception of high-frequency signals, but is not limited to this. That is, the radio frequency module may be capable of receiving radio frequency signals in addition to transmitting them. In this case, the high frequency module may include a receive filter, a low noise amplifier, and the like.
 本発明は、フロントエンド部に配置される高周波モジュールとして、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication equipment such as mobile phones as a high-frequency module arranged in the front end section.
 1、1A、1B、6 高周波モジュール
 2a、2b アンテナ
 3 RFIC
 4 BBIC
 5、5A、5B 通信装置
 11、12 電力増幅器
 31、32 方向性結合器
 50 集積回路
 51、52、52A、53、54 スイッチ
 61、62、63 フィルタ
 91 モジュール基板
 91a、91b 主面
 92 グランド電極層
 93 樹脂部材
 94 シールド電極層
 101、102 アンテナ接続端子
 111、112、113 高周波入力端子
 121、121A、122 フィードバック端子
 131 高周波出力端子
 150 ランド電極
 311、321 入力ポート
 312、322 出力ポート
 313、323 結合ポート
 511、512、513、514、515、521、521A、522、522A、523A、531、532、541、542、543 端子
1, 1A, 1B, 6 high frequency module 2a, 2b antenna 3 RFIC
4 BBIC
5, 5A, 5B communication device 11, 12 power amplifier 31, 32 directional coupler 50 integrated circuit 51, 52, 52A, 53, 54 switch 61, 62, 63 filter 91 module substrate 91a, 91b main surface 92 ground electrode layer 93 resin member 94 shield electrode layer 101, 102 antenna connection terminal 111, 112, 113 high frequency input terminal 121, 121A, 122 feedback terminal 131 high frequency output terminal 150 land electrode 311, 321 input port 312, 322 output port 313, 323 coupling port 511, 512, 513, 514, 515, 521, 521A, 522, 522A, 523A, 531, 532, 541, 542, 543 Terminal

Claims (20)

  1.  第1バンドのUL-MIMO(Uplink Multiple-Input and Multiple-Output)に対応する高周波モジュールであって、
     モジュール基板と、
     前記モジュール基板に配置され、前記第1バンドの少なくとも一部を含む通過帯域を有する第1フィルタと、
     前記モジュール基板に配置され、前記第1フィルタに接続される第1電力増幅器と、
     前記モジュール基板に配置された第1方向性結合器であって、前記第1フィルタに接続される第1入力ポート、第1アンテナ接続端子に接続される第1出力ポート、及び、第1外部接続端子に接続される第1結合ポートを有する第1方向性結合器と、
     前記モジュール基板に配置された第2方向性結合器であって、前記第1バンドの前記少なくとも一部を含む通過帯域を有する第2フィルタに接続される第2入力ポート、第2アンテナ接続端子に接続される第2出力ポート、及び、前記第1外部接続端子又は第2外部接続端子に接続される第2結合ポートを有する第2方向性結合器と、を備える、
     高周波モジュール。
    A high-frequency module compatible with UL-MIMO (Uplink Multiple-Input and Multiple-Output) of the first band,
    a module substrate;
    a first filter disposed on the module substrate and having a passband including at least a portion of the first band;
    a first power amplifier arranged on the module substrate and connected to the first filter;
    A first directional coupler disposed on the module substrate, the first input port connected to the first filter, the first output port connected to a first antenna connection terminal, and the first external connection. a first directional coupler having a first coupling port connected to the terminal;
    A second directional coupler arranged on the module substrate, the second input port connected to a second filter having a passband including the at least part of the first band, a second antenna connection terminal; a second output port to be connected, and a second directional coupler having a second coupling port to be connected to the first external connection terminal or the second external connection terminal;
    high frequency module.
  2.  前記高周波モジュールは、さらに、
     前記モジュール基板に配置された前記第2フィルタと、
     前記モジュール基板に配置され、前記第2フィルタに接続される第2電力増幅器と、を備える、
     請求項1に記載の高周波モジュール。
    The high-frequency module further comprises:
    the second filter disposed on the module substrate;
    a second power amplifier disposed on the module substrate and connected to the second filter;
    The high frequency module according to claim 1.
  3.  前記第2結合ポートは、前記第2外部接続端子に接続される、
     請求項1又は2に記載の高周波モジュール。
    the second coupling port is connected to the second external connection terminal;
    The high frequency module according to claim 1 or 2.
  4.  前記高周波モジュールは、さらに、
     前記モジュール基板に配置され、前記第1フィルタ及び前記第2フィルタと前記第1アンテナ接続端子及び前記第2アンテナ接続端子との間に接続される第1スイッチと、
     前記モジュール基板に配置され、前記第1結合ポート及び前記第1外部接続端子の間に接続される第2スイッチと、
     前記モジュール基板に配置され、前記第2結合ポート及び前記第2外部接続端子の間に接続される第3スイッチと、を備える、
     請求項3に記載の高周波モジュール。
    The high-frequency module further comprises:
    a first switch arranged on the module substrate and connected between the first filter and the second filter and the first antenna connection terminal and the second antenna connection terminal;
    a second switch disposed on the module substrate and connected between the first coupling port and the first external connection terminal;
    a third switch disposed on the module substrate and connected between the second coupling port and the second external connection terminal;
    The high frequency module according to claim 3.
  5.  前記第2スイッチは、
     (i)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続されている状況において、前記第1結合ポートを前記第1外部接続端子に接続し、
     (ii)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続されていない状況において、前記第1結合ポートを前記第1外部接続端子に接続せず、
     前記第3スイッチは、
     (iii)前記第1スイッチによって前記第2アンテナ接続端子が前記第2フィルタに接続されている状況において、前記第2結合ポートを前記第2外部接続端子に接続し、
     (iv)前記第1スイッチによって前記第2アンテナ接続端子が前記第2フィルタに接続されていない状況において、前記第2結合ポートを前記第2外部接続端子に接続しない、
     請求項4に記載の高周波モジュール。
    The second switch is
    (i) in a situation where the first antenna connection terminal is connected to the first filter by the first switch, connecting the first coupling port to the first external connection terminal;
    (ii) not connecting the first coupling port to the first external connection terminal in a situation where the first antenna connection terminal is not connected to the first filter by the first switch;
    The third switch is
    (iii) in a situation where the second antenna connection terminal is connected to the second filter by the first switch, connecting the second coupling port to the second external connection terminal;
    (iv) not connecting the second coupling port to the second external connection terminal in a situation where the second antenna connection terminal is not connected to the second filter by the first switch;
    The high frequency module according to claim 4.
  6.  前記第2スイッチ及び前記第3スイッチは、1つの集積回路に含まれる、
     請求項4又は5に記載の高周波モジュール。
    wherein the second switch and the third switch are included in one integrated circuit;
    The high frequency module according to claim 4 or 5.
  7.  前記第2結合ポートは、前記第1外部接続端子に接続される、
     請求項1又は2に記載の高周波モジュール。
    the second coupling port is connected to the first external connection terminal;
    The high frequency module according to claim 1 or 2.
  8.  前記高周波モジュールは、さらに、
     前記第1フィルタ及び前記第2フィルタと前記第1アンテナ接続端子及び前記第2アンテナ接続端子との間に接続される第1スイッチと、
     前記第1結合ポート及び前記第2結合ポートと前記第1外部接続端子との間に接続される第2スイッチと、を備える、
     請求項7に記載の高周波モジュール。
    The high-frequency module further comprises:
    a first switch connected between the first filter and the second filter and the first antenna connection terminal and the second antenna connection terminal;
    a second switch connected between the first coupling port and the second coupling port and the first external connection terminal;
    The high frequency module according to claim 7.
  9.  前記第2スイッチは、
     (i)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続され、かつ、前記第2アンテナ接続端子が前記第2フィルタに接続されている状況において、前記第1結合ポート及び前記第2結合ポートを前記第1外部接続端子に接続し、
     (ii)前記第1スイッチによって、前記第1アンテナ接続端子が前記第1フィルタに接続され、かつ、前記第2アンテナ接続端子が前記第2フィルタに接続されていない状況において、前記第1結合ポートを前記第1外部接続端子に接続し、かつ、前記第2結合ポートを前記第1外部接続端子に接続せず、
     (iii)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続されず、かつ、前記第2アンテナ接続端子が前記第2フィルタに接続されている状況において、前記第1結合ポートを前記第1外部接続端子に接続せず、かつ、前記第2結合ポートを前記第1外部接続端子に接続し、
     (iv)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続されず、かつ、前記第2アンテナ接続端子が前記第2フィルタに接続されていない状況において、前記第1結合ポートを前記第1外部接続端子に接続せず、かつ、前記第2結合ポートを前記第1外部接続端子に接続しない、
     請求項8に記載の高周波モジュール。
    The second switch is
    (i) in a situation where the first switch connects the first antenna connection terminal to the first filter and the second antenna connection terminal is connected to the second filter, the first coupling port and connecting the second coupling port to the first external connection terminal;
    (ii) the first coupling port in a situation where the first switch connects the first antenna connection terminal to the first filter and the second antenna connection terminal is not connected to the second filter; is connected to the first external connection terminal, and the second coupling port is not connected to the first external connection terminal;
    (iii) the first coupling port in a situation where the first switch does not connect the first antenna connection terminal to the first filter and the second antenna connection terminal is connected to the second filter; is not connected to the first external connection terminal and the second coupling port is connected to the first external connection terminal;
    (iv) the first coupling port in a situation where the first switch does not connect the first antenna connection terminal to the first filter and the second antenna connection terminal is not connected to the second filter; is not connected to the first external connection terminal and the second coupling port is not connected to the first external connection terminal;
    The high frequency module according to claim 8.
  10.  前記第2スイッチは、前記(i)において、前記第1外部接続端子の接続を前記第1結合ポート及び前記第2結合ポートの間で時間とともに切り替える、
     請求項9に記載の高周波モジュール。
    In (i) above, the second switch switches the connection of the first external connection terminal between the first coupling port and the second coupling port over time.
    The high frequency module according to claim 9.
  11.  第1バンドのUL-MIMOに対応する高周波モジュールであって、
     モジュール基板と、
     前記モジュール基板に配置され、前記第1バンドの少なくとも一部を含む通過帯域を有する第1フィルタと、
     前記モジュール基板に配置され、前記第1フィルタに接続される第1電力増幅器と、
     前記モジュール基板に配置された第1方向性結合器であって、前記第1フィルタに接続される第1入力ポート、第1アンテナ接続端子に接続される第1出力ポート、及び、第1外部接続端子に接続される第1結合ポートを有する第1方向性結合器と、
     前記モジュール基板に配置された第2方向性結合器であって、前記高周波モジュールの外部から前記第1バンドの送信信号を受ける第3外部接続端子に接続される第2入力ポート、第2アンテナ接続端子に接続される第2出力ポート、及び、前記第1外部接続端子又は第2外部接続端子に接続される第2結合ポートを有する第2方向性結合器と、を備える、
     高周波モジュール。
    A high-frequency module compatible with UL-MIMO of the first band,
    a module substrate;
    a first filter disposed on the module substrate and having a passband including at least a portion of the first band;
    a first power amplifier arranged on the module substrate and connected to the first filter;
    A first directional coupler disposed on the module substrate, the first input port connected to the first filter, the first output port connected to a first antenna connection terminal, and the first external connection. a first directional coupler having a first coupling port connected to the terminal;
    A second directional coupler arranged on the module substrate, the second input port connected to a third external connection terminal for receiving the transmission signal of the first band from the outside of the high frequency module, and a second antenna connection. a second output port connected to a terminal, and a second directional coupler having a second coupling port connected to the first external connection terminal or the second external connection terminal;
    high frequency module.
  12.  前記高周波モジュールは、さらに、
     前記モジュール基板に配置され、前記第1バンドの前記少なくとも一部を含む通過帯域を有する第2フィルタと、
     前記モジュール基板に配置され、前記第3外部接続端子と前記第2フィルタとの間に接続される第2電力増幅器と、を備え、
     前記第2入力ポートは、前記第2フィルタ及び前記第2電力増幅器を介して、前記第3外部接続端子に接続される、
     請求項11に記載の高周波モジュール。
    The high-frequency module further comprises:
    a second filter disposed on the module substrate and having a passband that includes the at least part of the first band;
    a second power amplifier arranged on the module substrate and connected between the third external connection terminal and the second filter;
    The second input port is connected to the third external connection terminal via the second filter and the second power amplifier,
    The high frequency module according to claim 11.
  13.  前記第2結合ポートは、前記第2外部接続端子に接続される、
     請求項11又は12に記載の高周波モジュール。
    the second coupling port is connected to the second external connection terminal;
    The high frequency module according to claim 11 or 12.
  14.  前記高周波モジュールは、さらに、
     前記モジュール基板に配置され、前記第1フィルタ及び前記第3外部接続端子と前記第1アンテナ接続端子及び前記第2アンテナ接続端子との間に接続される第1スイッチと、
     前記モジュール基板に配置され、前記第1結合ポート及び前記第1外部接続端子の間に接続される第2スイッチと、
     前記モジュール基板に配置され、前記第2結合ポート及び前記第2外部接続端子の間に接続される第3スイッチと、を備える、
     請求項13に記載の高周波モジュール。
    The high-frequency module further comprises:
    a first switch arranged on the module substrate and connected between the first filter and the third external connection terminal and the first antenna connection terminal and the second antenna connection terminal;
    a second switch disposed on the module substrate and connected between the first coupling port and the first external connection terminal;
    a third switch disposed on the module substrate and connected between the second coupling port and the second external connection terminal;
    The high frequency module according to claim 13.
  15.  前記第2スイッチは、
     (i)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続されている状況において、前記第1結合ポートを前記第1外部接続端子に接続し、
     (ii)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続されていない状況において、前記第1結合ポートを前記第1外部接続端子に接続せず、
     前記第3スイッチは、
     (iii)前記第1スイッチによって前記第2アンテナ接続端子が前記第3外部接続端子に接続されている状況において、前記第2結合ポートを前記第2外部接続端子に接続し、
     (iv)前記第1スイッチによって前記第2アンテナ接続端子が前記第3外部接続端子に接続されていない状況において、前記第2結合ポートを前記第2外部接続端子に接続しない、
     請求項14に記載の高周波モジュール。
    The second switch is
    (i) in a situation where the first antenna connection terminal is connected to the first filter by the first switch, connecting the first coupling port to the first external connection terminal;
    (ii) not connecting the first coupling port to the first external connection terminal in a situation where the first antenna connection terminal is not connected to the first filter by the first switch;
    The third switch is
    (iii) in a situation where the second antenna connection terminal is connected to the third external connection terminal by the first switch, connecting the second coupling port to the second external connection terminal;
    (iv) not connecting the second coupling port to the second external connection terminal in a situation where the second antenna connection terminal is not connected to the third external connection terminal by the first switch;
    The high frequency module according to claim 14.
  16.  前記第2スイッチ及び前記第3スイッチは、1つの集積回路に含まれる、
     請求項14又は15に記載の高周波モジュール。
    wherein the second switch and the third switch are included in one integrated circuit;
    The high frequency module according to claim 14 or 15.
  17.  前記第2結合ポートは、前記第1外部接続端子に接続される、
     請求項11又は12に記載の高周波モジュール。
    the second coupling port is connected to the first external connection terminal;
    The high frequency module according to claim 11 or 12.
  18.  前記高周波モジュールは、さらに、
     前記第1フィルタ及び前記第3外部接続端子と前記第1アンテナ接続端子及び前記第2アンテナ接続端子との間に接続される第1スイッチと、
     前記第1結合ポート及び前記第2結合ポートと前記第1外部接続端子との間に接続される第2スイッチと、を備える、
     請求項17に記載の高周波モジュール。
    The high-frequency module further comprises:
    a first switch connected between the first filter and the third external connection terminal and the first antenna connection terminal and the second antenna connection terminal;
    a second switch connected between the first coupling port and the second coupling port and the first external connection terminal;
    The radio frequency module according to claim 17.
  19.  前記第2スイッチは、
     (i)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続され、かつ、前記第2アンテナ接続端子が前記第3外部接続端子に接続されている状況において、前記第1結合ポート及び前記第2結合ポートを前記第1外部接続端子に接続し、
     (ii)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続され、かつ、前記第2アンテナ接続端子が前記第3外部接続端子に接続されていない状況において、前記第1結合ポートを前記第1外部接続端子に接続し、かつ、前記第2結合ポートを前記第1外部接続端子に接続せず、
     (iii)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続されず、かつ、前記第2アンテナ接続端子が前記第3外部接続端子に接続されている状況において、前記第1結合ポートを前記第1外部接続端子に接続せず、かつ、前記第2結合ポートを前記第1外部接続端子に接続し、
     (iv)前記第1スイッチによって前記第1アンテナ接続端子が前記第1フィルタに接続されず、かつ、前記第2アンテナ接続端子が前記第3外部接続端子に接続されていない状況において、前記第1結合ポートを前記第1外部接続端子に接続せず、かつ、前記第2結合ポートを前記第1外部接続端子に接続しない、
     請求項18に記載の高周波モジュール。
    The second switch is
    (i) in a situation where the first switch connects the first antenna connection terminal to the first filter and the second antenna connection terminal is connected to the third external connection terminal, the first coupling connecting the port and the second coupling port to the first external connection terminal;
    (ii) in a situation where the first switch connects the first antenna connection terminal to the first filter and the second antenna connection terminal is not connected to the third external connection terminal, the first coupling connecting a port to the first external connection terminal and not connecting the second coupling port to the first external connection terminal;
    (iii) in a situation in which the first antenna connection terminal is not connected to the first filter by the first switch and the second antenna connection terminal is connected to the third external connection terminal; unconnecting the coupling port to the first external connection terminal and connecting the second coupling port to the first external connection terminal;
    (iv) in a situation where the first switch does not connect the first antenna connection terminal to the first filter and the second antenna connection terminal is not connected to the third external connection terminal, not connecting the coupling port to the first external connection terminal and not connecting the second coupling port to the first external connection terminal;
    The radio frequency module according to claim 18.
  20.  前記第2スイッチは、前記(i)において、前記第1外部接続端子の接続を前記第1結合ポート及び前記第2結合ポートの間で時間とともに切り替える、
     請求項19に記載の高周波モジュール。
    In (i) above, the second switch switches the connection of the first external connection terminal between the first coupling port and the second coupling port over time.
    The high frequency module according to claim 19.
PCT/JP2022/035142 2021-09-30 2022-09-21 High-frequency module WO2023054106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161552 2021-09-30
JP2021-161552 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054106A1 true WO2023054106A1 (en) 2023-04-06

Family

ID=85780682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035142 WO2023054106A1 (en) 2021-09-30 2022-09-21 High-frequency module

Country Status (1)

Country Link
WO (1) WO2023054106A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176452A (en) * 2017-12-20 2019-10-10 株式会社村田製作所 High-frequency module
JP2020516194A (en) * 2017-04-04 2020-05-28 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Apparatus and method for bias switching power amplifiers
JP2020529140A (en) * 2018-04-06 2020-10-01 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Power control for new wireless uplink single-user multi-input multi-output communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516194A (en) * 2017-04-04 2020-05-28 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Apparatus and method for bias switching power amplifiers
JP2019176452A (en) * 2017-12-20 2019-10-10 株式会社村田製作所 High-frequency module
JP2020529140A (en) * 2018-04-06 2020-10-01 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Power control for new wireless uplink single-user multi-input multi-output communication

Similar Documents

Publication Publication Date Title
US11876545B2 (en) Radio-frequency module and communication device
KR102489366B1 (en) Radio frequency module and communication apparatus
US11463118B2 (en) Radio frequency module and communication device
WO2022107460A1 (en) High-frequency module and communication apparatus
WO2022034817A1 (en) High-frequency module and communication device
US11528044B2 (en) Radio frequency module and communication device
US20230353170A1 (en) Radio frequency circuit and communication device
US20230155612A1 (en) Radio frequency module and communication device
US20230261677A1 (en) Radio frequency module and communication device
WO2023054106A1 (en) High-frequency module
KR102504973B1 (en) Radio frequency module and communication device
WO2022065017A1 (en) High-frequency module and communication device
WO2022034818A1 (en) High-frequency module
WO2022059457A1 (en) High-frequency module and communication device
WO2022209756A1 (en) High frequency module and communication device
WO2023022047A1 (en) High-frequency module
US11303364B2 (en) Radio frequency module and communication device
US20230328939A1 (en) Radio frequency module and communication device
WO2023021792A1 (en) High-frequency module and communication device
WO2023021982A1 (en) High-frequency module
US20240014834A1 (en) Radio frequency module and communication device
WO2022209751A1 (en) High-frequency module and communication device
WO2022209734A1 (en) High-frequency module and communication device
WO2022209736A1 (en) High frequency module and communication device
US20240014841A1 (en) Radio-frequency module and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875973

Country of ref document: EP

Kind code of ref document: A1