WO2023032277A1 - Position measurement device, position measurement method, and program - Google Patents

Position measurement device, position measurement method, and program Download PDF

Info

Publication number
WO2023032277A1
WO2023032277A1 PCT/JP2022/009867 JP2022009867W WO2023032277A1 WO 2023032277 A1 WO2023032277 A1 WO 2023032277A1 JP 2022009867 W JP2022009867 W JP 2022009867W WO 2023032277 A1 WO2023032277 A1 WO 2023032277A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
communication
uwb
reliability
distance measurement
Prior art date
Application number
PCT/JP2022/009867
Other languages
French (fr)
Japanese (ja)
Inventor
真登 北
裕之 鎌田
ダニエル マーセル シュナイダー
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023545034A priority Critical patent/JPWO2023032277A1/ja
Publication of WO2023032277A1 publication Critical patent/WO2023032277A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a positioning device, a positioning method, and a program, and more particularly to a positioning device, a positioning method, and a program that can further improve positioning accuracy.
  • Patent Document 1 discloses a technique for estimating a position based on a distance to a peripheral device selected based on total accuracy calculated by position accuracy, which is the accuracy of the position, and distance accuracy, which is the accuracy of the distance. Proposed.
  • Patent Document 1 states that the smaller the value of the position accuracy and the distance accuracy, the higher the positioning accuracy. It is considered insufficient to determine if the given position is correct.
  • the present disclosure has been made in view of such circumstances, and aims to further improve positioning accuracy.
  • a positioning device measures distances between each of a plurality of communication devices and the communication terminal based on communication for ranging performed between the plurality of communication devices and the communication terminal.
  • a distance value calculation unit that calculates a distance value
  • a reliability calculation unit that calculates reliability of the distance measurement value
  • a weight control unit that performs variable weight control, the first positioning position weighted according to the weight control, and a positioning technique other than the positioning technique using communication for range finding.
  • a positioning calculation unit that performs positioning calculation to determine a third positioned position to be output as a positioning result of the position of the communication terminal, using the second positioned position;
  • a positioning method or program determines the distance between each of the plurality of communication devices and the communication terminal based on communication for ranging performed between the plurality of communication devices and the communication terminal. Calculating a measured distance value indicating the distance measured value, calculating a reliability of the measured distance value, and weight control for changing a weight for a first positioning position obtained from the measured distance value according to the reliability. and the first positioning position weighted according to the weight control, and the second positioning position obtained using a positioning technique other than the positioning technique using communication for ranging. and performing positioning calculation for obtaining a third positioned position to be output as a positioning result of the position of the communication terminal.
  • a distance measurement value indicating a distance between each of a plurality of communication devices and a communication terminal is calculated based on distance measurement communication performed between the plurality of communication devices and the communication terminal. Then, the reliability of the measured distance value is calculated, weight control is performed to change the weight of the first measured position obtained from the measured distance value according to the reliability, and the first measured position is weighted according to the weight control.
  • a third positioning position output as a positioning result of the position of the communication terminal using the position and a second positioning position obtained using a positioning technology other than the positioning technology using communication for ranging is performed.
  • FIG. 1 is a diagram illustrating a configuration example of an embodiment of a positioning system to which the present technology is applied; FIG. It is a figure explaining a direct wave and a reflected wave.
  • 1 is a block diagram showing a configuration example of a mobile terminal; FIG. It is a figure explaining a received signal profile.
  • 6 is a flowchart for explaining positioning processing using a received signal profile;
  • FIG. 11 is a flowchart for explaining positioning processing using dispersion of measured distance values;
  • FIG. FIG. 10 is a flowchart for explaining positioning processing using a communication success rate;
  • FIG. FIG. 10 is a flowchart for explaining positioning processing using an error correction rate;
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a computer to which the present technology is applied; FIG.
  • FIG. 1 is a diagram showing a configuration example of an embodiment of a positioning system to which the present technology is applied.
  • the positioning system 11 shown in FIG. 1 is configured by connecting UWB anchors 12-1 to 12-4 and a ranging server 13, and is capable of positioning the position of a user possessing a mobile terminal 14.
  • FIG. 1 for example, in a room such as an office where UWB anchors 12-1 to 12-4 are installed, positioning in a use case in which enrollment management is performed using location information of a user possessing a mobile terminal 14 is shown.
  • An example use of system 11 is shown.
  • the positioning system 11 can also be used for analyzing customer behavior, presenting real-time advertisements or product information, in-store customer navigation, employee behavior visualization and business improvement, PDCA (Plan-Do- Check-Action) It is expected to be used in use cases such as streamlining the cycle.
  • PDCA Plan-Do- Check-Action
  • the UWB anchors 12-1 to 12-4 carry out distance measurement communication (hereinafter referred to as UWB distance measurement communication) with the mobile terminal 14 according to the UWB standard.
  • the ranging server 13 performs various controls necessary for the UWB anchors 12-1 to 12-4 to perform UWB ranging communication. For example, the ranging server 13 controls the timing at which each of the UWB anchors 12-1 to 12-4 communicates with the mobile terminal 14 in UWB ranging communication.
  • the mobile terminal 14 performs UWB ranging communication with the UWB anchors 12-1 through 12-4 to obtain ranging values indicating the distances from the UWB anchors 12-1 through 12-4, respectively. Positioning processing for positioning the position of the mobile terminal 14 can be performed from the measured distance values.
  • the current position of the mobile terminal 14 obtained by calculation based on UWB ranging communication will be referred to as a UWB positioning position.
  • the UWB anchor 12 and the mobile terminal 14 For example, in the positioning system 11, in UWB ranging communication, transmission and reception of commands and responses for ranging are performed between the UWB anchor 12 and the mobile terminal 14 by electromagnetic waves. Then, the distance measurement value between the UWB anchor 12 and the mobile terminal 14 can be obtained based on the transmission timing and reception timing of the ranging command and the transmission timing and reception timing of the ranging response. Then, when the distance measurement values between at least three or more UWB anchors 12 are obtained, the intersection of circles centered on each UWB anchor 12 and having the distance measurement values as radii is taken as the UWB positioning position of the mobile terminal 14. can be calculated.
  • the mobile terminal 14 may directly receive the electromagnetic wave output from the UWB anchor 12, or may receive the electromagnetic wave output from the UWB anchor 12 and reflected by metal or the like.
  • the received signal of the mobile terminal 14 conflicts, and as a result, it is assumed that it may become difficult to stably obtain the distance measurement value using UWB.
  • a similar phenomenon may also occur when the UWB anchor 12 receives electromagnetic waves output from the mobile terminal 14 .
  • the UWB anchor 12 or the mobile terminal 14 cannot normally receive direct electromagnetic waves due to the influence of radio wave absorption by the human body.
  • the positioning system 11 is configured so as to be able to determine the measured position based on positioning processing using various positioning technologies in addition to the positioning technology using UWB. Then, in the positioning system 11, by controlling the weight for the positioning position obtained based on those positioning technologies, according to the reliability of the distance measurement value using UWB, the positioning result of the position of the mobile terminal 14 is It is possible to improve the positioning accuracy of the positioning position that is finally obtained.
  • FIG. 3 is a block diagram showing a configuration example of the mobile terminal 14. As shown in FIG.
  • the mobile terminal 14 includes a geomagnetic sensor 21, an acceleration sensor 22, a gyro 23, a UWB communication unit 24, a PDR processing unit 25, a UWB distance measurement value calculation unit 26, a reliability calculation unit 27, a weight control unit 28 and a positioning calculator 29 .
  • the geomagnetic sensor 21 detects the geomagnetism at the current position of the mobile terminal 14 and supplies it to the positioning calculator 29 .
  • the acceleration sensor 22 detects the acceleration of the mobile terminal 14 and supplies it to the PDR processing section 25
  • the gyro 23 detects the angular velocity of the mobile terminal 14 and supplies it to the PDR processing section 25 .
  • the UWB communication unit 24 can communicate according to the UWB standard. For example, the UWB communication unit 24 performs UWB ranging communication to transmit and receive ranging commands and responses to and from each of the UWB anchors 12-1 to 12-4. Then, the UWB communication unit 24 acquires the transmission timing and reception timing of each distance measurement command and the transmission timing and reception timing of each distance measurement response, and sends them to the UWB distance measurement value calculation unit 26 supply.
  • the PDR processing unit 25 uses the acceleration of the mobile terminal 14 supplied from the acceleration sensor 22 and the angular velocity of the mobile terminal 14 supplied from the gyro 23 to perform PDR (Pedestrian Dead Reckoning) processing so that the mobile terminal 14 current positions can be obtained. Then, the PDR processing unit 25 supplies the current position of the mobile terminal 14 obtained by the PDR processing (hereinafter referred to as PDR positioning position) to the positioning calculation unit 29 .
  • PDR positioning position the current position of the mobile terminal 14 obtained by the PDR processing
  • the UWB distance measurement value calculation unit 26 calculates the UWB anchor 12- 1 to 12-4 are calculated and supplied to the positioning calculation unit 29 .
  • the reliability calculation unit 27 calculates the reliability of the distance measurement value calculated by the UWB distance measurement value calculation unit 26 and supplies it to the weight control unit 28 .
  • the reliability calculation unit 27 can calculate the received signal profile, the dispersion of the measured distance value, the communication success rate, or the error correction rate as the reliability of the measured distance value using UWB. .
  • the weight control unit 28 performs weight control to change the weight for the UWB positioning position used when the positioning calculation unit 29 performs positioning calculation, according to the reliability supplied from the reliability calculation unit 27 .
  • the weight control unit 28 performs weight control so as to increase the weight for the UWB positioning position if the reliability of the distance measurement value using UWB is high, and if the reliability of the distance measurement value using UWB is low , weight control is performed so as to reduce the weight for the UWB positioning position.
  • the positioning calculation unit 29 obtains the UWB positioning position based on the UWB distance measurement values with each of the UWB anchors 12-1 to 12-4 supplied from the UWB distance measurement value calculation unit 26.
  • the positioning calculation unit 29 also refers to a geomagnetic map acquired in advance to obtain the current position of the mobile terminal 14 according to the geomagnetism supplied from the geomagnetic sensor 21 (hereinafter referred to as the geomagnetic positioning position). Then, the positioning calculation unit 29 uses the UWB positioning position weighted according to the weight control by the weight control unit 28, the PDR positioning position, and the geomagnetic positioning position to obtain the current position of the mobile terminal 14 to be output as the positioning result. do the math.
  • the mobile terminal 14 is configured as described above, and if the reliability of the distance measurement value using UWB is high, the positioning result is such that the contribution rate of the UWB positioning position to the PDR positioning position and the geomagnetic positioning position is high. is obtained. On the other hand, if the reliability of the distance measurement value using UWB is low, a positioning result is obtained in which the contribution rate of the UWB positioning position to the PDR positioning position and the geomagnetic positioning position is low.
  • the mobile terminal 14 performs positioning processing in which the weight for the UWB positioning position is controlled based on the reliability of the distance measurement value using UWB, thereby outputting the positioning result of the position of the mobile terminal 14. It is possible to improve the positioning accuracy of the positioning position.
  • FIG. 4 is a diagram explaining the received signal profile used as the reliability of the distance measurement value using UWB.
  • the mobile terminal 14 receives direct waves and reflected waves when performing UWB ranging communication with the UWB anchor 12 . Then, the average power of the received signal (ranging packet) received by the mobile terminal 14 in UWB ranging communication is normally higher for the direct wave and lower for the reflected wave. Also, the mobile terminal 14 receives the direct wave first and the reflected wave later.
  • a received signal profile is generated as follows.
  • the weight control unit 28 according to the reception signal profile generated by the reliability calculation unit 27, when the reception condition of the reception signal in the UWB ranging communication is good, for example, as shown in A of FIG. If it is a received signal profile, it is determined that the reliability of the distance measurement value using UWB is high, and weight control is performed so that the weight for the UWB positioning position is increased. On the other hand, the weight control unit 28, according to the reception signal profile generated by the reliability calculation unit 27, when the reception condition of the reception signal in the UWB ranging communication is not good, for example, B in FIG. 4 or C in FIG. If the received signal profile is as shown in , it is determined that the reliability of the distance measurement value using UWB is low, and weight control is performed so that the weight for the UWB positioning position is reduced.
  • FIG. 5 is a flow chart explaining the positioning process using the received signal profile as the reliability of the distance measurement value using UWB.
  • step S11 the UWB communication unit 24 performs UWB ranging communication with the UWB anchors 12-1 to 12-4. Then, the UWB communication unit 24 acquires the transmission timing and reception timing of the command for ranging and the transmission timing and reception timing of the response for ranging with each of the UWB anchors 12-1 to 12-4. and supplied to the UWB distance measurement value calculation unit 26 . As a result, the UWB distance measurement value calculation unit 26 calculates the UWB anchors 12-1 to 12-4 based on the transmission timing and reception timing of the distance measurement command and the transmission timing and reception timing of the distance measurement response. Calculate the distance measurement between each.
  • step S12 the reliability calculation unit 27 acquires from the UWB communication unit 24 the average power of the reception signal received by the UWB communication unit 24 in the UWB ranging communication in step S11. Then, the reliability calculator 27 calculates a received signal profile (see FIG. 4) represented by the average power of the received signal and the reception time as the reliability of the distance measurement value using UWB.
  • step S13 the weight control unit 28 performs weight control to change the weight for weighting the UWB positioning position according to the received signal profile calculated by the reliability calculation unit 27 in step S12.
  • step S14 the positioning calculation unit 29 obtains the UWB positioning position based on the distance measurement value calculated by the UWB distance measurement value calculation unit 26 in step S11. 28 performs weighting with weight controlled weights. Further, the positioning calculation unit 29 acquires the PDR positioning position obtained by the PDR processing unit 25 and obtains the geomagnetic positioning position according to the geomagnetism supplied from the geomagnetic sensor 21 . Then, the positioning calculation unit 29 uses the weighted UWB positioning position, the PDR positioning position and the geomagnetic positioning position to perform positioning calculation to obtain the current position of the mobile terminal 14 to be output as the positioning result.
  • the mobile terminal 14 uses the received signal profile as the reliability of the distance measurement value using UWB, and performs UWB positioning according to whether the reception status of the received signal in UWB distance measurement communication is good. Positioning accuracy can be improved by controlling the weight for the position. For example, when the reception condition of the received signal in UWB ranging communication is not good, the mobile terminal 14 performs weight control so that the weight for the UWB positioning position is reduced, and the contribution rate of the UWB positioning position to the positioning result is reduced. By making it lower, it is possible to avoid a decrease in positioning accuracy.
  • the reliability calculation unit 27 acquires the reception signal profile from the UWB anchors 12-1 to 12-4 when the UWB anchors 12-1 to 12-4 perform UWB ranging communication with the UWB communication unit 24. may Then, the weight control unit 28 refers not only to the received signal profile of the UWB communication unit 24, but also to the received signal profiles of each of the UWB anchors 12-1 to 12-4, and uses all of them to comprehensively determine the reception status. It can be determined whether it is good or not.
  • FIG. 6 is a flow chart explaining the positioning process using the variance of the measured distance value as the reliability of the measured distance value using UWB.
  • step S21 the UWB communication unit 24 performs UWB ranging communication with the UWB anchors 12-1 to 12-4. Then, the UWB communication unit 24 acquires the transmission timing and reception timing of the command for ranging and the transmission timing and reception timing of the response for ranging with each of the UWB anchors 12-1 to 12-4. and supplied to the UWB distance measurement value calculation unit 26 . As a result, the UWB distance measurement value calculation unit 26 calculates the UWB anchors 12-1 to 12-4 based on the transmission timing and reception timing of the distance measurement command and the transmission timing and reception timing of the distance measurement response. Calculate the distance measurement between each. Then, the reliability calculation unit 27 acquires the distance measurement value calculated by the UWB distance measurement value calculation unit 26 .
  • step S22 the reliability calculation unit 27 determines whether or not the distance measurement values have been acquired for a specified number of times. In step S22, when the reliability calculation unit 27 determines that the measured distance values have not been obtained the specified number of times, the process proceeds to step S23.
  • step S23 the reliability calculation unit 27 determines whether or not the number of UWB ranging communications in step S21 has exceeded a specified number of communications. In step S23, if the reliability calculation unit 27 determines that the number of UWB ranging communications in step S21 does not exceed the specified number of communications, the process returns to step S21, and the same process is repeated thereafter. .
  • step S22 determines whether the specified number of distance measurement values have been obtained, or if it is determined in step S23 that the specified number of communications has been exceeded. If it is determined in step S24 that the specified number of distance measurement values have been obtained, or if it is determined in step S23 that the specified number of communications has been exceeded, the process proceeds to step S24. That is, the UWB ranging communication is repeated until the specified number of ranging values are acquired, and even if the specified number of ranging values are not acquired, the UWB ranging communication is repeated until the specified number of communications is reached.
  • the reliability calculation unit 27 calculates the variance of a plurality of distance measurement values obtained by repeated UWB distance measurement communication as the reliability of the distance measurement value using UWB. Also, the UWB distance measurement value calculation unit 26 can obtain an average value of a plurality of distance measurement values and supply the average value to the positioning calculation unit 29 .
  • step S25 the weight control unit 28 performs weight control to change the weight for weighting the UWB positioning position according to the dispersion of the distance measurement values calculated by the reliability calculation unit 27 in step S24.
  • the weight control unit 28 determines that the positioning values using UWB are stably obtained. Weight control is performed so that the weight for the UWB positioning position is increased. On the other hand, if the variance of the distance measurement values calculated by the reliability calculation unit 27 exceeds a predetermined threshold, the weight control unit 28 determines that the positioning values using UWB are not stably obtained. Weight control is performed so that the weight for the UWB positioning position becomes small. Note that the weight control unit 28 may perform weight control by setting a predetermined threshold value, or may perform weight control using, for example, a value corresponding to the dispersion of the measured distance values as a weight.
  • step S26 the positioning calculation unit 29 uses the weighted UWB positioning position, the PDR positioning position, and the geomagnetic positioning position as described in step S14 of FIG. Positioning calculation is performed to determine the current position of 14.
  • the mobile terminal 14 uses the variance of the measured distance value as the reliability of the measured distance value using UWB, and weights the UWB positioning position according to whether the measured value is stably obtained. By controlling , it is possible to improve the positioning accuracy. For example, when the positioning value is not stably obtained, the mobile terminal 14 performs weight control so that the weight for the UWB positioning position is reduced, thereby reducing the contribution rate of the UWB positioning position to the positioning result. Therefore, it is possible to avoid a decrease in positioning accuracy.
  • FIG. 7 is a flow chart explaining the positioning process using the communication success rate as the reliability of the distance measurement value using UWB.
  • step S31 the UWB communication unit 24 performs UWB ranging communication with the UWB anchors 12-1 to 12-4. Then, when the UWB distance measurement communication is successful, the UWB communication unit 24 transmits and receives commands for distance measurement with each of the UWB anchors 12-1 to 12-4, and responds for distance measurement. The transmission timing and the reception timing are acquired and supplied to the UWB distance measurement value calculation unit 26 . As a result, the UWB distance measurement value calculation unit 26 calculates the UWB anchors 12-1 to 12-4 based on the transmission timing and reception timing of the distance measurement command and the transmission timing and reception timing of the distance measurement response. Calculate the distance measurement between each. Note that, if the UWB ranging communication is not successful, the UWB communication unit 24 can repeatedly attempt the UWB ranging communication.
  • step S32 the UWB communication unit 24 determines whether or not the number of successful UWB ranging communications in step S31 has exceeded a specified number of communications. If the UWB communication unit 24 determines in step S32 that the number of successful UWB ranging communications has not exceeded the specified number of communications in step S31, the process returns to step S31, and the same process is repeated thereafter.
  • step S32 determines in step S32 that the number of successful UWB ranging communications in step S31 exceeds the specified number of communications.
  • step S33 the UWB communication unit 24 supplies the reliability calculation unit 27 with the number of attempts of UWB ranging communication and the number of successful UWB ranging communications in step S31. Then, the reliability calculation unit 27 calculates the communication success rate of successful UWB distance measurement communication as the reliability of the distance measurement value using UWB.
  • step S34 the weight control unit 28 performs weight control to change the weight for weighting the UWB positioning position according to the communication success rate calculated by the reliability calculation unit 27 in step S33.
  • the weight control unit 28 can determine that UWB ranging communication is being performed stably. Weight control is performed so that the weight for the positioning position is increased. On the other hand, if the communication success rate calculated by the reliability calculation unit 27 does not exceed a predetermined threshold, the weight control unit 28 can determine that the UWB ranging communication is not stably performed. Weight control is performed so that the weight for the positioning position becomes small. Note that the weight control unit 28 may perform weight control by setting a predetermined threshold value, or may perform weight control using, for example, a value corresponding to the communication success rate as a weight.
  • step S35 the positioning calculation unit 29 uses the weighted UWB positioning position, the PDR positioning position, and the geomagnetic positioning position as described in step S14 of FIG. Positioning calculation is performed to determine the current position of 14.
  • the mobile terminal 14 uses the communication success rate as the reliability of the distance measurement value using UWB, and weights the UWB positioning position according to whether the UWB distance measurement communication is performed stably. By controlling , it is possible to improve the positioning accuracy. For example, when the UWB ranging communication is not stably performed, the mobile terminal 14 performs weight control so that the weight for the UWB positioning position is reduced, and the contribution rate of the UWB positioning position to the positioning result is reduced. By doing so, it is possible to avoid a decrease in positioning accuracy.
  • FIG. 8 is a flow chart explaining the positioning process using the error correction rate as the reliability of the distance measurement value using UWB.
  • step S41 the UWB communication unit 24 performs UWB ranging communication with the UWB anchors 12-1 to 12-4 with data communication packets added.
  • the UWB communication unit 24 demodulates the data communication packets transmitted from the UWB anchors 12-1 to 12-4 in the UWB ranging communication, and an error occurs in the data stored in the packets. If so, the error in the data can be corrected by applying an error correction code.
  • the UWB communication unit 24 acquires the transmission timing and reception timing of the command for ranging and the transmission timing and reception timing of the response for ranging with each of the UWB anchors 12-1 to 12-4. and supplied to the UWB distance measurement value calculation unit 26 .
  • the UWB distance measurement value calculation unit 26 calculates the UWB anchors 12-1 to 12-4 based on the transmission timing and reception timing of the distance measurement command and the transmission timing and reception timing of the distance measurement response. Calculate the distance measurement between each.
  • step S42 the UWB communication unit 24 determines whether or not the number of UWB ranging communications in step S41 has exceeded a specified number of communications. In step S42, when the UWB communication unit 24 determines that the number of UWB ranging communications in step S41 has not exceeded the specified number of communications, the process returns to step S41, and the same process is repeated thereafter.
  • step S42 determines in step S42 that the number of UWB ranging communications in step S41 has exceeded the specified number of communications.
  • step S43 the UWB communication unit 24 compares the amount of data stored in all data communication packets received in the UWB ranging communication in step S41 and the amount of data in which an error occurred. It is supplied to the reliability calculation unit 27 . Then, the reliability calculation unit 27 calculates the data error correction rate (how much error has occurred in the data stored in the packet for data communication) as the reliability of the distance measurement value using UWB. percentage) is calculated.
  • step S44 the weight control unit 28 performs weight control to change the weight for weighting the UWB positioning position according to the error correction rate calculated by the reliability calculation unit 27 in step S43.
  • the weight control unit 28 can determine that the communication status of UWB ranging communication is not good. Weight control is performed so that the weight for is small. On the other hand, if the error correction rate calculated by the reliability calculation unit 27 does not exceed a predetermined threshold, the weight control unit 28 can determine that the communication status of UWB ranging communication is good, and UWB positioning is performed. Weight control is performed so that the weight for the position is increased. Note that the weight control unit 28 may perform weight control by setting a predetermined threshold value, or, for example, weight control using a value corresponding to the error correction rate as a weight.
  • step S45 the positioning calculation unit 29 uses the weighted UWB positioning position, the PDR positioning position, and the geomagnetic positioning position as described in step S14 of FIG. Positioning calculation is performed to determine the current position of 14.
  • the mobile terminal 14 uses the error correction rate as the reliability of the distance measurement value using UWB, and weights the UWB positioning position according to whether the UWB distance measurement communication is performed stably. By controlling , it is possible to improve the positioning accuracy. For example, when the communication status of UWB ranging communication is not good, the mobile terminal 14 performs weight control so that the weight of the UWB positioning position is reduced, thereby reducing the contribution of the UWB positioning position to the positioning result. Therefore, it is possible to avoid a decrease in positioning accuracy.
  • the reliability calculation unit 27 acquires the error correction rate from the UWB anchors 12-1 to 12-4 when the UWB anchors 12-1 to 12-4 perform UWB ranging communication with the UWB communication unit 24. may Then, the weight control unit 28 refers not only to the error correction rate of the UWB communication unit 24, but also to the error correction rate of each of the UWB anchors 12-1 to 12-4, and comprehensively performs UWB ranging using all of them. It can be determined whether or not the communication status of communication is good.
  • weight control is performed using the received signal profile, the dispersion of the measured distance value, the communication success rate, or the error correction rate as the reliability of the measured distance value using UWB. It is possible to improve the positioning accuracy of the positioning position and the stability of the positioning.
  • the received signal profile, the dispersion of the measured distance value, the communication success rate, or the error correction rate may be used individually, or may be used in combination for weight control.
  • weight control such as weighting the PDR positioning position or the geomagnetic positioning position.
  • the positioning system 11 for example, if at least three or more of the plurality of distance measurement values have high reliability, that is, three or more highly reliable distance measurement values are determined using UWB. If it can be obtained, weight control may be performed so that the weight for the UWB positioning position is increased. In other words, in this case, it can be determined that the intersection of circles with three highly reliable distance measurement values as radii is sufficiently reliable as the UWB positioning position of the mobile terminal 14. Positioning processing can be performed without using values. Of course, if three or more highly reliable distance measurement values cannot be obtained using UWB, weight control is performed so that the weight for the UWB positioning position is reduced.
  • this technology can be applied not only to positioning processing using 2-way ranging as described above, but also to positioning processing using, for example, a 1-way ranging method (TDoA: Time Difference of Arrival). can.
  • TDoA Time Difference of Arrival
  • the received signal profile, dispersion of ranging values, communication success rate, or error correction rate are used as methods of detecting unreliable ranging values or positioning results.
  • the positioning calculation unit 29 weights the UWB positioning position based on whether the UWB positioning position of the mobile terminal 14 is within the area surrounded by the UWB anchors 12-1 to 12-4, A positioning calculation can be performed to obtain the current position of the mobile terminal 14 to be output as a positioning result.
  • the positioning processing is performed in the ranging server 13 that controls UWB ranging communication by the UWB anchors 12-1 to 12-4.
  • the received signal profile, communication success rate, and error correction rate obtained by the mobile terminal 14 may be supplied from the mobile terminal 14 to the ranging server 13 .
  • the geomagnetism detected by the geomagnetic sensor 21, the acceleration detected by the acceleration sensor 22, and the angular velocity detected by the gyro 23 are supplied from the mobile terminal 14 to the ranging server 13, and the ranging server 13 performs positioning processing.
  • FIG. 9 is a block diagram showing a configuration example of one embodiment of a computer in which a program for executing the series of processes described above is installed.
  • the program can be recorded in advance in the hard disk 105 or ROM 103 as a recording medium built into the computer.
  • the program can be stored (recorded) in a removable recording medium 111 driven by the drive 109.
  • a removable recording medium 111 can be provided as so-called package software.
  • the removable recording medium 111 includes, for example, a flexible disk, CD-ROM (Compact Disc Read Only Memory), MO (Magneto Optical) disk, DVD (Digital Versatile Disc), magnetic disk, semiconductor memory, and the like.
  • the program can be installed in the computer from the removable recording medium 111 as described above, or can be downloaded to the computer via a communication network or broadcasting network and installed in the hard disk 105 incorporated therein. That is, for example, the program is transferred from the download site to the computer wirelessly via an artificial satellite for digital satellite broadcasting, or transferred to the computer by wire via a network such as a LAN (Local Area Network) or the Internet. be able to.
  • LAN Local Area Network
  • the computer incorporates a CPU (Central Processing Unit) 102 , and an input/output interface 110 is connected to the CPU 102 via a bus 101 .
  • a CPU Central Processing Unit
  • an input/output interface 110 is connected to the CPU 102 via a bus 101 .
  • the CPU 102 executes a program stored in a ROM (Read Only Memory) 103 according to a command input by the user through the input/output interface 110 by operating the input unit 107 or the like. Alternatively, the CPU 102 loads a program stored in the hard disk 105 into a RAM (Random Access Memory) 104 and executes it.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 102 performs the processing according to the above-described flowchart or the processing performed by the configuration of the above-described block diagram. Then, the CPU 102 outputs the processing result from the output unit 106 via the input/output interface 110, transmits it from the communication unit 108, or records it in the hard disk 105 as necessary.
  • the input unit 107 is composed of a keyboard, mouse, microphone, and the like. Also, the output unit 106 is configured by an LCD (Liquid Crystal Display), a speaker, and the like.
  • LCD Liquid Crystal Display
  • processing performed by the computer according to the program does not necessarily have to be performed in chronological order according to the order described as the flowchart.
  • processing performed by a computer according to a program includes processing that is executed in parallel or individually (for example, parallel processing or processing by objects).
  • the program may be processed by one computer (processor), or may be processed by a plurality of computers in a distributed manner. Furthermore, the program may be transferred to a remote computer and executed.
  • a system means a set of multiple components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing, are both systems. .
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configuration described above as a plurality of devices (or processing units) may be collectively configured as one device (or processing unit).
  • part of the configuration of one device (or processing unit) may be included in the configuration of another device (or other processing unit) as long as the configuration and operation of the system as a whole are substantially the same. .
  • this technology can take a configuration of cloud computing in which a single function is shared and processed jointly by multiple devices via a network.
  • the above-described program can be executed on any device.
  • the device should have the necessary functions (functional blocks, etc.) and be able to obtain the necessary information.
  • each step described in the flowchart above can be executed by a single device, or can be shared and executed by a plurality of devices.
  • the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
  • a plurality of processes included in one step can also be executed as processes of a plurality of steps.
  • the processing described as multiple steps can also be collectively executed as one step.
  • the program executed by the computer may be such that the processing of the steps described in the program is executed in chronological order according to the order described herein, or in parallel, or when the call is made. They may be executed individually at necessary timings such as occasions. That is, as long as there is no contradiction, the processing of each step may be executed in an order different from the order described above. Furthermore, the processing of the steps describing this program may be executed in parallel with the processing of other programs, or may be executed in combination with the processing of other programs.
  • a distance measurement value calculation unit that calculates a distance measurement value indicating a distance between each of the plurality of communication devices and the communication terminal based on communication for distance measurement performed between the plurality of communication devices and the communication terminal.
  • a positioning device comprising: a positioning calculation unit that performs positioning calculation for obtaining a third positioning position to be output as a positioning result of the position of the terminal.
  • the reliability calculation unit calculates, as the reliability, a variance of the plurality of distance measurement values obtained by performing the plurality of distance measurement communications. Positioning device. (4) According to any one of (1) to (3) above, the reliability calculation unit calculates, as the reliability, a communication success rate indicating a success rate when a plurality of communications for distance measurement are performed. positioning device. (5) The communication for distance measurement is performed with the packet for data communication added, The reliability calculation unit calculates, as the reliability, a ratio indicating how much error occurred in the data stored in the packet for data communication.
  • the positioning device When the reliability of at least three or more of the measured distance values is high, the weight control unit performs the weight control so that the weight for the first positioning position is increased. Above (1) to (5) ), the positioning device according to any one of (7) When the first measured position is not within a range surrounded by the plurality of communication devices, the positioning calculation unit weights the first measured position so as to reduce the weight to calculate the third measured position.
  • the positioning device according to any one of (1) to (6) above, which performs a desired positioning calculation.
  • the positioning technology uses the communication for ranging according to the UWB (Ultra Wide Band) standard, The positioning device according to any one of (1) to (7) above, wherein the other positioning technique uses geomagnetism, or uses acceleration and angular velocity.
  • a positioning device that performs positioning processing calculating a distance measurement value indicating a distance between each of the plurality of communication devices and the communication terminal based on communication for ranging performed between the plurality of communication devices and the communication terminal; calculating a reliability for the measured distance value; performing weight control for changing the weight for the first positioning position obtained from the measured distance value according to the reliability; Using the first positioning position weighted according to the weight control and the second positioning position obtained using a positioning technique other than the positioning technique using communication for ranging, the communication
  • a positioning method comprising: performing a positioning calculation for obtaining a third positioning position to be output as a positioning result of the position of the terminal.
  • (10) In the computer of the positioning device that performs positioning processing, calculating a distance measurement value indicating a distance between each of the plurality of communication devices and the communication terminal based on communication for ranging performed between the plurality of communication devices and the communication terminal; calculating a reliability for the measured distance value; performing weight control for changing the weight for the first positioning position obtained from the measured distance value according to the reliability; Using the first positioning position weighted according to the weight control and the second positioning position obtained using a positioning technique other than the positioning technique using communication for ranging, the communication
  • a program for executing positioning processing including: performing positioning calculation for obtaining a third positioning position to be output as a positioning result of the position of the terminal.
  • 11 positioning system 12 UWB anchor, 13 ranging server, 14 mobile terminal, 21 geomagnetic sensor, 22 acceleration sensor, 23 gyro, 24 UWB communication unit, 25 PDR processing unit, 26 UWB distance measurement calculation unit, 27 reliability calculation unit , 28 weight control unit, 29 positioning calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a position measurement device, a position measurement method, and a program which make it possible to further improve position measurement accuracy. A distance measurement value calculation unit calculates, on the basis of communications for distance measurement that are performed between a communication terminal and a plurality of communication devices, a distance measurement value which indicates the distance between the communication terminal and each of the plurality of communication devices. A reliability calculation unit calculates the reliability of the distance measurement value. A weight control unit performs weight control for changing, in accordance with the reliability, a weight with respect to a first measurement position that is obtained from the distance measurement value. A position measurement calculation unit uses the first measurement position that has been weighted in accordance with the weight control and a second measurement position that is obtained by use of another position measurement technique to perform position measurement calculation for obtaining a third measurement position which is output as a result of measuring the position of the communication terminal. This technique can be applied to, for example, a distance measurement system that uses UWB.

Description

測位装置および測位方法、並びにプログラムPositioning device, positioning method, and program
 本開示は、測位装置および測位方法、並びにプログラムに関し、特に、より測位精度の向上を図ることができるようにした測位装置および測位方法、並びにプログラムに関する。 The present disclosure relates to a positioning device, a positioning method, and a program, and more particularly to a positioning device, a positioning method, and a program that can further improve positioning accuracy.
 従来、UWB(Ultra Wide Band)の規格に従った測距用の通信を利用してユーザの位置を測位する測位システムの開発が進められており、測位精度の向上を図るための様々な技術が提案されている。 Conventionally, development of a positioning system that measures the user's position using distance measurement communication according to the UWB (Ultra Wide Band) standard has progressed, and various technologies have been developed to improve positioning accuracy. Proposed.
 例えば、特許文献1には、位置の確度である位置確度と距離の確度である距離確度とにより計算される総合確度に基づいて選択された周辺装置までの距離に基づき、位置を推定する技術が提案されている。 For example, Patent Document 1 discloses a technique for estimating a position based on a distance to a peripheral device selected based on total accuracy calculated by position accuracy, which is the accuracy of the position, and distance accuracy, which is the accuracy of the distance. Proposed.
国際公開第2020/003353号WO2020/003353
 ところで、上述した特許文献1には、位置確度および距離確度の値が小さいほど測位精度が高いことを意味すると記載されているが、そもそも位置および距離の信頼性については考慮されていないため、推定された位置が正しいかを判断するのには不十分であると考えられる。 By the way, the above-mentioned Patent Document 1 states that the smaller the value of the position accuracy and the distance accuracy, the higher the positioning accuracy. It is considered insufficient to determine if the given position is correct.
 本開示は、このような状況に鑑みてなされたものであり、より測位精度の向上を図ることができるようにするものである。 The present disclosure has been made in view of such circumstances, and aims to further improve positioning accuracy.
 本開示の一側面の測位装置は、複数の通信装置と通信端末との間で行われる測距用の通信に基づいて、複数の前記通信装置それぞれと前記通信端末との間の距離を示す測距値を計算する測距値計算部と、前記測距値に対する信頼度を算出する信頼度算出部と、前記信頼度に応じて、前記測距値から求められる第1の測位位置に対する重みを変化させる重み制御を行う重み制御部と、前記重み制御に従って重み付けされた前記第1の測位位置、および、前記測距用の通信を利用した測位技術以外の他の測位技術を利用して求められる第2の測位位置を用いて、前記通信端末の位置の測位結果として出力する第3の測位位置を求める測位計算を行う測位計算部とを備える。 A positioning device according to one aspect of the present disclosure measures distances between each of a plurality of communication devices and the communication terminal based on communication for ranging performed between the plurality of communication devices and the communication terminal. a distance value calculation unit that calculates a distance value; a reliability calculation unit that calculates reliability of the distance measurement value; A weight control unit that performs variable weight control, the first positioning position weighted according to the weight control, and a positioning technique other than the positioning technique using communication for range finding. a positioning calculation unit that performs positioning calculation to determine a third positioned position to be output as a positioning result of the position of the communication terminal, using the second positioned position;
 本開示の一側面の測位方法またはプログラムは、複数の通信装置と通信端末との間で行われる測距用の通信に基づいて、複数の前記通信装置それぞれと前記通信端末との間の距離を示す測距値を計算することと、前記測距値に対する信頼度を算出することと、前記信頼度に応じて、前記測距値から求められる第1の測位位置に対する重みを変化させる重み制御を行うことと、前記重み制御に従って重み付けされた前記第1の測位位置、および、前記測距用の通信を利用した測位技術以外の他の測位技術を利用して求められる第2の測位位置を用いて、前記通信端末の位置の測位結果として出力する第3の測位位置を求める測位計算を行うこととを含む。 A positioning method or program according to one aspect of the present disclosure determines the distance between each of the plurality of communication devices and the communication terminal based on communication for ranging performed between the plurality of communication devices and the communication terminal. Calculating a measured distance value indicating the distance measured value, calculating a reliability of the measured distance value, and weight control for changing a weight for a first positioning position obtained from the measured distance value according to the reliability. and the first positioning position weighted according to the weight control, and the second positioning position obtained using a positioning technique other than the positioning technique using communication for ranging. and performing positioning calculation for obtaining a third positioned position to be output as a positioning result of the position of the communication terminal.
 本開示の一側面においては、複数の通信装置と通信端末との間で行われる測距用の通信に基づいて、複数の通信装置それぞれと通信端末との間の距離を示す測距値が計算され、測距値に対する信頼度が算出され、信頼度に応じて、測距値から求められる第1の測位位置に対する重みを変化させる重み制御が行われ、重み制御に従って重み付けされた第1の測位位置、および、測距用の通信を利用した測位技術以外の他の測位技術を利用して求められる第2の測位位置を用いて、通信端末の位置の測位結果として出力する第3の測位位置を求める測位計算が行われる。 In one aspect of the present disclosure, a distance measurement value indicating a distance between each of a plurality of communication devices and a communication terminal is calculated based on distance measurement communication performed between the plurality of communication devices and the communication terminal. Then, the reliability of the measured distance value is calculated, weight control is performed to change the weight of the first measured position obtained from the measured distance value according to the reliability, and the first measured position is weighted according to the weight control. A third positioning position output as a positioning result of the position of the communication terminal using the position and a second positioning position obtained using a positioning technology other than the positioning technology using communication for ranging is performed.
本技術を適用した測位システムの一実施の形態の構成例を示す図である。1 is a diagram illustrating a configuration example of an embodiment of a positioning system to which the present technology is applied; FIG. 直接波および反射波について説明する図である。It is a figure explaining a direct wave and a reflected wave. モバイル端末の構成例を示すブロック図である。1 is a block diagram showing a configuration example of a mobile terminal; FIG. 受信信号プロファイルについて説明する図である。It is a figure explaining a received signal profile. 受信信号プロファイルを用いた測位処理について説明するフローチャートである。6 is a flowchart for explaining positioning processing using a received signal profile; 測距値の分散を用いた測位処理について説明するフローチャートである。FIG. 11 is a flowchart for explaining positioning processing using dispersion of measured distance values; FIG. 通信成功率を用いた測位処理について説明するフローチャートである。FIG. 10 is a flowchart for explaining positioning processing using a communication success rate; FIG. 誤り訂正率を用いた測位処理について説明するフローチャートである。FIG. 10 is a flowchart for explaining positioning processing using an error correction rate; FIG. 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。1 is a block diagram showing a configuration example of an embodiment of a computer to which the present technology is applied; FIG.
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。 Specific embodiments to which the present technology is applied will be described in detail below with reference to the drawings.
 <測位システムの構成例>
 図1は、本技術を適用した測位システムの一実施の形態の構成例を示す図である。
<Configuration example of positioning system>
FIG. 1 is a diagram showing a configuration example of an embodiment of a positioning system to which the present technology is applied.
 図1に示す測位システム11は、UWBアンカ12-1乃至12-4およびレンジングサーバ13が接続されて構成されており、モバイル端末14を所持するユーザの位置を測位することができる。 The positioning system 11 shown in FIG. 1 is configured by connecting UWB anchors 12-1 to 12-4 and a ranging server 13, and is capable of positioning the position of a user possessing a mobile terminal 14.
 図1には、例えば、UWBアンカ12-1乃至12-4が設置されたオフィスなどの室内で、モバイル端末14を所持するユーザの位置情報を利用して在籍管理を行うようなユースケースにおける測位システム11の利用例が示されている。なお、このようなユースケースの他、測位システム11は、顧客行動の解析や、リアルタイム広告または商品情報の提示、店内における顧客のナビゲーション、従業員の行動可視化および業務改善、PDCA(Plan-Do-Check-Action)サイクルの効率化などのユースケースで利用することが想定される。 In FIG. 1, for example, in a room such as an office where UWB anchors 12-1 to 12-4 are installed, positioning in a use case in which enrollment management is performed using location information of a user possessing a mobile terminal 14 is shown. An example use of system 11 is shown. In addition to these use cases, the positioning system 11 can also be used for analyzing customer behavior, presenting real-time advertisements or product information, in-store customer navigation, employee behavior visualization and business improvement, PDCA (Plan-Do- Check-Action) It is expected to be used in use cases such as streamlining the cycle.
 UWBアンカ12-1乃至12-4は、レンジングサーバ13による制御に従って、モバイル端末14との間でUWBの規格に従った測距用の通信(以下、UWB測距通信と称する)を行う。 Under the control of the ranging server 13, the UWB anchors 12-1 to 12-4 carry out distance measurement communication (hereinafter referred to as UWB distance measurement communication) with the mobile terminal 14 according to the UWB standard.
 レンジングサーバ13は、UWBアンカ12-1乃至12-4がUWB測距通信を行うのに必要な各種の制御を行う。例えば、レンジングサーバ13は、UWB測距通信において、UWBアンカ12-1乃至12-4それぞれが、モバイル端末14と通信するタイミングを制御する。 The ranging server 13 performs various controls necessary for the UWB anchors 12-1 to 12-4 to perform UWB ranging communication. For example, the ranging server 13 controls the timing at which each of the UWB anchors 12-1 to 12-4 communicates with the mobile terminal 14 in UWB ranging communication.
 モバイル端末14は、UWBアンカ12-1乃至12-4との間でUWB測距通信を行うことによりUWBアンカ12-1乃至12-4それぞれとの間の距離を示す測距値を求め、それらの測距値からモバイル端末14の位置を測位する測位処理を行うことができる。以下、UWB測距通信に基づいた計算で求められるモバイル端末14の現在位置を、UWB測位位置と称する。 The mobile terminal 14 performs UWB ranging communication with the UWB anchors 12-1 through 12-4 to obtain ranging values indicating the distances from the UWB anchors 12-1 through 12-4, respectively. Positioning processing for positioning the position of the mobile terminal 14 can be performed from the measured distance values. Hereinafter, the current position of the mobile terminal 14 obtained by calculation based on UWB ranging communication will be referred to as a UWB positioning position.
 例えば、測位システム11では、UWB測距通信において、UWBアンカ12とモバイル端末14との間で電磁波によって測距用のコマンドおよびレスポンスの送受信が行われる。そして、測距用のコマンドの送信タイミングおよび受信タイミングと、測距用のレスポンスの送信タイミングおよび受信タイミングとに基づいて、UWBアンカ12とモバイル端末14の間の測距値を求めることができる。そして、少なくとも3つ以上のUWBアンカ12との間の測距値が求められると、それぞれのUWBアンカ12を中心として測距値を半径とした円の交点を、モバイル端末14のUWB測位位置として算出することができる。 For example, in the positioning system 11, in UWB ranging communication, transmission and reception of commands and responses for ranging are performed between the UWB anchor 12 and the mobile terminal 14 by electromagnetic waves. Then, the distance measurement value between the UWB anchor 12 and the mobile terminal 14 can be obtained based on the transmission timing and reception timing of the ranging command and the transmission timing and reception timing of the ranging response. Then, when the distance measurement values between at least three or more UWB anchors 12 are obtained, the intersection of circles centered on each UWB anchor 12 and having the distance measurement values as radii is taken as the UWB positioning position of the mobile terminal 14. can be calculated.
 このとき、図2に示すように、モバイル端末14は、UWBアンカ12から出力される電磁波を直接的に受信することもあれば、UWBアンカ12から出力されて金属などで反射した電磁波を受信することもある。このような現象が発生することによって、モバイル端末14の受信信号がコンフリクトしてしまう結果、UWBを利用した測距値を安定的に求めることが困難となる場合があることが想定される。また、モバイル端末14から出力される電磁波をUWBアンカ12が受信する際も、同様の現象が発生することがある。さらに、人体による電波吸収の影響などで、UWBアンカ12またはモバイル端末14が直接的な電磁波を正常に受信することができないことも想定される。 At this time, as shown in FIG. 2, the mobile terminal 14 may directly receive the electromagnetic wave output from the UWB anchor 12, or may receive the electromagnetic wave output from the UWB anchor 12 and reflected by metal or the like. Sometimes. Due to the occurrence of such a phenomenon, the received signal of the mobile terminal 14 conflicts, and as a result, it is assumed that it may become difficult to stably obtain the distance measurement value using UWB. A similar phenomenon may also occur when the UWB anchor 12 receives electromagnetic waves output from the mobile terminal 14 . Furthermore, it is assumed that the UWB anchor 12 or the mobile terminal 14 cannot normally receive direct electromagnetic waves due to the influence of radio wave absorption by the human body.
 そこで、測位システム11は、UWBを利用した測位技術の他、各種の測位技術を利用した測位処理に基づいて測位位置を求めることができるように構成される。そして、測位システム11では、UWBを利用した測距値の信頼度に応じて、それらの測位技術に基づいて求められた測位位置に対する重みを制御することで、モバイル端末14の位置の測位結果として最終的に求められる測位位置の測位精度を向上させることができる。 Therefore, the positioning system 11 is configured so as to be able to determine the measured position based on positioning processing using various positioning technologies in addition to the positioning technology using UWB. Then, in the positioning system 11, by controlling the weight for the positioning position obtained based on those positioning technologies, according to the reliability of the distance measurement value using UWB, the positioning result of the position of the mobile terminal 14 is It is possible to improve the positioning accuracy of the positioning position that is finally obtained.
 図3は、モバイル端末14の構成例を示すブロック図である。 FIG. 3 is a block diagram showing a configuration example of the mobile terminal 14. As shown in FIG.
 図3に示すように、モバイル端末14は、地磁気センサ21、加速度センサ22、ジャイロ23、UWB通信部24、PDR処理部25、UWB測距値計算部26、信頼度算出部27、重み制御部28、および測位計算部29を備えて構成される。 As shown in FIG. 3, the mobile terminal 14 includes a geomagnetic sensor 21, an acceleration sensor 22, a gyro 23, a UWB communication unit 24, a PDR processing unit 25, a UWB distance measurement value calculation unit 26, a reliability calculation unit 27, a weight control unit 28 and a positioning calculator 29 .
 地磁気センサ21は、モバイル端末14の現在位置における地磁気を検出して測位計算部29に供給する。加速度センサ22は、モバイル端末14の加速度を検出してPDR処理部25に供給し、ジャイロ23は、モバイル端末14の角速度を検出してPDR処理部25に供給する。 The geomagnetic sensor 21 detects the geomagnetism at the current position of the mobile terminal 14 and supplies it to the positioning calculator 29 . The acceleration sensor 22 detects the acceleration of the mobile terminal 14 and supplies it to the PDR processing section 25 , and the gyro 23 detects the angular velocity of the mobile terminal 14 and supplies it to the PDR processing section 25 .
 UWB通信部24は、UWBの規格に従って通信を行うことができる。例えば、UWB通信部24は、UWB測距通信を行うことで、UWBアンカ12-1乃至12-4それぞれとの間で測距用のコマンドおよびレスポンスを送受信する。そして、UWB通信部24は、それぞれの測距用のコマンドの送信タイミングおよび受信タイミングと、それぞれの測距用のレスポンスの送信タイミングおよび受信タイミングとを取得して、UWB測距値計算部26に供給する。 The UWB communication unit 24 can communicate according to the UWB standard. For example, the UWB communication unit 24 performs UWB ranging communication to transmit and receive ranging commands and responses to and from each of the UWB anchors 12-1 to 12-4. Then, the UWB communication unit 24 acquires the transmission timing and reception timing of each distance measurement command and the transmission timing and reception timing of each distance measurement response, and sends them to the UWB distance measurement value calculation unit 26 supply.
 PDR処理部25は、加速度センサ22から供給されるモバイル端末14の加速度、および、ジャイロ23から供給されるモバイル端末14の角速度を用いて、PDR(Pedestrian Dead Reckoning)処理を行うことによって、モバイル端末14の現在位置を求めることができる。そして、PDR処理部25は、PDR処理によって求めたモバイル端末14の現在位置(以下、PDR測位位置と称する)を測位計算部29に供給する。 The PDR processing unit 25 uses the acceleration of the mobile terminal 14 supplied from the acceleration sensor 22 and the angular velocity of the mobile terminal 14 supplied from the gyro 23 to perform PDR (Pedestrian Dead Reckoning) processing so that the mobile terminal 14 current positions can be obtained. Then, the PDR processing unit 25 supplies the current position of the mobile terminal 14 obtained by the PDR processing (hereinafter referred to as PDR positioning position) to the positioning calculation unit 29 .
 UWB測距値計算部26は、UWB通信部24から供給される測距用のコマンドの送信タイミングおよび受信タイミングと、測距用のレスポンスの送信タイミングおよび受信タイミングとに基づいて、UWBアンカ12-1乃至12-4それぞれとの間の測距値を計算し、測位計算部29に供給する。 Based on the transmission timing and reception timing of the command for ranging supplied from the UWB communication unit 24 and the transmission timing and reception timing of the response for ranging, the UWB distance measurement value calculation unit 26 calculates the UWB anchor 12- 1 to 12-4 are calculated and supplied to the positioning calculation unit 29 .
 信頼度算出部27は、UWB測距値計算部26により計算された測距値に対する信頼度を算出し、重み制御部28に供給する。例えば、信頼度算出部27は、後述するように、受信信号プロファイル、測距値の分散、通信成功率、または誤り訂正率を、UWBを利用した測距値の信頼度として算出することができる。 The reliability calculation unit 27 calculates the reliability of the distance measurement value calculated by the UWB distance measurement value calculation unit 26 and supplies it to the weight control unit 28 . For example, as will be described later, the reliability calculation unit 27 can calculate the received signal profile, the dispersion of the measured distance value, the communication success rate, or the error correction rate as the reliability of the measured distance value using UWB. .
 重み制御部28は、信頼度算出部27から供給される信頼度に応じて、測位計算部29が測位計算を行う際に用いるUWB測位位置に対する重みを変化させる重み制御を行う。例えば、重み制御部28は、UWBを利用した測距値の信頼度が高ければ、UWB測位位置に対する重みを大きくするように重み制御を行い、UWBを利用した測距値の信頼度が低ければ、UWB測位位置に対する重みを小さくするように重み制御を行う。 The weight control unit 28 performs weight control to change the weight for the UWB positioning position used when the positioning calculation unit 29 performs positioning calculation, according to the reliability supplied from the reliability calculation unit 27 . For example, the weight control unit 28 performs weight control so as to increase the weight for the UWB positioning position if the reliability of the distance measurement value using UWB is high, and if the reliability of the distance measurement value using UWB is low , weight control is performed so as to reduce the weight for the UWB positioning position.
 測位計算部29は、UWB測距値計算部26から供給されるUWBアンカ12-1乃至12-4それぞれとの間のUWB測距値に基づいて、UWB測位位置を求める。また、測位計算部29は、事前に取得してある地磁気マップを参照し、地磁気センサ21から供給される地磁気に従ったモバイル端末14の現在位置(以下、地磁気測位位置と称する)を求める。そして、測位計算部29は、重み制御部28による重み制御に従って重み付けされたUWB測位位置と、PDR測位位置および地磁気測位位置とを用いて、測位結果として出力するモバイル端末14の現在位置を求める測位計算を行う。 The positioning calculation unit 29 obtains the UWB positioning position based on the UWB distance measurement values with each of the UWB anchors 12-1 to 12-4 supplied from the UWB distance measurement value calculation unit 26. The positioning calculation unit 29 also refers to a geomagnetic map acquired in advance to obtain the current position of the mobile terminal 14 according to the geomagnetism supplied from the geomagnetic sensor 21 (hereinafter referred to as the geomagnetic positioning position). Then, the positioning calculation unit 29 uses the UWB positioning position weighted according to the weight control by the weight control unit 28, the PDR positioning position, and the geomagnetic positioning position to obtain the current position of the mobile terminal 14 to be output as the positioning result. do the math.
 以上のようにモバイル端末14は構成されており、UWBを利用した測距値の信頼度が高ければ、PDR測位位置および地磁気測位位置に対してUWB測位位置の寄与率が高くなるような測位結果が取得される。一方、UWBを利用した測距値の信頼度が低ければ、PDR測位位置および地磁気測位位置に対してUWB測位位置の寄与率が低くなるような測位結果が取得される。 The mobile terminal 14 is configured as described above, and if the reliability of the distance measurement value using UWB is high, the positioning result is such that the contribution rate of the UWB positioning position to the PDR positioning position and the geomagnetic positioning position is high. is obtained. On the other hand, if the reliability of the distance measurement value using UWB is low, a positioning result is obtained in which the contribution rate of the UWB positioning position to the PDR positioning position and the geomagnetic positioning position is low.
 このように、モバイル端末14は、UWBを利用した測距値の信頼度に基づいて、UWB測位位置に対する重みを制御した測位処理を行うことによって、モバイル端末14の位置の測位結果として出力される測位位置の測位精度を向上させることができる。 In this way, the mobile terminal 14 performs positioning processing in which the weight for the UWB positioning position is controlled based on the reliability of the distance measurement value using UWB, thereby outputting the positioning result of the position of the mobile terminal 14. It is possible to improve the positioning accuracy of the positioning position.
 <重みを制御した測位処理の処理例>
 図4乃至図8を参照して、UWBを利用した測距値の信頼度に基づいて重みを制御した測位処理について説明する。
<Processing example of positioning processing in which weight is controlled>
Positioning processing in which weights are controlled based on the reliability of distance measurement values using UWB will be described with reference to FIGS. 4 to 8. FIG.
 図4は、UWBを利用した測距値の信頼度として用いられる受信信号プロファイルについて説明する図である。 FIG. 4 is a diagram explaining the received signal profile used as the reliability of the distance measurement value using UWB.
 上述した図2を参照して説明したように、モバイル端末14は、UWBアンカ12とUWB測距通信を行う際に、直接波および反射波を受信する。そして、モバイル端末14がUWB測距通信で受信する受信信号(測距用パケット)の平均電力は、通常、直接波の方が高く、反射波の方が低くなる。また、モバイル端末14は、直接波を先に受信し、反射波を後に受信する。 As described above with reference to FIG. 2 , the mobile terminal 14 receives direct waves and reflected waves when performing UWB ranging communication with the UWB anchor 12 . Then, the average power of the received signal (ranging packet) received by the mobile terminal 14 in UWB ranging communication is normally higher for the direct wave and lower for the reflected wave. Also, the mobile terminal 14 receives the direct wave first and the reflected wave later.
 そのため、受信状況が良好であれば、図4のAに示すように、先に受信する直接波の受信信号の平均電力が高くなり、かつ、後に受信する反射波の受信信号の平均電力が低くなるような受信信号プロファイルが生成される。 Therefore, when the reception condition is good, as shown in A of FIG. 4, the average power of the received signal of the direct wave that is received first is high, and the average power of the received signal of the reflected wave that is received later is low. A received signal profile is generated as follows.
 これに対し、図4のBに示すように、直接波の受信信号の平均電力が雑音レベルに対して大きな差分がない場合、受信状況が良好ではなく、UWB通信部24が直接波を受信することができていない可能性が高いと判断することができる。また、図4のCに示すように、直接波の受信信号の平均電力が反射波の受信信号の平均電力よりも低い場合、受信状況が良好ではなく、UWB通信部24が直接波を受信することができていない可能性が高いと判断することができる。 On the other hand, as shown in FIG. 4B, when the average power of the received signal of the direct wave does not have a large difference with respect to the noise level, the reception condition is not good and the UWB communication unit 24 receives the direct wave. It can be judged that there is a high possibility that it has not been possible. Also, as shown in FIG. 4C, when the average power of the received signal of the direct wave is lower than the average power of the received signal of the reflected wave, the reception condition is not good and the UWB communication unit 24 receives the direct wave. It can be judged that there is a high possibility that it has not been possible.
 従って、重み制御部28は、信頼度算出部27により生成された受信信号プロファイルに応じて、UWB測距通信における受信信号の受信状況が良好である場合、例えば、図4のAに示すような受信信号プロファイルである場合、UWBを利用した測距値の信頼度が高いと判断して、UWB測位位置に対する重みが大きくなるような重み制御を行う。一方、重み制御部28は、信頼度算出部27により生成された受信信号プロファイルに応じて、UWB測距通信における受信信号の受信状況が良好でない場合、例えば、図4のBまたは図4のCに示すような受信信号プロファイルである場合、UWBを利用した測距値の信頼度が低いと判断して、UWB測位位置に対する重みが小さくなるような重み制御を行う。 Therefore, the weight control unit 28, according to the reception signal profile generated by the reliability calculation unit 27, when the reception condition of the reception signal in the UWB ranging communication is good, for example, as shown in A of FIG. If it is a received signal profile, it is determined that the reliability of the distance measurement value using UWB is high, and weight control is performed so that the weight for the UWB positioning position is increased. On the other hand, the weight control unit 28, according to the reception signal profile generated by the reliability calculation unit 27, when the reception condition of the reception signal in the UWB ranging communication is not good, for example, B in FIG. 4 or C in FIG. If the received signal profile is as shown in , it is determined that the reliability of the distance measurement value using UWB is low, and weight control is performed so that the weight for the UWB positioning position is reduced.
 図5は、UWBを利用した測距値の信頼度として受信信号プロファイルを用いた測位処理について説明するフローチャートである。 FIG. 5 is a flow chart explaining the positioning process using the received signal profile as the reliability of the distance measurement value using UWB.
 ステップS11において、UWB通信部24は、UWBアンカ12-1乃至12-4との間でUWB測距通信を行う。そして、UWB通信部24は、UWBアンカ12-1乃至12-4それぞれとの間における測距用のコマンドの送信タイミングおよび受信タイミングと、測距用のレスポンスの送信タイミングおよび受信タイミングとを取得して、UWB測距値計算部26に供給する。これにより、UWB測距値計算部26は、測距用のコマンドの送信タイミングおよび受信タイミングと、測距用のレスポンスの送信タイミングおよび受信タイミングとに基づいて、UWBアンカ12-1乃至12-4それぞれとの間の測距値を計算する。 In step S11, the UWB communication unit 24 performs UWB ranging communication with the UWB anchors 12-1 to 12-4. Then, the UWB communication unit 24 acquires the transmission timing and reception timing of the command for ranging and the transmission timing and reception timing of the response for ranging with each of the UWB anchors 12-1 to 12-4. and supplied to the UWB distance measurement value calculation unit 26 . As a result, the UWB distance measurement value calculation unit 26 calculates the UWB anchors 12-1 to 12-4 based on the transmission timing and reception timing of the distance measurement command and the transmission timing and reception timing of the distance measurement response. Calculate the distance measurement between each.
 ステップS12において、信頼度算出部27は、ステップS11のUWB測距通信においてUWB通信部24が受信した受信信号の平均電力をUWB通信部24から取得する。そして、信頼度算出部27は、UWBを利用した測距値の信頼度として、受信信号の平均電力および受信時刻により表される受信信号プロファイル(図4参照)を算出する。 In step S12, the reliability calculation unit 27 acquires from the UWB communication unit 24 the average power of the reception signal received by the UWB communication unit 24 in the UWB ranging communication in step S11. Then, the reliability calculator 27 calculates a received signal profile (see FIG. 4) represented by the average power of the received signal and the reception time as the reliability of the distance measurement value using UWB.
 ステップS13において、重み制御部28は、ステップS12で信頼度算出部27により算出された受信信号プロファイルに応じて、UWB測位位置に対して重み付けするための重みを変化させる重み制御を行う。 In step S13, the weight control unit 28 performs weight control to change the weight for weighting the UWB positioning position according to the received signal profile calculated by the reliability calculation unit 27 in step S12.
 ステップS14において、測位計算部29は、ステップS11でUWB測距値計算部26により計算された測距値に基づいてUWB測位位置を求め、そのUWB測位位置に対して、ステップS13で重み制御部28により重み制御された重みで重み付けを行う。また、測位計算部29は、PDR処理部25により求められたPDR測位位置を取得するとともに、地磁気センサ21から供給される地磁気に従って地磁気測位位置を求める。そして、測位計算部29は、重み付けされたUWB測位位置と、PDR測位位置および地磁気測位位置とを用いて、測位結果として出力するモバイル端末14の現在位置を求める測位計算を行う。 In step S14, the positioning calculation unit 29 obtains the UWB positioning position based on the distance measurement value calculated by the UWB distance measurement value calculation unit 26 in step S11. 28 performs weighting with weight controlled weights. Further, the positioning calculation unit 29 acquires the PDR positioning position obtained by the PDR processing unit 25 and obtains the geomagnetic positioning position according to the geomagnetism supplied from the geomagnetic sensor 21 . Then, the positioning calculation unit 29 uses the weighted UWB positioning position, the PDR positioning position and the geomagnetic positioning position to perform positioning calculation to obtain the current position of the mobile terminal 14 to be output as the positioning result.
 以上のように、モバイル端末14は、UWBを利用した測距値の信頼度として受信信号プロファイルを用いて、UWB測距通信における受信信号の受信状況が良好であるか否かに応じてUWB測位位置に対する重みを制御することで、測位精度の向上を図ることができる。例えば、モバイル端末14は、UWB測距通信における受信信号の受信状況が良好でない場合には、UWB測位位置に対する重みが小さくなるように重み制御を行い、UWB測位位置が測位結果に与える寄与率を低くすることで、測位精度が低下してしまうことを回避することができる。 As described above, the mobile terminal 14 uses the received signal profile as the reliability of the distance measurement value using UWB, and performs UWB positioning according to whether the reception status of the received signal in UWB distance measurement communication is good. Positioning accuracy can be improved by controlling the weight for the position. For example, when the reception condition of the received signal in UWB ranging communication is not good, the mobile terminal 14 performs weight control so that the weight for the UWB positioning position is reduced, and the contribution rate of the UWB positioning position to the positioning result is reduced. By making it lower, it is possible to avoid a decrease in positioning accuracy.
 なお、信頼度算出部27は、UWBアンカ12-1乃至12-4がUWB通信部24とUWB測距通信を行った際の受信信号プロファイルを、UWBアンカ12-1乃至12-4から取得してもよい。そして、重み制御部28は、UWB通信部24の受信信号プロファイルだけでなく、UWBアンカ12-1乃至12-4それぞれの受信信号プロファイルも参照し、それらを全て用いて総合的に、受信状況が良好であるか否かの判断を行うことができる。 The reliability calculation unit 27 acquires the reception signal profile from the UWB anchors 12-1 to 12-4 when the UWB anchors 12-1 to 12-4 perform UWB ranging communication with the UWB communication unit 24. may Then, the weight control unit 28 refers not only to the received signal profile of the UWB communication unit 24, but also to the received signal profiles of each of the UWB anchors 12-1 to 12-4, and uses all of them to comprehensively determine the reception status. It can be determined whether it is good or not.
 図6は、UWBを利用した測距値の信頼度として測距値の分散を用いた測位処理について説明するフローチャートである。 FIG. 6 is a flow chart explaining the positioning process using the variance of the measured distance value as the reliability of the measured distance value using UWB.
 ステップS21において、UWB通信部24は、UWBアンカ12-1乃至12-4との間でUWB測距通信を行う。そして、UWB通信部24は、UWBアンカ12-1乃至12-4それぞれとの間における測距用のコマンドの送信タイミングおよび受信タイミングと、測距用のレスポンスの送信タイミングおよび受信タイミングとを取得して、UWB測距値計算部26に供給する。これにより、UWB測距値計算部26は、測距用のコマンドの送信タイミングおよび受信タイミングと、測距用のレスポンスの送信タイミングおよび受信タイミングとに基づいて、UWBアンカ12-1乃至12-4それぞれとの間の測距値を計算する。そして、信頼度算出部27は、UWB測距値計算部26により計算された測距値を取得する。 In step S21, the UWB communication unit 24 performs UWB ranging communication with the UWB anchors 12-1 to 12-4. Then, the UWB communication unit 24 acquires the transmission timing and reception timing of the command for ranging and the transmission timing and reception timing of the response for ranging with each of the UWB anchors 12-1 to 12-4. and supplied to the UWB distance measurement value calculation unit 26 . As a result, the UWB distance measurement value calculation unit 26 calculates the UWB anchors 12-1 to 12-4 based on the transmission timing and reception timing of the distance measurement command and the transmission timing and reception timing of the distance measurement response. Calculate the distance measurement between each. Then, the reliability calculation unit 27 acquires the distance measurement value calculated by the UWB distance measurement value calculation unit 26 .
 ステップS22において、信頼度算出部27は、規定回数の測距値を取得したか否かを判定する。ステップS22において、信頼度算出部27が、規定回数の測距値を取得していないと判定した場合、処理はステップS23に進む。 In step S22, the reliability calculation unit 27 determines whether or not the distance measurement values have been acquired for a specified number of times. In step S22, when the reliability calculation unit 27 determines that the measured distance values have not been obtained the specified number of times, the process proceeds to step S23.
 ステップS23において、信頼度算出部27は、ステップS21におけるUWB測距通信が規定回数の通信回数を超えたか否かを判定する。ステップS23において、信頼度算出部27が、ステップS21におけるUWB測距通信が規定回数の通信回数を超えていないと判定した場合、処理はステップS21に戻り、以下、同様の処理が繰り返して行われる。 In step S23, the reliability calculation unit 27 determines whether or not the number of UWB ranging communications in step S21 has exceeded a specified number of communications. In step S23, if the reliability calculation unit 27 determines that the number of UWB ranging communications in step S21 does not exceed the specified number of communications, the process returns to step S21, and the same process is repeated thereafter. .
 一方、ステップS22において規定回数の測距値を取得したと判定された場合、または、ステップS23において規定回数の通信回数を超えたと判定された場合、処理はステップS24に進む。即ち、規定回数の測距値が取得されるまでUWB測距通信が繰り返され、規定回数の測距値が取得されなくても、規定回数の通信回数となるまでUWB測距通信が繰り返される。 On the other hand, if it is determined in step S22 that the specified number of distance measurement values have been obtained, or if it is determined in step S23 that the specified number of communications has been exceeded, the process proceeds to step S24. That is, the UWB ranging communication is repeated until the specified number of ranging values are acquired, and even if the specified number of ranging values are not acquired, the UWB ranging communication is repeated until the specified number of communications is reached.
 ステップS24において、信頼度算出部27は、UWBを利用した測距値の信頼度として、UWB測距通信が繰り返し行われることで取得された複数の測距値の分散を算出する。また、UWB測距値計算部26は、複数の測距値の平均値を求めて測位計算部29に供給することができる。 In step S24, the reliability calculation unit 27 calculates the variance of a plurality of distance measurement values obtained by repeated UWB distance measurement communication as the reliability of the distance measurement value using UWB. Also, the UWB distance measurement value calculation unit 26 can obtain an average value of a plurality of distance measurement values and supply the average value to the positioning calculation unit 29 .
 ステップS25において、重み制御部28は、ステップS24で信頼度算出部27により算出された測距値の分散に応じて、UWB測位位置に対して重み付けするための重みを変化させる重み制御を行う。 In step S25, the weight control unit 28 performs weight control to change the weight for weighting the UWB positioning position according to the dispersion of the distance measurement values calculated by the reliability calculation unit 27 in step S24.
 例えば、重み制御部28は、信頼度算出部27により算出された測距値の分散が所定の閾値を超えていなければ、UWBを利用した測位値が安定的に求められていると判断することができ、UWB測位位置に対する重みが大きくなるように重み制御を行う。一方、重み制御部28は、信頼度算出部27により算出された測距値の分散が所定の閾値を超えていれば、UWBを利用した測位値が安定的に求められていないと判断することができ、UWB測位位置に対する重みが小さくなるように重み制御を行う。なお、重み制御部28は、所定の閾値を設けて重み制御を行う他、例えば、測距値の分散に応じた値を重みとして用いるような重み制御を行ってもよい。 For example, if the variance of the distance measurement values calculated by the reliability calculation unit 27 does not exceed a predetermined threshold, the weight control unit 28 determines that the positioning values using UWB are stably obtained. Weight control is performed so that the weight for the UWB positioning position is increased. On the other hand, if the variance of the distance measurement values calculated by the reliability calculation unit 27 exceeds a predetermined threshold, the weight control unit 28 determines that the positioning values using UWB are not stably obtained. Weight control is performed so that the weight for the UWB positioning position becomes small. Note that the weight control unit 28 may perform weight control by setting a predetermined threshold value, or may perform weight control using, for example, a value corresponding to the dispersion of the measured distance values as a weight.
 ステップS26において、測位計算部29は、図5のステップS14で説明したのと同様に、重み付けされたUWB測位位置と、PDR測位位置および地磁気測位位置とを用いて、測位結果として出力するモバイル端末14の現在位置を求める測位計算を行う。 In step S26, the positioning calculation unit 29 uses the weighted UWB positioning position, the PDR positioning position, and the geomagnetic positioning position as described in step S14 of FIG. Positioning calculation is performed to determine the current position of 14.
 以上のように、モバイル端末14は、UWBを利用した測距値の信頼度として測距値の分散を用いて、測位値が安定的に求められているか否かに応じてUWB測位位置に対する重みを制御することで、測位精度の向上を図ることができる。例えば、モバイル端末14は、測位値が安定的に求められていない場合には、UWB測位位置に対する重みが小さくなるように重み制御を行い、UWB測位位置が測位結果に与える寄与率を低くすることで、測位精度が低下してしまうことを回避することができる。 As described above, the mobile terminal 14 uses the variance of the measured distance value as the reliability of the measured distance value using UWB, and weights the UWB positioning position according to whether the measured value is stably obtained. By controlling , it is possible to improve the positioning accuracy. For example, when the positioning value is not stably obtained, the mobile terminal 14 performs weight control so that the weight for the UWB positioning position is reduced, thereby reducing the contribution rate of the UWB positioning position to the positioning result. Therefore, it is possible to avoid a decrease in positioning accuracy.
 図7は、UWBを利用した測距値の信頼度として通信成功率を用いた測位処理について説明するフローチャートである。 FIG. 7 is a flow chart explaining the positioning process using the communication success rate as the reliability of the distance measurement value using UWB.
 ステップS31において、UWB通信部24は、UWBアンカ12-1乃至12-4との間でUWB測距通信を行う。そして、UWB測距通信が成功した場合、UWB通信部24は、UWBアンカ12-1乃至12-4それぞれとの間における測距用のコマンドの送信タイミングおよび受信タイミングと、測距用のレスポンスの送信タイミングおよび受信タイミングとを取得して、UWB測距値計算部26に供給する。これにより、UWB測距値計算部26は、測距用のコマンドの送信タイミングおよび受信タイミングと、測距用のレスポンスの送信タイミングおよび受信タイミングとに基づいて、UWBアンカ12-1乃至12-4それぞれとの間の測距値を計算する。なお、UWB測距通信が成功しなかった場合、UWB通信部24は、繰り返してUWB測距通信を試みることができる。 In step S31, the UWB communication unit 24 performs UWB ranging communication with the UWB anchors 12-1 to 12-4. Then, when the UWB distance measurement communication is successful, the UWB communication unit 24 transmits and receives commands for distance measurement with each of the UWB anchors 12-1 to 12-4, and responds for distance measurement. The transmission timing and the reception timing are acquired and supplied to the UWB distance measurement value calculation unit 26 . As a result, the UWB distance measurement value calculation unit 26 calculates the UWB anchors 12-1 to 12-4 based on the transmission timing and reception timing of the distance measurement command and the transmission timing and reception timing of the distance measurement response. Calculate the distance measurement between each. Note that, if the UWB ranging communication is not successful, the UWB communication unit 24 can repeatedly attempt the UWB ranging communication.
 ステップS32において、UWB通信部24は、ステップS31で成功したUWB測距通信が規定回数の通信回数を超えたか否かを判定する。ステップS32において、UWB通信部24が、ステップS31で成功したUWB測距通信が規定回数の通信回数を超えていないと判定した場合、処理はステップS31に戻り、以下、同様の処理が繰り返して行われる。 In step S32, the UWB communication unit 24 determines whether or not the number of successful UWB ranging communications in step S31 has exceeded a specified number of communications. If the UWB communication unit 24 determines in step S32 that the number of successful UWB ranging communications has not exceeded the specified number of communications in step S31, the process returns to step S31, and the same process is repeated thereafter. will be
 一方、ステップS32において、UWB通信部24が、ステップS31で成功したUWB測距通信が規定回数の通信回数を超えたと判定した場合、処理はステップS33に進む。 On the other hand, if the UWB communication unit 24 determines in step S32 that the number of successful UWB ranging communications in step S31 exceeds the specified number of communications, the process proceeds to step S33.
 ステップS33において、UWB通信部24は、ステップS31でUWB測距通信を試みた回数と、UWB測距通信が成功した回数とを信頼度算出部27に供給する。そして、信頼度算出部27は、UWBを利用した測距値の信頼度として、UWB測距通信が成功した通信成功率を算出する。 In step S33, the UWB communication unit 24 supplies the reliability calculation unit 27 with the number of attempts of UWB ranging communication and the number of successful UWB ranging communications in step S31. Then, the reliability calculation unit 27 calculates the communication success rate of successful UWB distance measurement communication as the reliability of the distance measurement value using UWB.
 ステップS34において、重み制御部28は、ステップS33で信頼度算出部27により算出された通信成功率に応じて、UWB測位位置に対して重み付けするための重みを変化させる重み制御を行う。 In step S34, the weight control unit 28 performs weight control to change the weight for weighting the UWB positioning position according to the communication success rate calculated by the reliability calculation unit 27 in step S33.
 例えば、重み制御部28は、信頼度算出部27により算出された通信成功率が所定の閾値を超えていれば、UWB測距通信が安定的に行われていると判断することができ、UWB測位位置に対する重みが大きくなるように重み制御を行う。一方、重み制御部28は、信頼度算出部27により算出された通信成功率が所定の閾値を超えていなければ、UWB測距通信が安定的に行われていないと判断することができ、UWB測位位置に対する重みが小さくなるように重み制御を行う。なお、重み制御部28は、所定の閾値を設けて重み制御を行う他、例えば、通信成功率に応じた値を重みとして用いるような重み制御を行ってもよい。 For example, if the communication success rate calculated by the reliability calculation unit 27 exceeds a predetermined threshold, the weight control unit 28 can determine that UWB ranging communication is being performed stably. Weight control is performed so that the weight for the positioning position is increased. On the other hand, if the communication success rate calculated by the reliability calculation unit 27 does not exceed a predetermined threshold, the weight control unit 28 can determine that the UWB ranging communication is not stably performed. Weight control is performed so that the weight for the positioning position becomes small. Note that the weight control unit 28 may perform weight control by setting a predetermined threshold value, or may perform weight control using, for example, a value corresponding to the communication success rate as a weight.
 ステップS35において、測位計算部29は、図5のステップS14で説明したのと同様に、重み付けされたUWB測位位置と、PDR測位位置および地磁気測位位置とを用いて、測位結果として出力するモバイル端末14の現在位置を求める測位計算を行う。 In step S35, the positioning calculation unit 29 uses the weighted UWB positioning position, the PDR positioning position, and the geomagnetic positioning position as described in step S14 of FIG. Positioning calculation is performed to determine the current position of 14.
 以上のように、モバイル端末14は、UWBを利用した測距値の信頼度として通信成功率を用いて、UWB測距通信が安定的に行われているか否かに応じてUWB測位位置に対する重みを制御することで、測位精度の向上を図ることができる。例えば、モバイル端末14は、UWB測距通信が安定的に行われていない場合には、UWB測位位置に対する重みが小さくなるように重み制御を行い、UWB測位位置が測位結果に与える寄与率を低くすることで、測位精度が低下してしまうことを回避することができる。 As described above, the mobile terminal 14 uses the communication success rate as the reliability of the distance measurement value using UWB, and weights the UWB positioning position according to whether the UWB distance measurement communication is performed stably. By controlling , it is possible to improve the positioning accuracy. For example, when the UWB ranging communication is not stably performed, the mobile terminal 14 performs weight control so that the weight for the UWB positioning position is reduced, and the contribution rate of the UWB positioning position to the positioning result is reduced. By doing so, it is possible to avoid a decrease in positioning accuracy.
 図8は、UWBを利用した測距値の信頼度として誤り訂正率を用いた測位処理について説明するフローチャートである。 FIG. 8 is a flow chart explaining the positioning process using the error correction rate as the reliability of the distance measurement value using UWB.
 ステップS41において、UWB通信部24は、データ通信用のパケットを付加した状態で、UWBアンカ12-1乃至12-4との間でUWB測距通信を行う。このとき、UWB通信部24は、UWB測距通信でUWBアンカ12-1乃至12-4から送信されてきたデータ通信用のパケットを復調し、そのパケットに格納されていたデータに誤りが発生している場合には、誤り訂正符号を適用することによりデータの誤りを訂正することができる。 In step S41, the UWB communication unit 24 performs UWB ranging communication with the UWB anchors 12-1 to 12-4 with data communication packets added. At this time, the UWB communication unit 24 demodulates the data communication packets transmitted from the UWB anchors 12-1 to 12-4 in the UWB ranging communication, and an error occurs in the data stored in the packets. If so, the error in the data can be corrected by applying an error correction code.
 そして、UWB通信部24は、UWBアンカ12-1乃至12-4それぞれとの間における測距用のコマンドの送信タイミングおよび受信タイミングと、測距用のレスポンスの送信タイミングおよび受信タイミングとを取得して、UWB測距値計算部26に供給する。これにより、UWB測距値計算部26は、測距用のコマンドの送信タイミングおよび受信タイミングと、測距用のレスポンスの送信タイミングおよび受信タイミングとに基づいて、UWBアンカ12-1乃至12-4それぞれとの間の測距値を計算する。 Then, the UWB communication unit 24 acquires the transmission timing and reception timing of the command for ranging and the transmission timing and reception timing of the response for ranging with each of the UWB anchors 12-1 to 12-4. and supplied to the UWB distance measurement value calculation unit 26 . As a result, the UWB distance measurement value calculation unit 26 calculates the UWB anchors 12-1 to 12-4 based on the transmission timing and reception timing of the distance measurement command and the transmission timing and reception timing of the distance measurement response. Calculate the distance measurement between each.
 ステップS42において、UWB通信部24は、ステップS41におけるUWB測距通信が規定回数の通信回数を超えたか否かを判定する。ステップS42において、UWB通信部24が、ステップS41におけるUWB測距通信が規定回数の通信回数を超えていないと判定した場合、処理はステップS41に戻り、以下、同様の処理が繰り返して行われる。 In step S42, the UWB communication unit 24 determines whether or not the number of UWB ranging communications in step S41 has exceeded a specified number of communications. In step S42, when the UWB communication unit 24 determines that the number of UWB ranging communications in step S41 has not exceeded the specified number of communications, the process returns to step S41, and the same process is repeated thereafter.
 一方、ステップS42において、UWB通信部24が、ステップS41におけるUWB測距通信が規定回数の通信回数を超えたと判定した場合、処理はステップS43に進む。 On the other hand, if the UWB communication unit 24 determines in step S42 that the number of UWB ranging communications in step S41 has exceeded the specified number of communications, the process proceeds to step S43.
 ステップS43において、UWB通信部24は、ステップS41のUWB測距通信で受信した全てのデータ通信用のパケットに格納されていたデータのデータ量と、誤りが発生していたデータのデータ量とを信頼度算出部27に供給する。そして、信頼度算出部27は、UWBを利用した測距値の信頼度として、データの誤り訂正率(データ通信用のパケットに格納されていたデータに対して、どの程度の誤りが発生していたかを示す割合)を算出する。 In step S43, the UWB communication unit 24 compares the amount of data stored in all data communication packets received in the UWB ranging communication in step S41 and the amount of data in which an error occurred. It is supplied to the reliability calculation unit 27 . Then, the reliability calculation unit 27 calculates the data error correction rate (how much error has occurred in the data stored in the packet for data communication) as the reliability of the distance measurement value using UWB. percentage) is calculated.
 ステップS44において、重み制御部28は、ステップS43で信頼度算出部27により算出された誤り訂正率に応じて、UWB測位位置に対して重み付けするための重みを変化させる重み制御を行う。 In step S44, the weight control unit 28 performs weight control to change the weight for weighting the UWB positioning position according to the error correction rate calculated by the reliability calculation unit 27 in step S43.
 例えば、重み制御部28は、信頼度算出部27により算出された誤り訂正率が所定の閾値を超えていれば、UWB測距通信の通信状況が良好でないと判断することができ、UWB測位位置に対する重みが小さくなるように重み制御を行う。一方、重み制御部28は、信頼度算出部27により算出された誤り訂正率が所定の閾値を超えていなければ、UWB測距通信の通信状況が良好であると判断することができ、UWB測位位置に対する重みが大きくなるように重み制御を行う。なお、重み制御部28は、所定の閾値を設けて重み制御を行う他、例えば、誤り訂正率に応じた値を重みとして用いるような重み制御を行ってもよい。 For example, if the error correction rate calculated by the reliability calculation unit 27 exceeds a predetermined threshold, the weight control unit 28 can determine that the communication status of UWB ranging communication is not good. Weight control is performed so that the weight for is small. On the other hand, if the error correction rate calculated by the reliability calculation unit 27 does not exceed a predetermined threshold, the weight control unit 28 can determine that the communication status of UWB ranging communication is good, and UWB positioning is performed. Weight control is performed so that the weight for the position is increased. Note that the weight control unit 28 may perform weight control by setting a predetermined threshold value, or, for example, weight control using a value corresponding to the error correction rate as a weight.
 ステップS45において、測位計算部29は、図5のステップS14で説明したのと同様に、重み付けされたUWB測位位置と、PDR測位位置および地磁気測位位置とを用いて、測位結果として出力するモバイル端末14の現在位置を求める測位計算を行う。 In step S45, the positioning calculation unit 29 uses the weighted UWB positioning position, the PDR positioning position, and the geomagnetic positioning position as described in step S14 of FIG. Positioning calculation is performed to determine the current position of 14.
 以上のように、モバイル端末14は、UWBを利用した測距値の信頼度として誤り訂正率を用いて、UWB測距通信が安定的に行われているか否かに応じてUWB測位位置に対する重みを制御することで、測位精度の向上を図ることができる。例えば、モバイル端末14は、UWB測距通信の通信状況が良好でない場合には、UWB測位位置に対する重みが小さくなるように重み制御を行い、UWB測位位置が測位結果に与える寄与率を低くすることで、測位精度が低下してしまうことを回避することができる。 As described above, the mobile terminal 14 uses the error correction rate as the reliability of the distance measurement value using UWB, and weights the UWB positioning position according to whether the UWB distance measurement communication is performed stably. By controlling , it is possible to improve the positioning accuracy. For example, when the communication status of UWB ranging communication is not good, the mobile terminal 14 performs weight control so that the weight of the UWB positioning position is reduced, thereby reducing the contribution of the UWB positioning position to the positioning result. Therefore, it is possible to avoid a decrease in positioning accuracy.
 なお、信頼度算出部27は、UWBアンカ12-1乃至12-4がUWB通信部24とUWB測距通信を行った際の誤り訂正率を、UWBアンカ12-1乃至12-4から取得してもよい。そして、重み制御部28は、UWB通信部24の誤り訂正率だけでなく、UWBアンカ12-1乃至12-4それぞれの誤り訂正率も参照し、それらを全て用いて総合的に、UWB測距通信の通信状況が良好であるか否かの判断を行うことができる。 The reliability calculation unit 27 acquires the error correction rate from the UWB anchors 12-1 to 12-4 when the UWB anchors 12-1 to 12-4 perform UWB ranging communication with the UWB communication unit 24. may Then, the weight control unit 28 refers not only to the error correction rate of the UWB communication unit 24, but also to the error correction rate of each of the UWB anchors 12-1 to 12-4, and comprehensively performs UWB ranging using all of them. It can be determined whether or not the communication status of communication is good.
 以上のように、測位システム11では、UWBを利用した測距値の信頼度として、受信信号プロファイル、測距値の分散、通信成功率、または誤り訂正率を用いて重み制御を行うことで、測位位置の測位精度や測位の安定性の向上を図ることができる。また、受信信号プロファイル、測距値の分散、通信成功率、または誤り訂正率を、それぞれ個別に用いる他、それらを組み合わせて重み制御に用いてもよい。また、UWB測位位置に対して重み付けを行うだけでなく、PDR測位位置または地磁気測位位置に対して重み付けするような重み制御を行うことができる。 As described above, in the positioning system 11, weight control is performed using the received signal profile, the dispersion of the measured distance value, the communication success rate, or the error correction rate as the reliability of the measured distance value using UWB. It is possible to improve the positioning accuracy of the positioning position and the stability of the positioning. In addition, the received signal profile, the dispersion of the measured distance value, the communication success rate, or the error correction rate may be used individually, or may be used in combination for weight control. In addition to weighting the UWB positioning position, it is also possible to perform weight control such as weighting the PDR positioning position or the geomagnetic positioning position.
 また、測位システム11では、例えば、複数の測距値のうち、少なくとも3つ以上の測距値に対する信頼度が高ければ、即ち、UWBを利用して信頼度の高い測距値を3つ以上得ることができれば、UWB測位位置に対する重みが大きくなるように重み制御を行ってもよい。つまり、この場合、信頼度の高い3つの測距値を半径とした円の交点が、モバイル端末14のUWB測位位置として十分に信頼性があると判断することができ、信頼度の低い測距値は用いずに測位処理を行うことができる。もちろん、UWBを利用して信頼度の高い測距値を3つ以上得ることができなければ、UWB測位位置に対する重みが小さくなるように重み制御が行われる。 Further, in the positioning system 11, for example, if at least three or more of the plurality of distance measurement values have high reliability, that is, three or more highly reliable distance measurement values are determined using UWB. If it can be obtained, weight control may be performed so that the weight for the UWB positioning position is increased. In other words, in this case, it can be determined that the intersection of circles with three highly reliable distance measurement values as radii is sufficiently reliable as the UWB positioning position of the mobile terminal 14. Positioning processing can be performed without using values. Of course, if three or more highly reliable distance measurement values cannot be obtained using UWB, weight control is performed so that the weight for the UWB positioning position is reduced.
 なお、本技術は、上述したような2 way rangingを利用した測位処理に適用するだけでなく、例えば、1 way rangingの方式(TDoA:Time Difference of Arrival)を利用した測位処理に適用することができる。 Note that this technology can be applied not only to positioning processing using 2-way ranging as described above, but also to positioning processing using, for example, a 1-way ranging method (TDoA: Time Difference of Arrival). can.
 例えば、TDoAを利用する測位処理では、測距値または測位結果が信頼できないことをどう検知するかの手法として、受信信号プロファイル、測距値の分散、通信成功率、または誤り訂正率を用いる他、モバイル端末14のUWB測位位置がUWBアンカ12-1乃至12-4に囲まれているエリア内であるか否かを用いることができる。即ち、モバイル端末14のUWB測位位置がUWBアンカ12-1乃至12-4に囲まれているエリア内でない場合(エリア外の場合)、そのUWB測位位置の信頼性が低い可能性があることが原理的に証明されている。 For example, in positioning processing using TDoA, the received signal profile, dispersion of ranging values, communication success rate, or error correction rate are used as methods of detecting unreliable ranging values or positioning results. , whether the UWB positioning position of the mobile terminal 14 is within the area surrounded by the UWB anchors 12-1 to 12-4. That is, when the UWB positioning position of the mobile terminal 14 is not within the area surrounded by the UWB anchors 12-1 to 12-4 (outside the area), the reliability of the UWB positioning position may be low. Proven in principle.
 従って、モバイル端末14のUWB測位位置がUWBアンカ12-1乃至12-4に囲まれているエリア内でない場合には、そのUWB測位位置に対する重みが小さくなるように重み制御が行われる。なお、TDoAを利用する測位処理で求められたUWB測位位置に対する重み制御は、図3を参照して説明したように重み制御部28において行われるのではなく、UWB測位位置が求められる測位計算部29の内部で行われる。即ち、測位計算部29は、モバイル端末14のUWB測位位置がUWBアンカ12-1乃至12-4に囲まれたエリア内であるか否かに基づいて、そのUWB測位位置に対する重み付けを行って、測位結果として出力するモバイル端末14の現在位置を求める測位計算を行うことができる。 Therefore, when the UWB positioning position of the mobile terminal 14 is not within the area surrounded by the UWB anchors 12-1 to 12-4, weight control is performed so that the weight for the UWB positioning position is reduced. Note that the weight control for the UWB positioning position obtained by the positioning processing using TDoA is not performed in the weight control unit 28 as described with reference to FIG. 29 inside. That is, the positioning calculation unit 29 weights the UWB positioning position based on whether the UWB positioning position of the mobile terminal 14 is within the area surrounded by the UWB anchors 12-1 to 12-4, A positioning calculation can be performed to obtain the current position of the mobile terminal 14 to be output as a positioning result.
 さらに、測位システム11では、上述したような測位処理をモバイル端末14において行う他、UWBアンカ12-1乃至12-4によるUWB測距通信に対する制御を行うレンジングサーバ13で測位処理を行うような構成とすることができる。この場合、モバイル端末14において求められた受信信号プロファイルや、通信成功率、誤り訂正率が、モバイル端末14からレンジングサーバ13に供給するようにしてもよい。また、地磁気センサ21により検出された地磁気、加速度センサ22により検出された加速度、ジャイロ23により検出された角速度をモバイル端末14からレンジングサーバ13に供給し、レンジングサーバ13にて測位処理が行われるようにしてもよい。 Further, in the positioning system 11, in addition to performing the above-described positioning processing in the mobile terminal 14, the positioning processing is performed in the ranging server 13 that controls UWB ranging communication by the UWB anchors 12-1 to 12-4. can be In this case, the received signal profile, communication success rate, and error correction rate obtained by the mobile terminal 14 may be supplied from the mobile terminal 14 to the ranging server 13 . Also, the geomagnetism detected by the geomagnetic sensor 21, the acceleration detected by the acceleration sensor 22, and the angular velocity detected by the gyro 23 are supplied from the mobile terminal 14 to the ranging server 13, and the ranging server 13 performs positioning processing. can be
 <コンピュータの構成例>
 次に、上述した一連の処理(測位方法)は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、汎用のコンピュータ等にインストールされる。
<Computer configuration example>
Next, the series of processes (positioning method) described above can be performed by hardware or by software. When a series of processes is performed by software, a program that constitutes the software is installed in a general-purpose computer or the like.
 図9は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示すブロック図である。 FIG. 9 is a block diagram showing a configuration example of one embodiment of a computer in which a program for executing the series of processes described above is installed.
 プログラムは、コンピュータに内蔵されている記録媒体としてのハードディスク105やROM103に予め記録しておくことができる。 The program can be recorded in advance in the hard disk 105 or ROM 103 as a recording medium built into the computer.
 あるいはまた、プログラムは、ドライブ109によって駆動されるリムーバブル記録媒体111に格納(記録)しておくことができる。このようなリムーバブル記録媒体111は、いわゆるパッケージソフトウェアとして提供することができる。ここで、リムーバブル記録媒体111としては、例えば、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto Optical)ディスク,DVD(Digital Versatile Disc)、磁気ディスク、半導体メモリ等がある。 Alternatively, the program can be stored (recorded) in a removable recording medium 111 driven by the drive 109. Such a removable recording medium 111 can be provided as so-called package software. Here, the removable recording medium 111 includes, for example, a flexible disk, CD-ROM (Compact Disc Read Only Memory), MO (Magneto Optical) disk, DVD (Digital Versatile Disc), magnetic disk, semiconductor memory, and the like.
 なお、プログラムは、上述したようなリムーバブル記録媒体111からコンピュータにインストールする他、通信網や放送網を介して、コンピュータにダウンロードし、内蔵するハードディスク105にインストールすることができる。すなわち、プログラムは、例えば、ダウンロードサイトから、ディジタル衛星放送用の人工衛星を介して、コンピュータに無線で転送したり、LAN(Local Area Network)、インターネットといったネットワークを介して、コンピュータに有線で転送することができる。 It should be noted that the program can be installed in the computer from the removable recording medium 111 as described above, or can be downloaded to the computer via a communication network or broadcasting network and installed in the hard disk 105 incorporated therein. That is, for example, the program is transferred from the download site to the computer wirelessly via an artificial satellite for digital satellite broadcasting, or transferred to the computer by wire via a network such as a LAN (Local Area Network) or the Internet. be able to.
 コンピュータは、CPU(Central Processing Unit)102を内蔵しており、CPU102には、バス101を介して、入出力インタフェース110が接続されている。 The computer incorporates a CPU (Central Processing Unit) 102 , and an input/output interface 110 is connected to the CPU 102 via a bus 101 .
 CPU102は、入出力インタフェース110を介して、ユーザによって、入力部107が操作等されることにより指令が入力されると、それに従って、ROM(Read Only Memory)103に格納されているプログラムを実行する。あるいは、CPU102は、ハードディスク105に格納されたプログラムを、RAM(Random Access Memory)104にロードして実行する。 The CPU 102 executes a program stored in a ROM (Read Only Memory) 103 according to a command input by the user through the input/output interface 110 by operating the input unit 107 or the like. . Alternatively, the CPU 102 loads a program stored in the hard disk 105 into a RAM (Random Access Memory) 104 and executes it.
 これにより、CPU102は、上述したフローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU102は、その処理結果を、必要に応じて、例えば、入出力インタフェース110を介して、出力部106から出力、あるいは、通信部108から送信、さらには、ハードディスク105に記録等させる。 As a result, the CPU 102 performs the processing according to the above-described flowchart or the processing performed by the configuration of the above-described block diagram. Then, the CPU 102 outputs the processing result from the output unit 106 via the input/output interface 110, transmits it from the communication unit 108, or records it in the hard disk 105 as necessary.
 なお、入力部107は、キーボードや、マウス、マイク等で構成される。また、出力部106は、LCD(Liquid Crystal Display)やスピーカ等で構成される。 The input unit 107 is composed of a keyboard, mouse, microphone, and the like. Also, the output unit 106 is configured by an LCD (Liquid Crystal Display), a speaker, and the like.
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。 Here, in this specification, the processing performed by the computer according to the program does not necessarily have to be performed in chronological order according to the order described as the flowchart. In other words, processing performed by a computer according to a program includes processing that is executed in parallel or individually (for example, parallel processing or processing by objects).
 また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い。 Also, the program may be processed by one computer (processor), or may be processed by a plurality of computers in a distributed manner. Furthermore, the program may be transferred to a remote computer and executed.
 さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 Furthermore, in this specification, a system means a set of multiple components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing, are both systems. .
 また、例えば、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。 Also, for example, the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units). Conversely, the configuration described above as a plurality of devices (or processing units) may be collectively configured as one device (or processing unit). Further, it is of course possible to add a configuration other than the above to the configuration of each device (or each processing unit). Furthermore, part of the configuration of one device (or processing unit) may be included in the configuration of another device (or other processing unit) as long as the configuration and operation of the system as a whole are substantially the same. .
 また、例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 In addition, for example, this technology can take a configuration of cloud computing in which a single function is shared and processed jointly by multiple devices via a network.
 また、例えば、上述したプログラムは、任意の装置において実行することができる。その場合、その装置が、必要な機能(機能ブロック等)を有し、必要な情報を得ることができるようにすればよい。 Also, for example, the above-described program can be executed on any device. In that case, the device should have the necessary functions (functional blocks, etc.) and be able to obtain the necessary information.
 また、例えば、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。換言するに、1つのステップに含まれる複数の処理を、複数のステップの処理として実行することもできる。逆に、複数のステップとして説明した処理を1つのステップとしてまとめて実行することもできる。 Also, for example, each step described in the flowchart above can be executed by a single device, or can be shared and executed by a plurality of devices. Furthermore, when one step includes a plurality of processes, the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices. In other words, a plurality of processes included in one step can also be executed as processes of a plurality of steps. Conversely, the processing described as multiple steps can also be collectively executed as one step.
 なお、コンピュータが実行するプログラムは、プログラムを記述するステップの処理が、本明細書で説明する順序に沿って時系列に実行されるようにしても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで個別に実行されるようにしても良い。つまり、矛盾が生じない限り、各ステップの処理が上述した順序と異なる順序で実行されるようにしてもよい。さらに、このプログラムを記述するステップの処理が、他のプログラムの処理と並列に実行されるようにしても良いし、他のプログラムの処理と組み合わせて実行されるようにしても良い。 It should be noted that the program executed by the computer may be such that the processing of the steps described in the program is executed in chronological order according to the order described herein, or in parallel, or when the call is made. They may be executed individually at necessary timings such as occasions. That is, as long as there is no contradiction, the processing of each step may be executed in an order different from the order described above. Furthermore, the processing of the steps describing this program may be executed in parallel with the processing of other programs, or may be executed in combination with the processing of other programs.
 なお、本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。 It should be noted that the multiple techniques described in this specification can be implemented independently as long as there is no contradiction. Of course, it is also possible to use any number of the present technologies in combination. For example, part or all of the present technology described in any embodiment can be combined with part or all of the present technology described in other embodiments. Also, part or all of any of the techniques described above may be implemented in conjunction with other techniques not described above.
 <構成の組み合わせ例>
 なお、本技術は以下のような構成も取ることができる。
(1)
 複数の通信装置と通信端末との間で行われる測距用の通信に基づいて、複数の前記通信装置それぞれと前記通信端末との間の距離を示す測距値を計算する測距値計算部と、
 前記測距値に対する信頼度を算出する信頼度算出部と、
 前記信頼度に応じて、前記測距値から求められる第1の測位位置に対する重みを変化させる重み制御を行う重み制御部と、
 前記重み制御に従って重み付けされた前記第1の測位位置、および、前記測距用の通信を利用した測位技術以外の他の測位技術を利用して求められる第2の測位位置を用いて、前記通信端末の位置の測位結果として出力する第3の測位位置を求める測位計算を行う測位計算部と
 を備える測位装置。
(2)
 前記信頼度算出部は、前記信頼度として、前記測距用の信号が受信された際の平均電力および受信時刻により表される受信信号プロファイルを算出する
 上記(1)に記載の測位装置。
(3)
 前記信頼度算出部は、前記信頼度として、複数の前記測距用の通信が行われることで求められた複数の前記測距値の分散を算出する
 上記(1)または(2)に記載の測位装置。
(4)
 前記信頼度算出部は、前記信頼度として、複数の前記測距用の通信が行われた際の成功率を示す通信成功率を算出する
 上記(1)から(3)までのいずれかに記載の測位装置。
(5)
 データ通信用のパケットを付加した状態で前記測距用の通信が行われ、
 前記信頼度算出部は、前記信頼度として、前記データ通信用のパケットに格納されていたデータに対して、どの程度の誤りが発生していたかを示す割合を算出する
 上記(1)から(4)までのいずれかに記載の測位装置。
(6)
 前記重み制御部は、少なくとも3つ以上の前記測距値に対する前記信頼度が高い場合には、前記第1の測位位置に対する重みが大きくなるように前記重み制御を行う
 上記(1)から(5)までのいずれかに記載の測位装置。
(7)
 前記測位計算部は、前記第1の測位位置が複数の前記通信装置に囲まれた範囲にない場合、前記第1の測位位置に対する重みが小さくなるように重み付けして前記第3の測位位置を求める測位計算を行う
 上記(1)から(6)までのいずれかに記載の測位装置。
(8)
 前記測位技術は、UWB(Ultra Wide Band)の規格に従った前記測距用の通信を利用したものであり、
 前記他の測位技術は、地磁気を利用したもの、または、加速度および角速度を利用したものでである
 上記(1)から(7)までのいずれかに記載の測位装置。
(9)
 測位処理を行う測位装置が、
 複数の通信装置と通信端末との間で行われる測距用の通信に基づいて、複数の前記通信装置それぞれと前記通信端末との間の距離を示す測距値を計算することと、
 前記測距値に対する信頼度を算出することと、
 前記信頼度に応じて、前記測距値から求められる第1の測位位置に対する重みを変化させる重み制御を行うことと、
 前記重み制御に従って重み付けされた前記第1の測位位置、および、前記測距用の通信を利用した測位技術以外の他の測位技術を利用して求められる第2の測位位置を用いて、前記通信端末の位置の測位結果として出力する第3の測位位置を求める測位計算を行うことと
 を含む測位方法。
(10)
 測位処理を行う測位装置のコンピュータに、
 複数の通信装置と通信端末との間で行われる測距用の通信に基づいて、複数の前記通信装置それぞれと前記通信端末との間の距離を示す測距値を計算することと、
 前記測距値に対する信頼度を算出することと、
 前記信頼度に応じて、前記測距値から求められる第1の測位位置に対する重みを変化させる重み制御を行うことと、
 前記重み制御に従って重み付けされた前記第1の測位位置、および、前記測距用の通信を利用した測位技術以外の他の測位技術を利用して求められる第2の測位位置を用いて、前記通信端末の位置の測位結果として出力する第3の測位位置を求める測位計算を行うことと
 を含む測位処理を実行させるためのプログラム。
<Configuration example combination>
Note that the present technology can also take the following configuration.
(1)
A distance measurement value calculation unit that calculates a distance measurement value indicating a distance between each of the plurality of communication devices and the communication terminal based on communication for distance measurement performed between the plurality of communication devices and the communication terminal. and,
a reliability calculation unit that calculates the reliability of the distance measurement value;
a weight control unit that performs weight control to change the weight for the first positioning position obtained from the measured distance value according to the reliability;
Using the first positioning position weighted according to the weight control and the second positioning position obtained using a positioning technique other than the positioning technique using communication for ranging, the communication A positioning device, comprising: a positioning calculation unit that performs positioning calculation for obtaining a third positioning position to be output as a positioning result of the position of the terminal.
(2)
The positioning device according to (1) above, wherein the reliability calculation unit calculates, as the reliability, a received signal profile represented by average power and reception time when the ranging signal is received.
(3)
According to (1) or (2) above, the reliability calculation unit calculates, as the reliability, a variance of the plurality of distance measurement values obtained by performing the plurality of distance measurement communications. Positioning device.
(4)
According to any one of (1) to (3) above, the reliability calculation unit calculates, as the reliability, a communication success rate indicating a success rate when a plurality of communications for distance measurement are performed. positioning device.
(5)
The communication for distance measurement is performed with the packet for data communication added,
The reliability calculation unit calculates, as the reliability, a ratio indicating how much error occurred in the data stored in the packet for data communication. ), the positioning device according to any one of
(6)
When the reliability of at least three or more of the measured distance values is high, the weight control unit performs the weight control so that the weight for the first positioning position is increased. Above (1) to (5) ), the positioning device according to any one of
(7)
When the first measured position is not within a range surrounded by the plurality of communication devices, the positioning calculation unit weights the first measured position so as to reduce the weight to calculate the third measured position. The positioning device according to any one of (1) to (6) above, which performs a desired positioning calculation.
(8)
The positioning technology uses the communication for ranging according to the UWB (Ultra Wide Band) standard,
The positioning device according to any one of (1) to (7) above, wherein the other positioning technique uses geomagnetism, or uses acceleration and angular velocity.
(9)
A positioning device that performs positioning processing
calculating a distance measurement value indicating a distance between each of the plurality of communication devices and the communication terminal based on communication for ranging performed between the plurality of communication devices and the communication terminal;
calculating a reliability for the measured distance value;
performing weight control for changing the weight for the first positioning position obtained from the measured distance value according to the reliability;
Using the first positioning position weighted according to the weight control and the second positioning position obtained using a positioning technique other than the positioning technique using communication for ranging, the communication A positioning method comprising: performing a positioning calculation for obtaining a third positioning position to be output as a positioning result of the position of the terminal.
(10)
In the computer of the positioning device that performs positioning processing,
calculating a distance measurement value indicating a distance between each of the plurality of communication devices and the communication terminal based on communication for ranging performed between the plurality of communication devices and the communication terminal;
calculating a reliability for the measured distance value;
performing weight control for changing the weight for the first positioning position obtained from the measured distance value according to the reliability;
Using the first positioning position weighted according to the weight control and the second positioning position obtained using a positioning technique other than the positioning technique using communication for ranging, the communication A program for executing positioning processing including: performing positioning calculation for obtaining a third positioning position to be output as a positioning result of the position of the terminal.
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 It should be noted that the present embodiment is not limited to the embodiment described above, and various modifications are possible without departing from the gist of the present disclosure. Moreover, the effects described in this specification are merely examples and are not limited, and other effects may be provided.
 11 測位システム, 12 UWBアンカ, 13 レンジングサーバ, 14 モバイル端末, 21 地磁気センサ, 22 加速度センサ, 23 ジャイロ, 24 UWB通信部, 25 PDR処理部, 26 UWB測距値計算部, 27 信頼度算出部, 28 重み制御部, 29 測位計算部 11 positioning system, 12 UWB anchor, 13 ranging server, 14 mobile terminal, 21 geomagnetic sensor, 22 acceleration sensor, 23 gyro, 24 UWB communication unit, 25 PDR processing unit, 26 UWB distance measurement calculation unit, 27 reliability calculation unit , 28 weight control unit, 29 positioning calculation unit

Claims (10)

  1.  複数の通信装置と通信端末との間で行われる測距用の通信に基づいて、複数の前記通信装置それぞれと前記通信端末との間の距離を示す測距値を計算する測距値計算部と、
     前記測距値に対する信頼度を算出する信頼度算出部と、
     前記信頼度に応じて、前記測距値から求められる第1の測位位置に対する重みを変化させる重み制御を行う重み制御部と、
     前記重み制御に従って重み付けされた前記第1の測位位置、および、前記測距用の通信を利用した測位技術以外の他の測位技術を利用して求められる第2の測位位置を用いて、前記通信端末の位置の測位結果として出力する第3の測位位置を求める測位計算を行う測位計算部と
     を備える測位装置。
    A distance measurement value calculation unit that calculates a distance measurement value indicating a distance between each of the plurality of communication devices and the communication terminal based on communication for distance measurement performed between the plurality of communication devices and the communication terminal. and,
    a reliability calculation unit that calculates the reliability of the distance measurement value;
    a weight control unit that performs weight control to change the weight for the first positioning position obtained from the measured distance value according to the reliability;
    Using the first positioning position weighted according to the weight control and the second positioning position obtained using a positioning technique other than the positioning technique using communication for ranging, the communication A positioning device, comprising: a positioning calculation unit that performs positioning calculation for obtaining a third positioning position to be output as a positioning result of the position of the terminal.
  2.  前記信頼度算出部は、前記信頼度として、前記測距用の信号が受信された際の平均電力および受信時刻により表される受信信号プロファイルを算出する
     請求項1に記載の測位装置。
    The positioning device according to claim 1, wherein the reliability calculation unit calculates a received signal profile represented by average power and reception time when the ranging signal is received as the reliability.
  3.  前記信頼度算出部は、前記信頼度として、複数の前記測距用の通信が行われることで求められた複数の前記測距値の分散を算出する
     請求項1に記載の測位装置。
    The positioning device according to claim 1, wherein the reliability calculation unit calculates, as the reliability, a variance of the plurality of distance measurement values obtained by performing a plurality of communication for distance measurement.
  4.  前記信頼度算出部は、前記信頼度として、複数の前記測距用の通信が行われた際の成功率を示す通信成功率を算出する
     請求項1に記載の測位装置。
    The positioning device according to claim 1, wherein the reliability calculation unit calculates, as the reliability, a communication success rate indicating a success rate when a plurality of communications for distance measurement are performed.
  5.  データ通信用のパケットを付加した状態で前記測距用の通信が行われ、
     前記信頼度算出部は、前記信頼度として、前記データ通信用のパケットに格納されていたデータに対して、どの程度の誤りが発生していたかを示す割合を算出する
     請求項1に記載の測位装置。
    The communication for distance measurement is performed with the packet for data communication added,
    The positioning according to claim 1, wherein the reliability calculation unit calculates, as the reliability, a ratio indicating how much error occurred in data stored in the packet for data communication. Device.
  6.  前記重み制御部は、少なくとも3つ以上の前記測距値に対する前記信頼度が高い場合には、前記第1の測位位置に対する重みが大きくなるように前記重み制御を行う
     請求項1に記載の測位装置。
    2. The positioning according to claim 1, wherein when the reliability of at least three or more of the measured distance values is high, the weight control unit performs the weight control so that the weight for the first positioning position is increased. Device.
  7.  前記測位計算部は、前記第1の測位位置が複数の前記通信装置に囲まれた範囲にない場合、前記第1の測位位置に対する重みが小さくなるように重み付けして前記第3の測位位置を求める測位計算を行う
     請求項1に記載の測位装置。
    When the first measured position is not within a range surrounded by the plurality of communication devices, the positioning calculation unit weights the first measured position so as to reduce the weight to calculate the third measured position. The positioning device according to claim 1, which performs a desired positioning calculation.
  8.  前記測位技術は、UWB(Ultra Wide Band)の規格に従った前記測距用の通信を利用したものであり、
     前記他の測位技術は、地磁気を利用したもの、または、加速度および角速度を利用したものでである
     請求項1に記載の測位装置。
    The positioning technology uses the communication for ranging according to the UWB (Ultra Wide Band) standard,
    The positioning device according to claim 1, wherein the other positioning technique is one that uses geomagnetism or one that uses acceleration and angular velocity.
  9.  測位処理を行う測位装置が、
     複数の通信装置と通信端末との間で行われる測距用の通信に基づいて、複数の前記通信装置それぞれと前記通信端末との間の距離を示す測距値を計算することと、
     前記測距値に対する信頼度を算出することと、
     前記信頼度に応じて、前記測距値から求められる第1の測位位置に対する重みを変化させる重み制御を行うことと、
     前記重み制御に従って重み付けされた前記第1の測位位置、および、前記測距用の通信を利用した測位技術以外の他の測位技術を利用して求められる第2の測位位置を用いて、前記通信端末の位置の測位結果として出力する第3の測位位置を求める測位計算を行うことと
     を含む測位方法。
    A positioning device that performs positioning processing
    calculating a distance measurement value indicating a distance between each of the plurality of communication devices and the communication terminal based on communication for ranging performed between the plurality of communication devices and the communication terminal;
    calculating a reliability for the measured distance value;
    performing weight control for changing the weight for the first positioning position obtained from the measured distance value according to the reliability;
    Using the first positioning position weighted according to the weight control and the second positioning position obtained using a positioning technique other than the positioning technique using communication for ranging, the communication A positioning method comprising: performing a positioning calculation for obtaining a third positioning position to be output as a positioning result of the position of the terminal.
  10.  測位処理を行う測位装置のコンピュータに、
     複数の通信装置と通信端末との間で行われる測距用の通信に基づいて、複数の前記通信装置それぞれと前記通信端末との間の距離を示す測距値を計算することと、
     前記測距値に対する信頼度を算出することと、
     前記信頼度に応じて、前記測距値から求められる第1の測位位置に対する重みを変化させる重み制御を行うことと、
     前記重み制御に従って重み付けされた前記第1の測位位置、および、前記測距用の通信を利用した測位技術以外の他の測位技術を利用して求められる第2の測位位置を用いて、前記通信端末の位置の測位結果として出力する第3の測位位置を求める測位計算を行うことと
     を含む測位処理を実行させるためのプログラム。
    In the computer of the positioning device that performs positioning processing,
    calculating a distance measurement value indicating a distance between each of the plurality of communication devices and the communication terminal based on communication for ranging performed between the plurality of communication devices and the communication terminal;
    calculating a reliability for the measured distance value;
    performing weight control for changing the weight for the first positioning position obtained from the measured distance value according to the reliability;
    Using the first positioning position weighted according to the weight control and the second positioning position obtained using a positioning technique other than the positioning technique using communication for ranging, the communication A program for executing positioning processing including: performing positioning calculation for obtaining a third positioning position to be output as a positioning result of the position of the terminal.
PCT/JP2022/009867 2021-09-01 2022-03-08 Position measurement device, position measurement method, and program WO2023032277A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023545034A JPWO2023032277A1 (en) 2021-09-01 2022-03-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021142331 2021-09-01
JP2021-142331 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023032277A1 true WO2023032277A1 (en) 2023-03-09

Family

ID=85412411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009867 WO2023032277A1 (en) 2021-09-01 2022-03-08 Position measurement device, position measurement method, and program

Country Status (2)

Country Link
JP (1) JPWO2023032277A1 (en)
WO (1) WO2023032277A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002215236A (en) * 2001-01-22 2002-07-31 Komatsu Ltd Controller for travel of unmanned vehicle
JP2002281540A (en) * 2001-03-19 2002-09-27 Hitachi Ltd Mobile terminal equipment for measuring position
US20070293153A1 (en) * 2006-06-16 2007-12-20 Molisch Andreas F Method for signaling quality of range estimates in UWB devices
JP2009074974A (en) * 2007-09-21 2009-04-09 Kyocera Corp Mobile station and location derivation method
JP2009281793A (en) * 2008-05-20 2009-12-03 Brother Ind Ltd Mobile station positioning system
JP2013038637A (en) * 2011-08-09 2013-02-21 Mitsubishi Electric Corp Receiving device and receiving method
WO2016125489A1 (en) * 2015-02-03 2016-08-11 日本電気株式会社 Position estimation apparatus, position estimation system, position estimation method and recording medium for position estimation
CN107339986A (en) * 2017-07-04 2017-11-10 郑州大学 A kind of localization method, apparatus and system
WO2019123558A1 (en) * 2017-12-20 2019-06-27 株式会社日立製作所 Self-position estimation system
JP2020112557A (en) * 2014-10-17 2020-07-27 ソニー株式会社 Apparatus, method and program

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002215236A (en) * 2001-01-22 2002-07-31 Komatsu Ltd Controller for travel of unmanned vehicle
JP2002281540A (en) * 2001-03-19 2002-09-27 Hitachi Ltd Mobile terminal equipment for measuring position
US20070293153A1 (en) * 2006-06-16 2007-12-20 Molisch Andreas F Method for signaling quality of range estimates in UWB devices
JP2009074974A (en) * 2007-09-21 2009-04-09 Kyocera Corp Mobile station and location derivation method
JP2009281793A (en) * 2008-05-20 2009-12-03 Brother Ind Ltd Mobile station positioning system
JP2013038637A (en) * 2011-08-09 2013-02-21 Mitsubishi Electric Corp Receiving device and receiving method
JP2020112557A (en) * 2014-10-17 2020-07-27 ソニー株式会社 Apparatus, method and program
WO2016125489A1 (en) * 2015-02-03 2016-08-11 日本電気株式会社 Position estimation apparatus, position estimation system, position estimation method and recording medium for position estimation
CN107339986A (en) * 2017-07-04 2017-11-10 郑州大学 A kind of localization method, apparatus and system
WO2019123558A1 (en) * 2017-12-20 2019-06-27 株式会社日立製作所 Self-position estimation system

Also Published As

Publication number Publication date
JPWO2023032277A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
EP2677778B1 (en) Distance measurement and alarm method and apparatus
JP4457222B2 (en) Channel characteristic analysis apparatus and method
US8106818B2 (en) Positioning system and positioning method
EP2769233B1 (en) Time of arrival based wireless positioning system
EP1514130B1 (en) Probabilistic model for a positioning technique
US8565783B2 (en) Path progression matching for indoor positioning systems
CN102695269B (en) A kind of positioning correction method, relevant apparatus and system
US9026361B2 (en) Method of calculating accuracy of measuring location, and method and apparatus for measuring location of terminal using accuracy of measuring location
EP3404438B1 (en) Location estimation method and apparatus using access point in wireless communication system
CN110674019A (en) Method and device for predicting system fault and electronic equipment
US10139253B2 (en) Adjustment of interrupt timestamps of signals from a sensor based on an estimated sampling rate of the sensor
US9660740B2 (en) Signal strength distribution establishing method and wireless positioning system
US20210270635A1 (en) Information processing apparatus, information processing method, and program
KR20190021957A (en) Method and apparatus for positioning terminal moving indoors
EP2958307B1 (en) Information processing device, information processing method, and program
US9936477B2 (en) Method for detecting location of mobile computing device and mobile computing device performing the same
KR101622536B1 (en) Wireless communication apparatus, method of localization using the same and wireless communication system including the same
WO2023032277A1 (en) Position measurement device, position measurement method, and program
US10820152B2 (en) Device diversity correction method for RSS-based precise location tracking
JP2007533968A5 (en)
US20190268718A1 (en) Apparatus and method for estimating location in a wireless communication system
JP6326646B2 (en) Attenuation characteristic function estimation device, attenuation characteristic function estimation method, and program
US20240098511A1 (en) Evaluation method and information processing apparatus
JP6805880B2 (en) Mobile terminals, methods and mobile communication systems
US11290847B2 (en) Electronic device and method for improving smoothness and precision of positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863867

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545034

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE