WO2022269797A1 - Manipulator system, measurement apparatus, and method for controlling manipulator - Google Patents

Manipulator system, measurement apparatus, and method for controlling manipulator Download PDF

Info

Publication number
WO2022269797A1
WO2022269797A1 PCT/JP2021/023766 JP2021023766W WO2022269797A1 WO 2022269797 A1 WO2022269797 A1 WO 2022269797A1 JP 2021023766 W JP2021023766 W JP 2021023766W WO 2022269797 A1 WO2022269797 A1 WO 2022269797A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
bending portion
wire
joint
measuring device
Prior art date
Application number
PCT/JP2021/023766
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 吉村
宏亮 岸
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2021/023766 priority Critical patent/WO2022269797A1/en
Priority to JP2023529313A priority patent/JPWO2022269797A5/en
Publication of WO2022269797A1 publication Critical patent/WO2022269797A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes

Definitions

  • the present invention relates to a manipulator system, a measuring device, and a manipulator control method.
  • manipulator systems have been used for observation inside hollow organs such as the gastrointestinal tract and for procedures, observations, and procedures in laparotomy.
  • the manipulator system comprises a motorized bendable part.
  • the bending portion has a rotatable joint.
  • the joints in the curved part wear and deform as they age. Also, the wires that drive the joints of the bending portion are elongated due to deterioration over time. For these reasons, the curved shape of the curved portion when the wire pulling amount and the wire tension are set to predetermined values changes with deterioration over time and the like.
  • the manipulator system adjusts (calibrates) the amount of wire pulling and wire tension required to make the bending portion into a predetermined curved shape, thereby preventing changes in the bending shape of the bending portion due to deterioration over time as described above. can be corrected.
  • the curved shape of the bending portion when the amount of wire traction and wire tension are set to predetermined values is determined. It is necessary to measure accurately.
  • Patent Document 1 describes an endoscope insertion portion shape grasping system that grasps a curved shape such as a curved portion.
  • An endoscope insertion portion shape grasping system described in Patent Literature 1 calculates a curved shape of a curved portion or the like based on information obtained from a sensor built into the endoscope.
  • the endoscope insertion portion shape grasping system described in Patent Literature 1 does not consider changes in the curved shape of the curved portion due to deterioration over time, etc. in calculating the curved shape of the curved portion. Moreover, the endoscope insertion portion shape grasping system described in Patent Literature 1 requires a built-in sensor in the endoscope, and cannot be applied to an endoscope without a built-in sensor.
  • the present invention provides a manipulator system, a measuring device, and a manipulator control method that can easily measure the curved shape of a curved portion even when the curved shape of the curved portion changes due to deterioration over time. intended to provide
  • a manipulator system includes a manipulator including a bending portion having a plurality of joints, a bending wire that bends the bending portion, a driving device that drives the bending wire, and the bending portion.
  • a measuring device acquires an observation result of the bending portion of a manipulator including a bending portion having a plurality of joints and a bending wire for bending the bending portion, and obtains the observation result from the observation result.
  • Shape information of the bending portion is measured, and the position of the joint is estimated from the shape information of the bending portion.
  • a manipulator control method is a method of controlling a manipulator including a bending portion having a plurality of joints and a bending wire for bending the bending portion, wherein an observation result of the bending portion and an updating step of updating control parameters for driving the bending wire based on the shape information.
  • the curved shape of the curved portion can be easily measured even when the curved shape of the curved portion changes due to deterioration over time.
  • FIG. 1 is an overall view of an electric endoscope system according to a first embodiment
  • FIG. FIG. 2 is a diagram showing an endoscope and an operating device of the electric endoscope system used by an operator; It is a figure which shows the insertion part of the same endoscope. It is a figure which shows a part of bending part of the same endoscope as sectional drawing.
  • FIG. 5 is an enlarged view of the node ring of the bending portion in the region E shown in FIG. 4;
  • FIG. 6 is a cross-sectional view of the curved portion taken along line C1-C1 of FIGS. 4 and 5; It is a functional block diagram of the drive device of the electric endoscope system.
  • FIG. 3 is a functional block diagram of a video control device of the electric endoscope system;
  • FIG. It is a functional block diagram of a main controller of the electric endoscope system.
  • It is a functional block diagram of a measuring device of the electric endoscope system. It is a control flowchart of the measurement controller of the same measurement device.
  • FIG. 4 is a diagram showing extracted voxel data of a curved portion;
  • FIG. 4 is a diagram showing the calculated positions of the distal joint and the proximal joint of the bending portion. It is the position of the joint of the same curved part estimated. It is a figure explaining the position of the joint of the same bending part.
  • FIG. 4 is a diagram showing extracted voxel data of a curved portion;
  • FIG. 4 is a diagram showing the calculated positions of the distal joint and the proximal joint of the bending portion. It is the position of the joint of the same curved part estimated. It is a figure explaining the position of
  • FIG. 10 is a diagram showing the curved portion in a non-uniformly oriented state; It is a figure which shows the curved shape of the same bending part which changes with progress of time.
  • 9 is a control flowchart of the measurement controller of the measurement device of the electric endoscope system according to the second embodiment;
  • FIG. 11 shows an estimated centerline; It is a figure which shows the length of the curved part calculated from the same center line.
  • FIG. 1 is an overall view of an electric endoscope system 1000 according to this embodiment.
  • the electric endoscope system 1000 is an example of a manipulator system.
  • the electric endoscope system 1000 is a medical system for observing and treating the inside of the patient P, as shown in FIG. Also, the electric endoscope system 1000 is a medical system that maintains the endoscope 100 .
  • the electric endoscope system 1000 includes an endoscope 100, a drive device 200, an operation device 300, a treatment instrument 400, an image control device 500, an observation device 700, a measurement device 800, a display device 900, Prepare.
  • the endoscope 100 is a device that is inserted into the lumen of the patient P to observe and treat the affected area.
  • the endoscope 100 is detachable from the driving device 200 .
  • An internal path 101 is formed inside the endoscope 100 .
  • the side inserted into the lumen of the patient P is called the “distal side (A1)”
  • the side attached to the driving device 200 is called the “base end side (A2)”.
  • the driving device 200 is detachably connected to the endoscope 100 and the operating device 300 .
  • the driving device 200 electrically drives the endoscope 100 by driving a built-in motor based on an operation input to the operating device 300 .
  • the drive device 200 drives a built-in pump or the like based on an operation input to the operation device 300 to cause the endoscope 100 to perform air supply and suction.
  • the operation device 300 is detachably connected to the driving device 200 via an operation cable 301.
  • the operation device 300 may be capable of communicating with the driving device 200 by wireless communication instead of wired communication.
  • the operator S can electrically drive the endoscope 100 by operating the operating device 300 .
  • the treatment instrument 400 is a device that is inserted through the internal path 101 of the endoscope 100 and inserted into the lumen of the patient P to treat the affected area.
  • the treatment instrument 400 is inserted into the internal pathway 101 of the endoscope 100 via the extension channel tube 130 .
  • the treatment instrument 400 may be inserted directly into the internal path 101 of the endoscope 100 from the forceps port 126 without passing through the extension channel tube 130 .
  • the image control device 500 is detachably connected to the endoscope 100 and acquires captured images from the endoscope 100 .
  • the image control device 500 causes the display device 900 to display captured images acquired from the endoscope 100 and GUI images and CG images for the purpose of providing information to the operator.
  • the driving device 200 and the image control device 500 constitute a control device 600 that controls the electric endoscope system 1000 .
  • Controller 600 may further include peripherals such as a video printer.
  • the driving device 200 and the video control device 500 may be an integrated device.
  • the display device 900 is a device capable of displaying images such as an LCD.
  • a display device 900 is connected to the video control device 500 via a display cable 901 .
  • the observation device 700 and the measurement device 800 are devices arranged at a service base for maintenance of the endoscope 100 .
  • the control device 600 (which may be either the drive device 200 or the image control device 500) has sufficient computational performance, the control device 600 may be used as the measuring device 800.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the endoscope 100 and the observation device 700 are installed on the installation table ST at the service base.
  • the endoscope 100 and the observation device 700 may be installed in the operating room of a hospital instead of the service base. In that case, the endoscope 100 and the observation device 700 are installed, for example, on the operating table T shown in FIG.
  • FIG. 2 is a diagram showing the endoscope 100 and the operating device 300 used by the operator S.
  • the operator S operates the endoscope 100 inserted into the lumen from the anus of the patient P with the right hand R, and operates the operation device 300 with the left hand. Operate with L. Since the endoscope 100 and the operating device 300 are separated, the operator S can operate the endoscope 100 and the operating device 300 independently without being affected by each other.
  • the endoscope 100 includes an insertion section 110, a connecting section 120, an extracorporeal flexible section 140, an attachment/detachment section 150, a bending wire 160 (see FIG. 6), and an internal object 170 (see FIG. 6). See) and
  • the insertion section 110, the connecting section 120, the extracorporeal soft section 140, and the detachable section 150 are connected in order from the distal end side.
  • the connection part 120 can connect the extension channel tube 130 .
  • FIG. 3 is a diagram showing the insertion section 110 of the endoscope 100. As shown in FIG. An internal path 101 extending along the longitudinal direction A of the endoscope 100 from the distal end of the insertion section 110 to the proximal end of the detachable section 150 is formed inside the endoscope 100 . Bent wire 160 and internals 170 are inserted into internal passageway 101 .
  • the built-in object 170 has a channel tube 171, an air supply/suction tube 172 (see FIG. 7), an imaging cable 173, and a light guide 174.
  • the insertion section 110 is an elongated elongated member that can be inserted into a lumen.
  • the insertion portion 110 has a distal end portion 111 , a bending portion 112 and an intracorporeal soft portion 119 .
  • the distal end portion 111, the bending portion 112, and the internal soft portion 119 are connected in order from the distal end side.
  • the distal end portion 111 is formed of metal or the like into a substantially cylindrical shape. As shown in FIG. 3, the distal end portion 111 has an opening portion 111a, an illumination portion 111b, and an imaging portion 111c.
  • the opening 111 a is an opening that communicates with the channel tube 171 .
  • a treatment section 410 such as grasping forceps provided at the distal end of the treatment instrument 400 through which the channel tube 171 is inserted protrudes from the opening 111a.
  • the illumination unit 111b is connected to a light guide 174 that guides illumination light, and emits illumination light that illuminates the imaging target.
  • the imaging unit 111c includes an imaging element such as a CMOS, and images an object to be imaged.
  • the imaging signal is sent to the video control device 500 via the imaging cable 173 .
  • FIG. 4 is a diagram showing a part of the bending portion 112 as a cross-sectional view.
  • the bending portion 112 has a plurality of joint rings (also referred to as bending pieces) 115, a distal end portion 116 connected to the distal ends of the plurality of joint rings 115, and an outer sheath 118 (see FIG. 3).
  • the distal end portion 116 , the plurality of node rings 115 , and the distal end portion 119 a of the internal soft portion 119 are connected in the longitudinal direction A inside the outer sheath 118 .
  • the shape and number of the node rings 115 included in the bending portion 112 are not limited to the shape and number of the node rings 115 shown in FIG.
  • FIG. 5 is an enlarged view of node ring 115 in region E shown in FIG.
  • the node ring 115 is a short cylindrical member made of metal.
  • the plurality of node rings 115 are connected so that the internal spaces of adjacent node rings 115 are continuous spaces.
  • the adjacent node rings 115 are connected by a first rotation pin 115p so as to be rotatable in the vertical direction (also referred to as the "UD direction") perpendicular to the longitudinal direction A.
  • the first turning pin 115p of the node ring (bending piece) 115 is an example of the joint 112j of the bending portion 112 .
  • the node ring 115 has a first node ring 115a on the distal side and a second node ring 115b on the proximal side.
  • the first joint ring 115a and the second joint ring 115b are connected by a second pivot pin 115q so as to be rotatable in the left-right direction (also referred to as the "LR direction") perpendicular to the longitudinal direction A and the UD direction.
  • the second rotation pin 115q of the node ring (bending piece) 115 is an example of the joint 112j of the bending portion 112. As shown in FIG.
  • a first rotating pin 115p of the node ring (bending piece) 115 is rotatable around a rotating shaft extending in the LR direction.
  • a second rotation pin 115q of the node ring (bending piece) 115 is rotatable around a rotation axis extending in the UD direction.
  • the first joint ring 115a and the second joint ring 115b are alternately connected by the first turning pin 115p and the second turning pin 115q, and the bending portion 112 can be bent in a desired direction.
  • the joint 112j (first pivot pin 115p or second pivot pin 115q) of the bending section 112 that is connected to the distal section 116 is referred to as the distal joint (also referred to as the distal section) 112a.
  • the joint 112j (the first pivot pin 115p or the second pivot pin 115q) of the bending portion 112 that is connected to the distal end portion 119a of the internal soft portion 119 is referred to as the proximal joint (also referred to as the proximal portion) 112b. .
  • FIG. 6 is a cross-sectional view of the curved portion 112 taken along line C1-C1 of FIGS. 4 and 5.
  • FIG. An upper wire guide 115u and a lower wire guide 115d are formed on the inner peripheral surface of the second node ring 115b.
  • the upper wire guide 115u and the lower wire guide 115d are arranged on both sides in the UD direction with the central axis O in the longitudinal direction A interposed therebetween.
  • a left wire guide 115l and a right wire guide 115r are formed on the inner peripheral surface of the first node ring 115a.
  • the left wire guide 115l and the right wire guide 115r are arranged on both sides in the LR direction with the central axis O in the longitudinal direction A interposed therebetween.
  • Through holes through which the bending wire 160 is inserted are formed along the longitudinal direction A in the upper wire guide 115u, the lower wire guide 115d, the left wire guide 115l, and the right wire guide 115r.
  • a bending wire 160 is a wire that bends the bending portion 112 .
  • a bending wire 160 extends through the internal path 101 to the detachable portion 150 . 4 and 6, the bending wire 160 has an upper bending wire 161u, a lower bending wire 161d, a left bending wire 161l, a right bending wire 161r, and four wire sheaths 161s.
  • the upper bending wire 161u, the lower bending wire 161d, the left bending wire 161l, and the right bending wire 161r are each inserted through separate wire sheaths 161s.
  • a distal end of the wire sheath 161 s is attached to the node ring 115 at the proximal end of the bending portion 112 .
  • the wire sheath 161 s extends to the detachable portion 150 .
  • the upward bending wire 161u and the downward bending wire 161d are wires for bending the bending portion 112 in the UD direction.
  • the upper bending wire 161u passes through the upper wire guide 115u.
  • the lower bending wire 161d is inserted through the lower wire guide 115d.
  • the tips of the upper bending wire 161u and the lower bending wire 161d are fixed to the distal end portion 116 of the bending portion 112, as shown in FIG.
  • the tips of the upper bending wire 161u and the lower bending wire 161d fixed to the tip portion 116 are arranged on both sides in the UD direction with the central axis O in the longitudinal direction A interposed therebetween.
  • the left bending wire 161l and the right bending wire 161r are wires for bending the bending portion 112 in the LR direction.
  • the left bending wire 161l passes through the left wire guide 115l.
  • the right bending wire 161r passes through the right wire guide 115r.
  • the distal ends of the left bending wire 161l and the right bending wire 161r are fixed to the distal end portion 116 of the bending portion 112, as shown in FIG.
  • the tips of the left bending wire 161l and the right bending wire 161r fixed to the tip portion 116 are arranged on both sides in the LR direction with the central axis O in the longitudinal direction A interposed therebetween.
  • the bending portion 112 can be bent in a desired direction by pulling or relaxing the bending wires 160 (the upper bending wire 161u, the lower bending wire 161d, the left bending wire 161l, and the right bending wire 161r).
  • a bending wire 160 , a channel tube 171 , an imaging cable 173 and a light guide 174 are inserted through the internal path 101 formed inside the bending portion 112 .
  • the internal soft part 119 is an elongated flexible tubular member.
  • a bending wire 160 , a channel tube 171 , an imaging cable 173 , and a light guide 174 are inserted through the internal path 101 formed in the internal soft part 119 .
  • a distal end portion 119a formed of metal or the like in a substantially cylindrical shape is provided at the distal end of the intracorporeal flexible portion 119.
  • the connecting portion 120 is a member that connects the internal soft portion 119 and the extracorporeal soft portion 140 of the insertion portion 110, as shown in FIG.
  • the connecting portion 120 includes a forceps opening 126 that is an insertion opening for inserting the treatment instrument 400 into the internal path 101 .
  • the extracorporeal soft section 140 is an elongate tubular member.
  • a bending wire 160, an imaging cable 173, a light guide 174, and an air supply/suction tube 172 (see FIG. 7) are inserted through an internal path 101 formed inside the extracorporeal soft section 140.
  • the detachable section 150 includes a first detachable section 1501 attached to the driving device 200 and a second detachable section 1502 attached to the video control device 500, as shown in FIG. Note that the first detachable portion 1501 and the second detachable portion 1502 may be an integral detachable portion.
  • the internal path 101 formed inside the extracorporeal soft section 140 branches into a first detachable section 1501 and a second detachable section 1502 .
  • the bending wire 160 and the air supply/suction tube 172 are inserted through the first detachable portion 1501 .
  • the imaging cable 173 and the light guide 174 are inserted through the second detachable portion 1502 .
  • the first attachment/detachment section 1501 has a tension sensor (not shown) that detects the tension of the bending wires 160 (the upper bending wire 161u, the lower bending wire 161d, the left bending wire 161l, and the right bending wire 161r). A detection result of the tension sensor is acquired by the drive controller 260 of the drive device 200 .
  • FIG. 7 is a functional block diagram of the driving device 200.
  • the drive device 200 includes an adapter 210 , an operation reception section 220 , an air supply/suction drive section 230 , a wire drive section 250 and a drive controller 260 .
  • the adapter 210 has a first adapter 211 and a second adapter 212.
  • the first adapter 211 is an adapter to which the operation cable 301 is detachably connected.
  • the second adapter 212 is an adapter to which the first attachment/detachment section 1501 of the endoscope 100 is detachably connected.
  • the operation reception unit 220 receives operation input from the operation device 300 via the operation cable 301 .
  • the operation reception unit 220 has a known wireless reception module.
  • the air supply/suction drive unit 230 is connected to the air supply/suction tube 172 inserted into the internal path 101 of the endoscope 100 .
  • the air supply/suction drive unit 230 includes a pump and the like, and supplies air to the air supply/suction tube 172 . Also, the air supply/suction driving section 230 sucks air from the air supply/suction tube 172 .
  • the wire driving section 250 has a driving section and an encoder (not shown).
  • the drive unit pulls or loosens the bending wires 160 (up bending wire 161u, down bending wire 161d, left bending wire 161l, right bending wire 161r) by pulleys or the like.
  • the encoder detects the amount of pulling of the bending wire 160 .
  • a detection result of the encoder is acquired by the drive controller 260 of the drive device 200 .
  • the drive controller 260 controls the drive device 200 as a whole.
  • the drive controller 260 acquires the operation input received by the operation reception unit 220 .
  • Drive controller 260 controls air supply/suction drive section 230 and wire drive section 250 based on the acquired operation input.
  • the drive controller 260 is a program-executable computer including a processor, a memory, a storage section capable of storing programs and data, and an input/output control section.
  • the functions of the drive controller 260 are implemented by the processor executing a program. At least some functions of the drive controller 260 may be realized by dedicated logic circuits.
  • the drive controller 260 desirably has high computational performance in order to control the plurality of motors that drive the plurality of bending wires 160 with high accuracy.
  • the drive controller 260 may further have a configuration other than the processor, memory, storage section, and input/output control section.
  • the drive controller 260 may further include an image calculation section that performs part or all of image processing and image recognition processing.
  • the drive controller 260 can perform specific image processing and image recognition processing at high speed.
  • the image calculation section may be mounted in a separate hardware device connected via a communication line.
  • the operation device 300 is a device to which an operation for driving the endoscope 100 is input.
  • the input operation input is transmitted to the driving device 200 via the operation cable 301 .
  • FIG. 8 is a functional block diagram of the video control device 500. As shown in FIG. The image control device 500 controls the electric endoscope system 1000 .
  • the video control device 500 includes a third adapter 510 , an imaging processing section 520 , a light source section 530 and a main controller 560 .
  • the third adapter 510 is an adapter to which the second detachable section 1502 of the endoscope 100 is detachably connected.
  • the imaging processing unit 520 converts an imaging signal acquired from the imaging unit 111c of the distal end portion 111 via the imaging cable 173 into a captured image.
  • the light source unit 530 generates illumination light that irradiates the object to be imaged.
  • the illumination light generated by the light source section 530 is guided to the illumination section 111b of the distal end section 111 via the light guide 174 .
  • FIG. 9 is a functional block diagram of the main controller 560.
  • the main controller 560 is a program-executable computer having a processor 561, a memory 562, and the like.
  • the functions of the main controller 560 are implemented by the processor 561 executing programs. At least part of the functions of the main controller 560 may be realized by a dedicated logic circuit.
  • the main controller 560 has a processor 561 , a program-readable memory 562 , a storage section 563 , and an input/output control section 564 .
  • the storage unit 563 is a non-volatile recording medium that stores the above-described programs and necessary data.
  • the storage unit 563 is composed of, for example, a ROM, a hard disk, or the like.
  • a program recorded in the storage unit 563 is read into the memory 562 and executed by the processor 561 .
  • the input/output control unit 564 is connected to the imaging processing unit 520, the light source unit 530, the driving device 200, the measuring device 800, the display device 900, the input device (not shown), and the network device (not shown). Under the control of the processor 561, the input/output control unit 564 transmits and receives data and control signals to and from connected devices.
  • the main controller 560 can perform image processing on the captured image acquired by the imaging processing section 520 .
  • the main controller 560 can generate GUI images and CG images for the purpose of providing information to the operator S.
  • the main controller 560 can display captured images, GUI images, and CG images on the display device 900 .
  • the main controller 560 is not limited to an integrated hardware device.
  • the main controller 560 may be configured by separating a part of it as a separate hardware device and then connecting the separated hardware device with a communication line.
  • the main controller 560 may be a cloud system that connects separated storage units 563 via communication lines.
  • the main controller 560 may further have a configuration other than the processor 561, memory 562, storage section 563, and input/output control section 564 shown in FIG.
  • the main controller 560 may further have an image calculation unit that performs part or all of the image processing and image recognition processing that the processor 561 has performed.
  • the main controller 560 can execute specific image processing and image recognition processing at high speed.
  • the image calculation section may be mounted in a separate hardware device connected via a communication line.
  • the observation device 700 is arranged at a service base for maintenance of the endoscope 100 and is a device for observing the shape of the bending portion 112 .
  • the observation device 700 includes a housing 710, an imaging device 720, a support member 730, and a marker board 740, as shown in FIG.
  • the housing 710 is formed in a box shape and can accommodate the curved portion 112 inside. Imaging device 720 , support member 730 , and marker board 740 are provided inside housing 710 .
  • the imaging device 720 includes, for example, a camera having an image sensor (such as a CCD sensor or a CMOS sensor). Imaging device 720 may comprise multiple cameras. The imaging device 720 transmits the captured image to the measuring device 800 .
  • an image sensor such as a CCD sensor or a CMOS sensor.
  • the support member 730 is a member that fixes the imaging device 720 .
  • the support member 730 fixes the imaging device 720 at a position where the curved portion 112 housed inside the box-like shape can be imaged.
  • the marker board 740 is a known marker board, and is attached inside the housing 710 at a position where it can be imaged by the imaging device 720 .
  • the measuring device 800 is a device arranged at a service base that maintains the endoscope 100 .
  • the measurement device 800 performs control of the observation device 700, acquisition of the observation result of the observation device 700, analysis of the observation result of the observation device 700, and the like.
  • FIG. 10 is a functional block diagram of the measuring device 800.
  • the measurement device 800 includes a measurement controller 810 .
  • the measurement controller 810 is a program-executable computer having a processor 811, a memory 812, and the like.
  • the functions of the measurement controller 810 are implemented by the processor 811 executing programs. At least part of the functions of the measurement controller 810 may be realized by a dedicated logic circuit.
  • the measurement controller 810 has a processor 811 , a program-readable memory 812 , a storage unit 813 , and an input/output control unit 814 .
  • the storage unit 813 is a non-volatile recording medium that stores the above-described programs and necessary data.
  • the storage unit 813 is composed of, for example, a ROM, a hard disk, or the like.
  • a program recorded in the storage unit 813 is read into the memory 812 and executed by the processor 811 .
  • the input/output control unit 814 is connected to the input/output control unit 564 of the video control device 500, the observation device 700, the input device (not shown), and the network device (not shown). Under the control of the processor 811, the input/output control unit 814 transmits/receives data to/from the connected device and transmits/receives a control signal.
  • the measurement controller 810 controls the imaging device 720 of the observation device 700 . Also, the measurement controller 810 acquires an image captured by the imaging device 720 .
  • the measurement controller 810 is not limited to an integrated hardware device.
  • the measurement controller 810 may be partially separated as a separate hardware device and then configured by connecting the separated hardware devices via a communication line.
  • the measurement controller 810 may be a cloud system that connects the separated storage units 813 via a communication line.
  • the measurement controller 810 may further have a configuration other than the processor 811, memory 812, storage unit 813, and input/output control unit 814 shown in FIG.
  • the measurement controller 810 may further include an arithmetic unit that performs part or all of the image processing and measurement arithmetic processing that the processor 811 has been performing.
  • the measurement controller 810 can execute specific image processing and measurement calculation processing at high speed.
  • the computing unit may be mounted in a separate hardware device connected via a communication line.
  • control device 600 (which may be either the drive device 200 or the image control device 500) has sufficient computing performance, the control device 600 may be used as the measurement device 800.
  • the "measurement controller 810" in the following description means the "main controller 560" or the "drive controller 260".
  • step S100 the measurement controller 810 starts control after performing initialization (step S100).
  • step S110 the measurement controller 810 (mainly processor 811) executes step S110.
  • the user accommodates the insertion section 110 including the bending section 112 in the housing 710 so that the bending section 112 is placed at a position where the imaging device 720 can capture an image.
  • the user bends the bending portion 112 by operating the operation device 300 to set the control parameters (the amount of wire pulling, the wire tension, etc.) of the bending portion 112 as the adjustment value V.
  • FIG. The user may bend the bending portion 112 in both the UD direction and the LR direction, but in this embodiment, it is assumed that the bending portion 112 is first bent only in the UD direction.
  • Step S110> The measurement controller 810 initializes the observation device 700 in step S110.
  • the measurement controller 810 uses, for example, a marker board 740 to recognize the position and orientation of the camera of the imaging device 720 . Note that if the measurement controller 810 can recognize the position and orientation of the camera of the imaging device 720 without using the marker board 740, the marker board 740 is unnecessary.
  • the measurement controller 810 executes step S120.
  • step S120 the measurement controller 810 causes the imaging device 720 to capture an image of the bending section 112, and acquires the captured image (observation result).
  • step S130 the measurement controller 810 executes step S130.
  • the measurement controller 810 measures the shape information of the bending portion 112 in step S130.
  • the measurement controller 810 measures, for example, the contour of the bending portion 112 as shape information.
  • the measurement controller 810 measures the contour of the curved portion 112 by, for example, detecting edges of the curved portion 112 and extracting voxel data BD of the curved portion 112 .
  • FIG. 12 is a diagram showing the extracted voxel data BD of the curved portion 112.
  • the measurement controller 810 extracts voxel data BD of the curved portion 112 and the like from an image (observation result) captured by a known method such as the visual volume intersection method.
  • the measurement controller 810 executes step S140.
  • FIG. 13 is a diagram showing the calculated positions of the distal joint 112a and the proximal joint 112b of the bending portion 112. As shown in FIG. The measurement controller 810 calculates the positions of the distal joint 112a and the proximal joint 112b of the bending section 112 in step S140.
  • the distal end portion 116 of the bending portion 112 and the distal end portion 119a of the intracorporeal soft portion 119 have known shapes and do not change in shape regardless of the bending shape of the bending portion 112 . Therefore, the measurement controller 810 calculates the positions of the distal end portion 116 of the bending portion 112 and the distal end portion 119a of the internal soft portion 119 from, for example, the voxel data BD by pattern matching or the like.
  • the measurement controller 810 allows the user to specify the positions of the distal end portion 116 and the distal end portion 119a in the image displaying the voxel data BD using an input device such as a mouse, thereby allowing the distal end portion 116 and the distal end portion 119a to be displayed. can recognize the position of
  • the measurement controller 810 calculates the position of the tip joint 112 a of the bending section 112 connected to the tip section 116 from the calculated position of the tip section 116 of the bending section 112 .
  • the measurement controller 810 calculates the position of the base end joint 112b of the bending section 112 connected to the distal end portion 119a from the calculated position of the distal end portion 119a of the internal soft portion 119 .
  • the position calculated by the measurement controller 810 may be a relative position or an absolute position. Measurement controller 810 may also calculate the positions of joints 112j other than distal joint 112a and proximal joint 112b, if possible. Next, the measurement controller 810 executes step S160.
  • FIG. 14 shows the estimated position of the joint 112j of the bending portion 112.
  • the measurement controller 810 estimates the position of the joint 112j of the bending section 112 in step S160.
  • Measurement controller 810 estimates the position of joint 112j of bending portion 112 other than distal joint 112a and proximal joint 112b based on the positions of distal joint 112a and proximal joint 112b. Note that the measurement controller 810 may estimate the position of the other joint 112j based on the position of one of the distal joint 112a and the proximal joint 112b.
  • the measurement controller 810 uses the structural information of the bending portion 112 as a constraint (also referred to as a constraint condition), and performs convergence calculation using, for example, inverse kinematics calculation to determine the shape of the bending portion 112 from the shape information of the bending portion 112. Estimate the position of joint 112j.
  • the structural information of the bending portion 112 includes the structure and number of joint rings (bending pieces) 115, the relative positional relationship of a plurality of joints 112j, and the like.
  • measurement controller 810 executes step S170.
  • FIG. 15 is a diagram for explaining the position of the joint 112j of the bending portion 112.
  • the “position of the joint 112j” is defined, for example, by the intersection point C between the center plane CS, which is a plane parallel to the UD direction and includes the center axis of the bending portion 112, and the rotation axis of the joint 112j.
  • the position of the joint 112j (the first turning pin 115p or the second turning pin 115q) of the bending portion 112 can be calculated from the intersection C.
  • the position of the joint 112j may be defined by the three-dimensional coordinates of the joint 112j (the first pivot pin 115p or the second pivot pin 115q) instead of the intersection point C between the central plane CS and the rotation axis.
  • a dotted line L1 in FIG. 15 is an imaginary line connecting the joints 112j (intersection point C) of the bending portion 112 that bends ideally when the control parameters (wire traction amount, wire tension, etc.) are set to the adjustment value V. is a line.
  • a line L2 indicated by a solid line in FIG. 15 is a line connecting the joints 112j (intersection point C) of the bending portion 112 based on the estimated positions of the joints 112j of the bending portion 112 . That is, the line L2 is a line connecting the joints 112j (intersection points C) of the bending portion 112 when the control parameters (wire traction amount, wire tension, etc.) are set to the adjustment values V.
  • FIG. The curvature of the curved portion 112 shown in FIG. 15 is not substantially uniform.
  • FIG. 16 is a diagram showing the curved portion 112 in a non-uniformly oriented state. Since the joints 112j of the bending portion 112 are worn or deformed due to deterioration over time, even when the bending portion 112 is straightened, the node ring 115 of the bending portion 112 remains at the assumed initial position. It becomes difficult to return. In this case, even if the bending portion 112 is straight, the joints 112j (intersection points C) of the bending portion 112 are not aligned in a straight line.
  • the measurement controller 810 can detect the presence or absence and degree of non-uniform orientation of the bending portion 112 by comparing the line L1 and the line L2 shown in FIG. Here, the measurement controller 810 has in advance information on the line L1 when the control parameter is set to a predetermined value.
  • step S170 the measurement controller 810 adjusts control parameters (such as wire traction amount and wire tension) for bending the bending portion 112 in the UD direction based on the estimated positions of the joints 112j of the bending portion 112 (calibration )do.
  • control parameters such as wire traction amount and wire tension
  • the measurement controller 810 selects the optimal control parameter for the estimated position of the joint 112j from, for example, a plurality of control parameters prepared in advance.
  • the measurement controller 810 uses a learned model (machine learning model) in which the relationship between the position of the joint 112j of the bending section 112 and the control parameter is learned in advance by machine learning, and determines the optimal control parameter for the estimated position of the joint 112j. may be selected.
  • the measurement controller 810 may refer to a database in which the relationships between the positions of the joints 112j of the bending section 112 and the control parameters are recorded in advance to select the optimum control parameters.
  • the measurement controller 810 executes step S190 and ends the control.
  • the measurement controller 810 performs steps S110 to S170 a plurality of times while changing the bending shape of the bending portion 112 to improve the accuracy of adjustment (calibration) of control parameters (wire pulling amount, wire tension, etc.). can be enhanced.
  • FIG. 17 is a diagram showing the curved shape of the curved portion 112 that changes over time.
  • the measurement controller 810 may observe the curved shape of the curved portion 112 that changes over time and estimate the position of the joint 112j of the curved portion 112 .
  • the measurement controller 810 can use conditions calculated using observation results (time history information) of observing the bending portion 112 as additional constraint conditions, so that the positions of the joints 112j of the bending portion 112 can be determined more quickly and accurately. can be estimated.
  • the electric endoscope system 1000 adjusts control parameters for bending the bending section 112 in the LR direction.
  • the electric endoscope system 1000 even if the bending shape of the bending portion 112 changes due to aged deterioration or the like, the bending shape of the bending portion 112 (the position of the joint 112j) can be adjusted. can be easily estimated. Based on the estimated position of the joint 112j, the electric endoscope system 1000 can adjust (calibrate) the control parameters (wire traction amount, wire tension, etc.) necessary to form the bending portion 112 into a predetermined bending shape. .
  • the curved shape of the bending section 112 (the position of the joint 112j) can be easily estimated without using a large-scale measuring device such as an X-ray device.
  • the electric endoscope system 1000 can adjust (calibrate) control parameters (wire pulling amount, wire tension, etc.) in consideration of changes in the bending shape of the bending portion 112 due to aged deterioration or the like.
  • control parameters (wire traction amount, wire tension, etc.) is performed for reasons such as a high degree of non-uniform orientation of the bending section 112, for example. If the endoscope 100 cannot be replaced, replacement of the endoscope 100 can be prompted.
  • the electric endoscope system 1000B has the same configuration as the electric endoscope system 1000 of the first embodiment.
  • the electric endoscope system 1000B differs only in operation from the electric endoscope system 1000 of the first embodiment.
  • step S100 the measurement controller 810 starts control after performing initialization (step S100).
  • step S110 the measurement controller 810 (mainly processor 811) executes step S110.
  • the measurement controller 810 performs steps S110 to S140 in the same manner as in the first embodiment. Next, the measurement controller 810 executes step S150.
  • the measurement controller 810 estimates the center line CL of the bending portion 112 from the contour of the bending portion 112 measured as the shape information of the bending portion 112 in step S150. Specifically, the measurement controller 810 calculates a normal vector to the contour of the bending portion 112 from a tangent vector to the contour of the bending portion 112 . The measurement controller 810 estimates the center line CL of the bending portion 112 from the normal vector on the contour of the bending portion 112 .
  • the measurement controller 810 preferably uses the outer contour of the curved shape of the curved portion 112 in estimating the centerline CL. This is because wrinkles are generated in the outer sheath 118 on the inner side of the curved shape of the curved portion 112 , and it is difficult to accurately extract the outline of the curved portion 112 .
  • FIG. 19 is a diagram showing the estimated centerline CL.
  • the measurement controller 810 executes step S160.
  • the measurement controller 810 estimates the position of the joint 112j of the bending section 112 in step S160, as in the first embodiment.
  • the measurement controller 810 estimates the position of the joint 112j of the bending section 112 based on the centerline CL in addition to the distal joint 112a and the proximal joint 112b.
  • the measurement controller 810 can estimate the position of the joint 112j of the bending section 112 more quickly and accurately by using the condition calculated using the centerline CL as an additional constraint condition.
  • FIG. 20 is a diagram showing the length D of the curved portion 112 calculated from the centerline CL.
  • the measurement controller 810 calculates a line segment of the distal joint 112a and the proximal joint 112b as the length D of the bending portion 112 on the estimated center line CL.
  • a length D1 shown in FIG. 20 is an ideal length D of the curved portion 112 that has not deteriorated over time.
  • the length D2 shown in FIG. 20 is the length D of the curved portion 112 calculated from the estimated centerline CL.
  • the measurement controller 810 can detect the presence or absence and degree of uneven orientation of the curved portion 112 by comparing the length D1 and the length D2 of the curved portion 112 in the linear state.
  • the measurement controller 810 can predict that the curved portion 112 is in a non-uniformly oriented state when the difference DE between the length D1 and the length D2 is large.
  • the measurement controller 810 has in advance information on the length D1 of the bending portion 112 in the straight line state.
  • the measurement controller 810 may calculate the length D2 using the positions of the distal joint 112a and the proximal joint 112b of the bending portion 112 calculated in step S140 without using the center line CL.
  • the measurement controller 810 executes step S170 onwards and ends the control.
  • the electric endoscope system 1000B even if the bending shape of the bending portion 112 changes due to aged deterioration or the like, the bending shape of the bending portion 112 (the position of the joint 112j) can be adjusted. can be easily estimated.
  • the electric endoscope system 1000 can estimate the center line CL of the bending section 112 and estimate the positions of the joints 112j of the bending section 112 more quickly and accurately.
  • the observation device 700 includes the imaging device 720 having a camera, but the aspect of the observation device 700 is not limited to this.
  • the observation device 700 may be any device capable of obtaining observation results that can measure the shape information of the bending portion 112, and may be, for example, a scanner device.
  • the program in each embodiment may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the “computer system” includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • the program may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case.
  • the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
  • the present invention can be applied to medical systems for observing and treating the inside of hollow organs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

This manipulator system comprises: a manipulator that is provided with a bending part that has a plurality of joints and a bending wire that bends the bending part; a drive device that drives the bending wire; an observation device for observing the bending part; and a measurement device that measures shape information of the bending part from an observation result of the observation device and estimates the positions of the joints from the shape information of the bending part.

Description

マニピュレータシステム、計測装置およびマニピュレータの制御方法MANIPULATOR SYSTEM, MEASURING DEVICE, AND MANIPULATOR CONTROL METHOD
 本発明は、マニピュレータシステム、計測装置およびマニピュレータの制御方法に関する。 The present invention relates to a manipulator system, a measuring device, and a manipulator control method.
 従来、消化管などの管腔器官内の観察や開腹手術における処置や観察や処置にマニピュレータシステムが使用されている。マニピュレータシステムは、電動駆動可能な湾曲部を備える。湾曲部は、回動可能な関節を有する。 Conventionally, manipulator systems have been used for observation inside hollow organs such as the gastrointestinal tract and for procedures, observations, and procedures in laparotomy. The manipulator system comprises a motorized bendable part. The bending portion has a rotatable joint.
 湾曲部の関節は、経年劣化等に伴って摩耗したり変形したりする。また、湾曲部の関節を駆動するワイヤは、経年劣化等に伴って伸びる。これらの理由により、ワイヤ牽引量やワイヤ張力を所定の値とした場合における湾曲部の湾曲形状は、経年劣化等に伴って変化する。 The joints in the curved part wear and deform as they age. Also, the wires that drive the joints of the bending portion are elongated due to deterioration over time. For these reasons, the curved shape of the curved portion when the wire pulling amount and the wire tension are set to predetermined values changes with deterioration over time and the like.
 マニピュレータシステムは、湾曲部を所定の湾曲形状とするために必要なワイヤ牽引量やワイヤ張力を調整(キャリブレーション)することで、上述したような経年劣化等に伴う湾曲部の湾曲形状の変化を補正できる。 The manipulator system adjusts (calibrates) the amount of wire pulling and wire tension required to make the bending portion into a predetermined curved shape, thereby preventing changes in the bending shape of the bending portion due to deterioration over time as described above. can be corrected.
 湾曲部を所定の湾曲形状とするために必要なワイヤ牽引量やワイヤ張力を調整(キャリブレーション)するためには、ワイヤ牽引量やワイヤ張力を所定の値とした場合における湾曲部の湾曲形状を正確に計測する必要がある。 In order to adjust (calibrate) the amount of wire traction and wire tension required to make the bending portion a predetermined curved shape, the curved shape of the bending portion when the amount of wire traction and wire tension are set to predetermined values is determined. It is necessary to measure accurately.
 特許文献1には、湾曲部等の湾曲形状を把握する内視鏡挿入部形状把握システムが記載されている。特許文献1に記載された内視鏡挿入部形状把握システムは、内視鏡に内蔵されたセンサから取得した情報により湾曲部等の湾曲形状を算出する。 Patent Document 1 describes an endoscope insertion portion shape grasping system that grasps a curved shape such as a curved portion. An endoscope insertion portion shape grasping system described in Patent Literature 1 calculates a curved shape of a curved portion or the like based on information obtained from a sensor built into the endoscope.
日本国特許第4708963号Japanese Patent No. 4708963
 しかしながら、特許文献1に記載された内視鏡挿入部形状把握システムは、湾曲部等の湾曲形状の算出において、経年劣化等に伴う湾曲部の湾曲形状の変化は考慮されていない。また、特許文献1に記載された内視鏡挿入部形状把握システムは、内視鏡にセンサを内蔵する必要があり、センサを内蔵しない内視鏡には適用することができない。 However, the endoscope insertion portion shape grasping system described in Patent Literature 1 does not consider changes in the curved shape of the curved portion due to deterioration over time, etc. in calculating the curved shape of the curved portion. Moreover, the endoscope insertion portion shape grasping system described in Patent Literature 1 requires a built-in sensor in the endoscope, and cannot be applied to an endoscope without a built-in sensor.
 上記事情を踏まえ、本発明は、経年劣化等に伴う湾曲部の湾曲形状の変化があった場合であっても、湾曲部の湾曲形状を容易に計測できるマニピュレータシステム、計測装置およびマニピュレータの制御方法を提供することを目的とする。 In view of the above circumstances, the present invention provides a manipulator system, a measuring device, and a manipulator control method that can easily measure the curved shape of a curved portion even when the curved shape of the curved portion changes due to deterioration over time. intended to provide
 上記課題を解決するために、この発明は以下の手段を提案している。
 本開示の第一の態様に係るマニピュレータシステムは、複数の関節を有する湾曲部と、前記湾曲部を曲げる湾曲ワイヤと、を備えるマニピュレータと、前記湾曲ワイヤを駆動する駆動装置と、前記湾曲部を観察する観察装置と、前記観察装置の観察結果から前記湾曲部の形状情報を計測して、前記湾曲部の前記形状情報から前記関節の位置を推定する計測装置と、を備える。
In order to solve the above problems, the present invention proposes the following means.
A manipulator system according to a first aspect of the present disclosure includes a manipulator including a bending portion having a plurality of joints, a bending wire that bends the bending portion, a driving device that drives the bending wire, and the bending portion. An observation device for observation, and a measurement device for measuring shape information of the bending portion from observation results of the observation device and estimating the position of the joint from the shape information of the bending portion.
 本開示の第二の態様に係る計測装置は、複数の関節を有する湾曲部と、前記湾曲部を曲げる湾曲ワイヤと、を備えるマニピュレータの前記湾曲部の観察結果を取得し、前記観察結果から前記湾曲部の形状情報を計測し、前記湾曲部の前記形状情報から前記関節の位置を推定する。 A measuring device according to a second aspect of the present disclosure acquires an observation result of the bending portion of a manipulator including a bending portion having a plurality of joints and a bending wire for bending the bending portion, and obtains the observation result from the observation result. Shape information of the bending portion is measured, and the position of the joint is estimated from the shape information of the bending portion.
 本開示の第三の態様に係るマニピュレータの制御方法は、複数の関節を有する湾曲部と、前記湾曲部を曲げる湾曲ワイヤと、を備えるマニピュレータを制御する方法であって、前記湾曲部の観察結果から前記湾曲部の形状情報を計測する計測工程と、前記形状情報に基づいて、前記湾曲ワイヤを駆動する制御パラメータを更新する更新工程と、を備える。 A manipulator control method according to a third aspect of the present disclosure is a method of controlling a manipulator including a bending portion having a plurality of joints and a bending wire for bending the bending portion, wherein an observation result of the bending portion and an updating step of updating control parameters for driving the bending wire based on the shape information.
 本発明のマニピュレータシステム、計測装置およびマニピュレータの制御方法によれば、経年劣化等に伴う湾曲部の湾曲形状の変化があった場合であっても、湾曲部の湾曲形状を容易に計測できる。 According to the manipulator system, the measuring device, and the manipulator control method of the present invention, the curved shape of the curved portion can be easily measured even when the curved shape of the curved portion changes due to deterioration over time.
第一実施形態に係る電動内視鏡システムの全体図である。1 is an overall view of an electric endoscope system according to a first embodiment; FIG. 術者によって使用される同電動内視鏡システムの内視鏡と操作装置を示す図である。FIG. 2 is a diagram showing an endoscope and an operating device of the electric endoscope system used by an operator; 同内視鏡の挿入部を示す図である。It is a figure which shows the insertion part of the same endoscope. 同内視鏡の湾曲部の一部を断面図として示す図である。It is a figure which shows a part of bending part of the same endoscope as sectional drawing. 図4に示す領域Eにおける同湾曲部の節輪の拡大図である。FIG. 5 is an enlarged view of the node ring of the bending portion in the region E shown in FIG. 4; 図4および図5のC1-C1線に沿う同湾曲部の断面図である。FIG. 6 is a cross-sectional view of the curved portion taken along line C1-C1 of FIGS. 4 and 5; 同電動内視鏡システムの駆動装置の機能ブロック図である。It is a functional block diagram of the drive device of the electric endoscope system. 同電動内視鏡システムの映像制御装置の機能ブロック図である。3 is a functional block diagram of a video control device of the electric endoscope system; FIG. 同電動内視鏡システムのメインコントローラの機能ブロック図である。It is a functional block diagram of a main controller of the electric endoscope system. 同電動内視鏡システムの計測装置の機能ブロック図である。It is a functional block diagram of a measuring device of the electric endoscope system. 同計測装置の計測コントローラの制御フローチャートである。It is a control flowchart of the measurement controller of the same measurement device. 抽出された湾曲部のボクセルデータを示す図である。FIG. 4 is a diagram showing extracted voxel data of a curved portion; 算出された同湾曲部の先端関節および基端関節の位置を示す図である。FIG. 4 is a diagram showing the calculated positions of the distal joint and the proximal joint of the bending portion. 推定された同湾曲部の関節の位置である。It is the position of the joint of the same curved part estimated. 同湾曲部の関節の位置を説明する図である。It is a figure explaining the position of the joint of the same bending part. 不均等配向状態である同湾曲部を示す図である。FIG. 10 is a diagram showing the curved portion in a non-uniformly oriented state; 時間の経過とともに変化する同湾曲部の湾曲形状を示す図である。It is a figure which shows the curved shape of the same bending part which changes with progress of time. 第二実施形態に係る電動内視鏡システムの計測装置の計測コントローラの制御フローチャートである。9 is a control flowchart of the measurement controller of the measurement device of the electric endoscope system according to the second embodiment; 推定された中心線を示す図である。FIG. 11 shows an estimated centerline; 同中心線から算出された湾曲部の長さを示す図である。It is a figure which shows the length of the curved part calculated from the same center line.
(第一実施形態)
 本発明の第一実施形態に係る電動内視鏡システム1000について、図1から図17を参照して説明する。図1は、本実施形態に係る電動内視鏡システム1000の全体図である。電動内視鏡システム1000は、マニピュレータシステムの一例である。
(First embodiment)
An electric endoscope system 1000 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 17. FIG. FIG. 1 is an overall view of an electric endoscope system 1000 according to this embodiment. The electric endoscope system 1000 is an example of a manipulator system.
[電動内視鏡システム1000]
 電動内視鏡システム1000は、図1に示すように、患者Pの体内を観察および処置する医療システムである。また、電動内視鏡システム1000は、内視鏡100をメンテナンスする医療システムである。電動内視鏡システム1000は、内視鏡100と、駆動装置200と、操作装置300と、処置具400と、映像制御装置500と、観察装置700と、計測装置800と、表示装置900と、を備える。
[Electric endoscope system 1000]
The electric endoscope system 1000 is a medical system for observing and treating the inside of the patient P, as shown in FIG. Also, the electric endoscope system 1000 is a medical system that maintains the endoscope 100 . The electric endoscope system 1000 includes an endoscope 100, a drive device 200, an operation device 300, a treatment instrument 400, an image control device 500, an observation device 700, a measurement device 800, a display device 900, Prepare.
 内視鏡100は、患者Pの管腔内に挿入して患部を観察および処置する装置である。内視鏡100は、駆動装置200と着脱自在である。内視鏡100の内部には内部経路101が形成されている。以降の説明において、内視鏡100において、患者Pの管腔内に挿入される側を「先端側(A1)」、駆動装置200に装着される側を「基端側(A2)」という。 The endoscope 100 is a device that is inserted into the lumen of the patient P to observe and treat the affected area. The endoscope 100 is detachable from the driving device 200 . An internal path 101 is formed inside the endoscope 100 . In the following description, in the endoscope 100, the side inserted into the lumen of the patient P is called the "distal side (A1)", and the side attached to the driving device 200 is called the "base end side (A2)".
 駆動装置200は、内視鏡100および操作装置300と着脱自在に接続される。駆動装置200は、操作装置300に入力された操作に基づき、内蔵するモータを駆動して内視鏡100を電動駆動する。また、駆動装置200は、操作装置300に入力された操作に基づき、内蔵するポンプ等を駆動して内視鏡100に送気吸引を実施させる。 The driving device 200 is detachably connected to the endoscope 100 and the operating device 300 . The driving device 200 electrically drives the endoscope 100 by driving a built-in motor based on an operation input to the operating device 300 . In addition, the drive device 200 drives a built-in pump or the like based on an operation input to the operation device 300 to cause the endoscope 100 to perform air supply and suction.
 操作装置300は、操作ケーブル301を経由して駆動装置200と着脱自在に接続される。操作装置300は、有線通信ではなく無線通信により駆動装置200と通信可能であってもよい。術者Sは、操作装置300を操作することにより、内視鏡100を電動駆動できる。 The operation device 300 is detachably connected to the driving device 200 via an operation cable 301. The operation device 300 may be capable of communicating with the driving device 200 by wireless communication instead of wired communication. The operator S can electrically drive the endoscope 100 by operating the operating device 300 .
 処置具400は、内視鏡100の内部経路101を挿通して患者Pの管腔内に挿入して患部を処置する装置である。図1においては、処置具400は、延長チャンネルチューブ130を経由して内視鏡100の内部経路101に挿入されている。処置具400は、延長チャンネルチューブ130を経由せず、鉗子口126から内視鏡100の内部経路101に直接挿入されてもよい。 The treatment instrument 400 is a device that is inserted through the internal path 101 of the endoscope 100 and inserted into the lumen of the patient P to treat the affected area. In FIG. 1 , the treatment instrument 400 is inserted into the internal pathway 101 of the endoscope 100 via the extension channel tube 130 . The treatment instrument 400 may be inserted directly into the internal path 101 of the endoscope 100 from the forceps port 126 without passing through the extension channel tube 130 .
 映像制御装置500は、内視鏡100と着脱自在に接続されており、内視鏡100から撮像画像を取得する。映像制御装置500は、内視鏡100から取得した撮像画像や操作者に対する情報提供を目的とするGUI画像やCG画像を表示装置900に表示させる。 The image control device 500 is detachably connected to the endoscope 100 and acquires captured images from the endoscope 100 . The image control device 500 causes the display device 900 to display captured images acquired from the endoscope 100 and GUI images and CG images for the purpose of providing information to the operator.
 駆動装置200と映像制御装置500とは、電動内視鏡システム1000を制御する制御装置600を構成する。制御装置600は、ビデオプリンタなどの周辺機器をさらに備えてもよい。駆動装置200と映像制御装置500とは、一体の装置であってもよい。 The driving device 200 and the image control device 500 constitute a control device 600 that controls the electric endoscope system 1000 . Controller 600 may further include peripherals such as a video printer. The driving device 200 and the video control device 500 may be an integrated device.
 表示装置900は、LCDなどの画像を表示可能な装置である。表示装置900は、表示ケーブル901を経由して映像制御装置500に接続されている。 The display device 900 is a device capable of displaying images such as an LCD. A display device 900 is connected to the video control device 500 via a display cable 901 .
 観察装置700および計測装置800は、内視鏡100をメンテナンスするサービス拠点に配置される装置である。なお、制御装置600(駆動装置200と映像制御装置500の一方でもよい)が十分な演算性能を有している場合は、制御装置600を計測装置800として使用してもよい。 The observation device 700 and the measurement device 800 are devices arranged at a service base for maintenance of the endoscope 100 . Note that if the control device 600 (which may be either the drive device 200 or the image control device 500) has sufficient computational performance, the control device 600 may be used as the measuring device 800. FIG.
 内視鏡100および観察装置700は、サービス拠点の設置台STに設置される。なお、内視鏡100および観察装置700は、サービス拠点ではなく病院の手術室に設置してもよい。その場合、内視鏡100および観察装置700は、例えば図2に示す手術台Tに設置される。 The endoscope 100 and the observation device 700 are installed on the installation table ST at the service base. Note that the endoscope 100 and the observation device 700 may be installed in the operating room of a hospital instead of the service base. In that case, the endoscope 100 and the observation device 700 are installed, for example, on the operating table T shown in FIG.
 図2は、術者Sによって使用される内視鏡100と操作装置300を示す図である。
 術者Sは、例えば、表示装置900に表示された撮像画像を観察しながら、患者Pの肛門から管腔内に挿入させた内視鏡100を右手Rで操作しながら、操作装置300を左手Lで操作する。内視鏡100と操作装置300とが分離しているため、術者Sは内視鏡100と操作装置300とを互いに影響を受けることなく独立して操作できる。
FIG. 2 is a diagram showing the endoscope 100 and the operating device 300 used by the operator S. As shown in FIG.
For example, while observing the captured image displayed on the display device 900, the operator S operates the endoscope 100 inserted into the lumen from the anus of the patient P with the right hand R, and operates the operation device 300 with the left hand. Operate with L. Since the endoscope 100 and the operating device 300 are separated, the operator S can operate the endoscope 100 and the operating device 300 independently without being affected by each other.
[内視鏡100]
 内視鏡100は、図1に示すように、挿入部110と、連結部120と、体外軟性部140と、着脱部150と、湾曲ワイヤ160(図6参照)と、内蔵物170(図6参照)と、を備える。挿入部110と、連結部120と、体外軟性部140と、着脱部150と、は先端側から順に接続されている。連結部120は、延長チャンネルチューブ130を接続できる。
[Endoscope 100]
As shown in FIG. 1, the endoscope 100 includes an insertion section 110, a connecting section 120, an extracorporeal flexible section 140, an attachment/detachment section 150, a bending wire 160 (see FIG. 6), and an internal object 170 (see FIG. 6). See) and The insertion section 110, the connecting section 120, the extracorporeal soft section 140, and the detachable section 150 are connected in order from the distal end side. The connection part 120 can connect the extension channel tube 130 .
 図3は、内視鏡100の挿入部110を示す図である。
 内視鏡100の内部には、挿入部110の先端から着脱部150の基端まで内視鏡100の長手方向Aに沿って延びる内部経路101が形成されている。湾曲ワイヤ160および内蔵物170は、内部経路101に挿入されている。
FIG. 3 is a diagram showing the insertion section 110 of the endoscope 100. As shown in FIG.
An internal path 101 extending along the longitudinal direction A of the endoscope 100 from the distal end of the insertion section 110 to the proximal end of the detachable section 150 is formed inside the endoscope 100 . Bent wire 160 and internals 170 are inserted into internal passageway 101 .
 内蔵物170は、チャンネルチューブ171と、送気吸引チューブ172(図7参照)と、撮像ケーブル173と、ライトガイド174と、を有する。 The built-in object 170 has a channel tube 171, an air supply/suction tube 172 (see FIG. 7), an imaging cable 173, and a light guide 174.
[挿入部110]
 挿入部110は、管腔内に挿入可能な細長な長尺部材である。挿入部110は、先端部111と、湾曲部112と、体内軟性部119と、を有する。先端部111と、湾曲部112と、体内軟性部119と、は先端側から順に接続されている。
[Insert part 110]
The insertion section 110 is an elongated elongated member that can be inserted into a lumen. The insertion portion 110 has a distal end portion 111 , a bending portion 112 and an intracorporeal soft portion 119 . The distal end portion 111, the bending portion 112, and the internal soft portion 119 are connected in order from the distal end side.
 先端部111は、金属等により略円筒形状に形成されている。先端部111は、図3に示すように、開口部111aと、照明部111bと、撮像部111cと、を有する。開口部111aは、チャンネルチューブ171と連通する開口である。図3に示すように、チャンネルチューブ171を挿通する処置具400の先端に設けられた把持鉗子などの処置部410が開口部111aから突没する。 The distal end portion 111 is formed of metal or the like into a substantially cylindrical shape. As shown in FIG. 3, the distal end portion 111 has an opening portion 111a, an illumination portion 111b, and an imaging portion 111c. The opening 111 a is an opening that communicates with the channel tube 171 . As shown in FIG. 3, a treatment section 410 such as grasping forceps provided at the distal end of the treatment instrument 400 through which the channel tube 171 is inserted protrudes from the opening 111a.
 照明部111bは、照明光を導光するライトガイド174と接続されており、撮像対象を照明する照明光を出射する。撮像部111cは、CMOS等の撮像素子を備えており、撮像対象を撮像する。撮像信号は、撮像ケーブル173を経由して映像制御装置500に送られる。 The illumination unit 111b is connected to a light guide 174 that guides illumination light, and emits illumination light that illuminates the imaging target. The imaging unit 111c includes an imaging element such as a CMOS, and images an object to be imaged. The imaging signal is sent to the video control device 500 via the imaging cable 173 .
 図4は、湾曲部112の一部を断面図として示す図である。
 湾曲部112は、複数の節輪(湾曲駒ともいう)115と、複数の節輪115の先端に連結された先端部116と、アウターシース118(図3参照)と、を有する。先端部116、複数の節輪115および体内軟性部119の先端部119aは、アウターシース118の内部において長手方向Aに連結されている。なお、湾曲部112が有する節輪115の形状および数は、図4に示す節輪115の形状および数に限定されない。
FIG. 4 is a diagram showing a part of the bending portion 112 as a cross-sectional view.
The bending portion 112 has a plurality of joint rings (also referred to as bending pieces) 115, a distal end portion 116 connected to the distal ends of the plurality of joint rings 115, and an outer sheath 118 (see FIG. 3). The distal end portion 116 , the plurality of node rings 115 , and the distal end portion 119 a of the internal soft portion 119 are connected in the longitudinal direction A inside the outer sheath 118 . Note that the shape and number of the node rings 115 included in the bending portion 112 are not limited to the shape and number of the node rings 115 shown in FIG.
 図5は、図4に示す領域Eにおける節輪115の拡大図である。
 節輪115は、金属で形成された短筒状の部材である。複数の節輪115は、隣り合う節輪115の内部空間が連続する空間となるように連結されている。
FIG. 5 is an enlarged view of node ring 115 in region E shown in FIG.
The node ring 115 is a short cylindrical member made of metal. The plurality of node rings 115 are connected so that the internal spaces of adjacent node rings 115 are continuous spaces.
 隣り合う節輪115は、第一回動ピン115pによって、長手方向Aに対して垂直な上下方向(「UD方向」ともいう)に回動可能に連結されている。節輪(湾曲駒)115の第一回動ピン115pは、湾曲部112の関節112jの一例である。 The adjacent node rings 115 are connected by a first rotation pin 115p so as to be rotatable in the vertical direction (also referred to as the "UD direction") perpendicular to the longitudinal direction A. The first turning pin 115p of the node ring (bending piece) 115 is an example of the joint 112j of the bending portion 112 .
 節輪115は、先端側の第一節輪115aと、基端側の第二節輪115bと、を有する。第一節輪115aと第二節輪115bとは、第二回動ピン115qによって、長手方向AおよびUD方向に対して垂直な左右方向(「LR方向」ともいう)に回動可能に連結されている。節輪(湾曲駒)115の第二回動ピン115qは、湾曲部112の関節112jの一例である。 The node ring 115 has a first node ring 115a on the distal side and a second node ring 115b on the proximal side. The first joint ring 115a and the second joint ring 115b are connected by a second pivot pin 115q so as to be rotatable in the left-right direction (also referred to as the "LR direction") perpendicular to the longitudinal direction A and the UD direction. ing. The second rotation pin 115q of the node ring (bending piece) 115 is an example of the joint 112j of the bending portion 112. As shown in FIG.
 節輪(湾曲駒)115の第一回動ピン115pは、LR方向に延びる回転軸を中心に回動可能である。節輪(湾曲駒)115の第二回動ピン115qは、UD方向に延びる回転軸を中心に回動可能である。 A first rotating pin 115p of the node ring (bending piece) 115 is rotatable around a rotating shaft extending in the LR direction. A second rotation pin 115q of the node ring (bending piece) 115 is rotatable around a rotation axis extending in the UD direction.
 第一節輪115aと第二節輪115bとが第一回動ピン115pと第二回動ピン115qによって交互に連結されており、湾曲部112は所望の方向に湾曲自在である。 The first joint ring 115a and the second joint ring 115b are alternately connected by the first turning pin 115p and the second turning pin 115q, and the bending portion 112 can be bent in a desired direction.
 以降の説明において、先端部116と連結される湾曲部112の関節112j(第一回動ピン115pまたは第二回動ピン115q)を、先端関節(先端部ともいう)112aとする。また、体内軟性部119の先端部119aと連結される湾曲部112の関節112j(第一回動ピン115pまたは第二回動ピン115q)を、基端関節(基端部ともいう)112bとする。 In the following description, the joint 112j (first pivot pin 115p or second pivot pin 115q) of the bending section 112 that is connected to the distal section 116 is referred to as the distal joint (also referred to as the distal section) 112a. Also, the joint 112j (the first pivot pin 115p or the second pivot pin 115q) of the bending portion 112 that is connected to the distal end portion 119a of the internal soft portion 119 is referred to as the proximal joint (also referred to as the proximal portion) 112b. .
 図6は、図4および図5のC1-C1線に沿う湾曲部112の断面図である。
 第二節輪115bの内周面には、上ワイヤガイド115uと、下ワイヤガイド115dと、が形成されている。上ワイヤガイド115uと下ワイヤガイド115dとは、長手方向Aの中心軸Oを挟んでUD方向の両側に配置されている。第一節輪115aの内周面には、左ワイヤガイド115lと、右ワイヤガイド115rと、が形成されている。左ワイヤガイド115lと右ワイヤガイド115rとは、長手方向Aの中心軸Oを挟んでLR方向の両側に配置されている。
FIG. 6 is a cross-sectional view of the curved portion 112 taken along line C1-C1 of FIGS. 4 and 5. FIG.
An upper wire guide 115u and a lower wire guide 115d are formed on the inner peripheral surface of the second node ring 115b. The upper wire guide 115u and the lower wire guide 115d are arranged on both sides in the UD direction with the central axis O in the longitudinal direction A interposed therebetween. A left wire guide 115l and a right wire guide 115r are formed on the inner peripheral surface of the first node ring 115a. The left wire guide 115l and the right wire guide 115r are arranged on both sides in the LR direction with the central axis O in the longitudinal direction A interposed therebetween.
 上ワイヤガイド115uと、下ワイヤガイド115dと、左ワイヤガイド115lと、右ワイヤガイド115rとには、湾曲ワイヤ160が挿通する貫通孔が長手方向Aに沿って形成されている。 Through holes through which the bending wire 160 is inserted are formed along the longitudinal direction A in the upper wire guide 115u, the lower wire guide 115d, the left wire guide 115l, and the right wire guide 115r.
 湾曲ワイヤ160は、湾曲部112を曲げるワイヤである。湾曲ワイヤ160は、内部経路101を通って着脱部150まで延びている。湾曲ワイヤ160は、図4および図6に示すように、上湾曲ワイヤ161uと、下湾曲ワイヤ161dと、左湾曲ワイヤ161lと、右湾曲ワイヤ161rと、4本のワイヤシース161sと、を有する。 A bending wire 160 is a wire that bends the bending portion 112 . A bending wire 160 extends through the internal path 101 to the detachable portion 150 . 4 and 6, the bending wire 160 has an upper bending wire 161u, a lower bending wire 161d, a left bending wire 161l, a right bending wire 161r, and four wire sheaths 161s.
 上湾曲ワイヤ161uと、下湾曲ワイヤ161dと、左湾曲ワイヤ161lと、右湾曲ワイヤ161rとは、図4に示すように、それぞれ別々のワイヤシース161sを挿通している。ワイヤシース161sの先端は、湾曲部112の基端の節輪115に取り付けられている。ワイヤシース161sは、着脱部150まで延びている。 As shown in FIG. 4, the upper bending wire 161u, the lower bending wire 161d, the left bending wire 161l, and the right bending wire 161r are each inserted through separate wire sheaths 161s. A distal end of the wire sheath 161 s is attached to the node ring 115 at the proximal end of the bending portion 112 . The wire sheath 161 s extends to the detachable portion 150 .
 上湾曲ワイヤ161uおよび下湾曲ワイヤ161dは、湾曲部112をUD方向に曲げるワイヤである。上湾曲ワイヤ161uは、上ワイヤガイド115uを挿通している。下湾曲ワイヤ161dは、下ワイヤガイド115dを挿通している。 The upward bending wire 161u and the downward bending wire 161d are wires for bending the bending portion 112 in the UD direction. The upper bending wire 161u passes through the upper wire guide 115u. The lower bending wire 161d is inserted through the lower wire guide 115d.
 上湾曲ワイヤ161uと下湾曲ワイヤ161dの先端は、図4に示すように、湾曲部112の先端の先端部116に固定されている。先端部116に固定された上湾曲ワイヤ161uと下湾曲ワイヤ161dの先端は、長手方向Aの中心軸Oを挟んでUD方向の両側に配置されている。 The tips of the upper bending wire 161u and the lower bending wire 161d are fixed to the distal end portion 116 of the bending portion 112, as shown in FIG. The tips of the upper bending wire 161u and the lower bending wire 161d fixed to the tip portion 116 are arranged on both sides in the UD direction with the central axis O in the longitudinal direction A interposed therebetween.
 左湾曲ワイヤ161lおよび右湾曲ワイヤ161rは、湾曲部112をLR方向に曲げるワイヤである。左湾曲ワイヤ161lは、左ワイヤガイド115lを挿通している。右湾曲ワイヤ161rは、右ワイヤガイド115rを挿通している。 The left bending wire 161l and the right bending wire 161r are wires for bending the bending portion 112 in the LR direction. The left bending wire 161l passes through the left wire guide 115l. The right bending wire 161r passes through the right wire guide 115r.
 左湾曲ワイヤ161lと右湾曲ワイヤ161rの先端は、図4に示すように、湾曲部112の先端部116に固定されている。先端部116に固定された左湾曲ワイヤ161lと右湾曲ワイヤ161rの先端は、長手方向Aの中心軸Oを挟んでLR方向の両側に配置されている。 The distal ends of the left bending wire 161l and the right bending wire 161r are fixed to the distal end portion 116 of the bending portion 112, as shown in FIG. The tips of the left bending wire 161l and the right bending wire 161r fixed to the tip portion 116 are arranged on both sides in the LR direction with the central axis O in the longitudinal direction A interposed therebetween.
 湾曲部112は、湾曲ワイヤ160(上湾曲ワイヤ161u,下湾曲ワイヤ161d,左湾曲ワイヤ161l,右湾曲ワイヤ161r)をそれぞれ牽引または弛緩することによって、所望の方向に湾曲自在である。 The bending portion 112 can be bent in a desired direction by pulling or relaxing the bending wires 160 (the upper bending wire 161u, the lower bending wire 161d, the left bending wire 161l, and the right bending wire 161r).
 図6に示すように、湾曲部112の内部に形成された内部経路101には、湾曲ワイヤ160と、チャンネルチューブ171と、撮像ケーブル173と、ライトガイド174とが挿通している。 As shown in FIG. 6 , a bending wire 160 , a channel tube 171 , an imaging cable 173 and a light guide 174 are inserted through the internal path 101 formed inside the bending portion 112 .
 体内軟性部119は、長尺で可撓性を有する管状部材である。体内軟性部119に形成された内部経路101には、湾曲ワイヤ160と、チャンネルチューブ171と、撮像ケーブル173と、ライトガイド174とが挿通している。体内軟性部119の先端には、金属等により略円筒形状に形成された先端部119aが設けられている。 The internal soft part 119 is an elongated flexible tubular member. A bending wire 160 , a channel tube 171 , an imaging cable 173 , and a light guide 174 are inserted through the internal path 101 formed in the internal soft part 119 . At the distal end of the intracorporeal flexible portion 119, a distal end portion 119a formed of metal or the like in a substantially cylindrical shape is provided.
[連結部120]
 連結部120は、図1に示すように、挿入部110の体内軟性部119と体外軟性部140とを連結する部材である。連結部120は、処置具400を内部経路101に挿入する挿入口である鉗子口126を備える。
[Connecting part 120]
The connecting portion 120 is a member that connects the internal soft portion 119 and the extracorporeal soft portion 140 of the insertion portion 110, as shown in FIG. The connecting portion 120 includes a forceps opening 126 that is an insertion opening for inserting the treatment instrument 400 into the internal path 101 .
[体外軟性部140]
 体外軟性部140は、長尺な管状部材である。体外軟性部140の内部に形成された内部経路101には、湾曲ワイヤ160と、撮像ケーブル173と、ライトガイド174と、送気吸引チューブ172(図7参照)とが挿通している。
[Extracorporeal soft part 140]
The extracorporeal soft section 140 is an elongate tubular member. A bending wire 160, an imaging cable 173, a light guide 174, and an air supply/suction tube 172 (see FIG. 7) are inserted through an internal path 101 formed inside the extracorporeal soft section 140. FIG.
[着脱部150]
 着脱部150は、図1に示すように、駆動装置200に装着される第一着脱部1501と、映像制御装置500に装着される第二着脱部1502と、を備える。なお、第一着脱部1501と第二着脱部1502とは、一体の着脱部であってもよい。
[Detachable part 150]
The detachable section 150 includes a first detachable section 1501 attached to the driving device 200 and a second detachable section 1502 attached to the video control device 500, as shown in FIG. Note that the first detachable portion 1501 and the second detachable portion 1502 may be an integral detachable portion.
 体外軟性部140の内部に形成された内部経路101は、第一着脱部1501と第二着脱部1502に分岐する。湾曲ワイヤ160および送気吸引チューブ172は、第一着脱部1501を挿通する。撮像ケーブル173およびライトガイド174は、第二着脱部1502を挿通する。 The internal path 101 formed inside the extracorporeal soft section 140 branches into a first detachable section 1501 and a second detachable section 1502 . The bending wire 160 and the air supply/suction tube 172 are inserted through the first detachable portion 1501 . The imaging cable 173 and the light guide 174 are inserted through the second detachable portion 1502 .
 第一着脱部1501は、湾曲ワイヤ160(上湾曲ワイヤ161u,下湾曲ワイヤ161d,左湾曲ワイヤ161l,右湾曲ワイヤ161r)の張力を検出する図示しない張力センサを有する。張力センサの検出結果は、駆動装置200の駆動コントローラ260によって取得される。 The first attachment/detachment section 1501 has a tension sensor (not shown) that detects the tension of the bending wires 160 (the upper bending wire 161u, the lower bending wire 161d, the left bending wire 161l, and the right bending wire 161r). A detection result of the tension sensor is acquired by the drive controller 260 of the drive device 200 .
[駆動装置200]
 図7は、駆動装置200の機能ブロック図である。
 駆動装置200は、アダプタ210と、操作受信部220と、送気吸引駆動部230と、ワイヤ駆動部250と、駆動コントローラ260と、を備える。
[Driving device 200]
FIG. 7 is a functional block diagram of the driving device 200. As shown in FIG.
The drive device 200 includes an adapter 210 , an operation reception section 220 , an air supply/suction drive section 230 , a wire drive section 250 and a drive controller 260 .
 アダプタ210は、第一アダプタ211と、第二アダプタ212と、を有する。第一アダプタ211は、操作ケーブル301が着脱可能に接続されるアダプタである。第二アダプタ212は、内視鏡100の第一着脱部1501が着脱可能に接続されるアダプタである。 The adapter 210 has a first adapter 211 and a second adapter 212. The first adapter 211 is an adapter to which the operation cable 301 is detachably connected. The second adapter 212 is an adapter to which the first attachment/detachment section 1501 of the endoscope 100 is detachably connected.
 操作受信部220は、操作ケーブル301を経由して操作装置300から操作入力を受信する。操作装置300と駆動装置200とが有線通信ではなく無線通信により通信を行う場合、操作受信部220は公知の無線受信用モジュールを有する。 The operation reception unit 220 receives operation input from the operation device 300 via the operation cable 301 . When the operation device 300 and the drive device 200 communicate with each other not by wired communication but by wireless communication, the operation reception unit 220 has a known wireless reception module.
 送気吸引駆動部230は、内視鏡100の内部経路101に挿入された送気吸引チューブ172と接続される。送気吸引駆動部230は、ポンプ等を備えており、送気吸引チューブ172に空気を送気する。また、送気吸引駆動部230は、送気吸引チューブ172から空気を吸引する。 The air supply/suction drive unit 230 is connected to the air supply/suction tube 172 inserted into the internal path 101 of the endoscope 100 . The air supply/suction drive unit 230 includes a pump and the like, and supplies air to the air supply/suction tube 172 . Also, the air supply/suction driving section 230 sucks air from the air supply/suction tube 172 .
 ワイヤ駆動部250は、図示しない駆動部とエンコーダとを有する。駆動部は、プーリ等により湾曲ワイヤ160(上湾曲ワイヤ161u,下湾曲ワイヤ161d,左湾曲ワイヤ161l,右湾曲ワイヤ161r)を牽引または弛緩する。エンコーダは、湾曲ワイヤ160の牽引量を検出する。エンコーダの検出結果は、駆動装置200の駆動コントローラ260によって取得される。 The wire driving section 250 has a driving section and an encoder (not shown). The drive unit pulls or loosens the bending wires 160 (up bending wire 161u, down bending wire 161d, left bending wire 161l, right bending wire 161r) by pulleys or the like. The encoder detects the amount of pulling of the bending wire 160 . A detection result of the encoder is acquired by the drive controller 260 of the drive device 200 .
 駆動コントローラ260は、駆動装置200の全体を制御する。駆動コントローラ260は、操作受信部220が受信した操作入力を取得する。駆動コントローラ260は、取得した操作入力に基づいて、送気吸引駆動部230およびワイヤ駆動部250を制御する。 The drive controller 260 controls the drive device 200 as a whole. The drive controller 260 acquires the operation input received by the operation reception unit 220 . Drive controller 260 controls air supply/suction drive section 230 and wire drive section 250 based on the acquired operation input.
 駆動コントローラ260は、プロセッサと、メモリと、プログラムおよびデータを記憶可能な記憶部と、入出力制御部と、を備えたプログラム実行可能なコンピュータである。駆動コントローラ260の機能は、プログラムをプロセッサが実行することにより実現される。駆動コントローラ260の少なくとも一部の機能は、専用の論理回路によって実現されていてもよい。 The drive controller 260 is a program-executable computer including a processor, a memory, a storage section capable of storing programs and data, and an input/output control section. The functions of the drive controller 260 are implemented by the processor executing a program. At least some functions of the drive controller 260 may be realized by dedicated logic circuits.
 駆動コントローラ260は、複数の湾曲ワイヤ160を駆動する複数のモータを高精度に制御するため、高い演算性能を備えていることが望ましい。 The drive controller 260 desirably has high computational performance in order to control the plurality of motors that drive the plurality of bending wires 160 with high accuracy.
 なお、駆動コントローラ260は、プロセッサ、メモリ、記憶部、および入出力制御部以外の構成をさらに有してもよい。例えば、駆動コントローラ260は、画像処理や画像認識処理の一部もしくは全部を行う画像演算部をさらに有してもよい。画像演算部をさらに有することで、駆動コントローラ260は、特定の画像処理や画像認識処理を高速に実行できる。画像演算部は通信回線で接続される別体のハードウェア装置に搭載されていてもよい。 It should be noted that the drive controller 260 may further have a configuration other than the processor, memory, storage section, and input/output control section. For example, the drive controller 260 may further include an image calculation section that performs part or all of image processing and image recognition processing. By further including an image calculation unit, the drive controller 260 can perform specific image processing and image recognition processing at high speed. The image calculation section may be mounted in a separate hardware device connected via a communication line.
[操作装置300]
 操作装置300は、内視鏡100を駆動するための操作が入力される装置である。入力された操作入力は、操作ケーブル301を経由して駆動装置200に送信される。
[Operating device 300]
The operation device 300 is a device to which an operation for driving the endoscope 100 is input. The input operation input is transmitted to the driving device 200 via the operation cable 301 .
[映像制御装置500]
 図8は、映像制御装置500の機能ブロック図である。
 映像制御装置500は、電動内視鏡システム1000を制御する。映像制御装置500は、第三アダプタ510と、撮像処理部520と、光源部530と、メインコントローラ560と、を備える。
[Video control device 500]
FIG. 8 is a functional block diagram of the video control device 500. As shown in FIG.
The image control device 500 controls the electric endoscope system 1000 . The video control device 500 includes a third adapter 510 , an imaging processing section 520 , a light source section 530 and a main controller 560 .
 第三アダプタ510は、内視鏡100の第二着脱部1502が着脱可能に接続されるアダプタである。 The third adapter 510 is an adapter to which the second detachable section 1502 of the endoscope 100 is detachably connected.
 撮像処理部520は、撮像ケーブル173を経由して先端部111の撮像部111cから取得された撮像信号を撮像画像に変換する。 The imaging processing unit 520 converts an imaging signal acquired from the imaging unit 111c of the distal end portion 111 via the imaging cable 173 into a captured image.
 光源部530は、撮像対象に照射される照明光を発生させる。光源部530が発生させた照明光は、ライトガイド174を経由して先端部111の照明部111bに導かれる。 The light source unit 530 generates illumination light that irradiates the object to be imaged. The illumination light generated by the light source section 530 is guided to the illumination section 111b of the distal end section 111 via the light guide 174 .
 図9は、メインコントローラ560の機能ブロック図である。
 メインコントローラ560は、プロセッサ561とメモリ562等を備えたプログラム実行可能なコンピュータである。メインコントローラ560の機能はプログラムをプロセッサ561が実行することにより実現される。メインコントローラ560の少なくとも一部の機能は、専用の論理回路によって実現されていてもよい。
FIG. 9 is a functional block diagram of the main controller 560. As shown in FIG.
The main controller 560 is a program-executable computer having a processor 561, a memory 562, and the like. The functions of the main controller 560 are implemented by the processor 561 executing programs. At least part of the functions of the main controller 560 may be realized by a dedicated logic circuit.
 メインコントローラ560は、プロセッサ561と、プログラムを読み込み可能なメモリ562と、記憶部563と、入出力制御部564と、を有する。 The main controller 560 has a processor 561 , a program-readable memory 562 , a storage section 563 , and an input/output control section 564 .
 記憶部563は、上述したプログラムや必要なデータを記憶する不揮発性の記録媒体である。記憶部563は、例えばROMやハードディスク等で構成される。記憶部563に記録されたプログラムは、メモリ562に読み込まれ、プロセッサ561によって実行される。 The storage unit 563 is a non-volatile recording medium that stores the above-described programs and necessary data. The storage unit 563 is composed of, for example, a ROM, a hard disk, or the like. A program recorded in the storage unit 563 is read into the memory 562 and executed by the processor 561 .
 入出力制御部564は、撮像処理部520、光源部530、駆動装置200、計測装置800、表示装置900、入力装置(不図示)、およびネットワーク機器(不図示)と接続されている。入出力制御部564は、プロセッサ561の制御に基づき、接続される機器に対するデータの送受信や制御信号の送受信を実施する。 The input/output control unit 564 is connected to the imaging processing unit 520, the light source unit 530, the driving device 200, the measuring device 800, the display device 900, the input device (not shown), and the network device (not shown). Under the control of the processor 561, the input/output control unit 564 transmits and receives data and control signals to and from connected devices.
 メインコントローラ560は、撮像処理部520が取得した撮像画像に対して画像処理を実施できる。メインコントローラ560は、術者Sに対する情報提供を目的とするGUI画像やCG画像を生成できる。メインコントローラ560は、撮像画像やGUI画像やCG画像を表示装置900に表示させることができる。 The main controller 560 can perform image processing on the captured image acquired by the imaging processing section 520 . The main controller 560 can generate GUI images and CG images for the purpose of providing information to the operator S. FIG. The main controller 560 can display captured images, GUI images, and CG images on the display device 900 .
 メインコントローラ560は、一体となったハードウェア装置に限られない。例えば、メインコントローラ560は、一部が別体のハードウェア装置として分離した上で、分離したハードウェア装置を通信回線で接続することで構成してもよい。例えば、メインコントローラ560は、分離された記憶部563を通信回線で接続するクラウドシステムであってもよい。 The main controller 560 is not limited to an integrated hardware device. For example, the main controller 560 may be configured by separating a part of it as a separate hardware device and then connecting the separated hardware device with a communication line. For example, the main controller 560 may be a cloud system that connects separated storage units 563 via communication lines.
 メインコントローラ560は、図9に示すプロセッサ561、メモリ562、記憶部563、および入出力制御部564以外の構成をさらに有してもよい。例えば、メインコントローラ560は、プロセッサ561が行っていた画像処理や画像認識処理の一部もしくは全部を行う画像演算部をさらに有してもよい。画像演算部をさらに有することで、メインコントローラ560は、特定の画像処理や画像認識処理を高速に実行できる。画像演算部は通信回線で接続される別体のハードウェア装置に搭載されていてもよい。 The main controller 560 may further have a configuration other than the processor 561, memory 562, storage section 563, and input/output control section 564 shown in FIG. For example, the main controller 560 may further have an image calculation unit that performs part or all of the image processing and image recognition processing that the processor 561 has performed. By further having an image calculation unit, the main controller 560 can execute specific image processing and image recognition processing at high speed. The image calculation section may be mounted in a separate hardware device connected via a communication line.
[観察装置700]
 観察装置700は、内視鏡100をメンテナンスするサービス拠点に配置される装置であり、湾曲部112の形状を観察する装置である。観察装置700は、図1に示すように、筐体710と、撮像装置720と、支持部材730と、マーカーボード740と、を備える。
[Observation device 700]
The observation device 700 is arranged at a service base for maintenance of the endoscope 100 and is a device for observing the shape of the bending portion 112 . The observation device 700 includes a housing 710, an imaging device 720, a support member 730, and a marker board 740, as shown in FIG.
 筺体710は、箱状に形成されており、内部に湾曲部112を収容可能である。撮像装置720、支持部材730、およびマーカーボード740は、筐体710の内部に設けられている。 The housing 710 is formed in a box shape and can accommodate the curved portion 112 inside. Imaging device 720 , support member 730 , and marker board 740 are provided inside housing 710 .
 撮像装置720は、例えばイメージセンサ(CCDセンサまたはCMOSセンサなど)を有するカメラを備える。撮像装置720は、複数のカメラを備えてもよい。撮像装置720は、撮像した画像を計測装置800に送信する。 The imaging device 720 includes, for example, a camera having an image sensor (such as a CCD sensor or a CMOS sensor). Imaging device 720 may comprise multiple cameras. The imaging device 720 transmits the captured image to the measuring device 800 .
 支持部材730は、撮像装置720を固定する部材である。支持部材730は、箱状の内部に収容された湾曲部112を撮像可能な位置に撮像装置720を固定する。 The support member 730 is a member that fixes the imaging device 720 . The support member 730 fixes the imaging device 720 at a position where the curved portion 112 housed inside the box-like shape can be imaged.
 マーカーボード740は、公知のマーカーボードであり、筺体710の内部であって、撮像装置720よって撮像可能な位置に取り付けられている。 The marker board 740 is a known marker board, and is attached inside the housing 710 at a position where it can be imaged by the imaging device 720 .
[計測装置800]
 計測装置800は、内視鏡100をメンテナンスするサービス拠点に配置される装置である。計測装置800は、観察装置700の制御、観察装置700の観察結果の取得および観察装置700の観察結果の解析等を実施する。
[Measuring device 800]
The measuring device 800 is a device arranged at a service base that maintains the endoscope 100 . The measurement device 800 performs control of the observation device 700, acquisition of the observation result of the observation device 700, analysis of the observation result of the observation device 700, and the like.
 図10は、計測装置800の機能ブロック図である。
 計測装置800は、計測コントローラ810を備える。計測コントローラ810は、プロセッサ811とメモリ812等を備えたプログラム実行可能なコンピュータである。計測コントローラ810の機能はプログラムをプロセッサ811が実行することにより実現される。計測コントローラ810の少なくとも一部の機能は、専用の論理回路によって実現されていてもよい。
FIG. 10 is a functional block diagram of the measuring device 800. As shown in FIG.
The measurement device 800 includes a measurement controller 810 . The measurement controller 810 is a program-executable computer having a processor 811, a memory 812, and the like. The functions of the measurement controller 810 are implemented by the processor 811 executing programs. At least part of the functions of the measurement controller 810 may be realized by a dedicated logic circuit.
 計測コントローラ810は、プロセッサ811と、プログラムを読み込み可能なメモリ812と、記憶部813と、入出力制御部814と、を有する。 The measurement controller 810 has a processor 811 , a program-readable memory 812 , a storage unit 813 , and an input/output control unit 814 .
 記憶部813は、上述したプログラムや必要なデータを記憶する不揮発性の記録媒体である。記憶部813は、例えばROMやハードディスク等で構成される。記憶部813に記録されたプログラムは、メモリ812に読み込まれ、プロセッサ811によって実行される。 The storage unit 813 is a non-volatile recording medium that stores the above-described programs and necessary data. The storage unit 813 is composed of, for example, a ROM, a hard disk, or the like. A program recorded in the storage unit 813 is read into the memory 812 and executed by the processor 811 .
 入出力制御部814は、映像制御装置500の入出力制御部564、観察装置700、入力装置(不図示)、およびネットワーク機器(不図示)と接続されている。入出力制御部814は、プロセッサ811の制御に基づき、接続される機器に対するデータの送受信や制御信号の送受信を実施する。 The input/output control unit 814 is connected to the input/output control unit 564 of the video control device 500, the observation device 700, the input device (not shown), and the network device (not shown). Under the control of the processor 811, the input/output control unit 814 transmits/receives data to/from the connected device and transmits/receives a control signal.
 計測コントローラ810は、観察装置700の撮像装置720を制御する。また、計測コントローラ810は、撮像装置720が撮像した画像を取得する。 The measurement controller 810 controls the imaging device 720 of the observation device 700 . Also, the measurement controller 810 acquires an image captured by the imaging device 720 .
 計測コントローラ810は、一体となったハードウェア装置に限られない。例えば、計測コントローラ810は、一部が別体のハードウェア装置として分離した上で、分離したハードウェア装置を通信回線で接続することで構成してもよい。例えば、計測コントローラ810は、分離された記憶部813を通信回線で接続するクラウドシステムであってもよい。 The measurement controller 810 is not limited to an integrated hardware device. For example, the measurement controller 810 may be partially separated as a separate hardware device and then configured by connecting the separated hardware devices via a communication line. For example, the measurement controller 810 may be a cloud system that connects the separated storage units 813 via a communication line.
 計測コントローラ810は、図10に示すプロセッサ811、メモリ812、記憶部813、および入出力制御部814以外の構成をさらに有してもよい。例えば、計測コントローラ810は、プロセッサ811が行っていた画像処理や計測演算処理の一部もしくは全部を行う演算部をさらに有してもよい。演算部をさらに有することで、計測コントローラ810は、特定の画像処理や計測演算処理を高速に実行できる。演算部は通信回線で接続される別体のハードウェア装置に搭載されていてもよい。 The measurement controller 810 may further have a configuration other than the processor 811, memory 812, storage unit 813, and input/output control unit 814 shown in FIG. For example, the measurement controller 810 may further include an arithmetic unit that performs part or all of the image processing and measurement arithmetic processing that the processor 811 has been performing. By further including a calculation unit, the measurement controller 810 can execute specific image processing and measurement calculation processing at high speed. The computing unit may be mounted in a separate hardware device connected via a communication line.
 なお、制御装置600(駆動装置200と映像制御装置500の一方でもよい)が十分な演算性能を有している場合は、制御装置600を計測装置800として使用してもよい。制御装置600を計測装置800として使用する場合、以降の説明における「計測コントローラ810」は「メインコントローラ560」や「駆動コントローラ260」を意味する。 If the control device 600 (which may be either the drive device 200 or the image control device 500) has sufficient computing performance, the control device 600 may be used as the measurement device 800. When the control device 600 is used as the measurement device 800, the "measurement controller 810" in the following description means the "main controller 560" or the "drive controller 260".
[電動内視鏡システム1000の動作]
 次に、本実施形態の電動内視鏡システム1000の動作について説明する。具体的には、内視鏡100をメンテナンスするサービス拠点に持ち込まれた内視鏡100を計測する動作について説明する。
[Operation of the electric endoscope system 1000]
Next, the operation of the electric endoscope system 1000 of this embodiment will be described. Specifically, the operation of measuring the endoscope 100 brought to a service base for maintenance of the endoscope 100 will be described.
 以降、図11に示す計測装置800の計測コントローラ810の制御フローチャートに沿って説明を行う。計測装置800が起動されると、計測コントローラ810は初期化を実施した後に制御を開始する(ステップS100)。次に、計測コントローラ810(主としてプロセッサ811)はステップS110を実行する。 Hereinafter, description will be made along the control flowchart of the measurement controller 810 of the measurement device 800 shown in FIG. When the measurement device 800 is activated, the measurement controller 810 starts control after performing initialization (step S100). Next, measurement controller 810 (mainly processor 811) executes step S110.
 使用者は、湾曲部112が撮像装置720により撮像可能な位置に配置されるように、湾曲部112を含む挿入部110を筺体710に収容する。使用者は、操作装置300を操作することにより湾曲部112の制御パラメータ(ワイヤ牽引量やワイヤ張力など)を調整値Vとして、湾曲部112を湾曲させる。使用者は、UD方向およびLR方向のどちらに対しても湾曲部112を湾曲させてもよいが、本実施形態では、まずUD方向に対してのみ湾曲部112を湾曲させたとする。 The user accommodates the insertion section 110 including the bending section 112 in the housing 710 so that the bending section 112 is placed at a position where the imaging device 720 can capture an image. The user bends the bending portion 112 by operating the operation device 300 to set the control parameters (the amount of wire pulling, the wire tension, etc.) of the bending portion 112 as the adjustment value V. FIG. The user may bend the bending portion 112 in both the UD direction and the LR direction, but in this embodiment, it is assumed that the bending portion 112 is first bent only in the UD direction.
<ステップS110>
 計測コントローラ810は、ステップS110において、観察装置700の初期化を実施する。計測コントローラ810は、例えばマーカーボード740を用いて、撮像装置720のカメラの位置や姿勢を認識する。なお、計測コントローラ810がマーカーボード740を用いずとも撮像装置720のカメラの位置や姿勢を認識できる場合、マーカーボード740は不要である。次に、計測コントローラ810はステップS120を実行する。
<Step S110>
The measurement controller 810 initializes the observation device 700 in step S110. The measurement controller 810 uses, for example, a marker board 740 to recognize the position and orientation of the camera of the imaging device 720 . Note that if the measurement controller 810 can recognize the position and orientation of the camera of the imaging device 720 without using the marker board 740, the marker board 740 is unnecessary. Next, the measurement controller 810 executes step S120.
<ステップS120>
 計測コントローラ810は、ステップS120において、撮像装置720により湾曲部112を撮像させて、撮像した画像(観察結果)を取得する。次に、計測コントローラ810はステップS130を実行する。
<Step S120>
In step S120, the measurement controller 810 causes the imaging device 720 to capture an image of the bending section 112, and acquires the captured image (observation result). Next, the measurement controller 810 executes step S130.
<ステップS130>
 計測コントローラ810は、ステップS130において、湾曲部112の形状情報を計測する。計測コントローラ810は、例えば湾曲部112の輪郭を形状情報として計測する。計測コントローラ810は、例えば、湾曲部112のエッジを検出したり、湾曲部112のボクセルデータBDを抽出したりすることにより、湾曲部112の輪郭を計測する。
<Step S130>
The measurement controller 810 measures the shape information of the bending portion 112 in step S130. The measurement controller 810 measures, for example, the contour of the bending portion 112 as shape information. The measurement controller 810 measures the contour of the curved portion 112 by, for example, detecting edges of the curved portion 112 and extracting voxel data BD of the curved portion 112 .
 図12は、抽出された湾曲部112のボクセルデータBDを示す図である。
 計測コントローラ810は、例えば視体積交差法などの公知の手法により撮像した画像(観察結果)から湾曲部112等のボクセルデータBDを抽出する。次に、計測コントローラ810はステップS140を実行する。
FIG. 12 is a diagram showing the extracted voxel data BD of the curved portion 112. As shown in FIG.
The measurement controller 810 extracts voxel data BD of the curved portion 112 and the like from an image (observation result) captured by a known method such as the visual volume intersection method. Next, the measurement controller 810 executes step S140.
<ステップS140>
 図13は、算出された湾曲部112の先端関節112aおよび基端関節112bの位置を示す図である。計測コントローラ810は、ステップS140において、湾曲部112の先端関節112aおよび基端関節112bの位置を算出する。
<Step S140>
FIG. 13 is a diagram showing the calculated positions of the distal joint 112a and the proximal joint 112b of the bending portion 112. As shown in FIG. The measurement controller 810 calculates the positions of the distal joint 112a and the proximal joint 112b of the bending section 112 in step S140.
 湾曲部112の先端部116および体内軟性部119の先端部119aは、形状が既知であり、湾曲部112の湾曲形状によらず形状が変化しない。そこで、計測コントローラ810は、例えばボクセルデータBDから、湾曲部112の先端部116および体内軟性部119の先端部119aの位置をパターンマッチングなどにより算出する。なお、計測コントローラ810は、例えばボクセルデータBDを表示した画像における先端部116や先端部119aの位置を、使用者にマウス等の入力機器を用いて指定させることにより、先端部116や先端部119aの位置を認識してもよい。 The distal end portion 116 of the bending portion 112 and the distal end portion 119a of the intracorporeal soft portion 119 have known shapes and do not change in shape regardless of the bending shape of the bending portion 112 . Therefore, the measurement controller 810 calculates the positions of the distal end portion 116 of the bending portion 112 and the distal end portion 119a of the internal soft portion 119 from, for example, the voxel data BD by pattern matching or the like. Note that the measurement controller 810 allows the user to specify the positions of the distal end portion 116 and the distal end portion 119a in the image displaying the voxel data BD using an input device such as a mouse, thereby allowing the distal end portion 116 and the distal end portion 119a to be displayed. can recognize the position of
 計測コントローラ810は、算出された湾曲部112の先端部116の位置から、先端部116に連結された湾曲部112の先端関節112aの位置を算出する。 The measurement controller 810 calculates the position of the tip joint 112 a of the bending section 112 connected to the tip section 116 from the calculated position of the tip section 116 of the bending section 112 .
 計測コントローラ810は、算出された体内軟性部119の先端部119aの位置から、先端部119aに連結された湾曲部112の基端関節112bの位置を算出する。 The measurement controller 810 calculates the position of the base end joint 112b of the bending section 112 connected to the distal end portion 119a from the calculated position of the distal end portion 119a of the internal soft portion 119 .
 計測コントローラ810が算出する位置は、相対的な位置であっても、絶対的な位置であってもよい。計測コントローラ810は、可能であれば、先端関節112aおよび基端関節112b以外の関節112jの位置をさらに算出してもよい。次に、計測コントローラ810はステップS160を実行する。 The position calculated by the measurement controller 810 may be a relative position or an absolute position. Measurement controller 810 may also calculate the positions of joints 112j other than distal joint 112a and proximal joint 112b, if possible. Next, the measurement controller 810 executes step S160.
<ステップS160>
 図14は、推定された湾曲部112の関節112jの位置である。
 計測コントローラ810は、ステップS160において、湾曲部112の関節112jの位置を推定する。計測コントローラ810は、先端関節112aおよび基端関節112bの位置に基づいて、先端関節112aおよび基端関節112b以外の湾曲部112の関節112jの位置を推定する。なお、計測コントローラ810は、先端関節112aと基端関節112bの一方の位置に基づいて、他の関節112jの位置を推定してもよい。
<Step S160>
FIG. 14 shows the estimated position of the joint 112j of the bending portion 112. FIG.
The measurement controller 810 estimates the position of the joint 112j of the bending section 112 in step S160. Measurement controller 810 estimates the position of joint 112j of bending portion 112 other than distal joint 112a and proximal joint 112b based on the positions of distal joint 112a and proximal joint 112b. Note that the measurement controller 810 may estimate the position of the other joint 112j based on the position of one of the distal joint 112a and the proximal joint 112b.
 具体的には、計測コントローラ810は、湾曲部112の構造情報を制約条件(拘束条件ともいう)とし、例えば逆運動学計算を用いた収束計算によって、湾曲部112の形状情報から湾曲部112の関節112jの位置を推定する。湾曲部112の構造情報とは、節輪(湾曲駒)115の構造および数、複数の関節112jの相対位置関係などである。次に、計測コントローラ810はステップS170を実行する。 Specifically, the measurement controller 810 uses the structural information of the bending portion 112 as a constraint (also referred to as a constraint condition), and performs convergence calculation using, for example, inverse kinematics calculation to determine the shape of the bending portion 112 from the shape information of the bending portion 112. Estimate the position of joint 112j. The structural information of the bending portion 112 includes the structure and number of joint rings (bending pieces) 115, the relative positional relationship of a plurality of joints 112j, and the like. Next, measurement controller 810 executes step S170.
 図15は、湾曲部112の関節112jの位置を説明する図である。
 「関節112jの位置」は、例えば、UD方向に平行な平面であって、湾曲部112の中心軸を含む中心面CSと、関節112jの回転軸と、の交点Cにより定義される。湾曲部112の関節112j(第一回動ピン115pまたは第二回動ピン115q)の位置は、交点Cから算出できる。なお、関節112jの位置は、中心面CSと回転軸との交点Cではなく、関節112j(第一回動ピン115pまたは第二回動ピン115q)の3次元座標で定義されていてもよい。
FIG. 15 is a diagram for explaining the position of the joint 112j of the bending portion 112. As shown in FIG.
The “position of the joint 112j” is defined, for example, by the intersection point C between the center plane CS, which is a plane parallel to the UD direction and includes the center axis of the bending portion 112, and the rotation axis of the joint 112j. The position of the joint 112j (the first turning pin 115p or the second turning pin 115q) of the bending portion 112 can be calculated from the intersection C. Note that the position of the joint 112j may be defined by the three-dimensional coordinates of the joint 112j (the first pivot pin 115p or the second pivot pin 115q) instead of the intersection point C between the central plane CS and the rotation axis.
 図15において点線で示される線L1は、制御パラメータ(ワイヤ牽引量やワイヤ張力など)を調整値Vとした場合における、理想的に湾曲する湾曲部112の関節112j(交点C)をつないだ仮想線である。湾曲部112が理想的に湾曲する場合、湾曲部112は略均一の湾曲率により湾曲する。 A dotted line L1 in FIG. 15 is an imaginary line connecting the joints 112j (intersection point C) of the bending portion 112 that bends ideally when the control parameters (wire traction amount, wire tension, etc.) are set to the adjustment value V. is a line. When the bending portion 112 bends ideally, the bending portion 112 bends with a substantially uniform curvature rate.
 図15において実線で示される線L2は、推定された湾曲部112の関節112jの位置に基づいて、湾曲部112の関節112j(交点C)をつないだ線である。すなわち、線L2は、制御パラメータ(ワイヤ牽引量やワイヤ張力など)を調整値Vとした場合における、湾曲部112の関節112j(交点C)をつないだ線である。図15に示す湾曲部112の湾曲率は略均一となっていない。 A line L2 indicated by a solid line in FIG. 15 is a line connecting the joints 112j (intersection point C) of the bending portion 112 based on the estimated positions of the joints 112j of the bending portion 112 . That is, the line L2 is a line connecting the joints 112j (intersection points C) of the bending portion 112 when the control parameters (wire traction amount, wire tension, etc.) are set to the adjustment values V. FIG. The curvature of the curved portion 112 shown in FIG. 15 is not substantially uniform.
 図16は、不均等配向状態である湾曲部112を示す図である。
 湾曲部112の関節112jが経年劣化等に伴って摩耗したり変形したりするため、湾曲部112を直線状態にした場合であっても、湾曲部112の節輪115は想定する初期の位置に戻りにくくなる。この場合、湾曲部112が直線状態であっても、湾曲部112の関節112j(交点C)は直線状に並ばない。以降の説明において、湾曲部112の関節112j(交点C)が直線状に並ばず、湾曲部112の節輪(湾曲駒)115が不均等に配向した状態を「不均等配向状態」という。
FIG. 16 is a diagram showing the curved portion 112 in a non-uniformly oriented state.
Since the joints 112j of the bending portion 112 are worn or deformed due to deterioration over time, even when the bending portion 112 is straightened, the node ring 115 of the bending portion 112 remains at the assumed initial position. It becomes difficult to return. In this case, even if the bending portion 112 is straight, the joints 112j (intersection points C) of the bending portion 112 are not aligned in a straight line. In the following description, a state in which the joints 112j (intersection points C) of the bending portion 112 are not aligned in a straight line and the node rings (bending pieces) 115 of the bending portion 112 are unevenly oriented is referred to as an "unevenly oriented state."
 湾曲ワイヤ160が経年劣化等に伴って伸びた場合や、内蔵物170の局所的な弾性率が変化した場合や、節輪115の摩擦状態が変化した場合や、上述した節輪115が不均等配向状態となった場合などにおいて、図15の線L2に示すように、湾曲部112は均一に湾曲しにくくなる。 When the bending wire 160 is stretched due to aging deterioration, etc., when the local elastic modulus of the built-in object 170 changes, when the friction state of the node ring 115 changes, or when the above-mentioned node ring 115 becomes uneven. In the oriented state, the bending portion 112 becomes difficult to bend uniformly as indicated by the line L2 in FIG. 15 .
 計測コントローラ810は、図15に示す線L1と線L2とを比較することにより、湾曲部112の不均等配向状態の有無や程度等を検出できる。ここで、計測コントローラ810は、制御パラメータを所定の値とした場合における線L1の情報を予め保有している。 The measurement controller 810 can detect the presence or absence and degree of non-uniform orientation of the bending portion 112 by comparing the line L1 and the line L2 shown in FIG. Here, the measurement controller 810 has in advance information on the line L1 when the control parameter is set to a predetermined value.
<ステップS170>
 計測コントローラ810は、ステップS170において、推定した湾曲部112の関節112jの位置に基づいて、湾曲部112をUD方向に湾曲させるための制御パラメータ(ワイヤ牽引量やワイヤ張力など)を調整(キャリブレーション)する。
<Step S170>
In step S170, the measurement controller 810 adjusts control parameters (such as wire traction amount and wire tension) for bending the bending portion 112 in the UD direction based on the estimated positions of the joints 112j of the bending portion 112 (calibration )do.
 計測コントローラ810は、例えば、事前に用意した複数の制御パラメータから、推定した関節112jの位置に最適な制御パラメータを選択する。計測コントローラ810は、湾曲部112の関節112jの位置と制御パラメータとの関係を機械学習により事前に学習した学習済みモデル(機械学習モデル)を用いて、推定した関節112jの位置に最適な制御パラメータを選択してもよい。あるいは、計測コントローラ810は、湾曲部112の関節112jの位置と制御パラメータとの関係を事前に記録したデータベースを参照して最適な制御パラメータを選択してもよい。次に、計測コントローラ810はステップS190を実行して制御を終了する。 The measurement controller 810 selects the optimal control parameter for the estimated position of the joint 112j from, for example, a plurality of control parameters prepared in advance. The measurement controller 810 uses a learned model (machine learning model) in which the relationship between the position of the joint 112j of the bending section 112 and the control parameter is learned in advance by machine learning, and determines the optimal control parameter for the estimated position of the joint 112j. may be selected. Alternatively, the measurement controller 810 may refer to a database in which the relationships between the positions of the joints 112j of the bending section 112 and the control parameters are recorded in advance to select the optimum control parameters. Next, the measurement controller 810 executes step S190 and ends the control.
 なお、計測コントローラ810は、湾曲部112の湾曲形状を変えながらステップS110からステップS170までを複数回実施することで、制御パラメータ(ワイヤ牽引量やワイヤ張力など)を調整(キャリブレーション)の精度を高めることができる。 Note that the measurement controller 810 performs steps S110 to S170 a plurality of times while changing the bending shape of the bending portion 112 to improve the accuracy of adjustment (calibration) of control parameters (wire pulling amount, wire tension, etc.). can be enhanced.
 図17は、時間の経過とともに変化する湾曲部112の湾曲形状を示す図である。
 計測コントローラ810は、時間の経過とともに変化する湾曲部112の湾曲形状を観察し、湾曲部112の関節112jの位置を推定してもよい。計測コントローラ810は、湾曲部112を観察した観察結果(時刻歴情報)を用いて算出される条件を追加の制約条件として用いることができ、より高速かつ正確に湾曲部112の関節112jの位置を推定できる。
FIG. 17 is a diagram showing the curved shape of the curved portion 112 that changes over time.
The measurement controller 810 may observe the curved shape of the curved portion 112 that changes over time and estimate the position of the joint 112j of the curved portion 112 . The measurement controller 810 can use conditions calculated using observation results (time history information) of observing the bending portion 112 as additional constraint conditions, so that the positions of the joints 112j of the bending portion 112 can be determined more quickly and accurately. can be estimated.
<湾曲部112をLR方向に湾曲させるための制御パラメータの調整>
 使用者は、湾曲部112をUD方向に湾曲させるための制御パラメータを調整した後、湾曲部112をLR方向に湾曲させて、電動内視鏡システム1000に再度ステップS110からステップS170までを実施させる。電動内視鏡システム1000は、湾曲部112をLR方向に湾曲させるための制御パラメータを調整する。
<Adjustment of control parameters for bending the bending portion 112 in the LR direction>
After adjusting the control parameters for bending the bending section 112 in the UD direction, the user bends the bending section 112 in the LR direction and causes the electric endoscope system 1000 to perform steps S110 to S170 again. . The electric endoscope system 1000 adjusts control parameters for bending the bending section 112 in the LR direction.
 本実施形態に係る電動内視鏡システム1000によれば、経年劣化等に伴う湾曲部112の湾曲形状の変化があった場合であっても、湾曲部112の湾曲形状(関節112jの位置)を容易に推定できる。電動内視鏡システム1000は、推定した関節112jの位置に基づいて、湾曲部112を所定の湾曲形状とするために必要な制御パラメータ(ワイヤ牽引量やワイヤ張力など)を調整(キャリブレーション)できる。 According to the electric endoscope system 1000 according to the present embodiment, even if the bending shape of the bending portion 112 changes due to aged deterioration or the like, the bending shape of the bending portion 112 (the position of the joint 112j) can be adjusted. can be easily estimated. Based on the estimated position of the joint 112j, the electric endoscope system 1000 can adjust (calibrate) the control parameters (wire traction amount, wire tension, etc.) necessary to form the bending portion 112 into a predetermined bending shape. .
 本実施形態に係る電動内視鏡システム1000によれば、X線装置のような大規模な計測装置を用いずとも、湾曲部112の湾曲形状(関節112jの位置)を容易に推定できる。また、電動内視鏡システム1000は、経年劣化等に伴う湾曲部112の湾曲形状の変化を考慮した制御パラメータ(ワイヤ牽引量やワイヤ張力など)の調整(キャリブレーション)が可能である。 According to the electric endoscope system 1000 according to this embodiment, the curved shape of the bending section 112 (the position of the joint 112j) can be easily estimated without using a large-scale measuring device such as an X-ray device. In addition, the electric endoscope system 1000 can adjust (calibrate) control parameters (wire pulling amount, wire tension, etc.) in consideration of changes in the bending shape of the bending portion 112 due to aged deterioration or the like.
 本実施形態に係る電動内視鏡システム1000によれば、例えば湾曲部112の不均等配向状態の程度が高いなどの理由により、制御パラメータ(ワイヤ牽引量やワイヤ張力など)の調整(キャリブレーション)ができない場合、内視鏡100の交換を促すこともできる。 According to the electric endoscope system 1000 according to the present embodiment, adjustment (calibration) of control parameters (wire traction amount, wire tension, etc.) is performed for reasons such as a high degree of non-uniform orientation of the bending section 112, for example. If the endoscope 100 cannot be replaced, replacement of the endoscope 100 can be prompted.
 以上、本発明の第一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の実施形態および変形例において示した構成要素は適宜に組み合わせて構成することが可能である。 As described above, the first embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like are included within the scope of the present invention. . Also, the constituent elements shown in the above-described embodiment and modifications can be combined as appropriate.
(第二実施形態)
 本発明の第二実施形態に係る電動内視鏡システム1000Bについて、図18から図20を参照して説明する。以降の説明において、既に説明したものと共通する構成については、同一の符号を付して重複する説明を省略する。
(Second embodiment)
An electric endoscope system 1000B according to a second embodiment of the present invention will be described with reference to FIGS. 18 to 20. FIG. In the following description, the same reference numerals are given to the same configurations as those already described, and redundant descriptions will be omitted.
[電動内視鏡システム1000B]
 電動内視鏡システム1000Bは、図1に示すように、第一実施形態の電動内視鏡システム1000と同様の構成を備える。電動内視鏡システム1000Bは、第一実施形態の電動内視鏡システム1000と比較して動作のみが異なる。
[Electric endoscope system 1000B]
The electric endoscope system 1000B, as shown in FIG. 1, has the same configuration as the electric endoscope system 1000 of the first embodiment. The electric endoscope system 1000B differs only in operation from the electric endoscope system 1000 of the first embodiment.
 以降、図18に示す計測装置800の計測コントローラ810の制御フローチャートに沿って説明を行う。計測装置800が起動されると、計測コントローラ810は初期化を実施した後に制御を開始する(ステップS100)。次に、計測コントローラ810(主としてプロセッサ811)はステップS110を実行する。 Hereinafter, description will be given along the control flowchart of the measurement controller 810 of the measurement device 800 shown in FIG. When the measurement device 800 is activated, the measurement controller 810 starts control after performing initialization (step S100). Next, measurement controller 810 (mainly processor 811) executes step S110.
 計測コントローラ810は、第一実施形態と同様に、ステップS110からステップS140を実施する。次に、計測コントローラ810はステップS150を実行する。 The measurement controller 810 performs steps S110 to S140 in the same manner as in the first embodiment. Next, the measurement controller 810 executes step S150.
<ステップS150>
 計測コントローラ810は、ステップS150において、湾曲部112の形状情報として計測した湾曲部112の輪郭から湾曲部112の中心線CLを推定する。具体的には、計測コントローラ810は、湾曲部112の輪郭における接線ベクトルから湾曲部112の輪郭における法線ベクトルを算出する。計測コントローラ810は、湾曲部112の輪郭における法線ベクトルから湾曲部112の中心線CLを推定する。
<Step S150>
The measurement controller 810 estimates the center line CL of the bending portion 112 from the contour of the bending portion 112 measured as the shape information of the bending portion 112 in step S150. Specifically, the measurement controller 810 calculates a normal vector to the contour of the bending portion 112 from a tangent vector to the contour of the bending portion 112 . The measurement controller 810 estimates the center line CL of the bending portion 112 from the normal vector on the contour of the bending portion 112 .
 計測コントローラ810は、中心線CLの推定においては、湾曲部112の湾曲形状における外側の輪郭を使用することが望ましい。湾曲部112の湾曲形状における内側はアウターシース118にしわが生じており、湾曲部112の輪郭を正確に抽出しにくいためである。 The measurement controller 810 preferably uses the outer contour of the curved shape of the curved portion 112 in estimating the centerline CL. This is because wrinkles are generated in the outer sheath 118 on the inner side of the curved shape of the curved portion 112 , and it is difficult to accurately extract the outline of the curved portion 112 .
 図19は、推定された中心線CLを示す図である。
 撮像装置720が有するカメラの数が多いほど、計測コントローラ810は湾曲部112の中心線CLを推定しやすい。次に、計測コントローラ810はステップS160を実行する。
FIG. 19 is a diagram showing the estimated centerline CL.
The greater the number of cameras that the imaging device 720 has, the easier it is for the measurement controller 810 to estimate the center line CL of the bending section 112 . Next, the measurement controller 810 executes step S160.
<ステップS160>
 計測コントローラ810は、ステップS160において、第一実施形態と同様に、湾曲部112の関節112jの位置を推定する。第二実施形態において、計測コントローラ810は、先端関節112aおよび基端関節112bに加えて中心線CLに基づいて湾曲部112の関節112jの位置を推定する。計測コントローラ810は、中心線CLを用いて算出される条件を追加の制約条件として用いることで、より高速かつ正確に湾曲部112の関節112jの位置を推定できる。
<Step S160>
The measurement controller 810 estimates the position of the joint 112j of the bending section 112 in step S160, as in the first embodiment. In the second embodiment, the measurement controller 810 estimates the position of the joint 112j of the bending section 112 based on the centerline CL in addition to the distal joint 112a and the proximal joint 112b. The measurement controller 810 can estimate the position of the joint 112j of the bending section 112 more quickly and accurately by using the condition calculated using the centerline CL as an additional constraint condition.
 図20は、中心線CLから算出された湾曲部112の長さDを示す図である。
 計測コントローラ810は、推定した中心線CLにおいて先端関節112aおよび基端関節112bの線分を湾曲部112の長さDとして算出する。
FIG. 20 is a diagram showing the length D of the curved portion 112 calculated from the centerline CL.
The measurement controller 810 calculates a line segment of the distal joint 112a and the proximal joint 112b as the length D of the bending portion 112 on the estimated center line CL.
 図20に示す長さD1は、経年劣化していない理想的な湾曲部112の長さDである。一方、図20に示す長さD2は、推定した中心線CLから算出された湾曲部112の長さDである。計測コントローラ810は、直線状態における湾曲部112の長さD1と長さD2とを比較することにより、湾曲部112の不均等配向状態の有無や程度等を検出できる。計測コントローラ810は、長さD1と長さD2との差DEが大きい場合、湾曲部112が不均等配向状態であると予測できる。ここで、計測コントローラ810は、直線状態における湾曲部112の長さD1の情報を予め保有している。なお、計測コントローラ810は、中心線CLを用いず、ステップS140で算出された湾曲部112の先端関節112aおよび基端関節112bの位置を用いて長さD2を算出してもよい。 A length D1 shown in FIG. 20 is an ideal length D of the curved portion 112 that has not deteriorated over time. On the other hand, the length D2 shown in FIG. 20 is the length D of the curved portion 112 calculated from the estimated centerline CL. The measurement controller 810 can detect the presence or absence and degree of uneven orientation of the curved portion 112 by comparing the length D1 and the length D2 of the curved portion 112 in the linear state. The measurement controller 810 can predict that the curved portion 112 is in a non-uniformly oriented state when the difference DE between the length D1 and the length D2 is large. Here, the measurement controller 810 has in advance information on the length D1 of the bending portion 112 in the straight line state. Note that the measurement controller 810 may calculate the length D2 using the positions of the distal joint 112a and the proximal joint 112b of the bending portion 112 calculated in step S140 without using the center line CL.
 計測コントローラ810は、第一実施形態と同様に、ステップS170以降を実施して制御を終了する。 As in the first embodiment, the measurement controller 810 executes step S170 onwards and ends the control.
 本実施形態に係る電動内視鏡システム1000Bによれば、経年劣化等に伴う湾曲部112の湾曲形状の変化があった場合であっても、湾曲部112の湾曲形状(関節112jの位置)を容易に推定できる。電動内視鏡システム1000は、湾曲部112の中心線CLを推定して湾曲部112の関節112jの位置をより高速かつ正確に推定できる。 According to the electric endoscope system 1000B according to the present embodiment, even if the bending shape of the bending portion 112 changes due to aged deterioration or the like, the bending shape of the bending portion 112 (the position of the joint 112j) can be adjusted. can be easily estimated. The electric endoscope system 1000 can estimate the center line CL of the bending section 112 and estimate the positions of the joints 112j of the bending section 112 more quickly and accurately.
 以上、本発明の第二実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の実施形態および変形例において示した構成要素は適宜に組み合わせて構成することが可能である。 As described above, the second embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like are also included within the scope of the present invention. . Also, the constituent elements shown in the above-described embodiment and modifications can be combined as appropriate.
(変形例1)
 上記の実施形態において観察装置700は、カメラを有する撮像装置720を備えていたが、観察装置700の態様はこれに限定されない。観察装置700は、湾曲部112の形状情報を計測できる観察結果を取得できる装置であればよく、例えばスキャナ装置等であってもよい。
(Modification 1)
In the above embodiment, the observation device 700 includes the imaging device 720 having a camera, but the aspect of the observation device 700 is not limited to this. The observation device 700 may be any device capable of obtaining observation results that can measure the shape information of the bending portion 112, and may be, for example, a scanner device.
 各実施形態におけるプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 The program in each embodiment may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. Note that the “computer system” includes hardware such as an OS and peripheral devices. The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
 本発明は、管腔器官内等を観察および処置する医療システムに適用することができる。 The present invention can be applied to medical systems for observing and treating the inside of hollow organs.
1000,1000B 電動内視鏡システム(マニピュレータシステム)
100 内視鏡
110 挿入部
111 先端部
112 湾曲部
112j 関節
115 節輪(湾曲駒)
119 体内軟性部
140 体外軟性部
150 着脱部
160 湾曲ワイヤ
200 駆動装置
300 操作装置
400 処置具
500 映像制御装置
600 制御装置
700 観察装置
800 計測装置
900 表示装置
1000, 1000B electric endoscope system (manipulator system)
100 endoscope 110 insertion section 111 distal end section 112 bending section 112j joint 115 node ring (bending piece)
119 Internal flexible section 140 External flexible section 150 Detachable section 160 Bending wire 200 Driving device 300 Operating device 400 Treatment device 500 Image control device 600 Control device 700 Observation device 800 Measurement device 900 Display device

Claims (20)

  1.  複数の関節を有する湾曲部と、前記湾曲部を曲げる湾曲ワイヤと、を備えるマニピュレータと、
     前記湾曲ワイヤを駆動する駆動装置と、
     前記湾曲部を観察する観察装置と、
     前記観察装置の観察結果から前記湾曲部の形状情報を計測して、前記湾曲部の前記形状情報から前記関節の位置を推定する計測装置と、
     を備える、
     マニピュレータシステム。
    a manipulator comprising a bending portion having a plurality of joints and a bending wire for bending the bending portion;
    a driving device for driving the bending wire;
    an observation device for observing the curved portion;
    a measuring device that measures shape information of the bending portion from observation results of the observation device and estimates the position of the joint from the shape information of the bending portion;
    comprising
    manipulator system.
  2.  前記計測装置は、前記湾曲部の前記形状情報として前記湾曲部の輪郭を計測する、
     請求項1に記載のマニピュレータシステム。
    The measuring device measures the contour of the curved portion as the shape information of the curved portion.
    A manipulator system according to claim 1.
  3.  前記計測装置は、前記湾曲部の前記形状情報から算出した前記湾曲部の先端部と基端部の少なくとも一方の位置に基づいて、前記湾曲部の前記関節の位置を推定する、
     請求項1から請求項2のいずれか一項に記載のマニピュレータシステム。
    The measuring device estimates the position of the joint of the bending portion based on the position of at least one of the distal end portion and the proximal end portion of the bending portion calculated from the shape information of the bending portion.
    3. A manipulator system according to any one of claims 1-2.
  4.  前記計測装置は、推定した前記関節の位置から、前記湾曲部が直線状態であっても前記関節が直線状に並ばない不均等配向状態を検出する、
     請求項1から請求項3のいずれか一項に記載のマニピュレータシステム。
    The measuring device detects, from the estimated positions of the joints, an uneven orientation state in which the joints are not aligned in a straight line even if the bending portion is in a straight state.
    A manipulator system according to any one of claims 1 to 3.
  5.  前記計測装置は、推定した前記湾曲部の前記関節の位置に基づいて、前記駆動装置が前記湾曲ワイヤを駆動する制御パラメータを更新する、
     請求項1から請求項4のいずれか一項に記載のマニピュレータシステム。
    The measuring device updates a control parameter for driving the bending wire by the driving device based on the estimated position of the joint of the bending portion.
    A manipulator system according to any one of claims 1 to 4.
  6.  前記制御パラメータは、前記湾曲部を所定の湾曲形状とするために必要な前記湾曲ワイヤのワイヤ牽引量と前記湾曲ワイヤのワイヤ張力の少なくとも一方である、
     請求項5に記載のマニピュレータシステム。
    The control parameter is at least one of a wire pulling amount of the bending wire and a wire tension of the bending wire required to form the bending portion into a predetermined bending shape.
    6. A manipulator system according to claim 5.
  7.  前記計測装置は、前記湾曲部の前記関節の位置と前記制御パラメータとの関係を機械学習により事前に学習した学習済みモデルを用いて、前記制御パラメータを更新する、
     請求項5または請求項6に記載のマニピュレータシステム。
    The measuring device updates the control parameters using a learned model in which the relationship between the positions of the joints of the bending portion and the control parameters is learned in advance by machine learning.
    A manipulator system according to claim 5 or claim 6.
  8.  前記計測装置は、前記湾曲部の前記関節の位置と前記制御パラメータとの関係を記憶したデータベースを参照して、前記制御パラメータを更新する、
     請求項5または請求項6に記載のマニピュレータシステム。
    The measuring device updates the control parameters by referring to a database that stores the relationship between the positions of the joints of the bending portion and the control parameters.
    A manipulator system according to claim 5 or claim 6.
  9.  前記計測装置は、前記湾曲部の構造情報を制約条件とした計算により、前記湾曲部の前記形状情報から前記関節の位置を推定する、
     請求項1に記載のマニピュレータシステム。
    The measuring device estimates the position of the joint from the shape information of the bending portion by calculation using the structural information of the bending portion as a constraint.
    A manipulator system according to claim 1.
  10.  前記計測装置は、前記形状情報から前記湾曲部の中心線を推定し、前記中心線を用いて算出される条件を前記制約条件に加える、
     請求項9に記載のマニピュレータシステム。
    The measuring device estimates a center line of the curved portion from the shape information, and adds a condition calculated using the center line to the constraint condition.
    10. A manipulator system according to claim 9.
  11.  前記計測装置は、時間の経過とともに変化する前記湾曲部を観察した観察結果を用いて算出される条件を前記制約条件に加える、
     請求項9に記載のマニピュレータシステム。
    The measuring device adds a condition calculated using an observation result of observing the curved portion that changes over time to the constraint condition.
    10. A manipulator system according to claim 9.
  12.  複数の関節を有する湾曲部と、前記湾曲部を曲げる湾曲ワイヤと、を備えるマニピュレータの前記湾曲部の観察結果を取得し、
     前記観察結果から前記湾曲部の形状情報を計測し、
     前記湾曲部の前記形状情報から前記関節の位置を推定する、
     計測装置。
    Acquiring an observation result of the bending portion of a manipulator including a bending portion having a plurality of joints and a bending wire for bending the bending portion;
    Measuring the shape information of the curved portion from the observation result,
    estimating the position of the joint from the shape information of the bending portion;
    measuring device.
  13.  前記湾曲部の前記形状情報として前記湾曲部の輪郭を計測する、
     請求項12に記載の計測装置。
    measuring the contour of the curved portion as the shape information of the curved portion;
    The measuring device according to claim 12.
  14.  前記湾曲部の前記形状情報から算出した前記湾曲部の先端部と基端部の少なくとも一方の位置に基づいて、前記湾曲部の前記関節の位置を推定する、
     請求項12または請求項13のいずれか一項に記載の計測装置。
    estimating the position of the joint of the bending portion based on the position of at least one of the distal end portion and the proximal end portion of the bending portion calculated from the shape information of the bending portion;
    14. The measuring device according to claim 12 or 13.
  15.  推定した前記関節の位置から、前記湾曲部が直線状態であっても前記関節が直線状に並ばない不均等配向状態を検出する、
     請求項12から請求項14のいずれか一項に記載の計測装置。
    From the estimated positions of the joints, detecting an uneven orientation state in which the joints are not aligned in a straight line even if the bending portion is in a straight state.
    The measuring device according to any one of claims 12 to 14.
  16.  推定した前記湾曲部の前記関節の位置に基づいて、前記湾曲ワイヤを駆動する制御パラメータを更新する、
     請求項12から請求項15のいずれか一項に記載の計測装置。
    updating a control parameter for driving the bending wire based on the estimated position of the joint of the bending portion;
    The measuring device according to any one of claims 12 to 15.
  17.  前記制御パラメータは、前記湾曲部を所定の湾曲形状とするために必要な前記湾曲ワイヤのワイヤ牽引量と前記湾曲ワイヤのワイヤ張力の少なくとも一方である、
     請求項16に記載の計測装置。
    The control parameter is at least one of a wire pulling amount of the bending wire and a wire tension of the bending wire required to form the bending portion into a predetermined bending shape.
    The measuring device according to claim 16.
  18.  計測された前記形状情報から前記湾曲部の構造情報を制約条件とした計算によって前記関節の位置を推定する、
     請求項12に記載の計測装置。
    estimating the position of the joint from the measured shape information by calculation with the structural information of the bending portion as a constraint;
    The measuring device according to claim 12.
  19.  複数の関節を有する湾曲部と、前記湾曲部を曲げる湾曲ワイヤと、を備えるマニピュレータを制御する方法であって、
     前記湾曲部の観察結果から前記湾曲部の形状情報を計測する計測工程と、
     前記形状情報に基づいて、前記湾曲ワイヤを駆動する制御パラメータを更新する更新工程と、
     を備える、
     マニピュレータの制御方法。
    A method for controlling a manipulator comprising a bending portion having a plurality of joints and a bending wire for bending the bending portion, comprising:
    a measuring step of measuring shape information of the curved portion from observation results of the curved portion;
    an update step of updating a control parameter for driving the bending wire based on the shape information;
    comprising
    Manipulator control method.
  20.  前記湾曲部の構造情報を制約条件とした計算により、前記湾曲部の前記形状情報から前記関節の位置を推定する推定工程をさらに備え、
     前記更新工程において、推定した前記関節の位置に基づいて、前記湾曲ワイヤを駆動する前記制御パラメータを更新する、
     請求項19に記載のマニピュレータの制御方法。
    An estimating step of estimating the position of the joint from the shape information of the bending portion by calculation with the structural information of the bending portion as a constraint,
    updating the control parameter for driving the bending wire in the updating step based on the estimated position of the joint;
    The manipulator control method according to claim 19.
PCT/JP2021/023766 2021-06-23 2021-06-23 Manipulator system, measurement apparatus, and method for controlling manipulator WO2022269797A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/023766 WO2022269797A1 (en) 2021-06-23 2021-06-23 Manipulator system, measurement apparatus, and method for controlling manipulator
JP2023529313A JPWO2022269797A5 (en) 2021-06-23 Manipulator measurement system, measurement device, and manipulator control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023766 WO2022269797A1 (en) 2021-06-23 2021-06-23 Manipulator system, measurement apparatus, and method for controlling manipulator

Publications (1)

Publication Number Publication Date
WO2022269797A1 true WO2022269797A1 (en) 2022-12-29

Family

ID=84545319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023766 WO2022269797A1 (en) 2021-06-23 2021-06-23 Manipulator system, measurement apparatus, and method for controlling manipulator

Country Status (1)

Country Link
WO (1) WO2022269797A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160278A (en) * 2014-02-27 2015-09-07 オリンパス株式会社 Medical system and calibration method of operational tool
JP2019531807A (en) * 2016-09-30 2019-11-07 オーリス ヘルス インコーポレイテッド Automatic calibration of endoscope using pull wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160278A (en) * 2014-02-27 2015-09-07 オリンパス株式会社 Medical system and calibration method of operational tool
JP2019531807A (en) * 2016-09-30 2019-11-07 オーリス ヘルス インコーポレイテッド Automatic calibration of endoscope using pull wire

Also Published As

Publication number Publication date
JPWO2022269797A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
KR102558061B1 (en) A robotic system for navigating the intraluminal tissue network that compensates for physiological noise
US8454497B2 (en) Endoscope apparatus and bending drive control method
JP3981364B2 (en) Double balloon endoscope system
JP4724262B2 (en) Endoscope device
KR20200007896A (en) Biopsy Devices and Systems
JP2020526254A (en) Instrument insertion compensation
US11006820B2 (en) Flexible tube insertion apparatus
US20080103362A1 (en) Programmable brake control system for use in a medical device
WO2010140441A1 (en) Medical equipment system and method for calibrating medical instrument
US20180235716A1 (en) Insertion unit support system
WO2009084345A1 (en) Medical instrument system
CN113365545A (en) Image recording apparatus, image recording method, and image recording program
WO2021171465A1 (en) Endoscope system and method for scanning lumen using endoscope system
JP3290153B2 (en) Endoscope insertion shape detection device
US20050065404A1 (en) Endoscope
JP7007478B2 (en) Endoscope system and how to operate the endoscope system
WO2022269797A1 (en) Manipulator system, measurement apparatus, and method for controlling manipulator
US20230124687A1 (en) Method for calibrating endoscope and endoscope system
JP6616838B2 (en) Endoscope shape grasp system
US20230240519A1 (en) Method for calibrating endoscope and endoscope system
WO2022195695A1 (en) Manipulator system and manipulator operation method
JP6464110B2 (en) Endoscope shape grasp system
WO2022230160A1 (en) Endoscopic system, lumen structure calculation system, and method for creating lumen structure information
US20240057848A1 (en) Control device and control method
JP7167334B2 (en) MONITORING SYSTEM AND METHOD FOR EVALUATING INSERTION OPERATION OF ENDOSCOPE INTO MODEL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947083

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529313

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE