WO2022270444A1 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
WO2022270444A1
WO2022270444A1 PCT/JP2022/024412 JP2022024412W WO2022270444A1 WO 2022270444 A1 WO2022270444 A1 WO 2022270444A1 JP 2022024412 W JP2022024412 W JP 2022024412W WO 2022270444 A1 WO2022270444 A1 WO 2022270444A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
liquid crystal
optical element
light
potential
Prior art date
Application number
PCT/JP2022/024412
Other languages
French (fr)
Japanese (ja)
Inventor
幸次朗 池田
健夫 小糸
多惠 黒川
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to JP2023530443A priority Critical patent/JPWO2022270444A1/ja
Priority to CN202280034647.9A priority patent/CN117296001A/en
Publication of WO2022270444A1 publication Critical patent/WO2022270444A1/en
Priority to US18/523,430 priority patent/US20240102633A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • An embodiment of the present invention relates to an element that controls light distribution using the optical properties of liquid crystals, and a lighting device that includes an element that controls light distribution using the optical properties of liquid crystals.
  • a liquid crystal lens is known as an optical element using liquid crystal (liquid crystal optical element) that electrically controls the focal length by supplying voltage to the liquid crystal to change the refractive index of the liquid crystal.
  • Patent Documents 1 and 2 disclose a lighting device that controls the spread of light emitted from a light source using a liquid crystal cell provided with concentric electrodes.
  • Patent Document 3 discloses a beam shaping device pattern that controls light distribution by changing the shape of electrodes for supplying voltage to liquid crystal.
  • the illumination devices described in Patent Document 1 or Patent Document 2 use a liquid crystal lens, and are only aimed at condensing light by controlling the spread distribution of light, that is, the light distribution angle.
  • the light distribution pattern of light is limited to concentric circles.
  • the beam shaping device described in Patent Document 3 requires a liquid crystal having a complicated configuration in order to obtain variations in the light alignment pattern, such as changing the pattern of electrodes applied to the liquid crystal to change the light distribution pattern. A cell was required, and mass productivity was poor.
  • one of the objects of one embodiment of the present invention is to provide a liquid crystal optical element and a lighting device capable of controlling light distribution or light distribution pattern.
  • An illumination device includes a light source having a first optical element and a second optical element that emit light having directivity, and transmitting or transmitting light emitted from the light source. and one liquid crystal optical element for diffusing, wherein the light source is arranged such that the first optical element and the second optical element emit light in different directions, and the liquid crystal optical element comprises the A first electrode group on the light exit surface of the first optical element, and a second electrode group provided adjacent to the first electrode group so as to face the light exit surface of the second optical element.
  • the first electrode group includes first transparent electrodes and second transparent electrodes alternately arranged in a comb shape with the first transparent electrodes, and
  • the electrode group has a third transparent electrode and a fourth transparent electrode arranged alternately with the third transparent electrode in a comb shape, and the first transparent electrode and the second transparent electrode. are alternately arranged, is different from the pitch at which the third transparent electrodes and the fourth transparent electrodes are alternately arranged.
  • FIG. 1 is a schematic end cross-sectional view of a lighting device according to an embodiment of the present invention
  • FIG. 1 is a schematic end cross-sectional view of an optical element according to one embodiment of the present invention
  • FIG. 1 is a schematic perspective view of a liquid crystal optical element according to an embodiment of the invention
  • FIG. 1 is a schematic end cross-sectional view of a liquid crystal optical element according to an embodiment of the present invention
  • FIG. 1 is a schematic end cross-sectional view of a liquid crystal optical element according to an embodiment of the present invention
  • FIG. 1 is a schematic end cross-sectional view of a liquid crystal optical element according to an embodiment of the present invention
  • FIG. In a liquid crystal optical element according to an embodiment of the present invention a first transparent electrode, a second transparent electrode, a fifth transparent electrode, a sixth transparent electrode, a ninth transparent electrode, and FIG.
  • FIG. 10 is a schematic plan view showing the arrangement of tenth transparent electrodes.
  • FIG. 12 is a schematic plan view showing the arrangement of a twelfth transparent electrode;
  • FIG. 2 is a schematic end cross-sectional view showing the orientation of liquid crystals in a liquid crystal layer in a liquid crystal optical element according to an embodiment of the present invention.
  • FIG. 2 is a schematic end cross-sectional view showing the orientation of liquid crystals in a liquid crystal layer in a liquid crystal optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic plan view showing the configuration of a lighting device according to one embodiment of the present invention
  • FIG. FIG. 2 is a schematic plan view for explaining connection of transparent electrodes of a liquid crystal optical element according to an embodiment of the present invention
  • 4 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device according to the embodiment of the present invention.
  • 4 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device according to the embodiment of the present invention.
  • 4 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device according to the embodiment of the present invention.
  • 4 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device according to the embodiment of the present invention.
  • FIGS. 18A to 28H are schematic diagrams showing light distribution patterns of light emitted from the illumination device according to one embodiment of the present invention.
  • 1 is a cross-sectional end view of a lighting device according to an embodiment of the present invention; FIG.
  • FIG. 1 is a cross-sectional end view of an optical element according to one embodiment of the present invention
  • FIG. It is an end sectional view of a lighting device according to a second embodiment of the present invention.
  • FIG. 5 is a plan view of a light source according to a second embodiment of the invention; It is an end sectional view of a lighting device according to a third embodiment of the present invention.
  • the first transparent electrode, the second transparent electrode, the fifth transparent electrode, the sixth transparent electrode, the ninth transparent electrode on the first substrate and a schematic plan view showing the arrangement of a tenth transparent electrode.
  • FIG. 12 is a schematic plan view showing the arrangement of the 12th transparent electrode.
  • FIG. 11 is a schematic plan view for explaining connection of transparent electrodes of a liquid crystal optical element according to a fourth embodiment of the present invention
  • FIG. 10 is a plan view of a light source according to a fifth embodiment of the invention.
  • the light distribution patterns shown in FIGS. 28A to 28F are schematic diagrams showing light distribution patterns of light emitted from the illumination device according to the fifth embodiment of the present invention.
  • a member or region when a member or region is “above (or below)” another member or region, it means directly above (or directly below) the other member or region unless otherwise specified. Includes not only one case but also the case above (or below) another member or region, that is, the case where another component is included between above (or below) another member or region .
  • each structure when one film is processed to form a plurality of structures, each structure may have different functions and roles, and each structure may have different functions and roles.
  • the underlying substrate may be different.
  • these multiple structures originate from films formed as the same layer in the same process and have the same material. Therefore, these multiple films are defined as existing in the same layer.
  • includes A, B or C
  • includes any one of A, B and C
  • is one selected from the group consisting of A, B and C "including” does not exclude the case where ⁇ includes a plurality of combinations of A to C unless otherwise specified. Furthermore, these expressions do not exclude the case where ⁇ contains other elements.
  • FIG. 1 is a schematic cross-sectional end view showing an example of a lighting device 30 according to an embodiment of the invention.
  • FIG. 2 is a schematic end cross-sectional view of an optical element 40 according to one embodiment of the invention.
  • illumination device 30 includes one liquid crystal optical element 10 and light source 20 .
  • the liquid crystal optical element 10 includes a first liquid crystal cell 110a, a second liquid crystal cell 110b, a third liquid crystal cell 110c, a fourth liquid crystal cell 110d, a first transparent adhesive layer 130a, a second transparent adhesive layer 130b and a third transparent adhesive layer 130c.
  • the first transparent adhesive layer 130a is provided between the first liquid crystal cell 110a and the second liquid crystal cell 110b
  • the second transparent adhesive layer 130b is provided between the second liquid crystal cell 110b and the third liquid crystal cell 110b.
  • 110c and the third transparent adhesive layer 130c is provided between the third liquid crystal cell 110c and the fourth liquid crystal cell 110d.
  • the cells 110d are stacked in the z-axis direction.
  • the first transparent adhesive layer 130a adheres and fixes the first liquid crystal cell 110a and the second liquid crystal cell 110b. Similar to the first transparent adhesive layer 130a, the second transparent adhesive layer 130b adheres and fixes the second liquid crystal cell 110b and the third liquid crystal cell 110c, and the third transparent adhesive layer 130c The third liquid crystal cell 110c and the fourth liquid crystal cell 110d are adhered and fixed.
  • An optical elastic resin can be used as a material for forming the first transparent adhesive layer 130a, the second transparent adhesive layer 130b, and the third transparent adhesive layer 130c.
  • the optical elastic resin is, for example, an adhesive containing acrylic resin having translucency.
  • the light source 20 has an optical element 40 and a support member 50a.
  • the light source 20 is arranged below the first liquid crystal cell 110 a of the liquid crystal optical element 10 . Therefore, the light emitted from the light source 20 passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d in order.
  • the support member 50 a has a role of supporting (fixing) the optical element 40 .
  • the support member 50a has a curved surface, and has a convex shape in a cross-sectional view.
  • a polycarbonate substrate (PCB substrate), a ceramic substrate, or a metal substrate based on a metal material such as aluminum or copper can be used.
  • the optical element 40 is composed of a first optical element 40a, a second optical element 40b, and a third optical element 40c.
  • the first optical element 40a, the second optical element 40b, and the third optical element 40c are arranged parallel or substantially parallel to the x-axis direction or the y-axis direction in plan view.
  • the first optical element 40a is arranged next to the second optical element 40b, and the second optical element 40b is arranged next to the third optical element 40c.
  • the optical element may be called an optical section.
  • the first optical element 40a, the second optical element 40b, and the third optical element 40c are mounted on the curved surface of the support member 50a.
  • the first optical element 40a, the second optical element 40b, and the third optical element 40c have directivity in the light emitting direction.
  • the first optical element 40a, the second optical element 40b, and the third optical element 40c are arranged so that the directions of light emission are different.
  • the light emitted from the optical element 40 is emitted in a direction perpendicular to the surface in contact with the curved surface. For example, when the optical elements are arranged as shown in FIG.
  • the first optical element 40a emits light 180a obliquely to the right with respect to the z-axis direction
  • the second optical element 40b emits light 180a in the z-axis direction
  • the third optical element 40c emits the light 180c obliquely to the left with respect to the z-axis direction.
  • the plane including the direction in which light is emitted is sometimes called a light emitting plane.
  • the optical element 40 and the liquid crystal optical element 10 are arranged as shown in FIG.
  • one liquid crystal optical element 10 is provided for three optical elements having different light emitting directions, i.e., the first optical element 40a, the second optical element 40b, and the third optical element 40c. placed.
  • three optical elements are used as a left light source, a center light source, and a right light source, and the liquid crystal optical element 10 transmits or diffuses the light emitted from each optical element in different directions.
  • the illumination device 30 according to the present embodiment can variously control the light distribution and the light distribution pattern.
  • the light source 20 is composed of three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c). It is not limited to the configuration according to the form.
  • the light source 20 may be composed of at least two or more optical elements emitting light in different directions. Since the light source 20 is composed of at least two or more optical elements emitting light in different directions, the liquid crystal optical element 10 transmits or diffuses the light emitted from each optical element in different directions.
  • the illumination device 30 according to the embodiment can variously control light distribution and light distribution pattern.
  • each of the first optical element 40a, the second optical element 40b, and the third optical element 40c is composed of a light emitting element 210 and a reflector 220, for example.
  • the light emitting element 210 is, for example, a light bulb, a fluorescent lamp, a cold cathode tube, a light emitting diode (LED), or a laser diode (LD).
  • the light emitting element 210 is an LED.
  • the luminous efficiency of LEDs is generally higher than that of light bulbs, fluorescent lights, and the like. Therefore, the lighting device 30 using LEDs is a lighting device with high brightness and low power consumption.
  • LEDs and LDs include organic light emitting diodes (OLEDs) and organic laser diodes (OLDs), respectively.
  • the reflector 220 can reflect the light emitted from the light emitting element 210 and allow the reflected light to enter the liquid crystal optical element 10 .
  • the shape of the reflector 220 is, for example, a substantially conical shape as shown in FIG. 2, but the shape of the reflector 220 is not limited to a substantially conical shape. Also, the surface of the reflector 220 may be flat or curved.
  • FIG. 3 is a schematic perspective view of the liquid crystal optical element 10 according to one embodiment of the invention.
  • the liquid crystal optical element 10 includes a first liquid crystal cell 110a, a second liquid crystal cell 110b, a third liquid crystal cell 110c, and a fourth liquid crystal cell 110d.
  • the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d are stacked in the z-axis direction.
  • the second liquid crystal cell 110b is provided on the first liquid crystal cell 110a.
  • the third liquid crystal cell 110c is provided on the second liquid crystal cell 110b.
  • the fourth liquid crystal cell 110d is provided on the third liquid crystal cell 110c.
  • FIG. 4 and 5 are schematic cross-sectional views of the liquid crystal optical element 10 according to one embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view in the zx plane cut along the A1-A2 line shown in FIG. 3
  • FIG. 5 is a schematic cross-sectional view along the B1-B2 line shown in FIG. It is a schematic cross-sectional view in the cut yz-plane.
  • the x-axis direction, the y-axis direction that intersects with the x-axis direction, and the z-axis that intersects with the x-axis and y-axis are referred to as the first direction, the second direction, and the third direction, respectively.
  • the x-axis is perpendicular to the y-axis
  • the z-axis is perpendicular to the xy plane (x-axis and y-axis).
  • the first liquid crystal cell 110a includes a first transparent electrode 181a, a second transparent electrode 182a, a fifth transparent electrode 185a, a sixth transparent electrode 186a, a ninth transparent electrode 189a, and a tenth transparent electrode 190a.
  • a first transparent electrode 181a, a second transparent electrode 182a, a fifth transparent electrode 185a, a sixth transparent electrode 186a, a ninth transparent electrode 189a and a tenth transparent electrode 190a are formed on the first substrate 111a.
  • a first alignment film 114a is formed to cover the .
  • a third transparent electrode 183a, a fourth transparent electrode 184a, a seventh transparent electrode 187a, an eighth transparent electrode 188a, an eleventh transparent electrode 191a and a twelfth transparent electrode 191a are formed on the second substrate 121a.
  • a second alignment film 124a is formed to cover the electrode 192a.
  • first transparent electrode 181a and the second transparent electrode 182a on the first substrate 111a face the third transparent electrode 183a and the fourth transparent electrode 184a on the second substrate 121a.
  • a fifth transparent electrode 185a and a sixth transparent electrode 186a on the first substrate 111a face a seventh transparent electrode 187a and an eighth transparent electrode 188a on the second substrate 121a.
  • a ninth transparent electrode 189a and a tenth transparent electrode 190a on the first substrate 111a face an eleventh transparent electrode 191a and a twelfth transparent electrode 192a on the second substrate 121a.
  • a sealing material 150a is provided on the periphery of each of the first substrate 111a and the second substrate 121a, and bonds the first substrate 111a and the second substrate 121a.
  • a liquid crystal layer 160a containing liquid crystal is formed by a first substrate 111a (more specifically, a first alignment film 114a), a second substrate 121a (more specifically, a second alignment film 124a), and a seal. It is provided in a space surrounded by the material 115 .
  • the second liquid crystal cell 110b includes a first transparent electrode 181b, a second transparent electrode 182b, a fifth transparent electrode 185b, a sixth transparent electrode 186b, a ninth transparent electrode 189b, and a tenth transparent electrode 190b.
  • a first transparent electrode 181b, a second transparent electrode 182b, a fifth transparent electrode 185b, a sixth transparent electrode 186b, a ninth transparent electrode 189b and a tenth transparent electrode 190b are formed on the first substrate 111b.
  • a first alignment film 114b is formed to cover the .
  • a third transparent electrode 183b, a fourth transparent electrode 184b, a seventh transparent electrode 187b, an eighth transparent electrode 188b, an eleventh transparent electrode 191b and a twelfth transparent electrode 191b are formed on the second substrate 121b.
  • a second alignment film 124b is formed to cover the electrode 192b.
  • first transparent electrode 181b and the second transparent electrode 182b on the first substrate 111b face the third transparent electrode 183b and the fourth transparent electrode 184b on the second substrate 121b.
  • a fifth transparent electrode 185b and a sixth transparent electrode 186b on the first substrate 111b face a seventh transparent electrode 187b and an eighth transparent electrode 188b on the second substrate 121b.
  • a ninth transparent electrode 189b and a tenth transparent electrode 190b on the first substrate 111b face an eleventh transparent electrode 191b and a twelfth transparent electrode 192b on the second substrate 121b.
  • a sealing material 150b is provided on the periphery of each of the first substrate 111b and the second substrate 121b, and bonds the first substrate 111b and the second substrate 121b.
  • a liquid crystal layer 160b containing liquid crystal is formed by a first substrate 111b (more specifically, a first alignment film 114b), a second substrate 121b (more specifically, a second alignment film 124b), and a seal. It is provided in a space surrounded by the material 115 .
  • the third liquid crystal cell 110c includes a first transparent electrode 181c, a second transparent electrode 182c, a fifth transparent electrode 185c, a sixth transparent electrode 186c, a ninth transparent electrode 189c, and a tenth transparent electrode 190c.
  • the formed first substrate 111c, the third transparent electrode 183c, the fourth transparent electrode 184c, the seventh transparent electrode 187c, the eighth transparent electrode 188c, the eleventh transparent electrode 191c and the twelfth transparent electrode a second substrate 121c having 192c formed thereon.
  • a first transparent electrode 181c, a second transparent electrode 182c, a fifth transparent electrode 185c, a sixth transparent electrode 186c, a ninth transparent electrode 189c and a tenth transparent electrode 190c are formed on the first substrate 111c.
  • a first alignment film 114c is formed to cover the .
  • a third transparent electrode 183c, a fourth transparent electrode 184c, a seventh transparent electrode 187c, an eighth transparent electrode 188c, an eleventh transparent electrode 191c and a twelfth transparent electrode 191c are formed on the second substrate 121c.
  • a second alignment film 124c is formed to cover the electrode 192c.
  • first transparent electrode 181c and the second transparent electrode 182c on the first substrate 111c face the third transparent electrode 183c and the fourth transparent electrode 184c on the second substrate 121c.
  • a fifth transparent electrode 185c and a sixth transparent electrode 186c on the first substrate 111c face a seventh transparent electrode 187c and an eighth transparent electrode 188c on the second substrate 121c.
  • a ninth transparent electrode 189c and a tenth transparent electrode 190c on the first substrate 111c are opposed to an eleventh transparent electrode 191c and a twelfth transparent electrode 192c on the second substrate 121c.
  • a sealing material 150c is provided on the periphery of each of the first substrate 111c and the second substrate 121c, and bonds the first substrate 111c and the second substrate 121c.
  • a liquid crystal layer 160c containing liquid crystal includes a first substrate 111c (more specifically, a first alignment film 114c), a second substrate 121c (more specifically, a second alignment film 124c), and a seal. It is provided in a space surrounded by the material 115c.
  • the fourth liquid crystal cell 110d includes a first transparent electrode 181d, a second transparent electrode 182d, a fifth transparent electrode 185d, a sixth transparent electrode 186d, a ninth transparent electrode 189d, and a tenth transparent electrode 190d.
  • a first transparent electrode 181d, a second transparent electrode 182d, a fifth transparent electrode 185d, a sixth transparent electrode 186d, a ninth transparent electrode 189d and a tenth transparent electrode 190d are formed on the first substrate 111d.
  • a first alignment film 114d is formed to cover the .
  • a third transparent electrode 183d, a fourth transparent electrode 184d, a seventh transparent electrode 187d, an eighth transparent electrode 188d, an eleventh transparent electrode 191d and a twelfth transparent electrode are formed on the second substrate 121d.
  • a second alignment film 124d is formed to cover the electrode 192d.
  • first transparent electrode 181d and the second transparent electrode 182d on the first substrate 111d face the third transparent electrode 183d and the fourth transparent electrode 184d on the second substrate 121d.
  • a fifth transparent electrode 185d and a sixth transparent electrode 186d on the first substrate 111d face a seventh transparent electrode 187d and an eighth transparent electrode 188d on the second substrate 121d.
  • a ninth transparent electrode 189d and a tenth transparent electrode 190d on the first substrate 111d are opposed to an eleventh transparent electrode 191d and a twelfth transparent electrode 192d on the second substrate 121d.
  • a sealing material 150d is provided on the periphery of each of the first substrate 111d and the second substrate 121d, and bonds the first substrate 111d and the second substrate 121d.
  • a liquid crystal layer 160d containing liquid crystal is formed by a first substrate 111d (more specifically, a first alignment film 114d), a second substrate 121d (more specifically, a second alignment film 124d), and a seal. It is provided in a space surrounded by the material 115d.
  • the basic configurations of the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d are the same.
  • the first transparent electrode 181, the second transparent electrode 182, the third transparent electrode 183, the fourth transparent electrode 184, the fifth transparent electrode 185, the sixth transparent electrode 186, and the seventh transparent electrode 187 , the eighth transparent electrode 188, the ninth transparent electrode 189, the tenth transparent electrode 190, the eleventh transparent electrode 191 and the twelfth transparent electrode 192 are different.
  • the first transparent electrode 181a, the second transparent electrode 182a, the fifth transparent electrode 185a, the sixth transparent electrode 186a, the ninth transparent electrode 189a and the tenth transparent electrode 190a are
  • the third transparent electrode 183a, the fourth transparent electrode 184a, the seventh transparent electrode 187a, the eighth transparent electrode 188a, the eleventh transparent electrode 191a, and the twelfth transparent electrode 192a extend in the y-axis direction. It extends in the x-axis direction.
  • the first transparent electrode 181a and the second transparent electrode 182a, the fifth transparent electrode 185a and the sixth transparent electrode 186a, and the ninth transparent electrode 189a and the tenth transparent electrode 190a are alternately arranged in the x-axis direction. They are arranged in a comb shape.
  • the third transparent electrode 183a and fourth transparent electrode 184a, the seventh transparent electrode 187a and eighth transparent electrode 188a, and the eleventh transparent electrode 191a and twelfth transparent electrode 192a alternate in the second direction. are arranged in a comb shape.
  • the direction in which the first transparent electrode 181a, the second transparent electrode 182a, the fifth transparent electrode 185a, the sixth transparent electrode 186a, the ninth transparent electrode 189a, and the tenth transparent electrode 190a extend is the extension of the third transparent electrode 183a, the fourth transparent electrode 184a, the seventh transparent electrode 187a, the eighth transparent electrode 188a, the eleventh transparent electrode 191a, and the twelfth transparent electrode 192a. Although it is perpendicular to the existing direction (x-axis direction), it may intersect with a slight deviation.
  • the first transparent electrode 181b, the second transparent electrode 182b, the fifth transparent electrode 185b, the sixth transparent electrode 186b, the ninth transparent electrode 189b, and the tenth transparent electrode 190b are A third transparent electrode 183b, a fourth transparent electrode 184b, a seventh transparent electrode 187b, an eighth transparent electrode 188b, an eleventh transparent electrode 191b, and a twelfth transparent electrode 192b extending in the y-axis direction are It extends in the x-axis direction.
  • the first transparent electrode 181b and the second transparent electrode 182b, the fifth transparent electrode 185b and the sixth transparent electrode 186b, and the ninth transparent electrode 189b and the tenth transparent electrode 190b are alternately arranged in the x-axis direction. They are arranged in a comb shape.
  • the third transparent electrode 183b and fourth transparent electrode 184b, the seventh transparent electrode 187b and eighth transparent electrode 188b, and the eleventh transparent electrode 191b and twelfth transparent electrode 192b alternate in the second direction. are arranged in a comb shape.
  • the direction in which the first transparent electrode 181b, the second transparent electrode 182b, the fifth transparent electrode 185b, the sixth transparent electrode 186b, the ninth transparent electrode 189b, and the tenth transparent electrode 190b extend is the extension of the third transparent electrode 183b, the fourth transparent electrode 184b, the seventh transparent electrode 187b, the eighth transparent electrode 188b, the eleventh transparent electrode 191b, and the twelfth transparent electrode 192b. Although it is perpendicular to the existing direction (x-axis direction), it may intersect with a slight deviation.
  • the first transparent electrode 181c, the second transparent electrode 182c, the fifth transparent electrode 185c, the sixth transparent electrode 186c, the ninth transparent electrode 189c, and the tenth transparent electrode 190c are The third transparent electrode 183c, the fourth transparent electrode 184c, the seventh transparent electrode 187c, the eighth transparent electrode 188c, the eleventh transparent electrode 191c, and the twelfth transparent electrode 192c extend in the y-axis direction. It extends in the x-axis direction.
  • the first transparent electrode 181c and the second transparent electrode 182c, the fifth transparent electrode 185c and the sixth transparent electrode 186c, and the ninth transparent electrode 189c and the tenth transparent electrode 190c are alternately arranged in the x-axis direction. They are arranged in a comb shape.
  • the third transparent electrode 183c and fourth transparent electrode 184c, the seventh transparent electrode 187c and eighth transparent electrode 188c, and the eleventh transparent electrode 191c and twelfth transparent electrode 192c alternate in the second direction. are arranged in a comb shape.
  • the direction in which the first transparent electrode 181c, the second transparent electrode 182c, the fifth transparent electrode 185c, the sixth transparent electrode 186c, the ninth transparent electrode 189c, and the tenth transparent electrode 190c extend is the extension of the third transparent electrode 183c, the fourth transparent electrode 184c, the seventh transparent electrode 187c, the eighth transparent electrode 188c, the eleventh transparent electrode 191c, and the twelfth transparent electrode 192c. Although it is perpendicular to the existing direction (x-axis direction), it may intersect with a slight deviation.
  • the first transparent electrode 181d, the second transparent electrode 182d, the fifth transparent electrode 185d, the sixth transparent electrode 186d, the ninth transparent electrode 189d, and the tenth transparent electrode 190d are A third transparent electrode 183d, a fourth transparent electrode 184d, a seventh transparent electrode 187d, an eighth transparent electrode 188d, an eleventh transparent electrode 191d, and a twelfth transparent electrode 192d extending in the y-axis direction are It extends in the x-axis direction.
  • the first transparent electrode 181d and the second transparent electrode 182d, the fifth transparent electrode 185d and the sixth transparent electrode 186d, and the ninth transparent electrode 189d and the tenth transparent electrode 190d are alternately arranged in the x-axis direction. They are arranged in a comb shape.
  • the third transparent electrode 183d and the fourth transparent electrode 184d, the seventh transparent electrode 187d and the eighth transparent electrode 188d, and the eleventh transparent electrode 191d and the twelfth transparent electrode 192d alternate in the second direction. are arranged in a comb shape.
  • the direction in which the first transparent electrode 181d, the second transparent electrode 182d, the fifth transparent electrode 185d, the sixth transparent electrode 186d, the ninth transparent electrode 189d, and the tenth transparent electrode 190d extend is the extension of the third transparent electrode 183d, the fourth transparent electrode 184d, the seventh transparent electrode 187d, the eighth transparent electrode 188d, the eleventh transparent electrode 191d, and the twelfth transparent electrode 192d. Although it is perpendicular to the existing direction (x-axis direction), it may intersect with a slight deviation.
  • the extending direction (y-axis direction) of the first transparent electrodes 181 provided in the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d. ) are superimposed so as to match or substantially match each other.
  • the transparent electrodes of the same name provided in the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d extend in the direction (y-axis direction or x-axis direction). direction) are superimposed so as to match or substantially match each other. As shown in FIGS.
  • the lower substrate (light source side substrate) of the pair of upper and lower substrates constituting each liquid crystal cell is They are first substrates 111a and 111b.
  • the upper substrates of the pair of upper and lower substrates forming each liquid crystal cell are the first substrates 111c and 111d.
  • the first substrate 111a, the first substrate 111b, the first substrate 111c, the first substrate 111d, the second substrate 121a, the second substrate 121b, the second substrate 121c, and the second substrate 121d are
  • a light-transmitting rigid substrate or a light-transmitting flexible substrate can be used.
  • a rigid substrate having translucency is, for example, a glass substrate, a quartz substrate, or a sapphire substrate.
  • the translucent flexible substrate is, for example, a polyimide resin substrate, an acrylic resin substrate, a siloxane resin substrate, or a fluorine resin substrate.
  • the eight transparent electrodes 188, the ninth transparent electrode 189, the tenth transparent electrode 190, the eleventh transparent electrode 191, and the twelfth transparent electrode 192 form an electric field in the liquid crystal layer 160 included in each liquid crystal cell.
  • the material forming the eight transparent electrodes 188, the ninth transparent electrode 189, the tenth transparent electrode 190, the eleventh transparent electrode 191 and the twelfth transparent electrode 192 is, for example, a transparent conductive material.
  • the transparent conductive material is, for example, indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the liquid crystal layer 160a, the liquid crystal layer 160b, the liquid crystal layer 160c, and the liquid crystal layer 160d can refract the transmitted light or change the polarization state of the transmitted light according to the alignment state of the liquid crystal molecules.
  • Liquid crystals contained in each of the liquid crystal layer 160a, the liquid crystal layer 160b, the liquid crystal layer 160c, and the liquid crystal layer 160d can be twisted nematic liquid crystals, for example.
  • positive twisted nematic liquid crystal is used as the liquid crystal, but negative twisted nematic liquid crystal may be used by changing the initial orientation direction of the liquid crystal molecules.
  • the liquid crystal preferably contains a chiral agent that imparts twist to the liquid crystal molecules.
  • Each of the two alignment films 124d aligns the liquid crystal molecules in the liquid crystal layer 160 included in each liquid crystal cell in a predetermined direction.
  • Polyimide resin for example, can be used as a material for forming each of the two alignment films 124d.
  • the second alignment film 124d may be imparted with alignment properties by an alignment treatment.
  • Alignment treatment can use, for example, a rubbing method or a photo-alignment method.
  • the rubbing method is a method of rubbing the surface of the alignment film in one direction.
  • the photo-alignment method is a method of emitting linearly polarized ultraviolet rays onto an alignment film.
  • an epoxy resin adhesive or an acrylic resin adhesive can be used for the sealing material 115.
  • the adhesive may be of an ultraviolet curable type or a heat curable type.
  • the liquid crystal optical element 10 includes at least two liquid crystal cells (eg, the first liquid crystal cell 110a and the second liquid crystal cell 110b), so that the light distribution of unpolarized light can be controlled. Therefore, each surface of the first substrate 111a of the first liquid crystal cell 110a and the second substrate 121b of the second liquid crystal cell 110b, the second substrate 121c of the third liquid crystal cell 110c and the fourth liquid crystal On each surface of the first substrate 111b of the cell 110d, there is no need to provide a pair of polarizing plates such as those provided on the front and rear surfaces of a liquid crystal display element.
  • FIG. 6 shows a first transparent electrode 181, a second transparent electrode 182, a fifth transparent electrode 185, and a sixth transparent electrode on the first substrate 111 in the liquid crystal optical element 10 according to one embodiment of the present invention.
  • 186 a ninth transparent electrode 189, and a tenth transparent electrode 190.
  • FIG. FIG. 7 shows a third transparent electrode 183, a fourth transparent electrode 184, a seventh transparent electrode 187 and an eighth transparent electrode on the second substrate 121 in the liquid crystal optical element according to one embodiment of the present invention.
  • FIG. 7 are visible through the second substrate 121, they are indicated by solid lines in FIG. 7 for the sake of clarity. The same applies to FIG. 25 which will be described later.
  • a first electrode group 117-1, a second electrode group 117-3, and a third electrode group 117-5 are provided on the first substrate 111.
  • the second electrode group 117-3 is provided between the first electrode group 117-1 and the third electrode group 117-5.
  • the first electrode group 117-1 is provided so as to face the first optical element 40a and the light exit surface of the first optical element 40a, and the second electrode group 117-3 is provided for the second optical element 40a.
  • the third electrode group 117-5 is provided to face the light exit surfaces of the element 40b and the second optical element 40b, and the third electrode group 117-5 is provided on the light exit surfaces of the third optical element 40c and the third optical element 40c. They are provided so as to face each other.
  • the first electrode group 117 - 1 includes a first transparent electrode 181 and a second transparent electrode 182 .
  • a potential is supplied to the first transparent electrode 181 and the second transparent electrode 182, and the light is emitted from the first optical element 40a (FIG. 1) used as the right light source, for example. It has a function of transmitting or diffusing the light to be transmitted.
  • the first transparent electrodes 181 and the second transparent electrodes 182 are alternately arranged in the x-axis direction and extend in the y-axis direction.
  • the electrode width of the first transparent electrode 181 and the electrode width of the second transparent electrode 182 are a first width w1 in the x-axis direction.
  • the inter-electrode distance (electrode spacing) in the x-axis direction between the first transparent electrode 181 and the second transparent electrode 182 is the first inter-electrode distance s1.
  • the first transparent electrode 181 and the second transparent electrode 182 are electrically connected to the first wiring 116-1 and the second wiring 116-2 formed on the first substrate 111, respectively.
  • the first wiring 116 - 1 may be formed under the first transparent electrode 181 or may be formed over the first transparent electrode 181 .
  • the first wiring 116 - 1 may be formed in the same layer as the first transparent electrode 181 .
  • the second wiring 116 - 2 may be formed under the second transparent electrode 182 or may be formed over the second transparent electrode 182 .
  • the second wiring 116 - 2 may be formed in the same layer as the second transparent electrode 182 .
  • the first transparent electrode 181, the second transparent electrode 182, the first wiring 116-1 and the second wiring 116-2 are formed in the same layer.
  • the second electrode group 117-3 includes a fifth transparent electrode 185 and a sixth transparent electrode 186.
  • FIG. The second electrode group 117-3 is supplied with a potential to the fifth transparent electrode 185 and the sixth transparent electrode 186, and emits light from the second optical element 40b (FIG. 1) used as a center light source, for example. It has a function of transmitting or diffusing the light to be transmitted.
  • the fifth transparent electrodes 185 and the sixth transparent electrodes 186 are alternately arranged in the x-axis direction and extend in the y-axis direction.
  • the electrode width of the fifth transparent electrode 185 and the electrode width of the sixth transparent electrode 186 are a second width w2 in the x-axis direction.
  • the inter-electrode distance (electrode spacing) in the x-axis direction between the fifth transparent electrode 185 and the sixth transparent electrode 186 is the second inter-electrode distance s2.
  • the fifth transparent electrode 185 and the sixth transparent electrode 186 are electrically connected to the first wiring 116-1 and the second wiring 116-2 formed on the first substrate 111, respectively.
  • the first wiring 116 - 1 may be formed under the fifth transparent electrode 185 or may be formed over the fifth transparent electrode 185 .
  • the first wiring 116 - 1 may be formed in the same layer as the fifth transparent electrode 185 .
  • the second wiring 116 - 2 may be formed under the sixth transparent electrode 186 or may be formed over the sixth transparent electrode 186 .
  • the second wiring 116 - 2 may be formed in the same layer as the sixth transparent electrode 186 .
  • the fifth transparent electrode 185, the sixth transparent electrode 186, the first wiring 116-1 and the second wiring 116-2 are formed in the same layer.
  • the second width w 2 , the second inter-electrode distance s 2 , and the second pitch p 2 of the fifth transparent electrode 185 and the sixth transparent electrode 186 are the same as the first transparent electrode 181 and the second transparent electrode 186 . It is narrower than the first width w 1 , the first inter-electrode distance s 1 , and the first pitch p 1 of the electrodes 182 .
  • the third electrode group 117-5 includes a ninth transparent electrode 189 and a tenth transparent electrode 190.
  • the third electrode group 117-5 is supplied with a potential to the ninth transparent electrode 189 and the tenth transparent electrode 190, and for example, light is emitted from the third optical element 40c (FIG. 1) used as a left light source. It has a function of transmitting or diffusing the light to be transmitted. Since the ninth transparent electrode 189 and the tenth transparent electrode 190 have the same configuration and function as the first transparent electrode 181 and the second transparent electrode 182, detailed description thereof is omitted here. . Note that the functions of the first electrode group 117-1 and the third electrode group 117-5 may be interchanged.
  • the first alignment film 114a is aligned in the x-axis direction (the direction indicated by the white arrow in FIG. 6).
  • the long axes of the liquid crystal molecules on the first substrate 111 side are aligned along the x-axis direction. That is, the alignment direction (x-axis direction) of the first alignment film 114a, the first transparent electrode 181, the second transparent electrode 182, the fifth transparent electrode 185, the sixth transparent electrode 186, and the ninth transparent electrode
  • the extending direction (y-axis direction) of 189 and the tenth transparent electrode 190 are orthogonal to each other.
  • a fourth electrode group 117-2, a fifth electrode group 117-4, and a sixth electrode group 117-6 are provided on the second substrate 121.
  • a fifth electrode group 117-4 is provided between the fourth electrode group 117-2 and the sixth electrode group 117-6.
  • the fourth electrode group 117-2 is provided so as to face the first optical element 40a and the light exit surface of the first optical element 40a, and the fifth electrode group 117-4 is provided for the second optical element 40a.
  • the sixth electrode group 117-6 is provided to face the light exit surfaces of the element 40b and the second optical element 40b, and the sixth electrode group 117-6 is provided on the light exit surfaces of the third optical element 40c and the third optical element 40c. They are provided so as to face each other.
  • a fourth electrode group 117 - 2 includes a third transparent electrode 183 and a fourth transparent electrode 184 .
  • the fourth electrode group 117-2 is supplied with a potential to the third transparent electrode 183 and the fourth transparent electrode 184, and for example, light is emitted from the first optical element 40a (FIG. 1) used as a right light source. It has a function of transmitting or diffusing the light to be transmitted.
  • the third transparent electrodes 183 and the fourth transparent electrodes 184 are alternately arranged in the y-axis direction and extend in the x-axis direction.
  • the electrode width of the third transparent electrode 183 and the electrode width of the fourth transparent electrode 184 are a third width w3 in the x-axis direction.
  • the inter-electrode distance (electrode spacing) in the x-axis direction between the third transparent electrode 183 and the fourth transparent electrode 184 is the third inter-electrode distance s3.
  • the third transparent electrode 183 and the fourth transparent electrode 184 are electrically connected to the third wiring 116-3 and the fourth wiring 116-4 formed on the second substrate 121, respectively.
  • the third wiring 116 - 3 may be formed under the third transparent electrode 183 or may be formed over the third transparent electrode 183 .
  • the third wiring 116 - 3 may be formed in the same layer as the third transparent electrode 183 .
  • the fourth wiring 116 - 4 may be formed under the fourth transparent electrode 184 and may be formed over the fourth transparent electrode 184 .
  • the fourth wiring 116 - 4 may be formed in the same layer as the fourth transparent electrode 184 .
  • the third transparent electrode 183, the fourth transparent electrode 184, the third wiring 116-3 and the fourth wiring 116-4 are formed in the same layer.
  • a fifth electrode group 117 - 4 includes a seventh transparent electrode 187 and an eighth transparent electrode 188 .
  • the fifth electrode group 117-4 is supplied with a potential to the seventh transparent electrode 187 and the eighth transparent electrode 188, and the light is emitted from the second optical element 40b (FIG. 1) used as a center light source, for example. It has a function of transmitting or diffusing the light to be transmitted.
  • the seventh transparent electrodes 187 and the eighth transparent electrodes 188 are alternately arranged in the y-axis direction and extend in the x-axis direction.
  • the electrode width of the seventh transparent electrode 187 and the electrode width of the eighth transparent electrode 188 are a fourth width w4 in the x-axis direction.
  • the inter-electrode distance (electrode spacing) in the x-axis direction between the seventh transparent electrode 187 and the eighth transparent electrode 188 is the fourth inter-electrode distance s4.
  • the seventh transparent electrode 187 and the eighth transparent electrode 188 are electrically connected to the third wiring 116-3 and the fourth wiring 116-4 formed on the second substrate 121, respectively.
  • the third wiring 116 - 3 may be formed below the seventh transparent electrode 187 or may be formed above the seventh transparent electrode 187 . Also, the third wiring 116 - 3 may be formed in the same layer as the seventh transparent electrode 187 .
  • the fourth wiring 116 - 4 may be formed below the eighth transparent electrode 188 and may be formed above the eighth transparent electrode 188 . Also, the fourth wiring 116 - 4 may be formed in the same layer as the eighth transparent electrode 188 .
  • the seventh transparent electrode 187, the eighth transparent electrode 188, the third wiring 116-3 and the fourth wiring 116-4 are formed in the same layer.
  • the fourth width w 4 , the fourth inter-electrode distance s 4 , and the fourth pitch p 4 of the seventh transparent electrode 187 and the eighth transparent electrode 188 are the same as those of the third transparent electrode 183 and the fourth transparent electrode 188 . It is narrower than the third width w 3 , the third inter-electrode distance s 3 , and the third pitch p 3 of the transparent electrode 184 .
  • the sixth electrode group 117-6 includes an eleventh transparent electrode 191 and a twelfth transparent electrode 192.
  • the sixth electrode group 117-6 is supplied with a potential to the eleventh transparent electrode 191 and the twelfth transparent electrode 192, and emits light from the third optical element 40c (FIG. 1) used as a left light source, for example. It has a function of transmitting or diffusing the light to be transmitted. Since the eleventh transparent electrode 191 and the twelfth transparent electrode 192 have the same configuration and function as the third transparent electrode 183 and the fourth transparent electrode 184, detailed description thereof is omitted here. . The functions of the fourth electrode group 117-2 and the sixth electrode group 117-6 may be switched.
  • the second alignment film 124 is subjected to alignment treatment in the y-axis direction (the direction indicated by the white arrow in FIG. 7).
  • the long axes of the liquid crystal molecules on the second substrate 121 side are aligned along the y-axis direction. That is, the alignment direction (y-axis direction) of the second alignment film 124, the third transparent electrode 183, the fourth transparent electrode 184, the seventh transparent electrode 187, the eighth transparent electrode 188, and the eleventh transparent electrode
  • the extending direction (x-axis direction) of the 191 and the twelfth transparent electrode 192 is perpendicular to each other.
  • first transparent electrode 181 and the second transparent electrode 182 are formed on the first substrate 111 in a comb-like pattern having a first pitch p1. It can be said that the electrode 185 and the sixth transparent electrode 186 are formed on the first substrate 111 in a comb pattern with the second pitch p2, and the ninth transparent electrode 189 and the sixth transparent electrode 186 are formed on the first substrate 111 in a comb pattern. It can be said that the ten transparent electrodes 190 are formed on the first substrate 111 in a comb-like pattern having a first pitch p1. Similarly, it can be said that the third transparent electrode 183 and the fourth transparent electrode 184 are formed on the second substrate 121 in a comb pattern having a third pitch p3.
  • the first transparent electrode 181 and the second transparent electrode 182 face each other with the liquid crystal layer 113 interposed therebetween.
  • the transparent electrode 185 and the sixth transparent electrode 186, the seventh transparent electrode 187 and the eighth transparent electrode 188 face each other with the liquid crystal layer 113 interposed therebetween, and the ninth transparent electrode 189 and the tenth transparent electrode 189 face each other.
  • the eleventh transparent electrode 191 and the twelfth transparent electrode 192 face each other with the liquid crystal layer 113 interposed therebetween.
  • the extending direction extends the third transparent electrode 183, the fourth transparent electrode 184, the seventh transparent electrode 187, the eighth transparent electrode 188, the eleventh transparent electrode 191, and the twelfth transparent electrode 192.
  • direction (x-axis direction) In other words, the comb-shaped electrode pattern formed on the first substrate 111 and the comb-shaped electrode pattern formed on the second substrate 121 are orthogonal to each other in plan view.
  • the first substrate 111 is formed with a fifth wiring 116-5 and a sixth wiring 116-6.
  • the third wiring 116-3 and the fourth wiring 116-4 are connected to the fifth wiring 116- provided on the first substrate 111, respectively. 5 and sixth wiring 116-6.
  • each electrode shown in FIGS. 6 and 7 is provided on the surface of each substrate on which the liquid crystal layer is provided, opposite to the surface in contact with the transparent adhesive layer. .
  • the electrodes shown in FIGS. 6 and 7 are provided on the surfaces of the substrates facing each other (opposing surfaces) with the liquid crystal layer interposed therebetween.
  • each electrode shown in FIG. In the liquid crystal cell 110a it is provided on the front surface (opposing surface) of the first substrate 111a, and in the third liquid crystal cell 110c, it is provided on the back surface (opposing surface) of the first substrate 111c.
  • each electrode shown in FIG. , and in the third liquid crystal cell 110c it is provided on the surface (opposing surface) of the second substrate 121c.
  • the third wiring 116-3 and the fifth wiring 116-5, and the fourth wiring 116-4 and the sixth wiring 116-6 are electrically connected using, for example, silver paste or conductive particles. can do.
  • the conductive particles include metal-coated particles.
  • the first direction in which the fifth transparent electrodes 185 and the sixth transparent electrodes 186 are alternately arranged, and the second direction in which the seventh transparent electrodes 187 and the eighth transparent electrodes 188 are alternately arranged. 2 directions are perpendicular to each other, but it is sufficient that they intersect.
  • the second direction in which the transparent electrodes 191 and the twelfth transparent electrodes 192 are alternately arranged is perpendicular to the second direction, but it is sufficient that they cross each other.
  • the crossing angle is, of course, 90 degrees, preferably in the range of 90 ⁇ 10 degrees, more preferably in the range of 90 ⁇ 5 degrees.
  • a gap between the first substrate 111 and the second substrate 121 is provided.
  • a photospacer is formed to hold the (not shown).
  • a first wiring 116-1, a second wiring 116-2, a third wiring 116-3, a fourth wiring 116-4, a fifth wiring 116-5, and a sixth wiring 116-6 are formed.
  • a metal material or a transparent conductive material can be used as the material.
  • Metallic materials or transparent conductive materials are, for example, aluminum, molybdenum, indium tin oxide (ITO) or indium zinc oxide (IZO).
  • first wiring 116-1, the second wiring 116-2, the third wiring 116-3, the fourth wiring 116-4, the fifth wiring 116-5, and the sixth wiring 116-6 may be provided with terminals for connecting to an external device, and includes a first wiring 116-1, a second wiring 116-2, a third wiring 116-3, a fourth wiring 116-4, and a fifth wiring 116-4.
  • the wiring 116-5 and the sixth wiring 116-6 may be terminals for connecting to an external device.
  • the first wiring 116-1, the second wiring 116-2, the fifth wiring 116-5 (or the third wiring 116-3), and the sixth wiring 116-6 (or the fourth wiring 116- 4) are electrically isolated from each other. Therefore, in the first liquid crystal cell 110a, the first transparent electrode 181a, the fifth transparent electrode 185a, the ninth transparent electrode 189a, the second transparent electrode 182a, the sixth transparent electrode 186a, the tenth a transparent electrode 190a, a third transparent electrode 183a, a seventh transparent electrode 187a, an eleventh transparent electrode 191a, a fourth transparent electrode 184a, an eighth transparent electrode 188a, and a twelfth transparent electrode 192a.
  • the first transparent electrode 181a, the fifth transparent electrode 185a, and the ninth transparent electrode 189a are supplied with the first potential V1
  • the second transparent electrode 182a, the sixth transparent electrode 186a, and the tenth transparent electrode 182a are supplied with the first potential V1.
  • the second transparent electrode 190a is supplied with the second potential V2
  • the third transparent electrode 183a, the seventh transparent electrode 187a, and the eleventh transparent electrode 191a are supplied with the third potential V3
  • the fourth transparent electrode 190a is supplied with the third potential V3.
  • the eighth transparent electrode 188a, and the twelfth transparent electrode 192a are supplied with the fourth potential V4.
  • the first potential V1, the second potential V2, the third potential V3, and the fourth potential V4 may be different potentials or may be the same potential.
  • the illumination device 30 includes a first transparent electrode 181 and a second transparent electrode 182 included in the first electrode group 117-1 of the first substrate 111, and a fourth electrode 182 of the second substrate 121.
  • the potential supplied to each transparent electrode is controlled to control the orientation of the liquid crystal of the liquid crystal layer 113. be able to.
  • the illumination device 30 according to the present embodiment includes the fifth transparent electrode 185 and the sixth transparent electrode 186 included in the second electrode group 117-3 of the first substrate 111, and the second substrate 121.
  • the lighting device 30 includes the ninth transparent electrode 189 and the tenth transparent electrode 190 included in the third electrode group 117-5 of the first substrate 111, and the second substrate 121.
  • the eleventh transparent electrode 191 and the twelfth transparent electrode 192 included in the sixth electrode group 117-6 the voltage supplied to each transparent electrode is controlled to orient the liquid crystal in the liquid crystal layer 113. can be controlled.
  • the liquid crystal optical element 10 receives light from three different directions emitted from the first optical element 40a, the second optical element 40b, and the third optical element 40c, and the first electrode group 117-1.
  • the fourth electrode group 117-2 is used to transmit the light to the right side or diffuse while transmitting
  • the second electrode group 117-3 and the fifth electrode group 117-4 are used to transmit the light to the center or Diffusing while transmitting, and transmitting or diffusing to the left using the third electrode group 117-5 and the sixth electrode group 117-6.
  • the second electrode group 117-3 provided at the center or approximately the center of the first substrate 111 and the second electrode group 117-3 provided at the center or approximately the center of the second substrate 121 By narrowing the width of the transparent electrodes of the fifth electrode group 117-4, the distance between the electrodes, and the pitch between the electrodes, the second electrode group 117-3 and the fifth electrode group 117-4
  • the range in which the liquid crystal is oriented can be controlled within a narrow range.
  • the first liquid crystal cell 110a and the second liquid crystal cell 110b having the same transparent electrode arrangement are laminated, and the x-axis direction of the light diffused to the center or substantially the center is It is possible to more finely control the degree of diffusion of light to.
  • the third liquid crystal cell 110c having the same transparent electrode arrangement is placed on the first liquid crystal cell 110a and the second liquid crystal cell 110b having the same transparent electrode arrangement.
  • the fourth liquid crystal cell 110d are stacked, and the degree of diffusion of light diffused toward the center or approximately the center in the y-axis direction can be controlled more finely.
  • the light from the second optical element 40b arranged in the center or near the center can be more finely diffused in the horizontal and vertical directions, and the light distribution and the light distribution pattern in the horizontal and vertical directions can be more finely controlled.
  • the end of the second transparent electrode 182, the end of the sixth transparent electrode 186, and the end of the tenth transparent electrode 190 are connected to the first wiring 116. It is located a distance d 1 from -1.
  • the end of the first transparent electrode 181, the end of the fifth transparent electrode 185, and the end of the ninth transparent electrode 189 are arranged apart from the second wiring 116-2 by a distance d2. .
  • the end of the fourth transparent electrode 184 is arranged at a distance d3 from the third wiring 116-3.
  • the end of the eighth transparent electrode 188 is arranged at a distance d5 from the third wiring 116-3.
  • the end of the twelfth transparent electrode 192 is arranged at a distance d7 from the third wiring 116-3.
  • the end of the third transparent electrode 183 is arranged apart from the fourth wiring 116-4 by a distance d4.
  • the end of the seventh transparent electrode 187 is arranged at a distance d6 from the fourth wiring 116-4.
  • the end of the eleventh transparent electrode 191 is arranged at a distance d 8 from the fourth wiring 116-4.
  • the distance d1 and the distance d2 are larger than the first inter - electrode distance s1 and the second inter - electrode distance width s2.
  • Distance d 3 , distance d 4 , distance d 5 , distance d 6 , distance d 7 , and distance d 8 are greater than third inter-electrode distance s 3 and fourth inter-electrode distance width s 4 .
  • the horizontal electric field generated between the transparent electrodes is reduced by the distance between the ends of the transparent electrodes and the wiring 116 . can be reduced to a negligible level. Therefore, in the illumination device 30 according to this embodiment, the influence of the electric field generated between the end of the transparent electrode and the wiring 116 can be suppressed.
  • an electric field generated between adjacent transparent electrodes may be called a lateral electric field.
  • FIGS. 8 and 9 are schematic end cross-sectional views showing the alignment of liquid crystal molecules in the liquid crystal layer 160a in the liquid crystal optical element 10 according to one embodiment of the present invention.
  • FIGS. 8 and 9 correspond to part of end cross-sectional views of the first liquid crystal cell 110a and the second liquid crystal cell 110b taken along line A1-A2 shown in FIG. 3, respectively.
  • the configuration of the first liquid crystal cell 110a or the second liquid crystal cell 110b is mainly described.
  • a potential is supplied to the first transparent electrode 181a, the second transparent electrode 182a, the fourth transparent electrode 184a, the first transparent electrode 181b, the second transparent electrode 182b, and the fourth transparent electrode 184b.
  • the liquid crystal optical element 10 is shown in an unfilled state.
  • potentials are supplied to the first transparent electrode 181a, the second transparent electrode 182a, the fourth transparent electrode 184a, the first transparent electrode 181b, the second transparent electrode 182b, and the fourth transparent electrode 184b.
  • the liquid crystal optical element 10 is shown in the closed state.
  • a Low potential is supplied to the first transparent electrode 181a and the fourth transparent electrode 184a of the first liquid crystal cell 110a, and the second transparent electrode 182a and the third transparent electrode 183a (not shown) are supplied. is supplied with a high potential.
  • a Low potential is supplied to the first transparent electrode 181b and the fourth transparent electrode 184b of the second liquid crystal cell 110b, and a High potential is applied to the second transparent electrode 182b and the third transparent electrode 183b (not shown).
  • a potential is being supplied.
  • the Low potential and the High potential are illustrated using symbols "-" and "+", respectively.
  • an electric field generated between adjacent transparent electrodes may be called a lateral electric field.
  • the first alignment film 114a is aligned in the x-axis direction.
  • the long axes of the liquid crystal molecules on the first substrate 111a side of the liquid crystal layer 160a are aligned in the x-axis direction. That is, the alignment direction of the liquid crystal molecules on the first substrate 111a side is the direction perpendicular to the extending direction (y-axis direction) of the first transparent electrode 181a and the second transparent electrode 182a.
  • the second alignment film 124a is aligned in the y-axis direction. Further, the long axes of the liquid crystal molecules on the second substrate 121a side of the liquid crystal layer 160a are aligned in the y-axis direction.
  • the orientation direction of the liquid crystal molecules on the second substrate 121a side of the liquid crystal layer 160a is orthogonal to the extending direction (x-axis direction) of the fourth transparent electrode 184a and the third transparent electrode 183a (FIG. 7). is the direction. Therefore, the liquid crystal molecules of the liquid crystal layer 160a are oriented while being twisted by 90 degrees, with the direction of the long axis gradually changing from the x-axis direction to the y-axis direction from the first substrate 111a to the second substrate 121a. ing.
  • the alignment direction of the liquid crystal molecules changes as shown in FIG. Due to the influence of the horizontal electric field between the first transparent electrode 181a and the second transparent electrode 182a of the liquid crystal layer 160a, the liquid crystal molecules on the side of the first substrate 111a of the liquid crystal layer 160a as a whole move toward the first substrate 111a.
  • the liquid crystal molecules on the side of the second substrate 121a of the liquid crystal layer 160a as a whole move to the second are oriented in a convex arc shape in the y-axis direction with respect to the substrate 121a.
  • the liquid crystal molecules of the liquid crystal layer 160a located substantially in the center between the first transparent electrode 181a and the second transparent electrode 182a hardly change their orientation by any lateral electric field.
  • the light incident on the liquid crystal layer 160a is diffused in the x-axis direction according to the refractive index distribution of the liquid crystal molecules aligned in an arcuate shape convex in the x-axis direction on the side of the first substrate 111a, and diffused into the second substrate 121a.
  • the light is diffused in the y-axis direction according to the refractive index distribution of the liquid crystal molecules aligned in an arc shape convex in the y-axis direction.
  • the first transparent electrode 181a and the second transparent electrode 182a of the first substrate 111a have a sufficient distance between the substrates, the first transparent electrode 181a and the second transparent electrode 182a of the first substrate 111a The transverse electric field between the two substrates 121a does not affect the orientation of the liquid crystal molecules on the second substrate 121a side, or is negligibly small. Similarly, does the lateral electric field between the fourth transparent electrode 184a and the third transparent electrode 183a of the second substrate 121a affect the orientation of the liquid crystal molecules on the first substrate 111a side? or so small that it can be ignored.
  • liquid crystal molecules of the liquid crystal layer 160b when the potential is supplied to the first transparent electrode 181b to the fourth transparent electrode 184b are the same as the liquid crystal molecules of the liquid crystal layer 160a, so the explanation is omitted here.
  • the light emitted from a light source has a polarized component in the x-axis direction (P-polarized component) and a polarized component in the y-axis direction (S-polarized component).
  • the light emitted from the light source includes first polarized light 310 having a P-polarized component and second polarized light 320 having an S-polarized component.
  • the arrow symbol and the circle symbol with a cross represent the P-polarized component and the S-polarized component, respectively.
  • the light emitted from the light source is the light incident on the liquid crystal optical element 10 (incident light 180).
  • the first polarized light 310 After being incident on the first substrate 111a, the first polarized light 310 changes from a P-polarized component to an S-polarized component according to the twist of the orientation of the liquid crystal molecules as it moves toward the second substrate 121a (FIGS. 8 and 9). See (2) to (4) inside). More specifically, the first polarized light 310 has a polarization axis in the x-axis direction on the first substrate 111a side, but gradually changes its polarization axis in the process of passing through the thickness direction of the liquid crystal layer 160a.
  • the first polarized light 310 has a polarization axis in the y-axis direction on the second substrate 121a side, and is then emitted from the second substrate 121a side (see (5) in FIGS. 8 and 9). ).
  • the liquid crystal molecules on the first substrate 111a side are formed in an arcuate shape convex in the x-axis direction due to the influence of the horizontal electric field. , and the refractive index distribution changes. Therefore, the first polarized light 310 diffuses in the x-axis direction according to the refractive index distribution of the liquid crystal molecules. Further, when a horizontal electric field is generated between the fourth transparent electrode 184a and the third transparent electrode 183a, the liquid crystal molecules on the second substrate 121a side are arcuately projected in the y-axis direction due to the influence of the horizontal electric field. orient and the refractive index distribution changes. Therefore, the first polarized light 310 diffuses in the y-axis direction according to changes in the refractive index distribution of the liquid crystal molecules.
  • the polarization component of the first polarized light 310 transmitted through the first liquid crystal cell 110a changes from the P polarized component to the S polarized component.
  • the first polarized light 310 transmitted through the first liquid crystal cell 110a changes from the P polarized component to the S polarized component, and and diffuse in the y-axis direction.
  • the second polarized light 320 After being incident on the first substrate 111a, the second polarized light 320 changes from the S polarized component to the P polarized component according to the twist of the orientation of the liquid crystal molecules as it moves toward the second substrate 121a (FIGS. 8 and 9). See (2) to (4) inside). More specifically, the second polarized light 320 has a polarization axis in the y-axis direction on the first substrate 111a side, but gradually changes its polarization axis in the process of passing through the thickness direction of the liquid crystal layer 160a.
  • the second polarized light 320 has a polarization axis in the x-axis direction on the second substrate 121a side, and is then emitted from the second substrate 121a side (see (5) in FIGS. 8 and 9). ).
  • the liquid crystal molecules on the first substrate 111a side are formed in an arcuate shape convex in the x-axis direction due to the influence of the horizontal electric field. , and the refractive index distribution changes.
  • the polarization axis of the second polarized light 320 is orthogonal to the alignment of the liquid crystal molecules on the first substrate 111a side, it is not affected by the refractive index distribution of the liquid crystal molecules and passes through without being diffused. .
  • the liquid crystal molecules on the second substrate 121a side are arcuately projected in the y-axis direction due to the influence of the horizontal electric field. orient and the refractive index distribution changes.
  • the polarization axis of the second polarized light 320 is orthogonal to the orientation of the liquid crystal molecules on the second substrate 121a side, it is not affected by the refractive index distribution of the liquid crystal molecules and passes through without being diffused. .
  • the second polarized light 320 transmitted through the first liquid crystal cell 110a is The polarization component changes from the S polarization component to the P polarization component, but there is no diffusion.
  • the liquid crystal molecules of the liquid crystal layer 160b of the second liquid crystal cell 110b also have the same refractive index distribution as the liquid crystal molecules of the liquid crystal layer 160a of the first liquid crystal cell 110a.
  • the first polarized light 310 and the second polarized light 320 are affected by the refractive index distribution of the liquid crystal molecules of the liquid crystal layer 160b because the polarization axis is changed by passing through the first liquid crystal cell 110a. Polarization is reversed. That is, not only when no lateral electric field is generated (see FIG. 8) but also when a lateral electric field is generated (see FIG.
  • the first polarized light 310 transmitted through the second liquid crystal cell 110b is Although the polarization component changes from the S polarization component to the P polarization component, it does not diffuse (see (6) to (8) in FIGS. 8 and 9).
  • the polarization component of the second polarized light 320 transmitted through the second liquid crystal cell 110b changes from the P polarized component to the S polarized component only.
  • the second polarized light 320 transmitted through the second liquid crystal cell 110b changes its polarization component from the P polarization component to the S polarization component, and the x-axis direction and the y-axis direction. Axial diffusion.
  • the liquid crystal optical element 10 by stacking two liquid crystal cells (the first liquid crystal cell 110a and the second liquid crystal cell 110b) having the same structure, the light incident on the liquid crystal optical element 10 is is changed by two degrees.
  • the polarization component before incidence and the polarization component after incidence can be kept unchanged (see (1) and (9) in FIGS. 8 and 9). That is, in the liquid crystal optical element 10, the polarization component of the incident light 180 and the polarization component of the output light 200 can be made the same.
  • the liquid crystal optical element 10 supplies a potential to the transparent electrode to change the refractive index distribution of the liquid crystal molecules of the liquid crystal layer 160a of the first liquid crystal cell 110a, thereby refracting the light transmitted through the first liquid crystal cell 110a.
  • the first liquid crystal cell 110a diffuses the light of the first polarized light 310 (P-polarized component) in the x-axis direction, the y-axis direction, or both the x-axis and y-axis directions.
  • the liquid crystal cell 110b can diffuse the light of the second polarized light 320 (S-polarized component) in the x-axis direction, the y-axis direction, or both the x-axis and y-axis directions.
  • the third liquid crystal cell 110c diffuses the light of the second polarized light 320 (S-polarized component) in the x-axis direction, the y-axis direction, or both the x-axis and y-axis directions
  • the fourth liquid crystal cell 110d can scatter light of the first polarization 310 (the P-polarization component) along the x-axis, the y-axis, or both the x- and y-axes.
  • FIG. 10 is a schematic plan view showing the configuration of a lighting device 30 according to one embodiment of the invention.
  • FIG. 11 is a schematic diagram for explaining the connection of the transparent electrodes of the liquid crystal optical element 10 according to one embodiment of the invention.
  • the illumination device 30 includes a sensor 60, a control circuit 70, a light source 20 that includes three optical elements: a first optical element 40a, a second optical element 40b, and a third optical element 40c; A liquid crystal optical element 10 is included. Since the liquid crystal optical element 10 and the light source 20 have the configurations and functions described with reference to FIGS. 1 to 9, detailed description thereof will be omitted here.
  • Sensor 60 is electrically connected to control circuit 70 .
  • a control circuit 70 is electrically connected to the light source 20 and the liquid crystal optical element 10 .
  • the sensor 60 is, for example, an infrared sensor.
  • the sensor 60 detects, for example, a person near the sensor and outputs a detection signal to the control circuit 70 .
  • the control circuit 70 includes circuits for driving the liquid crystal optical element 10 and the light source 20 .
  • the control circuit 70 receives the detection signal from the sensor 60, the flexible wiring substrate ( (not shown) to output a potential for controlling the alignment state of the liquid crystal.
  • the control circuit 70 receives a detection signal from the sensor 60, the control circuit 70 outputs to the light source 20 via a flexible wiring board (not shown) a potential for controlling ON or OFF of the LED of the light source 20.
  • the fifth transparent electrode 185d and the ninth transparent electrode 189d are connected to a first potential supply line 461 that supplies a first potential V1. That is, a first transparent electrode 181a, a fifth transparent electrode 185a, and a ninth transparent electrode 189a of the first liquid crystal cell 110a, and a first transparent electrode 181d and a fifth transparent electrode of the fourth liquid crystal cell 110d.
  • 185d and the ninth transparent electrode 189d are electrically connected to each other.
  • 186d and the tenth transparent electrode 190d are connected to a second potential supply line 462 that supplies a second potential V2. That is, the second transparent electrode 182a, the sixth transparent electrode 186a and the tenth transparent electrode 190a of the first liquid crystal cell 110a, the second transparent electrode 182d and the sixth transparent electrode of the fourth liquid crystal cell 110d.
  • 186d and the tenth transparent electrode 190d are electrically connected to each other.
  • a third transparent electrode 183a, a seventh transparent electrode 187a, and an eleventh transparent electrode 191a of the first liquid crystal cell 110a; a third transparent electrode 183d and a seventh transparent electrode 187d of the fourth liquid crystal cell 110d; and the eleventh transparent electrode 191d are connected to a third potential supply line 463 that supplies a third potential V3. That is, the third transparent electrode 183a, the seventh transparent electrode 187a, and the eleventh transparent electrode 191a of the first liquid crystal cell 110a, the third transparent electrode 183d, and the seventh transparent electrode of the fourth liquid crystal cell 110d. 187d and the eleventh transparent electrode 191d are electrically connected to each other.
  • a fourth transparent electrode 184a, an eighth transparent electrode 188a and a twelfth transparent electrode 192a of the first liquid crystal cell 110a; a fourth transparent electrode 184d and an eighth transparent electrode 188d of the fourth liquid crystal cell 110d; and the twelfth transparent electrode 192d are connected to a fourth potential supply line 464 that supplies a fourth potential V4. That is, the fourth transparent electrode 184a, the eighth transparent electrode 188a, and the twelfth transparent electrode 192a of the first liquid crystal cell 110a, the fourth transparent electrode 184d, and the eighth transparent electrode of the fourth liquid crystal cell 110d. 188d and the twelfth transparent electrode 192d are electrically connected to each other.
  • a first transparent electrode 181b, a fifth transparent electrode 185b, and a ninth transparent electrode 189b of the second liquid crystal cell 110b; a first transparent electrode 181c and a fifth transparent electrode 185c of the third liquid crystal cell 110c; and the ninth transparent electrode 189c are connected to a fifth potential supply line 481 that supplies a fifth potential V5. That is, the first transparent electrode 181b, the fifth transparent electrode 185b, and the ninth transparent electrode 189b of the second liquid crystal cell 110b, the first transparent electrode 181c, and the fifth transparent electrode of the third liquid crystal cell 110c. 185c and the ninth transparent electrode 189c are electrically connected to each other.
  • the second transparent electrode 182b, the sixth transparent electrode 186b and the tenth transparent electrode 190b of the second liquid crystal cell 110b; the second transparent electrode 182c and the sixth transparent electrode 186c of the third liquid crystal cell 110c; and the tenth transparent electrode 190c are connected to a sixth potential supply line 482 that supplies a sixth potential V6. That is, the second transparent electrode 182b, the sixth transparent electrode 186b, and the tenth transparent electrode 190b of the second liquid crystal cell 110b, the second transparent electrode 182c, and the sixth transparent electrode of the third liquid crystal cell 110c. 186c and the tenth transparent electrode 190c are electrically connected to each other.
  • the third transparent electrode 183b, the seventh transparent electrode 187b and the eleventh transparent electrode 191b of the second liquid crystal cell 110b; the third transparent electrode 183c and the seventh transparent electrode 187c of the third liquid crystal cell 110c; and the eleventh transparent electrode 191c are connected to a seventh potential supply line 483 that supplies a seventh potential V7. That is, the third transparent electrode 183b, the seventh transparent electrode 187b, and the eleventh transparent electrode 191b of the second liquid crystal cell 110b, the third transparent electrode 183c, and the seventh transparent electrode of the third liquid crystal cell 110c. 187c and the eleventh transparent electrode 191c are electrically connected to each other.
  • the fourth transparent electrode 184b, the eighth transparent electrode 188b, and the twelfth transparent electrode 192b of the second liquid crystal cell 110b; the fourth transparent electrode 184c, the eighth transparent electrode 188c of the third liquid crystal cell 110c; and the twelfth transparent electrode 192c are connected to an eighth potential supply line 484 that supplies an eighth potential V8. That is, the fourth transparent electrode 184b, the eighth transparent electrode 188b, and the twelfth transparent electrode 192b of the second liquid crystal cell 110b, the fourth transparent electrode 184c, and the eighth transparent electrode of the third liquid crystal cell 110c. 188c and the twelfth transparent electrode 192c are electrically connected to each other.
  • the first potential V1 to the eighth potential V8 shown in FIG. 11 may be fixed potentials or variable potentials.
  • the first to eighth potential supply lines 461 to 484 are supplied not only with low and high potentials, but also with intermediate potentials between low and high potentials. That is, the first potential V1 to the eighth potential V8 include three potentials with different absolute values. Therefore, the liquid crystal optical element 10 transmits light emitted from the three optical elements of the first optical element 40a, the second optical element 40b, and the third optical element 40c in the x-axis direction and the y-axis direction. The light is diffused, and the illumination device 30 according to the present embodiment can variously control the light distribution and light distribution pattern.
  • the potential supplied to each transparent electrode is a first variable potential (for example, a low potential of 0 V and a high potential of 30 V), and a second variable potential whose phase is opposite to the first variable potential.
  • a first variable potential for example, a low potential of 0 V and a high potential of 30 V
  • second variable potential whose phase is opposite to the first variable potential.
  • Low potential is 0 V and High potential is 30 V
  • intermediate potential for example, 15 V.
  • the intermediate potential is a potential between the Low potential and the High potential, and may be a fixed potential or a variable potential.
  • the potential supplied to each transparent electrode according to this embodiment is an example, and the potential supplied to each transparent electrode is not limited to the potential shown here.
  • FIG. 12 is a graph showing the relationship between relative luminance and polar angle for light emitted from the illumination device 30 according to one embodiment of the present invention.
  • the optical axis of the second optical element 40a is set at a polar angle of 0°, and the optical elements are arranged in the left-right direction of the paper surface (the same applies to FIGS. 13 to 17).
  • the control circuit 70 turns on the LEDs of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) with different light emitting directions.
  • FIG. 4 is a graph in the case where potentials are supplied to the first optical element 40a, the second optical element 40b, and the third optical element 40c, and intermediate potentials are supplied to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10.
  • the first liquid crystal cell 110a there is no potential difference between the first transparent electrode 181a and the second transparent electrode 182a, and no potential difference between the third transparent electrode 183a and the fourth transparent electrode 184a.
  • the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a.
  • Light emitted from the optical element 40a passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, and has a peak polar angle of 40 degrees. The light is emitted from the liquid crystal optical element 10 as light.
  • the first liquid crystal cell 110a there is no potential difference between the fifth transparent electrode 185a and the sixth transparent electrode 186a, and no potential difference between the seventh transparent electrode 187a and the eighth transparent electrode 188a.
  • the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a.
  • Light emitted from the optical element 40b passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, and peaks at a polar angle of 0 degrees, for example.
  • the liquid crystal optical element 10 is emitted from the liquid crystal optical element 10 as light having a
  • the first liquid crystal cell 110a there is no potential difference between the ninth transparent electrode 189a and the tenth transparent electrode 190a, and between the eleventh transparent electrode 191a and the twelfth transparent electrode 192a.
  • the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a.
  • Light emitted from the element 40c passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, and peaks at a polar angle of -40 degrees, for example. is emitted from the liquid crystal optical element 10 as light having a
  • FIG. 13 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device 30 according to one embodiment of the present invention.
  • the control circuit 70 turns on the LEDs of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) that emit light in different directions
  • the liquid crystal 4 is a graph when a first variable potential or a second variable potential is supplied to each transparent electrode of each liquid crystal cell of the optical element 10.
  • the first potential V1, the third potential V3, the fifth potential V5, and the seventh potential V7 supplied from the control circuit 70 to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are the first fluctuations.
  • a second potential V2, a fourth potential V4, a sixth potential V6, and an eighth potential V8 are second variable potentials.
  • the potential difference between the electrodes corresponding to the electrodes is 30V.
  • the light emitted from the first optical element 40a, the light emitted from the second optical element 40b, and the light emitted from the third optical element 40c are separated from the first liquid crystal cell 110a and the second liquid crystal cell 110a. is diffused in each of the third liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d. Therefore, the light emitted from the first optical element 40a, the light emitted from the second optical element 40b, and the light emitted from the third optical element 40c are at least at the polar angle 60 shown in FIG.
  • the light is emitted from the liquid crystal optical element 10 as light diffused over a polar angle of -60 degrees.
  • FIG. 14 is a graph showing the relationship between relative luminance and polar angle for light emitted from the illumination device 30 according to one embodiment of the present invention.
  • the control circuit 70 controls the third optical element arranged on the right side of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) that emit light in different directions.
  • a potential for lighting the LED of one optical element 40a and the LED of the third optical element 40c arranged on the left side is supplied to the first optical element 40a and the third optical element 40c.
  • It is a graph when an intermediate potential is supplied to each transparent electrode of a liquid crystal cell. That is, the first to eighth potentials V1 to V8 supplied from the control circuit 70 to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are intermediate potentials.
  • the first liquid crystal cell 110a there is no potential difference between the first transparent electrode 181a and the second transparent electrode 182a, and no potential difference between the third transparent electrode 183a and the fourth transparent electrode 184a.
  • the cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a.
  • the emitted light passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, and is regarded as light having a polar angle of 40 degrees as a peak. It is emitted from the element 10 .
  • the first liquid crystal cell 110a there is no potential difference between the ninth transparent electrode 189a and the tenth transparent electrode 190a, and between the eleventh transparent electrode 191a and the twelfth transparent electrode 192a.
  • the liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a.
  • the light emitted from is transmitted through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, and has a peak at a polar angle of -40 degrees, for example.
  • the light is emitted from the liquid crystal optical element 10 as light.
  • the first liquid crystal cell 110a there is no potential difference between the fifth transparent electrode 185a and the sixth transparent electrode 186a, and no potential difference between the seventh transparent electrode 187a and the eighth transparent electrode 188a.
  • the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a, but Since the LED of the optical element 40b is not lit, no light is emitted from the second optical element 40b.
  • FIG. 15 is a graph showing the relationship between relative luminance and polar angle for light emitted from the illumination device 30 according to one embodiment of the present invention.
  • the control circuit 70 controls the third optical element arranged on the right side of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) that emit light in different directions.
  • the LED of the first optical element 40a and the LED of the third optical element 40c arranged on the left side are turned on, and the first variable potential or the second variable potential is applied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10. is supplied.
  • the first potential V1, the third potential V3, the fifth potential V5, and the seventh potential V7 supplied from the control circuit 70 to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are the third variation.
  • a second potential V2, a fourth potential V4, a sixth potential V6, and an eighth potential V8 are fourth variable potentials.
  • the third variable potential has a smaller potential difference between the Low potential and the High potential than the first variable potential
  • the fourth variable potential has a phase opposite to that of the third variable potential.
  • the potential difference between the 12 transparent electrodes 192a is, for example, 10 V or more and 15 V or less.
  • the potential difference between the electrodes corresponding to the electrodes similar to 110a is 10 V or more and 15 V or less, and the light emitted from the first optical element 40a and the light emitted from the third optical element 40c are the first liquid crystal It diffuses in each of cell 110a, second liquid crystal cell 110b, third liquid crystal cell 110c, and fourth liquid crystal cell 110d. Therefore, the light emitted from the first optical element 40a and the light emitted from the third optical element 40c are weak at least near the polar angle of 50 degrees and near the polar angle of -50 degrees shown in FIG. It is emitted from the liquid crystal optical element 10 as light that has a peak and is diffused from a polar angle of 60 degrees to a polar angle of ⁇ 60 degrees.
  • the potential difference between the third varying potential and the fourth varying potential is smaller than the potential difference between the first varying potential and the second varying potential, the light generated when the third varying potential and the fourth varying potential are applied is less diffused than when the first variable potential and the second variable potential are applied to each electrode.
  • FIG. 16 is a graph showing the relationship between relative luminance and polar angle for light emitted from the illumination device 30 according to one embodiment of the present invention.
  • the control circuit 70 controls the left side of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) that emit light in different directions.
  • 3 is a graph when a potential for lighting the LED of the optical element 40c of No. 3 is supplied to the third optical element 40c, and an intermediate potential is supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10.
  • the first liquid crystal cell 110a there is no potential difference between the ninth transparent electrode 189a and the tenth transparent electrode 190a, and between the eleventh transparent electrode 191a and the twelfth transparent electrode 192a.
  • the third liquid crystal cell 110c and the fourth liquid crystal cell 110d since there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a, light is emitted from the third optical element 40c. Light passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d. It is emitted from the element 10 .
  • the LED of the first optical element 40a and the LED of the second optical element 40b are not lit. Therefore, no light is emitted from the first optical element 40a and the second optical element 40b.
  • FIG. 17 is a graph showing the relationship between relative luminance and polar angle for light emitted from the illumination device 30 according to one embodiment of the present invention.
  • the control circuit 70 controls the left side of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) that emit light in different directions.
  • 10 is a graph when the LED of the third optical element 40c arranged in 1 is turned on, and the first variable potential or the second variable potential is supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10.
  • the first potential V1, the third potential V3, the fifth potential V5, and the seventh potential V7 supplied from the control circuit 70 to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are the fifth variation.
  • a second potential V2, a fourth potential V4, a sixth potential V6, and an eighth potential V8 are sixth variable potentials.
  • the fifth variable potential has a larger potential difference between the Low potential and the High potential than the third variable potential.
  • the sixth variable potential is opposite in phase to the fifth variable potential.
  • the potential difference between the ninth transparent electrode 189a and the tenth transparent electrode 190a and between the eleventh transparent electrode 191a and the twelfth transparent electrode 192a is 30 V or slightly smaller.
  • the potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a is 30 V or slightly smaller. Therefore, the light emitted from the third optical element 40c is diffused in each of the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d. be. Therefore, the light emitted from the third optical element 40c has a weak peak at least near the polar angle of ⁇ 40 degrees shown in FIG. is emitted from the liquid crystal optical element 10 as.
  • the potential difference between the first transparent electrode 181a and the second transparent electrode 182a, the potential difference between the third transparent electrode 183a and the fourth transparent electrode 184a, the potential difference between the fifth transparent electrode 185a and the fourth transparent electrode 185a, and the The potential difference between the No. 6 transparent electrode 186a and the potential difference between the seventh transparent electrode 187a and the eighth transparent electrode 188a is 30 V or less, and the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the third liquid crystal cell 110c.
  • liquid crystal cells 110d also have a potential difference of 30 V or less between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a, but the LED of the first optical element 40a and the second Since the LED of the optical element 40b is not lit, no light is emitted from the first optical element 40a and the second optical element 40b.
  • the light distribution patterns shown in FIGS. 18A to 18H are schematic diagrams showing light distribution patterns of light emitted from the illumination device 30 according to one embodiment of the present invention.
  • the light distribution patterns shown in FIGS. 18A to 18H are projected onto the exit surface of the fourth liquid crystal cell 110d (the surface opposite to the side where the light source 20 is provided in the z-axis direction). is the pattern that is projected (appears on the exit face).
  • the light distribution pattern shown in FIG. 18(A) is a light distribution pattern of light corresponding to the relationship between the relative luminance and the polar angle shown in FIG. That is, it is a light distribution pattern of light emitted from the illumination device 30 when three optical elements are lit and an intermediate potential is supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 .
  • the light distribution pattern shown in FIG. 18A is a light distribution pattern when the right spot light 80a, the center spot light 80b, and the left spot light 80c arranged in the x-axis direction are irradiated.
  • the LED of the third optical element 40 c is turned on, and an intermediate potential is supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 .
  • illustration is omitted, in this case, spot lights are emitted from the illumination device 30 to the right and left sides with respect to the x-axis direction.
  • the light distribution pattern shown in FIG. 18(B) can be formed. That is, the light emitted from the lighting device 30 when the three optical elements are lit and the first variable potential or the second variable potential is selectively supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10. is a light distribution pattern. More specifically, for each liquid crystal cell, the first variable potential and the second variable potential are alternately supplied to the electrodes arranged in the x-axis direction and extending in the y-axis direction. As a result, incident light from each optical element is diffused in the x-axis direction.
  • the light distribution pattern shown in FIG. 18B shows a state in which light diffused in the x-axis direction (diffused light 81) is emitted.
  • the illumination device 30 can be changed to that shown in FIG. 18(C).
  • right, center, and left light can be emitted as diffused light (diffused light 82a, 82b, 82c) with respect to the y-axis direction.
  • the first variable potential and the second variable potential are alternately supplied to the electrodes arranged in the y-axis direction and extending in the x-axis direction.
  • incident light from each optical element is diffused in the y-axis direction.
  • the light distribution pattern shown in FIG. 18C shows a state in which diffused lights 82a, 82b, and 82c are emitted.
  • the illumination device 30 can be configured to have an elliptical shape in which the right, center, and left lights are diffused in the x-axis direction and the y-axis direction, as shown in FIG. 18(D). It can be irradiated as light (diffused light 83).
  • the light distribution pattern shown in FIG. 18D shows a state in which diffused light 83 is emitted.
  • the illumination device 30 diffuses the right, center, and left lights in a cross shape with respect to the x-axis direction and the y-axis direction, as shown in FIG. 18(E). , and can be irradiated as combined light 84 . More specifically, all three optical elements are turned on, and a plurality of electrodes provided on the first substrate 111a side of the first liquid crystal cell 110a and the second substrate 121d of the fourth liquid crystal cell 110d are illuminated. A first potential V1 and a second potential V2 for supplying potentials to a plurality of electrodes provided on the side are set as a first variable potential and a second variable potential, respectively, and a second substrate of the second liquid crystal cell 110b is provided.
  • a seventh potential V7 and an eighth potential V8 for supplying potentials to the plurality of electrodes provided on the 121b side and the plurality of electrodes provided on the first substrate 111c side of the third liquid crystal cell 110c are applied to the first potential V7 and the eighth potential V8, respectively. and a second variable potential.
  • incident light from each optical element is diffused in a cross shape in the x-axis direction and the y-axis direction.
  • the light distribution pattern shown in FIG. 18(E) shows a state in which light 84 is emitted.
  • the light distribution pattern shown in FIG. 18(F) can be formed. That is, among the three optical elements, the LED of the first optical element 40a arranged on the right side and the LED of the third optical element 40c arranged on the left side are turned on, and each liquid crystal of the liquid crystal optical element 10 is turned on. It is a light distribution pattern of light 85 emitted from the illumination device 30 when a first variable potential or a second variable potential is supplied to each transparent electrode of a cell. More specifically, a potential is applied to a plurality of electrodes provided on the first substrate 111a side of the first liquid crystal cell 110a and a plurality of electrodes provided on the second substrate 121d side of the fourth liquid crystal cell 110d.
  • a first potential V1 and a second potential V2 to be supplied are set to be a first variable potential and a second variable potential, respectively, and a plurality of electrodes provided on the second substrate 121b side of the second liquid crystal cell 110b and a second potential V2 are provided.
  • a seventh potential V7 and an eighth potential V8 for supplying potentials to a plurality of electrodes provided on the first substrate 111c side of the liquid crystal cell 110c of No. 3 are set as the first variable potential and the second variable potential, respectively. .
  • incident light from each optical element is diffused in a cross shape in the x-axis direction and the y-axis direction.
  • the light distribution pattern shown in FIG. 18F shows a state in which light 85 is emitted.
  • the illumination device 30 diffuses the light on the right and left sides in the x-axis direction and the y-axis direction, respectively, and diffuses the light on the right and left sides in the x-axis direction. can be diffused again by the central group of electrodes of each liquid crystal cell.
  • the cross-shaped diffusibility does not strongly appear as in the light distribution patterns shown in the regions 85a and 85b, for example. Near the center, as shown in region 85c, no diffusion effect is visible.
  • the light distribution pattern shown in FIG. 18(G) can be formed. That is, among the three optical elements, the LED of the third optical element 40c arranged on the left side is turned on, and each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 is selectively applied with the first variable potential or the second potential. 2 is a light distribution pattern of light emitted from the illumination device 30 when a varying potential of is supplied. More specifically, for each liquid crystal cell, the first variable potential and the second variable potential are alternately supplied to the electrodes arranged in the y-axis direction and extending in the x-axis direction. As a result, incident light from each optical element is diffused in the y-axis direction.
  • the light distribution pattern shown in FIG. 18G shows a state in which light 86 is emitted. As shown in FIG. 18G, the illumination device 30 can emit light obtained by diffusing the light on the left side in the y-axis direction.
  • the light distribution pattern shown in FIG. 18(H) can also be formed. That is, among the three optical elements, the LED of the third optical element 40c arranged on the left side is turned on, and the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are selectively supplied with the first variable potential or the second potential. It is a light distribution pattern of light 87 emitted from the illumination device 30 when a variable potential is supplied. More specifically, a potential is applied to a plurality of electrodes provided on the first substrate 111a side of the first liquid crystal cell 110a and a plurality of electrodes provided on the second substrate 121d side of the fourth liquid crystal cell 110d.
  • a first potential V1 and a second potential V2 to be supplied are set to be a first variable potential and a second variable potential, respectively, and a plurality of electrodes provided on the second substrate 121b side of the second liquid crystal cell 110b and a second potential V2 are provided.
  • a seventh potential V7 and an eighth potential V8 for supplying potentials to a plurality of electrodes provided on the first substrate 111c side of the liquid crystal cell 110c of No. 3 are set as the first variable potential and the second variable potential, respectively. .
  • incident light from each optical element is diffused in a cross shape in the x-axis direction and the y-axis direction.
  • the light distribution pattern shown in FIG. 18(H) shows a state in which light 87 is emitted.
  • the illumination device 30 diffuses light on the left side in a cross shape and diffuses the light in the x-axis direction by the electrode group on the center portion and the electrode group on the right side of each liquid crystal cell. Diffuse more to the right and in a cross shape.
  • the cross-shaped diffusibility does not appear strongly, for example, as shown in the region 87a, the light diffuses beyond the center. The effect is no longer visible.
  • the light emitted from three optical elements that is, the first optical element 40a, the second optical element 40b, and the third optical element 40c, which emit light in different directions, It can transmit and diffuse in the x-axis and y-axis directions.
  • the illumination device 30 according to the present embodiment can variously control the light distribution and the light distribution pattern.
  • FIG. 19 is a cross-sectional end view of a lighting device 30b in accordance with one embodiment of the present invention.
  • a lighting device 30b shown in FIG. 19 differs from the lighting device 30 shown in FIG. 1 in that the optical element 20b has a support member 50b.
  • the shape of the support member 50b is a concave shape in a cross-sectional view.
  • the first optical element 40a emits light 180a obliquely to the left with respect to the z-axis direction
  • the second optical element 40b emits light 180a with respect to the z-axis direction.
  • the third optical element 40c emits the light 180c obliquely to the right with respect to the z-axis direction. Since the illumination device 30b is the same as the illumination device 30 in other respects, detailed description thereof will be omitted here.
  • FIG. 20 is an end cross-sectional view of an optical element 40 according to one embodiment of the invention.
  • the optical element 40 shown in FIG. 20 differs from the optical element 40 shown in FIG. 2 in that it has a convex lens 230 .
  • the convex lens 230 can collect the light emitted from the light emitting element 210 and make the collected light enter the liquid crystal optical element 10 .
  • the reflector 220 may reflect light emitted from the light emitting device 210 and allow the reflected light to enter the convex lens 230 . Since the optical element 40 shown in FIG. 20 is the same as the optical element 40 shown in FIG. 2 in other respects, detailed description thereof will be omitted here.
  • FIG. 1 to 20 The illumination device 30 according to one embodiment of the present invention has been described using FIGS. 1 to 20.
  • FIG. The form of the lighting device 30 shown in FIGS. 1 to 20 is an example, and the form of the lighting device 30 according to the embodiment of the present invention is not limited to the forms shown in FIGS. 1 to 20.
  • FIG. 1 to 20 The form of the lighting device 30 shown in FIGS. 1 to 20 is an example, and the form of the lighting device 30 according to the embodiment of the present invention is not limited to the forms shown in FIGS. 1 to 20.
  • the illumination device 30 By using the illumination device 30 according to one embodiment of the present invention, it is possible to control ON and OFF of the optical elements that emit light in different directions, and to control the potential supplied to each transparent electrode of the liquid crystal optical element. As a result, the transmission and diffusion of light in different directions can be finely controlled with respect to the object to be illuminated.
  • FIG. 21 is an end cross-sectional view of a lighting device 30c according to a second embodiment of the present invention.
  • FIG. 22 is a plan view of the light source 20c according to the second embodiment of the invention.
  • the form of the lighting device 30c shown in FIGS. 21 and 22 is an example, and the form of the lighting device 30c according to the second embodiment is not limited to the form shown in FIGS. In the explanation of the second embodiment, explanations similar to those of the first embodiment may be omitted.
  • the illumination device 30c shown in FIG. 21 differs from the illumination device 30 shown in FIG. 1 in that the light source 20c has a support member 50c. , and a sixth optical element 40f, which differ in that each optical element has a reflector 220 oriented in a different direction in a cross-sectional view. Since the illumination device 30c is the same as the illumination device 30 in other respects, detailed description thereof is omitted here.
  • the illumination device 30c has a liquid crystal optical element 10 and a light source 20c.
  • the light source 20c has an optical element 40 and a support member 50c.
  • the support member 50 c has a role of supporting (fixing) the optical element 40 .
  • the support member 50a has a flat surface in a cross-sectional view.
  • the support member 50c can use the same material as the support member 50a.
  • the optical element 40 is composed of a fourth optical element 40d, a fifth optical element 40e, and a sixth optical element 40f.
  • the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f are arranged parallel or substantially parallel to the x-axis direction or the y-axis direction in plan view.
  • the fourth optical element 40d is arranged next to the fifth optical element 40e
  • the fifth optical element 40e is arranged next to the sixth optical element 40f.
  • the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f are mounted on the flat surface facing the liquid crystal optical element 10 of the support member 50c.
  • the fourth optical element 40d has a first reflector 220a and a first light emitting element 210a.
  • the fifth optical element 40e has a second reflector 220b and a second light emitting element 210b.
  • the sixth optical element 40f has a third reflector 220c and a third light emitting element 210c.
  • the first reflector 220a, the second reflector 220b, and the third reflector 220c are arranged in different directions so as to emit reflected light in different directions.
  • a fourth optical element 40d having a first reflector 220a emits light 180d obliquely to the right with respect to the z-axis direction.
  • a fifth optical element 40e having two reflectors 220b emits light 180e parallel or substantially parallel to the z-axis direction
  • a sixth optical element 40f having a third reflector 220c emits light 180e in the z-axis direction.
  • the light 180f is emitted obliquely to the left.
  • the positional relationship between the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f and each electrode group is the same as that of the first optical element 40a, the second optical element 40b, and the third optical element. This is the same as the positional relationship between 40c and each electrode group.
  • the first electrode group 117-1 and the fourth electrode group 117-2 are provided so as to face the light exit surfaces of the fourth optical element 40d and the fourth optical element 40d
  • the group 117-3 and the fifth electrode group 117-4 are provided so as to face the light exit surfaces of the fifth optical element 40e and the fifth optical element 40e.
  • Six electrode groups 117-6 are provided so as to face the sixth optical element 40f and the light exit surface of the sixth optical element 40f.
  • the optical element 40 and the liquid crystal optical element 10 having reflectors facing in different directions are arranged as shown in FIG.
  • each of the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f has a reflector
  • the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f each have a reflector.
  • One liquid crystal optical element 10 is arranged as shown in FIG. 21 for the three optical elements of the optical element 40f having different light emitting directions.
  • three optical elements are used as a left light source, a center light source, and a right light source, and the liquid crystal optical element 10 transmits or diffuses the light emitted from each optical element in different directions.
  • a plurality of each of the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f may be randomly provided on the support member 50c.
  • three each of the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f are randomly provided on the support member 50c.
  • the light source 20c having a plurality of optical elements with different light emitting directions for example, it is possible to selectively emit light with high rectilinearity and strong light in oblique directions.
  • a transportation means such as a car, an airplane, or a train
  • the lighting device 30c by arranging the lighting device 30c, the center seat is irradiated with light with high straightness among the three adjacent seats, and the light on the right side of the center is illuminated. Adjacent seats can be obliquely illuminated with strong light. That is, the illumination device 30 can simultaneously irradiate a plurality of different objects with light beams directed in different directions.
  • the light source 20c may be a light source having a structure in which light guide plates are stacked, or may be an LED in which an LED emitting red, an LED emitting green, and an LED emitting blue are provided on one substrate. It may be a direct-type MiniLED forming an array, or it may be an organic light-emitting device (OLED). Also, a convex lens 230 shown in FIG. 20 may be provided between each optical element and the liquid crystal optical element 10 .
  • FIG. 23 is an end cross-sectional view of a lighting device 30d according to a third embodiment of the present invention.
  • the form of the lighting device 30d shown in FIG. 23 is an example, and the form of the lighting device 30d according to the third embodiment is not limited to the form shown in FIG. In the explanation of the third embodiment, explanations similar to those of the first and second embodiments may be omitted.
  • the lighting device 30d shown in FIG. 23 has a , in that one liquid crystal optical element is provided. Since the illumination device 30d is the same as the illumination device 30c in other respects, detailed description thereof is omitted here.
  • a lighting device 30d shown in FIG. 23 has a liquid crystal optical element 10a, a liquid crystal optical element 10b, a liquid crystal optical element 10c, and a light source 20c.
  • the configuration of the light source 20c is similar to that of the light source 20c shown in the second embodiment, and the light source 20c has a fourth optical element 40d, a fifth optical element 40e, and a sixth optical element 40f.
  • the fourth optical element 40d faces the liquid crystal optical element 10a, and light 180d emitted from the fourth optical element 40d in a right oblique direction with respect to the z-axis direction enters the liquid crystal optical element 10a.
  • the fifth optical element 40e faces the liquid crystal optical element 10b, and light 180e emitted from the fifth optical element 40e parallel or substantially parallel to the z-axis direction enters the liquid crystal optical element 10b.
  • the sixth optical element 40f faces the liquid crystal optical element 10c, and light 180f emitted from the sixth optical element 40f in a left oblique direction with respect to the z-axis direction enters the liquid crystal optical element 10c.
  • each electrode group included in the liquid crystal optical element 10a is provided so as to face the light emitting surface of the fourth optical element 40d and the fourth optical element 40d
  • each electrode group included in the liquid crystal optical element 10b is provided so as to face the light exit surfaces of the fifth optical element 40e and the fifth optical element 40e. is provided so as to face the light exit surface of the .
  • FIG. 24 shows a first transparent electrode 181, a second transparent electrode 182, a fifth transparent electrode 185 and a sixth electrode on a first substrate 111 in a liquid crystal optical element 10 according to a fourth embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing the arrangement of a transparent electrode 186, a ninth transparent electrode 189, and a tenth transparent electrode 190; FIG.
  • FIG. 25 shows a third transparent electrode 183, a fourth transparent electrode 184, a seventh transparent electrode 187 and an eighth electrode on the second substrate 121 in the liquid crystal optical element 10 according to the fourth embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing the arrangement of a transparent electrode 188, an eleventh transparent electrode 191, and a twelfth transparent electrode 192;
  • FIG. 26 is a schematic plan view for explaining the connection of the transparent electrodes of the liquid crystal optical element 10 according to the fourth embodiment of the invention. The form of the liquid crystal optical element 10 shown in FIGS.
  • the form of the liquid crystal optical element 10 according to the fourth embodiment is an example, and the form of the liquid crystal optical element 10 according to the fourth embodiment is It is not limited to the forms shown in FIGS. 24-26.
  • descriptions similar to those of the first to third embodiments may be omitted.
  • the arrangement of the transparent electrodes shown in FIGS. 24 and 25 differs from the arrangement of the transparent electrodes shown in FIGS. 6 and 7 in that each transparent electrode can be controlled independently.
  • the arrangement of the transparent electrodes shown in FIGS. 24 and 25 is the same as the arrangement of the transparent electrodes shown in FIGS. 6 and 7, so detailed description thereof will be omitted here.
  • the first transparent electrode 181 is electrically connected to the first wiring 116-1.
  • the second transparent electrode 182 is electrically connected to the second wiring 116-2.
  • the fifth transparent electrode 185 is electrically connected to the seventh wiring 116-7.
  • the sixth transparent electrode 186 is electrically connected to the eighth wiring 116-8.
  • the ninth transparent electrode 189 is electrically connected to the thirteenth wiring 116-13.
  • the tenth transparent electrode 190 is electrically connected to the fourteenth wiring 116-14.
  • the wiring 116-11, the 12th wiring 116-12, the 13th wiring 116-13, the 14th wiring 116-14, the 17th wiring 116-17, and the 18th wiring 116-18 are connected to the first is provided on the substrate 111 of the
  • the first wiring 116-1 may be formed under the first transparent electrode 181, may be formed over the first transparent electrode 181, and may be formed in the same layer as the first transparent electrode 181. good.
  • the second wiring 116-2 may be formed under the second transparent electrode 182, may be formed over the second transparent electrode 182, and may be formed in the same layer as the second transparent electrode 182. good.
  • the seventh wiring 116-7 may be formed under the fifth transparent electrode 185, may be formed over the fifth transparent electrode 185, and may be formed in the same layer as the fifth transparent electrode 185. good.
  • the eighth wiring 116-8 may be formed under the sixth transparent electrode 186, may be formed over the sixth transparent electrode 186, and may be formed in the same layer as the sixth transparent electrode 186. good.
  • the thirteenth wiring 116-13 may be formed under the ninth transparent electrode 189, may be formed over the ninth transparent electrode 189, and may be formed in the same layer as the ninth transparent electrode 189. good.
  • the fourteenth wiring 116-14 may be formed under the tenth transparent electrode 190, may be formed over the tenth transparent electrode 190, and may be formed in the same layer as the tenth transparent electrode 190. .
  • the third transparent electrode 183 is electrically connected to the third wiring 116-3.
  • the fourth transparent electrode 184 is electrically connected to the fourth wiring 116-4.
  • the seventh transparent electrode 187 is electrically connected to the ninth wiring 116-9.
  • the eighth transparent electrode 188 is electrically connected to the tenth wiring 116-10.
  • the eleventh transparent electrode 191 is electrically connected to the fifteenth wiring 116-15.
  • the twelfth transparent electrode 192 is electrically connected to the sixteenth wiring 116-16.
  • the third wiring 116-3, the fourth wiring 116-4, the ninth wiring 116-9, the tenth wiring 116-10, the fifteenth wiring 116-15, and the sixteenth wiring 116-16 are It is provided on the second substrate 121 .
  • the third wiring 116-3 may be formed under the third transparent electrode 183, may be formed over the third transparent electrode 183, and may be formed in the same layer as the third transparent electrode 183. good.
  • the fourth wiring 116-4 may be formed under the fourth transparent electrode 184, may be formed over the fourth transparent electrode 184, and may be formed in the same layer as the fourth transparent electrode 184. good.
  • the ninth wiring 116-9 may be formed under the seventh transparent electrode 187, may be formed over the seventh transparent electrode 187, and may be formed in the same layer as the seventh transparent electrode 187. good.
  • the tenth wiring 116-10 may be formed under the eighth transparent electrode 188, may be formed over the eighth transparent electrode 188, and may be formed in the same layer as the eighth transparent electrode 188. good.
  • the fifteenth wiring 116-15 may be formed under the eleventh transparent electrode 191, may be formed over the eleventh transparent electrode 191, and may be formed in the same layer as the eleventh transparent electrode 191. good.
  • the sixteenth wiring 116-16 may be formed under the twelfth transparent electrode 192, may be formed over the twelfth transparent electrode 192, and may be formed in the same layer as the twelfth transparent electrode 192. .
  • the third wiring 116-3, the fourth wiring 116-4, the ninth wiring 116-9, and the third wiring 116-9 provided on the second substrate 121 are provided.
  • the 10th wiring 116-10, the 15th wiring 116-15, and the 16th wiring 116-16 are the fifth wiring 116-5 and the sixth wiring 116-6 provided on the first substrate 111, respectively. , 11th wiring 116-11, 12th wiring 116-12, 17th wiring 116-17, and 18th wiring 116-18.
  • the wiring 116-10 and the 12th wiring 116-12, the 15th wiring 116-15 and the 17th wiring 116-17, and the 16th wiring 116-16 and the 18th wiring 116-18 are, for example, , silver paste or conductive particles can be used to electrically connect.
  • the conductive particles include metal-coated particles.
  • the wiring 116-11, the 12th wiring 116-12, the 13th wiring 116-13, the 14th wiring 116-14, the 17th wiring 116-17, and the 18th wiring 116-18 are connected to the external device It may be a terminal for connecting with.
  • the wiring 116-15) and the 18th wiring 116-18 (or the 16th wiring 116-16) are electrically insulated from each other.
  • the first transparent electrode 181a, the fifth transparent electrode 185a, the ninth transparent electrode 189a, the second transparent electrode 182a, the sixth transparent electrode 186a, the tenth transparent electrode 190a, the third transparent electrode 183a, the seventh transparent electrode 187a, the eleventh transparent electrode 191a, the fourth transparent electrode 184a, the eighth transparent electrode 188a, and the twelfth transparent electrode 192a are independently controlled, Each transparent electrode can be used to control the orientation of liquid crystal molecules in the liquid crystal layer 113 .
  • the first transparent electrode 181a, the fifth transparent electrode 185a, and the ninth transparent electrode 189a are supplied with the first potential V1
  • the second transparent electrode 182a, the sixth transparent electrode 186a, and the tenth transparent electrode 182a are supplied with the first potential V1.
  • the second transparent electrode 190a is supplied with the second potential V2
  • the third transparent electrode 183a, the seventh transparent electrode 187a, and the eleventh transparent electrode 191a are supplied with the third potential V3
  • the fourth transparent electrode 190a is supplied with the third potential V3.
  • 184a, the eighth transparent electrode 188a, and the twelfth transparent electrode 192a are supplied with the fourth potential V4.
  • the first potential V1, the second potential V2, the third potential V3, and the fourth potential V4 may be different potentials or may be the same potential.
  • the illumination device 30 includes a first transparent electrode 181 and a second transparent electrode 182 included in the first electrode group 117-1 of the first substrate 111, and a fourth electrode 182 of the second substrate 121.
  • the potential supplied to each transparent electrode is controlled to control the orientation of the liquid crystal of the liquid crystal layer 113. be able to.
  • the illumination device 30 according to the present embodiment includes the fifth transparent electrode 185 and the sixth transparent electrode 186 included in the second electrode group 117-3 of the first substrate 111, and the second substrate 121.
  • the lighting device 30 includes the ninth transparent electrode 189 and the tenth transparent electrode 190 included in the third electrode group 117-5 of the first substrate 111, and the second substrate 121.
  • the eleventh transparent electrode 191 and the twelfth transparent electrode 192 included in the sixth electrode group 117-6 the voltage supplied to each transparent electrode is controlled to orient the liquid crystal in the liquid crystal layer 113. can be controlled.
  • the liquid crystal optical element 10 converts light from three different directions emitted from the three optical elements (for example, the first optical element 40a, the second optical element 40b, and the third optical element 40c) into Light is transmitted to the right side using the first electrode group 117-1 and the fourth electrode group 117-2, or diffused while being transmitted, and the second electrode group 117-3 and the fifth electrode group 117-4 are used.
  • the third electrode group 117-5 and the sixth electrode group 117-6 can be used to transmit or diffuse while transmitting to the center.
  • the second electrode group 117-3 provided at the center or approximately the center of the first substrate 111 and the second electrode group 117-3 provided at the center or approximately the center of the second substrate 121 By narrowing the electrode width, the inter-electrode distance, and the inter-electrode pitch of the transparent electrodes of the fifth electrode group 117-4, the second electrode group 117-3 and the fifth electrode group 117-4
  • the range in which the liquid crystal is aligned can be controlled within a narrow range. That is, it is possible to more finely control the degree of diffusion of light in the x-axis direction or the y-axis direction of the light that diffuses toward the center or approximately the center.
  • the first liquid crystal cell 110a and the second liquid crystal cell 110b having the same transparent electrode arrangement are stacked, and the light diffused in the center or approximately the center is diffused in the x-axis direction.
  • the degree of diffusion of light can be more finely controlled.
  • the third liquid crystal cell 110c having the same transparent electrode arrangement is placed on the first liquid crystal cell 110a and the second liquid crystal cell 110b having the same transparent electrode arrangement.
  • the fourth liquid crystal cell 110d are stacked, and the degree of diffusion of light diffused toward the center or approximately the center in the y-axis direction can be controlled more finely.
  • the light from the second optical element 40b arranged in the center or near the center can be more finely diffused in the horizontal and vertical directions, and the light distribution and the light distribution pattern in the horizontal and vertical directions can be more finely controlled.
  • the schematic plan view for explaining the connection of the transparent electrodes shown in FIG. 26 is different from the schematic plan view for explaining the connection of the transparent electrodes shown in FIG. They differ in that they are supplied with an electric potential. Since the diagram shown in FIG. 26 is the same as the diagram shown in FIG. 11 in other respects, detailed description thereof will be omitted here.
  • the first transparent electrode 181a and the first transparent electrode 181d are connected to a first potential supply line 461 that supplies a first potential V1.
  • the fifth transparent electrode 185a and the fifth transparent electrode 185d are connected to a ninth potential supply line 465 that supplies a ninth potential V9.
  • the ninth transparent electrode 189a and the ninth transparent electrode 189d are connected to a seventeenth potential supply line 469 that supplies a seventeenth potential V17.
  • the second transparent electrode 182a and the second transparent electrode 182d are connected to a second potential supply line 462 that supplies the second potential V2.
  • the sixth transparent electrode 186a and the sixth transparent electrode 186d are connected to a tenth potential supply line 466 that supplies a tenth potential V10.
  • the tenth transparent electrode 190a and the tenth transparent electrode 190d are connected to an eighteenth potential supply line 470 that supplies an eighteenth potential V18.
  • the third transparent electrode 183a and the third transparent electrode 183d are connected to a third potential supply line 463 that supplies a third potential V3.
  • the seventh transparent electrode 187a and the seventh transparent electrode 187d are connected to an eleventh potential supply line 467 that supplies an eleventh potential V11.
  • the eleventh transparent electrode 191a and the eleventh transparent electrode 191d are connected to a nineteenth potential supply line 471 that supplies a nineteenth potential V19.
  • the fourth transparent electrode 184a and the fourth transparent electrode 184d are connected to a fourth potential supply line 464 that supplies the fourth potential V4.
  • the eighth transparent electrode 188a and the eighth transparent electrode 188d are connected to a twelfth potential supply line 468 that supplies a twelfth potential V12.
  • the twelfth transparent electrode 192a and the twelfth transparent electrode 192d are connected to a twentieth potential supply line 472 that supplies a twentieth potential V20.
  • the first transparent electrode 181b and the first transparent electrode 181c are connected to a fifth potential supply line 481 that supplies a fifth potential V5.
  • the fifth transparent electrode 185b and the fifth transparent electrode 185c are connected to a thirteenth potential supply line 485 that supplies a thirteenth potential V13.
  • the ninth transparent electrode 189b and the ninth transparent electrode 189c are connected to a 21st potential supply line 489 that supplies a 21st potential V21.
  • the second transparent electrode 182b and the second transparent electrode 182c are connected to a sixth potential supply line 482 that supplies a sixth potential V6.
  • the sixth transparent electrode 186b and the sixth transparent electrode 186c are connected to a fourteenth potential supply line 486 that supplies a fourteenth potential V14.
  • the tenth transparent electrode 190b and the tenth transparent electrode 190c are connected to a twenty-second potential supply line 490 that supplies a twenty-second potential V22.
  • the third transparent electrode 183b and the third transparent electrode 183c are connected to a seventh potential supply line 483 that supplies a seventh potential V7.
  • the seventh transparent electrode 187b and the seventh transparent electrode 187c are connected to a fifteenth potential supply line 487 that supplies fifteenth potential V15.
  • the 11th transparent electrode 191b and the 11th transparent electrode 191c are connected to a 23rd potential supply line 491 that supplies a 23rd potential V23.
  • the fourth transparent electrode 184b and the fourth transparent electrode 184c are connected to an eighth potential supply line 484 that supplies an eighth potential V8.
  • the eighth transparent electrode 188b and the eighth transparent electrode 188c are connected to a sixteenth potential supply line 488 that supplies a sixteenth potential V16.
  • the twelfth transparent electrode 192b and the twelfth transparent electrode 192c are connected to a twenty-fourth potential supply line 492 that supplies a twenty-fourth potential V24.
  • the first potential V11 to the twenty-fourth potential V24 shown in FIG. 26 may be fixed potentials or variable potentials.
  • the first potential supply line 461 to the 24th potential supply line 492 are supplied with not only the low potential and the high potential, but also an intermediate potential between the low potential and the high potential. That is, the first potential V11 to the twenty-fourth potential V24 include three potentials with different absolute values.
  • each transparent electrode is independently supplied with a potential from the control circuit 70 (FIG. 10). Therefore, the light emitted from the three optical elements of the first optical element 40a, the second optical element 40b, and the third optical element 40c can be independently transmitted and diffused in the x-axis direction and the y-axis direction. can be done.
  • the illumination device including the liquid crystal optical element 10 according to the fourth embodiment can further control the light distribution and the light distribution pattern into various shapes.
  • FIG. 27 is a plan view of a light source 20d according to the fifth embodiment of the invention.
  • Light distribution patterns shown in FIGS. 28A to 28F are schematic diagrams showing light distribution patterns of light emitted from the illumination device according to the fifth embodiment of the present invention.
  • the light distribution patterns shown in FIGS. 28A to 28F are projected onto the exit surface of the fourth liquid crystal cell 110d (the surface opposite to the side where the light source 20 is provided in the z-axis direction). (irradiated) pattern.
  • FIGS. 27 and 28(A) to 28(F) are examples, and the fifth embodiment is not limited to the forms shown in FIGS. 27 and 28(A) to 28(F).
  • descriptions similar to those of the first to fourth embodiments may be omitted.
  • the light source 20d has the optical element 40 and the support member 50d.
  • the optical element 40 is composed of a fifth optical element 40g, a sixth optical element 40h, a seventh optical element 40i, and an eighth optical element 40j.
  • the fifth optical element 40g, the sixth optical element 40h, the seventh optical element 40i, and the eighth optical element 40j are arranged in a matrix in the x-axis direction and the y-axis direction on the support member 50d in plan view. placed in
  • the sixth optical element 40h is arranged adjacent to the fifth optical element 40g in the x-axis direction, and adjacent to the eighth optical element 40j in the y-axis direction.
  • the seventh optical element 40i is arranged diagonally to the sixth optical element 40h, arranged adjacent to the eighth optical element 40j in the x-axis direction, and fifth in the y-axis direction. is positioned adjacent to the optical element 40g.
  • the eighth optical element 40j is arranged diagonally with respect to the fifth optical element 40g.
  • the same optical elements as those shown in the first to fourth embodiments can be used.
  • FIG. 27 shows an example in which each optical element is arranged separately, the arrangement of each optical element is not limited to the example shown in FIG. Each optical element may be arranged in close proximity.
  • the support member 50d has a flat surface
  • the fifth optical element 40g, the sixth optical element 40h, the seventh optical element 40i, and the eighth optical element 40j are arranged on the flat surface.
  • the support member 50d is not limited to the example shown in the fifth embodiment.
  • the support member 50d may have a convex shape as shown in the first embodiment, or may have a concave shape as shown in the first embodiment.
  • the support member 50d can use the same substrate as the support member 50a or 50b shown in the first embodiment.
  • the light distribution pattern shown in FIG. 28(A) shows the amount of light emitted from illumination device 30 when four optical elements are turned on and an intermediate potential is supplied to each transparent electrode of each liquid crystal cell of liquid crystal optical element 10. light distribution pattern.
  • four spot lights 90a, 90b, 90c, and 90d are irradiated in a matrix in the x-axis direction and the y-axis direction.
  • FIG. 28B In the light distribution pattern shown in FIG. 28B, two optical elements (fifth optical element 40g and seventh optical element 40i) are turned on, and each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 is illuminated.
  • FIG. 10 is a light distribution pattern of light emitted from the lighting device when one variable potential or a second variable potential is supplied;
  • FIG. 28B In the light distribution pattern shown in FIG. 28B, light diffused (diffused light 91) along the fifth optical element 40g and the seventh optical element 40i arranged in parallel in the y-axis direction is irradiated. light distribution pattern.
  • FIG. 28C In the light distribution pattern shown in FIG. 28C, two optical elements (fifth optical element 40g and sixth optical element 40h) are turned on, and each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 is illuminated.
  • FIG. 10 is a light distribution pattern of light emitted from the lighting device when one variable potential or a second variable potential is supplied;
  • FIG. 18C In the light distribution pattern shown in FIG. 18C, light diffused (diffused light 92) along the fifth optical element 40g and the sixth optical element 40h arranged in parallel in the x-axis direction is irradiated. .
  • each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 is set to the first level of suppressing diffusion of light in the x-axis direction. It is a light distribution pattern of light emitted from the lighting device when a variable potential or a second variable potential is supplied.
  • the light distribution pattern shown in FIG. 28(D) includes the light (diffused light 93a) diffused along the fifth optical element 40g and the seventh optical element 40i arranged in parallel in the y-axis direction, and the y-axis Diffused light (diffused light 93b) is emitted along the sixth optical element 40h and the eighth optical element 40j that are aligned in parallel with the direction.
  • each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 is set to the first level of suppressing diffusion of light in the y-axis direction. It is a light distribution pattern of light emitted from the lighting device when a variable potential or a second variable potential is supplied.
  • the light distribution pattern shown in FIG. 28(E) includes the light (diffused light 94a) diffused along the fifth optical element 40g and the sixth optical element 40h arranged in parallel in the x-axis direction, and the x-axis
  • the diffused light (diffused light 94b) is emitted along the seventh optical element 40i and the eighth optical element 40j arranged in parallel to the direction.
  • a light distribution pattern shown in FIG. 28 is a light distribution pattern of light emitted from the lighting device.
  • the light distribution pattern shown in FIG. 28(F) includes light diffused along the fifth optical element 40g and the sixth optical element 40h arranged parallel to the x-axis direction, and light diffused along the seventh optical element 40h arranged parallel to the x-axis direction.
  • Light diffused along the optical element 40i and the eighth optical element 40j, light diffused along the fifth optical element 40g and the seventh optical element 40i arranged parallel to the y-axis direction, and y Light 95 is emitted by synthesizing the light diffused along the sixth optical element 40h and the eighth optical element 40j arranged in parallel in the axial direction.
  • control signals for turning ON or OFF the LEDs of the four optical elements of the light source 20d are sent from the control circuit 70 to the light source 20d.
  • a predetermined potential is supplied from the control circuit 70 to each transparent electrode included in the liquid crystal optical element 10 .
  • the light source 20d according to the fifth embodiment has four optical elements and can emit light in four directions.
  • the illumination device according to the fifth embodiment includes four optical elements, a fifth optical element 40g, a sixth optical element 40h, a seventh optical element 40i, and an eighth optical element 40j, which emit light in different directions.
  • the liquid crystal optical element 10 can be used to transmit and diffuse the light emitted from the x-axis direction and the y-axis direction. As a result, the illumination device according to the fifth embodiment can variously control the light distribution and light distribution pattern.
  • the configuration of the liquid crystal optical element, the configuration of the light source, and the configuration of the illuminating device described above as the embodiment of the present invention can be appropriately combined as long as they do not contradict each other.
  • those skilled in the art may appropriately add, delete, or change the design of the constituent elements, or add, omit, or change the conditions of the process. Anything done is also included in the scope of the present invention as long as it has the gist of the present invention.
  • 10 liquid crystal optical element, 10a: liquid crystal optical element, 10b: liquid crystal optical element, 10c: liquid crystal optical element, 20: light source, 20b: optical element, 20c: light source, 20d: light source, 30: illumination device, 30b: illumination device , 30c: illumination device, 30d: illumination device, 40: optical element, 40a: first optical element, 40b: second optical element, 40c: third optical element, 40d: fourth optical element, 40e: fifth optical element, 40f: sixth optical element, 40g: fifth optical element, 40h: sixth optical element, 40i: seventh optical element, 40j: eighth optical element, 50a: supporting member , 50b: support member, 50c: support member, 50d: support member, 60: sensor, 70: control circuit, 80a: right spot light, 80b: center spot light, 80c: left spot light, 81, 82a, 82b, 82c , 83: diffused light, 84, 85, 86, 87: light, 85a, 85b, 85c, 87
  • potential supply line 467 eleventh potential supply line 468: twelfth potential supply line 469: seventeenth potential supply line 470: eighteenth potential supply line 471: nineteenth potential supply line 472 481: fifth potential supply line 482: sixth potential supply line 483: seventh potential supply line 484: eighth potential supply line 485: thirteenth potential Supply lines 486: 14th potential supply line 487: 15th potential supply line 488: 16th potential supply line 489: 21st potential supply line 490: 22nd potential supply line 491: 23rd potential supply line 492: 24th potential supply line

Abstract

This lighting device has: a light source having a first optical element and a second optical element that emit light having directivity; and one liquid crystal optical element through which light emitted from the light source transmits or in which the light diffuses while transmitting therethrough. The light source is disposed such that the light-emitting direction of the first optical element is different from the light-emitting direction of the second optical element. The liquid crystal optical element has: a first electrode group opposing a light-emitting surface of the first optical element; and a second electrode group opposing a light-emitting surface of the second optical element and disposed adjacent to the first electrode group. The first electrode group has: first transparent electrodes; and second transparent electrodes alternately arranged with the first transparent electrodes. The second electrode group has: third transparent electrodes; and fourth transparent electrodes alternately arranged with the third transparent electrodes. The pitch in which the first transparent electrodes and the second transparent electrodes are alternately arranged is different from the pitch in which the third transparent electrodes and the fourth transparent electrodes are alternately arranged.

Description

照明装置lighting equipment
 本発明の一実施形態は、液晶の光学特性を利用し配光を制御する素子、及び液晶の光学特性を利用し配光を制御する素子を含む照明装置に関する。 An embodiment of the present invention relates to an element that controls light distribution using the optical properties of liquid crystals, and a lighting device that includes an element that controls light distribution using the optical properties of liquid crystals.
 液晶に電圧を供給し液晶の屈折率を変化させ、焦点距離を電気的に制御する液晶を用いた光学素子(液晶光学素子)として、液晶レンズが知られている。例えば、特許文献1、及び特許文献2には、同心円状に電極が設けられた液晶セルを用いて、光源から放射される光の広がりを制御する照明装置が開示されている。また、例えば、特許文献3には、液晶に電圧を供給するための電極の形状を変えて配光を制御するビーム成形デバイスパターンが開示されている。 A liquid crystal lens is known as an optical element using liquid crystal (liquid crystal optical element) that electrically controls the focal length by supplying voltage to the liquid crystal to change the refractive index of the liquid crystal. For example, Patent Documents 1 and 2 disclose a lighting device that controls the spread of light emitted from a light source using a liquid crystal cell provided with concentric electrodes. Further, for example, Patent Document 3 discloses a beam shaping device pattern that controls light distribution by changing the shape of electrodes for supplying voltage to liquid crystal.
特開2005-317879号公報JP-A-2005-317879 特開2010-230887号公報JP 2010-230887 A 特開2014-160277号公報JP 2014-160277 A
 しかしながら、特許文献1又は特許文献2に記載された照明装置では、液晶レンズを利用し、光の拡がる分布、すなわち光の配光角を制御して集光することを目的としているに過ぎない。換言すれば、特許文献1又は特許文献2に記載された照明装置では、光の配光パターンが同心円状に限られていた。また、特許文献3に記載されたビーム成形デバイスは、液晶に印加する電極のパターンを変えて配光パターンを変化させるなど、光の配向パターンのバリエーションを得るためには、複雑な構成を有する液晶セルが必要とされ、量産性に乏しかった。 However, the illumination devices described in Patent Document 1 or Patent Document 2 use a liquid crystal lens, and are only aimed at condensing light by controlling the spread distribution of light, that is, the light distribution angle. In other words, in the illumination device described in Patent Document 1 or Patent Document 2, the light distribution pattern of light is limited to concentric circles. In addition, the beam shaping device described in Patent Document 3 requires a liquid crystal having a complicated configuration in order to obtain variations in the light alignment pattern, such as changing the pattern of electrodes applied to the liquid crystal to change the light distribution pattern. A cell was required, and mass productivity was poor.
 本発明の一実施形態は、上記問題に鑑み、光の配光又は配光パターンを制御可能な液晶光学素子及び照明装置を提供することを目的の一つとする。 In view of the above problem, one of the objects of one embodiment of the present invention is to provide a liquid crystal optical element and a lighting device capable of controlling light distribution or light distribution pattern.
 本発明の一実施形態に係る照明装置は、指向性を有する光を出射する第1の光学素子及び第2の光学素子を有する光源と、前記光源から照射される光を透過させる又は透過させつつ拡散させる1つの液晶光学素子と、を有し、前記光源は、前記第1の光学素子と前記第2の光学素子とが光の出射方向が異なるように配置され、前記液晶光学素子は、前記第1の光学素子の光の出射面に第1の電極群と、前記第2の光学素子の光の出射面に対向し、前記第1の電極群に隣接して設けられる第2の電極群と、を有し、前記第1の電極群は、第1の透明電極、及び前記第1の透明電極と交互に櫛歯状に配置される第2の透明電極を有し、前記第2の電極群は、第3の透明電極、及び前記第3の透明電極と交互に櫛歯状に配置される第4の透明電極を有し、前記第1の透明電極、及び前記第2の透明電極が交互に配置されるピッチは、前記第3の透明電極、及び前記第4の透明電極が交互に配置されるピッチと異なる。 An illumination device according to an embodiment of the present invention includes a light source having a first optical element and a second optical element that emit light having directivity, and transmitting or transmitting light emitted from the light source. and one liquid crystal optical element for diffusing, wherein the light source is arranged such that the first optical element and the second optical element emit light in different directions, and the liquid crystal optical element comprises the A first electrode group on the light exit surface of the first optical element, and a second electrode group provided adjacent to the first electrode group so as to face the light exit surface of the second optical element. and, the first electrode group includes first transparent electrodes and second transparent electrodes alternately arranged in a comb shape with the first transparent electrodes, and The electrode group has a third transparent electrode and a fourth transparent electrode arranged alternately with the third transparent electrode in a comb shape, and the first transparent electrode and the second transparent electrode. are alternately arranged, is different from the pitch at which the third transparent electrodes and the fourth transparent electrodes are alternately arranged.
本発明の一実施形態に係る照明装置の模式的な端部断面図である。1 is a schematic end cross-sectional view of a lighting device according to an embodiment of the present invention; FIG. 本発明の一実施形態に係る光学素子の模式的な端部断面図である。1 is a schematic end cross-sectional view of an optical element according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る液晶光学素子の模式的な斜視図である。1 is a schematic perspective view of a liquid crystal optical element according to an embodiment of the invention; FIG. 本発明の一実施形態に係る液晶光学素子の模式的な端部断面図である。1 is a schematic end cross-sectional view of a liquid crystal optical element according to an embodiment of the present invention; FIG. 本発明の一実施形態に係る液晶光学素子の模式的な端部断面図である。1 is a schematic end cross-sectional view of a liquid crystal optical element according to an embodiment of the present invention; FIG. 本発明の一実施形態に係る液晶光学素子において、第1の基板上の第1の透明電極、第2の透明電極、第5の透明電極、第6の透明電極、第9の透明電極、及び第10の透明電極の配置を示す模式的な平面図である。In a liquid crystal optical element according to an embodiment of the present invention, a first transparent electrode, a second transparent electrode, a fifth transparent electrode, a sixth transparent electrode, a ninth transparent electrode, and FIG. 10 is a schematic plan view showing the arrangement of tenth transparent electrodes. 本発明の一実施形態に係る液晶光学素子において、第2の基板上の第3の透明電極、第4の透明電極、第7の透明電極、第8の透明電極、第11の透明電極、及び第12の透明電極の配置を示す模式的な平面図である。In a liquid crystal optical element according to an embodiment of the present invention, a third transparent electrode, a fourth transparent electrode, a seventh transparent electrode, an eighth transparent electrode, an eleventh transparent electrode on the second substrate, and FIG. 12 is a schematic plan view showing the arrangement of a twelfth transparent electrode; 本発明の一実施形態に係る液晶光学素子において、液晶層の液晶の配向を示す模式的な端部断面図である。FIG. 2 is a schematic end cross-sectional view showing the orientation of liquid crystals in a liquid crystal layer in a liquid crystal optical element according to an embodiment of the present invention. 本発明の一実施形態に係る液晶光学素子において、液晶層の液晶の配向を示す模式的な端部断面図である。FIG. 2 is a schematic end cross-sectional view showing the orientation of liquid crystals in a liquid crystal layer in a liquid crystal optical element according to an embodiment of the present invention. 本発明の一実施形態に係る照明装置の構成を示す模式的な平面図である。1 is a schematic plan view showing the configuration of a lighting device according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る液晶光学素子の透明電極の接続を説明するための模式的な平面図である。FIG. 2 is a schematic plan view for explaining connection of transparent electrodes of a liquid crystal optical element according to an embodiment of the present invention; 本発明の一実施形態に係る照明装置から出射された光において、相対輝度と極角との関係を示すグラフである。4 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device according to the embodiment of the present invention. 本発明の一実施形態に係る照明装置から出射された光において、相対輝度と極角との関係を示すグラフである。4 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device according to the embodiment of the present invention. 本発明の一実施形態に係る照明装置から出射された光において、相対輝度と極角との関係を示すグラフである。4 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device according to the embodiment of the present invention. 本発明の一実施形態に係る照明装置から出射された光において、相対輝度と極角との関係を示すグラフである。4 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device according to the embodiment of the present invention. 本発明の一実施形態に係る照明装置から出射された光において、相対輝度と極角との関係を示すグラフである。4 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device according to the embodiment of the present invention. 本発明の一実施形態に係る照明装置から出射された光において、相対輝度と極角との関係を示すグラフである。4 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device according to the embodiment of the present invention. 図18(A)~図28(H)に示される配光パターンは、本発明の一実施形態に係る照明装置から出射された光の配光パターンを示す模式図である。The light distribution patterns shown in FIGS. 18A to 28H are schematic diagrams showing light distribution patterns of light emitted from the illumination device according to one embodiment of the present invention. 本発明の一実施形態に係る照明装置の端部断面図である。1 is a cross-sectional end view of a lighting device according to an embodiment of the present invention; FIG. 本発明の一実施形態に係る光学素子の端部断面図である。1 is a cross-sectional end view of an optical element according to one embodiment of the present invention; FIG. 本発明の第2実施形態に係る照明装置の端部断面図である。It is an end sectional view of a lighting device according to a second embodiment of the present invention. 本発明の第2実施形態に係る光源の平面図である。FIG. 5 is a plan view of a light source according to a second embodiment of the invention; 本発明の第3実施形態に係る照明装置の端部断面図である。It is an end sectional view of a lighting device according to a third embodiment of the present invention. 本発明の第4実施形態に係る液晶光学素子において、第1の基板上の第1の透明電極、第2の透明電極、第5の透明電極、第6の透明電極、第9の透明電極、及び第10の透明電極の配置を示す模式的な平面図である。In the liquid crystal optical element according to the fourth embodiment of the present invention, the first transparent electrode, the second transparent electrode, the fifth transparent electrode, the sixth transparent electrode, the ninth transparent electrode on the first substrate, and a schematic plan view showing the arrangement of a tenth transparent electrode. 本発明の第4実施形態に係る液晶光学素子において、第2の基板上の第3の透明電極、第4の透明電極、第7の透明電極、第8の透明電極、第11の透明電極、及び第12の透明電極の配置を示す模式的な平面図である。In the liquid crystal optical element according to the fourth embodiment of the present invention, the third transparent electrode, the fourth transparent electrode, the seventh transparent electrode, the eighth transparent electrode, the eleventh transparent electrode on the second substrate, and FIG. 12 is a schematic plan view showing the arrangement of the 12th transparent electrode. 本発明の第4実施形態に係る液晶光学素子の透明電極の接続を説明するための模式的な平面図である。FIG. 11 is a schematic plan view for explaining connection of transparent electrodes of a liquid crystal optical element according to a fourth embodiment of the present invention; 本発明の第5実施形態に係る光源の平面図である。FIG. 10 is a plan view of a light source according to a fifth embodiment of the invention; 図28(A)~図28(F)に示される配光パターンは、本発明の第5実施形態に係る照明装置から出射された光の配光パターンを示す模式図である。The light distribution patterns shown in FIGS. 28A to 28F are schematic diagrams showing light distribution patterns of light emitted from the illumination device according to the fifth embodiment of the present invention.
 以下、本発明の実施の形態を、図面等を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号、数字の後にa、b、A、Bなどのアルファベット、又は、数字の後にハイフンと数字を付して、詳細な説明を適宜省略することがある。さらに各要素に対する「第1」、「第2」と付記された文字は、各要素を区別するために用いられる便宜的な標識であり、特段の説明がない限りそれ以上の意味を有しない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention can be implemented in many different aspects and should not be construed as being limited to the description of the embodiments exemplified below. In order to make the description clearer, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the actual embodiment, but this is only an example and limits the interpretation of the present disclosure. not a thing Also, in the present specification and figures, elements similar to those described above with respect to previous figures may be identified by the same reference numerals, numerals followed by letters such as a, b, A, B, or numerals followed by hyphens and numerals. , and detailed description may be omitted as appropriate. Further, the letters "first" and "second" for each element are convenient labels used to distinguish each element and have no further meaning unless otherwise specified.
 本明細書において、ある部材又は領域が他の部材又は領域の「上に(又は下に)」あるとする場合、特段の限定がない限りこれは他の部材又は領域の直上(又は直下)にある場合のみでなく他の部材又は領域の上方(又は下方)にある場合を含み、すなわち、他の部材又は領域の上方(又は下方)において間に別の構成要素が含まれている場合も含む。 In this specification, when a member or region is “above (or below)” another member or region, it means directly above (or directly below) the other member or region unless otherwise specified. Includes not only one case but also the case above (or below) another member or region, that is, the case where another component is included between above (or below) another member or region .
 また、本明細書において、ある一つの膜を加工して複数の構造体を形成した場合、各々の構造体は異なる機能、役割を有する場合があり、また、各々の構造体はそれが形成される下地が異なる場合がある。しかしながら、これら複数の構造体は、同一の工程で同一層として形成された膜に由来するものであり、同一の材料を有する。従って、これら複数の膜は同一層に存在しているものと定義する。 Further, in this specification, when one film is processed to form a plurality of structures, each structure may have different functions and roles, and each structure may have different functions and roles. The underlying substrate may be different. However, these multiple structures originate from films formed as the same layer in the same process and have the same material. Therefore, these multiple films are defined as existing in the same layer.
 また、本明細書において「αはA、B又はCを含む」、「αはA,B及びCのいずれかを含む」、「αはA,B及びCからなる群から選択される一つを含む」、といった表現は、特に明示が無い限り、αはA乃至Cの複数の組み合わせを含む場合を排除しない。さらに、これらの表現は、αが他の要素を含む場合も排除しない。 Further, in the present specification, "α includes A, B or C", "α includes any one of A, B and C", "α is one selected from the group consisting of A, B and C "including" does not exclude the case where α includes a plurality of combinations of A to C unless otherwise specified. Furthermore, these expressions do not exclude the case where α contains other elements.
<第1実施形態>
<1-1.照明装置30の構成>
 図1は本発明の一実施形態に係る照明装置30の一例を示す模式的な端部断面図である。図2は本発明の一実施形態に係る光学素子40の模式的な端部断面図である。図1に示すように、照明装置30は、1つの液晶光学素子10、及び光源20を含む。
<First Embodiment>
<1-1. Configuration of lighting device 30>
FIG. 1 is a schematic cross-sectional end view showing an example of a lighting device 30 according to an embodiment of the invention. FIG. 2 is a schematic end cross-sectional view of an optical element 40 according to one embodiment of the invention. As shown in FIG. 1, illumination device 30 includes one liquid crystal optical element 10 and light source 20 .
 詳細は後述するが、液晶光学素子10は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、第4の液晶セル110d、第1の透明接着層130a、第2の透明接着層130b、第3の透明接着層130cを有する。第1の透明接着層130aは、第1の液晶セル110aと第2の液晶セル110bとの間に設けられ、第2の透明接着層130bは、第2の液晶セル110bと第3の液晶セル110cとの間に設けられ、第3の透明接着層130cは、第3の液晶セル110cと第4の液晶セル110dとの間に設けられている。第1の液晶セル110a、第1の透明接着層130a、第2の液晶セル110b、第2の透明接着層130b、第3の液晶セル110c、第3の透明接着層130c、及び第4の液晶セル110dはz軸方向に積層されている。 Although details will be described later, the liquid crystal optical element 10 includes a first liquid crystal cell 110a, a second liquid crystal cell 110b, a third liquid crystal cell 110c, a fourth liquid crystal cell 110d, a first transparent adhesive layer 130a, a second transparent adhesive layer 130b and a third transparent adhesive layer 130c. The first transparent adhesive layer 130a is provided between the first liquid crystal cell 110a and the second liquid crystal cell 110b, and the second transparent adhesive layer 130b is provided between the second liquid crystal cell 110b and the third liquid crystal cell 110b. 110c, and the third transparent adhesive layer 130c is provided between the third liquid crystal cell 110c and the fourth liquid crystal cell 110d. First liquid crystal cell 110a, first transparent adhesive layer 130a, second liquid crystal cell 110b, second transparent adhesive layer 130b, third liquid crystal cell 110c, third transparent adhesive layer 130c, and fourth liquid crystal The cells 110d are stacked in the z-axis direction.
 第1の透明接着層130aは、第1の液晶セル110aと第2の液晶セル110bとを接着し、固定する。第1の透明接着層130aと同様に、第2の透明接着層130bは第2の液晶セル110bと第3の液晶セル110cとを接着し、固定し、第3の透明接着層130cは、第3の液晶セル110cと第4の液晶セル110dとを接着し、固定する。 The first transparent adhesive layer 130a adheres and fixes the first liquid crystal cell 110a and the second liquid crystal cell 110b. Similar to the first transparent adhesive layer 130a, the second transparent adhesive layer 130b adheres and fixes the second liquid crystal cell 110b and the third liquid crystal cell 110c, and the third transparent adhesive layer 130c The third liquid crystal cell 110c and the fourth liquid crystal cell 110d are adhered and fixed.
 第1の透明接着層130a、第2の透明接着層130b、及び第3の透明接着層130cを形成する材料は、光学弾性樹脂を用いることができる。光学弾性樹脂は、例えば、透光性を有するアクリル樹脂を含む接着材である。 An optical elastic resin can be used as a material for forming the first transparent adhesive layer 130a, the second transparent adhesive layer 130b, and the third transparent adhesive layer 130c. The optical elastic resin is, for example, an adhesive containing acrylic resin having translucency.
 光源20は、光学素子40、及び支持部材50aを有する。光源20は、液晶光学素子10の第1の液晶セル110aの下方に配置されている。したがって、光源20から出射された光は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dを順に透過する。 The light source 20 has an optical element 40 and a support member 50a. The light source 20 is arranged below the first liquid crystal cell 110 a of the liquid crystal optical element 10 . Therefore, the light emitted from the light source 20 passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d in order.
 支持部材50aは、光学素子40を支持(固定)する役割を有する。支持部材50aは曲面を有し、断面視において、凸状の形状を有する。支持部材50aは、例えば、ポリカーボネート基板(PCB基板)、セラミック基板、又はアルミニウム、銅などの金属材料をベースとした金属基板を用いることができる。 The support member 50 a has a role of supporting (fixing) the optical element 40 . The support member 50a has a curved surface, and has a convex shape in a cross-sectional view. For the support member 50a, for example, a polycarbonate substrate (PCB substrate), a ceramic substrate, or a metal substrate based on a metal material such as aluminum or copper can be used.
 本実施形態では、光学素子40は、第1の光学素子40a、第2の光学素子40b、及び第3の光学素子40cから構成される。第1の光学素子40a、第2の光学素子40b、及び第3の光学素子40cは、平面視においてx軸方向又はy軸方向に平行又は略平行に配置される。本実施形態では、第1の光学素子40aは第2の光学素子40bの隣に配置され、第2の光学素子40bは第3の光学素子40cの隣に配置される。なお、本実施形態では、光学素子は光学部と呼ばれる場合がある。 In this embodiment, the optical element 40 is composed of a first optical element 40a, a second optical element 40b, and a third optical element 40c. The first optical element 40a, the second optical element 40b, and the third optical element 40c are arranged parallel or substantially parallel to the x-axis direction or the y-axis direction in plan view. In this embodiment, the first optical element 40a is arranged next to the second optical element 40b, and the second optical element 40b is arranged next to the third optical element 40c. In addition, in this embodiment, the optical element may be called an optical section.
 第1の光学素子40a、第2の光学素子40b、及び第3の光学素子40cは、支持部材50aの曲面に実装される。第1の光学素子40a、第2の光学素子40b、及び第3の光学素子40cは、光の出射方向に指向性を有する。第1の光学素子40a、第2の光学素子40b、及び第3の光学素子40cは、光の出射方向が異なるように配置される。光学素子40が出射する光は曲面に接する面に対して垂直な方向に出射される。例えば、各光学素子が図1に示すように配置されると、第1の光学素子40aはz軸方向に対して右斜め方向に光180aを出射し、第2の光学素子40bはz軸方向に対して平行又は略平行に光180bを出射し、第3の光学素子40cはz軸方向に対して左斜め方向に光180cを出射する。第1の光学素子40a、第2の光学素子40b、及び第3の光学素子40cのそれぞれにおいて、光が出射される方向を含む面は光の出射面と呼ばれる場合がある。 The first optical element 40a, the second optical element 40b, and the third optical element 40c are mounted on the curved surface of the support member 50a. The first optical element 40a, the second optical element 40b, and the third optical element 40c have directivity in the light emitting direction. The first optical element 40a, the second optical element 40b, and the third optical element 40c are arranged so that the directions of light emission are different. The light emitted from the optical element 40 is emitted in a direction perpendicular to the surface in contact with the curved surface. For example, when the optical elements are arranged as shown in FIG. 1, the first optical element 40a emits light 180a obliquely to the right with respect to the z-axis direction, and the second optical element 40b emits light 180a in the z-axis direction. , and the third optical element 40c emits the light 180c obliquely to the left with respect to the z-axis direction. In each of the first optical element 40a, the second optical element 40b, and the third optical element 40c, the plane including the direction in which light is emitted is sometimes called a light emitting plane.
 本実施形態では、光学素子40と液晶光学素子10とが図1に示すように配置される。換言すると、第1の光学素子40a、第2の光学素子40b及び第3の光学素子40cの光の出射方向が異なる3つの光学素子に対して1つの液晶光学素子10が図1に示すように配置される。その結果、3つの光学素子が、左側用光源、センター用の光源及び右側用光源として使用され、液晶光学素子10が各光学素子から出射された方向の異なる光を透過させるか又は透過させつつ拡散させることができる。その結果、本実施形態に係る照明装置30は、光の配光及び配光パターンを様々に制御することができる。 In this embodiment, the optical element 40 and the liquid crystal optical element 10 are arranged as shown in FIG. In other words, as shown in FIG. 1, one liquid crystal optical element 10 is provided for three optical elements having different light emitting directions, i.e., the first optical element 40a, the second optical element 40b, and the third optical element 40c. placed. As a result, three optical elements are used as a left light source, a center light source, and a right light source, and the liquid crystal optical element 10 transmits or diffuses the light emitted from each optical element in different directions. can be made As a result, the illumination device 30 according to the present embodiment can variously control the light distribution and the light distribution pattern.
 なお、本実施形態では、光源20が3つの光学素子(第1の光学素子40a、第2の光学素子40b及び第3の光学素子40c)から構成されるが、光源20の構成は、本実施形態に係る構成に限定されない。例えば、光源20は、光の出射方向の異なる少なくとも2つ以上の光学素子から構成されればよい。光源20が光の出射方向の異なる少なくとも2つ以上の光学素子から構成されることで、液晶光学素子10が各光学素子から出射された方向の異なる光を透過させる又は透過させつつ拡散させ、本実施形態に係る照明装置30は光の配光及び配光パターンを様々に制御することができる。 In this embodiment, the light source 20 is composed of three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c). It is not limited to the configuration according to the form. For example, the light source 20 may be composed of at least two or more optical elements emitting light in different directions. Since the light source 20 is composed of at least two or more optical elements emitting light in different directions, the liquid crystal optical element 10 transmits or diffuses the light emitted from each optical element in different directions. The illumination device 30 according to the embodiment can variously control light distribution and light distribution pattern.
 図2に示すように、第1の光学素子40a、第2の光学素子40b、及び第3の光学素子40cのそれぞれは、例えば、発光素子210及び反射器220から構成される。 As shown in FIG. 2, each of the first optical element 40a, the second optical element 40b, and the third optical element 40c is composed of a light emitting element 210 and a reflector 220, for example.
 発光素子210は、例えば、電球、蛍光灯、冷陰極管、発光ダイオード(LED)、又はレーザダイオード(LD)である。本実施形態では、発光素子210は、LEDである。LEDの発光効率は、一般的に、電球、蛍光灯などより高い。よって、LEDを用いた照明装置30は、高輝度及び低消費電力な照明装置である。なお、LED及びLDは、それぞれ、有機発光ダイオード(OLED)及び有機レーザダイオード(OLD)を含む。 The light emitting element 210 is, for example, a light bulb, a fluorescent lamp, a cold cathode tube, a light emitting diode (LED), or a laser diode (LD). In this embodiment, the light emitting element 210 is an LED. The luminous efficiency of LEDs is generally higher than that of light bulbs, fluorescent lights, and the like. Therefore, the lighting device 30 using LEDs is a lighting device with high brightness and low power consumption. Note that LEDs and LDs include organic light emitting diodes (OLEDs) and organic laser diodes (OLDs), respectively.
 反射器220は、発光素子210から出射された光を反射し、反射した光を液晶光学素子10に入射させることができる。反射器220の形状は、例えば、図2に示すような略円錐形であるが、反射器220の形状は略円錐形に限定されない。また、反射器220の表面は平面であってよく、曲面であってもよい。 The reflector 220 can reflect the light emitted from the light emitting element 210 and allow the reflected light to enter the liquid crystal optical element 10 . The shape of the reflector 220 is, for example, a substantially conical shape as shown in FIG. 2, but the shape of the reflector 220 is not limited to a substantially conical shape. Also, the surface of the reflector 220 may be flat or curved.
<1-2.液晶光学素子10の構成>
 図3は、本発明の一実施形態に係る液晶光学素子10の模式的な斜視図である。図3に示すように、液晶光学素子10は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dを含む。第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dは、z軸方向に積層されている。第2の液晶セル110bは、第1の液晶セル110a上に設けられている。第3の液晶セル110cは、第2の液晶セル110b上に設けられている。第4の液晶セル110dは、第3の液晶セル110c上に設けられている。
<1-2. Configuration of Liquid Crystal Optical Element 10>
FIG. 3 is a schematic perspective view of the liquid crystal optical element 10 according to one embodiment of the invention. As shown in FIG. 3, the liquid crystal optical element 10 includes a first liquid crystal cell 110a, a second liquid crystal cell 110b, a third liquid crystal cell 110c, and a fourth liquid crystal cell 110d. The first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d are stacked in the z-axis direction. The second liquid crystal cell 110b is provided on the first liquid crystal cell 110a. The third liquid crystal cell 110c is provided on the second liquid crystal cell 110b. The fourth liquid crystal cell 110d is provided on the third liquid crystal cell 110c.
 図4及び図5は、本発明の一実施形態に係る液晶光学素子10の模式的な断面図である。具体的には、図4は、図3に示すA1-A2線に沿って切断されたzx面内の模式的な断面図であり、図5は、図3に示すB1-B2線に沿って切断されたyz面内の模式的な断面図である。本実施形態では、x軸方向、x軸方向と交差するy軸方向、x軸及びy軸と交差するz軸を、それぞれ、第1の方向、第2の方向、第3の方向と呼ぶ場合がある。また、x軸はy軸と直交し、z軸はxy平面(x軸及びy軸)に垂直である。 4 and 5 are schematic cross-sectional views of the liquid crystal optical element 10 according to one embodiment of the present invention. Specifically, FIG. 4 is a schematic cross-sectional view in the zx plane cut along the A1-A2 line shown in FIG. 3, and FIG. 5 is a schematic cross-sectional view along the B1-B2 line shown in FIG. It is a schematic cross-sectional view in the cut yz-plane. In the present embodiment, the x-axis direction, the y-axis direction that intersects with the x-axis direction, and the z-axis that intersects with the x-axis and y-axis are referred to as the first direction, the second direction, and the third direction, respectively. There is Also, the x-axis is perpendicular to the y-axis, and the z-axis is perpendicular to the xy plane (x-axis and y-axis).
 第1の液晶セル110aは、第1の透明電極181a、第2の透明電極182a、第5の透明電極185a、第6の透明電極186a、第9の透明電極189a及び第10の透明電極190aが形成された第1の基板111aと、第3の透明電極183a、第4の透明電極184a、第7の透明電極187a、第8の透明電極188a、第11の透明電極191a及び第12の透明電極192aが形成された第2の基板121aと、を含む。 The first liquid crystal cell 110a includes a first transparent electrode 181a, a second transparent electrode 182a, a fifth transparent electrode 185a, a sixth transparent electrode 186a, a ninth transparent electrode 189a, and a tenth transparent electrode 190a. The formed first substrate 111a, the third transparent electrode 183a, the fourth transparent electrode 184a, the seventh transparent electrode 187a, the eighth transparent electrode 188a, the eleventh transparent electrode 191a and the twelfth transparent electrode and a second substrate 121a having 192a formed thereon.
 第1の基板111a上には、第1の透明電極181a、第2の透明電極182a、第5の透明電極185a、第6の透明電極186a、第9の透明電極189a及び第10の透明電極190aを覆う第1の配向膜114aが形成されている。 A first transparent electrode 181a, a second transparent electrode 182a, a fifth transparent electrode 185a, a sixth transparent electrode 186a, a ninth transparent electrode 189a and a tenth transparent electrode 190a are formed on the first substrate 111a. A first alignment film 114a is formed to cover the .
 また、第2の基板121a上には、第3の透明電極183a、第4の透明電極184a、第7の透明電極187a、第8の透明電極188a、第11の透明電極191a及び第12の透明電極192aを覆う第2の配向膜124aが形成されている。 Further, a third transparent electrode 183a, a fourth transparent electrode 184a, a seventh transparent electrode 187a, an eighth transparent electrode 188a, an eleventh transparent electrode 191a and a twelfth transparent electrode 191a are formed on the second substrate 121a. A second alignment film 124a is formed to cover the electrode 192a.
 また、第1の基板111a上の第1の透明電極181a及び第2の透明電極182aと、第2の基板121a上の第3の透明電極183a及び第4の透明電極184aとが対向する。第1の基板111a上の第5の透明電極185a及び第6の透明電極186aと、第2の基板121a上の第7の透明電極187a及び第8の透明電極188aとが対向する。第1の基板111a上の第9の透明電極189a及び第10の透明電極190aと、第2の基板121a上の第11の透明電極191a及び第12の透明電極192aとが対向する。 Also, the first transparent electrode 181a and the second transparent electrode 182a on the first substrate 111a face the third transparent electrode 183a and the fourth transparent electrode 184a on the second substrate 121a. A fifth transparent electrode 185a and a sixth transparent electrode 186a on the first substrate 111a face a seventh transparent electrode 187a and an eighth transparent electrode 188a on the second substrate 121a. A ninth transparent electrode 189a and a tenth transparent electrode 190a on the first substrate 111a face an eleventh transparent electrode 191a and a twelfth transparent electrode 192a on the second substrate 121a.
 シール材150aが、第1の基板111a及び第2の基板121aの各々の周辺部に設けられ、第1の基板111aと第2の基板121aとを接着している。液晶を含む液晶層160aが、第1の基板111a(より具体的には、第1の配向膜114a)、第2の基板121a(より具体的には、第2の配向膜124a)、及びシール材115で囲まれた空間に設けられている。 A sealing material 150a is provided on the periphery of each of the first substrate 111a and the second substrate 121a, and bonds the first substrate 111a and the second substrate 121a. A liquid crystal layer 160a containing liquid crystal is formed by a first substrate 111a (more specifically, a first alignment film 114a), a second substrate 121a (more specifically, a second alignment film 124a), and a seal. It is provided in a space surrounded by the material 115 .
 第2の液晶セル110bは、第1の透明電極181b、第2の透明電極182b、第5の透明電極185b、第6の透明電極186b、第9の透明電極189b及び第10の透明電極190bが形成された第1の基板111bと、第3の透明電極183b、第4の透明電極184b、第7の透明電極187b、第8の透明電極188b、第11の透明電極191b及び第12の透明電極192bが形成された第2の基板121bと、を含む。 The second liquid crystal cell 110b includes a first transparent electrode 181b, a second transparent electrode 182b, a fifth transparent electrode 185b, a sixth transparent electrode 186b, a ninth transparent electrode 189b, and a tenth transparent electrode 190b. The formed first substrate 111b, the third transparent electrode 183b, the fourth transparent electrode 184b, the seventh transparent electrode 187b, the eighth transparent electrode 188b, the eleventh transparent electrode 191b and the twelfth transparent electrode and a second substrate 121b having 192b formed thereon.
 第1の基板111b上には、第1の透明電極181b、第2の透明電極182b、第5の透明電極185b、第6の透明電極186b、第9の透明電極189b及び第10の透明電極190bを覆う第1の配向膜114bが形成されている。 A first transparent electrode 181b, a second transparent electrode 182b, a fifth transparent electrode 185b, a sixth transparent electrode 186b, a ninth transparent electrode 189b and a tenth transparent electrode 190b are formed on the first substrate 111b. A first alignment film 114b is formed to cover the .
 また、第2の基板121b上には、第3の透明電極183b、第4の透明電極184b、第7の透明電極187b、第8の透明電極188b、第11の透明電極191b及び第12の透明電極192bを覆う第2の配向膜124bが形成されている。 Further, a third transparent electrode 183b, a fourth transparent electrode 184b, a seventh transparent electrode 187b, an eighth transparent electrode 188b, an eleventh transparent electrode 191b and a twelfth transparent electrode 191b are formed on the second substrate 121b. A second alignment film 124b is formed to cover the electrode 192b.
 また、第1の基板111b上の第1の透明電極181b及び第2の透明電極182bと、第2の基板121b上の第3の透明電極183b及び第4の透明電極184bとが対向する。第1の基板111b上の第5の透明電極185b及び第6の透明電極186bと、第2の基板121b上の第7の透明電極187b及び第8の透明電極188bとが対向する。第1の基板111b上の第9の透明電極189b及び第10の透明電極190bと、第2の基板121b上の第11の透明電極191b及び第12の透明電極192bとが対向する。 Also, the first transparent electrode 181b and the second transparent electrode 182b on the first substrate 111b face the third transparent electrode 183b and the fourth transparent electrode 184b on the second substrate 121b. A fifth transparent electrode 185b and a sixth transparent electrode 186b on the first substrate 111b face a seventh transparent electrode 187b and an eighth transparent electrode 188b on the second substrate 121b. A ninth transparent electrode 189b and a tenth transparent electrode 190b on the first substrate 111b face an eleventh transparent electrode 191b and a twelfth transparent electrode 192b on the second substrate 121b.
 シール材150bが、第1の基板111b及び第2の基板121bの各々の周辺部に設けられ、第1の基板111bと第2の基板121bとを接着している。液晶を含む液晶層160bが、第1の基板111b(より具体的には、第1の配向膜114b)、第2の基板121b(より具体的には、第2の配向膜124b)、及びシール材115で囲まれた空間に設けられている。 A sealing material 150b is provided on the periphery of each of the first substrate 111b and the second substrate 121b, and bonds the first substrate 111b and the second substrate 121b. A liquid crystal layer 160b containing liquid crystal is formed by a first substrate 111b (more specifically, a first alignment film 114b), a second substrate 121b (more specifically, a second alignment film 124b), and a seal. It is provided in a space surrounded by the material 115 .
 第3の液晶セル110cは、第1の透明電極181c、第2の透明電極182c、第5の透明電極185c、第6の透明電極186c、第9の透明電極189c及び第10の透明電極190cが形成された第1の基板111cと、第3の透明電極183c、第4の透明電極184c、第7の透明電極187c、第8の透明電極188c、第11の透明電極191c及び第12の透明電極192cが形成された第2の基板121cと、を含む。 The third liquid crystal cell 110c includes a first transparent electrode 181c, a second transparent electrode 182c, a fifth transparent electrode 185c, a sixth transparent electrode 186c, a ninth transparent electrode 189c, and a tenth transparent electrode 190c. The formed first substrate 111c, the third transparent electrode 183c, the fourth transparent electrode 184c, the seventh transparent electrode 187c, the eighth transparent electrode 188c, the eleventh transparent electrode 191c and the twelfth transparent electrode a second substrate 121c having 192c formed thereon.
 第1の基板111c上には、第1の透明電極181c、第2の透明電極182c、第5の透明電極185c、第6の透明電極186c、第9の透明電極189c及び第10の透明電極190cを覆う第1の配向膜114cが形成されている。 A first transparent electrode 181c, a second transparent electrode 182c, a fifth transparent electrode 185c, a sixth transparent electrode 186c, a ninth transparent electrode 189c and a tenth transparent electrode 190c are formed on the first substrate 111c. A first alignment film 114c is formed to cover the .
 また、第2の基板121c上には、第3の透明電極183c、第4の透明電極184c、第7の透明電極187c、第8の透明電極188c、第11の透明電極191c及び第12の透明電極192cを覆う第2の配向膜124cが形成されている。 A third transparent electrode 183c, a fourth transparent electrode 184c, a seventh transparent electrode 187c, an eighth transparent electrode 188c, an eleventh transparent electrode 191c and a twelfth transparent electrode 191c are formed on the second substrate 121c. A second alignment film 124c is formed to cover the electrode 192c.
 また、第1の基板111c上の第1の透明電極181c及び第2の透明電極182cと、第2の基板121c上の第3の透明電極183c及び第4の透明電極184cとが対向する。第1の基板111c上の第5の透明電極185c及び第6の透明電極186cと、第2の基板121c上の第7の透明電極187c及び第8の透明電極188cとが対向する。第1の基板111c上の第9の透明電極189c及び第10の透明電極190cと、第2の基板121c上の第11の透明電極191c及び第12の透明電極192cとが対向する。 Also, the first transparent electrode 181c and the second transparent electrode 182c on the first substrate 111c face the third transparent electrode 183c and the fourth transparent electrode 184c on the second substrate 121c. A fifth transparent electrode 185c and a sixth transparent electrode 186c on the first substrate 111c face a seventh transparent electrode 187c and an eighth transparent electrode 188c on the second substrate 121c. A ninth transparent electrode 189c and a tenth transparent electrode 190c on the first substrate 111c are opposed to an eleventh transparent electrode 191c and a twelfth transparent electrode 192c on the second substrate 121c.
 シール材150cが、第1の基板111c及び第2の基板121cの各々の周辺部に設けられ、第1の基板111cと第2の基板121cとを接着している。液晶を含む液晶層160cが、第1の基板111c(より具体的には、第1の配向膜114c)、第2の基板121c(より具体的には、第2の配向膜124c)、及びシール材115cで囲まれた空間に設けられている。 A sealing material 150c is provided on the periphery of each of the first substrate 111c and the second substrate 121c, and bonds the first substrate 111c and the second substrate 121c. A liquid crystal layer 160c containing liquid crystal includes a first substrate 111c (more specifically, a first alignment film 114c), a second substrate 121c (more specifically, a second alignment film 124c), and a seal. It is provided in a space surrounded by the material 115c.
 第4の液晶セル110dは、第1の透明電極181d、第2の透明電極182d、第5の透明電極185d、第6の透明電極186d、第9の透明電極189d及び第10の透明電極190dが形成された第1の基板111dと、第3の透明電極183d、第4の透明電極184d、第7の透明電極187d、第8の透明電極188d、第11の透明電極191d及び第12の透明電極192dが形成された第2の基板121dと、を含む。 The fourth liquid crystal cell 110d includes a first transparent electrode 181d, a second transparent electrode 182d, a fifth transparent electrode 185d, a sixth transparent electrode 186d, a ninth transparent electrode 189d, and a tenth transparent electrode 190d. The formed first substrate 111d, the third transparent electrode 183d, the fourth transparent electrode 184d, the seventh transparent electrode 187d, the eighth transparent electrode 188d, the eleventh transparent electrode 191d and the twelfth transparent electrode and a second substrate 121d having 192d formed thereon.
 第1の基板111d上には、第1の透明電極181d、第2の透明電極182d、第5の透明電極185d、第6の透明電極186d、第9の透明電極189d及び第10の透明電極190dを覆う第1の配向膜114dが形成されている。 A first transparent electrode 181d, a second transparent electrode 182d, a fifth transparent electrode 185d, a sixth transparent electrode 186d, a ninth transparent electrode 189d and a tenth transparent electrode 190d are formed on the first substrate 111d. A first alignment film 114d is formed to cover the .
 また、第2の基板121d上には、第3の透明電極183d、第4の透明電極184d、第7の透明電極187d、第8の透明電極188d、第11の透明電極191d及び第12の透明電極192dを覆う第2の配向膜124dが形成されている。 Further, on the second substrate 121d, a third transparent electrode 183d, a fourth transparent electrode 184d, a seventh transparent electrode 187d, an eighth transparent electrode 188d, an eleventh transparent electrode 191d and a twelfth transparent electrode are formed. A second alignment film 124d is formed to cover the electrode 192d.
 また、第1の基板111d上の第1の透明電極181d及び第2の透明電極182dと、第2の基板121d上の第3の透明電極183d及び第4の透明電極184dとが対向する。第1の基板111d上の第5の透明電極185d及び第6の透明電極186dと、第2の基板121d上の第7の透明電極187d及び第8の透明電極188dとが対向する。第1の基板111d上の第9の透明電極189d及び第10の透明電極190dと、第2の基板121d上の第11の透明電極191d及び第12の透明電極192dとが対向する。 Also, the first transparent electrode 181d and the second transparent electrode 182d on the first substrate 111d face the third transparent electrode 183d and the fourth transparent electrode 184d on the second substrate 121d. A fifth transparent electrode 185d and a sixth transparent electrode 186d on the first substrate 111d face a seventh transparent electrode 187d and an eighth transparent electrode 188d on the second substrate 121d. A ninth transparent electrode 189d and a tenth transparent electrode 190d on the first substrate 111d are opposed to an eleventh transparent electrode 191d and a twelfth transparent electrode 192d on the second substrate 121d.
 シール材150dが、第1の基板111d及び第2の基板121dの各々の周辺部に設けられ、第1の基板111dと第2の基板121dとを接着している。液晶を含む液晶層160dが、第1の基板111d(より具体的には、第1の配向膜114d)、第2の基板121d(より具体的には、第2の配向膜124d)、及びシール材115dで囲まれた空間に設けられている。 A sealing material 150d is provided on the periphery of each of the first substrate 111d and the second substrate 121d, and bonds the first substrate 111d and the second substrate 121d. A liquid crystal layer 160d containing liquid crystal is formed by a first substrate 111d (more specifically, a first alignment film 114d), a second substrate 121d (more specifically, a second alignment film 124d), and a seal. It is provided in a space surrounded by the material 115d.
 第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dの基本的な構成は同じである。但し、第1の透明電極181、第2の透明電極182、第3の透明電極183、第4の透明電極184、第5の透明電極185、第6の透明電極186、第7の透明電極187、第8の透明電極188、第9の透明電極189、第10の透明電極190、第11の透明電極191及び第12の透明電極192の配置が異なる。 The basic configurations of the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d are the same. However, the first transparent electrode 181, the second transparent electrode 182, the third transparent electrode 183, the fourth transparent electrode 184, the fifth transparent electrode 185, the sixth transparent electrode 186, and the seventh transparent electrode 187 , the eighth transparent electrode 188, the ninth transparent electrode 189, the tenth transparent electrode 190, the eleventh transparent electrode 191 and the twelfth transparent electrode 192 are different.
 第1の液晶セル110aでは、第1の透明電極181a、第2の透明電極182a、第5の透明電極185a、第6の透明電極186a、第9の透明電極189a及び第10の透明電極190aはy軸方向に延在し、第3の透明電極183a、第4の透明電極184a、第7の透明電極187a、第8の透明電極188a、第11の透明電極191a及び第12の透明電極192aはx軸方向に延在している。 In the first liquid crystal cell 110a, the first transparent electrode 181a, the second transparent electrode 182a, the fifth transparent electrode 185a, the sixth transparent electrode 186a, the ninth transparent electrode 189a and the tenth transparent electrode 190a are The third transparent electrode 183a, the fourth transparent electrode 184a, the seventh transparent electrode 187a, the eighth transparent electrode 188a, the eleventh transparent electrode 191a, and the twelfth transparent electrode 192a extend in the y-axis direction. It extends in the x-axis direction.
 第1の透明電極181aと第2の透明電極182a、第5の透明電極185aと第6の透明電極186a、及び第9の透明電極189aと第10の透明電極190aは、x軸方向において交互に櫛歯状に配置されている。第3の透明電極183aと第4の透明電極184a、第7の透明電極187aと第8の透明電極188a、及び第11の透明電極191aと第12の透明電極192aは、第2の方向において交互に櫛歯状に配置されている。平面視において、第1の透明電極181a、第2の透明電極182a、第5の透明電極185a、第6の透明電極186a、第9の透明電極189a及び第10の透明電極190aの延在する方向(y軸方向)は、第3の透明電極183a、第4の透明電極184a、第7の透明電極187a、第8の透明電極188a、第11の透明電極191a及び第12の透明電極192aの延在する方向(x軸方向)と直交しているが、僅かにずれて交差していてもよい。 The first transparent electrode 181a and the second transparent electrode 182a, the fifth transparent electrode 185a and the sixth transparent electrode 186a, and the ninth transparent electrode 189a and the tenth transparent electrode 190a are alternately arranged in the x-axis direction. They are arranged in a comb shape. The third transparent electrode 183a and fourth transparent electrode 184a, the seventh transparent electrode 187a and eighth transparent electrode 188a, and the eleventh transparent electrode 191a and twelfth transparent electrode 192a alternate in the second direction. are arranged in a comb shape. In plan view, the direction in which the first transparent electrode 181a, the second transparent electrode 182a, the fifth transparent electrode 185a, the sixth transparent electrode 186a, the ninth transparent electrode 189a, and the tenth transparent electrode 190a extend (Y-axis direction) is the extension of the third transparent electrode 183a, the fourth transparent electrode 184a, the seventh transparent electrode 187a, the eighth transparent electrode 188a, the eleventh transparent electrode 191a, and the twelfth transparent electrode 192a. Although it is perpendicular to the existing direction (x-axis direction), it may intersect with a slight deviation.
 第2の液晶セル110bでは、第1の透明電極181b、第2の透明電極182b、第5の透明電極185b、第6の透明電極186b、第9の透明電極189b及び第10の透明電極190bはy軸方向に延在し、第3の透明電極183b、第4の透明電極184b、第7の透明電極187b、第8の透明電極188b、第11の透明電極191b及び第12の透明電極192bはx軸方向に延在している。 In the second liquid crystal cell 110b, the first transparent electrode 181b, the second transparent electrode 182b, the fifth transparent electrode 185b, the sixth transparent electrode 186b, the ninth transparent electrode 189b, and the tenth transparent electrode 190b are A third transparent electrode 183b, a fourth transparent electrode 184b, a seventh transparent electrode 187b, an eighth transparent electrode 188b, an eleventh transparent electrode 191b, and a twelfth transparent electrode 192b extending in the y-axis direction are It extends in the x-axis direction.
 第1の透明電極181bと第2の透明電極182b、第5の透明電極185bと第6の透明電極186b、及び第9の透明電極189bと第10の透明電極190bは、x軸方向において交互に櫛歯状に配置されている。第3の透明電極183bと第4の透明電極184b、第7の透明電極187bと第8の透明電極188b、及び第11の透明電極191bと第12の透明電極192bは、第2の方向において交互に櫛歯状に配置されている。平面視において、第1の透明電極181b、第2の透明電極182b、第5の透明電極185b、第6の透明電極186b、第9の透明電極189b及び第10の透明電極190bの延在する方向(y軸方向)は、第3の透明電極183b、第4の透明電極184b、第7の透明電極187b、第8の透明電極188b、第11の透明電極191b及び第12の透明電極192bの延在する方向(x軸方向)と直交しているが、僅かにずれて交差していてもよい。 The first transparent electrode 181b and the second transparent electrode 182b, the fifth transparent electrode 185b and the sixth transparent electrode 186b, and the ninth transparent electrode 189b and the tenth transparent electrode 190b are alternately arranged in the x-axis direction. They are arranged in a comb shape. The third transparent electrode 183b and fourth transparent electrode 184b, the seventh transparent electrode 187b and eighth transparent electrode 188b, and the eleventh transparent electrode 191b and twelfth transparent electrode 192b alternate in the second direction. are arranged in a comb shape. In plan view, the direction in which the first transparent electrode 181b, the second transparent electrode 182b, the fifth transparent electrode 185b, the sixth transparent electrode 186b, the ninth transparent electrode 189b, and the tenth transparent electrode 190b extend (Y-axis direction) is the extension of the third transparent electrode 183b, the fourth transparent electrode 184b, the seventh transparent electrode 187b, the eighth transparent electrode 188b, the eleventh transparent electrode 191b, and the twelfth transparent electrode 192b. Although it is perpendicular to the existing direction (x-axis direction), it may intersect with a slight deviation.
 第3の液晶セル110cでは、第1の透明電極181c、第2の透明電極182c、第5の透明電極185c、第6の透明電極186c、第9の透明電極189c及び第10の透明電極190cはy軸方向に延在し、第3の透明電極183c、第4の透明電極184c、第7の透明電極187c、第8の透明電極188c、第11の透明電極191c及び第12の透明電極192cはx軸方向に延在している。 In the third liquid crystal cell 110c, the first transparent electrode 181c, the second transparent electrode 182c, the fifth transparent electrode 185c, the sixth transparent electrode 186c, the ninth transparent electrode 189c, and the tenth transparent electrode 190c are The third transparent electrode 183c, the fourth transparent electrode 184c, the seventh transparent electrode 187c, the eighth transparent electrode 188c, the eleventh transparent electrode 191c, and the twelfth transparent electrode 192c extend in the y-axis direction. It extends in the x-axis direction.
 第1の透明電極181cと第2の透明電極182c、第5の透明電極185cと第6の透明電極186c、及び第9の透明電極189cと第10の透明電極190cは、x軸方向において交互に櫛歯状に配置されている。第3の透明電極183cと第4の透明電極184c、第7の透明電極187cと第8の透明電極188c、及び第11の透明電極191cと第12の透明電極192cは、第2の方向において交互に櫛歯状に配置されている。平面視において、第1の透明電極181c、第2の透明電極182c、第5の透明電極185c、第6の透明電極186c、第9の透明電極189c及び第10の透明電極190cの延在する方向(y軸方向)は、第3の透明電極183c、第4の透明電極184c、第7の透明電極187c、第8の透明電極188c、第11の透明電極191c及び第12の透明電極192cの延在する方向(x軸方向)と直交しているが、僅かにずれて交差していてもよい。 The first transparent electrode 181c and the second transparent electrode 182c, the fifth transparent electrode 185c and the sixth transparent electrode 186c, and the ninth transparent electrode 189c and the tenth transparent electrode 190c are alternately arranged in the x-axis direction. They are arranged in a comb shape. The third transparent electrode 183c and fourth transparent electrode 184c, the seventh transparent electrode 187c and eighth transparent electrode 188c, and the eleventh transparent electrode 191c and twelfth transparent electrode 192c alternate in the second direction. are arranged in a comb shape. In plan view, the direction in which the first transparent electrode 181c, the second transparent electrode 182c, the fifth transparent electrode 185c, the sixth transparent electrode 186c, the ninth transparent electrode 189c, and the tenth transparent electrode 190c extend (Y-axis direction) is the extension of the third transparent electrode 183c, the fourth transparent electrode 184c, the seventh transparent electrode 187c, the eighth transparent electrode 188c, the eleventh transparent electrode 191c, and the twelfth transparent electrode 192c. Although it is perpendicular to the existing direction (x-axis direction), it may intersect with a slight deviation.
 第4の液晶セル110dでは、第1の透明電極181d、第2の透明電極182d、第5の透明電極185d、第6の透明電極186d、第9の透明電極189d及び第10の透明電極190dはy軸方向に延在し、第3の透明電極183d、第4の透明電極184d、第7の透明電極187d、第8の透明電極188d、第11の透明電極191d及び第12の透明電極192dはx軸方向に延在している。 In the fourth liquid crystal cell 110d, the first transparent electrode 181d, the second transparent electrode 182d, the fifth transparent electrode 185d, the sixth transparent electrode 186d, the ninth transparent electrode 189d, and the tenth transparent electrode 190d are A third transparent electrode 183d, a fourth transparent electrode 184d, a seventh transparent electrode 187d, an eighth transparent electrode 188d, an eleventh transparent electrode 191d, and a twelfth transparent electrode 192d extending in the y-axis direction are It extends in the x-axis direction.
 第1の透明電極181dと第2の透明電極182d、第5の透明電極185dと第6の透明電極186d、及び第9の透明電極189dと第10の透明電極190dは、x軸方向において交互に櫛歯状に配置されている。第3の透明電極183dと第4の透明電極184d、第7の透明電極187dと第8の透明電極188d、及び第11の透明電極191dと第12の透明電極192dは、第2の方向において交互に櫛歯状に配置されている。平面視において、第1の透明電極181d、第2の透明電極182d、第5の透明電極185d、第6の透明電極186d、第9の透明電極189d及び第10の透明電極190dの延在する方向(y軸方向)は、第3の透明電極183d、第4の透明電極184d、第7の透明電極187d、第8の透明電極188d、第11の透明電極191d及び第12の透明電極192dの延在する方向(x軸方向)と直交しているが、僅かにずれて交差していてもよい。 The first transparent electrode 181d and the second transparent electrode 182d, the fifth transparent electrode 185d and the sixth transparent electrode 186d, and the ninth transparent electrode 189d and the tenth transparent electrode 190d are alternately arranged in the x-axis direction. They are arranged in a comb shape. The third transparent electrode 183d and the fourth transparent electrode 184d, the seventh transparent electrode 187d and the eighth transparent electrode 188d, and the eleventh transparent electrode 191d and the twelfth transparent electrode 192d alternate in the second direction. are arranged in a comb shape. In plan view, the direction in which the first transparent electrode 181d, the second transparent electrode 182d, the fifth transparent electrode 185d, the sixth transparent electrode 186d, the ninth transparent electrode 189d, and the tenth transparent electrode 190d extend (Y-axis direction) is the extension of the third transparent electrode 183d, the fourth transparent electrode 184d, the seventh transparent electrode 187d, the eighth transparent electrode 188d, the eleventh transparent electrode 191d, and the twelfth transparent electrode 192d. Although it is perpendicular to the existing direction (x-axis direction), it may intersect with a slight deviation.
 平面視において、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c及び第4の液晶セル110dに設けられる第1の透明電極181同士の延在する方向(y軸方向)は互いに一致又は略一致するように重畳している。第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c及び第4の液晶セル110dに設けられる同一名の透明電極も同様に、延在する方向(y軸方向又はx軸方向)は互いに一致又は略一致するように重畳している。なお、図4及び図5に示す如く、第1の液晶セル110a、第2の液晶セル110bにおいては、各液晶セルを構成する上下一対の基板のうち下側の基板(光源側の基板)が第1の基板111a、111bとなっている。これに対し、第3の液晶セル110c及び第4の液晶セル110dにおいては、各液晶セルを形成する上下一対の基板のうち上側の基板が第1の基板111c、111dとなっている。 In plan view, the extending direction (y-axis direction) of the first transparent electrodes 181 provided in the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d. ) are superimposed so as to match or substantially match each other. Similarly, the transparent electrodes of the same name provided in the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d extend in the direction (y-axis direction or x-axis direction). direction) are superimposed so as to match or substantially match each other. As shown in FIGS. 4 and 5, in the first liquid crystal cell 110a and the second liquid crystal cell 110b, the lower substrate (light source side substrate) of the pair of upper and lower substrates constituting each liquid crystal cell is They are first substrates 111a and 111b. On the other hand, in the third liquid crystal cell 110c and the fourth liquid crystal cell 110d, the upper substrates of the pair of upper and lower substrates forming each liquid crystal cell are the first substrates 111c and 111d.
 第1の基板111a、第1の基板111b、第1の基板111c、第1の基板111d、第2の基板121a、第2の基板121b、第2の基板121c、及び第2の基板121dは、例えば、透光性を有する剛性基板、又は透光性を有する可撓性基板を用いることができる。透光性を有する剛性基板は、例えば、ガラス基板、石英基板、又はサファイア基板である。透光性を有する可撓性基板は、例えば、ポリイミド樹脂基板、アクリル樹脂基板、シロキサン樹脂基板、又はフッ素樹脂基板である。 The first substrate 111a, the first substrate 111b, the first substrate 111c, the first substrate 111d, the second substrate 121a, the second substrate 121b, the second substrate 121c, and the second substrate 121d are For example, a light-transmitting rigid substrate or a light-transmitting flexible substrate can be used. A rigid substrate having translucency is, for example, a glass substrate, a quartz substrate, or a sapphire substrate. The translucent flexible substrate is, for example, a polyimide resin substrate, an acrylic resin substrate, a siloxane resin substrate, or a fluorine resin substrate.
 第1の透明電極181、第2の透明電極182、第3の透明電極183、第4の透明電極184、第5の透明電極185、第6の透明電極186、第7の透明電極187、第8の透明電極188、第9の透明電極189、第10の透明電極190、第11の透明電極191及び第12の透明電極192は、各液晶セルに含まれる液晶層160に電界を形成するための電極として機能する。第1の透明電極181、第2の透明電極182、第3の透明電極183、第4の透明電極184、第5の透明電極185、第6の透明電極186、第7の透明電極187、第8の透明電極188、第9の透明電極189、第10の透明電極190、第11の透明電極191及び第12の透明電極192を形成する材料は、例えば、透明導電材料である。透明導電材料は、例えば、インジウム・スズ酸化物(ITO)又はインジウム・亜鉛酸化物(IZO)である。 A first transparent electrode 181, a second transparent electrode 182, a third transparent electrode 183, a fourth transparent electrode 184, a fifth transparent electrode 185, a sixth transparent electrode 186, a seventh transparent electrode 187, a The eight transparent electrodes 188, the ninth transparent electrode 189, the tenth transparent electrode 190, the eleventh transparent electrode 191, and the twelfth transparent electrode 192 form an electric field in the liquid crystal layer 160 included in each liquid crystal cell. function as an electrode for A first transparent electrode 181, a second transparent electrode 182, a third transparent electrode 183, a fourth transparent electrode 184, a fifth transparent electrode 185, a sixth transparent electrode 186, a seventh transparent electrode 187, a The material forming the eight transparent electrodes 188, the ninth transparent electrode 189, the tenth transparent electrode 190, the eleventh transparent electrode 191 and the twelfth transparent electrode 192 is, for example, a transparent conductive material. The transparent conductive material is, for example, indium tin oxide (ITO) or indium zinc oxide (IZO).
 液晶層160a、液晶層160b、液晶層160c及び液晶層160dは、液晶分子の配向状態に応じて、透過する光を屈折し、又は透過する光の偏光状態を変化させることができる。液晶層160a、液晶層160b、液晶層160c及び液晶層160dのそれぞれの層に含まれる液晶は、例えば、ねじれネマティック液晶を用いることができる。本実施形態では、一例として、液晶はポジ型ねじれネマティック液晶を用いているが、液晶分子の初期の配向方向を変更することによりネガ型ねじれネマティック液晶であってもよい。また、液晶は、液晶分子にねじれを付与するカイラル剤を含むことが好ましい。 The liquid crystal layer 160a, the liquid crystal layer 160b, the liquid crystal layer 160c, and the liquid crystal layer 160d can refract the transmitted light or change the polarization state of the transmitted light according to the alignment state of the liquid crystal molecules. Liquid crystals contained in each of the liquid crystal layer 160a, the liquid crystal layer 160b, the liquid crystal layer 160c, and the liquid crystal layer 160d can be twisted nematic liquid crystals, for example. In this embodiment, as an example, positive twisted nematic liquid crystal is used as the liquid crystal, but negative twisted nematic liquid crystal may be used by changing the initial orientation direction of the liquid crystal molecules. Further, the liquid crystal preferably contains a chiral agent that imparts twist to the liquid crystal molecules.
 第1の配向膜114a、第1の配向膜114b、第1の配向膜114c、第1の配向膜114d、第2の配向膜124a、第2の配向膜124b、第2の配向膜124c及び第2の配向膜124dのそれぞれは、各液晶セルに含まれる液晶層160内の液晶分子を所定の方向に配列する。第1の配向膜114a、第1の配向膜114b、第1の配向膜114c、第1の配向膜114d、第2の配向膜124a、第2の配向膜124b、第2の配向膜124c及び第2の配向膜124dのそれぞれを形成する材料は、例えば、ポリイミド樹脂を用いることができる。 A first alignment film 114a, a first alignment film 114b, a first alignment film 114c, a first alignment film 114d, a second alignment film 124a, a second alignment film 124b, a second alignment film 124c, and a second alignment film 124c. Each of the two alignment films 124d aligns the liquid crystal molecules in the liquid crystal layer 160 included in each liquid crystal cell in a predetermined direction. A first alignment film 114a, a first alignment film 114b, a first alignment film 114c, a first alignment film 114d, a second alignment film 124a, a second alignment film 124b, a second alignment film 124c, and a second alignment film 124c. Polyimide resin, for example, can be used as a material for forming each of the two alignment films 124d.
 第1の配向膜114a、第1の配向膜114b、第1の配向膜114c、第1の配向膜114d、第2の配向膜124a、第2の配向膜124b、第2の配向膜124c及び第2の配向膜124dは、配向処理によって配向特性を付与されてよい。配向処理は、例えば、ラビング法、又は光配向法を用いることができる。ラビング法は、配向膜の表面を一方向に擦る方法である。光配向法は、配向膜に直線偏光の紫外線を出射する方法である。 A first alignment film 114a, a first alignment film 114b, a first alignment film 114c, a first alignment film 114d, a second alignment film 124a, a second alignment film 124b, a second alignment film 124c, and a second alignment film 124c. The second alignment film 124d may be imparted with alignment properties by an alignment treatment. Alignment treatment can use, for example, a rubbing method or a photo-alignment method. The rubbing method is a method of rubbing the surface of the alignment film in one direction. The photo-alignment method is a method of emitting linearly polarized ultraviolet rays onto an alignment film.
 シール材115は、例えば、エポキシ樹脂接着材、又はアクリル樹脂接着材を用いることができる。接着材は、紫外線硬化型であってもよく、熱硬化型であってもよい。 For the sealing material 115, for example, an epoxy resin adhesive or an acrylic resin adhesive can be used. The adhesive may be of an ultraviolet curable type or a heat curable type.
 液晶光学素子10は、少なくとも2つの液晶セル(例えば、第1の液晶セル110a及び第2の液晶セル110b)を含むことにより、無偏光の光の配光を制御することができる。そのため、第1の液晶セル110aの第1の基板111a及び第2の液晶セル110bの第2の基板121bの各表面、並びに、第3の液晶セル110cの第2の基板121c及び第4の液晶セル110dの第1の基板111bの各表面には、例えば、液晶表示素子の表裏面に設けられるような一対の偏光板を設ける必要はない。 The liquid crystal optical element 10 includes at least two liquid crystal cells (eg, the first liquid crystal cell 110a and the second liquid crystal cell 110b), so that the light distribution of unpolarized light can be controlled. Therefore, each surface of the first substrate 111a of the first liquid crystal cell 110a and the second substrate 121b of the second liquid crystal cell 110b, the second substrate 121c of the third liquid crystal cell 110c and the fourth liquid crystal On each surface of the first substrate 111b of the cell 110d, there is no need to provide a pair of polarizing plates such as those provided on the front and rear surfaces of a liquid crystal display element.
<1-3.透明電極の配置>
 図6は本発明の一実施形態に係る液晶光学素子10において、第1の基板111上の第1の透明電極181、第2の透明電極182、第5の透明電極185、第6の透明電極186、第9の透明電極189、及び第10の透明電極190の配置を示す模式的な平面図である。図7は、本発明の一実施形態に係る液晶光学素子において、第2の基板121上の第3の透明電極183、第4の透明電極184、第7の透明電極187、第8の透明電極188、第11の透明電極191、及び第12の透明電極192の配置を示す模式的な平面図である。なお、図7において示される電極群や配線は、第2の基板121越しに視認されるものであるが、分かり易さを優先して図7ではこれらを実線で示している。後述の図25においても同様である。
<1-3. Arrangement of Transparent Electrode>
FIG. 6 shows a first transparent electrode 181, a second transparent electrode 182, a fifth transparent electrode 185, and a sixth transparent electrode on the first substrate 111 in the liquid crystal optical element 10 according to one embodiment of the present invention. 186, a ninth transparent electrode 189, and a tenth transparent electrode 190. FIG. FIG. 7 shows a third transparent electrode 183, a fourth transparent electrode 184, a seventh transparent electrode 187 and an eighth transparent electrode on the second substrate 121 in the liquid crystal optical element according to one embodiment of the present invention. 188, an eleventh transparent electrode 191, and a twelfth transparent electrode 192. FIG. 7 are visible through the second substrate 121, they are indicated by solid lines in FIG. 7 for the sake of clarity. The same applies to FIG. 25 which will be described later.
 図6に示す透明電極の構成では、第1の電極群117-1、第2の電極群117-3、及び第3の電極群117-5が第1の基板111上に設けられる。第2の電極群117-3は第1の電極群117-1と第3の電極群117-5との間に設けられる。また、第1の電極群117-1は第1の光学素子40a及び第1の光学素子40aの光の出射面に対向するように設けられ、第2の電極群117-3は第2の光学素子40b及び第2の光学素子40bの光の出射面に対向するように設けられ、第3の電極群117-5は第3の光学素子40c及び第3の光学素子40cの光の出射面に対向するように設けられる。 In the configuration of the transparent electrodes shown in FIG. 6, a first electrode group 117-1, a second electrode group 117-3, and a third electrode group 117-5 are provided on the first substrate 111. In FIG. The second electrode group 117-3 is provided between the first electrode group 117-1 and the third electrode group 117-5. The first electrode group 117-1 is provided so as to face the first optical element 40a and the light exit surface of the first optical element 40a, and the second electrode group 117-3 is provided for the second optical element 40a. The third electrode group 117-5 is provided to face the light exit surfaces of the element 40b and the second optical element 40b, and the third electrode group 117-5 is provided on the light exit surfaces of the third optical element 40c and the third optical element 40c. They are provided so as to face each other.
 第1の電極群117-1は、第1の透明電極181、及び第2の透明電極182を含む。第1の電極群117-1は、第1の透明電極181、及び第2の透明電極182に電位を供給され、例えば、右側用光源として用いられる第1の光学素子40a(図1)から出射される光を透過させるか又は透過させつつ拡散させる機能を有する。第1の透明電極181、及び第2の透明電極182は、x軸方向に交互に配置され、y軸方向に延在している。第1の透明電極181の電極の幅、及び第2の透明電極182の電極の幅は、x軸方向に第1の幅wである。第1の透明電極181と第2の透明電極182とのx軸方向の電極間距離(電極間隔)は、第1の電極間距離sである。第1の透明電極181と第2の透明電極182との電極間のピッチは第1のピッチpであり、第1のピッチpはp=w+sを満たす。 The first electrode group 117 - 1 includes a first transparent electrode 181 and a second transparent electrode 182 . In the first electrode group 117-1, a potential is supplied to the first transparent electrode 181 and the second transparent electrode 182, and the light is emitted from the first optical element 40a (FIG. 1) used as the right light source, for example. It has a function of transmitting or diffusing the light to be transmitted. The first transparent electrodes 181 and the second transparent electrodes 182 are alternately arranged in the x-axis direction and extend in the y-axis direction. The electrode width of the first transparent electrode 181 and the electrode width of the second transparent electrode 182 are a first width w1 in the x-axis direction. The inter-electrode distance (electrode spacing) in the x-axis direction between the first transparent electrode 181 and the second transparent electrode 182 is the first inter-electrode distance s1. The pitch between the electrodes of the first transparent electrode 181 and the second transparent electrode 182 is the first pitch p1, and the first pitch p1 satisfies p1= w1 +s1.
 第1の透明電極181及び第2の透明電極182は、それぞれ、第1の基板111上に形成された第1の配線116-1及び第2の配線116-2と電気的に接続されている。第1の配線116-1は、第1の透明電極181の下に形成されてよく、第1の透明電極181の上に形成されてもよい。また、第1の配線116-1は、第1の透明電極181と同じ層に形成されてよい。第2の配線116-2は、第2の透明電極182の下に形成されてよく、第2の透明電極182の上に形成されてもよい。また、第2の配線116-2は、第2の透明電極182と同じ層に形成されてよい。本実施形態では、第1の透明電極181、第2の透明電極182、第1の配線116-1及び第2の配線116-2は同じ層に形成されている。 The first transparent electrode 181 and the second transparent electrode 182 are electrically connected to the first wiring 116-1 and the second wiring 116-2 formed on the first substrate 111, respectively. . The first wiring 116 - 1 may be formed under the first transparent electrode 181 or may be formed over the first transparent electrode 181 . Also, the first wiring 116 - 1 may be formed in the same layer as the first transparent electrode 181 . The second wiring 116 - 2 may be formed under the second transparent electrode 182 or may be formed over the second transparent electrode 182 . Also, the second wiring 116 - 2 may be formed in the same layer as the second transparent electrode 182 . In this embodiment, the first transparent electrode 181, the second transparent electrode 182, the first wiring 116-1 and the second wiring 116-2 are formed in the same layer.
 第2の電極群117-3は、第5の透明電極185、及び第6の透明電極186を含む。第2の電極群117-3は、第5の透明電極185、及び第6の透明電極186に電位を供給され、例えば、センター用光源として用いられる第2の光学素子40b(図1)から出射される光を透過させるか又は透過させつつ拡散させる機能を有する。第5の透明電極185、及び第6の透明電極186は、x軸方向に交互に配置され、y軸方向に延在している。第5の透明電極185の電極の幅、及び第6の透明電極186の電極の幅は、x軸方向に第2の幅wである。第5の透明電極185と第6の透明電極186とのx軸方向の電極間距離(電極間隔)は、第2の電極間距離sである。第5の透明電極185と第6の透明電極186との電極間のピッチは第2のピッチpであり、第2のピッチpはp=w+sを満たす。 The second electrode group 117-3 includes a fifth transparent electrode 185 and a sixth transparent electrode 186. FIG. The second electrode group 117-3 is supplied with a potential to the fifth transparent electrode 185 and the sixth transparent electrode 186, and emits light from the second optical element 40b (FIG. 1) used as a center light source, for example. It has a function of transmitting or diffusing the light to be transmitted. The fifth transparent electrodes 185 and the sixth transparent electrodes 186 are alternately arranged in the x-axis direction and extend in the y-axis direction. The electrode width of the fifth transparent electrode 185 and the electrode width of the sixth transparent electrode 186 are a second width w2 in the x-axis direction. The inter-electrode distance (electrode spacing) in the x-axis direction between the fifth transparent electrode 185 and the sixth transparent electrode 186 is the second inter-electrode distance s2. The pitch between the electrodes of the fifth transparent electrode 185 and the sixth transparent electrode 186 is a second pitch p2, and the second pitch p2 satisfies p2 = w2 + s2.
 第5の透明電極185及び第6の透明電極186は、それぞれ、第1の基板111上に形成された第1の配線116-1及び第2の配線116-2と電気的に接続されている。第1の配線116-1は、第5の透明電極185の下に形成されてよく、第5の透明電極185の上に形成されてもよい。また、第1の配線116-1は、第5の透明電極185と同じ層に形成されてよい。第2の配線116-2は、第6の透明電極186の下に形成されてよく、第6の透明電極186の上に形成されてもよい。また、第2の配線116-2は、第6の透明電極186と同じ層に形成されてよい。本実施形態では、第5の透明電極185、第6の透明電極186、第1の配線116-1及び第2の配線116-2は同じ層に形成されている。 The fifth transparent electrode 185 and the sixth transparent electrode 186 are electrically connected to the first wiring 116-1 and the second wiring 116-2 formed on the first substrate 111, respectively. . The first wiring 116 - 1 may be formed under the fifth transparent electrode 185 or may be formed over the fifth transparent electrode 185 . Also, the first wiring 116 - 1 may be formed in the same layer as the fifth transparent electrode 185 . The second wiring 116 - 2 may be formed under the sixth transparent electrode 186 or may be formed over the sixth transparent electrode 186 . Also, the second wiring 116 - 2 may be formed in the same layer as the sixth transparent electrode 186 . In this embodiment, the fifth transparent electrode 185, the sixth transparent electrode 186, the first wiring 116-1 and the second wiring 116-2 are formed in the same layer.
 第5の透明電極185及び第6の透明電極186の第2の幅w、第2の電極間距離s、及び第2のピッチpは、第1の透明電極181及び第2の透明電極182の第1の幅w、第1の電極間距離s、及び第1のピッチpより狭い。 The second width w 2 , the second inter-electrode distance s 2 , and the second pitch p 2 of the fifth transparent electrode 185 and the sixth transparent electrode 186 are the same as the first transparent electrode 181 and the second transparent electrode 186 . It is narrower than the first width w 1 , the first inter-electrode distance s 1 , and the first pitch p 1 of the electrodes 182 .
 第3の電極群117-5は、第9の透明電極189、及び第10の透明電極190を含む。第3の電極群117-5は、第9の透明電極189、及び第10の透明電極190に電位を供給され、例えば、左側用光源として用いられる第3の光学素子40c(図1)から出射される光を透過させる又は透過させつつ拡散させる機能を有する。第9の透明電極189、及び第10の透明電極190は、第1の透明電極181、及び第2の透明電極182と同様の構成及び機能を有するため、ここでの詳細な説明は省略される。なお、第1の電極群117-1と第3の電極群117-5とは、機能が入れ替わってもよい。 The third electrode group 117-5 includes a ninth transparent electrode 189 and a tenth transparent electrode 190. The third electrode group 117-5 is supplied with a potential to the ninth transparent electrode 189 and the tenth transparent electrode 190, and for example, light is emitted from the third optical element 40c (FIG. 1) used as a left light source. It has a function of transmitting or diffusing the light to be transmitted. Since the ninth transparent electrode 189 and the tenth transparent electrode 190 have the same configuration and function as the first transparent electrode 181 and the second transparent electrode 182, detailed description thereof is omitted here. . Note that the functions of the first electrode group 117-1 and the third electrode group 117-5 may be interchanged.
 第1の配向膜114aは、x軸方向(図6において白抜きの矢印で示す方向)に配向処理が行われている。この場合、液晶層160aを構成する液晶分子のうち、第1の基板111側の液晶分子の長軸は、x軸方向に沿って配向する。すなわち、第1の配向膜114aの配向方向(x軸方向)と第1の透明電極181、第2の透明電極182、第5の透明電極185、第6の透明電極186、第9の透明電極189及び第10の透明電極190の延在する方向(y軸方向)は、直交している。 The first alignment film 114a is aligned in the x-axis direction (the direction indicated by the white arrow in FIG. 6). In this case, among the liquid crystal molecules forming the liquid crystal layer 160a, the long axes of the liquid crystal molecules on the first substrate 111 side are aligned along the x-axis direction. That is, the alignment direction (x-axis direction) of the first alignment film 114a, the first transparent electrode 181, the second transparent electrode 182, the fifth transparent electrode 185, the sixth transparent electrode 186, and the ninth transparent electrode The extending direction (y-axis direction) of 189 and the tenth transparent electrode 190 are orthogonal to each other.
 図7に示す透明電極の構成では、第4の電極群117-2、第5の電極群117-4、及び第6の電極群117-6が第2の基板121上に設けられる。第5の電極群117-4は第4の電極群117-2と第6の電極群117-6との間に設けられる。また、第4の電極群117-2は第1の光学素子40a及び第1の光学素子40aの光の出射面に対向するように設けられ、第5の電極群117-4は第2の光学素子40b及び第2の光学素子40bの光の出射面に対向するように設けられ、第6の電極群117-6は第3の光学素子40c及び第3の光学素子40cの光の出射面に対向するように設けられる。 In the configuration of the transparent electrodes shown in FIG. 7, a fourth electrode group 117-2, a fifth electrode group 117-4, and a sixth electrode group 117-6 are provided on the second substrate 121. A fifth electrode group 117-4 is provided between the fourth electrode group 117-2 and the sixth electrode group 117-6. The fourth electrode group 117-2 is provided so as to face the first optical element 40a and the light exit surface of the first optical element 40a, and the fifth electrode group 117-4 is provided for the second optical element 40a. The sixth electrode group 117-6 is provided to face the light exit surfaces of the element 40b and the second optical element 40b, and the sixth electrode group 117-6 is provided on the light exit surfaces of the third optical element 40c and the third optical element 40c. They are provided so as to face each other.
 第4の電極群117-2は、第3の透明電極183、及び第4の透明電極184を含む。第4の電極群117-2は、第3の透明電極183、及び第4の透明電極184に電位を供給され、例えば、右側用光源として用いられる第1の光学素子40a(図1)から出射される光を透過させるか又は透過させつつ拡散させる機能を有する。第3の透明電極183、及び第4の透明電極184は、y軸方向に交互に配置され、x軸方向に延在している。第3の透明電極183の電極の幅、及び第4の透明電極184の電極の幅は、x軸方向に第3の幅wである。第3の透明電極183と第4の透明電極184とのx軸方向の電極間距離(電極間隔)は、第3の電極間距離sである。第3の透明電極183と第4の透明電極184との電極間のピッチは第3のピッチpであり、第3のピッチpはp=w+sを満たす。 A fourth electrode group 117 - 2 includes a third transparent electrode 183 and a fourth transparent electrode 184 . The fourth electrode group 117-2 is supplied with a potential to the third transparent electrode 183 and the fourth transparent electrode 184, and for example, light is emitted from the first optical element 40a (FIG. 1) used as a right light source. It has a function of transmitting or diffusing the light to be transmitted. The third transparent electrodes 183 and the fourth transparent electrodes 184 are alternately arranged in the y-axis direction and extend in the x-axis direction. The electrode width of the third transparent electrode 183 and the electrode width of the fourth transparent electrode 184 are a third width w3 in the x-axis direction. The inter-electrode distance (electrode spacing) in the x-axis direction between the third transparent electrode 183 and the fourth transparent electrode 184 is the third inter-electrode distance s3. The pitch between the third transparent electrode 183 and the fourth transparent electrode 184 is a third pitch p3, and the third pitch p3 satisfies p3 = w3 +s3.
 第3の透明電極183、及び第4の透明電極184は、それぞれ、第2の基板121上に形成された第3の配線116-3及び第4の配線116-4と電気的に接続されている。第3の配線116-3は、第3の透明電極183の下に形成されてよく、第3の透明電極183の上に形成されてもよい。また、第3の配線116-3は、第3の透明電極183と同じ層に形成されてよい。第4の配線116-4は、第4の透明電極184の下に形成されてよく、第4の透明電極184の上に形成されてもよい。また、第4の配線116-4は、第4の透明電極184と同じ層に形成されてよい。本実施形態では、第3の透明電極183、第4の透明電極184、第3の配線116-3及び第4の配線116-4は同じ層に形成されている。 The third transparent electrode 183 and the fourth transparent electrode 184 are electrically connected to the third wiring 116-3 and the fourth wiring 116-4 formed on the second substrate 121, respectively. there is The third wiring 116 - 3 may be formed under the third transparent electrode 183 or may be formed over the third transparent electrode 183 . Also, the third wiring 116 - 3 may be formed in the same layer as the third transparent electrode 183 . The fourth wiring 116 - 4 may be formed under the fourth transparent electrode 184 and may be formed over the fourth transparent electrode 184 . Also, the fourth wiring 116 - 4 may be formed in the same layer as the fourth transparent electrode 184 . In this embodiment, the third transparent electrode 183, the fourth transparent electrode 184, the third wiring 116-3 and the fourth wiring 116-4 are formed in the same layer.
 第5の電極群117-4は、第7の透明電極187、及び第8の透明電極188を含む。第5の電極群117-4は、第7の透明電極187、及び第8の透明電極188に電位を供給され、例えば、センター用光源として用いられる第2の光学素子40b(図1)から出射される光を透過させるか又は透過させつつ拡散させる機能を有する。第7の透明電極187、及び第8の透明電極188は、y軸方向に交互に配置され、x軸方向に延在している。第7の透明電極187の電極の幅、及び第8の透明電極188の電極の幅は、x軸方向に第4の幅wである。第7の透明電極187と第8の透明電極188とのx軸方向の電極間距離(電極間隔)は、第4の電極間距離sである。第7の透明電極187と第8の透明電極188との電極間のピッチは第4のピッチpであり、第4のピッチpはp=w+sを満たす。 A fifth electrode group 117 - 4 includes a seventh transparent electrode 187 and an eighth transparent electrode 188 . The fifth electrode group 117-4 is supplied with a potential to the seventh transparent electrode 187 and the eighth transparent electrode 188, and the light is emitted from the second optical element 40b (FIG. 1) used as a center light source, for example. It has a function of transmitting or diffusing the light to be transmitted. The seventh transparent electrodes 187 and the eighth transparent electrodes 188 are alternately arranged in the y-axis direction and extend in the x-axis direction. The electrode width of the seventh transparent electrode 187 and the electrode width of the eighth transparent electrode 188 are a fourth width w4 in the x-axis direction. The inter-electrode distance (electrode spacing) in the x-axis direction between the seventh transparent electrode 187 and the eighth transparent electrode 188 is the fourth inter-electrode distance s4. The pitch between the seventh transparent electrode 187 and the eighth transparent electrode 188 is a fourth pitch p4, and the fourth pitch p4 satisfies p4 = w4 + s4 .
 第7の透明電極187及び第8の透明電極188は、それぞれ、第2の基板121上に形成された第3の配線116-3及び第4の配線116-4と電気的に接続されている。第3の配線116-3は、第7の透明電極187の下に形成されてよく、第7の透明電極187の上に形成されてもよい。また、第3の配線116-3は、第7の透明電極187と同じ層に形成されてよい。第4の配線116-4は、第8の透明電極188の下に形成されてよく、第8の透明電極188の上に形成されてもよい。また、第4の配線116-4は、第8の透明電極188と同じ層に形成されてよい。本実施形態では、第7の透明電極187、第8の透明電極188、第3の配線116-3及び第4の配線116-4は同じ層に形成されている。 The seventh transparent electrode 187 and the eighth transparent electrode 188 are electrically connected to the third wiring 116-3 and the fourth wiring 116-4 formed on the second substrate 121, respectively. . The third wiring 116 - 3 may be formed below the seventh transparent electrode 187 or may be formed above the seventh transparent electrode 187 . Also, the third wiring 116 - 3 may be formed in the same layer as the seventh transparent electrode 187 . The fourth wiring 116 - 4 may be formed below the eighth transparent electrode 188 and may be formed above the eighth transparent electrode 188 . Also, the fourth wiring 116 - 4 may be formed in the same layer as the eighth transparent electrode 188 . In this embodiment, the seventh transparent electrode 187, the eighth transparent electrode 188, the third wiring 116-3 and the fourth wiring 116-4 are formed in the same layer.
 第7の透明電極187及び第8の透明電極188の第4の幅w、第4の電極間距離s、及び第4のピッチpは、第3の透明電極183、及び第4の透明電極184の第3の幅w、第3の電極間距離s、及び第3のピッチpより狭い。 The fourth width w 4 , the fourth inter-electrode distance s 4 , and the fourth pitch p 4 of the seventh transparent electrode 187 and the eighth transparent electrode 188 are the same as those of the third transparent electrode 183 and the fourth transparent electrode 188 . It is narrower than the third width w 3 , the third inter-electrode distance s 3 , and the third pitch p 3 of the transparent electrode 184 .
 第6の電極群117-6は、第11の透明電極191、及び第12の透明電極192を含む。第6の電極群117-6は、第11の透明電極191、及び第12の透明電極192に電位を供給され、例えば、左側用光源として用いられる第3の光学素子40c(図1)から出射される光を透過させるか又は透過させつつ拡散させる機能を有する。第11の透明電極191、及び第12の透明電極192は、第3の透明電極183、及び第4の透明電極184と同様の構成及び機能を有するため、ここでの詳細な説明は省略される。なお、第4の電極群117-2と第6の電極群117-6とは、機能が入れ替わってもよい。 The sixth electrode group 117-6 includes an eleventh transparent electrode 191 and a twelfth transparent electrode 192. The sixth electrode group 117-6 is supplied with a potential to the eleventh transparent electrode 191 and the twelfth transparent electrode 192, and emits light from the third optical element 40c (FIG. 1) used as a left light source, for example. It has a function of transmitting or diffusing the light to be transmitted. Since the eleventh transparent electrode 191 and the twelfth transparent electrode 192 have the same configuration and function as the third transparent electrode 183 and the fourth transparent electrode 184, detailed description thereof is omitted here. . The functions of the fourth electrode group 117-2 and the sixth electrode group 117-6 may be switched.
 第2の配向膜124は、y軸方向(図7において白抜きの矢印で示す方向)に配向処理が行われている。この場合、液晶層160を構成する液晶分子のうち、第2の基板121側の液晶分子の長軸は、y軸方向に沿って配向する。すなわち、第2の配向膜124の配向方向(y軸方向)と第3の透明電極183、第4の透明電極184、第7の透明電極187、第8の透明電極188、第11の透明電極191及び第12の透明電極192の延在する方向(x軸方向)は、直交している。 The second alignment film 124 is subjected to alignment treatment in the y-axis direction (the direction indicated by the white arrow in FIG. 7). In this case, among the liquid crystal molecules forming the liquid crystal layer 160, the long axes of the liquid crystal molecules on the second substrate 121 side are aligned along the y-axis direction. That is, the alignment direction (y-axis direction) of the second alignment film 124, the third transparent electrode 183, the fourth transparent electrode 184, the seventh transparent electrode 187, the eighth transparent electrode 188, and the eleventh transparent electrode The extending direction (x-axis direction) of the 191 and the twelfth transparent electrode 192 is perpendicular to each other.
 第1の透明電極181と第2の透明電極182は、第1の基板111上に、第1のピッチpを有した櫛歯状パターンで形成されているということができ、第5の透明電極185と第6の透明電極186は、第1の基板111上に、第2のピッチpを有した櫛歯状パターンで形成されているということができ、第9の透明電極189と第10の透明電極190は、第1の基板111上に第1のピッチpを有した櫛歯状パターンで形成されているということができる。同様に、第3の透明電極183と第4の透明電極184は、第2の基板121上に、第3のピッチpを有した櫛歯状パターンで形成されているということができ、第7の透明電極187と第8の透明電極188は、第2の基板121上に、第4のピッチpを有した櫛歯状パターンで形成されているということができ、第11の透明電極191と第12の透明電極192は、第2の基板121上に、第3のピッチpを有した櫛歯状パターンで形成されているということができる。 It can be said that the first transparent electrode 181 and the second transparent electrode 182 are formed on the first substrate 111 in a comb-like pattern having a first pitch p1. It can be said that the electrode 185 and the sixth transparent electrode 186 are formed on the first substrate 111 in a comb pattern with the second pitch p2, and the ninth transparent electrode 189 and the sixth transparent electrode 186 are formed on the first substrate 111 in a comb pattern. It can be said that the ten transparent electrodes 190 are formed on the first substrate 111 in a comb-like pattern having a first pitch p1. Similarly, it can be said that the third transparent electrode 183 and the fourth transparent electrode 184 are formed on the second substrate 121 in a comb pattern having a third pitch p3. 7 transparent electrode 187 and eighth transparent electrode 188 are formed on the second substrate 121 in a comb pattern having a fourth pitch p4, and the eleventh transparent electrode 187 is formed on the second substrate 121. It can be said that the 191 and the twelfth transparent electrode 192 are formed on the second substrate 121 in a comb-like pattern having a third pitch p3.
 第1の液晶セル110aにおいて、第1の透明電極181及び第2の透明電極182と、第3の透明電極183及び第4の透明電極184とは、液晶層113を介して対向し、第5の透明電極185及び第6の透明電極186と、第7の透明電極187及び第8の透明電極188とは、液晶層113を介して対向し、第9の透明電極189及び第10の透明電極190と、第11の透明電極191及び第12の透明電極192とは、液晶層113を介して対向している。 In the first liquid crystal cell 110a, the first transparent electrode 181 and the second transparent electrode 182, the third transparent electrode 183 and the fourth transparent electrode 184 face each other with the liquid crystal layer 113 interposed therebetween. The transparent electrode 185 and the sixth transparent electrode 186, the seventh transparent electrode 187 and the eighth transparent electrode 188 face each other with the liquid crystal layer 113 interposed therebetween, and the ninth transparent electrode 189 and the tenth transparent electrode 189 face each other. 190 , the eleventh transparent electrode 191 and the twelfth transparent electrode 192 face each other with the liquid crystal layer 113 interposed therebetween.
 ここで、第1の透明電極181、第2の透明電極182、第5の透明電極185、第6の透明電極186、第9の透明電極189及び第10の透明電極190の延在する方向(y軸方向)は、第3の透明電極183、第4の透明電極184、第7の透明電極187、第8の透明電極188、第11の透明電極191及び第12の透明電極192の延在する方向(x軸方向)と直交している。換言すると、第1の基板111上に形成される櫛歯状の電極パターンと、第2の基板121上に形成される櫛歯状の電極パターンとは、平面視で互いに直交している。 Here, the extending direction ( y-axis direction) extends the third transparent electrode 183, the fourth transparent electrode 184, the seventh transparent electrode 187, the eighth transparent electrode 188, the eleventh transparent electrode 191, and the twelfth transparent electrode 192. direction (x-axis direction). In other words, the comb-shaped electrode pattern formed on the first substrate 111 and the comb-shaped electrode pattern formed on the second substrate 121 are orthogonal to each other in plan view.
 また、第1の基板111には、第5の配線116-5、及び第6の配線116-6が形成されている。第1の基板111が第2の基板121と貼り合わされると、第3の配線116-3及び第4の配線116-4は、それぞれ、第1の基板111に設けられる第5の配線116-5及び第6の配線116-6と電気的に接続される。なお、図4及び図5に示されるように、図6及び図7に示される各電極は、各基板に対して、透明接着層と接する面と反対側の液晶層が設けられる面に設けられる。換言すると、図6及び図7に示される各電極は、各基板に対して、液晶層を介して互いに対向する面(対向面)に設けられる。例えば、液晶光学素子10の光の出射側(z軸方向において、光源20が設けられる側と反対側)から第1の基板111を平面視すると、図6に示される各電極は、第1の液晶セル110aでは、第1の基板111aの表面(対向面)に設けられ、第3の液晶セル110cでは、第1の基板111cの裏面(対向面)に設けられる。例えば、液晶光学素子10の光の出射側から第2の基板121を平面視すると、図7に示される各電極は、第1の液晶セル110aでは、第2の基板121aの裏面(対向面)に設けられ、第3の液晶セル110cでは、第2の基板121cの表面(対向面)に設けられる。 Also, the first substrate 111 is formed with a fifth wiring 116-5 and a sixth wiring 116-6. When the first substrate 111 is attached to the second substrate 121, the third wiring 116-3 and the fourth wiring 116-4 are connected to the fifth wiring 116- provided on the first substrate 111, respectively. 5 and sixth wiring 116-6. As shown in FIGS. 4 and 5, each electrode shown in FIGS. 6 and 7 is provided on the surface of each substrate on which the liquid crystal layer is provided, opposite to the surface in contact with the transparent adhesive layer. . In other words, the electrodes shown in FIGS. 6 and 7 are provided on the surfaces of the substrates facing each other (opposing surfaces) with the liquid crystal layer interposed therebetween. For example, when the first substrate 111 is viewed from the light emitting side of the liquid crystal optical element 10 (the side opposite to the side where the light source 20 is provided in the z-axis direction), each electrode shown in FIG. In the liquid crystal cell 110a, it is provided on the front surface (opposing surface) of the first substrate 111a, and in the third liquid crystal cell 110c, it is provided on the back surface (opposing surface) of the first substrate 111c. For example, when the second substrate 121 is viewed from the light emitting side of the liquid crystal optical element 10, each electrode shown in FIG. , and in the third liquid crystal cell 110c, it is provided on the surface (opposing surface) of the second substrate 121c.
 第3の配線116-3と第5の配線116-5、及び、第4の配線116-4と第6の配線116-6は、例えば、銀ペースト又は導電粒子を用いて、電気的に接続することができる。なお、導電粒子は金属を被覆した粒子を含む。 The third wiring 116-3 and the fifth wiring 116-5, and the fourth wiring 116-4 and the sixth wiring 116-6 are electrically connected using, for example, silver paste or conductive particles. can do. The conductive particles include metal-coated particles.
 本実施形態では、第1の透明電極181と第2の透明電極182とが交互に配置された第1の方向と、第3の透明電極183と第4の透明電極184とが交互に配置された第2の方向とは、直交しているが、これらは交差していればよい。同様に、第5の透明電極185と第6の透明電極186とが交互に配置された第1の方向と、第7の透明電極187と第8の透明電極188とが交互に配置された第2の方向とは、直交しているが、これらは交差していればよく、第9の透明電極189と第10の透明電極190とが交互に配置された第1の方向と、第11の透明電極191と第12の透明電極192とが交互に配置された第2の方向とは、直交しているが、これらは交差していればよい。当該交差角度は、90度はもちろん、90±10度の範囲が好ましく、より好ましくは90±5度の範囲である。 In this embodiment, the first direction in which the first transparent electrodes 181 and the second transparent electrodes 182 are alternately arranged, and the third transparent electrode 183 and the fourth transparent electrode 184 are alternately arranged. Although they are orthogonal to the second direction, it is sufficient that they intersect. Similarly, the first direction in which the fifth transparent electrodes 185 and the sixth transparent electrodes 186 are alternately arranged, and the second direction in which the seventh transparent electrodes 187 and the eighth transparent electrodes 188 are alternately arranged. 2 directions are perpendicular to each other, but it is sufficient that they intersect. The second direction in which the transparent electrodes 191 and the twelfth transparent electrodes 192 are alternately arranged is perpendicular to the second direction, but it is sufficient that they cross each other. The crossing angle is, of course, 90 degrees, preferably in the range of 90±10 degrees, more preferably in the range of 90±5 degrees.
 第1の基板111の第2の基板121に対向する側、又は、第2の基板121の第1の基板111に対向する側には、第1の基板111と第2の基板121との間隔を保持するためのフォトスペーサが形成されている(図示は省略)。 On the side of the first substrate 111 facing the second substrate 121 or on the side of the second substrate 121 facing the first substrate 111, a gap between the first substrate 111 and the second substrate 121 is provided. A photospacer is formed to hold the (not shown).
 第1の配線116-1、第2の配線116-2、第3の配線116-3、第4の配線116-4、第5の配線116-5、及び第6の配線116-6を形成する材料は、金属材料、又は透明導電材料を用いることができる。金属材料、又は透明導電材料は、例えば、アルミニウム、モリブデン、インジウム・スズ酸化物(ITO)、又はインジウム・亜鉛酸化物(IZO)である。なお、第1の配線116-1、第2の配線116-2、第3の配線116-3、第4の配線116-4、第5の配線116-5、及び第6の配線116-6は、外部装置と接続するための端子が設けられてよく、第1の配線116-1、第2の配線116-2、第3の配線116-3、第4の配線116-4、第5の配線116-5、及び第6の配線116-6が、外部装置と接続するための端子であってもよい。 A first wiring 116-1, a second wiring 116-2, a third wiring 116-3, a fourth wiring 116-4, a fifth wiring 116-5, and a sixth wiring 116-6 are formed. A metal material or a transparent conductive material can be used as the material. Metallic materials or transparent conductive materials are, for example, aluminum, molybdenum, indium tin oxide (ITO) or indium zinc oxide (IZO). Note that the first wiring 116-1, the second wiring 116-2, the third wiring 116-3, the fourth wiring 116-4, the fifth wiring 116-5, and the sixth wiring 116-6 may be provided with terminals for connecting to an external device, and includes a first wiring 116-1, a second wiring 116-2, a third wiring 116-3, a fourth wiring 116-4, and a fifth wiring 116-4. The wiring 116-5 and the sixth wiring 116-6 may be terminals for connecting to an external device.
 第1の配線116-1、第2の配線116-2、第5の配線116-5(又は第3の配線116-3)、及び第6の配線116-6(又は第4の配線116-4)は、互いに電気的に絶縁されている。したがって、第1の液晶セル110aでは、第1の透明電極181a、第5の透明電極185a、及び第9の透明電極189aと、第2の透明電極182a、第6の透明電極186a、及び第10の透明電極190aと、第3の透明電極183a、第7の透明電極187a、及び第11の透明電極191aと、第4の透明電極184a、第8の透明電極188a、及び第12の透明電極192aとを独立に制御し、各透明電極を用いて、液晶層113の液晶分子の配向を制御することができる。例えば、第1の透明電極181a、第5の透明電極185a、及び第9の透明電極189aは第1の電位V1を供給され、第2の透明電極182a、第6の透明電極186a、及び第10の透明電極190aは第2の電位V2を供給され、第3の透明電極183a、第7の透明電極187a、及び第11の透明電極191aは第3の電位V3を供給され、第4の透明電極184a、第8の透明電極188a、及び第12の透明電極192aは第4の電位V4を供給される。なお、第1の電位V1、第2の電位V2、第3の電位V3、第4の電位V4は、互いに異なる電位であってよく、同じ電位であってもよい。 The first wiring 116-1, the second wiring 116-2, the fifth wiring 116-5 (or the third wiring 116-3), and the sixth wiring 116-6 (or the fourth wiring 116- 4) are electrically isolated from each other. Therefore, in the first liquid crystal cell 110a, the first transparent electrode 181a, the fifth transparent electrode 185a, the ninth transparent electrode 189a, the second transparent electrode 182a, the sixth transparent electrode 186a, the tenth a transparent electrode 190a, a third transparent electrode 183a, a seventh transparent electrode 187a, an eleventh transparent electrode 191a, a fourth transparent electrode 184a, an eighth transparent electrode 188a, and a twelfth transparent electrode 192a. can be independently controlled, and the orientation of liquid crystal molecules in the liquid crystal layer 113 can be controlled using each transparent electrode. For example, the first transparent electrode 181a, the fifth transparent electrode 185a, and the ninth transparent electrode 189a are supplied with the first potential V1, and the second transparent electrode 182a, the sixth transparent electrode 186a, and the tenth transparent electrode 182a are supplied with the first potential V1. The second transparent electrode 190a is supplied with the second potential V2, the third transparent electrode 183a, the seventh transparent electrode 187a, and the eleventh transparent electrode 191a are supplied with the third potential V3, and the fourth transparent electrode 190a is supplied with the third potential V3. 184a, the eighth transparent electrode 188a, and the twelfth transparent electrode 192a are supplied with the fourth potential V4. Note that the first potential V1, the second potential V2, the third potential V3, and the fourth potential V4 may be different potentials or may be the same potential.
 本実施形態に係る照明装置30は、第1の基板111の第1の電極群117-1に含まれる第1の透明電極181及び第2の透明電極182と、第2の基板121の第4の電極群117-2に含まれる第3の透明電極183及び第4の透明電極184とが交差することで、各透明電極に供給する電位を制御して液晶層113の液晶の配向を制御することができる。また、本実施形態に係る照明装置30は、第1の基板111の第2の電極群117-3に含まれる第5の透明電極185及び第6の透明電極186と、第2の基板121の第5の電極群117-4に含まれる第7の透明電極187及び第8の透明電極188とが交差することで、各透明電極に供給する電位を制御して液晶層113の液晶の配向を制御することができる。また、本実施形態に係る照明装置30は、第1の基板111の第3の電極群117-5に含まれる第9の透明電極189及び第10の透明電極190と、第2の基板121の第6の電極群117-6に含まれる第11の透明電極191及び第12の透明電極192とが交差することで、各透明電極に供給する電圧を制御して液晶層113の液晶の配向を制御することができる。その結果、液晶光学素子10は、第1の光学素子40a、第2の光学素子40b及び第3の光学素子40cから出射された3つの異なる方向からの光を、第1の電極群117-1及び第4の電極群117-2を用いて右側に透過させるか又は透過させつつ拡散させ、第2の電極群117-3及び第5の電極群117-4を用いてセンターに透過させるか又は透過させつつ拡散させ、第3の電極群117-5及び第6の電極群117-6を用いて左側に透過させるか又は透過させつつ拡散させることができる。 The illumination device 30 according to this embodiment includes a first transparent electrode 181 and a second transparent electrode 182 included in the first electrode group 117-1 of the first substrate 111, and a fourth electrode 182 of the second substrate 121. By intersecting the third transparent electrode 183 and the fourth transparent electrode 184 included in the electrode group 117-2, the potential supplied to each transparent electrode is controlled to control the orientation of the liquid crystal of the liquid crystal layer 113. be able to. Further, the illumination device 30 according to the present embodiment includes the fifth transparent electrode 185 and the sixth transparent electrode 186 included in the second electrode group 117-3 of the first substrate 111, and the second substrate 121. By intersecting the seventh transparent electrode 187 and the eighth transparent electrode 188 included in the fifth electrode group 117-4, the potential supplied to each transparent electrode is controlled to orient the liquid crystal in the liquid crystal layer 113. can be controlled. Further, the lighting device 30 according to the present embodiment includes the ninth transparent electrode 189 and the tenth transparent electrode 190 included in the third electrode group 117-5 of the first substrate 111, and the second substrate 121. By intersecting the eleventh transparent electrode 191 and the twelfth transparent electrode 192 included in the sixth electrode group 117-6, the voltage supplied to each transparent electrode is controlled to orient the liquid crystal in the liquid crystal layer 113. can be controlled. As a result, the liquid crystal optical element 10 receives light from three different directions emitted from the first optical element 40a, the second optical element 40b, and the third optical element 40c, and the first electrode group 117-1. And the fourth electrode group 117-2 is used to transmit the light to the right side or diffuse while transmitting, and the second electrode group 117-3 and the fifth electrode group 117-4 are used to transmit the light to the center or Diffusing while transmitting, and transmitting or diffusing to the left using the third electrode group 117-5 and the sixth electrode group 117-6.
 また、本実施形態に係る液晶光学素子10では、第1の基板111のセンター又は略センターに設けられた第2の電極群117-3、及び第2の基板121のセンター又は略センターに設けられた第5の電極群117-4の透明電極の当該電極の幅、電極間距離、及び電極間のピッチを狭くすることで、第2の電極群117-3及び第5の電極群117-4に設けられた透明電極に電位を供給した際に、液晶が配向する範囲を狭い範囲で制御することができる。すなわち、本実施形態に係る液晶光学素子10では、同様の透明電極配置を有する第1の液晶セル110aと第2の液晶セル110bとが積層され、センター又は略センターに拡散する光のx軸方向への光の拡散度合いをより細かく制御することができる。また、本実施形態に係る液晶光学素子10では、同様の透明電極配置を有する第1の液晶セル110aと第2の液晶セル110bの上に、同様の透明電極配置を有する第3の液晶セル110cと第4の液晶セル110dとが積層され、センター又は略センターに拡散する光のy軸方向への光の拡散度合いもより細かく制御することができる。その結果、センター又は略センターに配置された第2の光学素子40bからの光を、左右上下方向により細かく拡散させ、左右上下方向への配光及び配光パターンをより細かく制御することができる。 Further, in the liquid crystal optical element 10 according to the present embodiment, the second electrode group 117-3 provided at the center or approximately the center of the first substrate 111 and the second electrode group 117-3 provided at the center or approximately the center of the second substrate 121 By narrowing the width of the transparent electrodes of the fifth electrode group 117-4, the distance between the electrodes, and the pitch between the electrodes, the second electrode group 117-3 and the fifth electrode group 117-4 When an electric potential is supplied to the transparent electrode provided in the layer, the range in which the liquid crystal is oriented can be controlled within a narrow range. That is, in the liquid crystal optical element 10 according to the present embodiment, the first liquid crystal cell 110a and the second liquid crystal cell 110b having the same transparent electrode arrangement are laminated, and the x-axis direction of the light diffused to the center or substantially the center is It is possible to more finely control the degree of diffusion of light to. Further, in the liquid crystal optical element 10 according to the present embodiment, the third liquid crystal cell 110c having the same transparent electrode arrangement is placed on the first liquid crystal cell 110a and the second liquid crystal cell 110b having the same transparent electrode arrangement. and the fourth liquid crystal cell 110d are stacked, and the degree of diffusion of light diffused toward the center or approximately the center in the y-axis direction can be controlled more finely. As a result, the light from the second optical element 40b arranged in the center or near the center can be more finely diffused in the horizontal and vertical directions, and the light distribution and the light distribution pattern in the horizontal and vertical directions can be more finely controlled.
 また、本実施形態に係る液晶光学素子10では、第2の透明電極182の端部、第6の透明電極186の端部、及び第10の透明電極190の端部は、第1の配線116-1から距離d離れて配置されている。第1の透明電極181の端部、第5の透明電極185の端部、及び第9の透明電極189の端部は、第2の配線116-2との距離d離れて配置されている。第4の透明電極184の端部は、第3の配線116-3と距離d離れて配置されている。第8の透明電極188の端部は、第3の配線116-3と距離d離れて配置されている。第12の透明電極192の端部は、第3の配線116-3と距離d離れて配置されている。第3の透明電極183の端部は、第4の配線116-4と距離d離れて配置されている。第7の透明電極187の端部は、第4の配線116-4と距離d離れて配置されている。第11の透明電極191の端部は、第4の配線116-4と距離d離れて配置されている。距離d及び距離dが第1の電極間距離s及び第2の電極間距離幅sより大きい。距離d、距離d、距離d、距離d、距離d、及び距離dが第3の電極間距離s及び第4の電極間距離幅sより大きい。透明電極の端部が、透明電極同士を接続する配線116と離れて配置されることによって、透明電極間で発生する横電界の大きさに対して、透明電極の端部と配線116との間で発生する電界を無視できるレベルまで低減することができる。よって、本実施形態に係る照明装置30では、透明電極の端部と配線116との間で発生する電界の影響を抑制することができる。本実施形態では、隣接する透明電極間に生じる電界を横電界と呼ぶ場合がある。 In addition, in the liquid crystal optical element 10 according to this embodiment, the end of the second transparent electrode 182, the end of the sixth transparent electrode 186, and the end of the tenth transparent electrode 190 are connected to the first wiring 116. It is located a distance d 1 from -1. The end of the first transparent electrode 181, the end of the fifth transparent electrode 185, and the end of the ninth transparent electrode 189 are arranged apart from the second wiring 116-2 by a distance d2. . The end of the fourth transparent electrode 184 is arranged at a distance d3 from the third wiring 116-3. The end of the eighth transparent electrode 188 is arranged at a distance d5 from the third wiring 116-3. The end of the twelfth transparent electrode 192 is arranged at a distance d7 from the third wiring 116-3. The end of the third transparent electrode 183 is arranged apart from the fourth wiring 116-4 by a distance d4. The end of the seventh transparent electrode 187 is arranged at a distance d6 from the fourth wiring 116-4. The end of the eleventh transparent electrode 191 is arranged at a distance d 8 from the fourth wiring 116-4. The distance d1 and the distance d2 are larger than the first inter - electrode distance s1 and the second inter - electrode distance width s2. Distance d 3 , distance d 4 , distance d 5 , distance d 6 , distance d 7 , and distance d 8 are greater than third inter-electrode distance s 3 and fourth inter-electrode distance width s 4 . By arranging the ends of the transparent electrodes away from the wiring 116 that connects the transparent electrodes, the horizontal electric field generated between the transparent electrodes is reduced by the distance between the ends of the transparent electrodes and the wiring 116 . can be reduced to a negligible level. Therefore, in the illumination device 30 according to this embodiment, the influence of the electric field generated between the end of the transparent electrode and the wiring 116 can be suppressed. In this embodiment, an electric field generated between adjacent transparent electrodes may be called a lateral electric field.
<1-4.液晶光学素子10による光の配光の制御>
 図8及び図9は、本発明の一実施形態に係る液晶光学素子10において、液晶層160aの液晶分子の配向を示す模式的な端部断面図である。図8及び図9は、それぞれ、図3に示すA1-A2線に沿った第1の液晶セル110a及び第2の液晶セル110bの端部断面図の一部に対応するものである。以下の説明では、主に、第1の液晶セル110a又は第2の液晶セル110bの構成を説明する。
<1-4. Control of Light Distribution by Liquid Crystal Optical Element 10>
8 and 9 are schematic end cross-sectional views showing the alignment of liquid crystal molecules in the liquid crystal layer 160a in the liquid crystal optical element 10 according to one embodiment of the present invention. FIGS. 8 and 9 correspond to part of end cross-sectional views of the first liquid crystal cell 110a and the second liquid crystal cell 110b taken along line A1-A2 shown in FIG. 3, respectively. In the following description, the configuration of the first liquid crystal cell 110a or the second liquid crystal cell 110b is mainly described.
 図8では、第1の透明電極181a、第2の透明電極182a、第4の透明電極184a、第1の透明電極181b、第2の透明電極182b、及び第4の透明電極184bに電位が供給されていない状態の液晶光学素子10が示されている。図9では、第1の透明電極181a、第2の透明電極182a、第4の透明電極184a、第1の透明電極181b、第2の透明電極182b、及び第4の透明電極184bに電位が供給されている状態の液晶光学素子10が示されている。具体的には、第1の液晶セル110aの第1の透明電極181a及び第4の透明電極184aにLow電位が供給され、第2の透明電極182a及び第3の透明電極183a(図示は省略)にHigh電位が供給されている。同様に、第2の液晶セル110bの第1の透明電極181b及び第4の透明電極184bにLow電位が供給され、第2の透明電極182b及び第3の透明電極183b(図示は省略)にHigh電位が供給されている。図9では、便宜上、Low電位及びHigh電位を、それぞれ、「-」及び「+」の記号を用いて図示している。本実施形態では、隣接する透明電極間に生じる電界を横電界と呼ぶ場合がある。 In FIG. 8, a potential is supplied to the first transparent electrode 181a, the second transparent electrode 182a, the fourth transparent electrode 184a, the first transparent electrode 181b, the second transparent electrode 182b, and the fourth transparent electrode 184b. The liquid crystal optical element 10 is shown in an unfilled state. In FIG. 9, potentials are supplied to the first transparent electrode 181a, the second transparent electrode 182a, the fourth transparent electrode 184a, the first transparent electrode 181b, the second transparent electrode 182b, and the fourth transparent electrode 184b. The liquid crystal optical element 10 is shown in the closed state. Specifically, a Low potential is supplied to the first transparent electrode 181a and the fourth transparent electrode 184a of the first liquid crystal cell 110a, and the second transparent electrode 182a and the third transparent electrode 183a (not shown) are supplied. is supplied with a high potential. Similarly, a Low potential is supplied to the first transparent electrode 181b and the fourth transparent electrode 184b of the second liquid crystal cell 110b, and a High potential is applied to the second transparent electrode 182b and the third transparent electrode 183b (not shown). A potential is being supplied. In FIG. 9, for the sake of convenience, the Low potential and the High potential are illustrated using symbols "-" and "+", respectively. In this embodiment, an electric field generated between adjacent transparent electrodes may be called a lateral electric field.
 第1の配向膜114aはx軸方向に配向処理されている。図8に示すように、液晶層160aの第1の基板111a側の液晶分子の長軸は、x軸方向に配向する。すなわち、第1の基板111a側の液晶分子の配向方向は、第1の透明電極181a及び第2の透明電極182aの延在する方向(y軸方向)に直交する方向である。また、第2の配向膜124aはy軸方向に配向処理されている。また、液晶層160aの第2の基板121a側の液晶分子の長軸は、y軸方向に配向する。すなわち、液晶層160aの第2の基板121a側の液晶分子の配向方向は、第4の透明電極184a及び第3の透明電極183a(図7)の延在する方向(x軸方向)に直交する方向である。したがって、液晶層160aの液晶分子は、第1の基板111aから第2の基板121aに向かうにつれて徐々に長軸の向きをx軸方向からy軸方向に変化し、90度ねじれた状態で配向している。 The first alignment film 114a is aligned in the x-axis direction. As shown in FIG. 8, the long axes of the liquid crystal molecules on the first substrate 111a side of the liquid crystal layer 160a are aligned in the x-axis direction. That is, the alignment direction of the liquid crystal molecules on the first substrate 111a side is the direction perpendicular to the extending direction (y-axis direction) of the first transparent electrode 181a and the second transparent electrode 182a. Also, the second alignment film 124a is aligned in the y-axis direction. Further, the long axes of the liquid crystal molecules on the second substrate 121a side of the liquid crystal layer 160a are aligned in the y-axis direction. That is, the orientation direction of the liquid crystal molecules on the second substrate 121a side of the liquid crystal layer 160a is orthogonal to the extending direction (x-axis direction) of the fourth transparent electrode 184a and the third transparent electrode 183a (FIG. 7). is the direction. Therefore, the liquid crystal molecules of the liquid crystal layer 160a are oriented while being twisted by 90 degrees, with the direction of the long axis gradually changing from the x-axis direction to the y-axis direction from the first substrate 111a to the second substrate 121a. ing.
 透明電極に電位が供給されると、図9に示すように、液晶分子の配向方向が変化する。液晶層160aの第1の透明電極181aと第2の透明電極182aとの間の横電界の影響によって、液晶層160aの第1の基板111a側の液晶分子は、全体として、第1の基板111aに対してx軸方向に凸の円弧状に配向する。同様に、液晶層160aの第4の透明電極184aと第3の透明電極183aとの間の横電界の影響によって、液晶層160aの第2の基板121a側の液晶分子は、全体として、第2の基板121aに対してy軸方向に凸の円弧状に配向する。第1の透明電極181aと第2の透明電極182aとの間のほぼ中央に位置する液晶層160aの液晶分子は、いずれの横電界によっても配向がほとんど変化しない。よって、液晶層160aに入射した光は、第1の基板111a側のx軸方向に凸の円弧状に配向された液晶分子の屈折率分布にしたがってx軸方向に拡散され、第2の基板121a側のy軸方向に凸の円弧状に配向された液晶分子の屈折率分布にしたがってy軸方向に拡散される。 When a potential is supplied to the transparent electrodes, the alignment direction of the liquid crystal molecules changes as shown in FIG. Due to the influence of the horizontal electric field between the first transparent electrode 181a and the second transparent electrode 182a of the liquid crystal layer 160a, the liquid crystal molecules on the side of the first substrate 111a of the liquid crystal layer 160a as a whole move toward the first substrate 111a. is oriented in a convex arc shape in the x-axis direction with respect to Similarly, due to the influence of the horizontal electric field between the fourth transparent electrode 184a and the third transparent electrode 183a of the liquid crystal layer 160a, the liquid crystal molecules on the side of the second substrate 121a of the liquid crystal layer 160a as a whole move to the second are oriented in a convex arc shape in the y-axis direction with respect to the substrate 121a. The liquid crystal molecules of the liquid crystal layer 160a located substantially in the center between the first transparent electrode 181a and the second transparent electrode 182a hardly change their orientation by any lateral electric field. Therefore, the light incident on the liquid crystal layer 160a is diffused in the x-axis direction according to the refractive index distribution of the liquid crystal molecules aligned in an arcuate shape convex in the x-axis direction on the side of the first substrate 111a, and diffused into the second substrate 121a. The light is diffused in the y-axis direction according to the refractive index distribution of the liquid crystal molecules aligned in an arc shape convex in the y-axis direction.
 なお、第1の基板111aと第2の基板121aとは、十分に離れた基板間距離を有しているため、第1の基板111aの第1の透明電極181aと第2の透明電極182aとの間の横電界は、第2の基板121a側の液晶分子の配向に対して影響を及ぼさないか、又は、無視できるほどに小さい。同様に、第2の基板121aの第4の透明電極184aと第3の透明電極183aとの間の横電界は、第1の基板111a側の液晶分子の配向に対して影響を及ぼさないか、又は、無視できるほどに小さい。 In addition, since the first substrate 111a and the second substrate 121a have a sufficient distance between the substrates, the first transparent electrode 181a and the second transparent electrode 182a of the first substrate 111a The transverse electric field between the two substrates 121a does not affect the orientation of the liquid crystal molecules on the second substrate 121a side, or is negligibly small. Similarly, does the lateral electric field between the fourth transparent electrode 184a and the third transparent electrode 183a of the second substrate 121a affect the orientation of the liquid crystal molecules on the first substrate 111a side? or so small that it can be ignored.
 第1の透明電極181b~第4の透明電極184bに電位が供給された場合における液晶層160bの液晶分子も、液晶層160aの液晶分子と同様であるため、ここでは説明を省略する。 The liquid crystal molecules of the liquid crystal layer 160b when the potential is supplied to the first transparent electrode 181b to the fourth transparent electrode 184b are the same as the liquid crystal molecules of the liquid crystal layer 160a, so the explanation is omitted here.
 続いて、液晶光学素子10を透過する光の配光について説明する。光源から出射された光は、x軸方向の偏光成分(P偏光成分)及びy軸方向の偏光成分(S偏光成分)を有するが、以下では、便宜上、光をP偏光成分とS偏光成分とに分けて説明する。すなわち、光源から出射された光(図8及び図9中の(1)参照)は、P偏光成分を有する第1の偏光310及びS偏光成分を有する第2の偏光320を含む。なお、図8及び図9中の矢印の記号及び丸印にバツを付した記号は、それぞれ、P偏光成分及びS偏光成分を表している。なお、光源から出射された光は、液晶光学素子10に入射する光(入射光180)である。 Next, the distribution of light transmitted through the liquid crystal optical element 10 will be described. Light emitted from a light source has a polarized component in the x-axis direction (P-polarized component) and a polarized component in the y-axis direction (S-polarized component). will be explained separately. That is, the light emitted from the light source (see (1) in FIGS. 8 and 9) includes first polarized light 310 having a P-polarized component and second polarized light 320 having an S-polarized component. 8 and 9, the arrow symbol and the circle symbol with a cross represent the P-polarized component and the S-polarized component, respectively. The light emitted from the light source is the light incident on the liquid crystal optical element 10 (incident light 180).
 第1の偏光310は、第1の基板111aに入射した後、第2の基板121aに向かうにつれて、液晶分子の配向のねじれにしたがってP偏光成分からS偏光成分に変化する(図8及び図9中の(2)~(4)参照)。より具体的には、第1の偏光310は、第1の基板111a側ではx軸方向に偏光軸を有しているが、液晶層160aの厚さ方向に通過する過程でその偏光軸を徐々に変化させる。また、第1の偏光310は、第2の基板121a側ではy軸方向に偏光軸を有し、その後、第2の基板121a側から出射される(図8及び図9中の(5)参照)。 After being incident on the first substrate 111a, the first polarized light 310 changes from a P-polarized component to an S-polarized component according to the twist of the orientation of the liquid crystal molecules as it moves toward the second substrate 121a (FIGS. 8 and 9). See (2) to (4) inside). More specifically, the first polarized light 310 has a polarization axis in the x-axis direction on the first substrate 111a side, but gradually changes its polarization axis in the process of passing through the thickness direction of the liquid crystal layer 160a. change to The first polarized light 310 has a polarization axis in the y-axis direction on the second substrate 121a side, and is then emitted from the second substrate 121a side (see (5) in FIGS. 8 and 9). ).
 ここで、第1の透明電極181aと第2の透明電極182aとの間に横電界が発生すると、当該横電界の影響で第1の基板111a側の液晶分子がx軸方向に凸の円弧状に配向し、屈折率分布が変化する。そのため、第1の偏光310は、当該液晶分子の屈折率分布にしたがって、x軸方向に拡散する。また、第4の透明電極184aと第3の透明電極183aとの間に横電界が発生すると、当該横電界の影響で第2の基板121a側の液晶分子がy軸方向に凸の円弧状に配向し、屈折率分布が変化する。そのため、第1の偏光310は、当該液晶分子の屈折率分布の変化にしたがって、y軸方向に拡散する。 Here, when a horizontal electric field is generated between the first transparent electrode 181a and the second transparent electrode 182a, the liquid crystal molecules on the first substrate 111a side are formed in an arcuate shape convex in the x-axis direction due to the influence of the horizontal electric field. , and the refractive index distribution changes. Therefore, the first polarized light 310 diffuses in the x-axis direction according to the refractive index distribution of the liquid crystal molecules. Further, when a horizontal electric field is generated between the fourth transparent electrode 184a and the third transparent electrode 183a, the liquid crystal molecules on the second substrate 121a side are arcuately projected in the y-axis direction due to the influence of the horizontal electric field. orient and the refractive index distribution changes. Therefore, the first polarized light 310 diffuses in the y-axis direction according to changes in the refractive index distribution of the liquid crystal molecules.
 したがって、横電界が発生していない場合(図8参照)、第1の液晶セル110aを透過する第1の偏光310は、偏光成分がP偏光成分からS偏光成分に変化する。一方、横電界が発生している場合(図9参照)、第1の液晶セル110aを透過する第1の偏光310は、偏光成分がP偏光成分からS偏光成分に変化するとともに、x軸方向及びy軸方向に拡散する。 Therefore, when no horizontal electric field is generated (see FIG. 8), the polarization component of the first polarized light 310 transmitted through the first liquid crystal cell 110a changes from the P polarized component to the S polarized component. On the other hand, when a horizontal electric field is generated (see FIG. 9), the first polarized light 310 transmitted through the first liquid crystal cell 110a changes from the P polarized component to the S polarized component, and and diffuse in the y-axis direction.
 第2の偏光320は、第1の基板111aに入射した後、第2の基板121aに向かうにつれて、液晶分子の配向のねじれにしたがってS偏光成分からP偏光成分に変化する(図8及び図9中の(2)~(4)参照)。より具体的には、第2の偏光320は、第1の基板111a側ではy軸方向に偏光軸を有しているが、液晶層160aの厚さ方向に通過する過程でその偏光軸を徐々に変化させる。また、第2の偏光320は、第2の基板121a側ではx軸方向に偏光軸を有し、その後、第2の基板121a側から出射される(図8及び図9中の(5)参照)。 After being incident on the first substrate 111a, the second polarized light 320 changes from the S polarized component to the P polarized component according to the twist of the orientation of the liquid crystal molecules as it moves toward the second substrate 121a (FIGS. 8 and 9). See (2) to (4) inside). More specifically, the second polarized light 320 has a polarization axis in the y-axis direction on the first substrate 111a side, but gradually changes its polarization axis in the process of passing through the thickness direction of the liquid crystal layer 160a. change to Further, the second polarized light 320 has a polarization axis in the x-axis direction on the second substrate 121a side, and is then emitted from the second substrate 121a side (see (5) in FIGS. 8 and 9). ).
 ここで、第1の透明電極181aと第2の透明電極182aとの間に横電界が発生すると、当該横電界の影響で第1の基板111a側の液晶分子がx軸方向に凸の円弧状に配向し、屈折率分布が変化する。しかしながら、第2の偏光320の偏光軸は、第1の基板111a側の液晶分子の配向と直交しているため、当該液晶分子の屈折率分布の影響を受けず、拡散せずにそのまま通過する。また、第4の透明電極184aと第3の透明電極183aとの間に横電界が発生すると、当該横電界の影響で第2の基板121a側の液晶分子がy軸方向に凸の円弧状に配向し、屈折率分布が変化する。しかしながら、第2の偏光320の偏光軸は、第2の基板121a側の液晶分子の配向と直交しているため、当該液晶分子の屈折率分布の影響を受けず、拡散せずにそのまま通過する。 Here, when a horizontal electric field is generated between the first transparent electrode 181a and the second transparent electrode 182a, the liquid crystal molecules on the first substrate 111a side are formed in an arcuate shape convex in the x-axis direction due to the influence of the horizontal electric field. , and the refractive index distribution changes. However, since the polarization axis of the second polarized light 320 is orthogonal to the alignment of the liquid crystal molecules on the first substrate 111a side, it is not affected by the refractive index distribution of the liquid crystal molecules and passes through without being diffused. . Further, when a horizontal electric field is generated between the fourth transparent electrode 184a and the third transparent electrode 183a, the liquid crystal molecules on the second substrate 121a side are arcuately projected in the y-axis direction due to the influence of the horizontal electric field. orient and the refractive index distribution changes. However, since the polarization axis of the second polarized light 320 is orthogonal to the orientation of the liquid crystal molecules on the second substrate 121a side, it is not affected by the refractive index distribution of the liquid crystal molecules and passes through without being diffused. .
 したがって、横電界が発生していない場合(図8参照)だけでなく、横電界が発生している場合(図9参照)も、第1の液晶セル110aを透過する第2の偏光320は、偏光成分がS偏光成分からP偏光成分に変化するが、拡散しない。 Therefore, the second polarized light 320 transmitted through the first liquid crystal cell 110a is The polarization component changes from the S polarization component to the P polarization component, but there is no diffusion.
 第2の液晶セル110bの液晶層160bの液晶分子も、第1の液晶セル110aの液晶層160aの液晶分子と同様の屈折率分布を有する。但し、第1の偏光310及び第2の偏光320は、第1の液晶セル110aを透過することで、偏光軸が変化しているため、液晶層160bの液晶分子の屈折率分布の影響を受ける偏光は逆となる。すなわち、横電界が発生していない場合(図8参照)だけでなく、横電界が発生している場合(図9参照)も、第2の液晶セル110bを透過する第1の偏光310は、偏光成分がS偏光成分からP偏光成分に変化するが、拡散しない(図8及び図9中の(6)~(8)参照)。一方、横電界が発生していない場合(図8参照)、第2の液晶セル110bを透過する第2の偏光320は、偏光成分がP偏光成分からS偏光成分に変化するのみであるが、横電界が発生している場合(図9参照)、第2の液晶セル110bを透過する第2の偏光320は、偏光成分がP偏光成分からS偏光成分に変化するとともに、x軸方向及びy軸方向に拡散する。 The liquid crystal molecules of the liquid crystal layer 160b of the second liquid crystal cell 110b also have the same refractive index distribution as the liquid crystal molecules of the liquid crystal layer 160a of the first liquid crystal cell 110a. However, the first polarized light 310 and the second polarized light 320 are affected by the refractive index distribution of the liquid crystal molecules of the liquid crystal layer 160b because the polarization axis is changed by passing through the first liquid crystal cell 110a. Polarization is reversed. That is, not only when no lateral electric field is generated (see FIG. 8) but also when a lateral electric field is generated (see FIG. 9), the first polarized light 310 transmitted through the second liquid crystal cell 110b is Although the polarization component changes from the S polarization component to the P polarization component, it does not diffuse (see (6) to (8) in FIGS. 8 and 9). On the other hand, when no horizontal electric field is generated (see FIG. 8), the polarization component of the second polarized light 320 transmitted through the second liquid crystal cell 110b changes from the P polarized component to the S polarized component only. When a horizontal electric field is generated (see FIG. 9), the second polarized light 320 transmitted through the second liquid crystal cell 110b changes its polarization component from the P polarization component to the S polarization component, and the x-axis direction and the y-axis direction. Axial diffusion.
 以上からわかるように、液晶光学素子10では、同一の構造を有する2つの液晶セル(第1の液晶セル110a及び第2の液晶セル110b)を積層させることにより、液晶光学素子10に入射する光の偏光成分が2度にわたって変化する。その結果、液晶光学素子10では、入射前の偏光成分と入射後の偏光成分とを変わらなくすることができる(図8及び図9中の(1)及び(9)参照)。すなわち、液晶光学素子10では、入射光180の偏光成分と、出射光200の偏光成分とを変わらなくすることができる。 As can be seen from the above, in the liquid crystal optical element 10, by stacking two liquid crystal cells (the first liquid crystal cell 110a and the second liquid crystal cell 110b) having the same structure, the light incident on the liquid crystal optical element 10 is is changed by two degrees. As a result, in the liquid crystal optical element 10, the polarization component before incidence and the polarization component after incidence can be kept unchanged (see (1) and (9) in FIGS. 8 and 9). That is, in the liquid crystal optical element 10, the polarization component of the incident light 180 and the polarization component of the output light 200 can be made the same.
 また、液晶光学素子10は、透明電極に電位を供給し、第1の液晶セル110aの液晶層160aの液晶分子が有する屈折率分布を変化させ、第1の液晶セル110aを透過する光を屈折させることができる。具体的には、第1の液晶セル110aが第1の偏光310(P偏光成分)の光をx軸方向、y軸方向、又はx軸及びy軸の両軸方向に拡散させ、第2の液晶セル110bが第2の偏光320(S偏光成分)の光をx軸方向、y軸方向、又はx軸及びy軸の両軸方向に拡散させることができる。 Further, the liquid crystal optical element 10 supplies a potential to the transparent electrode to change the refractive index distribution of the liquid crystal molecules of the liquid crystal layer 160a of the first liquid crystal cell 110a, thereby refracting the light transmitted through the first liquid crystal cell 110a. can be made Specifically, the first liquid crystal cell 110a diffuses the light of the first polarized light 310 (P-polarized component) in the x-axis direction, the y-axis direction, or both the x-axis and y-axis directions. The liquid crystal cell 110b can diffuse the light of the second polarized light 320 (S-polarized component) in the x-axis direction, the y-axis direction, or both the x-axis and y-axis directions.
 図8および図9では第1の液晶セル110a及び第2の液晶セル110bのみを図示し、第1の液晶セル110a及び第2の液晶セル110bを透過する光の配光について説明したが、第3の液晶セル110c及び第4の液晶セル110dを透過する光の配光も同様である。すなわち、第3の液晶セル110cが第2の偏光320(S偏光成分)の光をx軸方向、y軸方向、またはx軸およびy軸の両軸方向に拡散させ、第4の液晶セル110dが第1の偏光310(P偏光成分)の光をx軸方向、y軸方向、またはx軸およびy軸の両軸方向に拡散させることができる。 8 and 9 show only the first liquid crystal cell 110a and the second liquid crystal cell 110b, and the light distribution of light passing through the first liquid crystal cell 110a and the second liquid crystal cell 110b is described. The same applies to the light distribution of light passing through the third liquid crystal cell 110c and the fourth liquid crystal cell 110d. That is, the third liquid crystal cell 110c diffuses the light of the second polarized light 320 (S-polarized component) in the x-axis direction, the y-axis direction, or both the x-axis and y-axis directions, and the fourth liquid crystal cell 110d can scatter light of the first polarization 310 (the P-polarization component) along the x-axis, the y-axis, or both the x- and y-axes.
<1-5.液晶光学素子10の透明電極への電位の供給>
 図10は、本発明の一実施形態に係る照明装置30の構成を示す模式的な平面図である。図11は、本発明の一実施形態に係る液晶光学素子10の透明電極の接続を説明するための模式的な図である。
<1-5. Supply of Potential to Transparent Electrode of Liquid Crystal Optical Element 10>
FIG. 10 is a schematic plan view showing the configuration of a lighting device 30 according to one embodiment of the invention. FIG. 11 is a schematic diagram for explaining the connection of the transparent electrodes of the liquid crystal optical element 10 according to one embodiment of the invention.
 図10に示すように、照明装置30は、センサ60、制御回路70、第1の光学素子40a、第2の光学素子40b及び第3の光学素子40cの3つの光学素子を備える光源20、及び液晶光学素子10を含む。液晶光学素子10及び光源20は、図1~図9を用いて説明した構成及び機能を有するため、ここでの詳細な説明は省略される。センサ60は制御回路70に電気的に接続される。制御回路70は光源20、及び液晶光学素子10に電気的に接続される。 As shown in FIG. 10, the illumination device 30 includes a sensor 60, a control circuit 70, a light source 20 that includes three optical elements: a first optical element 40a, a second optical element 40b, and a third optical element 40c; A liquid crystal optical element 10 is included. Since the liquid crystal optical element 10 and the light source 20 have the configurations and functions described with reference to FIGS. 1 to 9, detailed description thereof will be omitted here. Sensor 60 is electrically connected to control circuit 70 . A control circuit 70 is electrically connected to the light source 20 and the liquid crystal optical element 10 .
 センサ60は、例えば、赤外線センサである。センサ60は、例えば、センサ付近の人を検知し、検知信号を制御回路70に出力する。 The sensor 60 is, for example, an infrared sensor. The sensor 60 detects, for example, a person near the sensor and outputs a detection signal to the control circuit 70 .
 制御回路70は、液晶光学素子10及び光源20を駆動する回路を含む。例えば、制御回路70は、センサ60から検知信号を受信すると、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、第4の液晶セル110dに対し、フレキシブル配線基板(図示は省略)を介して液晶の配向状態を制御する電位を出力する。また、制御回路70は、センサ60から検知信号を受信すると、光源20に対し、フレキシブル配線基板(図示は省略)を介して光源20が有するLEDのON又はOFFを制御する電位を出力する。 The control circuit 70 includes circuits for driving the liquid crystal optical element 10 and the light source 20 . For example, when the control circuit 70 receives the detection signal from the sensor 60, the flexible wiring substrate ( (not shown) to output a potential for controlling the alignment state of the liquid crystal. When the control circuit 70 receives a detection signal from the sensor 60, the control circuit 70 outputs to the light source 20 via a flexible wiring board (not shown) a potential for controlling ON or OFF of the LED of the light source 20. FIG.
 図11に示すように、第1の液晶セル110aの第1の透明電極181a、第5の透明電極185a、及び第9の透明電極189a、第4の液晶セル110dの第1の透明電極181d、第5の透明電極185d、及び第9の透明電極189dは、第1の電位V1を供給する第1の電位供給線461に接続されている。すなわち、第1の液晶セル110aの第1の透明電極181a、第5の透明電極185a、及び第9の透明電極189a、第4の液晶セル110dの第1の透明電極181d、第5の透明電極185d、及び第9の透明電極189dは、互いに電気的に接続されている。 As shown in FIG. 11, the first transparent electrode 181a, the fifth transparent electrode 185a, and the ninth transparent electrode 189a of the first liquid crystal cell 110a, the first transparent electrode 181d of the fourth liquid crystal cell 110d, The fifth transparent electrode 185d and the ninth transparent electrode 189d are connected to a first potential supply line 461 that supplies a first potential V1. That is, a first transparent electrode 181a, a fifth transparent electrode 185a, and a ninth transparent electrode 189a of the first liquid crystal cell 110a, and a first transparent electrode 181d and a fifth transparent electrode of the fourth liquid crystal cell 110d. 185d and the ninth transparent electrode 189d are electrically connected to each other.
 また、第1の液晶セル110aの第2の透明電極182a、第6の透明電極186a、及び第10の透明電極190a、第4の液晶110dセルの第2の透明電極182d、第6の透明電極186d、及び第10の透明電極190dは、第2の電位V2を供給する第2の電位供給線462に接続されている。すなわち、第1の液晶セル110aの第2の透明電極182a、第6の透明電極186a、及び第10の透明電極190a、第4の液晶セル110dの第2の透明電極182d、第6の透明電極186d、及び第10の透明電極190dは、互いに電気的に接続されている。 Also, the second transparent electrode 182a, the sixth transparent electrode 186a and the tenth transparent electrode 190a of the first liquid crystal cell 110a, the second transparent electrode 182d and the sixth transparent electrode of the fourth liquid crystal cell 110d. 186d and the tenth transparent electrode 190d are connected to a second potential supply line 462 that supplies a second potential V2. That is, the second transparent electrode 182a, the sixth transparent electrode 186a and the tenth transparent electrode 190a of the first liquid crystal cell 110a, the second transparent electrode 182d and the sixth transparent electrode of the fourth liquid crystal cell 110d. 186d and the tenth transparent electrode 190d are electrically connected to each other.
 第1の液晶セル110aの第3の透明電極183a、第7の透明電極187a、及び第11の透明電極191a、第4の液晶セル110dの第3の透明電極183d、第7の透明電極187d、及び第11の透明電極191dは、第3の電位V3を供給する第3の電位供給線463に接続されている。すなわち、第1の液晶セル110aの第3の透明電極183a、第7の透明電極187a、及び第11の透明電極191a、第4の液晶セル110dの第3の透明電極183d、第7の透明電極187d、及び第11の透明電極191dは、互いに電気的に接続されている。 a third transparent electrode 183a, a seventh transparent electrode 187a, and an eleventh transparent electrode 191a of the first liquid crystal cell 110a; a third transparent electrode 183d and a seventh transparent electrode 187d of the fourth liquid crystal cell 110d; and the eleventh transparent electrode 191d are connected to a third potential supply line 463 that supplies a third potential V3. That is, the third transparent electrode 183a, the seventh transparent electrode 187a, and the eleventh transparent electrode 191a of the first liquid crystal cell 110a, the third transparent electrode 183d, and the seventh transparent electrode of the fourth liquid crystal cell 110d. 187d and the eleventh transparent electrode 191d are electrically connected to each other.
 第1の液晶セル110aの第4の透明電極184a、第8の透明電極188a、及び第12の透明電極192a、第4の液晶セル110dの第4の透明電極184d、第8の透明電極188d、及び第12の透明電極192dは、第4の電位V4を供給する第4の電位供給線464に接続されている。すなわち、第1の液晶セル110aの第4の透明電極184a、第8の透明電極188a、及び第12の透明電極192a、第4の液晶セル110dの第4の透明電極184d、第8の透明電極188d、及び第12の透明電極192dは、互いに電気的に接続されている。 a fourth transparent electrode 184a, an eighth transparent electrode 188a and a twelfth transparent electrode 192a of the first liquid crystal cell 110a; a fourth transparent electrode 184d and an eighth transparent electrode 188d of the fourth liquid crystal cell 110d; and the twelfth transparent electrode 192d are connected to a fourth potential supply line 464 that supplies a fourth potential V4. That is, the fourth transparent electrode 184a, the eighth transparent electrode 188a, and the twelfth transparent electrode 192a of the first liquid crystal cell 110a, the fourth transparent electrode 184d, and the eighth transparent electrode of the fourth liquid crystal cell 110d. 188d and the twelfth transparent electrode 192d are electrically connected to each other.
 第2の液晶セル110bの第1の透明電極181b、第5の透明電極185b、及び第9の透明電極189b、第3の液晶セル110cの第1の透明電極181c、第5の透明電極185c、及び第9の透明電極189cは、第5の電位V5を供給する第5の電位供給線481に接続されている。すなわち、第2の液晶セル110bの第1の透明電極181b、第5の透明電極185b、及び第9の透明電極189b、第3の液晶セル110cの第1の透明電極181c、第5の透明電極185c、及び第9の透明電極189cは、互いに電気的に接続されている。 a first transparent electrode 181b, a fifth transparent electrode 185b, and a ninth transparent electrode 189b of the second liquid crystal cell 110b; a first transparent electrode 181c and a fifth transparent electrode 185c of the third liquid crystal cell 110c; and the ninth transparent electrode 189c are connected to a fifth potential supply line 481 that supplies a fifth potential V5. That is, the first transparent electrode 181b, the fifth transparent electrode 185b, and the ninth transparent electrode 189b of the second liquid crystal cell 110b, the first transparent electrode 181c, and the fifth transparent electrode of the third liquid crystal cell 110c. 185c and the ninth transparent electrode 189c are electrically connected to each other.
 第2の液晶セル110bの第2の透明電極182b、第6の透明電極186b、及び第10の透明電極190b、第3の液晶セル110cの第2の透明電極182c、第6の透明電極186c、及び第10の透明電極190cは、第6の電位V6を供給する第6の電位供給線482に接続されている。すなわち、第2の液晶セル110bの第2の透明電極182b、第6の透明電極186b、及び第10の透明電極190b、第3の液晶セル110cの第2の透明電極182c、第6の透明電極186c、及び第10の透明電極190cは、互いに電気的に接続されている。 the second transparent electrode 182b, the sixth transparent electrode 186b and the tenth transparent electrode 190b of the second liquid crystal cell 110b; the second transparent electrode 182c and the sixth transparent electrode 186c of the third liquid crystal cell 110c; and the tenth transparent electrode 190c are connected to a sixth potential supply line 482 that supplies a sixth potential V6. That is, the second transparent electrode 182b, the sixth transparent electrode 186b, and the tenth transparent electrode 190b of the second liquid crystal cell 110b, the second transparent electrode 182c, and the sixth transparent electrode of the third liquid crystal cell 110c. 186c and the tenth transparent electrode 190c are electrically connected to each other.
 第2の液晶セル110bの第3の透明電極183b、第7の透明電極187b、及び第11の透明電極191b、第3の液晶セル110cの第3の透明電極183c、第7の透明電極187c、及び第11の透明電極191cは、第7の電位V7を供給する第7の電位供給線483に接続されている。すなわち、第2の液晶セル110bの第3の透明電極183b、第7の透明電極187b、及び第11の透明電極191b、第3の液晶セル110cの第3の透明電極183c、第7の透明電極187c、及び第11の透明電極191cは、互いに電気的に接続されている。 the third transparent electrode 183b, the seventh transparent electrode 187b and the eleventh transparent electrode 191b of the second liquid crystal cell 110b; the third transparent electrode 183c and the seventh transparent electrode 187c of the third liquid crystal cell 110c; and the eleventh transparent electrode 191c are connected to a seventh potential supply line 483 that supplies a seventh potential V7. That is, the third transparent electrode 183b, the seventh transparent electrode 187b, and the eleventh transparent electrode 191b of the second liquid crystal cell 110b, the third transparent electrode 183c, and the seventh transparent electrode of the third liquid crystal cell 110c. 187c and the eleventh transparent electrode 191c are electrically connected to each other.
 第2の液晶セル110bの第4の透明電極184b、第8の透明電極188b、及び第12の透明電極192b、第3の液晶セル110cの第4の透明電極184c、第8の透明電極188c、及び第12の透明電極192cは、第8の電位V8を供給する第8の電位供給線484に接続されている。すなわち、第2の液晶セル110bの第4の透明電極184b、第8の透明電極188b、及び第12の透明電極192b、第3の液晶セル110cの第4の透明電極184c、第8の透明電極188c、及び第12の透明電極192cは、互いに電気的に接続されている。 the fourth transparent electrode 184b, the eighth transparent electrode 188b, and the twelfth transparent electrode 192b of the second liquid crystal cell 110b; the fourth transparent electrode 184c, the eighth transparent electrode 188c of the third liquid crystal cell 110c; and the twelfth transparent electrode 192c are connected to an eighth potential supply line 484 that supplies an eighth potential V8. That is, the fourth transparent electrode 184b, the eighth transparent electrode 188b, and the twelfth transparent electrode 192b of the second liquid crystal cell 110b, the fourth transparent electrode 184c, and the eighth transparent electrode of the third liquid crystal cell 110c. 188c and the twelfth transparent electrode 192c are electrically connected to each other.
 図11に示す第1の電位V1~第8の電位V8は、固定電位であってもよく、変動電位であってもよい。第1の電位供給線461~第8の電位供給線484には、Low電位およびHigh電位だけでなく、Low電位とHigh電位との間の中間電位も供給される。すなわち、第1の電位V1~第8の電位V8には、絶対値の異なる3つの電位が含まれる。よって、液晶光学素子10は、第1の光学素子40a、第2の光学素子40b及び第3の光学素子40cの3つの光学素子から出射された光を、x軸方向及びy軸方向に透過及び拡散し、本実施形態に係る照明装置30は光の配光及び配光パターンを様々に制御することができる。 The first potential V1 to the eighth potential V8 shown in FIG. 11 may be fixed potentials or variable potentials. The first to eighth potential supply lines 461 to 484 are supplied not only with low and high potentials, but also with intermediate potentials between low and high potentials. That is, the first potential V1 to the eighth potential V8 include three potentials with different absolute values. Therefore, the liquid crystal optical element 10 transmits light emitted from the three optical elements of the first optical element 40a, the second optical element 40b, and the third optical element 40c in the x-axis direction and the y-axis direction. The light is diffused, and the illumination device 30 according to the present embodiment can variously control the light distribution and light distribution pattern.
 以下の説明では、便宜上、各透明電極に供給される電位を、第1の変動電位(例えば、Low電位が0V及びHigh電位が30V)、第1の変動電位と位相が反転している第2の変動電位(例えば、Low電位が0V及びHigh電位が30V)、及び中間電位(例えば、15V)として説明する。中間電位は、Low電位とHigh電位との間の電位であり、固定電位であってよく、変動電位であってもよい。本実施形態に係る各透明電極に供給される電位は一例であって、各透明電極に供給される電位はここで示される電位に限定されるものではない。 In the following description, for convenience, the potential supplied to each transparent electrode is a first variable potential (for example, a low potential of 0 V and a high potential of 30 V), and a second variable potential whose phase is opposite to the first variable potential. (for example, Low potential is 0 V and High potential is 30 V) and intermediate potential (for example, 15 V). The intermediate potential is a potential between the Low potential and the High potential, and may be a fixed potential or a variable potential. The potential supplied to each transparent electrode according to this embodiment is an example, and the potential supplied to each transparent electrode is not limited to the potential shown here.
<1-5-1.3つの光学素子を制御する場合>
 図12は、本発明の一実施形態に係る照明装置30から出射された光において、相対輝度と極角との関係を示すグラフである。図12では、第2の光学素子40aの光軸を極角0°とすると共に、紙面左右方向に各光学素子が並んでいる(以下、図13~17において同様)。また、図12では、制御回路70が、光の出射方向が異なる3つの光学素子(第1の光学素子40a、第2の光学素子40b及び第3の光学素子40c)のそれぞれのLEDを点灯させる電位を第1の光学素子40a、第2の光学素子40b及び第3の光学素子40cに供給し、液晶光学素子10の各液晶セルの各透明電極に中間電位を供給した場合のグラフである。すなわち、制御回路70から液晶光学素子10の各液晶セルの各透明電極に供給される第1の電位V1~第8の電位V8は中間電位である。
<1-5-1. When controlling three optical elements>
FIG. 12 is a graph showing the relationship between relative luminance and polar angle for light emitted from the illumination device 30 according to one embodiment of the present invention. In FIG. 12, the optical axis of the second optical element 40a is set at a polar angle of 0°, and the optical elements are arranged in the left-right direction of the paper surface (the same applies to FIGS. 13 to 17). In FIG. 12, the control circuit 70 turns on the LEDs of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) with different light emitting directions. 4 is a graph in the case where potentials are supplied to the first optical element 40a, the second optical element 40b, and the third optical element 40c, and intermediate potentials are supplied to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10. FIG. That is, the first to eighth potentials V1 to V8 supplied from the control circuit 70 to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are intermediate potentials.
 このとき、第1の液晶セル110aにおいて、第1の透明電極181aと第2の透明電極182aとの電位差、及び、第3の透明電極183aと第4の透明電極184aとの電位差は無い。第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は無いため、第1の光学素子40aから出射される光は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dを透過し、極角40度をピークに持つ光として液晶光学素子10から出射される。 At this time, in the first liquid crystal cell 110a, there is no potential difference between the first transparent electrode 181a and the second transparent electrode 182a, and no potential difference between the third transparent electrode 183a and the fourth transparent electrode 184a. In each of the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a. Light emitted from the optical element 40a passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, and has a peak polar angle of 40 degrees. The light is emitted from the liquid crystal optical element 10 as light.
 同様にして、第1の液晶セル110aにおいて、第5の透明電極185aと第6の透明電極186aとの電位差、及び、第7の透明電極187aと第8の透明電極188aとの電位差は無く、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は無いため、第2の光学素子40bから出射される光は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dを透過し、例えば、極角0度をピークに持つ光として液晶光学素子10から出射される。また、同様にして、第1の液晶セル110aにおいて、第9の透明電極189aと第10の透明電極190a、及び、第11の透明電極191aと第12の透明電極192aとの電位差は無く、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は無いため、第3の光学素子40cから出射される光は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dを透過し、例えば、極角-40度をピークに持つ光として液晶光学素子10から出射される。 Similarly, in the first liquid crystal cell 110a, there is no potential difference between the fifth transparent electrode 185a and the sixth transparent electrode 186a, and no potential difference between the seventh transparent electrode 187a and the eighth transparent electrode 188a. In each of the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a. Light emitted from the optical element 40b passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, and peaks at a polar angle of 0 degrees, for example. is emitted from the liquid crystal optical element 10 as light having a Similarly, in the first liquid crystal cell 110a, there is no potential difference between the ninth transparent electrode 189a and the tenth transparent electrode 190a, and between the eleventh transparent electrode 191a and the twelfth transparent electrode 192a. In each of the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a. Light emitted from the element 40c passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, and peaks at a polar angle of -40 degrees, for example. is emitted from the liquid crystal optical element 10 as light having a
 図13は、本発明の一実施形態に係る照明装置30から出射された光において、相対輝度と極角との関係を示すグラフである。図13では、制御回路70は、光の出射方向が異なる3つの光学素子(第1の光学素子40a、第2の光学素子40b及び第3の光学素子40c)のそれぞれのLEDを点灯し、液晶光学素子10の各液晶セルの各透明電極に第1の変動電位又は第2の変動電位を供給した場合のグラフである。例えば、制御回路70から液晶光学素子10の各液晶セルの各透明電極に供給される第1の電位V1、第3の電位V3、第5の電位V5及び第7の電位V7は第1の変動電位であり、第2の電位V2、第4の電位V4、第6の電位V6及び第8の電位V8は第2の変動電位である。 FIG. 13 is a graph showing the relationship between relative luminance and polar angle for light emitted from the lighting device 30 according to one embodiment of the present invention. In FIG. 13, the control circuit 70 turns on the LEDs of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) that emit light in different directions, and the liquid crystal 4 is a graph when a first variable potential or a second variable potential is supplied to each transparent electrode of each liquid crystal cell of the optical element 10. FIG. For example, the first potential V1, the third potential V3, the fifth potential V5, and the seventh potential V7 supplied from the control circuit 70 to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are the first fluctuations. A second potential V2, a fourth potential V4, a sixth potential V6, and an eighth potential V8 are second variable potentials.
 このとき、第1の液晶セル110aの第1の透明電極181aと第2の透明電極182aとの電位差、第3の透明電極183aと第4の透明電極184aとの電位差、第5の透明電極185aと第6の透明電極186aとの電位差、第7の透明電極187aと第8の透明電極188aとの電位差、第9の透明電極189aと第10の透明電極190a、及び、第11の透明電極191aと第12の透明電極192aとの電位差は30Vであり、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は30Vである。その結果、第1の光学素子40aから出射される光、第2の光学素子40bから出射される光、及び第3の光学素子40cから出射される光は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいて拡散される。よって、第1の光学素子40aから出射される光、第2の光学素子40bから出射される光、及び第3の光学素子40cから出射される光は、少なくとも図12に示された極角60度から極角-60度にわたって拡散された光として液晶光学素子10から出射される。 At this time, the potential difference between the first transparent electrode 181a and the second transparent electrode 182a of the first liquid crystal cell 110a, the potential difference between the third transparent electrode 183a and the fourth transparent electrode 184a, and the potential difference between the fifth transparent electrode 185a and the sixth transparent electrode 186a, the potential difference between the seventh transparent electrode 187a and the eighth transparent electrode 188a, the ninth transparent electrode 189a and the tenth transparent electrode 190a, and the eleventh transparent electrode 191a. and the twelfth transparent electrode 192a is 30 V, and each of the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d has the same voltage as the first liquid crystal cell 110a. The potential difference between the electrodes corresponding to the electrodes is 30V. As a result, the light emitted from the first optical element 40a, the light emitted from the second optical element 40b, and the light emitted from the third optical element 40c are separated from the first liquid crystal cell 110a and the second liquid crystal cell 110a. is diffused in each of the third liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d. Therefore, the light emitted from the first optical element 40a, the light emitted from the second optical element 40b, and the light emitted from the third optical element 40c are at least at the polar angle 60 shown in FIG. The light is emitted from the liquid crystal optical element 10 as light diffused over a polar angle of -60 degrees.
<1-5-2.2つの光学素子を制御する場合>
 図14は、本発明の一実施形態に係る照明装置30から出射された光において、相対輝度と極角との関係を示すグラフである。図14では、制御回路70は、光の出射方向が異なる3つの光学素子(第1の光学素子40a、第2の光学素子40b及び第3の光学素子40c)のうち、右側に配置された第1の光学素子40aのLED、及び左側に配置された第3の光学素子40cのLEDを点灯させる電位を第1の光学素子40a及び第3の光学素子40cに供給し、液晶光学素子10の各液晶セルの各透明電極に中間電位を供給した場合のグラフである。すなわち、制御回路70から液晶光学素子10の各液晶セルの各透明電極に供給される第1の電位V1~第8の電位V8は中間電位である。
<1-5-2. When controlling two optical elements>
FIG. 14 is a graph showing the relationship between relative luminance and polar angle for light emitted from the illumination device 30 according to one embodiment of the present invention. In FIG. 14, the control circuit 70 controls the third optical element arranged on the right side of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) that emit light in different directions. A potential for lighting the LED of one optical element 40a and the LED of the third optical element 40c arranged on the left side is supplied to the first optical element 40a and the third optical element 40c. It is a graph when an intermediate potential is supplied to each transparent electrode of a liquid crystal cell. That is, the first to eighth potentials V1 to V8 supplied from the control circuit 70 to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are intermediate potentials.
 第1の液晶セル110aにおいて、第1の透明電極181aと第2の透明電極182aとの電位差、及び、第3の透明電極183aと第4の透明電極184aとの電位差は無く、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は無いため、第1の光学素子40aから出射される光は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dを透過し、極角40度をピークに持つ光として液晶光学素子10から出射される。 In the first liquid crystal cell 110a, there is no potential difference between the first transparent electrode 181a and the second transparent electrode 182a, and no potential difference between the third transparent electrode 183a and the fourth transparent electrode 184a. In each of the cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a. The emitted light passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, and is regarded as light having a polar angle of 40 degrees as a peak. It is emitted from the element 10 .
 同様にして、第1の液晶セル110aにおいて、第9の透明電極189aと第10の透明電極190a、及び、第11の透明電極191aと第12の透明電極192aとの電位差は無く、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は無いため、第3の光学素子40cから出射される光は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dを透過し、例えば、極角-40度をピークに持つ光として液晶光学素子10から出射される。 Similarly, in the first liquid crystal cell 110a, there is no potential difference between the ninth transparent electrode 189a and the tenth transparent electrode 190a, and between the eleventh transparent electrode 191a and the twelfth transparent electrode 192a. In each of the liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a. The light emitted from is transmitted through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, and has a peak at a polar angle of -40 degrees, for example. The light is emitted from the liquid crystal optical element 10 as light.
 同様にして、第1の液晶セル110aにおいて、第5の透明電極185aと第6の透明電極186aとの電位差、及び、第7の透明電極187aと第8の透明電極188aとの電位差は無く、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は無いが、第2の光学素子40bのLEDは点灯していないため、第2の光学素子40bから光は出射されない。 Similarly, in the first liquid crystal cell 110a, there is no potential difference between the fifth transparent electrode 185a and the sixth transparent electrode 186a, and no potential difference between the seventh transparent electrode 187a and the eighth transparent electrode 188a. In each of the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a, but Since the LED of the optical element 40b is not lit, no light is emitted from the second optical element 40b.
 図15は、本発明の一実施形態に係る照明装置30から出射された光において、相対輝度と極角との関係を示すグラフである。図15では、制御回路70は、光の出射方向が異なる3つの光学素子(第1の光学素子40a、第2の光学素子40b及び第3の光学素子40c)のうち、右側に配置された第1の光学素子40aのLED、及び左側に配置された第3の光学素子40cのLEDを点灯し、液晶光学素子10の各液晶セルの各透明電極に第1の変動電位又は第2の変動電位を供給した場合のグラフである。例えば、制御回路70から液晶光学素子10の各液晶セルの各透明電極に供給される第1の電位V1、第3の電位V3、第5の電位V5及び第7の電位V7は第3の変動電位であり、第2の電位V2、第4の電位V4、第6の電位V6及び第8の電位V8は第4の変動電位である。ここで、第3の変動電位は、第1の変動電位よりLow電位とHigh電位の電位差が小さく、第4の変動電位は、第3の変動電位と位相が反転している。 FIG. 15 is a graph showing the relationship between relative luminance and polar angle for light emitted from the illumination device 30 according to one embodiment of the present invention. In FIG. 15, the control circuit 70 controls the third optical element arranged on the right side of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) that emit light in different directions. The LED of the first optical element 40a and the LED of the third optical element 40c arranged on the left side are turned on, and the first variable potential or the second variable potential is applied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10. is supplied. For example, the first potential V1, the third potential V3, the fifth potential V5, and the seventh potential V7 supplied from the control circuit 70 to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are the third variation. A second potential V2, a fourth potential V4, a sixth potential V6, and an eighth potential V8 are fourth variable potentials. Here, the third variable potential has a smaller potential difference between the Low potential and the High potential than the first variable potential, and the fourth variable potential has a phase opposite to that of the third variable potential.
 第1の液晶セル110aにおいて、第1の透明電極181aと第2の透明電極182aとの電位差、第3の透明電極183aと第4の透明電極184aとの電位差、第5の透明電極185aと第6の透明電極186aとの電位差、第7の透明電極187aと第8の透明電極188aとの電位差、第9の透明電極189aと第10の透明電極190a、及び、第11の透明電極191aと第12の透明電極192aとの電位差は、例えば、10V以上15V以下であり、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は10V以上15V以下であり、第1の光学素子40aから出射される光、及び第3の光学素子40cから出射される光は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいて拡散される。よって、第1の光学素子40aから出射される光、及び第3の光学素子40cから出射される光は、少なくとも図15に示された極角50度付近、及び極角-50度付近に弱いピークをもち、かつ、極角60度から極角-60度にわたって拡散された光として液晶光学素子10から出射される。第3の変動電位及び第4の変動電位の電位差は、第1の変動電位及び第2の変動電位の電位差より小さいため、第3の変動電位及び第4の変動電位が印加された場合の光の拡散度合いは、第1の変動電位及び第2の変動電位が各電極に印加された場合より、少ない。 In the first liquid crystal cell 110a, the potential difference between the first transparent electrode 181a and the second transparent electrode 182a, the potential difference between the third transparent electrode 183a and the fourth transparent electrode 184a, the potential difference between the fifth transparent electrode 185a and the fourth transparent electrode 185a, and the 6 transparent electrode 186a, the potential difference between the seventh transparent electrode 187a and the eighth transparent electrode 188a, the ninth transparent electrode 189a and the tenth transparent electrode 190a, and the eleventh transparent electrode 191a and the eleventh transparent electrode 191a. The potential difference between the 12 transparent electrodes 192a is, for example, 10 V or more and 15 V or less. The potential difference between the electrodes corresponding to the electrodes similar to 110a is 10 V or more and 15 V or less, and the light emitted from the first optical element 40a and the light emitted from the third optical element 40c are the first liquid crystal It diffuses in each of cell 110a, second liquid crystal cell 110b, third liquid crystal cell 110c, and fourth liquid crystal cell 110d. Therefore, the light emitted from the first optical element 40a and the light emitted from the third optical element 40c are weak at least near the polar angle of 50 degrees and near the polar angle of -50 degrees shown in FIG. It is emitted from the liquid crystal optical element 10 as light that has a peak and is diffused from a polar angle of 60 degrees to a polar angle of −60 degrees. Since the potential difference between the third varying potential and the fourth varying potential is smaller than the potential difference between the first varying potential and the second varying potential, the light generated when the third varying potential and the fourth varying potential are applied is less diffused than when the first variable potential and the second variable potential are applied to each electrode.
<1-5-3.1つの光学素子を制御する場合>
 図16は、本発明の一実施形態に係る照明装置30から出射された光において、相対輝度と極角との関係を示すグラフである。図16では、制御回路70は、光の出射方向が異なる3つの光学素子(第1の光学素子40a、第2の光学素子40b及び第3の光学素子40c)のうち、左側に配置された第3の光学素子40cのLEDを点灯させる電位を第3の光学素子40cに供給し、液晶光学素子10の各液晶セルの各透明電極に中間電位を供給した場合のグラフである。すなわち、制御回路70から液晶光学素子10の各液晶セルの各透明電極に供給される第1の電位V1V1~第8の電位V8は中間電位である。
<1-5-3. When controlling one optical element>
FIG. 16 is a graph showing the relationship between relative luminance and polar angle for light emitted from the illumination device 30 according to one embodiment of the present invention. In FIG. 16 , the control circuit 70 controls the left side of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) that emit light in different directions. 3 is a graph when a potential for lighting the LED of the optical element 40c of No. 3 is supplied to the third optical element 40c, and an intermediate potential is supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10. FIG. That is, the first potential V1V1 to the eighth potential V8 supplied from the control circuit 70 to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 are intermediate potentials.
 第1の液晶セル110aにおいて、第9の透明電極189aと第10の透明電極190a、及び、第11の透明電極191aと第12の透明電極192aとの電位差は無く、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は無いため、第3の光学素子40cから出射される光は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dを透過し、例えば、極角-40度をピークに持つ光として液晶光学素子10から出射される。 In the first liquid crystal cell 110a, there is no potential difference between the ninth transparent electrode 189a and the tenth transparent electrode 190a, and between the eleventh transparent electrode 191a and the twelfth transparent electrode 192a. In each of the third liquid crystal cell 110c and the fourth liquid crystal cell 110d, since there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a, light is emitted from the third optical element 40c. Light passes through the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d. It is emitted from the element 10 .
 第1の液晶セル110aにおいて、第1の透明電極181aと第2の透明電極182aとの電位差、第3の透明電極183aと第4の透明電極184aとの電位差、第5の透明電極185aと第6の透明電極186aとの電位差、及び、第7の透明電極187aと第8の透明電極188aとの電位差は無く、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は無いが、第1の光学素子40aのLED、及び第2の光学素子40bのLEDは点灯していないため、第1の光学素子40a及び第2の光学素子40bから光は出射されない。 In the first liquid crystal cell 110a, the potential difference between the first transparent electrode 181a and the second transparent electrode 182a, the potential difference between the third transparent electrode 183a and the fourth transparent electrode 184a, the potential difference between the fifth transparent electrode 185a and the fourth transparent electrode 185a, and the 6 transparent electrode 186a and the potential difference between the seventh transparent electrode 187a and the eighth transparent electrode 188a. 110d, there is no potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a, but the LED of the first optical element 40a and the LED of the second optical element 40b are not lit. Therefore, no light is emitted from the first optical element 40a and the second optical element 40b.
 図17は、本発明の一実施形態に係る照明装置30から出射された光において、相対輝度と極角との関係を示すグラフである。図17では、制御回路70は、制御回路70は、光の出射方向が異なる3つの光学素子(第1の光学素子40a、第2の光学素子40b及び第3の光学素子40c)のうち、左側に配置された第3の光学素子40cのLEDを点灯し、液晶光学素子10の各液晶セルの各透明電極に第1の変動電位又は第2の変動電位を供給した場合のグラフである。例えば、制御回路70から液晶光学素子10の各液晶セルの各透明電極に供給される第1の電位V1、第3の電位V3、第5の電位V5及び第7の電位V7は第5の変動電位であり、第2の電位V2、第4の電位V4、第6の電位V6及び第8の電位V8は第6の変動電位である。ここで、第5の変動電位は、第3の変動電位よりLow電位とHigh電位の電位差が大きい。第6の変動電位は、第5の変動電位と位相が反転している。 FIG. 17 is a graph showing the relationship between relative luminance and polar angle for light emitted from the illumination device 30 according to one embodiment of the present invention. In FIG. 17, the control circuit 70 controls the left side of the three optical elements (the first optical element 40a, the second optical element 40b, and the third optical element 40c) that emit light in different directions. 10 is a graph when the LED of the third optical element 40c arranged in 1 is turned on, and the first variable potential or the second variable potential is supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10. FIG. For example, the first potential V1, the third potential V3, the fifth potential V5, and the seventh potential V7 supplied from the control circuit 70 to the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are the fifth variation. A second potential V2, a fourth potential V4, a sixth potential V6, and an eighth potential V8 are sixth variable potentials. Here, the fifth variable potential has a larger potential difference between the Low potential and the High potential than the third variable potential. The sixth variable potential is opposite in phase to the fifth variable potential.
 第1の液晶セル110aにおいて、第9の透明電極189aと第10の透明電極190a、及び、第11の透明電極191aと第12の透明電極192aとの電位差は30V又はそれよりもやや小さく、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は30V又はそれよりやや小さいものであるため、第3の光学素子40cから出射される光は、第1の液晶セル110a、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいて拡散される。よって、第3の光学素子40cから出射される光は、少なくとも図17に示された極角-40度付近に弱いピークをもち、かつ、極角60度から極角0度にわたって拡散された光として液晶光学素子10から出射される。 In the first liquid crystal cell 110a, the potential difference between the ninth transparent electrode 189a and the tenth transparent electrode 190a and between the eleventh transparent electrode 191a and the twelfth transparent electrode 192a is 30 V or slightly smaller. In each of the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d, the potential difference between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a is 30 V or slightly smaller. Therefore, the light emitted from the third optical element 40c is diffused in each of the first liquid crystal cell 110a, the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the fourth liquid crystal cell 110d. be. Therefore, the light emitted from the third optical element 40c has a weak peak at least near the polar angle of −40 degrees shown in FIG. is emitted from the liquid crystal optical element 10 as.
 第1の液晶セル110aにおいて、第1の透明電極181aと第2の透明電極182aとの電位差、第3の透明電極183aと第4の透明電極184aとの電位差、第5の透明電極185aと第6の透明電極186aとの電位差、及び、第7の透明電極187aと第8の透明電極188aとの電位差は30V又はそれより小さく、第2の液晶セル110b、第3の液晶セル110c、及び第4の液晶セル110dのそれぞれにおいても、第1の液晶セル110aと同様の電極に対応する電極間の電位差は30V又はそれより小さいものであるが、第1の光学素子40aのLED、及び第2の光学素子40bのLEDは点灯していないため、第1の光学素子40a及び第2の光学素子40bから光は出射されない。 In the first liquid crystal cell 110a, the potential difference between the first transparent electrode 181a and the second transparent electrode 182a, the potential difference between the third transparent electrode 183a and the fourth transparent electrode 184a, the potential difference between the fifth transparent electrode 185a and the fourth transparent electrode 185a, and the The potential difference between the No. 6 transparent electrode 186a and the potential difference between the seventh transparent electrode 187a and the eighth transparent electrode 188a is 30 V or less, and the second liquid crystal cell 110b, the third liquid crystal cell 110c, and the third liquid crystal cell 110c. 4 liquid crystal cells 110d also have a potential difference of 30 V or less between the electrodes corresponding to the same electrodes as in the first liquid crystal cell 110a, but the LED of the first optical element 40a and the second Since the LED of the optical element 40b is not lit, no light is emitted from the first optical element 40a and the second optical element 40b.
<1-5-4.光の配光パターンの例>
 図18(A)~図18(H)に示される配光パターンは、本発明の一実施形態に係る照明装置30から出射された光の配光パターンを示す模式図である。例えば、図18(A)~図18(H)に示される配光パターンは、第4の液晶セル110dの出射面(z軸方向において、光源20が設けられる側と反対側の面)に投影される(出射面に現れる)パターンである。
<1-5-4. Example of light distribution pattern>
The light distribution patterns shown in FIGS. 18A to 18H are schematic diagrams showing light distribution patterns of light emitted from the illumination device 30 according to one embodiment of the present invention. For example, the light distribution patterns shown in FIGS. 18A to 18H are projected onto the exit surface of the fourth liquid crystal cell 110d (the surface opposite to the side where the light source 20 is provided in the z-axis direction). is the pattern that is projected (appears on the exit face).
 図18(A)に示される配光パターンは、図12に示す相対輝度と極角の関係に対応する光の配光パターンである。すなわち、3つの光学素子を点灯し、液晶光学素子10の各液晶セルの各透明電極に中間電位を供給した場合に照明装置30から出射された光の配光パターンである。図18(A)に示される配光パターンは、x軸方向に並ぶ右側スポット光80a、センタースポット光80b、及び左側スポット光80cを照射した場合の配光パターンである。 The light distribution pattern shown in FIG. 18(A) is a light distribution pattern of light corresponding to the relationship between the relative luminance and the polar angle shown in FIG. That is, it is a light distribution pattern of light emitted from the illumination device 30 when three optical elements are lit and an intermediate potential is supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 . The light distribution pattern shown in FIG. 18A is a light distribution pattern when the right spot light 80a, the center spot light 80b, and the left spot light 80c arranged in the x-axis direction are irradiated.
 また、図14に示す相対輝度と極角の関係に対応する光の配光パターンのように、3つの光学素子のうち、右側に配置された第1の光学素子40aのLED、及び左側に配置された第3の光学素子40cのLEDを点灯し、液晶光学素子10の各液晶セルの各透明電極に中間電位を供給する。図示は省略するが、この場合、x軸方向に対して右側、及び左側に照明装置30からスポット光が照射される。 Also, like the light distribution pattern of light corresponding to the relationship between the relative luminance and the polar angle shown in FIG. Then, the LED of the third optical element 40 c is turned on, and an intermediate potential is supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 . Although illustration is omitted, in this case, spot lights are emitted from the illumination device 30 to the right and left sides with respect to the x-axis direction.
 また、図16に示す相対輝度と極角の関係に対応する光の配光パターンのように、3つの光学素子のうち、左側に配置された第3の光学素子40cのLEDを点灯し、液晶光学素子10の各液晶セルの各透明電極に中間電位を供給する。図示は省略するが、この場合、x軸方向に対して左側に照明装置30からスポット光が照射される。 Further, like the light distribution pattern corresponding to the relationship between the relative luminance and the polar angle shown in FIG. An intermediate potential is supplied to each transparent electrode of each liquid crystal cell of the optical element 10 . Although illustration is omitted, in this case, a spot light is emitted from the illumination device 30 to the left with respect to the x-axis direction.
 また、図18(B)に示される配光パターンも形成可能である。すなわち、3つの光学素子を点灯し、液晶光学素子10の各液晶セルの各透明電極に選択的に第1の変動電位又は第2の変動電位を供給した場合に照明装置30から出射される光の配光パターンである。より具体的には、各液晶セルにつき、x軸方向に並んでy軸方向に延在する電極に対し、第1の変動電位と第2の変動電位を交互に供給する。これにより、各光学素子からの入射光はx軸方向に拡散する。図18(B)に示される配光パターンは、x軸方向に対して拡散された光(拡散光81)が出射されている状態を示している。 Also, the light distribution pattern shown in FIG. 18(B) can be formed. That is, the light emitted from the lighting device 30 when the three optical elements are lit and the first variable potential or the second variable potential is selectively supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10. is a light distribution pattern. More specifically, for each liquid crystal cell, the first variable potential and the second variable potential are alternately supplied to the electrodes arranged in the x-axis direction and extending in the y-axis direction. As a result, incident light from each optical element is diffused in the x-axis direction. The light distribution pattern shown in FIG. 18B shows a state in which light diffused in the x-axis direction (diffused light 81) is emitted.
 また、制御回路70を用いて、3つの光学素子を点灯させ、液晶光学素子10の各液晶セルの各透明電極に供給する電位を調整することで、照明装置30は、図18(C)に示すように、右側、センター、及び左側の光をy軸方向に対して拡散された光(拡散光82a、82b、82c)として照射することができる。より具体的には、各液晶セルにつき、y軸方向に並んでx軸方向に延在する電極に対し、第1の変動電位と第2の変動電位を交互に供給する。これにより、各光学素子からの入射光はy軸方向に拡散する。図18(C)に示される配光パターンは、拡散光82a、82b、82cが出射されている状態を示している。 Further, by using the control circuit 70 to turn on the three optical elements and adjust the potential supplied to each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10, the illumination device 30 can be changed to that shown in FIG. 18(C). As shown, right, center, and left light can be emitted as diffused light (diffused light 82a, 82b, 82c) with respect to the y-axis direction. More specifically, for each liquid crystal cell, the first variable potential and the second variable potential are alternately supplied to the electrodes arranged in the y-axis direction and extending in the x-axis direction. As a result, incident light from each optical element is diffused in the y-axis direction. The light distribution pattern shown in FIG. 18C shows a state in which diffused lights 82a, 82b, and 82c are emitted.
 また、制御回路70を用いることで、照明装置30は、図18(D)に示すように、右側、センター、及び左側の光をx軸方向及びy軸方向に対して拡散させた楕円形の光(拡散光83)として照射することができる。図18(D)に示される配光パターンは、拡散光83が出射されている状態を示している。 Further, by using the control circuit 70, the illumination device 30 can be configured to have an elliptical shape in which the right, center, and left lights are diffused in the x-axis direction and the y-axis direction, as shown in FIG. 18(D). It can be irradiated as light (diffused light 83). The light distribution pattern shown in FIG. 18D shows a state in which diffused light 83 is emitted.
 さらに、制御回路70を用いることで、照明装置30は、図18(E)に示すように、右側、センター、及び左側のそれぞれの光をx軸方向及びy軸方向に対して十字状に拡散させ、合成した光84として照射することができる。より具体的には、3つの光学素子をすべて点灯させ、且つ、第1の液晶セル110aの第1の基板111a側に設けられた複数の電極と第4の液晶セル110dの第2の基板121d側に設けられた複数の電極に電位を供給する第1の電位V1と第2の電位V2をそれぞれ第1の変動電位と第2の変動電位とし、第2の液晶セル110bの第2の基板121b側に設けられた複数の電極と第3の液晶セル110cの第1の基板111c側に設けられた複数の電極に電位を供給する第7の電位V7と第8の電位V8をそれぞれ第1の変動電位と第2の変動電位とする。これにより、各光学素子からの入射光はx軸方向とy軸方向の十字状に拡散する。図18(E)に示される配光パターンは、光84が出射されている状態を示している。 Furthermore, by using the control circuit 70, the illumination device 30 diffuses the right, center, and left lights in a cross shape with respect to the x-axis direction and the y-axis direction, as shown in FIG. 18(E). , and can be irradiated as combined light 84 . More specifically, all three optical elements are turned on, and a plurality of electrodes provided on the first substrate 111a side of the first liquid crystal cell 110a and the second substrate 121d of the fourth liquid crystal cell 110d are illuminated. A first potential V1 and a second potential V2 for supplying potentials to a plurality of electrodes provided on the side are set as a first variable potential and a second variable potential, respectively, and a second substrate of the second liquid crystal cell 110b is provided. A seventh potential V7 and an eighth potential V8 for supplying potentials to the plurality of electrodes provided on the 121b side and the plurality of electrodes provided on the first substrate 111c side of the third liquid crystal cell 110c are applied to the first potential V7 and the eighth potential V8, respectively. and a second variable potential. As a result, incident light from each optical element is diffused in a cross shape in the x-axis direction and the y-axis direction. The light distribution pattern shown in FIG. 18(E) shows a state in which light 84 is emitted.
 また、図18(F)に示される配光パターンも形成可能である。すなわち、すなわち、3つの光学素子のうち、右側に配置された第1の光学素子40aのLED、及び左側に配置された第3の光学素子40cのLEDを点灯し、液晶光学素子10の各液晶セルの各透明電極に第1の変動電位又は第2の変動電位を供給した場合に照明装置30から出射された光85の配光パターンである。より具体的には、第1の液晶セル110aの第1の基板111a側に設けられた複数の電極と第4の液晶セル110dの第2の基板121d側に設けられた複数の電極に電位を供給する第1の電位V1と第2の電位V2をそれぞれ第1の変動電位と第2の変動電位とし、第2の液晶セル110bの第2の基板121b側に設けられた複数の電極と第3の液晶セル110cの第1の基板111c側に設けられた複数の電極に電位を供給する第7の電位V7と第8の電位V8をそれぞれ第1の変動電位と第2の変動電位とする。これにより、各光学素子からの入射光はx軸方向とy軸方向の十字状に拡散する。図18(F)に示される配光パターンは、光85が出射されている状態を示している。図18(F)に示すように、照明装置30は、右側、及び左側のそれぞれの光をx軸方向及びy軸方向に対して拡散させると共に、これら右側、左側でx軸方向に拡散した光を各液晶セルの中央の電極群により再度拡散することができる。ただし、直接光でなくx軸方向に拡散してきた光を再度拡散させるものとなるので、例えば、領域85a及び85bに示される配光パターンのようにその十字状の拡散性は強く現れることなく、領域85cに示されるように中央付近で拡散作用は視認できなくなる。 Also, the light distribution pattern shown in FIG. 18(F) can be formed. That is, among the three optical elements, the LED of the first optical element 40a arranged on the right side and the LED of the third optical element 40c arranged on the left side are turned on, and each liquid crystal of the liquid crystal optical element 10 is turned on. It is a light distribution pattern of light 85 emitted from the illumination device 30 when a first variable potential or a second variable potential is supplied to each transparent electrode of a cell. More specifically, a potential is applied to a plurality of electrodes provided on the first substrate 111a side of the first liquid crystal cell 110a and a plurality of electrodes provided on the second substrate 121d side of the fourth liquid crystal cell 110d. A first potential V1 and a second potential V2 to be supplied are set to be a first variable potential and a second variable potential, respectively, and a plurality of electrodes provided on the second substrate 121b side of the second liquid crystal cell 110b and a second potential V2 are provided. A seventh potential V7 and an eighth potential V8 for supplying potentials to a plurality of electrodes provided on the first substrate 111c side of the liquid crystal cell 110c of No. 3 are set as the first variable potential and the second variable potential, respectively. . As a result, incident light from each optical element is diffused in a cross shape in the x-axis direction and the y-axis direction. The light distribution pattern shown in FIG. 18F shows a state in which light 85 is emitted. As shown in FIG. 18F, the illumination device 30 diffuses the light on the right and left sides in the x-axis direction and the y-axis direction, respectively, and diffuses the light on the right and left sides in the x-axis direction. can be diffused again by the central group of electrodes of each liquid crystal cell. However, since the light that has diffused in the x-axis direction is diffused again instead of the direct light, the cross-shaped diffusibility does not strongly appear as in the light distribution patterns shown in the regions 85a and 85b, for example. Near the center, as shown in region 85c, no diffusion effect is visible.
 また、図18(G)に示される配光パターンも形成可能である。すなわち、3つの光学素子のうち、左側に配置された第3の光学素子40cのLEDを点灯し、液晶光学素子10の各液晶セルの各透明電極に選択的に第1の変動電位又は第2の変動電位を供給した場合に照明装置30から出射される光の配光パターンである。より具体的には、各液晶セルにつき、y軸方向に並んでx軸方向に延在する電極に対し、第1の変動電位と第2の変動電位を交互に供給する。これにより、各光学素子からの入射光はy軸方向に拡散する。図18(G)に示される配光パターンは、光86が出射されている状態を示している。図18(G)に示すように、照明装置30は、左側の光をy軸方向に拡散させた光を照射することができる。 Also, the light distribution pattern shown in FIG. 18(G) can be formed. That is, among the three optical elements, the LED of the third optical element 40c arranged on the left side is turned on, and each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 is selectively applied with the first variable potential or the second potential. 2 is a light distribution pattern of light emitted from the illumination device 30 when a varying potential of is supplied. More specifically, for each liquid crystal cell, the first variable potential and the second variable potential are alternately supplied to the electrodes arranged in the y-axis direction and extending in the x-axis direction. As a result, incident light from each optical element is diffused in the y-axis direction. The light distribution pattern shown in FIG. 18G shows a state in which light 86 is emitted. As shown in FIG. 18G, the illumination device 30 can emit light obtained by diffusing the light on the left side in the y-axis direction.
 図18(H)に示される配光パターンも形成可能である。すなわち3つの光学素子のうち、左側に配置された第3の光学素子40cのLEDを点灯し、液晶光学素子10の各液晶セルの各透明電極に選択的に第1の変動電位又は第2の変動電位を供給した場合に照明装置30から出射された光87の配光パターンである。より具体的には、第1の液晶セル110aの第1の基板111a側に設けられた複数の電極と第4の液晶セル110dの第2の基板121d側に設けられた複数の電極に電位を供給する第1の電位V1と第2の電位V2をそれぞれ第1の変動電位と第2の変動電位とし、第2の液晶セル110bの第2の基板121b側に設けられた複数の電極と第3の液晶セル110cの第1の基板111c側に設けられた複数の電極に電位を供給する第7の電位V7と第8の電位V8をそれぞれ第1の変動電位と第2の変動電位とする。これにより、各光学素子からの入射光はx軸方向とy軸方向の十字状に拡散する。図18(H)に示される配光パターンは、光87が出射されている状態を示す。図18(H)に示すように、照明装置30は、左側の光を十字状に拡散させると共に、各液晶セルの中央部の電極群及び右側の電極群によって当該x軸方向に拡散する光をより右側に且つ十字状に拡散させる。ただし、直接光でなく中央方向に拡散してきた光を再度拡散させるものとなるので、その十字状の拡散性は強く現れることなく、例えば、領域87aに示すように、中央を超えたあたりで拡散作用は視認できなくなる。 The light distribution pattern shown in FIG. 18(H) can also be formed. That is, among the three optical elements, the LED of the third optical element 40c arranged on the left side is turned on, and the transparent electrodes of the liquid crystal cells of the liquid crystal optical element 10 are selectively supplied with the first variable potential or the second potential. It is a light distribution pattern of light 87 emitted from the illumination device 30 when a variable potential is supplied. More specifically, a potential is applied to a plurality of electrodes provided on the first substrate 111a side of the first liquid crystal cell 110a and a plurality of electrodes provided on the second substrate 121d side of the fourth liquid crystal cell 110d. A first potential V1 and a second potential V2 to be supplied are set to be a first variable potential and a second variable potential, respectively, and a plurality of electrodes provided on the second substrate 121b side of the second liquid crystal cell 110b and a second potential V2 are provided. A seventh potential V7 and an eighth potential V8 for supplying potentials to a plurality of electrodes provided on the first substrate 111c side of the liquid crystal cell 110c of No. 3 are set as the first variable potential and the second variable potential, respectively. . As a result, incident light from each optical element is diffused in a cross shape in the x-axis direction and the y-axis direction. The light distribution pattern shown in FIG. 18(H) shows a state in which light 87 is emitted. As shown in FIG. 18H, the illumination device 30 diffuses light on the left side in a cross shape and diffuses the light in the x-axis direction by the electrode group on the center portion and the electrode group on the right side of each liquid crystal cell. Diffuse more to the right and in a cross shape. However, since the light that has diffused in the central direction is diffused again instead of the direct light, the cross-shaped diffusibility does not appear strongly, for example, as shown in the region 87a, the light diffuses beyond the center. The effect is no longer visible.
 本実施形態に係る液晶光学素子10は、光の出射方向が互いに異なる第1の光学素子40a、第2の光学素子40b及び第3の光学素子40cの3つの光学素子から出射された光を、x軸方向及びy軸方向に透過及び拡散することができる。その結果、本実施形態に係る照明装置30は光の配光及び配光パターンを様々に制御することができる。 In the liquid crystal optical element 10 according to the present embodiment, the light emitted from three optical elements, that is, the first optical element 40a, the second optical element 40b, and the third optical element 40c, which emit light in different directions, It can transmit and diffuse in the x-axis and y-axis directions. As a result, the illumination device 30 according to the present embodiment can variously control the light distribution and the light distribution pattern.
<1-6.照明装置の第1の変形例>
 図19は、本発明の一実施形態に係る照明装置30bの端部断面図である。図19に示す照明装置30bは、図1に示す照明装置30と比較して、光学素子20bが支持部材50bを有する点が異なる。支持部材50bの形状は、断面視において、凹状の形状である。各光学素子が図19に示すように配置されると、第1の光学素子40aはz軸方向に対して左斜め方向に光180aを出射し、第2の光学素子40bはz軸方向に対して平行又は略平行に光180bを出射し、第3の光学素子40cはz軸方向に対して右斜め方向に光180cを出射する。照明装置30bは、照明装置30と比較して、それ以外の点は同じであるから、ここでの詳細な説明省略される。
<1-6. First modification of lighting device>
FIG. 19 is a cross-sectional end view of a lighting device 30b in accordance with one embodiment of the present invention. A lighting device 30b shown in FIG. 19 differs from the lighting device 30 shown in FIG. 1 in that the optical element 20b has a support member 50b. The shape of the support member 50b is a concave shape in a cross-sectional view. When the optical elements are arranged as shown in FIG. 19, the first optical element 40a emits light 180a obliquely to the left with respect to the z-axis direction, and the second optical element 40b emits light 180a with respect to the z-axis direction. , and the third optical element 40c emits the light 180c obliquely to the right with respect to the z-axis direction. Since the illumination device 30b is the same as the illumination device 30 in other respects, detailed description thereof will be omitted here.
<1-7.照明装置の第2の変形例>
 図20は、本発明の一実施形態に係る光学素子40の端部断面図である。図20に示す光学素子40は、図2に示す光学素子40と比較して、凸レンズ230を有する点において異なる。凸レンズ230は、発光素子210から出射された光を集光し、集光した光を液晶光学素子10に入射させることができる。反射器220は、発光素子210から出射された光を反射し、反射した光を凸レンズ230に入射させることができる。図20に示す光学素子40は、図2に示す光学素子40と比較して、それ以外の点は同じであるから、ここでの詳細な説明省略される。
<1-7. Second Modification of Lighting Device>
FIG. 20 is an end cross-sectional view of an optical element 40 according to one embodiment of the invention. The optical element 40 shown in FIG. 20 differs from the optical element 40 shown in FIG. 2 in that it has a convex lens 230 . The convex lens 230 can collect the light emitted from the light emitting element 210 and make the collected light enter the liquid crystal optical element 10 . The reflector 220 may reflect light emitted from the light emitting device 210 and allow the reflected light to enter the convex lens 230 . Since the optical element 40 shown in FIG. 20 is the same as the optical element 40 shown in FIG. 2 in other respects, detailed description thereof will be omitted here.
 図1~図20を用いて、本発明の一実施形態に係る照明装置30を説明した。図1~図20に示す照明装置30の形態は一例であって、本発明の一実施形態に係る照明装置30の形態は、図1~図20に示す形態に限定されない。 The illumination device 30 according to one embodiment of the present invention has been described using FIGS. 1 to 20. FIG. The form of the lighting device 30 shown in FIGS. 1 to 20 is an example, and the form of the lighting device 30 according to the embodiment of the present invention is not limited to the forms shown in FIGS. 1 to 20. FIG.
 本発明の一実施形態に係る照明装置30を用いることで、異なる方向に光を照射する光学素子のONとOFF、及び、液晶光学素子の各透明電極に供給する電位を制御することができる。その結果、光を照射する対象に対して、異なる方向の光の透過及び拡散を細かく制御することができる。 By using the illumination device 30 according to one embodiment of the present invention, it is possible to control ON and OFF of the optical elements that emit light in different directions, and to control the potential supplied to each transparent electrode of the liquid crystal optical element. As a result, the transmission and diffusion of light in different directions can be finely controlled with respect to the object to be illuminated.
<第2実施形態>
 第2実施形態では、光源20cが、第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fから構成され、それぞれの光学素子は断面視において向きの異なる反射器220を有する形態について説明する。図21は本発明の第2実施形態に係る照明装置30cの端部断面図である。図22は本発明の第2実施形態に係る光源20cの平面図である。図21及び図22に示す照明装置30cの形態は一例であって、第2実施形態に係る照明装置30cの形態は、図21及び図22に示す形態に限定されない。第2実施形態の説明では、第1実施形態と同様の説明を省略する場合がある。
<Second embodiment>
In the second embodiment, the light source 20c is composed of a fourth optical element 40d, a fifth optical element 40e, and a sixth optical element 40f. The form having is explained. FIG. 21 is an end cross-sectional view of a lighting device 30c according to a second embodiment of the present invention. FIG. 22 is a plan view of the light source 20c according to the second embodiment of the invention. The form of the lighting device 30c shown in FIGS. 21 and 22 is an example, and the form of the lighting device 30c according to the second embodiment is not limited to the form shown in FIGS. In the explanation of the second embodiment, explanations similar to those of the first embodiment may be omitted.
 図21に示す照明装置30cは、図1に示す照明装置30と比較して、光源20cが支持部材50cを有する点において異なり、光源20cが、第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fから構成され、それぞれの光学素子は断面視において向きの異なる反射器220を有する点において異なる。照明装置30cは、照明装置30と比較して、それ以外の点は同じであるから、ここでの詳細な説明は省略される。 The illumination device 30c shown in FIG. 21 differs from the illumination device 30 shown in FIG. 1 in that the light source 20c has a support member 50c. , and a sixth optical element 40f, which differ in that each optical element has a reflector 220 oriented in a different direction in a cross-sectional view. Since the illumination device 30c is the same as the illumination device 30 in other respects, detailed description thereof is omitted here.
 図21に示すように、照明装置30cは、液晶光学素子10、及び光源20cを有する。光源20cは、光学素子40、及び支持部材50cを有する。支持部材50cは、光学素子40を支持(固定)する役割を有する。支持部材50aは断面視において平坦な面を有する。支持部材50cは、支持部材50aと同様の材料を用いることができる。 As shown in FIG. 21, the illumination device 30c has a liquid crystal optical element 10 and a light source 20c. The light source 20c has an optical element 40 and a support member 50c. The support member 50 c has a role of supporting (fixing) the optical element 40 . The support member 50a has a flat surface in a cross-sectional view. The support member 50c can use the same material as the support member 50a.
 光学素子40は、第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fから構成される。第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fは、平面視においてx軸方向又はy軸方向に平行又は略平行に配置される。本実施形態では、第4の光学素子40dは第5の光学素子40eの隣に配置され、第5の光学素子40eは第6の光学素子40fの隣に配置される。 The optical element 40 is composed of a fourth optical element 40d, a fifth optical element 40e, and a sixth optical element 40f. The fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f are arranged parallel or substantially parallel to the x-axis direction or the y-axis direction in plan view. In this embodiment, the fourth optical element 40d is arranged next to the fifth optical element 40e, and the fifth optical element 40e is arranged next to the sixth optical element 40f.
 第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fは、支持部材50cの液晶光学素子10に面した平坦な面に実装される。第4の光学素子40dは、第1の反射器220a及び第1の発光素子210aを有する。第5の光学素子40eは、第2の反射器220b及び第2の発光素子210bを有する。第6の光学素子40fは、第3の反射器220c及び第3の発光素子210cを有する。 The fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f are mounted on the flat surface facing the liquid crystal optical element 10 of the support member 50c. The fourth optical element 40d has a first reflector 220a and a first light emitting element 210a. The fifth optical element 40e has a second reflector 220b and a second light emitting element 210b. The sixth optical element 40f has a third reflector 220c and a third light emitting element 210c.
 第1の反射器220a、第2の反射器220b、及び第3の反射器220cは、反射した光を互いに異なる方向に出射するように、互いに異なる方向に向けて配置される。各例えば、各光学素子が図21に示すように配置されると、第1の反射器220aを有する第4の光学素子40dはz軸方向に対して右斜め方向に光180dを出射し、第2の反射器220bを有する第5の光学素子40eはz軸方向に対して平行又は略平行に光180eを出射し、第3の反射器220cを有する第6の光学素子40fはz軸方向に対して左斜め方向に光180fを出射する。 The first reflector 220a, the second reflector 220b, and the third reflector 220c are arranged in different directions so as to emit reflected light in different directions. For example, when each optical element is arranged as shown in FIG. 21, a fourth optical element 40d having a first reflector 220a emits light 180d obliquely to the right with respect to the z-axis direction. A fifth optical element 40e having two reflectors 220b emits light 180e parallel or substantially parallel to the z-axis direction, and a sixth optical element 40f having a third reflector 220c emits light 180e in the z-axis direction. On the other hand, the light 180f is emitted obliquely to the left.
 第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fと各電極群との位置関係は、第1の光学素子40a、第2の光学素子40b及び第3の光学素子40cと各電極群の位置関係と同様である。例えば、第1の電極群117-1及び第4の電極群117-2は第4の光学素子40d及び第4の光学素子40dの光の出射面に対向するように設けられ、第2の電極群117-3及び第5の電極群117-4は第5の光学素子40e及び第5の光学素子40eの光の出射面に対向するように設けられ、第3の電極群117-5及び第6の電極群117-6は第6の光学素子40f及び第6の光学素子40fの光の出射面に対向するように設けられる。 The positional relationship between the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f and each electrode group is the same as that of the first optical element 40a, the second optical element 40b, and the third optical element. This is the same as the positional relationship between 40c and each electrode group. For example, the first electrode group 117-1 and the fourth electrode group 117-2 are provided so as to face the light exit surfaces of the fourth optical element 40d and the fourth optical element 40d, and the second electrode group 117-1 and the fourth electrode group 117-2 The group 117-3 and the fifth electrode group 117-4 are provided so as to face the light exit surfaces of the fifth optical element 40e and the fifth optical element 40e. Six electrode groups 117-6 are provided so as to face the sixth optical element 40f and the light exit surface of the sixth optical element 40f.
 本実施形態では、互いに異なる方向に向けて配置される反射器を有する光学素子40と液晶光学素子10とが図21に示すように配置される。換言すると、第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fのそれぞれが反射器を有し、第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fの光の出射方向が異なる3つの光学素子に対して1つの液晶光学素子10が図21に示すように配置される。その結果、3つの光学素子が、左側用光源、センター用の光源及び右側用光源として使用され、液晶光学素子10が各光学素子から出射された方向の異なる光を透過させるか又は透過させつつ拡散させることできる。 In this embodiment, the optical element 40 and the liquid crystal optical element 10 having reflectors facing in different directions are arranged as shown in FIG. In other words, each of the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f has a reflector, and the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f each have a reflector. One liquid crystal optical element 10 is arranged as shown in FIG. 21 for the three optical elements of the optical element 40f having different light emitting directions. As a result, three optical elements are used as a left light source, a center light source, and a right light source, and the liquid crystal optical element 10 transmits or diffuses the light emitted from each optical element in different directions. can be made
 第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fのそれぞれは、支持部材50c上に、ランダムに複数個設けられてもよい。例えば、図22に示す例では、支持部材50c上に、第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fのそれぞれが、ランダムに3個設けられている。 A plurality of each of the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f may be randomly provided on the support member 50c. For example, in the example shown in FIG. 22, three each of the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f are randomly provided on the support member 50c.
 光の出射方向の異なる光学素子を複数個備えた光源20cを用いることによって、例えば、直進性の高い光と、斜め方向に強い光とを、使い分けて出射することが可能となる。例えば、車、飛行機、電車などの移動手段において、照明装置30cを配置することによって、隣接する3つの座席に対して、中央の座席には直進性の高い光を照射するとともに、中央の右側に隣接する座席には斜め方向に強い光を照射することができる。すなわち、照明装置30は、方向の異なる光を同時に複数の異なる対称物に照射することができる。 By using the light source 20c having a plurality of optical elements with different light emitting directions, for example, it is possible to selectively emit light with high rectilinearity and strong light in oblique directions. For example, in a transportation means such as a car, an airplane, or a train, by arranging the lighting device 30c, the center seat is irradiated with light with high straightness among the three adjacent seats, and the light on the right side of the center is illuminated. Adjacent seats can be obliquely illuminated with strong light. That is, the illumination device 30 can simultaneously irradiate a plurality of different objects with light beams directed in different directions.
 なお、光源20cは、様々な構成を用いることができる。例えば、光源20cは、導光板を重ねた構成を有する光源であってよく、1つの基板上に赤色を発するLEDと緑色を発するLEDと青色を発するLEDとを設けたLEDであってよく、レンズアレイを構成する直下型MiniLEDであってよく、有機発光素子(OLED)であってもよい。また、各光学素子と液晶光学素子10との間に図20に示された凸レンズ230を設けてもよい。 Various configurations can be used for the light source 20c. For example, the light source 20c may be a light source having a structure in which light guide plates are stacked, or may be an LED in which an LED emitting red, an LED emitting green, and an LED emitting blue are provided on one substrate. It may be a direct-type MiniLED forming an array, or it may be an organic light-emitting device (OLED). Also, a convex lens 230 shown in FIG. 20 may be provided between each optical element and the liquid crystal optical element 10 .
<第3実施形態>
 第3実施形態では、第2実施形態で示した光源20cに含まれる第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fのそれぞれの光学素子に対して、液晶光学素子が1つ設けられる形態について説明する。図23は本発明の第3実施形態に係る照明装置30dの端部断面図である。図23に示す照明装置30dの形態は一例であって、第3実施形態に係る照明装置30dの形態は、図23に示す形態に限定されない。第3実施形態の説明では、第1実施形態及び第2実施形態と同様の説明を省略する場合がある。
<Third Embodiment>
In the third embodiment, the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f included in the light source 20c shown in the second embodiment are provided with liquid crystal optics. A mode in which one element is provided will be described. FIG. 23 is an end cross-sectional view of a lighting device 30d according to a third embodiment of the present invention. The form of the lighting device 30d shown in FIG. 23 is an example, and the form of the lighting device 30d according to the third embodiment is not limited to the form shown in FIG. In the explanation of the third embodiment, explanations similar to those of the first and second embodiments may be omitted.
 図23に示す照明装置30dは、図21に示す照明装置30cと比較して、第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fのそれぞれの光学素子に対して、液晶光学素子が1つ設けられる点において異なる。照明装置30dは、照明装置30cと比較して、それ以外の点は同じであるから、ここでの詳細な説明は省略される。 Compared with the lighting device 30c shown in FIG. 21, the lighting device 30d shown in FIG. 23 has a , in that one liquid crystal optical element is provided. Since the illumination device 30d is the same as the illumination device 30c in other respects, detailed description thereof is omitted here.
 図23に示す照明装置30dは、液晶光学素子10a、液晶光学素子10b、液晶光学素子10c、及び光源20cを有する。光源20cの構成は、第2実施形態で示した光源20cと同様の構成であり、光源20cは、第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fを有する。 A lighting device 30d shown in FIG. 23 has a liquid crystal optical element 10a, a liquid crystal optical element 10b, a liquid crystal optical element 10c, and a light source 20c. The configuration of the light source 20c is similar to that of the light source 20c shown in the second embodiment, and the light source 20c has a fourth optical element 40d, a fifth optical element 40e, and a sixth optical element 40f.
 第4の光学素子40dは液晶光学素子10aに対向し、第4の光学素子40dからz軸方向に対して右斜め方向に出射された光180dは、液晶光学素子10aに入射する。第5の光学素子40eは液晶光学素子10bに対向し、第5の光学素子40eからz軸方向に対して平行又は略平行に出射された光180eは、液晶光学素子10bに入射する。第6の光学素子40fは液晶光学素子10cに対向し、第6の光学素子40fからz軸方向に対して左斜め方向に出射された光180fは、液晶光学素子10cに入射する。 The fourth optical element 40d faces the liquid crystal optical element 10a, and light 180d emitted from the fourth optical element 40d in a right oblique direction with respect to the z-axis direction enters the liquid crystal optical element 10a. The fifth optical element 40e faces the liquid crystal optical element 10b, and light 180e emitted from the fifth optical element 40e parallel or substantially parallel to the z-axis direction enters the liquid crystal optical element 10b. The sixth optical element 40f faces the liquid crystal optical element 10c, and light 180f emitted from the sixth optical element 40f in a left oblique direction with respect to the z-axis direction enters the liquid crystal optical element 10c.
 第4の光学素子40d、第5の光学素子40e、及び第6の光学素子40fと各電極群との位置関係は、第1の光学素子40a、第2の光学素子40b及び第3の光学素子40cと各電極群の位置関係と同様である。例えば、液晶光学素子10aに含まれる各電極群は第4の光学素子40d及び第4の光学素子40dの光の出射面に対向するように設けられ、液晶光学素子10bに含まれる各電極群は第5の光学素子40e及び第5の光学素子40eの光の出射面に対向するように設けられ、液晶光学素子10cに含まれる各電極群は第6の光学素子40f及び第6の光学素子40fの光の出射面に対向するように設けられる。 The positional relationship between the fourth optical element 40d, the fifth optical element 40e, and the sixth optical element 40f and each electrode group is the same as that of the first optical element 40a, the second optical element 40b, and the third optical element. This is the same as the positional relationship between 40c and each electrode group. For example, each electrode group included in the liquid crystal optical element 10a is provided so as to face the light emitting surface of the fourth optical element 40d and the fourth optical element 40d, and each electrode group included in the liquid crystal optical element 10b Each electrode group included in the liquid crystal optical element 10c is provided so as to face the light exit surfaces of the fifth optical element 40e and the fifth optical element 40e. is provided so as to face the light exit surface of the .
 図23に示す照明装置30dを用いることで、光を照射する対象に対して、異なる方向の光の透過及び拡散をさらに細かく制御することができる。 By using the illumination device 30d shown in FIG. 23, it is possible to more finely control the transmission and diffusion of light in different directions with respect to the object to be irradiated with light.
<第4実施形態>
 第4実施形態では、図6及び図7で示した透明電極の配置に対して、各透明電極を独立に制御可能な形態について説明する。図24は、本発明の第4実施形態に係る液晶光学素子10において、第1の基板111上の第1の透明電極181、第2の透明電極182、第5の透明電極185、第6の透明電極186、第9の透明電極189、及び第10の透明電極190の配置を示す模式的な平面図である。図25は、本発明の第4実施形態に係る液晶光学素子10において、第2の基板121上の第3の透明電極183、第4の透明電極184、第7の透明電極187、第8の透明電極188、第11の透明電極191、及び第12の透明電極192の配置を示す模式的な平面図である。図26は本発明の第4実施形態に係る液晶光学素子10の透明電極の接続を説明するための模式的な平面図である。図24~図26に示す液晶光学素子10の形態は一例であって、第4実施形態に係る液晶光学素子10の形態は一例であって、第4実施形態に係る液晶光学素子10の形態は図24~図26に示す形態に限定されない。第4実施形態の説明では、第1実施形態~第3実施形態と同様の説明を省略する場合がある。
<Fourth Embodiment>
In the fourth embodiment, a form in which each transparent electrode can be independently controlled with respect to the arrangement of the transparent electrodes shown in FIGS. 6 and 7 will be described. FIG. 24 shows a first transparent electrode 181, a second transparent electrode 182, a fifth transparent electrode 185 and a sixth electrode on a first substrate 111 in a liquid crystal optical element 10 according to a fourth embodiment of the present invention. FIG. 4 is a schematic plan view showing the arrangement of a transparent electrode 186, a ninth transparent electrode 189, and a tenth transparent electrode 190; FIG. 25 shows a third transparent electrode 183, a fourth transparent electrode 184, a seventh transparent electrode 187 and an eighth electrode on the second substrate 121 in the liquid crystal optical element 10 according to the fourth embodiment of the present invention. FIG. 4 is a schematic plan view showing the arrangement of a transparent electrode 188, an eleventh transparent electrode 191, and a twelfth transparent electrode 192; FIG. 26 is a schematic plan view for explaining the connection of the transparent electrodes of the liquid crystal optical element 10 according to the fourth embodiment of the invention. The form of the liquid crystal optical element 10 shown in FIGS. 24 to 26 is an example, the form of the liquid crystal optical element 10 according to the fourth embodiment is an example, and the form of the liquid crystal optical element 10 according to the fourth embodiment is It is not limited to the forms shown in FIGS. 24-26. In the description of the fourth embodiment, descriptions similar to those of the first to third embodiments may be omitted.
 図24及び図25に示す透明電極の配置は、図6及び図7に示す透明電極の配置と比較して、各透明電極がそれぞれ独立に制御可能な点において異なる。図24及び図25に示す透明電極の配置は、図6及び図7に示す透明電極の配置と比較して、それ以外の点は同じであるから、ここでの詳細な説明省略される。 The arrangement of the transparent electrodes shown in FIGS. 24 and 25 differs from the arrangement of the transparent electrodes shown in FIGS. 6 and 7 in that each transparent electrode can be controlled independently. The arrangement of the transparent electrodes shown in FIGS. 24 and 25 is the same as the arrangement of the transparent electrodes shown in FIGS. 6 and 7, so detailed description thereof will be omitted here.
 図24では、第1の透明電極181は第1の配線116-1に電気的に接続される。第2の透明電極182は第2の配線116-2に電気的に接続される。第5の透明電極185は第7の配線116-7に電気的に接続される。第6の透明電極186は第8の配線116-8に電気的に接続される。第9の透明電極189は第13の配線116-13に電気的に接続される。第10の透明電極190は第14の配線116-14に電気的に接続される。 In FIG. 24, the first transparent electrode 181 is electrically connected to the first wiring 116-1. The second transparent electrode 182 is electrically connected to the second wiring 116-2. The fifth transparent electrode 185 is electrically connected to the seventh wiring 116-7. The sixth transparent electrode 186 is electrically connected to the eighth wiring 116-8. The ninth transparent electrode 189 is electrically connected to the thirteenth wiring 116-13. The tenth transparent electrode 190 is electrically connected to the fourteenth wiring 116-14.
 第1の配線116-1、第2の配線116-2、第5の配線116-5、第6の配線116-6、第7の配線116-7、第8の配線116-8、第11の配線116-11、第12の配線116-12、第13の配線116-13、第14の配線116-14、第17の配線116-17、及び第18の配線116-18は、第1の基板111上に設けられる。 First wiring 116-1, second wiring 116-2, fifth wiring 116-5, sixth wiring 116-6, seventh wiring 116-7, eighth wiring 116-8, eleventh wiring The wiring 116-11, the 12th wiring 116-12, the 13th wiring 116-13, the 14th wiring 116-14, the 17th wiring 116-17, and the 18th wiring 116-18 are connected to the first is provided on the substrate 111 of the
 第1の配線116-1は、第1の透明電極181の下に形成されてよく、第1の透明電極181の上に形成されてよく、第1の透明電極181と同じ層に形成されてよい。第2の配線116-2は、第2の透明電極182の下に形成されてよく、第2の透明電極182の上に形成されてよく、第2の透明電極182と同じ層に形成されてよい。第7の配線116-7は、第5の透明電極185の下に形成されてよく、第5の透明電極185の上に形成されてよく、第5の透明電極185と同じ層に形成されてよい。第8の配線116-8は、第6の透明電極186の下に形成されてよく、第6の透明電極186の上に形成されてよく、第6の透明電極186と同じ層に形成されてよい。第13の配線116-13は、第9の透明電極189の下に形成されてよく、第9の透明電極189の上に形成されてよく、第9の透明電極189と同じ層に形成されてよい。第14の配線116-14は第10の透明電極190の下に形成されてよく、第10の透明電極190の上に形成されてよく、第10の透明電極190と同じ層に形成されてよい。 The first wiring 116-1 may be formed under the first transparent electrode 181, may be formed over the first transparent electrode 181, and may be formed in the same layer as the first transparent electrode 181. good. The second wiring 116-2 may be formed under the second transparent electrode 182, may be formed over the second transparent electrode 182, and may be formed in the same layer as the second transparent electrode 182. good. The seventh wiring 116-7 may be formed under the fifth transparent electrode 185, may be formed over the fifth transparent electrode 185, and may be formed in the same layer as the fifth transparent electrode 185. good. The eighth wiring 116-8 may be formed under the sixth transparent electrode 186, may be formed over the sixth transparent electrode 186, and may be formed in the same layer as the sixth transparent electrode 186. good. The thirteenth wiring 116-13 may be formed under the ninth transparent electrode 189, may be formed over the ninth transparent electrode 189, and may be formed in the same layer as the ninth transparent electrode 189. good. The fourteenth wiring 116-14 may be formed under the tenth transparent electrode 190, may be formed over the tenth transparent electrode 190, and may be formed in the same layer as the tenth transparent electrode 190. .
 図25では、第3の透明電極183は第3の配線116-3に電気的に接続される。第4の透明電極184は第4の配線116-4に電気的に接続される。第7の透明電極187は第9の配線116-9に電気的に接続される。第8の透明電極188は第10の配線116-10に電気的に接続される。第11の透明電極191は第15の配線116-15に電気的に接続される。第12の透明電極192は第16の配線116-16に電気的に接続される。 In FIG. 25, the third transparent electrode 183 is electrically connected to the third wiring 116-3. The fourth transparent electrode 184 is electrically connected to the fourth wiring 116-4. The seventh transparent electrode 187 is electrically connected to the ninth wiring 116-9. The eighth transparent electrode 188 is electrically connected to the tenth wiring 116-10. The eleventh transparent electrode 191 is electrically connected to the fifteenth wiring 116-15. The twelfth transparent electrode 192 is electrically connected to the sixteenth wiring 116-16.
 第3の配線116-3、第4の配線116-4、第9の配線116-9、第10の配線116-10、第15の配線116-15、及び第16の配線116-16は、第2の基板121上に設けられる。 The third wiring 116-3, the fourth wiring 116-4, the ninth wiring 116-9, the tenth wiring 116-10, the fifteenth wiring 116-15, and the sixteenth wiring 116-16 are It is provided on the second substrate 121 .
 第3の配線116-3は、第3の透明電極183の下に形成されてよく、第3の透明電極183の上に形成されてよく、第3の透明電極183と同じ層に形成されてよい。第4の配線116-4は、第4の透明電極184の下に形成されてよく、第4の透明電極184の上に形成されてよく、第4の透明電極184と同じ層に形成されてよい。第9の配線116-9は、第7の透明電極187の下に形成されてよく、第7の透明電極187の上に形成されてよく、第7の透明電極187と同じ層に形成されてよい。第10の配線116-10は、第8の透明電極188の下に形成されてよく、第8の透明電極188の上に形成されてよく、第8の透明電極188と同じ層に形成されてよい。第15の配線116-15は、第11の透明電極191の下に形成されてよく、第11の透明電極191の上に形成されてよく、第11の透明電極191と同じ層に形成されてよい。第16の配線116-16は第12の透明電極192の下に形成されてよく、第12の透明電極192の上に形成されてよく、第12の透明電極192と同じ層に形成されてよい。 The third wiring 116-3 may be formed under the third transparent electrode 183, may be formed over the third transparent electrode 183, and may be formed in the same layer as the third transparent electrode 183. good. The fourth wiring 116-4 may be formed under the fourth transparent electrode 184, may be formed over the fourth transparent electrode 184, and may be formed in the same layer as the fourth transparent electrode 184. good. The ninth wiring 116-9 may be formed under the seventh transparent electrode 187, may be formed over the seventh transparent electrode 187, and may be formed in the same layer as the seventh transparent electrode 187. good. The tenth wiring 116-10 may be formed under the eighth transparent electrode 188, may be formed over the eighth transparent electrode 188, and may be formed in the same layer as the eighth transparent electrode 188. good. The fifteenth wiring 116-15 may be formed under the eleventh transparent electrode 191, may be formed over the eleventh transparent electrode 191, and may be formed in the same layer as the eleventh transparent electrode 191. good. The sixteenth wiring 116-16 may be formed under the twelfth transparent electrode 192, may be formed over the twelfth transparent electrode 192, and may be formed in the same layer as the twelfth transparent electrode 192. .
 第1の基板111が第2の基板121と貼り合わされると、第2の基板121に設けられる第3の配線116-3、第4の配線116-4、第9の配線116-9、第10の配線116-10、第15の配線116-15、及び第16の配線116-16は、それぞれ、第1の基板111に設けられる第5の配線116-5、第6の配線116-6、第11の配線116-11、第12の配線116-12、第17の配線116-17、及び第18の配線116-18と電気的に接続される。 When the first substrate 111 is bonded to the second substrate 121, the third wiring 116-3, the fourth wiring 116-4, the ninth wiring 116-9, and the third wiring 116-9 provided on the second substrate 121 are provided. The 10th wiring 116-10, the 15th wiring 116-15, and the 16th wiring 116-16 are the fifth wiring 116-5 and the sixth wiring 116-6 provided on the first substrate 111, respectively. , 11th wiring 116-11, 12th wiring 116-12, 17th wiring 116-17, and 18th wiring 116-18.
 第3の配線116-3と第5の配線116-5、第4の配線116-4と第6の配線116-6、第9の配線116-9と第11の配線116-11、第10の配線116-10と第12の配線116-12、第15の配線116-15と第17の配線116-17、及び、第16の配線116-16と第18の配線116-18は、例えば、銀ペースト又は導電粒子を用いて、電気的に接続することができる。なお、導電粒子は金属を被覆した粒子を含む。 Third wiring 116-3 and fifth wiring 116-5, fourth wiring 116-4 and sixth wiring 116-6, ninth wiring 116-9 and eleventh wiring 116-11, tenth wiring The wiring 116-10 and the 12th wiring 116-12, the 15th wiring 116-15 and the 17th wiring 116-17, and the 16th wiring 116-16 and the 18th wiring 116-18 are, for example, , silver paste or conductive particles can be used to electrically connect. The conductive particles include metal-coated particles.
 第1の配線116-1、第2の配線116-2、第5の配線116-5、第6の配線116-6、第7の配線116-7、第8の配線116-8、第11の配線116-11、第12の配線116-12、第13の配線116-13、第14の配線116-14、第17の配線116-17、及び第18の配線116-18が、外部装置と接続するための端子であってもよい。 First wiring 116-1, second wiring 116-2, fifth wiring 116-5, sixth wiring 116-6, seventh wiring 116-7, eighth wiring 116-8, eleventh wiring The wiring 116-11, the 12th wiring 116-12, the 13th wiring 116-13, the 14th wiring 116-14, the 17th wiring 116-17, and the 18th wiring 116-18 are connected to the external device It may be a terminal for connecting with.
 第1の配線116-1、第2の配線116-2、第5の配線116-5(又は第3の配線116-3)、第6の配線116-6(又は第4の配線116-4)、第11の配線116-11(又は第9の配線116-9)、第12の配線116-12(又は第10の配線116-10)、第17の配線116-17(又は第15の配線116-15)、第18の配線116-18(又は第16の配線116-16)は、互いに電気的に絶縁されている。したがって、第1の液晶セル110aでは、第1の透明電極181a、第5の透明電極185a、第9の透明電極189a、第2の透明電極182a、第6の透明電極186a、第10の透明電極190a、第3の透明電極183a、第7の透明電極187a、第11の透明電極191a、第4の透明電極184a、第8の透明電極188a、及び第12の透明電極192aを独立に制御し、各透明電極を用いて、液晶層113の液晶分子の配向を制御することができる。例えば、第1の透明電極181a、第5の透明電極185a、及び第9の透明電極189aは第1の電位V1を供給され、第2の透明電極182a、第6の透明電極186a、及び第10の透明電極190aは第2の電位V2を供給され、第3の透明電極183a、第7の透明電極187a、及び第11の透明電極191aは第3の電位V3を供給され、第4の透明電極184a、第8の透明電極188a、及び第12の透明電極192aは第4の電位V4を供給される。なお、第1の電位V1、第2の電位V2、第3の電位V3、第4の電位V4は、互いに異なる電位であってよく、同じ電位であってもよい。 The first wiring 116-1, the second wiring 116-2, the fifth wiring 116-5 (or the third wiring 116-3), the sixth wiring 116-6 (or the fourth wiring 116-4) ), 11th wiring 116-11 (or 9th wiring 116-9), 12th wiring 116-12 (or 10th wiring 116-10), 17th wiring 116-17 (or 15th wiring The wiring 116-15) and the 18th wiring 116-18 (or the 16th wiring 116-16) are electrically insulated from each other. Therefore, in the first liquid crystal cell 110a, the first transparent electrode 181a, the fifth transparent electrode 185a, the ninth transparent electrode 189a, the second transparent electrode 182a, the sixth transparent electrode 186a, the tenth transparent electrode 190a, the third transparent electrode 183a, the seventh transparent electrode 187a, the eleventh transparent electrode 191a, the fourth transparent electrode 184a, the eighth transparent electrode 188a, and the twelfth transparent electrode 192a are independently controlled, Each transparent electrode can be used to control the orientation of liquid crystal molecules in the liquid crystal layer 113 . For example, the first transparent electrode 181a, the fifth transparent electrode 185a, and the ninth transparent electrode 189a are supplied with the first potential V1, and the second transparent electrode 182a, the sixth transparent electrode 186a, and the tenth transparent electrode 182a are supplied with the first potential V1. The second transparent electrode 190a is supplied with the second potential V2, the third transparent electrode 183a, the seventh transparent electrode 187a, and the eleventh transparent electrode 191a are supplied with the third potential V3, and the fourth transparent electrode 190a is supplied with the third potential V3. 184a, the eighth transparent electrode 188a, and the twelfth transparent electrode 192a are supplied with the fourth potential V4. Note that the first potential V1, the second potential V2, the third potential V3, and the fourth potential V4 may be different potentials or may be the same potential.
 本実施形態に係る照明装置30は、第1の基板111の第1の電極群117-1に含まれる第1の透明電極181及び第2の透明電極182と、第2の基板121の第4の電極群117-2に含まれる第3の透明電極183及び第4の透明電極184とが交差することで、各透明電極に供給する電位を制御して液晶層113の液晶の配向を制御することができる。また、本実施形態に係る照明装置30は、第1の基板111の第2の電極群117-3に含まれる第5の透明電極185及び第6の透明電極186と、第2の基板121の第5の電極群117-4に含まれる第7の透明電極187及び第8の透明電極188とが交差することで、各透明電極に供給する電位を制御して液晶層113の液晶の配向を制御することができる。また、本実施形態に係る照明装置30は、第1の基板111の第3の電極群117-5に含まれる第9の透明電極189及び第10の透明電極190と、第2の基板121の第6の電極群117-6に含まれる第11の透明電極191及び第12の透明電極192とが交差することで、各透明電極に供給する電圧を制御して液晶層113の液晶の配向を制御することができる。その結果、液晶光学素子10は、3つの光学素子(例えば、第1の光学素子40a、第2の光学素子40b及び第3の光学素子40c)から出射された3つの異なる方向からの光を、第1の電極群117-1及び第4の電極群117-2を用いて右側に透過させる又は透過させつつ拡散させ、第2の電極群117-3及び第5の電極群117-4を用いてセンターに透過させるか又は透過させつつ拡散させ、第3の電極群117-5及び第6の電極群117-6を用いて左側に透過させる又は透過させつつ拡散させることができる。 The illumination device 30 according to this embodiment includes a first transparent electrode 181 and a second transparent electrode 182 included in the first electrode group 117-1 of the first substrate 111, and a fourth electrode 182 of the second substrate 121. By intersecting the third transparent electrode 183 and the fourth transparent electrode 184 included in the electrode group 117-2, the potential supplied to each transparent electrode is controlled to control the orientation of the liquid crystal of the liquid crystal layer 113. be able to. Further, the illumination device 30 according to the present embodiment includes the fifth transparent electrode 185 and the sixth transparent electrode 186 included in the second electrode group 117-3 of the first substrate 111, and the second substrate 121. By intersecting the seventh transparent electrode 187 and the eighth transparent electrode 188 included in the fifth electrode group 117-4, the potential supplied to each transparent electrode is controlled to orient the liquid crystal in the liquid crystal layer 113. can be controlled. Further, the lighting device 30 according to the present embodiment includes the ninth transparent electrode 189 and the tenth transparent electrode 190 included in the third electrode group 117-5 of the first substrate 111, and the second substrate 121. By intersecting the eleventh transparent electrode 191 and the twelfth transparent electrode 192 included in the sixth electrode group 117-6, the voltage supplied to each transparent electrode is controlled to orient the liquid crystal in the liquid crystal layer 113. can be controlled. As a result, the liquid crystal optical element 10 converts light from three different directions emitted from the three optical elements (for example, the first optical element 40a, the second optical element 40b, and the third optical element 40c) into Light is transmitted to the right side using the first electrode group 117-1 and the fourth electrode group 117-2, or diffused while being transmitted, and the second electrode group 117-3 and the fifth electrode group 117-4 are used. The third electrode group 117-5 and the sixth electrode group 117-6 can be used to transmit or diffuse while transmitting to the center.
 また、本実施形態に係る液晶光学素子10では、第1の基板111のセンター又は略センターに設けられた第2の電極群117-3、及び第2の基板121のセンター又は略センターに設けられた第5の電極群117-4の透明電極の電極の幅、電極間距離、及び電極間のピッチを狭くすることで、第2の電極群117-3及び第5の電極群117-4に設けられた透明電極に電位を供給した際に、液晶が配向する範囲を狭い範囲で制御することができる。すなわち、センター又は略センターに拡散する光のx軸方向又はy軸方向への光の拡散度合いをより細かく制御することができる。本実施形態に係る液晶光学素子10では、同様の透明電極配置を有する第1の液晶セル110aと第2の液晶セル110bとが積層され、センター又は略センターに拡散する光のx軸方向への光の拡散度合いをより細かく制御することができる。また、本実施形態に係る液晶光学素子10では、同様の透明電極配置を有する第1の液晶セル110aと第2の液晶セル110bの上に、同様の透明電極配置を有する第3の液晶セル110cと第4の液晶セル110dとが積層され、センター又は略センターに拡散する光のy軸方向への光の拡散度合いもより細かく制御することができる。その結果、センター又は略センターに配置された第2の光学素子40bからの光を、左右上下方向により細かく拡散させ、左右上下方向への配光及び配光パターンをより細かく制御することができる。 Further, in the liquid crystal optical element 10 according to the present embodiment, the second electrode group 117-3 provided at the center or approximately the center of the first substrate 111 and the second electrode group 117-3 provided at the center or approximately the center of the second substrate 121 By narrowing the electrode width, the inter-electrode distance, and the inter-electrode pitch of the transparent electrodes of the fifth electrode group 117-4, the second electrode group 117-3 and the fifth electrode group 117-4 When a potential is supplied to the provided transparent electrode, the range in which the liquid crystal is aligned can be controlled within a narrow range. That is, it is possible to more finely control the degree of diffusion of light in the x-axis direction or the y-axis direction of the light that diffuses toward the center or approximately the center. In the liquid crystal optical element 10 according to the present embodiment, the first liquid crystal cell 110a and the second liquid crystal cell 110b having the same transparent electrode arrangement are stacked, and the light diffused in the center or approximately the center is diffused in the x-axis direction. The degree of diffusion of light can be more finely controlled. Further, in the liquid crystal optical element 10 according to the present embodiment, the third liquid crystal cell 110c having the same transparent electrode arrangement is placed on the first liquid crystal cell 110a and the second liquid crystal cell 110b having the same transparent electrode arrangement. and the fourth liquid crystal cell 110d are stacked, and the degree of diffusion of light diffused toward the center or approximately the center in the y-axis direction can be controlled more finely. As a result, the light from the second optical element 40b arranged in the center or near the center can be more finely diffused in the horizontal and vertical directions, and the light distribution and the light distribution pattern in the horizontal and vertical directions can be more finely controlled.
 図26に示す透明電極の接続を説明するための模式的な平面図は、図11に示す透明電極の接続を説明するための模式的な平面図と比較して、各透明電極がそれぞれ独立に電位を供給される点において異なる。図26に示す図は、図11に示す図と比較して、それ以外の点は同じであるから、ここでの詳細な説明は省略される。 The schematic plan view for explaining the connection of the transparent electrodes shown in FIG. 26 is different from the schematic plan view for explaining the connection of the transparent electrodes shown in FIG. They differ in that they are supplied with an electric potential. Since the diagram shown in FIG. 26 is the same as the diagram shown in FIG. 11 in other respects, detailed description thereof will be omitted here.
 第1の透明電極181a及び第1の透明電極181dは第1の電位V1を供給する第1の電位供給線461に接続されている。第5の透明電極185a及び第5の透明電極185dは第9の電位V9を供給する第9の電位供給線465に接続されている。第9の透明電極189a及び第9の透明電極189dは第17の電位V17を供給する第17の電位供給線469に接続されている。 The first transparent electrode 181a and the first transparent electrode 181d are connected to a first potential supply line 461 that supplies a first potential V1. The fifth transparent electrode 185a and the fifth transparent electrode 185d are connected to a ninth potential supply line 465 that supplies a ninth potential V9. The ninth transparent electrode 189a and the ninth transparent electrode 189d are connected to a seventeenth potential supply line 469 that supplies a seventeenth potential V17.
 第2の透明電極182a及び第2の透明電極182dは第2の電位V2を供給する第2の電位供給線462に接続されている。第6の透明電極186a及び第6の透明電極186dは第10の電位V10を供給する第10の電位供給線466に接続されている。第10の透明電極190a及び第10の透明電極190dは第18の電位V18を供給する第18の電位供給線470に接続されている。 The second transparent electrode 182a and the second transparent electrode 182d are connected to a second potential supply line 462 that supplies the second potential V2. The sixth transparent electrode 186a and the sixth transparent electrode 186d are connected to a tenth potential supply line 466 that supplies a tenth potential V10. The tenth transparent electrode 190a and the tenth transparent electrode 190d are connected to an eighteenth potential supply line 470 that supplies an eighteenth potential V18.
 第3の透明電極183a及び第3の透明電極183dは第3の電位V3を供給する第3の電位供給線463に接続されている。第7の透明電極187a及び第7の透明電極187dは第11の電位V11を供給する第11の電位供給線467に接続されている。第11の透明電極191a及び第11の透明電極191dは第19の電位V19を供給する第19の電位供給線471に接続されている。 The third transparent electrode 183a and the third transparent electrode 183d are connected to a third potential supply line 463 that supplies a third potential V3. The seventh transparent electrode 187a and the seventh transparent electrode 187d are connected to an eleventh potential supply line 467 that supplies an eleventh potential V11. The eleventh transparent electrode 191a and the eleventh transparent electrode 191d are connected to a nineteenth potential supply line 471 that supplies a nineteenth potential V19.
 第4の透明電極184a及び第4の透明電極184dは第4の電位V4を供給する第4の電位供給線464に接続されている。第8の透明電極188a及び第8の透明電極188dは第12の電位V12を供給する第12の電位供給線468に接続されている。第12の透明電極192a及び第12の透明電極192dは第20の電位V20を供給する第20の電位供給線472に接続されている。 The fourth transparent electrode 184a and the fourth transparent electrode 184d are connected to a fourth potential supply line 464 that supplies the fourth potential V4. The eighth transparent electrode 188a and the eighth transparent electrode 188d are connected to a twelfth potential supply line 468 that supplies a twelfth potential V12. The twelfth transparent electrode 192a and the twelfth transparent electrode 192d are connected to a twentieth potential supply line 472 that supplies a twentieth potential V20.
 第1の透明電極181b及び第1の透明電極181cは第5の電位V5を供給する第5の電位供給線481に接続されている。第5の透明電極185b及び第5の透明電極185cは第13の電位V13を供給する第13の電位供給線485に接続されている。第9の透明電極189b及び第9の透明電極189cは第21の電位V21を供給する第21の電位供給線489に接続されている。 The first transparent electrode 181b and the first transparent electrode 181c are connected to a fifth potential supply line 481 that supplies a fifth potential V5. The fifth transparent electrode 185b and the fifth transparent electrode 185c are connected to a thirteenth potential supply line 485 that supplies a thirteenth potential V13. The ninth transparent electrode 189b and the ninth transparent electrode 189c are connected to a 21st potential supply line 489 that supplies a 21st potential V21.
 第2の透明電極182b及び第2の透明電極182cは第6の電位V6を供給する第6の電位供給線482に接続されている。第6の透明電極186b及び第6の透明電極186cは第14の電位V14を供給する第14の電位供給線486に接続されている。第10の透明電極190b及び第10の透明電極190cは第22の電位V22を供給する第22の電位供給線490に接続されている。 The second transparent electrode 182b and the second transparent electrode 182c are connected to a sixth potential supply line 482 that supplies a sixth potential V6. The sixth transparent electrode 186b and the sixth transparent electrode 186c are connected to a fourteenth potential supply line 486 that supplies a fourteenth potential V14. The tenth transparent electrode 190b and the tenth transparent electrode 190c are connected to a twenty-second potential supply line 490 that supplies a twenty-second potential V22.
 第3の透明電極183b及び第3の透明電極183cは第7の電位V7を供給する第7の電位供給線483に接続されている。第7の透明電極187b及び第7の透明電極187cは第15の電位V15を供給する第15の電位供給線487に接続されている。第11の透明電極191b及び第11の透明電極191cは第23の電位V23を供給する第23の電位供給線491に接続されている。 The third transparent electrode 183b and the third transparent electrode 183c are connected to a seventh potential supply line 483 that supplies a seventh potential V7. The seventh transparent electrode 187b and the seventh transparent electrode 187c are connected to a fifteenth potential supply line 487 that supplies fifteenth potential V15. The 11th transparent electrode 191b and the 11th transparent electrode 191c are connected to a 23rd potential supply line 491 that supplies a 23rd potential V23.
 第4の透明電極184b及び第4の透明電極184cは第8の電位V8を供給する第8の電位供給線484に接続されている。第8の透明電極188b及び第8の透明電極188cは第16の電位V16を供給する第16の電位供給線488に接続されている。第12の透明電極192b及び第12の透明電極192cは第24の電位V24を供給する第24の電位供給線492に接続されている。 The fourth transparent electrode 184b and the fourth transparent electrode 184c are connected to an eighth potential supply line 484 that supplies an eighth potential V8. The eighth transparent electrode 188b and the eighth transparent electrode 188c are connected to a sixteenth potential supply line 488 that supplies a sixteenth potential V16. The twelfth transparent electrode 192b and the twelfth transparent electrode 192c are connected to a twenty-fourth potential supply line 492 that supplies a twenty-fourth potential V24.
 図26に示す第1の電位V11~第24の電位V24は、固定電位であってよく、変動電位であってもよい。第1の電位供給線461~第24の電位供給線492には、Low電位およびHigh電位だけでなく、Low電位とHigh電位との間の中間電位も供給される。すなわち、第1の電位V11~第24の電位V24には、絶対値の異なる3つの電位が含まれる。 The first potential V11 to the twenty-fourth potential V24 shown in FIG. 26 may be fixed potentials or variable potentials. The first potential supply line 461 to the 24th potential supply line 492 are supplied with not only the low potential and the high potential, but also an intermediate potential between the low potential and the high potential. That is, the first potential V11 to the twenty-fourth potential V24 include three potentials with different absolute values.
 第4実施形態に係る液晶光学素子10では、各透明電極は制御回路70(図10)から独立に電位を供給される。よって、第1の光学素子40a、第2の光学素子40b及び第3の光学素子40cの3つの光学素子から出射された光を、それぞれ独立にx軸方向及びy軸方向に透過及び拡散することができる。その結果、第4実施形態に係る液晶光学素子10を含む照明装置は、光の配光及び配光パターンをさらに様々な形状に制御することができる。 In the liquid crystal optical element 10 according to the fourth embodiment, each transparent electrode is independently supplied with a potential from the control circuit 70 (FIG. 10). Therefore, the light emitted from the three optical elements of the first optical element 40a, the second optical element 40b, and the third optical element 40c can be independently transmitted and diffused in the x-axis direction and the y-axis direction. can be done. As a result, the illumination device including the liquid crystal optical element 10 according to the fourth embodiment can further control the light distribution and the light distribution pattern into various shapes.
<第5実施形態>
 第5実施形態では、4つの光学素子がx軸方向及びy軸方向にマトリクス状に配置される形態について説明する。図27は本発明の第5実施形態に係る光源20dの平面図である。図28(A)~図28(F)に示される配光パターンは本発明の第5実施形態に係る照明装置から出射された光の配光パターンを示す模式図である。例えば、図28(A)~図28(F)に示される配光パターンは、第4の液晶セル110dの出射面(z軸方向において、光源20が設けられる側と反対側の面)に投影(照射)されるパターンである。
図27及び図28(A)~図28(F)に示す形態は一例であって、第5実施形態は、図27及び図28(A)~図28(F)に示す形態に限定されない。第5実施形態の説明では、第1実施形態~第4実施形態と同様の説明を省略する場合がある。
<Fifth Embodiment>
In the fifth embodiment, a form in which four optical elements are arranged in a matrix in the x-axis direction and the y-axis direction will be described. FIG. 27 is a plan view of a light source 20d according to the fifth embodiment of the invention. Light distribution patterns shown in FIGS. 28A to 28F are schematic diagrams showing light distribution patterns of light emitted from the illumination device according to the fifth embodiment of the present invention. For example, the light distribution patterns shown in FIGS. 28A to 28F are projected onto the exit surface of the fourth liquid crystal cell 110d (the surface opposite to the side where the light source 20 is provided in the z-axis direction). (irradiated) pattern.
The forms shown in FIGS. 27 and 28(A) to 28(F) are examples, and the fifth embodiment is not limited to the forms shown in FIGS. 27 and 28(A) to 28(F). In the description of the fifth embodiment, descriptions similar to those of the first to fourth embodiments may be omitted.
 図27では、光源20dは、光学素子40及び支持部材50dを有する。光学素子40は、第5の光学素子40g、第6の光学素子40h、第7の光学素子40i、及び第8の光学素子40jから構成される。第5の光学素子40g、第6の光学素子40h、第7の光学素子40i、及び第8の光学素子40jは、平面視において、x軸方向及びy軸方向にマトリクス状に、支持部材50d上に配置される。 In FIG. 27, the light source 20d has the optical element 40 and the support member 50d. The optical element 40 is composed of a fifth optical element 40g, a sixth optical element 40h, a seventh optical element 40i, and an eighth optical element 40j. The fifth optical element 40g, the sixth optical element 40h, the seventh optical element 40i, and the eighth optical element 40j are arranged in a matrix in the x-axis direction and the y-axis direction on the support member 50d in plan view. placed in
 例えば、第6の光学素子40hは、x軸方向に対して第5の光学素子40gに隣接して配置され、y軸方向に対して第8の光学素子40jに隣接して配置される。第7の光学素子40iは、第6の光学素子40hに対して対角に配置され、x軸方向に対して第8の光学素子40jに隣接して配置され、y軸方向に対して第5の光学素子40gに隣接して配置される。第8の光学素子40jは、第5の光学素子40gに対して対角に配置される。各光学素子は第1実施形態~第4実施形態で示す光学素子と同様の光学素子を用いることができる。 For example, the sixth optical element 40h is arranged adjacent to the fifth optical element 40g in the x-axis direction, and adjacent to the eighth optical element 40j in the y-axis direction. The seventh optical element 40i is arranged diagonally to the sixth optical element 40h, arranged adjacent to the eighth optical element 40j in the x-axis direction, and fifth in the y-axis direction. is positioned adjacent to the optical element 40g. The eighth optical element 40j is arranged diagonally with respect to the fifth optical element 40g. For each optical element, the same optical elements as those shown in the first to fourth embodiments can be used.
 図27では、各光学素子が離れて配置される例が示されるが、各光学素子の配置は図27に示される例に限定されない。各光学素子は密接するように配置されてもよい。 Although FIG. 27 shows an example in which each optical element is arranged separately, the arrangement of each optical element is not limited to the example shown in FIG. Each optical element may be arranged in close proximity.
 支持部材50dは平坦な面を有し、第5の光学素子40g、第6の光学素子40h、第7の光学素子40i、及び第8の光学素子40jが当該平坦な面上に配置される例を示すが、支持部材50dは第5実施形態で示す例に限定されない。例えば、断面視において、支持部材50dは、第1実施形態に示すような凸状の形状を有してよく、第1実施形態に示すような凹状の形状を有してもよい。また、支持部材50dは、第1実施形態に示す支持部材50a又は50bと同様の基板を用いることができる。 An example in which the support member 50d has a flat surface, and the fifth optical element 40g, the sixth optical element 40h, the seventh optical element 40i, and the eighth optical element 40j are arranged on the flat surface. , the support member 50d is not limited to the example shown in the fifth embodiment. For example, in a cross-sectional view, the support member 50d may have a convex shape as shown in the first embodiment, or may have a concave shape as shown in the first embodiment. Also, the support member 50d can use the same substrate as the support member 50a or 50b shown in the first embodiment.
 図28(A)に示される配光パターンは、4つの光学素子を点灯し、液晶光学素子10の各液晶セルの各透明電極に中間電位を供給した場合に照明装置30から出射された光の配光パターンである。図28(A)に示される配光パターンは、x軸方向及びy軸方向にマトリクス状に4つのスポット光90a、90b、90c、90dが照射されている。 The light distribution pattern shown in FIG. 28(A) shows the amount of light emitted from illumination device 30 when four optical elements are turned on and an intermediate potential is supplied to each transparent electrode of each liquid crystal cell of liquid crystal optical element 10. light distribution pattern. In the light distribution pattern shown in FIG. 28A, four spot lights 90a, 90b, 90c, and 90d are irradiated in a matrix in the x-axis direction and the y-axis direction.
 図28(B)に示される配光パターンは、2つの光学素子(第5の光学素子40g及び第7の光学素子40i)を点灯し、液晶光学素子10の各液晶セルの各透明電極に第1の変動電位又は第2の変動電位を供給した場合に照明装置から出射される光の配光パターンである。図28(B)に示される配光パターンは、y軸方向に平行に並ぶ第5の光学素子40g及び第7の光学素子40iに沿って拡散された光(拡散光91)が照射されている配光パターンである。 In the light distribution pattern shown in FIG. 28B, two optical elements (fifth optical element 40g and seventh optical element 40i) are turned on, and each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 is illuminated. FIG. 10 is a light distribution pattern of light emitted from the lighting device when one variable potential or a second variable potential is supplied; FIG. In the light distribution pattern shown in FIG. 28B, light diffused (diffused light 91) along the fifth optical element 40g and the seventh optical element 40i arranged in parallel in the y-axis direction is irradiated. light distribution pattern.
 図28(C)に示される配光パターンは、2つの光学素子(第5の光学素子40g及び第6の光学素子40h)を点灯し、液晶光学素子10の各液晶セルの各透明電極に第1の変動電位又は第2の変動電位を供給した場合に照明装置から出射された光の配光パターンである。図18(C)に示される配光パターンは、x軸方向に平行に並ぶ第5の光学素子40g及び第6の光学素子40hに沿って拡散された光(拡散光92)が照射されている。 In the light distribution pattern shown in FIG. 28C, two optical elements (fifth optical element 40g and sixth optical element 40h) are turned on, and each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 is illuminated. FIG. 10 is a light distribution pattern of light emitted from the lighting device when one variable potential or a second variable potential is supplied; FIG. In the light distribution pattern shown in FIG. 18C, light diffused (diffused light 92) along the fifth optical element 40g and the sixth optical element 40h arranged in parallel in the x-axis direction is irradiated. .
 図28(D)に示される配光パターンは、4つの光学素子を点灯し、液晶光学素子10の各液晶セルの各透明電極にx軸方向への光の拡散を抑制するレベルの第1の変動電位又は第2の変動電位を供給した場合に照明装置から出射された光の配光パターンである。図28(D)に示される配光パターンは、y軸方向に平行に並ぶ第5の光学素子40gと第7の光学素子40iに沿って拡散された光(拡散光93a)、及び、y軸方向に平行に並ぶ第6の光学素子40h及び第8の光学素子40jに沿って拡散された光(拡散光93b)が照射されている。 In the light distribution pattern shown in FIG. 28(D), the four optical elements are turned on, and each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 is set to the first level of suppressing diffusion of light in the x-axis direction. It is a light distribution pattern of light emitted from the lighting device when a variable potential or a second variable potential is supplied. The light distribution pattern shown in FIG. 28(D) includes the light (diffused light 93a) diffused along the fifth optical element 40g and the seventh optical element 40i arranged in parallel in the y-axis direction, and the y-axis Diffused light (diffused light 93b) is emitted along the sixth optical element 40h and the eighth optical element 40j that are aligned in parallel with the direction.
 図28(E)に示される配光パターンは、4つの光学素子を点灯し、液晶光学素子10の各液晶セルの各透明電極にy軸方向への光の拡散を抑制するレベルの第1の変動電位又は第2の変動電位を供給した場合に照明装置から出射された光の配光パターンである。図28(E)に示される配光パターンは、x軸方向に平行に並ぶ第5の光学素子40g及び第6の光学素子40hに沿って拡散された光(拡散光94a)、及び、x軸方向に平行に並ぶ第7の光学素子40i及び第8の光学素子40jに沿って拡散された光が(拡散光94b)照射されている。 In the light distribution pattern shown in FIG. 28(E), four optical elements are turned on, and each transparent electrode of each liquid crystal cell of the liquid crystal optical element 10 is set to the first level of suppressing diffusion of light in the y-axis direction. It is a light distribution pattern of light emitted from the lighting device when a variable potential or a second variable potential is supplied. The light distribution pattern shown in FIG. 28(E) includes the light (diffused light 94a) diffused along the fifth optical element 40g and the sixth optical element 40h arranged in parallel in the x-axis direction, and the x-axis The diffused light (diffused light 94b) is emitted along the seventh optical element 40i and the eighth optical element 40j arranged in parallel to the direction.
 図28(F)に示される配光パターンは、4つの光学素子を点灯し、液晶光学素子10の各液晶セルの各透明電極に第1の変動電位又は第2の変動電位を供給した場合に照明装置から出射された光の配光パターンである。図28(F)に示される配光パターンは、x軸方向に平行に並ぶ第5の光学素子40g及び第6の光学素子40hに沿って拡散された光、x軸方向に平行に並ぶ第7の光学素子40i及び第8の光学素子40jに沿って拡散された光、y軸方向に平行に並ぶ第5の光学素子40g及び第7の光学素子40iに沿って拡散された光、及び、y軸方向に平行に並ぶ第6の光学素子40h及び第8の光学素子40jに沿って拡散された光を合成した光95が照射されている。 A light distribution pattern shown in FIG. It is a light distribution pattern of light emitted from the lighting device. The light distribution pattern shown in FIG. 28(F) includes light diffused along the fifth optical element 40g and the sixth optical element 40h arranged parallel to the x-axis direction, and light diffused along the seventh optical element 40h arranged parallel to the x-axis direction. Light diffused along the optical element 40i and the eighth optical element 40j, light diffused along the fifth optical element 40g and the seventh optical element 40i arranged parallel to the y-axis direction, and y Light 95 is emitted by synthesizing the light diffused along the sixth optical element 40h and the eighth optical element 40j arranged in parallel in the axial direction.
 図28(A)~図28(F)に示す光の配光パターンでは、光源20dの4つの光学素子のそれぞれのLEDをON又はOFFする制御信号が制御回路70から光源20dに送信される。また、制御回路70から液晶光学素子10に含まれる各透明電極に所定の電位が供給される。 In the light distribution patterns shown in FIGS. 28(A) to 28(F), control signals for turning ON or OFF the LEDs of the four optical elements of the light source 20d are sent from the control circuit 70 to the light source 20d. A predetermined potential is supplied from the control circuit 70 to each transparent electrode included in the liquid crystal optical element 10 .
 第5実施形態に係る光源20dは4つの光学素子を有し、4方向に光を出射することができる。第5実施形態に係る照明装置は、光の照射方向が互いに異なる第5の光学素子40g、第6の光学素子40h、第7の光学素子40i、及び第8の光学素子40jの4つの光学素子から出射された光を、液晶光学素子10を用いてx軸方向及びy軸方向に透過及び拡散することができる。その結果、第5実施形態に係る照明装置は、光の配光及び配光パターンを様々に制御することができる。 The light source 20d according to the fifth embodiment has four optical elements and can emit light in four directions. The illumination device according to the fifth embodiment includes four optical elements, a fifth optical element 40g, a sixth optical element 40h, a seventh optical element 40i, and an eighth optical element 40j, which emit light in different directions. The liquid crystal optical element 10 can be used to transmit and diffuse the light emitted from the x-axis direction and the y-axis direction. As a result, the illumination device according to the fifth embodiment can variously control the light distribution and light distribution pattern.
 本発明の実施形態として上述した液晶光学素子の構成、光源の構成、照明装置の構成は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、液晶光学素子の構成、光源の構成、照明装置の構成を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 The configuration of the liquid crystal optical element, the configuration of the light source, and the configuration of the illuminating device described above as the embodiment of the present invention can be appropriately combined as long as they do not contradict each other. In addition, based on the configuration of the liquid crystal optical element, the configuration of the light source, and the configuration of the lighting device, those skilled in the art may appropriately add, delete, or change the design of the constituent elements, or add, omit, or change the conditions of the process. Anything done is also included in the scope of the present invention as long as it has the gist of the present invention.
 また、上述した実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。 In addition, even if there are other effects different from the effects brought about by the aspect of the embodiment described above, those that are obvious from the description of this specification or those that can be easily predicted by those skilled in the art are of course to the present invention.
 10:液晶光学素子、10a:液晶光学素子、10b:液晶光学素子、10c:液晶光学素子、20:光源、20b:光学素子、20c:光源、20d:光源、30:照明装置、30b:照明装置、30c:照明装置、30d:照明装置、40:光学素子、40a:第1の光学素子、40b:第2の光学素子、40c:第3の光学素子、40d:第4の光学素子、40e:第5の光学素子、40f:第6の光学素子、40g:第5の光学素子、40h:第6の光学素子、40i:第7の光学素子、40j:第8の光学素子、50a:支持部材、50b:支持部材、50c:支持部材、50d:支持部材、60:センサ、70:制御回路、80a:右側スポット光、80b:センタースポット光、80c:左側スポット光、81、82a、82b、82c、83:拡散光、84、85、86、87:光、85a、85b、85c、87a:領域、90a、90b、90c、90d:スポット光、91、92:拡散光、93a、93b:拡散光、94a、94b:拡散光、95:光、110a:第1の液晶セル、110b:第2の液晶セル、110c:第3の液晶セル、110d:第4の液晶セル、111:第1の基板、111a:第1の基板、111b:第1の基板、111c:第1の基板、111d:第1の基板、113:液晶層、114a:第1の配向膜、114b:第1の配向膜、114c:第1の配向膜、114d:第1の配向膜、115:シール材、116:配線、116-1:第1の配線、116-11:第11の配線、116-12:第12の配線、116-13:第13の配線、116-14:第14の配線、116-17:第17の配線、116-18:第18の配線、116-2:第2の配線、116-3:第3の配線、116-4:第4の配線、116-5:第5の配線、116-6:第6の配線、116-7:第7の配線、116-8:第8の配線、117-1:第1の電極群、117-2:第4の電極群、117-3:第2の電極群、117-4:第5の電極群、117-5:第3の電極群、117-6:第6の電極群、121:第2の基板、121a:第2の基板、121b:第2の基板、121c:第2の基板、121d:第2の基板、124:第2の配向膜、124a:第2の配向膜、124b:第2の配向膜、124c:第2の配向膜、124d:第2の配向膜、130a:第1の透明接着層、130b:第2の透明接着層、130c:第3の透明接着層、150a:シール材、150b:シール材、150c:シール材、150d:シール材、160:液晶層、160a:液晶層、160b:液晶層、160c:液晶層、160d:液晶層、180:入射光、180a:光、180b:光、180c:光、180d:光、180e:光、180f:光、181:第1の透明電極、181a:第1の透明電極、181b:第1の透明電極、181c:第1の透明電極、181d:第1の透明電極、182:第2の透明電極、182a:第2の透明電極、182b:第2の透明電極、182c:第2の透明電極、182d:第2の透明電極、183:第3の透明電極、183a:第3の透明電極、183b:第3の透明電極、183c:第3の透明電極、183d:第3の透明電極、184:第4の透明電極、184a:第4の透明電極、184b:第4の透明電極、184c:第4の透明電極、184d:第4の透明電極、185:第5の透明電極、185a:第5の透明電極、185b:第5の透明電極、185c:第5の透明電極、185d:第5の透明電極、186:第6の透明電極、186a:第6の透明電極、186b:第6の透明電極、186c:第6の透明電極、186d:第6の透明電極、187:第7の透明電極、187a:第7の透明電極、187b:第7の透明電極、187c:第7の透明電極、187d:第7の透明電極、188:第8の透明電極、188a:第8の透明電極、188b:第8の透明電極、188c:第8の透明電極、188d:第8の透明電極、189:第9の透明電極、189a:第9の透明電極、189b:第9の透明電極、189c:第9の透明電極、189d:第9の透明電極、190:第10の透明電極、190a:第10の透明電極、190b:第10の透明電極、190c:第10の透明電極、190d:第10の透明電極、191:第11の透明電極、191a:第11の透明電極、191b:第11の透明電極、191c:第11の透明電極、191d:第11の透明電極、192:第12の透明電極、192a:第12の透明電極、192b:第12の透明電極、192c:第12の透明電極、192d:第12の透明電極、200:出射光、210:発光素子、210a:第1の発光素子、210b:第2の発光素子、210c:第3の発光素子、220:反射器、220a:第1の反射器、220b:第2の反射器、220c:第3の反射器、230:凸レンズ、310:第1の偏光、320:第2の偏光、461:第1の電位供給線、462:第2の電位供給線、463:第3の電位供給線、464:第4の電位供給線、465:第9の電位供給線、466:第10の電位供給線、467:第11の電位供給線、468:第12の電位供給線、469:第17の電位供給線、470:第18の電位供給線、471:第19の電位供給線、472:第20の電位供給線、481:第5の電位供給線、482:第6の電位供給線、483:第7の電位供給線、484:第8の電位供給線、485:第13の電位供給線、486:第14の電位供給線、487:第15の電位供給線、488:第16の電位供給線、489:第21の電位供給線、490:第22の電位供給線、491:第23の電位供給線、492:第24の電位供給線 10: liquid crystal optical element, 10a: liquid crystal optical element, 10b: liquid crystal optical element, 10c: liquid crystal optical element, 20: light source, 20b: optical element, 20c: light source, 20d: light source, 30: illumination device, 30b: illumination device , 30c: illumination device, 30d: illumination device, 40: optical element, 40a: first optical element, 40b: second optical element, 40c: third optical element, 40d: fourth optical element, 40e: fifth optical element, 40f: sixth optical element, 40g: fifth optical element, 40h: sixth optical element, 40i: seventh optical element, 40j: eighth optical element, 50a: supporting member , 50b: support member, 50c: support member, 50d: support member, 60: sensor, 70: control circuit, 80a: right spot light, 80b: center spot light, 80c: left spot light, 81, 82a, 82b, 82c , 83: diffused light, 84, 85, 86, 87: light, 85a, 85b, 85c, 87a: area, 90a, 90b, 90c, 90d: spot light, 91, 92: diffused light, 93a, 93b: diffused light , 94a, 94b: diffused light, 95: light, 110a: first liquid crystal cell, 110b: second liquid crystal cell, 110c: third liquid crystal cell, 110d: fourth liquid crystal cell, 111: first substrate , 111a: first substrate, 111b: first substrate, 111c: first substrate, 111d: first substrate, 113: liquid crystal layer, 114a: first alignment film, 114b: first alignment film, 114c: first alignment film, 114d: first alignment film, 115: sealing material, 116: wiring, 116-1: first wiring, 116-11: eleventh wiring, 116-12: twelfth wiring Wiring 116-13: 13th wiring 116-14: 14th wiring 116-17: 17th wiring 116-18: 18th wiring 116-2: 2nd wiring 116-3 116-4: 4th wiring 116-5: 5th wiring 116-6: 6th wiring 116-7: 7th wiring 116-8: 8th wiring , 117-1: first electrode group, 117-2: fourth electrode group, 117-3: second electrode group, 117-4: fifth electrode group, 117-5: third electrode group , 117-6: sixth electrode group, 121: second substrate, 121a: second substrate, 121b: second substrate, 121c: second substrate, 121d: second substrate, 124: second 124a: second alignment film 124b: second alignment film 124c: second alignment film 124d: second alignment film 130a: first transparent Adhesive layer 130b: Second transparent adhesive layer 130c: Third transparent adhesive layer 150a: Sealing material 150b: Sealing material 150c: Sealing material 150d: Sealing material 160: Liquid crystal layer 160a: Liquid crystal layer , 160b: liquid crystal layer, 160c: liquid crystal layer, 160d: liquid crystal layer, 180: incident light, 180a: light, 180b: light, 180c: light, 180d: light, 180e: light, 180f: light, 181: first Transparent electrode 181a: first transparent electrode 181b: first transparent electrode 181c: first transparent electrode 181d: first transparent electrode 182: second transparent electrode 182a: second transparent electrode , 182b: second transparent electrode, 182c: second transparent electrode, 182d: second transparent electrode, 183: third transparent electrode, 183a: third transparent electrode, 183b: third transparent electrode, 183c : third transparent electrode 183d: third transparent electrode 184: fourth transparent electrode 184a: fourth transparent electrode 184b: fourth transparent electrode 184c: fourth transparent electrode 184d: fourth transparent electrode 4 transparent electrodes 185: fifth transparent electrode 185a: fifth transparent electrode 185b: fifth transparent electrode 185c: fifth transparent electrode 185d: fifth transparent electrode 186: sixth transparent electrode Transparent electrode 186a: sixth transparent electrode 186b: sixth transparent electrode 186c: sixth transparent electrode 186d: sixth transparent electrode 187: seventh transparent electrode 187a: seventh transparent electrode , 187b: seventh transparent electrode, 187c: seventh transparent electrode, 187d: seventh transparent electrode, 188: eighth transparent electrode, 188a: eighth transparent electrode, 188b: eighth transparent electrode, 188c : eighth transparent electrode 188d: eighth transparent electrode 189: ninth transparent electrode 189a: ninth transparent electrode 189b: ninth transparent electrode 189c: ninth transparent electrode 189d: th 9 transparent electrode 190: tenth transparent electrode 190a: tenth transparent electrode 190b: tenth transparent electrode 190c: tenth transparent electrode 190d: tenth transparent electrode 191: eleventh Transparent electrode 191a: 11th transparent electrode 191b: 11th transparent electrode 191c: 11th transparent electrode 191d: 11th transparent electrode 192: 12th transparent electrode 192a: 12th transparent electrode , 192b: 12th transparent electrode, 192c: 12th transparent electrode, 192d: 12th transparent electrode, 200: emitted light, 210: light emitting element, 210a: first light emitting element, 210b: second light emitting element , 210c: the third Light emitting element, 220: reflector, 220a: first reflector, 220b: second reflector, 220c: third reflector, 230: convex lens, 310: first polarized light, 320: second polarized light, 461: first potential supply line, 462: second potential supply line, 463: third potential supply line, 464: fourth potential supply line, 465: ninth potential supply line, 466: tenth potential supply line. potential supply line 467: eleventh potential supply line 468: twelfth potential supply line 469: seventeenth potential supply line 470: eighteenth potential supply line 471: nineteenth potential supply line 472 481: fifth potential supply line 482: sixth potential supply line 483: seventh potential supply line 484: eighth potential supply line 485: thirteenth potential Supply lines 486: 14th potential supply line 487: 15th potential supply line 488: 16th potential supply line 489: 21st potential supply line 490: 22nd potential supply line 491: 23rd potential supply line 492: 24th potential supply line

Claims (17)

  1.  指向性を有する光を出射する第1の光学素子及び第2の光学素子を有する光源と、
     前記光源から照射される光を透過させる又は透過させつつ拡散させる1つの液晶光学素子と、
     を有し、
     前記光源は、前記第1の光学素子と前記第2の光学素子とが光の出射方向が異なるように配置され、
     前記液晶光学素子は、
      前記第1の光学素子の光の出射面に対向する第1の電極群と、
      前記第2の光学素子の光の出射面に対向し、前記第1の電極群に隣接して設けられる第2の電極群と、
     を有し、
     前記第1の電極群は、第1の透明電極、及び前記第1の透明電極と交互に配置される第2の透明電極を有し、
     前記第2の電極群は、第3の透明電極、及び前記第3の透明電極と交互に配置される第4の透明電極を有し、
     前記第1の透明電極、及び前記第2の透明電極が交互に配置されるピッチは、前記第3の透明電極、及び前記第4の透明電極が交互に配置されるピッチと異なる、照明装置。
    a light source having a first optical element and a second optical element that emit light having directivity;
    one liquid crystal optical element that transmits or diffuses the light emitted from the light source;
    has
    wherein the light source is arranged such that the first optical element and the second optical element emit light in different directions;
    The liquid crystal optical element is
    a first electrode group facing the light exit surface of the first optical element;
    a second electrode group facing the light exit surface of the second optical element and provided adjacent to the first electrode group;
    has
    The first electrode group has a first transparent electrode and a second transparent electrode alternately arranged with the first transparent electrode,
    The second electrode group has a third transparent electrode and a fourth transparent electrode alternately arranged with the third transparent electrode,
    The lighting device, wherein the pitch at which the first transparent electrodes and the second transparent electrodes are alternately arranged is different from the pitch at which the third transparent electrodes and the fourth transparent electrodes are alternately arranged.
  2.  前記第1の電極群、及び前記第2の電極群は、電気的に接続されている、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the first electrode group and the second electrode group are electrically connected.
  3.  前記第1の電極群、及び前記第2の電極群は、独立に電位を供給される、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the first electrode group and the second electrode group are independently supplied with potentials.
  4.  前記第1の透明電極、前記第2の透明電極、前記第3の透明電極、及び前記第4の透明電極は第1の方向に平行に配置される、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the first transparent electrode, the second transparent electrode, the third transparent electrode, and the fourth transparent electrode are arranged parallel to a first direction.
  5.  前記第1の電極群、及び前記第2の電極群が設けられる第1の基板と、
     前記第1の基板に重なる第2の基板と、
     前記第2の基板上に、前記第1の電極群に対向して設けられる第3の電極群と、
     前記第2の基板上に、前記第2の電極群に対向して前記第3の電極群の隣に設けられる第4の電極群と、
     を有する、請求項4に記載の照明装置。
    a first substrate on which the first electrode group and the second electrode group are provided;
    a second substrate overlapping the first substrate;
    a third electrode group provided on the second substrate so as to face the first electrode group;
    a fourth electrode group provided next to the third electrode group on the second substrate so as to face the second electrode group;
    5. A lighting device according to claim 4, comprising:
  6.  前記第3の電極群は、第5の透明電極、及び前記第5の透明電極と交互に配置される第6の透明電極を有し、
     前記第4の電極群は、第7の透明電極、及び前記第7の透明電極と交互に配置される第8の透明電極を有し、
     第5の透明電極、前記第6の透明電極、前記第7の透明電極、及び前記第8の透明電極は、前記第1の方向と交差する第2の方向に平行に設けられる、
     を有する、請求項5に記載の照明装置。
    The third electrode group has a fifth transparent electrode and a sixth transparent electrode alternately arranged with the fifth transparent electrode,
    The fourth electrode group has a seventh transparent electrode and an eighth transparent electrode alternately arranged with the seventh transparent electrode,
    the fifth transparent electrode, the sixth transparent electrode, the seventh transparent electrode, and the eighth transparent electrode are provided parallel to a second direction that intersects the first direction;
    6. A lighting device according to claim 5, comprising:
  7.  前記液晶光学素子は、第1の液晶セル、第1の液晶セルに重なる第2の液晶セル、前記第2の液晶セルに重なる第3の液晶セル、及び前記第3の液晶セルに重なる第4の液晶セルを有し、
     前記第1の液晶セル、前記第2の液晶セル、前記第3の液晶セル、及び前記第4の液晶セルのそれぞれは、前記第1の電極群、前記第2の電極群、前記第3の電極群、及び前記第4の電極群を有する、
     請求項6に記載の照明装置。
    The liquid crystal optical element includes a first liquid crystal cell, a second liquid crystal cell overlapping the first liquid crystal cell, a third liquid crystal cell overlapping the second liquid crystal cell, and a fourth liquid crystal cell overlapping the third liquid crystal cell. has a liquid crystal cell of
    The first liquid crystal cell, the second liquid crystal cell, the third liquid crystal cell, and the fourth liquid crystal cell are connected to the first electrode group, the second electrode group, and the third electrode group, respectively. Having an electrode group and the fourth electrode group,
    7. A lighting device according to claim 6.
  8.  前記第2の液晶セルに含まれる前記第2の基板は、前記第1の液晶セルに含まれる前記第1の基板に重なり、
     前記第3の液晶セルに含まれる前記第2の基板は、前記第2の液晶セルに含まれる前記第2の基板に重なり、
     前記第4の液晶セルに含まれる前記第2の基板は、前記第2の液晶セルに含まれる前記第1の基板に重なる、請求項7に記載の照明装置。
    the second substrate included in the second liquid crystal cell overlaps the first substrate included in the first liquid crystal cell;
    the second substrate included in the third liquid crystal cell overlaps the second substrate included in the second liquid crystal cell;
    8. The illumination device according to claim 7, wherein said second substrate included in said fourth liquid crystal cell overlaps said first substrate included in said second liquid crystal cell.
  9.  前記第1の透明電極及び前記第3の透明電極は、電気的に接続され、第1の電位を供給され、
     前記第2の透明電極及び前記第4の透明電極は、電気的に接続され、第2の電位を供給され、
     前記第5の透明電極及び前記第7の透明電極は、電気的に接続され、第3の電位を供給され、
     前記第6の透明電極及び前記第8の透明電極は、電気的に接続され、第4の電位を供給される、請求項8に記載の照明装置。
    the first transparent electrode and the third transparent electrode are electrically connected and supplied with a first potential;
    the second transparent electrode and the fourth transparent electrode are electrically connected and supplied with a second potential;
    the fifth transparent electrode and the seventh transparent electrode are electrically connected and supplied with a third potential;
    9. The lighting device according to claim 8, wherein said sixth transparent electrode and said eighth transparent electrode are electrically connected and supplied with a fourth potential.
  10.  前記第1の光学素子、及び前記第2の光学素子の光の照射を制御する制御信号を、前記第1の光学素子、及び前記第2の光学素子に送信すると共に、
     前記第1の透明電極及び前記第3の透明電極に前記第1の電位を供給し、前記第2の透明電極及び前記第4の透明電極に前記第2の電位を供給し、前記第5の透明電極及び前記第7の透明電極に前記第3の電位を供給し、前記第6の透明電極及び前記第8の透明電極に前記第4の電位を供給する、
     制御回路を有する、請求項9に記載の照明装置。
    A control signal for controlling light irradiation of the first optical element and the second optical element is transmitted to the first optical element and the second optical element, and
    The first potential is applied to the first transparent electrode and the third transparent electrode, the second potential is applied to the second transparent electrode and the fourth transparent electrode, and the fifth potential is applied to the fifth transparent electrode. supplying the third potential to the transparent electrode and the seventh transparent electrode, and supplying the fourth potential to the sixth transparent electrode and the eighth transparent electrode;
    10. A lighting device according to claim 9, comprising a control circuit.
  11.  前記制御回路は、前記第1の電位、前記第2の電位、前記第3の電位、前記第4の電位のそれぞれを、絶対値の異なる少なくとも3つの電位のうちの1つの電位とする、請求項10に記載の照明装置。 The control circuit sets each of the first potential, the second potential, the third potential, and the fourth potential to one of at least three potentials having different absolute values. Item 11. The illumination device according to item 10.
  12.  前記第2の方向は、前記第1の方向と直交する方向である、請求項6に記載の照明装置。 The lighting device according to claim 6, wherein the second direction is a direction orthogonal to the first direction.
  13.  前記第1の光学素子及び前記第2の光学素子は、端部断面において凸状の面を有する支持部材の上に設けられる、
     請求項1に記載の照明装置。
    The first optical element and the second optical element are provided on a support member having a convex surface in an end cross section,
    The lighting device according to claim 1 .
  14.  前記第1の光学素子及び前記第2の光学素子は、端部断面において凹状の面を有する支持部材の上に設けられる、
     請求項1に記載の照明装置。
    The first optical element and the second optical element are provided on a support member having a concave surface in an end cross section,
    The lighting device according to claim 1 .
  15.  前記第1の光学素子及び前記第2の光学素子のそれぞれは、電位を供給すると光を出射する発光素子を有する、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein each of said first optical element and said second optical element has a light-emitting element that emits light when a potential is supplied.
  16.  前記第1の光学素子及び前記第2の光学素子のそれぞれは、光を集光する凸レンズを有する、請求項1に記載の照明装置。 The illumination device according to claim 1, wherein each of said first optical element and said second optical element has a convex lens for condensing light.
  17.  前記第1の光学素子及び前記第2の光学素子のそれぞれは、光を前記液晶光学素子に入射させるように反射させる反射器を有する、請求項1に記載の照明装置。
     
    2. The illumination device of claim 1, wherein each of said first optical element and said second optical element comprises a reflector for reflecting light to enter said liquid crystal optical element.
PCT/JP2022/024412 2021-06-22 2022-06-17 Lighting device WO2022270444A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023530443A JPWO2022270444A1 (en) 2021-06-22 2022-06-17
CN202280034647.9A CN117296001A (en) 2021-06-22 2022-06-17 Lighting device
US18/523,430 US20240102633A1 (en) 2021-06-22 2023-11-29 Lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-103584 2021-06-22
JP2021103584 2021-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/523,430 Continuation US20240102633A1 (en) 2021-06-22 2023-11-29 Lighting device

Publications (1)

Publication Number Publication Date
WO2022270444A1 true WO2022270444A1 (en) 2022-12-29

Family

ID=84545657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024412 WO2022270444A1 (en) 2021-06-22 2022-06-17 Lighting device

Country Status (4)

Country Link
US (1) US20240102633A1 (en)
JP (1) JPWO2022270444A1 (en)
CN (1) CN117296001A (en)
WO (1) WO2022270444A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172912A (en) * 2001-12-06 2003-06-20 Citizen Watch Co Ltd Liquid crystal variable wavelength filter device and driving method therefor
US20100177255A1 (en) * 2007-06-20 2010-07-15 Zeev Tamir Methods systems and devices for utilizing directions of light rays
JP2010525388A (en) * 2007-04-17 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Beam shaping device
US20190025657A1 (en) * 2015-09-12 2019-01-24 Lensvector Inc. Liquid crystal beam control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172912A (en) * 2001-12-06 2003-06-20 Citizen Watch Co Ltd Liquid crystal variable wavelength filter device and driving method therefor
JP2010525388A (en) * 2007-04-17 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Beam shaping device
US20100177255A1 (en) * 2007-06-20 2010-07-15 Zeev Tamir Methods systems and devices for utilizing directions of light rays
US20190025657A1 (en) * 2015-09-12 2019-01-24 Lensvector Inc. Liquid crystal beam control device

Also Published As

Publication number Publication date
CN117296001A (en) 2023-12-26
US20240102633A1 (en) 2024-03-28
JPWO2022270444A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
US20060291205A1 (en) Backlight assembly including light emitting diode and display device including the same
JP2021517351A (en) Lighting device
US8049838B2 (en) Direct light type backlight unit and color filterless liquid crystal display apparatus employing the same
JP2009075565A (en) Led backlight system for lcd display
JP2008171590A (en) Illumination device, and display device equipped with this
KR20120038950A (en) Liquid crystal display device
US10763401B2 (en) Backlight unit and display apparatus including the same
US20090146159A1 (en) Light-emitting device, method of manufacturing the light-emitting device and liquid crystal display having the light-emitting device
CN105572967B (en) Lens, light emitting device including the same, and backlight unit including the light emitting device
JP2007005111A (en) Lighting system and display device using it
US10707390B1 (en) Area light source display module
KR20110022934A (en) Liquid crystal display
CN110673391A (en) Backlight module
CN1668874A (en) Illumination device and liquid crystal display device
US7712912B2 (en) Backlight module
WO2022270444A1 (en) Lighting device
US11874560B2 (en) Backlight for uniform illumination
US20180203300A1 (en) Display device
US10168462B2 (en) Backlight unit including light guide plate having inclined reflective surface and display device including the same
WO2013139049A1 (en) Side-type backlight module
WO2022176360A1 (en) Optical element and illuminating apparatus
KR20100002460A (en) Backlight unit and method of manufacturing the same
CN106195759B (en) Light emitting module and display device
US9244213B2 (en) Edge-light type planar light source device
WO2022255044A1 (en) Liquid crystal optical element and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530443

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE