WO2023027049A1 - Correcting method, computer program, correcting apparatus, and electricity storage device - Google Patents

Correcting method, computer program, correcting apparatus, and electricity storage device Download PDF

Info

Publication number
WO2023027049A1
WO2023027049A1 PCT/JP2022/031642 JP2022031642W WO2023027049A1 WO 2023027049 A1 WO2023027049 A1 WO 2023027049A1 JP 2022031642 W JP2022031642 W JP 2022031642W WO 2023027049 A1 WO2023027049 A1 WO 2023027049A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
electricity
voltage value
value
estimated
Prior art date
Application number
PCT/JP2022/031642
Other languages
French (fr)
Japanese (ja)
Inventor
直也 和田
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2023027049A1 publication Critical patent/WO2023027049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a correction method, a computer program, a correction device, and an electricity storage device.
  • the OCV method and the current integration method are commonly used as methods for estimating the state of charge (SOC) of a power storage device such as a secondary battery mounted on a vehicle.
  • the SOC is estimated from the voltage value of the storage element obtained by the voltage sensor using the one-to-one correlation (SOC-OCV characteristic) between the OCV (Open Circuit Voltage) of the storage element and the SOC.
  • SOC-OCV characteristic one-to-one correlation between the OCV (Open Circuit Voltage) of the storage element and the SOC.
  • the SOC is estimated by measuring the current value of the charging/discharging current of the storage element at predetermined time intervals with a current sensor and adding or subtracting the measured current value to the initial value.
  • Patent Document 1 discloses an SOC management device that can prevent the correction accuracy of the SOC of the battery from deteriorating when the OCV is reset.
  • the conventional SOC management device does not have sufficient accuracy in correcting the state of charge.
  • An object of the present disclosure is to provide a correction method and the like that can improve the accuracy of correcting the amount of charged electricity in an electricity storage device.
  • a correction method determines whether a difference between a terminal voltage value when an electricity storage device is energized and an estimated voltage value estimated using an equivalent circuit model of the electricity storage device is equal to or greater than a first threshold. determine whether In the correction method, when it is determined that the difference is equal to or greater than the first threshold, the amount of change in the open-circuit voltage value of the power storage device according to the predetermined amount of change in the amount of charged electricity of the power storage device, which is obtained from the equivalent circuit model.
  • a computer executes a process of correcting the estimated value of the charged quantity of electricity in the power storage device based on.
  • FIG. 1 is a perspective view showing a configuration example of a power storage device on which a management device according to a first embodiment is mounted;
  • FIG. 1 is an exploded perspective view showing a configuration example of an electricity storage device;
  • FIG. 3 is a block diagram showing a configuration example of a management device and the like;
  • FIG. 2 is a circuit diagram showing an example of an equivalent circuit model of an electricity storage device;
  • FIG. 4 is an explanatory diagram for explaining a method of correcting SOC;
  • FIG. 4 is an explanatory diagram for explaining a method of correcting SOC;
  • FIG. 4 is an explanatory diagram for explaining a method of correcting SOC;
  • FIG. 4 is an explanatory diagram for explaining a method of correcting SOC;
  • FIG. 4 is an explanatory diagram for explaining a method of correcting SOC;
  • FIG. 1 is a perspective view showing a configuration example of a power storage device on which a management device according to a first embodiment is mounted;
  • FIG. 4 is an explanatory diagram for explaining a method of correcting SOC; It is a flowchart which shows an example of the correction
  • FIG. 5 is an explanatory diagram for explaining the concept of termination of correction based on an apparent SOC value;
  • FIG. 11 is a flow chart showing an example of a processing procedure for ending correction in the second embodiment;
  • the correction method determines whether the difference between the terminal voltage value when the power storage device is energized and the estimated voltage value estimated using the equivalent circuit model of the power storage device is greater than or equal to the first threshold. In the correction method, when it is determined that the difference is equal to or greater than the first threshold, the amount of change in the open-circuit voltage value of the power storage device according to the predetermined amount of change in the amount of charged electricity of the power storage device, which is obtained from the equivalent circuit model. A computer executes a process of correcting the estimated value of the charged quantity of electricity in the power storage device based on.
  • the correction method when it is determined that the difference (absolute difference) between the terminal voltage value when the power storage device is energized and the estimated voltage value estimated using the equivalent circuit model of the power storage device is equal to or greater than a first threshold, Correct the estimated value of the amount of charge in the power storage device.
  • the charged quantity of electricity may be SOC, for example.
  • the SOC is indicated by the ratio of the remaining capacity to the full charge capacity of the storage element.
  • the terminal voltage value of the electricity storage device is, for example, the voltage value of the electricity storage device acquired by a voltage sensor.
  • the estimated value of the amount of charged electricity in the power storage device may be an estimated value of the SOC obtained by the current integration method.
  • a current sensor is used to measure the charge/discharge current of the storage element at predetermined time intervals. This is a method of estimating the SOC by adjusting from the full charge capacity.
  • the open-circuit voltage value is the voltage value when the amount of current flowing through the storage element is zero and is not affected by polarization, and when the amount of current flowing through the storage element is less than the threshold value and when the storage element is This also includes the voltage value of the storage element when the amount of current flowing is as small as the dark current.
  • an OCV reset is performed to correct the SOC obtained by the above-described current integration method to an SOC estimated using the relationship (SOC-OCV characteristic) between the amount of charged electricity and the open-circuit voltage value of the storage device.
  • the SOC corresponding to the OCV of the electrical storage device is estimated from the SOC-OCV characteristic based on the voltage value of the electrical storage device obtained by the voltage sensor.
  • the present inventor paid attention to the following points when using, for example, an electricity storage element (secondary battery) having an electrode body containing lithium iron phosphate, lithium manganate, or the like as a positive electrode active material as an electricity storage device.
  • the above secondary battery has a plateau region in the SOC-OCV characteristics, in which the OCV hardly changes with respect to changes in SOC over a wide range. That is, there is almost no voltage difference between the portion of the electrode body where the charge/discharge reaction has progressed and the portion where the charge/discharge reaction has not progressed. Therefore, during charging and discharging of the electricity storage device, SOC unevenness (SOC imbalance) occurs in the electrode body, such that the SOC is only partially high or low.
  • the effective battery capacity is temporarily lower than the original battery capacity of the power storage device.
  • the battery voltage drops earlier than predicted based on the original battery capacity.
  • the actual terminal voltage is lower than the predicted voltage. may decrease.
  • the phenomenon of temporary deterioration (decrease) in charging/discharging performance due to such SOC unevenness becomes particularly conspicuous in high-current charging/discharging under low-temperature conditions. Since the correlation between the SOC and the OCV is not established when the above-described temporary phenomenon occurs, the SOC estimation error increases when the normal OCV reset is performed.
  • the SOC is calculated based on the amount of change in the open-circuit voltage value (OCV) of the electricity storage device according to the predetermined amount of change in the amount of charge (for example, SOC) of the electricity storage device, which is obtained from the equivalent circuit model of the electricity storage device. Correct the estimate. This makes it possible to correct the SOC in consideration of voltage fluctuations due to temporary phenomena. Even if a temporary phenomenon occurs, the SOC can be accurately corrected.
  • OCV open-circuit voltage value
  • SOC amount of charge
  • the presence or absence of the occurrence of a temporary phenomenon is determined when the difference between the terminal voltage value when the power storage device is energized and the estimated voltage value estimated using the equivalent circuit model of the power storage device is equal to or greater than the first threshold. It is determined by whether or not Whether correction is necessary or not can be efficiently determined based on the difference between the measured data of the terminal voltage value and the estimated voltage value easily calculated by the equivalent circuit model.
  • SOF State Of Function
  • the correction method includes, in the profile indicating the relationship between the charged quantity of electricity and the open circuit voltage value of the power storage device, a charged quantity of electricity region that satisfies the corresponding relationship between the predetermined amount of change in the charged quantity of electricity and the amount of change in the open circuit voltage value.
  • the estimated value of the charged quantity of electricity may be corrected based on the specified charged quantity of electricity region.
  • the estimated SOC value can be efficiently corrected using the profile (SOC-OCV characteristic) that indicates the relationship between the amount of charged electricity and the open-circuit voltage value of the power storage device.
  • the SOC region is specified according to the amount of change in the open-circuit voltage value using a known SOC-OCV characteristic. can be suitably corrected.
  • the correction method calculates the difference in the polarization voltage value according to the equivalent circuit model at the first time point and the second time point from the difference in the terminal voltage value at the first time point and the second time point when the difference is equal to or greater than a first threshold.
  • the amount of change in the open-circuit voltage value may be calculated by subtracting.
  • the correction method is to determine whether or not the terminal voltage value and the estimated voltage value intersect based on the energization history of the power storage device, and when it is determined that the terminal voltage value and the estimated voltage value intersect. , the estimated value of the charged quantity of electricity may be corrected.
  • the occurrence of the temporary phenomenon described above is detected by determining whether or not the terminal voltage value and the estimated voltage value intersect.
  • the correction start timing By setting the occurrence timing of this phenomenon as the correction start timing, the correction can be started promptly according to the occurrence of the phenomenon, so that the estimation accuracy can be further improved.
  • a predetermined value is sequentially added or subtracted from the corrected charged quantity of electricity. By doing so, the estimated value of the charged quantity of electricity may be re-corrected.
  • the corrected SOC is re-corrected (adjusted).
  • the estimation error or measurement error can be reduced, and the estimation accuracy can be further improved.
  • the correction method when the charge quantity of electricity after correction becomes equal to or greater than a third threshold, the correction of the estimated value of the charge quantity of electricity may be terminated, and the estimated value of the charge quantity of electricity may be returned to the pre-correction estimate.
  • correction by this correction method is performed only when it is estimated that there is a temporary phenomenon.
  • the SOC change due to the phenomenon can be appropriately reflected, and the estimated SOC value can be corrected satisfactorily.
  • the computer program determines whether the difference between the terminal voltage value of the power storage device when energized and the estimated voltage value estimated using the equivalent circuit model of the power storage device is equal to or greater than a first threshold.
  • the computer program determines that the difference is equal to or greater than the first threshold, the amount of change in the open-circuit voltage value of the power storage device according to the predetermined amount of change in the amount of charged electricity of the power storage device obtained from the equivalent circuit model. causes the computer to execute a process of correcting the estimated value of the charged quantity of electricity in the power storage device based on.
  • the correction device includes a control unit that executes control related to correction of the estimated value of the charge amount of electricity of the power storage device.
  • the control unit determines whether or not a difference between a terminal voltage value when the power storage device is energized and an estimated voltage value estimated using an equivalent circuit model of the power storage device is equal to or greater than a first threshold.
  • the control unit changes the open-circuit voltage value of the power storage device according to a predetermined amount of change in the amount of charged electricity of the power storage device, which is obtained from the equivalent circuit model. correcting the estimated value of the charged quantity of electricity in the power storage device based on the quantity;
  • the electricity storage device includes an electricity storage element and the correction device described above.
  • FIG. 1 is a perspective view showing a configuration example of an electricity storage device 1 on which a management apparatus according to the first embodiment is mounted
  • FIG. 2 is an exploded perspective view showing a configuration example of the electricity storage device 1.
  • the power storage device 1 is a 12V power supply or a 48V power supply that is preferably mounted on, for example, an engine vehicle, an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), or the like.
  • the power storage device 1 has a management device (correction device) 2 and a rectangular parallelepiped housing case 4 a that houses a plurality of power storage elements 3 .
  • the storage element 3 may be a battery cell such as a lithium ion secondary battery.
  • the management device 2 is, for example, a battery management system (BMS).
  • BMS battery management system
  • the housing case 4a also houses a plurality of bus bars 5, various sensors (see FIG. 3), and the like. 1 and 2, the storage device 3 is housed in the storage case 4a in a state of an assembled battery 30 formed by connecting four in series.
  • the storage case 4a is made of synthetic resin.
  • the storage case 4a includes a case body 41, a lid portion 42 that closes an opening of the case body 41, a storage portion 43 provided on the outer surface of the lid portion 42, a cover 44 that covers the storage portion 43, and an inner lid 45. and a partition plate 46.
  • the inner lid 45 and partition plate 46 may not be provided.
  • the storage element 3 is inserted between each partition plate 46 of the case body 41 .
  • a plurality of metal busbars 5 are mounted on the inner lid 45 .
  • An inner lid 45 is arranged near the terminal surface where the terminals 32 of the storage elements 3 are provided, and the adjacent terminals 32 of the adjacent storage elements 3 are connected by the bus bars 5, and the storage elements 3 are connected in series. .
  • the accommodating part 43 has a box shape and has a protruding part 43a that protrudes outward at the center of one long side surface in a plan view.
  • a pair of external terminals 6, 6 made of a metal such as a lead alloy and having different polarities are provided on both sides of the projecting portion 43a of the lid portion 42.
  • the accommodation unit 43 accommodates the management device 2 which is a flat circuit board.
  • the management device 2 is connected to the storage element 3 via a conductor (not shown).
  • the management device 2 manages the states of the plurality of power storage elements 3 and controls each part of the power storage device 1 .
  • the storage element 3 is a battery cell having the aforementioned plateau region, such as an LFP battery.
  • the storage element 3 includes a hollow rectangular parallelepiped case 31 and a pair of terminals 32 , 32 with different polarities provided on one side surface (terminal surface) of the case 31 .
  • the case 31 encloses an electrode body 33 formed by stacking a positive electrode 33a, a separator 33b, and a negative electrode 33c, and an electrolyte (electrolytic solution) (not shown).
  • the electrode body 33 is configured by stacking a sheet-like positive electrode 33a and a negative electrode 33c with two sheet-like separators 33b interposed therebetween, and winding them (vertically or horizontally).
  • the separator 33b is made of a porous resin film.
  • a porous resin film made of resin such as polyethylene (PE) and polypropylene (PP) can be used as the porous resin film.
  • the positive electrode 33a is an electrode plate in which a positive electrode active material layer is formed on the surface of a long strip-shaped positive electrode base material made of, for example, aluminum, an aluminum alloy, or the like.
  • the positive electrode active material layer contains a positive electrode active material.
  • a positive electrode active material used for the positive electrode active material layer a material capable of intercalating and deintercalating lithium ions can be used. Examples of positive electrode active materials include LiFePO 4 .
  • the positive electrode active material layer may further contain a conductive aid, a binder, and the like.
  • the negative electrode 33c is an electrode plate in which a negative electrode active material layer is formed on the surface of a long belt-shaped negative electrode base material made of, for example, copper or a copper alloy.
  • the negative electrode active material layer contains a negative electrode active material.
  • a material capable of intercalating and deintercalating lithium ions can be used as the negative electrode active material.
  • Examples of negative electrode active materials include graphite, hard carbon, and soft carbon.
  • the negative electrode active material layer may further contain a binder, a thickener, and the like.
  • the same one as in conventional lithium ion secondary batteries can be used.
  • an electrolyte containing a supporting salt in an organic solvent can be used as the electrolyte.
  • organic solvents for example, aprotic solvents such as carbonates, esters and ethers are used.
  • Lithium salts such as LiPF 6 , LiBF 4 and LiClO 4 are preferably used as supporting salts.
  • the electrolyte may contain various additives such as, for example, gas generating agents, film forming agents, dispersants, thickeners, and the like.
  • the storage element 3 may be a cylindrical lithium ion battery.
  • the storage element 3 may be a lithium ion battery including a laminated electrode body, or may be a laminated (pouch type) lithium ion battery or the like.
  • the storage element 3 may be an all-solid lithium ion battery using a solid electrolyte.
  • FIG. 3 is a block diagram showing a configuration example of the management device 2 and the like.
  • the management device 2 acquires measurement data including the voltage value and the current value of the power storage device 1, and executes processing related to correction (estimation) of the charged electricity amount of the power storage device 1 based on the acquired measurement data.
  • the management device 2 corresponds to a correction device.
  • a power storage device 1 equipped with a management device 2 is connected to a vehicle ECU (Electronic Control Unit) 8 and a load 9 such as a starter motor for starting the engine and electrical components.
  • a vehicle ECU Electronic Control Unit
  • a load 9 such as a starter motor for starting the engine and electrical components.
  • the starter motor functions as a generator
  • the power storage device 1 is charged with power (regenerated power) supplied from the starter motor.
  • the starter motor functions as a power source
  • the power storage device 1 supplies power to the starter motor and other electronic devices.
  • the management device 2 includes a control unit 21, a storage unit 22, an input unit 23, an output unit 24, and the like.
  • the control unit 21 is an arithmetic circuit including a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like.
  • the CPU provided in the control unit 21 executes various computer programs stored in the ROM and the storage unit 22, and controls the operation of each hardware unit described above, so that the entire device functions as a management device (correction device) of the present disclosure. make it work.
  • the control unit 21 may have functions such as a timer that measures the elapsed time from when the measurement start instruction is given until when the measurement end instruction is given, a counter that counts the number, and a clock that outputs date and time information.
  • the storage unit 22 is a non-volatile storage device such as flash memory. Various computer programs and data are stored in the storage unit 22 .
  • a computer program (computer program product) stored in the storage unit 22 includes a correction program 221 for performing processing related to correction of the amount of electricity charged in the power storage device 1 .
  • Data stored in the storage unit 22 includes correction data 222 used in the correction program 221 .
  • the correction data 222 includes information such as an equivalent circuit model of the electricity storage device 1 used in the simulation, SOC-OCV characteristics corresponding to the electricity storage device 1, and various threshold values used for correction processing.
  • the equivalent circuit model is described by configuration information indicating the circuit configuration, the values of each element configuring the equivalent circuit model, and the like.
  • the storage unit 22 stores the configuration information indicating the circuit configuration of such an equivalent circuit model, the values of each element configuring the equivalent circuit model, and the like.
  • the control unit 21 acquires information on the equivalent circuit model, SOC-OCV characteristics, and various threshold values in advance by communicating with, for example, an external device (not shown), and stores the acquired information in the correction data 222 .
  • the SOC-OCV characteristic may be updated at predetermined time intervals in consideration of deterioration accompanying use of the electricity storage device 1 .
  • the computer program stored in the storage unit 22 may be provided by a non-temporary recording medium 2A on which the computer program is readable.
  • the recording medium 2A is a portable memory such as a CD-ROM, USB memory, SD (Secure Digital) card, or the like.
  • the control unit 21 uses a reading device (not shown) to read a desired computer program from the recording medium 2A and stores the read computer program in the storage unit 22 .
  • the computer program may be provided by communication.
  • Correction program 221 may be deployed to run on a single computer or on multiple computers located at one site or distributed across multiple sites and interconnected by a communications network. can be done.
  • the input unit 23 has an interface for connecting various sensors. Sensors connected to the input unit 23 include a voltage sensor 7 a that measures the voltage of the storage element 3 and a current sensor 7 b that measures the current flowing through the storage element 3 .
  • the input unit 23 receives inputs of signals related to measurement values measured by various sensors.
  • a sensor connected to the input unit 23 may include a temperature sensor that measures the temperature of the storage element 3 .
  • the voltage sensor 7a is connected in parallel to each storage element 3.
  • the voltage sensor 7a is connected to both ends of each storage element 3, and measures the voltage across the terminals of each storage element 3 in time series.
  • the control unit 21 acquires data on the voltage of each storage element 3 and the total voltage of the assembled battery 30 measured by the voltage sensor 7a through the input unit 23 at any time.
  • the current sensor 7b is connected in series with the storage element 3 and measures the current flowing through the storage element 3 in time series. The control unit 21 acquires current data measured by the current sensor 7b through the input unit 23 at any time.
  • the output unit 24 has an interface for connecting a display device (not shown).
  • a display device is a liquid crystal display device.
  • the control unit 21 outputs the information about the amount of electricity charged in the electricity storage device 1 from the output unit 24 to the display device.
  • the display device displays information about the charge quantity of electricity based on the information output from the output unit 24 .
  • the output unit 24 may have a communication interface that communicates with an external device (not shown).
  • An external device communicably connected to the output unit 24 is a terminal device such as a personal computer or a smart phone used by a user or administrator.
  • the control unit 21 outputs information about the amount of electricity charged in the power storage device 1 from the output unit 24 to the external device.
  • the output unit 24 may include a communication interface that communicates with the vehicle ECU 8 .
  • the control unit 21 outputs information about the amount of electricity charged in the power storage device 1 from the output unit 24 to the vehicle ECU.
  • the management device 2 may include a notification unit such as an LED lamp or a buzzer in order to notify the user of information regarding the amount of electricity charged in the power storage device 1 .
  • management device 2 is a BMS.
  • management device 2 may be placed at a location remote from storage element 3 .
  • the management device 2 may include a server device or an ECU that is located away from the power storage element 3 and communicates with the BMS.
  • the place where the amount of electricity charged in the power storage device 1 is corrected is not limited, and the correction may be performed, for example, in a server device or an ECU.
  • measurement data measured with respect to the power storage device 1 may be transmitted to the server device or the ECU through communication.
  • FIG. 1 to 3 show an in-vehicle low-voltage power supply provided with a storage element 3, which is a lithium-ion secondary battery, as the storage device 1.
  • a storage element 3 which is a lithium-ion secondary battery, as the storage device 1.
  • FIG. The storage element 3 may be another secondary battery or electrochemical cell having a plateau region.
  • FIG. 4 is a circuit diagram showing an example of an equivalent circuit model of the electricity storage device 1.
  • FIG. The equivalent circuit model combines the voltage source of the electricity storage device 1 and circuit elements such as resistors and capacitors to simulate the charging and discharging behavior of the electricity storage device 1 .
  • the equivalent circuit model includes a constant voltage source connected in series between a positive terminal and a negative terminal, a DC resistor for simulating a DC resistance component, and an RC parallel circuit for simulating transient polarization characteristics. Prepare.
  • two RC parallel circuits, a first RC parallel circuit and a second RC parallel circuit are connected in series.
  • a constant voltage source is a voltage source that outputs a DC voltage.
  • the voltage output by the constant voltage source is the open-circuit voltage of the storage device 1 and is denoted as Vo.
  • the open-circuit voltage value Vo is given as a function of SOC, for example.
  • the open-circuit voltage value Vo may be given as a function of the actual capacity of the electricity storage device 1 .
  • the DC resistor is for simulating the DC resistance component (DC impedance) of the electricity storage device 1, and includes a resistance element R0.
  • the resistance element R0 is given as a value that fluctuates according to the applied current, voltage, SOC, temperature, and the like.
  • the first RC parallel circuit is composed of a resistance element R1 and a capacitance element C1 connected in parallel.
  • a second RC parallel circuit is composed of a resistance element R2 and a capacitance element C2 that are connected in parallel.
  • Resistive elements R1, R2 and capacitive elements C1, C2 forming each RC parallel circuit are given values that vary according to the SOC of the electric storage device 1, temperature, and the like.
  • the impedance of the RC parallel circuit is determined by the resistive elements R1, R2 and the capacitive elements C1, C2. Once the impedance of the RC parallel circuit is determined, the voltage generated in the RC parallel circuit when current I flows through this equivalent circuit model can be calculated.
  • the voltage generated in the RC parallel circuit is the total voltage of the polarization voltage value Vz1 generated in the first RC parallel circuit and the polarization voltage value Vz2 generated in the second RC parallel circuit.
  • the estimated value of the terminal voltage (estimated voltage value) Ve(t) at the time when time t has elapsed after starting the simulation is the DC resistance voltage value Vz0(t), the polarization voltage value Vz1(t ), the polarization voltage value Vz2(t), and the open-circuit voltage value Vo(t), it can be expressed by the following formula (1).
  • Ve(t) Vo(t)+Vz0(t)+(Vz1(t)+Vz2(t)) (1)
  • the resistive element R0, resistive elements R1, R2, and capacitive elements C1, C2 (hereinafter also referred to as circuit parameters) that constitute the equivalent circuit model are obtained by a known method.
  • the circuit parameters can be set, for example, based on actual measurement data of battery tests, taking into consideration the relationship between temperature, SOC, and the like.
  • the estimated voltage value Ve of the storage element 3 can be calculated by using the open-circuit voltage value of the storage element 3 and known circuit parameters.
  • the management device 2 in this embodiment estimates the SOC of the electricity storage device 1 by the current integration method at appropriate intervals and stores it in the storage unit 22 . Specifically, the management device 2 calculates the amount of power flowing into and out of the power storage device 1 by integrating the current values acquired via the current sensor 7b. The management device 2 calculates an estimated value of the SOC of the power storage device 1 at the estimation time by adding or subtracting the calculated power amount to or from the full charge capacity at the reference time (initial). Alternatively, the management device 2 may acquire an SOC estimated value calculated by an external device (not shown) through communication.
  • the management device 2 determines whether or not the power storage device 1 has the temporary phenomenon described above. When this phenomenon occurs, the management device 2 corrects the SOC estimated value based on the current integration by the following correction method.
  • 5 to 8 are explanatory diagrams for explaining the SOC correction method. A method of correcting the SOC according to the present embodiment will be described with reference to FIGS. 5 to 8, taking discharge as an example.
  • the graph shown on the upper side of FIG. 5 shows temporal changes in the terminal voltage value Vb of the electricity storage device 1 and the estimated voltage value Ve.
  • the vertical axis is the terminal voltage (V) and the horizontal axis is the elapsed time (s).
  • the graph shown on the lower side of FIG. 5 shows the time change of the current value of the electricity storage device 1 .
  • the vertical axis is the current value (A) and the horizontal axis is the elapsed time (s).
  • the solid line indicates the terminal voltage value Vb, and the broken line indicates the estimated voltage value Ve.
  • the terminal voltage value Vb is actually measured data of the terminal voltage measured by the voltage sensor 7a.
  • the estimated voltage value Ve is the terminal voltage estimated value calculated by the above equation (1) based on the equivalent circuit model using the OCV corresponding to the SOC estimated value obtained by the current integration method.
  • the control unit 21 of the management device 2 acquires the voltage value (terminal voltage value) and current value of the electricity storage device 1 measured by the voltage sensor 7a and the current sensor 7b at predetermined intervals, and stores them as time-series data.
  • the current value is, for example, a positive value for charging and a negative value for charging.
  • the control unit 21 determines whether a temporary phenomenon has occurred (whether to start correction) by determining whether the power storage device 1 satisfies the following conditions.
  • the control unit 21 determines whether the current value measured by the voltage sensor 7a satisfies the current condition. Specifically, it is determined whether or not the absolute value of the current value is equal to or greater than a predetermined value (current threshold). If the absolute value of the current value is greater than or equal to the predetermined value, there is a high possibility that a temporary phenomenon has occurred. When the absolute value of the current value of the electricity storage device 1 is equal to or greater than a predetermined value, it is highly likely that a temporary phenomenon has occurred due to extreme uneven distribution of lithium ions in the electrodes of the electricity storage element 3 . As the predetermined value, a current value at which such uneven distribution of lithium ions occurs is set.
  • the first condition during charging is also the same as above, but the current thresholds during discharging and charging may be different current values.
  • the control unit 21 determines whether or not the terminal voltage value Vb of the electricity storage device 1 measured by the voltage sensor 7a intersects with the estimated voltage value Ve of the electricity storage device 1 calculated based on the equivalent circuit model. judge. When the terminal voltage value Vb crosses the estimated voltage value Ve, there is a high possibility that a temporary phenomenon has occurred.
  • the internal resistance of the storage device 3 decreases as the temperature of the storage device 3 rises due to repeated charging and discharging.
  • the terminal voltage value Vb becomes larger than the estimated voltage value Ve.
  • Occurrence of SOC unevenness in the electrode body due to a temporary phenomenon causes the terminal voltage value Vb to drop and the terminal voltage value Vb to become smaller than the estimated voltage value Ve.
  • the terminal voltage value Vb decreases to exceed the estimated voltage value Ve.
  • the control unit 21 determines whether or not the absolute value of the difference (
  • the third condition during charging is also the same as above, but the first threshold during discharging and during charging may have different values.
  • the control unit 21 estimates the SOC because it is estimated that a temporary phenomenon has occurred. Determine to correct the value.
  • the second condition is not an essential condition for determining the occurrence of a temporary phenomenon, but a suitable condition for detecting the occurrence of a temporary phenomenon at an early stage.
  • the control unit 21 determines whether or not the state satisfying the above conditions has continued for a predetermined time or longer. Determine to correct the value.
  • the control unit 21 obtains the amount of change in the open-circuit voltage value for a predetermined period of time.
  • the graph shown in FIG. 6 shows temporal changes in the terminal voltage value Vb of the storage element 3 and the estimated voltage value Ve during a predetermined period of time.
  • the vertical axis of FIG. 6 is the terminal voltage (V), and the horizontal axis is the elapsed time (s).
  • the solid line indicates the terminal voltage value Vb, and the dashed line indicates the estimated voltage value Ve.
  • t1 be the start time and t2 be the end time of the predetermined time that satisfies the first to third conditions.
  • the amount of change Ve_ ⁇ ocv in the open-circuit voltage value related to the estimated voltage value Ve is the change in the estimated voltage value Ve from the start time t1 to the end time t2.
  • ⁇ Vz is subtracted from the amount of change in polarization. That is, the relationships of the following formulas (2) and (3) are established.
  • Ve_ ⁇ ocv is the amount of change in the open-circuit voltage value of each storage element 3 (single cell) of the storage device 1
  • n is the number of storage elements 3 in the storage device 1 (4 in this embodiment)
  • Vz1 and Vz2 are It is the amount of polarization per cell calculated by a sequential calculation formula.
  • Vb_ ⁇ ocv (Vb(t2) ⁇ Vb(t1))/n ⁇ Vz (4)
  • Vb_ ⁇ ocv is the amount of change in the open-circuit voltage value of each storage element 3 (single cell) of the storage device 1
  • n is the number of storage elements 3 in the storage device 1 (4 in this embodiment).
  • the control unit 21 calculates using the measured values of the terminal voltage values at the start time t1 and the end time t2 and the polarization change amount ⁇ Vz by the equivalent circuit model.
  • the change amount Vb_ ⁇ ocv of the open-circuit voltage value up to is calculated.
  • the control unit 21 calculates the amount of change ⁇ SOC in the SOC of the electric storage device 1 corresponding to the amount of change Vb_ ⁇ ocv in the open-circuit voltage value. Specifically, the control unit 21 divides the current integrated value from the start time t1 to the end time t2 by the current full charge capacity to obtain the SOC change amount ⁇ SOC from the start time t1 to the end time t2. Ask for ⁇ SOC corresponds to a predetermined amount of change in SOC in a predetermined period (hereinafter referred to as a predetermined amount of change in SOC).
  • the graphs shown in FIGS. 7 and 8 show the SOC-OCV characteristics of the electricity storage device 1.
  • the vertical axis in FIGS. 7 and 8 is the open-circuit voltage (V), and the horizontal axis is the SOC (%).
  • the control unit 21 controls the SOC where the correspondence relationship between the predetermined SOC change amount ⁇ SOC and Vb_ ⁇ ocv is established on the profile (SOC-OCV characteristic) showing the relationship between the SOC and OCV of the electricity storage device 1. Identify areas.
  • the control unit 21 sequentially subtracts a predetermined SOC value from a search start SOC value set in advance, and calculates an SOC that approximates the calculated value Vc_ ⁇ ocv of the change amount of the terminal voltage with respect to the predetermined SOC change amount ⁇ SOC and Vb_ ⁇ ocv. Identify areas. For example, when the absolute value of the difference between Vc_ ⁇ ocv and Vb_ ⁇ ocv (
  • the control unit 21 uses the SOC value within the specified SOC region as the correction value for the estimated SOC value.
  • the method of selecting the SOC value in the SOC region is not limited, but for example, on the SOC-OCV characteristics shown in FIG. 7, the left end of the specified SOC region, that is, the minimum SOC value in the SOC region may be used as the correction value.
  • the right end of the specified SOC region, that is, the maximum SOC value in the SOC region may be used as the correction value.
  • the obtained SOC value is an SOC value reflecting temporary deterioration when a temporary phenomenon occurs.
  • the obtained SOC value is called an apparent SOC value.
  • the control unit 21 corrects the estimated value of the SOC obtained by the current integration method using the apparent SOC value.
  • the control unit 21 determines whether the absolute value of the difference (
  • the estimated voltage value Ve is an estimated value of the terminal voltage calculated by the above equation (1) based on the equivalent circuit model using OCV corresponding to the apparent SOC value (SOC value after correction). If an appropriate correction process is performed, the terminal voltage value Vb is predicted to be higher than the post-correction estimated voltage value Ve during discharge. If the absolute value of the difference is equal to or greater than the second threshold, the divergence between the terminal voltage value Vb and the estimated voltage value Ve is large, so it is estimated that the SOC value is not sufficiently corrected.
  • the control unit 21 sequentially adds a predetermined value (for example, 0.1%) to the apparent SOC value, thereby increasing the SOC value. Adjust the correction amount.
  • the lower one-dot chain line area in FIG. 8 is an enlarged view of the upper one-dot chain line area.
  • the control unit 21 repeats adjustment (re-correction) until the difference between the estimated voltage value Ve and the terminal voltage value Vb becomes less than a predetermined value.
  • the control unit 21 may adjust the apparent SOC value by successively subtracting a predetermined value from the apparent SOC value.
  • the second threshold values during discharging and during charging may be different values.
  • the control unit 21 may execute the adjustment process described above when the first condition at the start of correction, ie, the condition that the absolute value of the current value is equal to or greater than a predetermined value, is continuously satisfied.
  • the control unit 21 resets the correction history. Specifically, the control unit 21 resets the history of crossing, which is the second condition at the start of correction, and the history of correction to the apparent SOC value.
  • FIG. 9 and 10 are flowcharts showing an example of a procedure for correcting the amount of charged electricity.
  • the control unit 21 of the management device 2 executes the following processes according to the correction program 221.
  • FIG. The control unit 21 executes processing by the correction program 221 in parallel with the SOC estimation processing by the current integration method.
  • the control unit 21 executes the following processes, for example, at predetermined or appropriate time intervals.
  • the control unit 21 acquires measurement data of the terminal voltage value Vb and the current value of the electricity storage device 1 through the input unit 23 (step S11), and stores them in the storage unit 22.
  • the terminal voltage value Vb of the electric storage device 1 is a measured value measured in time series by the voltage sensor 7a.
  • the current value of the electricity storage device 1 is a measured value measured in time series by the current sensor 7b.
  • the control unit 21 determines whether or not the current value satisfies the current condition based on the acquired measurement data (step S12).
  • the current condition is whether or not the absolute value of the current value is greater than or equal to the current threshold.
  • the control unit 21 determines the magnitude relationship between the absolute value of the current value and a preset predetermined value (current threshold value), and determines whether the absolute value of the current value is equal to or greater than the current threshold value.
  • the control unit 21 may execute the determination process after step S12 each time measurement data is acquired from the input unit 23, and after storing the measurement data for a certain period in the storage unit 22, the measurement data is stored in the storage unit 22. may be read out to execute the determination process.
  • step S12: NO When it is determined that the current value does not satisfy the current condition, that is, the absolute value of the current value is less than the current threshold value (step S12: NO), the control unit 21 returns the process to step S12 and waits until the condition is satisfied. . If it is determined that the current value satisfies the current condition, that is, the absolute value of the current value is equal to or greater than the current threshold (step S12: YES), the control unit 21 advances the processing to determination of the second condition.
  • the control unit 21 determines whether or not the terminal voltage value Vb and the estimated voltage value Ve intersect based on the history of the acquired measurement data (step S13).
  • the terminal voltage value Vb is measurement data of the terminal voltage value measured by the voltage sensor 7a.
  • the estimated voltage value Ve is an estimated value of the terminal voltage value of the electricity storage device 1 calculated based on the equivalent circuit model.
  • the control unit 21 reads the open-circuit voltage value OCV corresponding to the estimated SOC value in the pre-stored SOC-OCV characteristic based on the estimated SOC value at the time of determination by the current integration method.
  • the control unit 21 calculates the estimated voltage value Ve by performing calculation using the read open-circuit voltage value OCV and known circuit parameters.
  • step S13: NO When it is determined that the terminal voltage value Vb and the estimated voltage value Ve do not intersect (step S13: NO), the control unit 21 returns the process to step S12 and waits until the conditions are satisfied. If it is determined that the terminal voltage value Vb and the estimated voltage value Ve intersect (step S13: YES), the control unit 21 advances the processing to determination of the third condition.
  • the control unit 21 determines the magnitude relationship between the absolute value of the difference between the terminal voltage value Vb and the estimated voltage value Ve (
  • step S14 determines to execute correction, and furthermore, the fourth condition Proceed to judgment.
  • the control unit 21 determines whether or not the state of satisfying the first to third conditions has continued for a predetermined time or longer (step S15). Specifically, the control unit 21 first satisfies the current condition, which is the first condition, and the voltage condition, which is the third condition, after the intersection of the terminal voltage value Vb and the estimated voltage value Ve which are the second condition. (Start point) From t1, it is determined whether or not a predetermined time or more has passed while the current condition and the voltage condition are satisfied. If it is determined that it has not continued for the predetermined time or longer (step S15: NO), the control unit 21 returns the process to step S15 and waits until it continues for the predetermined time or longer.
  • step S15 If it is determined that it has continued for the predetermined time or longer (step S15: YES), the control unit 21 proceeds with the correction process.
  • the control unit 21 calculates the change amount Vb_ ⁇ ocv of the open-circuit voltage value from the start time t1 to the end time t2 of the predetermined time (step S16). Note that the start time t1, the end time t2, and the time length of the predetermined time under the fourth condition and the predetermined time related to the calculation of the change amount Vb_ ⁇ ocv of the open-circuit voltage value may be different.
  • the start time t1 for calculating the change amount Vb_ ⁇ ocv of the open-circuit voltage value may be any time that satisfies the first to third conditions, and the end time t2 is a time after a predetermined time has elapsed from the start time t1. There may be.
  • the control unit 21 calculates the change amount Vb_ ⁇ ocv of the open-circuit voltage value based on the measured values of the terminal voltage values at the start time t1 and the end time t2 and the polarization change amount ⁇ Vz by the equivalent circuit model.
  • the control unit 21 calculates Vb_ ⁇ ocv by subtracting the polarization change amount ⁇ Vz from the change amount of the terminal voltage value Vb from the start time t1 to the end time t2 for each single cell.
  • the control unit 21 calculates the amount of change ⁇ SOC in the SOC of the electricity storage device 1 corresponding to the calculated amount of change Vb_ ⁇ ocv in the open-circuit voltage value (step S17). Specifically, the control unit 21 divides the integrated value of the current from the start time t1 to the end time t2 by the current full charge capacity to obtain the SOC change amount from the start time t1 to the end time t2 ( Predetermined SOC change amount) ⁇ SOC is obtained.
  • the control unit 21 acquires the apparent SOC value based on the calculated predetermined SOC change amount ⁇ SOC and the open-circuit voltage value change amount Vb_ ⁇ ocv (step S18). Specifically, in the SOC-OCV characteristic, the control unit 21 identifies an SOC region in which the calculated value Vc_ ⁇ ocv of the change amount of the open-circuit voltage value corresponding to the predetermined SOC change amount ⁇ SOC approximates Vb_ ⁇ ocv. The control unit 21 sets the SOC value within the identified SOC region as the apparent SOC value. The control unit 21 corrects the estimated value of the SOC obtained by current integration to the obtained apparent SOC value (step S19).
  • the control unit 21 determines the magnitude relationship between the absolute value of the difference between the terminal voltage value Vb and the corrected estimated voltage value Ve (
  • step S20 When determining that the absolute value of the difference between the terminal voltage value Vb and the estimated voltage value Ve is less than the second threshold (step S20: NO), the controller 21 terminates the series of processes. When determining that the absolute value of the difference between the terminal voltage value Vb and the estimated voltage value Ve is equal to or greater than the second threshold (step S20: YES), the control unit 21 sets the current value of the electricity storage device 1 to the first condition. (step S21).
  • step S21 If it is determined that the current condition is not satisfied (step S21: NO), the controller 21 adjusts (re-corrects) the apparent SOC value by adding or subtracting a predetermined value to or from the apparent SOC value. ) (step S22). After the adjustment, the control unit 21 returns the process to step S20, and repeats the adjustment of the apparent SOC value until the absolute value of the difference between the corrected estimated voltage value Ve and the terminal voltage value Vb becomes less than the second threshold.
  • step S21 When it is determined that the current condition is satisfied (step S21: YES), the control unit 21 resets the correction history (step S23) and ends the series of processes. Specifically, the control unit 21 resets the history of crossing, which is the second condition at the start of correction, and the history of correction to the apparent SOC value.
  • the control unit 21 may output the corrected SOC value or information based on the corrected SOC value to a display device or the like via the output unit 24 .
  • control unit 21 may estimate the SOC by the current integration method using the apparent SOC value obtained by the above process.
  • the SOC is corrected as the charge quantity of electricity.
  • the amount of charged electricity may be the value of the current amount of energy stored in the power storage device 1, and may be the amount of electric power, for example.
  • the SOC estimated value can be accurately corrected by reflecting the SOC fluctuation corresponding to the temporary phenomenon in response to the occurrence of the temporary phenomenon in the electricity storage device 1 .
  • FIG. 11 is an explanatory diagram for explaining the concept of termination of correction based on the apparent SOC value.
  • the graph shown in FIG. 11 shows the SOC-OCV characteristics of the electricity storage device 1. As shown in FIG.
  • the vertical axis in FIG. 11 is open circuit voltage (V), and the horizontal axis is SOC (%).
  • the control unit 21 of the management device 2 executes the processing described in the first embodiment, and corrects the SOC estimated value by current integration based on the apparent SOC value.
  • the control unit 21 performs subsequent SOC estimation using the corrected SOC estimated value as a new initial value (reference value). If the power storage device 1 satisfies a predetermined condition, the control unit 21 terminates the correction based on the apparent SOC value.
  • the control unit 21 restores the SOC value from the apparent SOC value to the estimated SOC value obtained by current integration. In other words, the control unit 21 restores the SOC value to the estimated SOC value before correction.
  • the control unit 21 uses the estimated value of the SOC obtained by the current integration as a new initial value (reference value) to perform the subsequent estimation of the SOC.
  • the control unit 21 sets the apparent SOC value to end the correction by For example, the lower end of the plateau region (minimum SOC value in the plateau region) may be set as the third threshold.
  • the control unit 21 may terminate the correction based on the apparent SOC value.
  • FIG. 12 is a flowchart showing an example of a processing procedure for ending correction in the second embodiment.
  • the control unit 21 determines whether or not the power storage device 1 satisfies a predetermined condition (step S31). As an example, the control unit 21 determines whether or not the apparent SOC value is greater than or equal to the third threshold. When the apparent SOC value is less than the third threshold, the control unit 21 determines that the predetermined condition is not satisfied. When the apparent SOC value is equal to or greater than the third threshold, the control unit 21 determines that the predetermined condition is satisfied.
  • step S31: NO When it is determined that the power storage device 1 does not satisfy the predetermined condition (step S31: NO), the control unit 21 terminates the process. That is, when it is determined that the power storage device 1 does not satisfy the predetermined condition, the control unit 21 does not end the correction based on the apparent SOC value.
  • step S31: YES When it is determined that the power storage device 1 satisfies the predetermined condition (step S31: YES), the control unit 21 ends the correction based on the apparent SOC value, and converts the SOC value of the power storage device 1 from the apparent SOC value to the SOC calculated by current integration. The estimated value is restored (step S32), and the series of processing ends.
  • the correction accuracy of the SOC value in the electricity storage device 1 can be improved.
  • the correction method, correction device, and program can be applied to applications other than vehicles, and may be applied to flying objects such as aircraft, flying vehicles, HAPS (High Altitude Platform Station), and to ships and submarines.
  • flying objects such as aircraft, flying vehicles, HAPS (High Altitude Platform Station), and to ships and submarines.
  • HAPS High Altitude Platform Station
  • the correction method, correction apparatus, and program are preferably applied to mobile objects that require a high degree of safety (requires correction of SOC values in real time), but are not limited to mobile objects and can be applied to stationary power storage devices.

Abstract

This correcting method determines whether a difference between a terminal voltage value when an electricity storage device is energized and an estimated voltage value estimated using an equivalent circuit model of the electricity storage device is at least equal to a first threshold. In the correcting method, if it is determined that the difference is at least equal to the first threshold, a computer executes processing to correct an estimated value of an amount of charged electricity in the electricity storage device on the basis of an amount of change in an open-circuit voltage value of the electricity storage device corresponding to a prescribed amount of change in the amount of charged electricity in the electricity storage device, obtained from the equivalent circuit model.

Description

補正方法、コンピュータプログラム、補正装置及び蓄電デバイスCorrection method, computer program, correction device, and power storage device
 本発明は、補正方法、コンピュータプログラム、補正装置及び蓄電デバイスに関する。 The present invention relates to a correction method, a computer program, a correction device, and an electricity storage device.
 車両に搭載される二次電池等の蓄電素子における充電状態(State of Charge :SOC)を推定する方法として、OCV法及び電流積算法が一般的に用いられている。 The OCV method and the current integration method are commonly used as methods for estimating the state of charge (SOC) of a power storage device such as a secondary battery mounted on a vehicle.
 OCV法では、蓄電素子のOCV(Open Circuit Voltage)とSOCが一対一対応する相関関係(SOC-OCV特性)を用い、電圧センサにより取得した蓄電素子の電圧値からSOCを推定する。電流積算法では、電流センサにより蓄電素子の充放電電流の電流値を所定の時間間隔で計測し、計測した電流値を初期値に加減することによってSOCを推定する。 In the OCV method, the SOC is estimated from the voltage value of the storage element obtained by the voltage sensor using the one-to-one correlation (SOC-OCV characteristic) between the OCV (Open Circuit Voltage) of the storage element and the SOC. In the current integration method, the SOC is estimated by measuring the current value of the charging/discharging current of the storage element at predetermined time intervals with a current sensor and adding or subtracting the measured current value to the initial value.
 電流積算が長期継続されると電流センサの計測誤差が蓄積するため、電流積算法による推定誤差が経時的に大きくなる。従来、電流積算法により得られたSOCを、OCV法によるSOCを用いて補正するOCVリセットが行われている。 If the current integration continues for a long period of time, the measurement error of the current sensor accumulates, so the estimation error due to the current integration method increases over time. Conventionally, an OCV reset is performed to correct the SOC obtained by the current integration method using the SOC obtained by the OCV method.
 特許文献1には、OCVリセットの際に、バッテリのSOCの補正精度が低下することを防止できるSOC管理装置が開示されている。 Patent Document 1 discloses an SOC management device that can prevent the correction accuracy of the SOC of the battery from deteriorating when the OCV is reset.
特開2021-12106号公報Japanese Unexamined Patent Application Publication No. 2021-12106
 従来のSOC管理装置は、充電状態の補正精度が十分でない。 The conventional SOC management device does not have sufficient accuracy in correcting the state of charge.
 本開示の目的は、蓄電デバイスにおける充電電気量の補正精度を向上できる補正方法等を提供することにある。 An object of the present disclosure is to provide a correction method and the like that can improve the accuracy of correcting the amount of charged electricity in an electricity storage device.
 本開示の一態様に係る補正方法は、蓄電デバイスの通電時における端子電圧値と、前記蓄電デバイスの等価回路モデルを用いて推定される推定電圧値との差分が第1閾値以上であるか否かを判定する。補正方法は、前記差分が第1閾値以上であると判定した場合、前記等価回路モデルから得られる、前記蓄電デバイスの充電電気量の所定変化量に応じた前記蓄電デバイスの開放電圧値の変化量に基づいて、前記蓄電デバイスにおける前記充電電気量の推定値を補正する処理をコンピュータが実行する。 A correction method according to an aspect of the present disclosure determines whether a difference between a terminal voltage value when an electricity storage device is energized and an estimated voltage value estimated using an equivalent circuit model of the electricity storage device is equal to or greater than a first threshold. determine whether In the correction method, when it is determined that the difference is equal to or greater than the first threshold, the amount of change in the open-circuit voltage value of the power storage device according to the predetermined amount of change in the amount of charged electricity of the power storage device, which is obtained from the equivalent circuit model. A computer executes a process of correcting the estimated value of the charged quantity of electricity in the power storage device based on.
 本開示によれば、蓄電デバイスにおける充電電気量の補正精度を向上できる。 According to the present disclosure, it is possible to improve the accuracy of correcting the amount of charged electricity in the power storage device.
第1実施形態に係る管理装置が搭載される蓄電デバイスの構成例を示す斜視図である。1 is a perspective view showing a configuration example of a power storage device on which a management device according to a first embodiment is mounted; FIG. 蓄電デバイスの構成例を示す分解斜視図である。1 is an exploded perspective view showing a configuration example of an electricity storage device; FIG. 管理装置等の構成例を示すブロック図である。3 is a block diagram showing a configuration example of a management device and the like; FIG. 蓄電デバイスの等価回路モデルの一例を示す回路図である。2 is a circuit diagram showing an example of an equivalent circuit model of an electricity storage device; FIG. SOCの補正方法を説明する説明図である。FIG. 4 is an explanatory diagram for explaining a method of correcting SOC; SOCの補正方法を説明する説明図である。FIG. 4 is an explanatory diagram for explaining a method of correcting SOC; SOCの補正方法を説明する説明図である。FIG. 4 is an explanatory diagram for explaining a method of correcting SOC; SOCの補正方法を説明する説明図である。FIG. 4 is an explanatory diagram for explaining a method of correcting SOC; 充電電気量の補正処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the correction|amendment process procedure of charge quantity of electricity. 充電電気量の補正処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the correction|amendment process procedure of charge quantity of electricity. 見かけSOC値による補正終了の概念を説明する説明図である。FIG. 5 is an explanatory diagram for explaining the concept of termination of correction based on an apparent SOC value; 第2実施形態における補正終了の処理手順の一例を示すフローチャートである。FIG. 11 is a flow chart showing an example of a processing procedure for ending correction in the second embodiment; FIG.
 補正方法は、蓄電デバイスの通電時における端子電圧値と、前記蓄電デバイスの等価回路モデルを用いて推定される推定電圧値との差分が第1閾値以上であるか否かを判定する。補正方法は、前記差分が第1閾値以上であると判定した場合、前記等価回路モデルから得られる、前記蓄電デバイスの充電電気量の所定変化量に応じた前記蓄電デバイスの開放電圧値の変化量に基づいて、前記蓄電デバイスにおける前記充電電気量の推定値を補正する処理をコンピュータが実行する。 The correction method determines whether the difference between the terminal voltage value when the power storage device is energized and the estimated voltage value estimated using the equivalent circuit model of the power storage device is greater than or equal to the first threshold. In the correction method, when it is determined that the difference is equal to or greater than the first threshold, the amount of change in the open-circuit voltage value of the power storage device according to the predetermined amount of change in the amount of charged electricity of the power storage device, which is obtained from the equivalent circuit model. A computer executes a process of correcting the estimated value of the charged quantity of electricity in the power storage device based on.
 補正方法は、蓄電デバイスの通電時における端子電圧値と、前記蓄電デバイスの等価回路モデルを用いて推定される推定電圧値との差分(絶対差)が第1閾値以上であると判定した場合、蓄電デバイスにおける充電電気量の推定値を補正する。 In the correction method, when it is determined that the difference (absolute difference) between the terminal voltage value when the power storage device is energized and the estimated voltage value estimated using the equivalent circuit model of the power storage device is equal to or greater than a first threshold, Correct the estimated value of the amount of charge in the power storage device.
 充電電気量とは、例えばSOCであってもよい。SOCは、蓄電素子の満充電容量に対する残存容量の比率で示される。
 蓄電デバイスの端子電圧値は、例えば電圧センサにより取得した蓄電デバイスの電圧値である。
 蓄電デバイスにおける充電電気量の推定値とは、電流積算法によるSOCの推定値であってもよい。電流積算法は、電流センサによって蓄電素子の充放電電流を所定の時間間隔で計測し、計測した電流値を積算することで蓄電素子に出入りする電力量を算出し、算出した電力量を初期の満充電容量から加減することでSOCを推定する方法である。
 開放電圧値(OCV)とは、蓄電素子を流れる電流量がゼロであり分極の影響を受けていない場合の電圧値に加え、蓄電素子を流れる電流量が閾値以下である場合、及び蓄電素子を流れる電流量が暗電流程度に小さい場合における蓄電素子の電圧値も、その意味に含む。
The charged quantity of electricity may be SOC, for example. The SOC is indicated by the ratio of the remaining capacity to the full charge capacity of the storage element.
The terminal voltage value of the electricity storage device is, for example, the voltage value of the electricity storage device acquired by a voltage sensor.
The estimated value of the amount of charged electricity in the power storage device may be an estimated value of the SOC obtained by the current integration method. In the current integration method, a current sensor is used to measure the charge/discharge current of the storage element at predetermined time intervals. This is a method of estimating the SOC by adjusting from the full charge capacity.
The open-circuit voltage value (OCV) is the voltage value when the amount of current flowing through the storage element is zero and is not affected by polarization, and when the amount of current flowing through the storage element is less than the threshold value and when the storage element is This also includes the voltage value of the storage element when the amount of current flowing is as small as the dark current.
 従来、上述の電流積算法によるSOCを、蓄電デバイスの充電電気量と開放電圧値との関係(SOC-OCV特性)を用いて推定したSOCに補正するOCVリセットが行われている。OCV法では、電圧センサにより取得した蓄電デバイスの電圧値に基づき、SOC-OCV特性から蓄電デバイスのOCVに対応するSOCを推定する。 Conventionally, an OCV reset is performed to correct the SOC obtained by the above-described current integration method to an SOC estimated using the relationship (SOC-OCV characteristic) between the amount of charged electricity and the open-circuit voltage value of the storage device. In the OCV method, the SOC corresponding to the OCV of the electrical storage device is estimated from the SOC-OCV characteristic based on the voltage value of the electrical storage device obtained by the voltage sensor.
 蓄電デバイスとして、例えば正極活物質にリン酸鉄リチウム、或いはマンガン酸リチウム等を含む電極体を備える蓄電素子(二次電池)を用いた場合における、以下の点に本発明者は着目した。
 上記の二次電池は、SOC-OCV特性において、広い範囲でSOCの変化に対しOCVが殆ど変化しないプラトー領域を有する。すなわち、電極体内の充放電反応が進んだ部分と、充放電反応が進んでいない部分とで、電圧差がほとんど生じない。このため、蓄電デバイスの充放電時において、電極体内において、一部分のみのSOCが高く又は低くなるといったSOCムラ(SOCの偏り)が発生する。
The present inventor paid attention to the following points when using, for example, an electricity storage element (secondary battery) having an electrode body containing lithium iron phosphate, lithium manganate, or the like as a positive electrode active material as an electricity storage device.
The above secondary battery has a plateau region in the SOC-OCV characteristics, in which the OCV hardly changes with respect to changes in SOC over a wide range. That is, there is almost no voltage difference between the portion of the electrode body where the charge/discharge reaction has progressed and the portion where the charge/discharge reaction has not progressed. Therefore, during charging and discharging of the electricity storage device, SOC unevenness (SOC imbalance) occurs in the electrode body, such that the SOC is only partially high or low.
 SOCムラが発生すると、その蓄電デバイス本来の電池容量よりも、実効的な電池容量が一時的に低下した状態となる。電池容量が一時的に低下した状態では、例えば放電時に、本来の電池容量に基づく予測よりも早期に電池電圧が低下する。車両に使用される蓄電デバイスにSOCムラが発生したした場合、予測される電圧よりも実際の端子電圧が低くなるため、車両へ供給する電圧が低下し、電動パワーステアリングや電動ブレーキ等の性能が低下するおそれがある。このようなSOCムラによる一時的な充放電性能の劣化(低下)現象は、低温条件下での、大電流充放電において特に顕著となる。上述の一時的な現象が発生している場合にはSOCとOCVとの相関関係が成立しないため、通常のOCVリセットを行うと、SOCの推定誤差が大きくなる。 When SOC unevenness occurs, the effective battery capacity is temporarily lower than the original battery capacity of the power storage device. In a state where the battery capacity is temporarily lowered, for example, during discharging, the battery voltage drops earlier than predicted based on the original battery capacity. When SOC unevenness occurs in a power storage device used in a vehicle, the actual terminal voltage is lower than the predicted voltage. may decrease. The phenomenon of temporary deterioration (decrease) in charging/discharging performance due to such SOC unevenness becomes particularly conspicuous in high-current charging/discharging under low-temperature conditions. Since the correlation between the SOC and the OCV is not established when the above-described temporary phenomenon occurs, the SOC estimation error increases when the normal OCV reset is performed.
 本補正方法では、蓄電デバイスの等価回路モデルから得られる、蓄電デバイスの充電電気量(例えばSOC)の所定変化量に応じた蓄電デバイスの開放電圧値(OCV)の変化量に基づいて、SOCの推定値を補正する。これにより、一時的な現象による電圧変動を考慮したSOCの補正が可能となる。一時的な現象が発生している場合であっても、SOCを精度よく補正できる。 In this correction method, the SOC is calculated based on the amount of change in the open-circuit voltage value (OCV) of the electricity storage device according to the predetermined amount of change in the amount of charge (for example, SOC) of the electricity storage device, which is obtained from the equivalent circuit model of the electricity storage device. Correct the estimate. This makes it possible to correct the SOC in consideration of voltage fluctuations due to temporary phenomena. Even if a temporary phenomenon occurs, the SOC can be accurately corrected.
 一時的な現象の発生の有無、すなわち補正の要否は、蓄電デバイスの通電時における端子電圧値と、蓄電デバイスの等価回路モデルを用いて推定される推定電圧値との差分が第1閾値以上であるか否かにより判定される。端子電圧値の実測データと、等価回路モデルにより容易に算出される推定電圧値との差分に基づいて、補正の要否を効率的に判定できる。 The presence or absence of the occurrence of a temporary phenomenon, that is, the necessity of correction, is determined when the difference between the terminal voltage value when the power storage device is energized and the estimated voltage value estimated using the equivalent circuit model of the power storage device is equal to or greater than the first threshold. It is determined by whether or not Whether correction is necessary or not can be efficiently determined based on the difference between the measured data of the terminal voltage value and the estimated voltage value easily calculated by the equivalent circuit model.
 これにより、充放電の最中においても、蓄電デバイスの短期的な電圧特性・電力特性の予測、いわゆるSOF(State Of Function )の推定が可能となる。例えば、上位の制御装置からの、「一定時間後に目標電圧を下回らない最大電流値は何アンペアか」という問いかけに対し、一時的な現象によるSOC変化を加味した補正後のSOCを用いて、蓄電デバイスの管理装置(例えば、電池管理ユニット)が適正に応答することが可能となる。 As a result, it is possible to predict the short-term voltage and power characteristics of the storage device, even during charging and discharging, so-called SOF (State Of Function) estimation. For example, in response to the question "What is the maximum current value that does not fall below the target voltage after a certain period of time?" The device's management unit (eg, battery management unit) can respond appropriately.
 補正方法は、前記蓄電デバイスの充電電気量と開放電圧値との関係を示すプロファイルにおいて、前記充電電気量の所定変化量と前記開放電圧値の変化量との対応関係を満たす充電電気量領域を特定し、特定した前記充電電気量領域に基づいて、前記充電電気量の推定値を補正してもよい。 The correction method includes, in the profile indicating the relationship between the charged quantity of electricity and the open circuit voltage value of the power storage device, a charged quantity of electricity region that satisfies the corresponding relationship between the predetermined amount of change in the charged quantity of electricity and the amount of change in the open circuit voltage value. The estimated value of the charged quantity of electricity may be corrected based on the specified charged quantity of electricity region.
 上記構成によれば、蓄電デバイスの充電電気量と開放電圧値との関係を示すプロファイル(SOC-OCV特性)を用いて効率的にSOCの推定値を補正できる。一時的な現象によるSOCの変化量に起因する開放電圧値の変化量に基づいて、既知のSOC-OCV特性を用いて、開放電圧値の変化量に応じたSOC領域を特定することで、SOCを好適に補正できる。 According to the above configuration, the estimated SOC value can be efficiently corrected using the profile (SOC-OCV characteristic) that indicates the relationship between the amount of charged electricity and the open-circuit voltage value of the power storage device. Based on the amount of change in the open-circuit voltage value due to the amount of change in the SOC due to a temporary phenomenon, the SOC region is specified according to the amount of change in the open-circuit voltage value using a known SOC-OCV characteristic. can be suitably corrected.
 補正方法は、前記差分が第1閾値以上である第1時点及び第2時点における前記端子電圧値の差分から、前記第1時点及び第2時点における前記等価回路モデルに係る分極電圧値の差分を減算することにより、前記開放電圧値の変化量を算出してもよい。 The correction method calculates the difference in the polarization voltage value according to the equivalent circuit model at the first time point and the second time point from the difference in the terminal voltage value at the first time point and the second time point when the difference is equal to or greater than a first threshold. The amount of change in the open-circuit voltage value may be calculated by subtracting.
 上記構成によれば、実際のバッテリ試験の実測データ等に基づいて、端子電圧値の変化量に対する開放電圧値の変化量を容易且つ精度よく算出できる。 According to the above configuration, it is possible to easily and accurately calculate the amount of change in the open-circuit voltage value with respect to the amount of change in the terminal voltage value based on the actual measurement data of the actual battery test.
 補正方法は、前記蓄電デバイスの通電履歴に基づき、前記端子電圧値と前記推定電圧値とが交差したか否かを判定し、前記端子電圧値と前記推定電圧値とが交差したと判定した場合、前記充電電気量の推定値を補正してもよい。 The correction method is to determine whether or not the terminal voltage value and the estimated voltage value intersect based on the energization history of the power storage device, and when it is determined that the terminal voltage value and the estimated voltage value intersect. , the estimated value of the charged quantity of electricity may be corrected.
 上記構成によれば、端子電圧値と推定電圧値との交差の有無を判定することにより、上述の一時的な現象の発生を検知する。この現象の発生タイミングを補正開始のタイミングとすることで、現象の発生に応じて速やかに補正を開始できるため、推定精度をより向上できる。 According to the above configuration, the occurrence of the temporary phenomenon described above is detected by determining whether or not the terminal voltage value and the estimated voltage value intersect. By setting the occurrence timing of this phenomenon as the correction start timing, the correction can be started promptly according to the occurrence of the phenomenon, so that the estimation accuracy can be further improved.
 補正方法は、前記充電電気量の補正後における前記端子電圧値と前記推定電圧値との差分が第2閾値以上である場合、補正後の前記充電電気量に対し所定値を逐次加算又は減算することにより、前記充電電気量の推定値を再補正してもよい。 In the correction method, when the difference between the terminal voltage value and the estimated voltage value after the correction of the charged quantity of electricity is equal to or greater than a second threshold value, a predetermined value is sequentially added or subtracted from the corrected charged quantity of electricity. By doing so, the estimated value of the charged quantity of electricity may be re-corrected.
 上記構成によれば、補正後の端子電圧と推定電圧値との差分(絶対差)が第2閾値以上である場合、補正後のSOCに対する再補正(調整)を行う。推定誤差又は計測誤差を低減し、推定精度をより向上できる。 According to the above configuration, if the difference (absolute difference) between the corrected terminal voltage and the estimated voltage value is equal to or greater than the second threshold, the corrected SOC is re-corrected (adjusted). The estimation error or measurement error can be reduced, and the estimation accuracy can be further improved.
 補正方法は、補正後の前記充電電気量が第3閾値以上となった場合、前記充電電気量の推定値の補正を終了し、補正前の前記充電電気量の推定値に戻してもよい。 As for the correction method, when the charge quantity of electricity after correction becomes equal to or greater than a third threshold, the correction of the estimated value of the charge quantity of electricity may be terminated, and the estimated value of the charge quantity of electricity may be returned to the pre-correction estimate.
 上記構成によれば、一時的な現象の影響が有ると推定される場合にのみ、本補正方法による補正を実行する。この現象の影響がないと推定されるSOC範囲では本補正方法による補正を制限することで、現象によるSOC変化を好適に反映させ、SOCの推定値を良好に補正できる。 According to the above configuration, correction by this correction method is performed only when it is estimated that there is a temporary phenomenon. By limiting the correction by this correction method in the SOC range estimated to be unaffected by this phenomenon, the SOC change due to the phenomenon can be appropriately reflected, and the estimated SOC value can be corrected satisfactorily.
 コンピュータプログラムは、蓄電デバイスの通電時における端子電圧値と、前記蓄電デバイスの等価回路モデルを用いて推定される推定電圧値との差分が第1閾値以上であるか否かを判定する。コンピュータプログラムは、前記差分が第1閾値以上であると判定した場合、前記等価回路モデルから得られる、前記蓄電デバイスの充電電気量の所定変化量に応じた前記蓄電デバイスの開放電圧値の変化量に基づいて、前記蓄電デバイスにおける前記充電電気量の推定値を補正する処理をコンピュータに実行させる。 The computer program determines whether the difference between the terminal voltage value of the power storage device when energized and the estimated voltage value estimated using the equivalent circuit model of the power storage device is equal to or greater than a first threshold. When the computer program determines that the difference is equal to or greater than the first threshold, the amount of change in the open-circuit voltage value of the power storage device according to the predetermined amount of change in the amount of charged electricity of the power storage device obtained from the equivalent circuit model. causes the computer to execute a process of correcting the estimated value of the charged quantity of electricity in the power storage device based on.
 補正装置は、蓄電デバイスの充電電気量の推定値の補正に関する制御を実行する制御部を備える。前記制御部は、前記蓄電デバイスの通電時における端子電圧値と、前記蓄電デバイスの等価回路モデルを用いて推定される推定電圧値との差分が第1閾値以上であるか否かを判定する。前記制御部は、前記差分が第1閾値以上であると判定した場合、前記等価回路モデルから得られる、前記蓄電デバイスの充電電気量の所定変化量に応じた前記蓄電デバイスの開放電圧値の変化量に基づいて、前記蓄電デバイスにおける前記充電電気量の推定値を補正する。 The correction device includes a control unit that executes control related to correction of the estimated value of the charge amount of electricity of the power storage device. The control unit determines whether or not a difference between a terminal voltage value when the power storage device is energized and an estimated voltage value estimated using an equivalent circuit model of the power storage device is equal to or greater than a first threshold. When the controller determines that the difference is equal to or greater than the first threshold value, the control unit changes the open-circuit voltage value of the power storage device according to a predetermined amount of change in the amount of charged electricity of the power storage device, which is obtained from the equivalent circuit model. correcting the estimated value of the charged quantity of electricity in the power storage device based on the quantity;
 蓄電デバイスは、蓄電素子と、上述の補正装置とを備える。 The electricity storage device includes an electricity storage element and the correction device described above.
 以下、本開示をその実施の形態を示す図面を参照して具体的に説明する。 Hereinafter, the present disclosure will be specifically described with reference to the drawings showing its embodiments.
(第1実施形態)
 図1は第1実施形態に係る管理装置が搭載される蓄電デバイス1の構成例を示す斜視図、図2は蓄電デバイス1の構成例を示す分解斜視図である。蓄電デバイス1は、例えばエンジン車両や、電気自動車(EV)、ハイブリッド電気自動車(HEV)、又はプラグインハイブリッド電気自動車(PHEV)等に好適に搭載される、12V電源や48V電源である。
(First embodiment)
FIG. 1 is a perspective view showing a configuration example of an electricity storage device 1 on which a management apparatus according to the first embodiment is mounted, and FIG. 2 is an exploded perspective view showing a configuration example of the electricity storage device 1. As shown in FIG. The power storage device 1 is a 12V power supply or a 48V power supply that is preferably mounted on, for example, an engine vehicle, an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), or the like.
 蓄電デバイス1は、管理装置(補正装置)2、複数の蓄電素子3を収容する直方体状の収容ケース4aを有する。蓄電素子3は、リチウムイオン二次電池等の電池セルであってもよい。管理装置2は、例えば電池管理システム(BMS:Battery Management system )である。収容ケース4aには、複数のバスバー5、各種センサ(図3参照)なども収容される。図1及び図2において、蓄電素子3は、4個を直列接続してなる組電池30の状態で収容ケース4aに収容されている。 The power storage device 1 has a management device (correction device) 2 and a rectangular parallelepiped housing case 4 a that houses a plurality of power storage elements 3 . The storage element 3 may be a battery cell such as a lithium ion secondary battery. The management device 2 is, for example, a battery management system (BMS). The housing case 4a also houses a plurality of bus bars 5, various sensors (see FIG. 3), and the like. 1 and 2, the storage device 3 is housed in the storage case 4a in a state of an assembled battery 30 formed by connecting four in series.
 収容ケース4aは合成樹脂製である。収容ケース4aは、ケース本体41と、ケース本体41の開口部を閉塞する蓋部42と、蓋部42の外面に設けられた収容部43と、収容部43を覆うカバー44と、中蓋45と、仕切り板46とを備える。中蓋45や仕切り板46は、設けられなくてもよい。ケース本体41の各仕切り板46の間に、蓄電素子3が挿入されている。 The storage case 4a is made of synthetic resin. The storage case 4a includes a case body 41, a lid portion 42 that closes an opening of the case body 41, a storage portion 43 provided on the outer surface of the lid portion 42, a cover 44 that covers the storage portion 43, and an inner lid 45. and a partition plate 46. The inner lid 45 and partition plate 46 may not be provided. The storage element 3 is inserted between each partition plate 46 of the case body 41 .
 中蓋45には、複数の金属製のバスバー5が載置されている。蓄電素子3の端子32が設けられている端子面付近に中蓋45が配置されて、隣り合う蓄電素子3の隣り合う端子32がバスバー5により接続され、蓄電素子3が直列に接続されている。 A plurality of metal busbars 5 are mounted on the inner lid 45 . An inner lid 45 is arranged near the terminal surface where the terminals 32 of the storage elements 3 are provided, and the adjacent terminals 32 of the adjacent storage elements 3 are connected by the bus bars 5, and the storage elements 3 are connected in series. .
 収容部43は、箱状をなし、平面視における一長側面の中央部に、外側に突出した突出部43aを有する。蓋部42における突出部43aの両側には、鉛合金等の金属製で、極性が異なる一対の外部端子6,6が設けられている。収容部43には、平板状の回路基板である管理装置2が収容されている。管理装置2は、図示しない導電体を介して蓄電素子3と接続されている。管理装置2は、複数の蓄電素子3の状態を管理し、蓄電デバイス1の各部を制御する。 The accommodating part 43 has a box shape and has a protruding part 43a that protrudes outward at the center of one long side surface in a plan view. A pair of external terminals 6, 6 made of a metal such as a lead alloy and having different polarities are provided on both sides of the projecting portion 43a of the lid portion 42. As shown in FIG. The accommodation unit 43 accommodates the management device 2 which is a flat circuit board. The management device 2 is connected to the storage element 3 via a conductor (not shown). The management device 2 manages the states of the plurality of power storage elements 3 and controls each part of the power storage device 1 .
 蓄電素子3は、前述したプラトー領域を有する電池セルであり、例えばLFP電池である。蓄電素子3は、中空直方体状のケース31と、ケース31の一側面(端子面)に設けられた、極性が異なる一対の端子32,32とを備える。ケース31には、正極33a、セパレータ33b、及び負極33cを積層してなる電極体33と、図示しない電解質(電解液)とが封入されている。 The storage element 3 is a battery cell having the aforementioned plateau region, such as an LFP battery. The storage element 3 includes a hollow rectangular parallelepiped case 31 and a pair of terminals 32 , 32 with different polarities provided on one side surface (terminal surface) of the case 31 . The case 31 encloses an electrode body 33 formed by stacking a positive electrode 33a, a separator 33b, and a negative electrode 33c, and an electrolyte (electrolytic solution) (not shown).
 電極体33は、シート状の正極33aと、負極33cとを、2枚のシート状のセパレータ33bを介して重ね合わせ、これらを巻回(縦巻き又は横巻き)することにより構成されている。セパレータ33bは、多孔性の樹脂フィルムにより形成される。多孔性の樹脂フィルムとして、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂からなる多孔性樹脂フィルムを使用できる。 The electrode body 33 is configured by stacking a sheet-like positive electrode 33a and a negative electrode 33c with two sheet-like separators 33b interposed therebetween, and winding them (vertically or horizontally). The separator 33b is made of a porous resin film. As the porous resin film, a porous resin film made of resin such as polyethylene (PE) and polypropylene (PP) can be used.
 正極33aは、例えばアルミニウム、アルミニウム合金等からなる長尺帯状の正極基材の表面に、正極活物質層が形成された電極板である。正極活物質層は、正極活物質を含む。正極活物質層に用いられる正極活物質としては、リチウムイオンを吸蔵放出可能な材料を使用できる。正極活物質としては、例えばLiFePO4が挙げられる。正極活物質層は、導電助剤、バインダ等を更に含んでもよい。 The positive electrode 33a is an electrode plate in which a positive electrode active material layer is formed on the surface of a long strip-shaped positive electrode base material made of, for example, aluminum, an aluminum alloy, or the like. The positive electrode active material layer contains a positive electrode active material. As the positive electrode active material used for the positive electrode active material layer, a material capable of intercalating and deintercalating lithium ions can be used. Examples of positive electrode active materials include LiFePO 4 . The positive electrode active material layer may further contain a conductive aid, a binder, and the like.
 負極33cは、例えば銅又は銅合金等からなる長尺帯状の負極基材の表面に、負極活物質層が形成された電極板である。負極活物質層は、負極活物質を含む。負極活物質は、リチウムイオンを吸蔵放出可能な材料を使用できる。負極活物質としては、例えば黒鉛(グラファイト)、ハードカーボン、ソフトカーボン等が挙げられる。負極活物質層は、バインダ、増粘剤等を更に含んでもよい。 The negative electrode 33c is an electrode plate in which a negative electrode active material layer is formed on the surface of a long belt-shaped negative electrode base material made of, for example, copper or a copper alloy. The negative electrode active material layer contains a negative electrode active material. A material capable of intercalating and deintercalating lithium ions can be used as the negative electrode active material. Examples of negative electrode active materials include graphite, hard carbon, and soft carbon. The negative electrode active material layer may further contain a binder, a thickener, and the like.
 ケース31に封入される電解質は、従来のリチウムイオン二次電池と同様のものを使用できる。例えば、電解質として、有機溶媒中に支持塩を含有させた電解質を使用できる。有機溶媒として、例えば、カーボネート類、エステル類、エーテル類等の非プロトン性溶媒が用いられる。支持塩として、例えば、LiPF6、LiBF4、LiClO4等のリチウム塩が好適に用いられる。電解質は、例えば、ガス発生剤、被膜形成剤、分散剤、増粘剤等の各種添加剤を含んでもよい。 As the electrolyte enclosed in the case 31, the same one as in conventional lithium ion secondary batteries can be used. For example, an electrolyte containing a supporting salt in an organic solvent can be used as the electrolyte. As organic solvents, for example, aprotic solvents such as carbonates, esters and ethers are used. Lithium salts such as LiPF 6 , LiBF 4 and LiClO 4 are preferably used as supporting salts. The electrolyte may contain various additives such as, for example, gas generating agents, film forming agents, dispersants, thickeners, and the like.
 図1及び図2では、蓄電素子3の一例として、巻回型の電極体33を備える角型のリチウムイオン電池について説明した。代替的に、蓄電素子3は、円筒型リチウムイオン電池であってもよい。蓄電素子3は、積層型電極体を備えるリチウムイオン電池であってもよく、ラミネート型(パウチ型)リチウムイオン電池等であってもよい。更に、蓄電素子3は、固体電解質を用いた全固体リチウムイオン電池であってもよい。 In FIGS. 1 and 2, as an example of the storage element 3, a rectangular lithium ion battery including a wound electrode body 33 has been described. Alternatively, the storage element 3 may be a cylindrical lithium ion battery. The storage element 3 may be a lithium ion battery including a laminated electrode body, or may be a laminated (pouch type) lithium ion battery or the like. Furthermore, the storage element 3 may be an all-solid lithium ion battery using a solid electrolyte.
 図3は、管理装置2等の構成例を示すブロック図である。管理装置2は、蓄電デバイス1の電圧値及び電流値を含む計測データを取得し、取得した計測データに基づき、蓄電デバイス1の充電電気量の補正(推定)に関する処理を実行する。管理装置2は、補正装置に対応する。 FIG. 3 is a block diagram showing a configuration example of the management device 2 and the like. The management device 2 acquires measurement data including the voltage value and the current value of the power storage device 1, and executes processing related to correction (estimation) of the charged electricity amount of the power storage device 1 based on the acquired measurement data. The management device 2 corresponds to a correction device.
 管理装置2を備える蓄電デバイス1は、車両ECU(Electronic Control Unit )8や、エンジン始動用のスターターモータ及び電装品等の負荷9に接続されている。スターターモータが発電機として機能する場合、蓄電デバイス1はスターターモータから供給される電力(回生電力)によって充電される。また、スターターモータが動力源として機能する場合、蓄電デバイス1はスターターモータ及び他の電子機器に対して電力供給を行う。 A power storage device 1 equipped with a management device 2 is connected to a vehicle ECU (Electronic Control Unit) 8 and a load 9 such as a starter motor for starting the engine and electrical components. When the starter motor functions as a generator, the power storage device 1 is charged with power (regenerated power) supplied from the starter motor. Also, when the starter motor functions as a power source, the power storage device 1 supplies power to the starter motor and other electronic devices.
 管理装置2は、制御部21、記憶部22、入力部23、出力部24等を備える。 The management device 2 includes a control unit 21, a storage unit 22, an input unit 23, an output unit 24, and the like.
 制御部21は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備える演算回路である。制御部21が備えるCPUは、ROMや記憶部22に格納された各種コンピュータプログラムを実行し、上述したハードウェア各部の動作を制御することによって、装置全体を本開示の管理装置(補正装置)として機能させる。制御部21は、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ、日時情報を出力するクロック等の機能を備えていてもよい。 The control unit 21 is an arithmetic circuit including a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like. The CPU provided in the control unit 21 executes various computer programs stored in the ROM and the storage unit 22, and controls the operation of each hardware unit described above, so that the entire device functions as a management device (correction device) of the present disclosure. make it work. The control unit 21 may have functions such as a timer that measures the elapsed time from when the measurement start instruction is given until when the measurement end instruction is given, a counter that counts the number, and a clock that outputs date and time information.
 記憶部22は、フラッシュメモリ等の不揮発性記憶装置である。記憶部22には各種のコンピュータプログラム及びデータが記憶される。記憶部22に記憶されるコンピュータプログラム(コンピュータプログラム製品)には、蓄電デバイス1の充電電気量の補正に関する処理を行うための補正プログラム221が含まれる。記憶部22に記憶されるデータには、補正プログラム221において用いられる補正データ222が含まれる。 The storage unit 22 is a non-volatile storage device such as flash memory. Various computer programs and data are stored in the storage unit 22 . A computer program (computer program product) stored in the storage unit 22 includes a correction program 221 for performing processing related to correction of the amount of electricity charged in the power storage device 1 . Data stored in the storage unit 22 includes correction data 222 used in the correction program 221 .
 補正データ222には、例えばシミュレーションで用いられる蓄電デバイス1の等価回路モデル、蓄電デバイス1に応じたSOC-OCV特性、補正処理に用いる各種閾値等の情報が含まれる。等価回路モデルは、回路構成を示す構成情報、及び等価回路モデルを構成する各素子の値等により記述される。記憶部22には、このような等価回路モデルの回路構成を示す構成情報、および等価回路モデルを構成する各素子の値等が記憶される。制御部21は、例えば不図示の外部装置と通信することにより、予め等価回路モデル、SOC-OCV特性及び各種閾値の情報を取得し、取得した情報を補正データ222に記憶する。SOC-OCV特性は、蓄電デバイス1の使用に伴う劣化を考慮し、所定の時間間隔で更新してもよい。 The correction data 222 includes information such as an equivalent circuit model of the electricity storage device 1 used in the simulation, SOC-OCV characteristics corresponding to the electricity storage device 1, and various threshold values used for correction processing. The equivalent circuit model is described by configuration information indicating the circuit configuration, the values of each element configuring the equivalent circuit model, and the like. The storage unit 22 stores the configuration information indicating the circuit configuration of such an equivalent circuit model, the values of each element configuring the equivalent circuit model, and the like. The control unit 21 acquires information on the equivalent circuit model, SOC-OCV characteristics, and various threshold values in advance by communicating with, for example, an external device (not shown), and stores the acquired information in the correction data 222 . The SOC-OCV characteristic may be updated at predetermined time intervals in consideration of deterioration accompanying use of the electricity storage device 1 .
 記憶部22に記憶されるコンピュータプログラムは、当該コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体2Aにより提供されてもよい。記録媒体2Aは、CD-ROM、USBメモリ、SD(Secure Digital)カード等の可搬型メモリである。制御部21は、図示しない読取装置を用いて、記録媒体2Aから所望のコンピュータプログラムを読み取り、読み取ったコンピュータプログラムを記憶部22に記憶させる。代替的に、上記コンピュータプログラムは通信により提供されてもよい。補正プログラム221は、単一のコンピュータ上で、または1つのサイトにおいて配置されるか、もしくは複数のサイトにわたって分散され、通信ネットワークによって相互接続された複数のコンピュータ上で実行されるように展開することができる。 The computer program stored in the storage unit 22 may be provided by a non-temporary recording medium 2A on which the computer program is readable. The recording medium 2A is a portable memory such as a CD-ROM, USB memory, SD (Secure Digital) card, or the like. The control unit 21 uses a reading device (not shown) to read a desired computer program from the recording medium 2A and stores the read computer program in the storage unit 22 . Alternatively, the computer program may be provided by communication. Correction program 221 may be deployed to run on a single computer or on multiple computers located at one site or distributed across multiple sites and interconnected by a communications network. can be done.
 入力部23は、各種センサを接続するためのインタフェースを備える。入力部23に接続されるセンサには、蓄電素子3の電圧を計測する電圧センサ7a、及び蓄電素子3に流れる電流を計測する電流センサ7bが含まれる。入力部23は、各種センサが計測した計測値に関する信号の入力を受け付ける。入力部23に接続されるセンサには、蓄電素子3の温度を計測する温度センサが含まれてもよい。 The input unit 23 has an interface for connecting various sensors. Sensors connected to the input unit 23 include a voltage sensor 7 a that measures the voltage of the storage element 3 and a current sensor 7 b that measures the current flowing through the storage element 3 . The input unit 23 receives inputs of signals related to measurement values measured by various sensors. A sensor connected to the input unit 23 may include a temperature sensor that measures the temperature of the storage element 3 .
 電圧センサ7aは、各蓄電素子3に並列に接続されている。電圧センサ7aは、各蓄電素子3の両端に夫々接続されており、各蓄電素子3の端子間電圧を時系列的に計測する。制御部21は、入力部23を通じて、電圧センサ7aにより計測される各蓄電素子3の電圧や組電池30の総電圧のデータを随時取得する。電流センサ7bは、蓄電素子3に直列に接続されており、蓄電素子3に流れる電流を時系列的に計測する。制御部21は、入力部23を通じて、電流センサ7bにより計測される電流のデータを随時取得する。 The voltage sensor 7a is connected in parallel to each storage element 3. The voltage sensor 7a is connected to both ends of each storage element 3, and measures the voltage across the terminals of each storage element 3 in time series. The control unit 21 acquires data on the voltage of each storage element 3 and the total voltage of the assembled battery 30 measured by the voltage sensor 7a through the input unit 23 at any time. The current sensor 7b is connected in series with the storage element 3 and measures the current flowing through the storage element 3 in time series. The control unit 21 acquires current data measured by the current sensor 7b through the input unit 23 at any time.
 出力部24は、表示装置(不図示)を接続するためのインタフェースを備える。表示装置の一例は、液晶ディスプレイ装置である。制御部21は、蓄電デバイス1の充電電気量に関する情報が得られた場合、蓄電デバイス1の充電電気量に関する情報を出力部24から表示装置へ出力する。表示装置は、出力部24から出力される情報に基づき充電電気量に関する情報を表示する。 The output unit 24 has an interface for connecting a display device (not shown). An example of a display device is a liquid crystal display device. When the information about the amount of electricity charged in the electricity storage device 1 is obtained, the control unit 21 outputs the information about the amount of electricity charged in the electricity storage device 1 from the output unit 24 to the display device. The display device displays information about the charge quantity of electricity based on the information output from the output unit 24 .
 代替的に、出力部24は、外部装置(不図示)と通信する通信インタフェースを備えてもよい。出力部24に通信可能に接続される外部装置は、ユーザや管理者等が使用するパーソナルコンピュータ、スマートフォンなどの端末装置である。制御部21は、蓄電デバイス1の充電電気量に関する情報を出力部24より外部装置へ出力する。出力部24は、車両ECU8と通信する通信インタフェースを備えてもよい。制御部21は、蓄電デバイス1の充電電気量に関する情報を出力部24より車両ECUへ出力する。管理装置2は、蓄電デバイス1の充電電気量に関する情報をユーザに報知するために、LEDランプやブザー等の報知部を備えてもよい。 Alternatively, the output unit 24 may have a communication interface that communicates with an external device (not shown). An external device communicably connected to the output unit 24 is a terminal device such as a personal computer or a smart phone used by a user or administrator. The control unit 21 outputs information about the amount of electricity charged in the power storage device 1 from the output unit 24 to the external device. The output unit 24 may include a communication interface that communicates with the vehicle ECU 8 . The control unit 21 outputs information about the amount of electricity charged in the power storage device 1 from the output unit 24 to the vehicle ECU. The management device 2 may include a notification unit such as an LED lamp or a buzzer in order to notify the user of information regarding the amount of electricity charged in the power storage device 1 .
 図1~図3は、管理装置2がBMSである例を示す。代替的に、管理装置2は、蓄電素子3から離れた場所に配置されてもよい。管理装置2は、蓄電素子3から離れた場所にあって、BMSと通信接続されるサーバ装置や、ECUを含んでもよい。蓄電デバイス1の充電電気量の補正を行う場所は限定されず、例えばサーバ装置やECUで行ってもよい。この場合、蓄電デバイス1に関して計測される計測データは、通信によりサーバ装置やECUへ送信されるとよい。 1 to 3 show examples in which the management device 2 is a BMS. Alternatively, management device 2 may be placed at a location remote from storage element 3 . The management device 2 may include a server device or an ECU that is located away from the power storage element 3 and communicates with the BMS. The place where the amount of electricity charged in the power storage device 1 is corrected is not limited, and the correction may be performed, for example, in a server device or an ECU. In this case, measurement data measured with respect to the power storage device 1 may be transmitted to the server device or the ECU through communication.
 図1~図3は、蓄電デバイス1として、リチウムイオン二次電池である蓄電素子3を備える車載用の低電圧電源を示す。蓄電素子3は、プラトー領域を有する他の二次電池や電気化学セルであってもよい。 1 to 3 show an in-vehicle low-voltage power supply provided with a storage element 3, which is a lithium-ion secondary battery, as the storage device 1. FIG. The storage element 3 may be another secondary battery or electrochemical cell having a plateau region.
 図4は、蓄電デバイス1の等価回路モデルの一例を示す回路図である。等価回路モデルは、蓄電デバイス1の電圧源及び抵抗やコンデンサなどの回路素子を組み合わせ、蓄電デバイス1の充放電挙動を模擬するものである。等価回路モデルは、正極端子と負極端子との間に直列に接続される定電圧源、直流抵抗成分を模擬するための直流抵抗器、及び過渡的な分極特性を模擬するためのRC並列回路を備える。本実施形態に係る等価回路モデルでは、第1RC並列回路と第2RC並列回路との2つのRC並列回路が直列に接続されている。 4 is a circuit diagram showing an example of an equivalent circuit model of the electricity storage device 1. FIG. The equivalent circuit model combines the voltage source of the electricity storage device 1 and circuit elements such as resistors and capacitors to simulate the charging and discharging behavior of the electricity storage device 1 . The equivalent circuit model includes a constant voltage source connected in series between a positive terminal and a negative terminal, a DC resistor for simulating a DC resistance component, and an RC parallel circuit for simulating transient polarization characteristics. Prepare. In the equivalent circuit model according to this embodiment, two RC parallel circuits, a first RC parallel circuit and a second RC parallel circuit, are connected in series.
 定電圧源は、直流電圧を出力する電圧源である。定電圧源が出力する電圧は、蓄電デバイス1の開放電圧であり、Voと記載する。開放電圧値Voは、例えばSOCの関数として与えられる。開放電圧値Voは、蓄電デバイス1の実容量の関数として与えられてもよい。 A constant voltage source is a voltage source that outputs a DC voltage. The voltage output by the constant voltage source is the open-circuit voltage of the storage device 1 and is denoted as Vo. The open-circuit voltage value Vo is given as a function of SOC, for example. The open-circuit voltage value Vo may be given as a function of the actual capacity of the electricity storage device 1 .
 直流抵抗器は、蓄電デバイス1の直流抵抗成分(直流インピーダンス)を模擬するためのものであり、抵抗素子R0を含む。抵抗素子R0は、通電電流、電圧、SOC、温度などに応じて変動する値として与えられる。直流抵抗器のインピーダンスが定まれば、この等価回路モデルに電流Iが流れたときに直流抵抗器に発生する電圧を計算できる。直流抵抗器に発生する電圧を、直流抵抗電圧値Vz0とする。 The DC resistor is for simulating the DC resistance component (DC impedance) of the electricity storage device 1, and includes a resistance element R0. The resistance element R0 is given as a value that fluctuates according to the applied current, voltage, SOC, temperature, and the like. Once the impedance of the DC resistor is determined, the voltage generated in the DC resistor when the current I flows through this equivalent circuit model can be calculated. A voltage generated in the DC resistor is defined as a DC resistance voltage value Vz0.
 第1RC並列回路は、並列に接続された抵抗素子R1及び容量素子C1から構成される。第2RC並列回路は、並列に接続された抵抗素子R2及び容量素子C2から構成される。各RC並列回路を構成する抵抗素子R1,R2及び容量素子C1,C2は、蓄電デバイス1のSOC、温度などに応じて変動する値として与えられる。抵抗素子R1,R2及び容量素子C1,C2によって、RC並列回路のインピーダンスが定まる。RC並列回路のインピーダンスが定まれば、この等価回路モデルに電流Iが流れたときにRC並列回路に発生する電圧を計算できる。RC並列回路に発生する電圧は、第1RC並列回路に発生する分極電圧値Vz1と、第2RC並列回路に発生する分極電圧値Vz2との合計電圧である。 The first RC parallel circuit is composed of a resistance element R1 and a capacitance element C1 connected in parallel. A second RC parallel circuit is composed of a resistance element R2 and a capacitance element C2 that are connected in parallel. Resistive elements R1, R2 and capacitive elements C1, C2 forming each RC parallel circuit are given values that vary according to the SOC of the electric storage device 1, temperature, and the like. The impedance of the RC parallel circuit is determined by the resistive elements R1, R2 and the capacitive elements C1, C2. Once the impedance of the RC parallel circuit is determined, the voltage generated in the RC parallel circuit when current I flows through this equivalent circuit model can be calculated. The voltage generated in the RC parallel circuit is the total voltage of the polarization voltage value Vz1 generated in the first RC parallel circuit and the polarization voltage value Vz2 generated in the second RC parallel circuit.
 以上の等価回路モデルにおいて、シミュレーションを開始後、時間tが経過した時点における端子電圧の推定値(推定電圧値)Ve(t)は、直流抵抗電圧値Vz0(t)、分極電圧値Vz1(t)、分極電圧値Vz2(t)、及び開放電圧値Vo(t)を用いて、下記式(1)で表すことができる。
 Ve(t)=Vo(t)+Vz0(t)+(Vz1(t)+Vz2(t))…(1)
In the above equivalent circuit model, the estimated value of the terminal voltage (estimated voltage value) Ve(t) at the time when time t has elapsed after starting the simulation is the DC resistance voltage value Vz0(t), the polarization voltage value Vz1(t ), the polarization voltage value Vz2(t), and the open-circuit voltage value Vo(t), it can be expressed by the following formula (1).
Ve(t)=Vo(t)+Vz0(t)+(Vz1(t)+Vz2(t)) (1)
 上記等価回路モデルを構成する抵抗素子R0、抵抗素子R1,R2及び容量素子C1,C2(以下、回路パラメータとも称する)は公知の手法により得られる。回路パラメータは、例えばバッテリ試験の実測データを基に、温度及びSOC等の関係を考慮して設定できる。蓄電素子3における開放電圧値と、既知の回路パラメータとを用いることで、蓄電素子3の推定電圧値Veを算出できる。 The resistive element R0, resistive elements R1, R2, and capacitive elements C1, C2 (hereinafter also referred to as circuit parameters) that constitute the equivalent circuit model are obtained by a known method. The circuit parameters can be set, for example, based on actual measurement data of battery tests, taking into consideration the relationship between temperature, SOC, and the like. The estimated voltage value Ve of the storage element 3 can be calculated by using the open-circuit voltage value of the storage element 3 and known circuit parameters.
 本実施形態における管理装置2は、適宜の間隔で、電流積算法により蓄電デバイス1のSOCを推定し、記憶部22に記憶している。具体的には、管理装置2は、電流センサ7bを介し取得した電流値を積算することで、蓄電デバイス1に出入りする電力量を算出する。管理装置2は、基準時(初期)の満充電容量に算出した電力量を加算又は減算することにより、推定時点における蓄電デバイス1のSOCの推定値を算出する。代替的に、管理装置2は、図示しない外部装置にて算出したSOCの推定値を通信により取得してもよい。 The management device 2 in this embodiment estimates the SOC of the electricity storage device 1 by the current integration method at appropriate intervals and stores it in the storage unit 22 . Specifically, the management device 2 calculates the amount of power flowing into and out of the power storage device 1 by integrating the current values acquired via the current sensor 7b. The management device 2 calculates an estimated value of the SOC of the power storage device 1 at the estimation time by adding or subtracting the calculated power amount to or from the full charge capacity at the reference time (initial). Alternatively, the management device 2 may acquire an SOC estimated value calculated by an external device (not shown) through communication.
 管理装置2は、電流積算法によるSOCの推定と並行して、蓄電デバイス1における上述した一時的な現象の有無を判定する。この現象が発生している場合、管理装置2は、以下の補正方法により、電流積算によるSOCの推定値を補正する。図5から図8は、SOCの補正方法を説明する説明図である。本実施形態におけるSOCの補正方法について、図5から図8を用い、放電時を例に挙げて説明する。 In parallel with estimating the SOC by the current integration method, the management device 2 determines whether or not the power storage device 1 has the temporary phenomenon described above. When this phenomenon occurs, the management device 2 corrects the SOC estimated value based on the current integration by the following correction method. 5 to 8 are explanatory diagrams for explaining the SOC correction method. A method of correcting the SOC according to the present embodiment will be described with reference to FIGS. 5 to 8, taking discharge as an example.
 図5の上側に示すグラフは、蓄電デバイス1の端子電圧値Vbと、推定電圧値Veとの時間変化を示す。図5の上側に示すグラフにおいて、縦軸は端子電圧(V)、横軸は経過時間(s)である。図5の下側に示すグラフは、蓄電デバイス1の電流値の時間変化を示す。図5の下側に示すグラフにおいて、縦軸は電流値(A)、横軸は経過時間(s)である。図5の上側に示すグラフ中、実線は端子電圧値Vb、破線は推定電圧値Veを示す。端子電圧値Vbは、電圧センサ7aにより計測された端子電圧の実測データである。推定電圧値Veは、電流積算法により得られるSOCの推定値に応じたOCVを用い、等価回路モデルに基づき上記式(1)により算出される端子電圧の推定値である。 The graph shown on the upper side of FIG. 5 shows temporal changes in the terminal voltage value Vb of the electricity storage device 1 and the estimated voltage value Ve. In the graph shown on the upper side of FIG. 5, the vertical axis is the terminal voltage (V) and the horizontal axis is the elapsed time (s). The graph shown on the lower side of FIG. 5 shows the time change of the current value of the electricity storage device 1 . In the graph shown on the lower side of FIG. 5, the vertical axis is the current value (A) and the horizontal axis is the elapsed time (s). In the upper graph of FIG. 5, the solid line indicates the terminal voltage value Vb, and the broken line indicates the estimated voltage value Ve. The terminal voltage value Vb is actually measured data of the terminal voltage measured by the voltage sensor 7a. The estimated voltage value Ve is the terminal voltage estimated value calculated by the above equation (1) based on the equivalent circuit model using the OCV corresponding to the SOC estimated value obtained by the current integration method.
 管理装置2の制御部21は、所定間隔で電圧センサ7a及び電流センサ7bにより計測された蓄電デバイス1の電圧値(端子電圧値)及び電流値を取得し、時系列データとして記憶している。電流値は、例えば充電の場合には正の値であり、充電の場合には負の値となる。
 初めに、制御部21は、蓄電デバイス1が以下の条件を満たすか否かを判定することにより、一時的な現象が発生している否か(補正を開始するか否か)を判定する。
The control unit 21 of the management device 2 acquires the voltage value (terminal voltage value) and current value of the electricity storage device 1 measured by the voltage sensor 7a and the current sensor 7b at predetermined intervals, and stores them as time-series data. The current value is, for example, a positive value for charging and a negative value for charging.
First, the control unit 21 determines whether a temporary phenomenon has occurred (whether to start correction) by determining whether the power storage device 1 satisfies the following conditions.
 第1条件として、制御部21は、電圧センサ7aにより計測された電流値が電流条件を満たすか否かを判定する。具体的には、電流値の絶対値が所定値(電流閾値)以上であるか否かを判定する。電流値の絶対値が所定値以上である場合、一時的な現象が発生している可能性が高い。蓄電デバイス1の電流値の絶対値が所定値以上である場合、蓄電素子3の電極内におけるリチウムイオンの極端な偏在により、一時的な現象が発生している可能性が高いと推定される。所定値としては、このようなリチウムイオンの偏在が発生する電流値が設定される。なお、充電時における第1条件も上記と同様であるが、放電時と充電時における電流閾値は異なる電流値であってよい。 As the first condition, the control unit 21 determines whether the current value measured by the voltage sensor 7a satisfies the current condition. Specifically, it is determined whether or not the absolute value of the current value is equal to or greater than a predetermined value (current threshold). If the absolute value of the current value is greater than or equal to the predetermined value, there is a high possibility that a temporary phenomenon has occurred. When the absolute value of the current value of the electricity storage device 1 is equal to or greater than a predetermined value, it is highly likely that a temporary phenomenon has occurred due to extreme uneven distribution of lithium ions in the electrodes of the electricity storage element 3 . As the predetermined value, a current value at which such uneven distribution of lithium ions occurs is set. The first condition during charging is also the same as above, but the current thresholds during discharging and charging may be different current values.
 第2条件として、制御部21は、電圧センサ7aにより計測された蓄電デバイス1の端子電圧値Vbと、等価回路モデルに基づき算出される蓄電デバイス1の推定電圧値Veとが交差したか否かを判定する。端子電圧値Vbと推定電圧値Veとが交差した場合、一時的な現象が発生している可能性が高い。 As a second condition, the control unit 21 determines whether or not the terminal voltage value Vb of the electricity storage device 1 measured by the voltage sensor 7a intersects with the estimated voltage value Ve of the electricity storage device 1 calculated based on the equivalent circuit model. judge. When the terminal voltage value Vb crosses the estimated voltage value Ve, there is a high possibility that a temporary phenomenon has occurred.
 図5に示すように、通常、蓄電デバイス1の放電時において、一時的な現象の発生前は、充放電の繰り返しによる蓄電素子3の温度上昇に伴い、蓄電素子3における内部抵抗が小さくなるため、端子電圧値Vbが推定電圧値Veよりも大きくなる。一時的な現象による電極体内のSOCムラの発生により、端子電圧値Vbが低下し、端子電圧値Vbが推定電圧値Veよりも小さくなる。言い換えると、端子電圧値Vbが推定電圧値Veを超える方向へ低下する。この端子電圧値Vbと推定電圧値Veとが交差したタイミングを、一時的な現象の発生、すなわち補正処理の開始タイミングとすることで、SOC誤差の発生を好適に検知することができる。なお、端子電圧値Vbと推定電圧値Veとの交差の発生は、補正を実行するための必須条件ではない。 As shown in FIG. 5, during discharging of the storage device 1, before a temporary phenomenon occurs, the internal resistance of the storage device 3 decreases as the temperature of the storage device 3 rises due to repeated charging and discharging. , the terminal voltage value Vb becomes larger than the estimated voltage value Ve. Occurrence of SOC unevenness in the electrode body due to a temporary phenomenon causes the terminal voltage value Vb to drop and the terminal voltage value Vb to become smaller than the estimated voltage value Ve. In other words, the terminal voltage value Vb decreases to exceed the estimated voltage value Ve. By setting the timing at which the terminal voltage value Vb and the estimated voltage value Ve cross each other as the timing of the occurrence of a temporary phenomenon, that is, the timing of starting correction processing, the occurrence of an SOC error can be preferably detected. Note that occurrence of intersection between the terminal voltage value Vb and the estimated voltage value Ve is not an essential condition for executing the correction.
 第3条件として、制御部21は、端子電圧値Vbと推定電圧値Veとの差分の絶対値(|Vb-Ve|)が第1閾値以上であるか否かを判定する。差分の絶対値が第1閾値以上である場合、一時的な現象が発生している可能性が高い。端子電圧値Vbと推定電圧値Veとの差分が第1閾値以上である場合、一時的な現象の発生による電圧変動(放電時には電圧降下)が大きく、SOCの誤差が大きいと推定される。なお、充電時における第3条件も上記と同様であるが、放電時と充電時における第1閾値は異なる値であってよい。 As a third condition, the control unit 21 determines whether or not the absolute value of the difference (|Vb−Ve|) between the terminal voltage value Vb and the estimated voltage value Ve is equal to or greater than the first threshold. If the absolute value of the difference is greater than or equal to the first threshold, there is a high possibility that a temporary phenomenon has occurred. When the difference between the terminal voltage value Vb and the estimated voltage value Ve is equal to or greater than the first threshold, it is estimated that the voltage fluctuation (voltage drop during discharge) due to the occurrence of a temporary phenomenon is large and the SOC error is large. The third condition during charging is also the same as above, but the first threshold during discharging and during charging may have different values.
 制御部21は、蓄電デバイス1の通電履歴に基づき、第2条件を満たし、且つ第1条件及び第3条件を満たす場合、一時的な現象が発生していると推定されるため、SOCの推定値を補正すると判定する。なお、上述の通り第2条件は一時的な現象の発生を判定するための必須条件ではなく、早期に一時的な現象の発生を検知するための好適条件である。制御部21は、上記の条件を満たす状態が所定時間以上継続しているか否かを判定し、所定時間以上継続している場合、一時的な現象の発生によるSOC変動が大きいため、SOCの推定値を補正すると判定する。 Based on the energization history of the electricity storage device 1, if the second condition and the first and third conditions are satisfied, the control unit 21 estimates the SOC because it is estimated that a temporary phenomenon has occurred. Determine to correct the value. As described above, the second condition is not an essential condition for determining the occurrence of a temporary phenomenon, but a suitable condition for detecting the occurrence of a temporary phenomenon at an early stage. The control unit 21 determines whether or not the state satisfying the above conditions has continued for a predetermined time or longer. Determine to correct the value.
 初めに、制御部21は、所定時間における開放電圧値の変化量を求める。図6に示すグラフは、所定時間における蓄電素子3の端子電圧値Vbと、推定電圧値Veとの時間変化を示す。図6の縦軸は端子電圧(V)、横軸は経過時間(s)である。図6中、実線は端子電圧値Vb、破線は推定電圧値Veを示す。第1条件から第3条件を満たす所定時間の開始時点をt1、終了時点をt2とする。 First, the control unit 21 obtains the amount of change in the open-circuit voltage value for a predetermined period of time. The graph shown in FIG. 6 shows temporal changes in the terminal voltage value Vb of the storage element 3 and the estimated voltage value Ve during a predetermined period of time. The vertical axis of FIG. 6 is the terminal voltage (V), and the horizontal axis is the elapsed time (s). In FIG. 6, the solid line indicates the terminal voltage value Vb, and the dashed line indicates the estimated voltage value Ve. Let t1 be the start time and t2 be the end time of the predetermined time that satisfies the first to third conditions.
 開始時点t1から終了時点t2における蓄電素子3の電流値を一定とした場合、推定電圧値Veに係る開放電圧値の変化量Ve_Δocvは、開始時点t1から終了時点t2までの推定電圧値Veの変化量から、分極変化量ΔVzを差し引いた値となる。すなわち以下式(2)(3)の関係が成立する。
 Ve_Δocv=(Ve(t2)-Ve(t1))/n-ΔVz…(2)
 ΔVz=(Vz1(t2)+Vz2(t2))-(Vz1(t1)+Vz2(t1))…(3)
 ここで、Ve_Δocvは、蓄電デバイス1の各蓄電素子3(単セル)における開放電圧値の変化量、nは蓄電デバイス1における蓄電素子3の個数(本実施形態では4)、Vz1及びVz2は、逐次演算式により算出したセル当たりの分極量である。
When the current value of the storage element 3 is constant from the start time t1 to the end time t2, the amount of change Ve_Δocv in the open-circuit voltage value related to the estimated voltage value Ve is the change in the estimated voltage value Ve from the start time t1 to the end time t2. ΔVz is subtracted from the amount of change in polarization. That is, the relationships of the following formulas (2) and (3) are established.
Ve_Δocv=(Ve(t2)−Ve(t1))/n−ΔVz (2)
ΔVz=(Vz1(t2)+Vz2(t2))−(Vz1(t1)+Vz2(t1)) (3)
Here, Ve_Δocv is the amount of change in the open-circuit voltage value of each storage element 3 (single cell) of the storage device 1, n is the number of storage elements 3 in the storage device 1 (4 in this embodiment), Vz1 and Vz2 are It is the amount of polarization per cell calculated by a sequential calculation formula.
 蓄電素子3の電流値が一定の場合、推定電圧値Veと端子電圧値Vbとの変化量の差は、一時的な現象によるSOC変動に起因する。端子電圧値Vbに係る開放電圧値の変化量Vb_Δocvは、開始時点t1から終了時点t2までの端子電圧値Vbの変化量から、上記式(3)にて示す分極変化量ΔVzを差し引いた値となる。すなわち以下式(4)の関係が成立する。
 Vb_Δocv=(Vb(t2)-Vb(t1))/n-ΔVz…(4)
 ここで、Vb_Δocvは、蓄電デバイス1の各蓄電素子3(単セル)における開放電圧値の変化量、nは蓄電デバイス1における蓄電素子3の個数(本実施形態では4)である。
When the current value of storage element 3 is constant, the difference in variation between estimated voltage value Ve and terminal voltage value Vb is caused by SOC fluctuation due to a temporary phenomenon. The amount of change Vb_Δocv in the open-circuit voltage value related to the terminal voltage value Vb is obtained by subtracting the amount of change in polarization ΔVz given by the above equation (3) from the amount of change in the terminal voltage value Vb from the start time t1 to the end time t2. Become. That is, the relationship of the following formula (4) is established.
Vb_Δocv=(Vb(t2)−Vb(t1))/n−ΔVz (4)
Here, Vb_Δocv is the amount of change in the open-circuit voltage value of each storage element 3 (single cell) of the storage device 1, and n is the number of storage elements 3 in the storage device 1 (4 in this embodiment).
 制御部21は、開始時点t1及び終了時点t2における端子電圧値の計測値と、等価回路モデルによる分極変化量ΔVzとを用いて演算し、上記(4)式より、開始時点t1から終了時点t2までにおける開放電圧値の変化量Vb_Δocvを算出する。 The control unit 21 calculates using the measured values of the terminal voltage values at the start time t1 and the end time t2 and the polarization change amount ΔVz by the equivalent circuit model. The change amount Vb_Δocv of the open-circuit voltage value up to is calculated.
 制御部21は、開始時点t1から終了時点t2までにおけるSOCの変化量を算出することにより、開放電圧値の変化量Vb_Δocvに対応する蓄電デバイス1のSOCの変化量ΔSOCを算出する。具体的には、制御部21は、開始時点t1から終了時点t2までにおける電流の積算値を、現在の満充電容量で除算することにより、開始時点t1から終了時点t2までにおけるSOCの変化量ΔSOCを求める。ΔSOCは、所定期間におけるSOCの所定変化量(以下、所定SOC変化量と称する)に相当する。 By calculating the amount of change in SOC from the start time t1 to the end time t2, the control unit 21 calculates the amount of change ΔSOC in the SOC of the electric storage device 1 corresponding to the amount of change Vb_Δocv in the open-circuit voltage value. Specifically, the control unit 21 divides the current integrated value from the start time t1 to the end time t2 by the current full charge capacity to obtain the SOC change amount ΔSOC from the start time t1 to the end time t2. Ask for ΔSOC corresponds to a predetermined amount of change in SOC in a predetermined period (hereinafter referred to as a predetermined amount of change in SOC).
 図7及び図8に示すグラフは、蓄電デバイス1のSOC-OCV特性を示す。図7及び図8の縦軸は開放電圧(V)、横軸はSOC(%)である。制御部21は、図7に示すように、蓄電デバイス1のSOCとOCVとの関係を示すプロファイル(SOC-OCV特性)上において、所定SOC変化量ΔSOCと、Vb_Δocvとの対応関係が成立するSOC領域を特定する。具体的には、制御部21は、予め設定される検索開始SOC値から順次所定SOC値を減算し、所定SOC変化量ΔSOCに対する端子電圧の変化量の計算値Vc_Δocvと、Vb_Δocvとが近似するSOC領域を特定する。例えば制御部21は、Vc_Δocvと、Vb_Δocvとの差分の絶対値(|Vc_Δocv-Vb_Δocv|)が所定値未満である場合、Vc_Δocvと、Vb_Δocvとが近似すると判定してよい。 The graphs shown in FIGS. 7 and 8 show the SOC-OCV characteristics of the electricity storage device 1. The vertical axis in FIGS. 7 and 8 is the open-circuit voltage (V), and the horizontal axis is the SOC (%). As shown in FIG. 7, the control unit 21 controls the SOC where the correspondence relationship between the predetermined SOC change amount ΔSOC and Vb_Δocv is established on the profile (SOC-OCV characteristic) showing the relationship between the SOC and OCV of the electricity storage device 1. Identify areas. Specifically, the control unit 21 sequentially subtracts a predetermined SOC value from a search start SOC value set in advance, and calculates an SOC that approximates the calculated value Vc_Δocv of the change amount of the terminal voltage with respect to the predetermined SOC change amount ΔSOC and Vb_Δocv. Identify areas. For example, when the absolute value of the difference between Vc_Δocv and Vb_Δocv (|Vc_Δocv−Vb_Δocv|) is less than a predetermined value, the control unit 21 may determine that Vc_Δocv and Vb_Δocv are close to each other.
 制御部21は、特定したSOC領域内のSOC値を、SOCの推定値に対する補正値とする。SOC領域内におけるSOC値の選択方法は限定的ではないが、例えば図7に示すSOC-OCV特性上において、特定したSOC領域の左端、すなわちSOC領域における最小のSOC値を補正値としてもよい。蓄電デバイス1の充電時においては、特定したSOC領域の右端、すなわちSOC領域における最大のSOC値を補正値としてもよい。得られたSOC値は、一時的な現象が発生している場合における一時的な劣化を反映したSOC値である。得られたSOC値を、見かけSOC値と称する。制御部21は、見かけSOC値により、電流積算法によるSOCの推定値を補正する。 The control unit 21 uses the SOC value within the specified SOC region as the correction value for the estimated SOC value. The method of selecting the SOC value in the SOC region is not limited, but for example, on the SOC-OCV characteristics shown in FIG. 7, the left end of the specified SOC region, that is, the minimum SOC value in the SOC region may be used as the correction value. During charging of the power storage device 1, the right end of the specified SOC region, that is, the maximum SOC value in the SOC region may be used as the correction value. The obtained SOC value is an SOC value reflecting temporary deterioration when a temporary phenomenon occurs. The obtained SOC value is called an apparent SOC value. The control unit 21 corrects the estimated value of the SOC obtained by the current integration method using the apparent SOC value.
 補正後、制御部21は、端子電圧値Vbと推定電圧値Veとの差分の絶対値(|Vb-Ve|)が第2閾値(例えば0.1V)以上であるか否かを判定する。ここで、推定電圧値Veは、見かけSOC値(補正後のSOC値)に応じたOCVを用い、等価回路モデルに基づき上記式(1)により算出される端子電圧の推定値である。適正な補正処理が行われた場合、放電時において端子電圧値Vbは、補正後の推定電圧値Veよりも大きくなると予測される。差分の絶対値が第2閾値以上である場合、端子電圧値Vbと推定電圧値Veとの乖離が大きいことから、SOC値の補正が十分でないと推定される。 After correction, the control unit 21 determines whether the absolute value of the difference (|Vb−Ve|) between the terminal voltage value Vb and the estimated voltage value Ve is equal to or greater than a second threshold value (eg, 0.1 V). Here, the estimated voltage value Ve is an estimated value of the terminal voltage calculated by the above equation (1) based on the equivalent circuit model using OCV corresponding to the apparent SOC value (SOC value after correction). If an appropriate correction process is performed, the terminal voltage value Vb is predicted to be higher than the post-correction estimated voltage value Ve during discharge. If the absolute value of the difference is equal to or greater than the second threshold, the divergence between the terminal voltage value Vb and the estimated voltage value Ve is large, so it is estimated that the SOC value is not sufficiently corrected.
 差分の絶対値が第2閾値以上である場合、図8に示すように、制御部21は、見かけSOC値に対し、所定値(例えば0.1%)を逐次加算することにより、SOC値の補正量を調整する。図8中の下側の一点鎖線の領域は、上側の一点鎖線の領域を拡大したものである。制御部21は、推定電圧値Veと端子電圧値Vbとの差分が所定値未満となるまで、調整(再補正)を繰り返す。代替的に、制御部21は、見かけSOC値に対し、所定値を逐次減算することにより、見かけSOC値を調整してもよい。なお、充電時における調整有無の判定条件も上記と同様であるが、放電時と充電時における第2閾値は異なる値であってよい。 When the absolute value of the difference is equal to or greater than the second threshold, as shown in FIG. 8, the control unit 21 sequentially adds a predetermined value (for example, 0.1%) to the apparent SOC value, thereby increasing the SOC value. Adjust the correction amount. The lower one-dot chain line area in FIG. 8 is an enlarged view of the upper one-dot chain line area. The control unit 21 repeats adjustment (re-correction) until the difference between the estimated voltage value Ve and the terminal voltage value Vb becomes less than a predetermined value. Alternatively, the control unit 21 may adjust the apparent SOC value by successively subtracting a predetermined value from the apparent SOC value. Although the conditions for determining whether or not adjustment is performed during charging are the same as above, the second threshold values during discharging and during charging may be different values.
 制御部21は、補正開始時の第1条件、すなわち電流値の絶対値が所定値以上であるとの条件を継続的に満たす場合に、上述の調整処理を実行するものであってよい。補正開始時の第1条件を満たさなくなったと判定した場合、制御部21は、補正履歴をリセットする。具体的には、制御部21は、補正開始時の第2条件である交差の履歴と、見かけSOC値への補正の履歴とをリセットする。蓄電デバイス1が新たに補正開始時の第1条件である電流条件を満たす場合に、上述の補正処理が一から開始される。 The control unit 21 may execute the adjustment process described above when the first condition at the start of correction, ie, the condition that the absolute value of the current value is equal to or greater than a predetermined value, is continuously satisfied. When determining that the first condition at the time of correction start is no longer satisfied, the control unit 21 resets the correction history. Specifically, the control unit 21 resets the history of crossing, which is the second condition at the start of correction, and the history of correction to the apparent SOC value. When the power storage device 1 newly satisfies the current condition, which is the first condition for starting correction, the correction process described above is started from scratch.
 図9及び図10は、充電電気量の補正処理手順の一例を示すフローチャートである。管理装置2の制御部21は、補正プログラム221に従って以下の処理を実行する。制御部21は、電流積算法によるSOCの推定処理と並行して補正プログラム221による処理を実行する。制御部21は、例えば所定の又は適宜の時間間隔で以下の処理を実行する。 9 and 10 are flowcharts showing an example of a procedure for correcting the amount of charged electricity. The control unit 21 of the management device 2 executes the following processes according to the correction program 221. FIG. The control unit 21 executes processing by the correction program 221 in parallel with the SOC estimation processing by the current integration method. The control unit 21 executes the following processes, for example, at predetermined or appropriate time intervals.
 制御部21は、入力部23を通じて、蓄電デバイス1の端子電圧値Vb及び電流値の計測データを取得し(ステップS11)、記憶部22に記憶する。蓄電デバイス1の端子電圧値Vbは、電圧センサ7aにより時系列的に計測される計測値である。蓄電デバイス1の電流値は、電流センサ7bにより時系列的に計測される計測値である。管理装置2が遠隔地に設置される場合、制御部21は、出力部24を介した通信によって、蓄電デバイス1の計測データを受信する。 The control unit 21 acquires measurement data of the terminal voltage value Vb and the current value of the electricity storage device 1 through the input unit 23 (step S11), and stores them in the storage unit 22. The terminal voltage value Vb of the electric storage device 1 is a measured value measured in time series by the voltage sensor 7a. The current value of the electricity storage device 1 is a measured value measured in time series by the current sensor 7b. When the management device 2 is installed at a remote location, the control unit 21 receives measurement data of the power storage device 1 through communication via the output unit 24 .
 制御部21は、第1条件として、取得した計測データに基づき、電流値が電流条件を満たすか否かを判定する(ステップS12)。電流条件とは、電流値の絶対値が電流閾値以上であるか否かである。制御部21は、電流値の絶対値と、予め設定されている所定値(電流閾値)との大小関係を判断し、電流値の絶対値が電流閾値以上であるか否かを判断する。制御部21は、入力部23より計測データを取得する都度、ステップS12以降の判定処理を実行してもよく、一定期間の計測データを記憶部22に記憶させた後、記憶部22から計測データを読み出して判定処理を実行してもよい。 As the first condition, the control unit 21 determines whether or not the current value satisfies the current condition based on the acquired measurement data (step S12). The current condition is whether or not the absolute value of the current value is greater than or equal to the current threshold. The control unit 21 determines the magnitude relationship between the absolute value of the current value and a preset predetermined value (current threshold value), and determines whether the absolute value of the current value is equal to or greater than the current threshold value. The control unit 21 may execute the determination process after step S12 each time measurement data is acquired from the input unit 23, and after storing the measurement data for a certain period in the storage unit 22, the measurement data is stored in the storage unit 22. may be read out to execute the determination process.
 電流値が電流条件を満たさない、すなわち電流値の絶対値が電流閾値未満であると判定した場合(ステップS12:NO)、制御部21は、処理をステップS12に戻し、条件を満たすまで待機する。電流値が電流条件を満たす、すなわち電流値の絶対値が電流閾値以上であると判定した場合(ステップS12:YES)、制御部21は、第2条件の判定に処理を進める。 When it is determined that the current value does not satisfy the current condition, that is, the absolute value of the current value is less than the current threshold value (step S12: NO), the control unit 21 returns the process to step S12 and waits until the condition is satisfied. . If it is determined that the current value satisfies the current condition, that is, the absolute value of the current value is equal to or greater than the current threshold (step S12: YES), the control unit 21 advances the processing to determination of the second condition.
 制御部21は、第2条件として、取得した計測データの履歴に基づき、端子電圧値Vbと推定電圧値Veとが交差したか否かを判定する(ステップS13)。端子電圧値Vbは、電圧センサ7aにより計測された端子電圧値の計測データである。推定電圧値Veは、等価回路モデルに基づき算出される蓄電デバイス1の端子電圧値の推定値である。制御部21は、電流積算法による判定時点のSOC値の推定値に基づき、予め記憶するSOC-OCV特性において、SOC値の推定値に対応する開放電圧値OCVを読み取る。制御部21は、読み取った開放電圧値OCVと、既知の回路パラメータとを用いて演算することにより、推定電圧値Veを算出する。 As a second condition, the control unit 21 determines whether or not the terminal voltage value Vb and the estimated voltage value Ve intersect based on the history of the acquired measurement data (step S13). The terminal voltage value Vb is measurement data of the terminal voltage value measured by the voltage sensor 7a. The estimated voltage value Ve is an estimated value of the terminal voltage value of the electricity storage device 1 calculated based on the equivalent circuit model. The control unit 21 reads the open-circuit voltage value OCV corresponding to the estimated SOC value in the pre-stored SOC-OCV characteristic based on the estimated SOC value at the time of determination by the current integration method. The control unit 21 calculates the estimated voltage value Ve by performing calculation using the read open-circuit voltage value OCV and known circuit parameters.
 端子電圧値Vbと推定電圧値Veとが交差していないと判定した場合(ステップS13:NO)、制御部21は、処理をステップS12に戻し、条件を満たすまで待機する。端子電圧値Vbと推定電圧値Veとが交差したと判定した場合(ステップS13:YES)、制御部21は、第3条件の判定に処理を進める。 When it is determined that the terminal voltage value Vb and the estimated voltage value Ve do not intersect (step S13: NO), the control unit 21 returns the process to step S12 and waits until the conditions are satisfied. If it is determined that the terminal voltage value Vb and the estimated voltage value Ve intersect (step S13: YES), the control unit 21 advances the processing to determination of the third condition.
 制御部21は、第3条件として、端子電圧値Vbと推定電圧値Veとの差分の絶対値(|Vb-Ve|)と、予め設定されている第1閾値との大小関係を判定し、端子電圧値Vbと推定電圧値Veとの差分の絶対値が第1閾値以上であるか否かを判定する(ステップS14)。端子電圧値Vbと推定電圧値Veとの差分の絶対値が第1閾値未満であると判定した場合(ステップS14:NO)、制御部21は、処理をステップS12に戻し、条件を満たすまで待機する。端子電圧値Vbと推定電圧値Veとの差分の絶対値が第1閾値以上であると判定した場合(ステップS14:YES)、制御部21は、補正を実行すると判定し、さらに第4条件の判定に処理を進める。 As a third condition, the control unit 21 determines the magnitude relationship between the absolute value of the difference between the terminal voltage value Vb and the estimated voltage value Ve (|Vb−Ve|) and a preset first threshold, It is determined whether or not the absolute value of the difference between the terminal voltage value Vb and the estimated voltage value Ve is greater than or equal to the first threshold (step S14). When it is determined that the absolute value of the difference between the terminal voltage value Vb and the estimated voltage value Ve is less than the first threshold (step S14: NO), the control unit 21 returns the process to step S12 and waits until the condition is satisfied. do. When it is determined that the absolute value of the difference between the terminal voltage value Vb and the estimated voltage value Ve is equal to or greater than the first threshold value (step S14: YES), the control unit 21 determines to execute correction, and furthermore, the fourth condition Proceed to judgment.
 制御部21は、第4条件として、第1条件から第3条件を満たす状態が所定時間以上継続しているか否かを判定する(ステップS15)。詳細には、制御部21は、第2条件である端子電圧値Vbと推定電圧値Veとの交差後、第1条件である電流条件を満たし且つ第3条件である電圧条件を満たす最初の時点(開始時点)t1から、電流条件及び電圧条件を満たしたまま所定時間以上が経過したか否かを判定する。所定時間以上継続していないと判定した場合(ステップS15:NO)、制御部21は、処理をステップS15に戻し、所定時間以上継続するまで待機する。 As the fourth condition, the control unit 21 determines whether or not the state of satisfying the first to third conditions has continued for a predetermined time or longer (step S15). Specifically, the control unit 21 first satisfies the current condition, which is the first condition, and the voltage condition, which is the third condition, after the intersection of the terminal voltage value Vb and the estimated voltage value Ve which are the second condition. (Start point) From t1, it is determined whether or not a predetermined time or more has passed while the current condition and the voltage condition are satisfied. If it is determined that it has not continued for the predetermined time or longer (step S15: NO), the control unit 21 returns the process to step S15 and waits until it continues for the predetermined time or longer.
 所定時間以上継続していると判定した場合(ステップS15:YES)、制御部21は、補正処理を進める。制御部21は、所定時間の開始時点t1から終了時点t2までにおける、開放電圧値の変化量Vb_Δocvを算出する(ステップS16)。なお、第4条件における所定時間と、開放電圧値の変化量Vb_Δocvの算出に関する所定時間との開始時点t1、終了時点t2及び時間長はそれぞれ異なるものであってもよい。開放電圧値の変化量Vb_Δocvの算出に関する開始時点t1は、第1条件から第3条件を満たす任意の時点であってもよく、終了時点t2は、開始時点t1から所定の時間経過後における時点であってもよい。 If it is determined that it has continued for the predetermined time or longer (step S15: YES), the control unit 21 proceeds with the correction process. The control unit 21 calculates the change amount Vb_Δocv of the open-circuit voltage value from the start time t1 to the end time t2 of the predetermined time (step S16). Note that the start time t1, the end time t2, and the time length of the predetermined time under the fourth condition and the predetermined time related to the calculation of the change amount Vb_Δocv of the open-circuit voltage value may be different. The start time t1 for calculating the change amount Vb_Δocv of the open-circuit voltage value may be any time that satisfies the first to third conditions, and the end time t2 is a time after a predetermined time has elapsed from the start time t1. There may be.
 制御部21は、開始時点t1及び終了時点t2における端子電圧値の計測値と、等価回路モデルによる分極変化量ΔVzとに基づき、開放電圧値の変化量Vb_Δocvを算出する。制御部21は、単セル毎の開始時点t1から終了時点t2までの端子電圧値Vbの変化量から、分極変化量ΔVzを減算することにより、Vb_Δocvを算出する。 The control unit 21 calculates the change amount Vb_Δocv of the open-circuit voltage value based on the measured values of the terminal voltage values at the start time t1 and the end time t2 and the polarization change amount ΔVz by the equivalent circuit model. The control unit 21 calculates Vb_Δocv by subtracting the polarization change amount ΔVz from the change amount of the terminal voltage value Vb from the start time t1 to the end time t2 for each single cell.
 制御部21は、算出した開放電圧値の変化量Vb_Δocvに対応する蓄電デバイス1のSOCの変化量ΔSOCを算出する(ステップS17)。具体的には、制御部21は、開始時点t1から終了時点t2までにおける電流の積算値を、現在の満充電容量で除算することにより、開始時点t1から終了時点t2までにおけるSOCの変化量(所定SOC変化量)ΔSOCを求める。 The control unit 21 calculates the amount of change ΔSOC in the SOC of the electricity storage device 1 corresponding to the calculated amount of change Vb_Δocv in the open-circuit voltage value (step S17). Specifically, the control unit 21 divides the integrated value of the current from the start time t1 to the end time t2 by the current full charge capacity to obtain the SOC change amount from the start time t1 to the end time t2 ( Predetermined SOC change amount) ΔSOC is obtained.
 制御部21は、算出した所定SOC変化量ΔSOCと、開放電圧値の変化量Vb_Δocvとに基づき、見かけSOC値を取得する(ステップS18)。詳細には、制御部21は、SOC-OCV特性において、所定SOC変化量ΔSOCに対応する開放電圧値の変化量の計算値Vc_Δocvが、Vb_Δocvに近似するSOC領域を特定する。制御部21は、特定したSOC領域内のSOC値を、見かけSOC値とする。制御部21は、電流積算によるSOCの推定値を、取得した見かけSOC値に補正する(ステップS19)。 The control unit 21 acquires the apparent SOC value based on the calculated predetermined SOC change amount ΔSOC and the open-circuit voltage value change amount Vb_Δocv (step S18). Specifically, in the SOC-OCV characteristic, the control unit 21 identifies an SOC region in which the calculated value Vc_Δocv of the change amount of the open-circuit voltage value corresponding to the predetermined SOC change amount ΔSOC approximates Vb_Δocv. The control unit 21 sets the SOC value within the identified SOC region as the apparent SOC value. The control unit 21 corrects the estimated value of the SOC obtained by current integration to the obtained apparent SOC value (step S19).
 制御部21は、端子電圧値Vbと、補正後の推定電圧値Veとの差分の絶対値(|Vb-Ve|)と、予め設定されている第2閾値との大小関係を判定し、端子電圧値Vbと、補正後の推定電圧値Veとの差分の絶対値が第2閾値以上であるか否かを判定する(ステップS20)。制御部21は、電流積算法による補正後のSOC値に基づき、予め記憶するSOC-OCV特性において、補正後のSOC値に対応する開放電圧値OCVを読み取る。制御部21は、読み取った開放電圧値OCVと、既知の回路パラメータとを用いて演算することにより、補正後の推定電圧値Veを算出する。 The control unit 21 determines the magnitude relationship between the absolute value of the difference between the terminal voltage value Vb and the corrected estimated voltage value Ve (|Vb−Ve|) and a preset second threshold. It is determined whether or not the absolute value of the difference between the voltage value Vb and the corrected estimated voltage value Ve is greater than or equal to the second threshold (step S20). Based on the SOC value after correction by the current integration method, the control unit 21 reads the open-circuit voltage value OCV corresponding to the SOC value after correction in the SOC-OCV characteristic stored in advance. The control unit 21 calculates the corrected estimated voltage value Ve by performing calculations using the read open-circuit voltage value OCV and known circuit parameters.
 端子電圧値Vbと推定電圧値Veとの差分の絶対値が第2閾値未満であると判定した場合(ステップS20:NO)、制御部21は一連の処理を終了する。
 端子電圧値Vbと推定電圧値Veとの差分の絶対値が第2閾値以上であると判定した場合(ステップS20:YES)、制御部21は、蓄電デバイス1の電流値に対し、第1条件の電流条件を満たす状態が終了しているか否かを判定する(ステップS21)。
When determining that the absolute value of the difference between the terminal voltage value Vb and the estimated voltage value Ve is less than the second threshold (step S20: NO), the controller 21 terminates the series of processes.
When determining that the absolute value of the difference between the terminal voltage value Vb and the estimated voltage value Ve is equal to or greater than the second threshold (step S20: YES), the control unit 21 sets the current value of the electricity storage device 1 to the first condition. (step S21).
 電流条件を満たす状態が終了していないと判定した場合(ステップS21:NO)、制御部21は、見かけSOC値に対し、所定値を加算又は減算することにより、見かけSOC値を調整(再補正)する(ステップS22)。調整後、制御部21は、処理をステップS20に戻し、補正後の推定電圧値Veと端子電圧値Vbとの差分の絶対値が第2閾値未満となるまで、見かけSOC値の調整を繰り返す。 If it is determined that the current condition is not satisfied (step S21: NO), the controller 21 adjusts (re-corrects) the apparent SOC value by adding or subtracting a predetermined value to or from the apparent SOC value. ) (step S22). After the adjustment, the control unit 21 returns the process to step S20, and repeats the adjustment of the apparent SOC value until the absolute value of the difference between the corrected estimated voltage value Ve and the terminal voltage value Vb becomes less than the second threshold.
 電流条件を満たす状態が終了していると判定した場合(ステップS21:YES)、制御部21は、補正履歴をリセットし(ステップS23)、一連の処理を終了する。具体的には、制御部21は、補正開始時の第2条件である交差の履歴と、見かけSOC値への補正の履歴とをリセットする。制御部21は、補正後のSOC値、又は補正後のSOC値に基づく情報を出力部24を介し表示装置等へ出力してもよい。 When it is determined that the current condition is satisfied (step S21: YES), the control unit 21 resets the correction history (step S23) and ends the series of processes. Specifically, the control unit 21 resets the history of crossing, which is the second condition at the start of correction, and the history of correction to the apparent SOC value. The control unit 21 may output the corrected SOC value or information based on the corrected SOC value to a display device or the like via the output unit 24 .
 制御部21は、上述の処理後、上述の処理により得られた見かけSOC値を用いて、電流積算法によるSOCの推定を実施してもよい。 After the above process, the control unit 21 may estimate the SOC by the current integration method using the apparent SOC value obtained by the above process.
上記では、充電電気量としてSOCを補正した。代替的に、充電電気量は蓄電デバイス1に蓄えられた現在のエネルギーの量の値であればよく、例えば電力量であってもよい。 In the above description, the SOC is corrected as the charge quantity of electricity. Alternatively, the amount of charged electricity may be the value of the current amount of energy stored in the power storage device 1, and may be the amount of electric power, for example.
 本実施形態によれば、蓄電デバイス1における一時的な現象の発生に応じて、一時的な現象に応じたSOC変動を反映することで、SOCの推定値を精度よく補正できる。 According to the present embodiment, the SOC estimated value can be accurately corrected by reflecting the SOC fluctuation corresponding to the temporary phenomenon in response to the occurrence of the temporary phenomenon in the electricity storage device 1 .
(第2実施形態)
 第2実施形態では、蓄電デバイス1が所定条件を満たす場合に、見かけSOC値による補正を終了する。以下では主に第1実施形態との相違点を説明し、第1実施形態と共通する構成については同一の符号を付してその詳細な説明を省略する。
(Second embodiment)
In the second embodiment, correction based on the apparent SOC value ends when the power storage device 1 satisfies a predetermined condition. In the following, the differences from the first embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the first embodiment, and detailed description thereof will be omitted.
 図11は、見かけSOC値による補正終了の概念を説明する説明図である。図11に示すグラフは、蓄電デバイス1のSOC-OCV特性を示す。図11の縦軸は開放電圧(V)、横軸はSOC(%)である。 FIG. 11 is an explanatory diagram for explaining the concept of termination of correction based on the apparent SOC value. The graph shown in FIG. 11 shows the SOC-OCV characteristics of the electricity storage device 1. As shown in FIG. The vertical axis in FIG. 11 is open circuit voltage (V), and the horizontal axis is SOC (%).
 管理装置2の制御部21は、第1実施形態にて説明した処理を実行し、見かけSOC値により、電流積算によるSOCの推定値を補正する。制御部21は、補正後のSOCの推定値を新たな初期値(基準値)として、その後のSOCの推定を実行する。制御部21は、蓄電デバイス1が所定条件を満たす場合、見かけSOC値による補正を終了する。補正を終了した場合、制御部21は、SOC値を、見かけSOC値から電流積算によるSOCの推定値に復帰させる。言い換えれば、制御部21は、SOC値を補正前のSOCの推定値に戻す。制御部21は、電流積算によるSOCの推定値を新たな初期値(基準値)として、その後のSOCの推定を実行する。 The control unit 21 of the management device 2 executes the processing described in the first embodiment, and corrects the SOC estimated value by current integration based on the apparent SOC value. The control unit 21 performs subsequent SOC estimation using the corrected SOC estimated value as a new initial value (reference value). If the power storage device 1 satisfies a predetermined condition, the control unit 21 terminates the correction based on the apparent SOC value. When the correction is finished, the control unit 21 restores the SOC value from the apparent SOC value to the estimated SOC value obtained by current integration. In other words, the control unit 21 restores the SOC value to the estimated SOC value before correction. The control unit 21 uses the estimated value of the SOC obtained by the current integration as a new initial value (reference value) to perform the subsequent estimation of the SOC.
 補正の終了に係る所定条件は限定的ではないが、一例として、蓄電デバイス1の充電時において、見かけSOC値が予め設定される第3閾値以上となった場合、制御部21は、見かけSOC値による補正を終了する。第3閾値には、例えばプラトー領域の下端(プラトー領域における最小のSOC値)が設定されてもよい。他の例として、車両ECU等から満充電制御の開始信号を受け付けた場合、制御部21は、見かけSOC値による補正を終了してもよい。 Although the predetermined condition for ending the correction is not limited, as an example, when the apparent SOC value becomes equal to or higher than a preset third threshold during charging of the power storage device 1, the control unit 21 sets the apparent SOC value to end the correction by For example, the lower end of the plateau region (minimum SOC value in the plateau region) may be set as the third threshold. As another example, when receiving a full charge control start signal from the vehicle ECU or the like, the control unit 21 may terminate the correction based on the apparent SOC value.
 図12は、第2実施形態における補正終了の処理手順の一例を示すフローチャートである。制御部21は、蓄電デバイス1が所定条件を満たすか否かを判定する(ステップS31)。一例として、制御部21は、見かけSOC値が第3閾値以上であるか否かを判定する。見かけSOC値が第3閾値未満である場合、制御部21は、所定条件を満たさないと判定する。見かけSOC値が第3閾値以上である場合、制御部21は、所定条件を満たすと判定する。 FIG. 12 is a flowchart showing an example of a processing procedure for ending correction in the second embodiment. The control unit 21 determines whether or not the power storage device 1 satisfies a predetermined condition (step S31). As an example, the control unit 21 determines whether or not the apparent SOC value is greater than or equal to the third threshold. When the apparent SOC value is less than the third threshold, the control unit 21 determines that the predetermined condition is not satisfied. When the apparent SOC value is equal to or greater than the third threshold, the control unit 21 determines that the predetermined condition is satisfied.
 蓄電デバイス1が所定条件を満たさないと判定した場合(ステップS31:NO)、制御部21は処理を終了する。すなわち、蓄電デバイス1が所定条件を満たさないと判定した場合、制御部21は見かけSOC値による補正を終了しない。蓄電デバイス1が所定条件を満たすと判定した場合(ステップS31:YES)、制御部21は、見かけSOC値による補正を終了し、蓄電デバイス1のSOC値を、見かけSOC値から電流積算によるSOCの推定値に復帰させ(ステップS32)、一連の処理を終了する。 When it is determined that the power storage device 1 does not satisfy the predetermined condition (step S31: NO), the control unit 21 terminates the process. That is, when it is determined that the power storage device 1 does not satisfy the predetermined condition, the control unit 21 does not end the correction based on the apparent SOC value. When it is determined that the power storage device 1 satisfies the predetermined condition (step S31: YES), the control unit 21 ends the correction based on the apparent SOC value, and converts the SOC value of the power storage device 1 from the apparent SOC value to the SOC calculated by current integration. The estimated value is restored (step S32), and the series of processing ends.
 本実施形態によれば、見かけSOC値による補正範囲を限定することで、蓄電デバイス1におけるSOC値の補正精度を向上できる。 According to the present embodiment, by limiting the correction range based on the apparent SOC value, the correction accuracy of the SOC value in the electricity storage device 1 can be improved.
 補正方法、補正装置及びプログラムは、車両以外の用途にも適用可能であり、航空機、フライイングビークル、HAPS(High Altitude Platform Station)等の飛行体に適用されてもよいし、船舶や潜水艦に適用されてもよい。補正方法、補正装置及びプログラムは、高度な安全性が求められる(リアルタイムでのSOC値の補正が求められる)移動体に適用することが好ましいが、移動体に限らず、定置用蓄電デバイスに適用されてもよい。 The correction method, correction device, and program can be applied to applications other than vehicles, and may be applied to flying objects such as aircraft, flying vehicles, HAPS (High Altitude Platform Station), and to ships and submarines. may be The correction method, correction apparatus, and program are preferably applied to mobile objects that require a high degree of safety (requires correction of SOC values in real time), but are not limited to mobile objects and can be applied to stationary power storage devices. may be
 今回開示した実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。各実施例にて記載されている技術的特徴は互いに組み合わせることができ、本発明の範囲は、特許請求の範囲内での全ての変更及び特許請求の範囲と均等の範囲が含まれることが意図される。 The embodiments disclosed this time should be considered as examples in all respects and not restrictive. The technical features described in each embodiment can be combined with each other, and the scope of the present invention is intended to include all modifications within the scope of the claims and the scope of equivalents to the scope of the claims. be done.
 1 蓄電デバイス
 2 管理装置(補正装置)
 21 制御部
 22 記憶部
 23 入力部
 24 出力部
 221 補正プログラム
 222 補正データ
 2A 記録媒体
 3 蓄電素子
1 power storage device 2 management device (correction device)
21 control unit 22 storage unit 23 input unit 24 output unit 221 correction program 222 correction data 2A recording medium 3 storage element

Claims (9)

  1.  蓄電デバイスの通電時における端子電圧値と、前記蓄電デバイスの等価回路モデルを用いて推定される推定電圧値との差分が第1閾値以上であるか否かを判定し、
     前記差分が第1閾値以上であると判定した場合、前記等価回路モデルから得られる、前記蓄電デバイスの充電電気量の所定変化量に応じた前記蓄電デバイスの開放電圧値の変化量に基づいて、前記蓄電デバイスにおける前記充電電気量の推定値を補正する
     処理をコンピュータが実行する補正方法。
    determining whether a difference between a terminal voltage value when the power storage device is energized and an estimated voltage value estimated using an equivalent circuit model of the power storage device is equal to or greater than a first threshold;
    When it is determined that the difference is equal to or greater than the first threshold, based on the amount of change in the open-circuit voltage value of the electricity storage device according to the predetermined amount of change in the amount of charged electricity of the electricity storage device, obtained from the equivalent circuit model, A correction method in which a computer executes a process of correcting the estimated value of the charged quantity of electricity in the power storage device.
  2.  前記蓄電デバイスの充電電気量と開放電圧値との関係を示すプロファイルにおいて、前記充電電気量の所定変化量と前記開放電圧値の変化量との対応関係を満たす充電電気量領域を特定し、
     特定した前記充電電気量領域に基づいて、前記充電電気量の推定値を補正する
     請求項1に記載の補正方法。
    In the profile indicating the relationship between the charged quantity of electricity and the open circuit voltage value of the power storage device, specifying a charged quantity of electricity region that satisfies the corresponding relationship between the predetermined amount of change in the charged quantity of electricity and the amount of change in the open circuit voltage value,
    The correction method according to claim 1, wherein the estimated value of the charged quantity of electricity is corrected based on the specified charged quantity of electricity region.
  3.  前記差分が第1閾値以上である第1時点及び第2時点における前記端子電圧値の差分から、前記第1時点及び第2時点における前記等価回路モデルに係る分極電圧値の差分を減算することにより、前記開放電圧値の変化量を算出する
     請求項1又は請求項2に記載の補正方法。
    By subtracting the difference in the polarization voltage value according to the equivalent circuit model at the first time point and the second time point from the difference in the terminal voltage value at the first time point and the second time point where the difference is equal to or greater than the first threshold 3. The correction method according to claim 1 or 2, wherein the amount of change in said open-circuit voltage value is calculated.
  4.  前記蓄電デバイスの通電履歴に基づき、前記端子電圧値と前記推定電圧値とが交差したか否かを判定し、
     前記端子電圧値と前記推定電圧値とが交差したと判定した場合、前記充電電気量の推定値を補正する
     請求項1から請求項3のいずれか1項に記載の補正方法。
    determining whether the terminal voltage value and the estimated voltage value intersect based on the energization history of the electricity storage device;
    The correction method according to any one of claims 1 to 3, further comprising correcting the estimated value of the charged quantity of electricity when it is determined that the terminal voltage value and the estimated voltage value intersect.
  5.  前記充電電気量の補正後における前記端子電圧値と前記推定電圧値との差分が第2閾値以上である場合、補正後の前記充電電気量に対し所定値を逐次加算又は減算することにより、前記充電電気量の推定値を再補正する
     請求項1から請求項4のいずれか1項に記載の補正方法。
    When the difference between the terminal voltage value and the estimated voltage value after the correction of the charge quantity of electricity is equal to or greater than a second threshold, by sequentially adding or subtracting a predetermined value to the corrected charge quantity of electricity, the The correction method according to any one of claims 1 to 4, further comprising recorrecting the estimated value of the charged quantity of electricity.
  6.  補正後の前記充電電気量が第3閾値以上となった場合、前記充電電気量の推定値の補正を終了し、補正前の前記充電電気量の推定値に戻す
     請求項1から請求項5のいずれか1項に記載の補正方法。
    When the charge quantity of electricity after correction becomes equal to or greater than a third threshold, the correction of the estimated value of the charge quantity of electricity is terminated, and the estimated value of the charge quantity of electricity before correction is restored. The correction method according to any one of the items.
  7.  蓄電デバイスの通電時における端子電圧値と、前記蓄電デバイスの等価回路モデルを用いて推定される推定電圧値との差分が第1閾値以上であるか否かを判定し、
     前記差分が第1閾値以上であると判定した場合、前記等価回路モデルから得られる、前記蓄電デバイスの充電電気量の所定変化量に応じた前記蓄電デバイスの開放電圧値の変化量に基づいて、前記蓄電デバイスにおける前記充電電気量の推定値を補正する
     処理をコンピュータに実行させるコンピュータプログラム。
    determining whether a difference between a terminal voltage value when the power storage device is energized and an estimated voltage value estimated using an equivalent circuit model of the power storage device is equal to or greater than a first threshold;
    When it is determined that the difference is equal to or greater than the first threshold, based on the amount of change in the open-circuit voltage value of the electricity storage device according to the predetermined amount of change in the amount of charged electricity of the electricity storage device, obtained from the equivalent circuit model, A computer program that causes a computer to execute a process of correcting the estimated value of the charge quantity of electricity in the power storage device.
  8.  蓄電デバイスの充電電気量の推定値の補正に関する制御を実行する制御部を備え、
     前記制御部は、
     前記蓄電デバイスの通電時における端子電圧値と、前記蓄電デバイスの等価回路モデルを用いて推定される推定電圧値との差分が第1閾値以上であるか否かを判定し、
     前記差分が第1閾値以上であると判定した場合、前記等価回路モデルから得られる、前記蓄電デバイスの充電電気量の所定変化量に応じた前記蓄電デバイスの開放電圧値の変化量に基づいて、前記蓄電デバイスにおける前記充電電気量の推定値を補正する
     補正装置。
    A control unit that executes control related to correction of the estimated value of the charge amount of electricity of the power storage device,
    The control unit
    determining whether a difference between a terminal voltage value of the electricity storage device when energized and an estimated voltage value estimated using an equivalent circuit model of the electricity storage device is equal to or greater than a first threshold;
    When it is determined that the difference is equal to or greater than the first threshold, based on the amount of change in the open-circuit voltage value of the electricity storage device according to the predetermined amount of change in the amount of charged electricity of the electricity storage device, obtained from the equivalent circuit model, A correction device that corrects the estimated value of the amount of charge in the power storage device.
  9.  蓄電素子と、請求項8に記載の補正装置と
     を備える蓄電デバイス。
    An electricity storage device comprising: an electricity storage element; and the correction device according to claim 8 .
PCT/JP2022/031642 2021-08-26 2022-08-23 Correcting method, computer program, correcting apparatus, and electricity storage device WO2023027049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-138160 2021-08-26
JP2021138160A JP2023032183A (en) 2021-08-26 2021-08-26 Correction method, computer program, correction device, and power storage device

Publications (1)

Publication Number Publication Date
WO2023027049A1 true WO2023027049A1 (en) 2023-03-02

Family

ID=85322780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031642 WO2023027049A1 (en) 2021-08-26 2022-08-23 Correcting method, computer program, correcting apparatus, and electricity storage device

Country Status (2)

Country Link
JP (1) JP2023032183A (en)
WO (1) WO2023027049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117278643A (en) * 2023-11-20 2023-12-22 杭州广安汽车电器有限公司 Vehicle-mounted cloud calibration data transmission system based on cloud edge cooperation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079472A (en) * 2002-08-22 2004-03-11 Nissan Motor Co Ltd Charging rate estimation device of secondary battery
JP2008010420A (en) * 2006-06-26 2008-01-17 Samsung Sdi Co Ltd Battery management system, estimating method of state of charging of battery and driving method of battery management system
JP2013072677A (en) * 2011-09-27 2013-04-22 Primearth Ev Energy Co Ltd Charge condition estimation device of secondary battery
JP2016099156A (en) * 2014-11-19 2016-05-30 株式会社デンソー State of charge calculation device
WO2018029849A1 (en) * 2016-08-12 2018-02-15 富士通株式会社 Estimation device, estimation program, and charging control device
JP2018146343A (en) * 2017-03-03 2018-09-20 株式会社デンソーテン Battery management device and battery management method
JP2019158836A (en) * 2018-03-16 2019-09-19 株式会社デンソーテン Estimation device and method for estimation
CN113009361A (en) * 2021-03-13 2021-06-22 福州大学 Battery state of charge estimation method based on open circuit voltage calibration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079472A (en) * 2002-08-22 2004-03-11 Nissan Motor Co Ltd Charging rate estimation device of secondary battery
JP2008010420A (en) * 2006-06-26 2008-01-17 Samsung Sdi Co Ltd Battery management system, estimating method of state of charging of battery and driving method of battery management system
JP2013072677A (en) * 2011-09-27 2013-04-22 Primearth Ev Energy Co Ltd Charge condition estimation device of secondary battery
JP2016099156A (en) * 2014-11-19 2016-05-30 株式会社デンソー State of charge calculation device
WO2018029849A1 (en) * 2016-08-12 2018-02-15 富士通株式会社 Estimation device, estimation program, and charging control device
JP2018146343A (en) * 2017-03-03 2018-09-20 株式会社デンソーテン Battery management device and battery management method
JP2019158836A (en) * 2018-03-16 2019-09-19 株式会社デンソーテン Estimation device and method for estimation
CN113009361A (en) * 2021-03-13 2021-06-22 福州大学 Battery state of charge estimation method based on open circuit voltage calibration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117278643A (en) * 2023-11-20 2023-12-22 杭州广安汽车电器有限公司 Vehicle-mounted cloud calibration data transmission system based on cloud edge cooperation
CN117278643B (en) * 2023-11-20 2024-01-26 杭州广安汽车电器有限公司 Vehicle-mounted cloud calibration data transmission system based on cloud edge cooperation

Also Published As

Publication number Publication date
JP2023032183A (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP6471179B2 (en) Insulation resistance measuring apparatus and method capable of quickly measuring insulation resistance
CN106324508B (en) Battery health state detection device and method
KR102335296B1 (en) Wireless Network based Battery Management System
CN108369258B (en) State estimation device and state estimation method
EP3056918B1 (en) Apparatus for estimating state of hybrid secondary battery and method therefor
US10845417B2 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
WO2019025171A1 (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery
JP2006242880A (en) Condition detector for power supply device, power supply device, and initial characteristic extractor used for power supply device
WO2017170621A1 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
US20170199250A1 (en) Apparatus and method for estimating open circuit voltage
EP4152022B1 (en) Method for determining full-charge capacity of battery pack, method for determining state of health of battery pack, system, and apparatus
KR20220034543A (en) Method for estimating state of charge of battery
Ansean et al. Electric vehicle Li-Ion battery evaluation based on internal resistance analysis
WO2023027049A1 (en) Correcting method, computer program, correcting apparatus, and electricity storage device
KR101268082B1 (en) SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage
Skoog Electro-thermal modeling of high-performance lithium-ion energy storage systems including reversible entropy heat
JP6375215B2 (en) Method for determining presence / absence of memory effect and apparatus for determining presence / absence of memory effect
US20230402666A1 (en) Abnormality detection method, abnormality detection device, energy storage apparatus, and computer program
JP2020079764A (en) Secondary-battery state determination method
JP7375473B2 (en) Energy storage amount estimating device, energy storage amount estimation method, and computer program
Banaei et al. Online detection of terminal voltage in Li-ion batteries via battery impulse response
WO2024004780A1 (en) Estimating device, electric power storage device, estimating method, and computer program
WO2023139973A1 (en) Estimation device, power storage device, estimation method, and program
WO2022220214A1 (en) Voltage estimation method, voltage estimation device, and voltage estimation program
US11495838B2 (en) Method for balancing states of charge of an electrical energy store

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE