WO2022264361A1 - Hermetic compressor and refrigeration cycle apparatus - Google Patents

Hermetic compressor and refrigeration cycle apparatus Download PDF

Info

Publication number
WO2022264361A1
WO2022264361A1 PCT/JP2021/023040 JP2021023040W WO2022264361A1 WO 2022264361 A1 WO2022264361 A1 WO 2022264361A1 JP 2021023040 W JP2021023040 W JP 2021023040W WO 2022264361 A1 WO2022264361 A1 WO 2022264361A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
core wire
hermetic compressor
wire
core
Prior art date
Application number
PCT/JP2021/023040
Other languages
French (fr)
Japanese (ja)
Inventor
暁和 和泉
友宏 井柳
貴彦 村上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/023040 priority Critical patent/WO2022264361A1/en
Publication of WO2022264361A1 publication Critical patent/WO2022264361A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present disclosure relates to a hermetic compressor and a refrigeration cycle device.
  • the stator of an electric motor used in a hermetic compressor or the like used in a conventional refrigeration cycle apparatus includes a stator core having a plurality of magnetic pole teeth along the inner periphery, and each magnetic pole of the stator core. and a copper winding wound around the teeth via an insulating member (see, for example, Patent Document 1).
  • a winding receiver is fixed to the end face side of the stator core, and the winding receiver holds a connecting wire between two copper windings and an end wire of another copper winding.
  • a holding portion and an insertion portion into which the pressure contact projection of the pressure contact terminal is inserted are formed.
  • the press-connecting protrusion of the press-contact terminal is inserted into the insertion portion of the winding receiver, and the connecting wire and terminal wire held by the holding portion are press-fitted into the press-contact slot.
  • a blade portion is formed on the peripheral edge of the pressure contact slot, and when the connecting wire and the terminal wire are press-fitted into the pressure contact slot, the coating between the connecting wire and the terminal wire is broken by the blade portion, and the connecting wire and the terminal wire are separated. are electrically connected via pressure contact terminals.
  • the present disclosure has been made to solve the above problems, and aims to provide a hermetic compressor and a refrigeration cycle device that are highly reliable without corrosion of the stator windings.
  • a hermetic compressor includes a hollow cylindrical stator having a stator core and a stator winding wound around the stator core; an electric mechanism unit having a rotor; a compression mechanism unit that is driven by the electric mechanism unit and compresses a nonflammable refrigerant containing iodine; and a sealed container that houses the electric mechanism unit and the compression mechanism unit.
  • the stator winding has an aluminum core wire.
  • the hermetic compressor, the outdoor heat exchanger, the throttle device, and the indoor heat exchanger are connected by refrigerant piping, and the nonflammable refrigerant containing iodine is It has a circulating refrigerant circuit.
  • the hermetic compressor and the refrigeration cycle apparatus according to the present disclosure, aluminum is used instead of copper for the core wires of the stator windings. Therefore, when a nonflammable refrigerant containing iodine such as a mixed refrigerant containing trifluoroiodomethane (CF 3 I) is used as a refrigerant circulating in a refrigerant circuit of a refrigeration cycle device equipped with a hermetic compressor, However, the risk of corrosion of the core wire of the stator winding can be reduced, and the risk of poor conduction of the compressor can be reduced, so high reliability can be obtained.
  • CF 3 I mixed refrigerant containing trifluoroiodomethane
  • FIG. 1 is a schematic diagram showing an example of an internal configuration of a hermetic compressor according to an embodiment
  • FIG. It is a cross-sectional schematic of the compression mechanism part of the hermetic compressor which concerns on embodiment.
  • FIG. 3 is a cross-sectional view of an electric mechanism portion of the hermetic compressor according to the embodiment;
  • FIG. 4 is an explanatory diagram showing the relationship between a restraint portion, restraint grooves, a connecting wire, and a press contact terminal in the hermetic compressor according to the embodiment;
  • FIG. 5 is an explanatory diagram showing how the stator windings and the connecting wires of the hermetic compressor according to the embodiment are electrically connected to the lead wires.
  • FIG. 4 is an explanatory view showing a state before the coated portions of the stator winding and the coated portion of the connecting wire of the hermetic compressor according to the embodiment are peeled off;
  • FIG. 4 is an explanatory view showing a state in which the core wire exposed by peeling off the coated portion of the stator winding and the coated portion of the connecting wire of the hermetic compressor according to the embodiment is electrically connected to the press contact terminal; It is the reaction test result of the metal catalyst in R466A refrigerant environment.
  • 1 is a schematic configuration diagram of a refrigeration cycle device provided with a hermetic compressor according to an embodiment;
  • a hermetic compressor 100 and a refrigeration cycle device 200 will be described below with reference to the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. Also, in the following drawings, the size relationship of each component may differ from the actual size. Also, in the following description, terms representing directions (for example, “up”, “down”, “right”, “left”, “front”, “back”, etc.) are used as appropriate for ease of understanding. For the purpose of description, these terms are not intended to limit this disclosure. Unless otherwise specified, these directional terms mean directions when the hermetic compressor 100 is viewed from the front side (front side). Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification.
  • FIG. 1 is a schematic diagram showing an example of the internal configuration of a hermetic compressor 100 according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of the compression mechanism section 20 of the hermetic compressor 100 according to the embodiment.
  • FIG. 3 is a cross-sectional view of the electric mechanism section 30 of the hermetic compressor 100 according to the embodiment. 3 is a cross-sectional view of the hermetic compressor 100 cut in a direction perpendicular to the axial direction of the crankshaft 40 at the electric mechanism portion 30. As shown in FIG.
  • the hermetic compressor 100 is of a rotary type, and has the function of sucking fluid such as refrigerant, compressing it, and discharging it in a high-temperature, high-pressure state. As shown in FIG. 1, this hermetic compressor 100 includes a hermetic container 10 forming an outer shell. This sealed container 10 is composed of an upper container 11 and a lower container 12 .
  • a discharge pipe 102 is fixed through the upper surface of the upper container 11 of the closed container 10 .
  • the discharge pipe 102 discharges high-pressure gas refrigerant to the outside of the sealed container 10 .
  • the fixed portion between the discharge pipe 102 and the upper container 11 is joined by welding or the like, for example.
  • a suction muffler 101 for sucking low-pressure gas refrigerant from the refrigerant circuit is arranged on the side of the sealed container 10 .
  • This suction muffler 101 is fixed to the side surface of the sealed container 10 by welding or the like.
  • a compression mechanism 20, an electric mechanism 30, a crankshaft 40, and other components are housed inside the sealed container 10.
  • the electric mechanism section 30 is arranged above the compression mechanism section 20 .
  • the crankshaft 40 is arranged between the electric mechanism section 30 and the compression mechanism section 20 in the central portion of the closed container 10 and extends vertically through the central portion of the closed container 10 .
  • the crankshaft 40 has a cylindrical eccentric shaft portion 42 arranged inside the compression mechanism portion 20 .
  • a rolling piston 21 is attached to the outer peripheral surface of the eccentric shaft portion 42 so as to be rotatable along the outer peripheral surface of the eccentric shaft portion 42 .
  • an oil hole 44 (see FIG. 2) that supplies the refrigerating machine oil stored in the bottom of the lower container 12 of the closed container 10 to the compression mechanism 20 by centrifugal force due to the rotational motion of the crankshaft 40. is provided.
  • the compression mechanism section 20 compresses the low-pressure gas refrigerant sucked into the sealed container 10 into a high-pressure gas refrigerant by the rotational driving force supplied from the electric mechanism section 30, and converts the compressed high-pressure gas refrigerant into the compression mechanism.
  • the ink is discharged upward from the portion 20 .
  • the compression mechanism section 20 includes a rolling piston 21, a cylinder 22, a vane 26, a main bearing 24, and a sub-bearing 25, as shown in FIGS.
  • the cylinder 22 has a hollow cylindrical shape, and its outer peripheral surface is fixed to the inner peripheral surface of the lower container 12 of the closed container 10 .
  • the hollow portion 22 a of the cylinder 22 accommodates the eccentric shaft portion 42 of the crankshaft 40 and the rolling piston 21 . That is, the cylinder 22 is configured such that the rotation of the crankshaft 40 causes the eccentric shaft portion 42 of the crankshaft 40 and the rolling piston 21 to rotate eccentrically in the hollow portion 22a.
  • the cylinder 22 is provided with a back pressure chamber 22b that communicates with the inside of the sealed container 10, and a vane groove 22c that communicates the hollow portion 22a and the back pressure chamber 22b.
  • a vane 26 is accommodated in the vane groove 22 c of the cylinder 22 .
  • the vane 26 is pressed against the surface of the rolling piston 21 by the restoring force of an elastic body such as a spring provided inside the vane groove 22c, and reciprocates inside the vane groove 22c by the eccentric motion of the rolling piston 21.
  • It is a sliding member configured as follows.
  • a main bearing 24 that supports the main shaft portion 41 of the crankshaft 40 is arranged on the upper hollow disk surface of the cylinder 22 .
  • a sub-bearing 25 that supports the sub-shaft portion 43 of the crankshaft 40 is arranged on the hollow disk surface on the lower side of the cylinder 22 .
  • the main bearing 24 and the sub-bearing 25 slidably support the crankshaft 40 .
  • the main bearing 24 has a hollow disk shape when viewed from above.
  • the main bearing 24 has a fixed portion (not shown) that is fixed to the upper hollow disk surface of the cylinder 22 and a bearing portion (not shown) that slidably supports the outer peripheral surface of the crankshaft 40 . doing. Further, the main bearing 24 is fixed to the upper hollow disk surface of the cylinder 22 by, for example, bolts or the like.
  • the sub-bearing 25 has a hollow disk shape when viewed from below.
  • the sub-bearing 25 includes a fixed portion (not shown) fixed to the hollow disc surface on the lower side of the cylinder 22 and a bearing portion (not shown) slidably supporting the outer peripheral surface of the crankshaft 40. have. Further, the sub-bearing 25 is fixed to the lower hollow disk surface of the cylinder 22 by, for example, bolts.
  • the compression mechanism portion 20 In the compression mechanism portion 20, the sealable space surrounded by the rolling piston 21, the cylinder 22, the vane 26, the fixed portion of the main bearing 24, and the fixed portion of the sub-bearing 25 was sucked into the sealed container 10. It constitutes a compression chamber for compressing a low-pressure gas refrigerant. A high-pressure gas refrigerant compressed in the compression chamber is discharged from a discharge port (not shown) provided in the main bearing 24 .
  • the rotary type shown in FIGS. 1 and 2 has been described as an example of the configuration of the compression mechanism 20, it is not limited thereto, and may be of any type such as a scroll type or a reciprocating type. No. Also, the rolling piston 21 and the vane 26 are separate bodies and have been described as being in contact with each other, but they are not limited to this and may be integrated. Further, regarding the arrangement of the compression mechanism portion 20 and the electric mechanism portion 30 , the electric mechanism portion 30 may not necessarily be arranged above the compression mechanism portion 20 . That is, the arrangement of the compression mechanism section 20 and the electric mechanism section 30 may be upside down, or may be laterally arranged side by side. The configuration of these compression mechanism units 20 is an example, and the features of the present application are not limited to these configurations.
  • FIG. 1 The configuration of the electric mechanism section 30 of the hermetic compressor 100 according to the embodiment will be described below with reference to FIGS. 1 and 3.
  • FIG. 1 The configuration of the electric mechanism section 30 of the hermetic compressor 100 according to the embodiment will be described below with reference to FIGS. 1 and 3.
  • the electric mechanism section 30 is configured as a motor that generates rotational driving force using electric power supplied from an external power supply and transmits the rotational driving force to the compression mechanism section 20 via the crankshaft 40 .
  • the electric mechanism section 30 includes a hollow cylindrical stator 32 and a hollow cylindrical rotor 31 rotatably arranged inside the inner peripheral surface of the stator 32 .
  • the stator 32 is inserted into the closed container 10 of the closed compressor 100 and fixed to the inner peripheral surface of the closed container 10 by shrink fitting or the like. That is, the radial outer peripheral surface of the stator 32 and the inner peripheral surface of the sealed container 10 are in contact with each other and fixed.
  • the rotor 31 is provided with a shaft hole 31b penetrating in the axial direction on the central axis of the rotor 31 .
  • the main shaft portion 41 of the crankshaft 40 is inserted into the shaft hole 31 b of the rotor 31 , and the rotor 31 is fixed to the main shaft portion 41 of the crankshaft 40 .
  • the rotor 31 is composed of a rotor core 31 a in which thin electromagnetic steel plates are stacked in the axial direction of the crankshaft 40 .
  • the electromagnetic steel sheets forming the rotor core 31a are formed by punching electromagnetic steel sheets into a predetermined shape, stacking multiple sheets in the axial direction of the crankshaft 40, and fixing the stacked electromagnetic steel sheets to each other by caulking or welding.
  • a magnet insertion hole 31c penetrating in the axial direction of the crankshaft 40 is provided in the rotor core 31a so as to surround the shaft hole 31b.
  • a permanent magnet 33 made of a plate-shaped rare earth element is inserted and fixed in the magnet insertion hole 31c.
  • An even number of magnet insertion holes 31c and permanent magnets 33 are generally provided, and are provided near the radial outer edge of the rotor core 31a, that is, the vicinity of the radial outer peripheral surface of the rotor core 31a.
  • the rotor 31 generates magnetic flux with the permanent magnets 33 .
  • an upper balance weight 34a is provided above the rotor core 31a, and a lower balance weight 34b is provided below the rotor core 31a.
  • These upper balance weight 34a and lower balance weight 34b are provided to cancel the load when the eccentric shaft portion 42 of the crankshaft 40 rotates eccentrically. Furthermore, the upper balance weight 34a and the lower balance weight 34b also prevent the permanent magnets 33 from scattering.
  • the upper balance weight 34 a , the lower balance weight 34 b and the rotor core 31 a are fixed by rivets 35 .
  • the upper balance weight 34a, the lower balance weight 34b, and the rotor core 31a are provided with rivet holes (not shown) penetrating in the axial direction of the crankshaft 40, and the rivet holes are provided with rivets. It is fixed by inserting 35. If the load generated when the eccentric shaft portion 42 of the crankshaft 40 rotates eccentrically is small and does not need to be counteracted, instead of the upper balance weight 34a and the lower balance weight 34b, the permanent magnet 33 can be provided with an edge that prevents scattering. A plate (not shown) may be provided.
  • a communication hole (not shown) communicating with the crankshaft 40 in the axial direction is provided in the rotor core 31a.
  • This communication hole is for allowing the refrigerant gas discharged from the compression mechanism portion 20 to pass therethrough. That is, the refrigerant gas discharged from the compression mechanism portion 20 passes through the communication hole and is delivered to the discharge pipe 102 .
  • the air discharged from the compression mechanism section 20 also passes through the gap between the rotor 31 and the stator 32, the gap inside the stator 32, and the gap between the stator 32 and the sealed container 10. Refrigerant gas is delivered to the discharge pipe 102 .
  • a rotor 31 is provided inside a hollow cylindrical stator 32, and the rotor 31 and the stator 32 are separated by a distance of about 0.3 mm to 1.0 mm. It is installed so as to have an air gap.
  • the stator 32 includes a stator core 32a in which thin electromagnetic steel plates are stacked in the axial direction of the crankshaft 40, stator windings 37 wound around the stator core 32a, the stator core 32a and the stator windings. and an insulating member 38 (see FIG. 4 to be described later) that insulates from the wire 37 .
  • the stator core 32a is composed of a back yoke 32b that forms a cylindrical portion of the outer edge, and teeth 32c that are magnetic pole teeth provided inside the back yoke 32b.
  • the teeth 32 c extend toward the central axis of the stator core 32 a , that is, toward the crankshaft 40 , and their tips widen in a reverse arc shape so as to face the outer peripheral surface of the rotor 31 .
  • Slots 32d occupied by stator windings 37 are formed between adjacent teeth 32c.
  • the stator 32 according to the embodiment is formed by winding the stator winding 37 around each tooth 32c of the stator core 32a and then connecting the stator core 32a in an annular shape with the back yoke 32b. be.
  • this is an example of the method of manufacturing the stator 32, and the feature of the present application is not limited to this method.
  • a stator winding 37 is wound around the tooth 32c via an insulating member 38 .
  • a stator winding 37 is wound around the teeth 32c to form magnetic poles.
  • the stator winding 37 is composed of a core wire 37b (see FIGS. 6 and 7 described later), which is a conductor, and at least one layer of coating 37a (see FIGS. 6 and 7 described later) covering the core wire 37b. It is a conductor.
  • the stator winding 37 is often a single wire, but a plurality of single wires may be used collectively.
  • the material of the film is an insulating material such as AI (amide imide)/EI (ester imide).
  • the stator 32 generates magnetic flux for each tooth 32c by applying current to the stator windings 37 .
  • the film since the film has an insulating property, the conductors do not conduct even if they come into contact with each other.
  • the upper container 11 of the closed container 10 is provided with a connection terminal 7 that is connected to a power supply provided outside the closed compressor 100, such as an inverter device.
  • a lead wire 39 is provided in the upper part of the sealed container 10 .
  • the lead wire 39 is a lead wire that supplies power to the stator windings 37 from a power source outside the sealed container 10 , and is a lead wire that connects the connection terminals 7 and the stator windings 37 .
  • the power source supplies power to the electric mechanism portion 30 through the connection terminal 7, and the electric mechanism portion 30 operates. That is, the stator 32 generates magnetic flux, and the rotor 31 rotates.
  • the compression mechanism section 20 is driven via the crankshaft 40 .
  • the connection terminals 7 may be provided in the lower container 12 instead of the upper container 11 of the closed container 10 .
  • FIG. 4 is an explanatory diagram showing the relationship between the restraining portion 51, the restraining groove 51a, the connecting wire 53, and the press contact terminal 52 in the hermetic compressor 100 according to the embodiment.
  • FIG. 5 is an explanatory diagram showing how the stator winding 37 and the connecting wire 53 of the hermetic compressor 100 according to the embodiment are electrically connected to the lead wire 39.
  • FIG. 6 is an explanatory view showing a state before the coated portion 37a of the stator winding 37 and the coated portion 53a of the connecting wire 53 of the hermetic compressor 100 according to the embodiment are peeled off.
  • FIG. 6 is an explanatory view showing a state before the coated portion 37a of the stator winding 37 and the coated portion 53a of the connecting wire 53 of the hermetic compressor 100 according to the embodiment are peeled off.
  • FIG. 7 shows that core wires 37b and 53b, which are exposed by stripping the coated portion 37a of the stator winding 37 and the coated portion 53a of the connecting wire 53 of the hermetic compressor 100 according to the embodiment, are electrically connected to the pressure contact terminal 52.
  • FIG. 4 is an explanatory diagram showing a connected state
  • the insulating member 38 insulates the stator core 32 a mainly made of iron and the stator winding 37 .
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • LCP liquid crystal polymer
  • PPS polyphenylene sulfide
  • the insulating member 38 is provided with two restraining portions 51 for restraining and fixing the end portion, which is the terminal end of the stator winding 37 .
  • the restraining portion 51 is arranged on the axial end face of the crankshaft 40 of the back yoke 32b connected to the teeth 32c.
  • Each of the restraining portions 51 includes a crimp terminal insertion portion 51b having four walls and an opening at the top for inserting the crimp terminal 52, and a restraint formed on a pair of opposing wall portions of the crimp terminal insertion portion 51b.
  • a groove 51a is provided.
  • One end portion of the stator winding 37 wound around the teeth 32c is restrained in the restraining groove 51a of one of the restraining portions 51. As shown in FIG. In the restraining groove 51a of the other restraining portion 51, the other end portion of the stator winding 37 wound around the teeth 32c is restrained. In this manner, the two end portions of the stator winding 37 wound around the tooth 32c are bound by the two binding portions 51, respectively.
  • the connecting wire 53 is also constrained in the constraining groove 51 a of the constraining portion 51 .
  • the pressure contact terminal 52 is to be inserted into the pressure contact terminal insertion portion 51b of the restraining portion 51 .
  • the pressure contact terminal 52 is made of a conductive metal, such as brass, which is plated with tin.
  • the insulation displacement terminal 52 is provided with a plurality of grooves 52a, and the structure is such that the grooves 52a sandwich the stator winding 37 and the connecting wire 53, respectively.
  • the pressure contact terminal 52 is inserted into the restraining portion 51, and the groove 52a (see FIG. 6) of the pressure contact terminal 52 sandwiches the stator winding 37 and the connecting wire 53, respectively, as indicated by arrows.
  • the lead wire 39 is moved in the direction and attached to the crimp terminal 52 .
  • the pressure contact terminal 52 electrically connects the stator winding 37 , the connecting wire 53 and the lead wire 39 . That is, the stator winding 37 is connected to the crossover wire 53 via the restraint portion 51 and the press contact terminal 52 incorporated in the restraint portion 51 .
  • the core wire 37b is exposed from the coated portion 37a at the portion of the stator winding 37 sandwiched between the pressure contact terminals 52. As shown in FIGS. That is, around the portion of the stator winding 37 that is electrically connected to the press contact terminal 52, the coating portion 37a is peeled off, and the core wire 37b is exposed. Similarly, the core wire 53b is exposed from the covering portion 53a at the portion of the connecting wire 53 sandwiched between the pressure contact terminals 52. As shown in FIG. That is, around the portion of the connecting wire 53 electrically connected to the pressure contact terminal 52, the coating portion 53a is peeled off, and the core wire 53b is exposed.
  • the crossover wire 53 is a conductive wire composed of a core wire 53b, which is a conductor, and at least one layer of coating 53a covering the core wire 53b, and connects the stator windings 37 wound around different teeth 32c.
  • a plurality of stator windings 37 are connected in series or in parallel, or end portions of a plurality of stator windings 37 are connected to form a neutral point.
  • the lead wire 39 is a conducting wire composed of a core wire that is a conductor and at least one layer of coating that covers the core wire.
  • connection terminal 7 electrically connects the inside and outside of the sealed container 10 .
  • the stator winding 37 and the connecting wire 53 restrained by the restraining portion 51 of the insulating member 38 are connected to an external power source via the lead wire 39, the terminal, and the connection terminal 7, and are electrically connected.
  • FIG. 8 shows the reaction test results of metal catalysts in an R466A refrigerant environment, and shows changes in concentration in oil (concentration of iodine ions in refrigerating machine oil) with respect to temperature for each catalyst.
  • the vertical axis of the graph in FIG. 8 indicates the concentration in oil, and the horizontal axis indicates the temperature.
  • the above reaction test results are obtained by heating PVE oil containing metal catalyst Al + Fe or Al + Fe + Cu and PVE oil containing no metal catalyst at 140 ° C. for 2 weeks in an R466A refrigerant environment. Each PVE oil was analyzed after completion to ascertain the remaining I - concentration.
  • FIG. 9 is a schematic configuration diagram of a refrigeration cycle device 200 including a hermetic compressor 100 according to the embodiment.
  • the refrigeration cycle device 200 includes a suction muffler 101 of the hermetic compressor 100 connected to the suction side of the hermetic compressor 100, and a refrigerant flow from the hermetic compressor 100 connected to the discharge side of the hermetic compressor 100.
  • an outdoor heat exchanger 104, a throttle device 105 such as an electric expansion, and an indoor heat exchanger 106 are connected by a refrigerant pipe 201 to form a refrigerant circuit in which the refrigerant circulates.
  • a nonflammable refrigerant containing iodine, such as R466A refrigerant is used as the refrigerant circulating in the refrigerant circuit.
  • the R466A refrigerant is a kind of mixed refrigerant containing trifluoroiodomethane (CF 3 I).
  • the indoor heat exchanger 106 is an indoor device, and the remaining hermetic compressor 100, flow path switching valve 103, outdoor heat exchanger 104, and expansion device 105 are outdoors. installed in the device. It is assumed that the refrigeration cycle device 200 according to the embodiment is applied to an air conditioner capable of cooling and heating operations.
  • the channel switching valve 103 is connected to the solid line side in FIG.
  • the high-temperature, high-pressure refrigerant compressed by the hermetic compressor 100 flows into the indoor-side heat exchanger 106, where it is condensed and liquefied, and then throttled by the expansion device 105 into a low-temperature, low-pressure two-phase state.
  • the low-temperature, low-pressure two-phase refrigerant flows to the outdoor heat exchanger 104 , evaporates, gasifies, and returns to the hermetic compressor 100 through the flow path switching valve 103 . That is, the refrigerant circulates as indicated by solid line arrows in FIG.
  • the outdoor heat exchanger 104 which is an evaporator, exchanges heat with the outside air, and the refrigerant sent to the outdoor heat exchanger 104 absorbs heat. It is sent to the vessel 106 and exchanges heat with the air in the room to warm the air in the room.
  • the flow path switching valve 103 is connected to the dashed line side in FIG.
  • the high-temperature, high-pressure refrigerant compressed by the hermetic compressor 100 flows to the outdoor heat exchanger 104, where it is condensed and liquefied, and then throttled by the expansion device 105 to become a low-temperature, low-pressure two-phase state.
  • the low-temperature, low-pressure two-phase refrigerant flows to the indoor heat exchanger 106 , evaporates, gasifies, and returns to the hermetic compressor 100 through the flow path switching valve 103 .
  • the indoor heat exchanger 106 changes from a condenser to an evaporator
  • the outdoor heat exchanger 104 changes from an evaporator to a condenser. Therefore, the coolant circulates as indicated by the dashed arrows in FIG. Due to this circulation, the indoor heat exchanger 106, which is an evaporator, exchanges heat with the indoor air, and absorbs heat from the indoor air, that is, cools the indoor air. 104, heat is exchanged with the outside air, and the heat is released to the outside air.
  • the hermetic compressor 100 with improved efficiency is used in the refrigeration cycle device 200, the energy saving performance of the refrigeration cycle device 200 is improved.
  • the hermetic compressor 100 includes the hollow cylindrical stator 32 having the stator core 32a and the stator windings 37 wound around the stator core 32a, and the stator 32 An electric mechanism section 30 having a rotor 31 rotatably provided inside; a compression mechanism section 20 driven by the electric mechanism section 30 to compress refrigerant; and a stator winding 37 having an aluminum core wire 37b.
  • the core wire 37b of the stator winding 37 is made of aluminum instead of copper. Therefore, even when a nonflammable refrigerant containing iodine such as R466A refrigerant is used as the refrigerant circulating in the refrigerant circuit of the refrigeration cycle device 200 including the hermetic compressor 100, the core wire of the stator winding 37 The risk of corrosion of 37b can be reduced. As a result, the risk of poor conduction of the compressor can be reduced, and high reliability can be obtained.
  • the stator 32 includes a connecting wire 53 that connects the stator windings 37 wound around different teeth 32c.
  • the connecting wire 53 has an aluminum core wire 53b and an insulating coating 53a covering the core wire 53b. is not provided with the coating portion 53a, and the core wire 53b is exposed.
  • the core wire 53b of the connecting wire 53 is made of aluminum. Therefore, even when a nonflammable refrigerant containing iodine such as R466A refrigerant is used as the refrigerant circulating in the refrigerant circuit of the refrigeration cycle device 200 including the hermetic compressor 100, the core wire 53b of the connecting wire 53 is The risk of corrosion can be reduced. As a result, the risk of poor conduction of the compressor can be reduced, and high reliability can be obtained.
  • the lead wire 39 that connects the connection terminal 7 connected to the power supply outside the hermetic container 10 and the stator winding 37 is provided.
  • the terminal portion of the lead wire 39 is fixed, and the lead wire 39 has an aluminum core wire and an insulating coating portion covering the core wire. is not provided, and the core wire is exposed.
  • the core wire of the lead wire 39 is made of aluminum. Therefore, even when a nonflammable refrigerant containing iodine such as R466A refrigerant is used as the refrigerant circulating in the refrigerant circuit of the refrigeration cycle device 200 including the hermetic compressor 100, corrosion of the core wire of the lead wire 39 does not occur. can reduce the risk of As a result, the risk of poor conduction of the compressor can be reduced, and high reliability can be obtained.
  • the hermetic compressor 100, the outdoor heat exchanger 104, the expansion device 105, and the indoor heat exchanger 106 are connected by a refrigerant pipe 201, and iodine is provided with a refrigerant circuit in which a nonflammable refrigerant containing is circulated.
  • the refrigeration cycle device 200 it is possible to obtain the same effect as the hermetic compressor 100 described above.
  • connection terminal 10 airtight container, 11 upper container, 12 lower container, 20 compression mechanism, 21 rolling piston, 22 cylinder, 22a hollow part, 22b back pressure chamber, 22c vane groove, 24 main bearing, 25 sub-bearing, 26 Vane, 30 electric mechanism, 31 rotor, 31a rotor core, 31b shaft hole, 31c magnet insertion hole, 32 stator, 32a stator core, 32b back yoke, 32c teeth, 32d slot, 33 permanent magnet, 34a upper part balance weight, 34b lower balance weight, 35 rivet, 37 stator winding, 37a coating portion, 37b core wire, 38 insulating member, 39 lead wire, 40 crankshaft, 41 main shaft portion, 42 eccentric shaft portion, 43 sub shaft portion, 44 oil hole, 51 restraint portion, 51a restraint groove, 51b pressure contact terminal insertion portion, 52 pressure contact terminal, 52a groove, 53 connecting wire, 53a coating portion, 53b core wire, 100 sealed compressor, 101 suction muffler, 102 discharge pipe, 103 Flow path switching valve

Abstract

This hermetic compressor comprises: an electric motor having a hollow cylindrical stator having a stator core and a stator coil wound around the stator core, and a rotor provided so as to be rotatable inside the stator; a compressor mechanism that is driven by the electric motor and that compresses non-flammable refrigerant including iodine; and a hermetic container that accommodates the electric motor and the compressor mechanism. The stator coil has an aluminum core wire.

Description

密閉型圧縮機および冷凍サイクル装置Hermetic compressor and refrigeration cycle equipment
 本開示は、密閉型圧縮機および冷凍サイクル装置に関するものである。 The present disclosure relates to a hermetic compressor and a refrigeration cycle device.
 近年、環境保全に対する意識が高まっており、冷凍サイクル装置に使用される冷媒には、オゾン層破壊係数(ODP:Ozone Depletion Potential)および地球温暖化係数(GWP:Global Warming Potential)を削減することが要求されている。 In recent years, there has been a growing awareness of environmental conservation, and refrigerants used in refrigeration cycle equipment are expected to have a reduced ozone depletion potential (ODP) and global warming potential (GWP). requested.
 そこで、従来、オゾン層破壊係数および地球温暖化係数を低く抑えることが可能な冷媒の使用が検討されている。その中でも地球温暖化係数が低い冷媒は、燃焼性が高まる傾向にあることから、近年、R466A冷媒のように、地球温暖化係数が低く、ヨウ素を含んだ不燃性の冷媒の使用についての検討が進められている。 Therefore, conventionally, the use of refrigerants that can keep the ozone depletion potential and global warming potential low has been studied. Refrigerants with low global warming potential tend to be highly flammable, so in recent years, the use of nonflammable refrigerants with low global warming potential and containing iodine, such as R466A refrigerant, has been studied. is underway.
 一方で、従来の冷凍サイクル装置で使用される密閉型圧縮機などに用いられる電動機の固定子は、内周部に沿って複数の磁極歯を有する固定子鉄心と、この固定子鉄心の各磁極歯に絶縁部材を介して巻回される銅巻線とから構成される(例えば、特許文献1参照)。特許文献1では、固定子鉄心の端面側には巻線受けが固定され、この巻線受けには、2個の銅巻線間の渡り線と他の銅巻線の端末線とを保持する保持部と、圧接端子の圧接用突部が挿入される挿入部とが形成されている。そして、圧接端子の圧接用突部が巻線受けの挿入部に挿入されるとともに、保持部に保持された渡り線と端末線とが圧接スロットに圧入されている。圧接スロットの周縁には刃部が形成されており、渡り線と端末線とが圧接スロットに圧入されることにより渡り線と端末線との被膜が刃部により破られ、渡り線と端末線とが圧接端子を介して電気的に接続される。 On the other hand, the stator of an electric motor used in a hermetic compressor or the like used in a conventional refrigeration cycle apparatus includes a stator core having a plurality of magnetic pole teeth along the inner periphery, and each magnetic pole of the stator core. and a copper winding wound around the teeth via an insulating member (see, for example, Patent Document 1). In Patent Document 1, a winding receiver is fixed to the end face side of the stator core, and the winding receiver holds a connecting wire between two copper windings and an end wire of another copper winding. A holding portion and an insertion portion into which the pressure contact projection of the pressure contact terminal is inserted are formed. The press-connecting protrusion of the press-contact terminal is inserted into the insertion portion of the winding receiver, and the connecting wire and terminal wire held by the holding portion are press-fitted into the press-contact slot. A blade portion is formed on the peripheral edge of the pressure contact slot, and when the connecting wire and the terminal wire are press-fitted into the pressure contact slot, the coating between the connecting wire and the terminal wire is broken by the blade portion, and the connecting wire and the terminal wire are separated. are electrically connected via pressure contact terminals.
特開2015-70652号公報JP 2015-70652 A
 特許文献1に記載の電動機の固定子では、渡り線と端末線とが圧接スロットに圧入される際に、渡り線と端末線との被膜が刃部により破られて銅の芯線が露出する。そして、R466A冷媒のようにヨウ素を含んだ不燃性の冷媒は銅と反応し、腐食の原因となる。そのため、従来の電動機の固定子では、R466A冷媒のようにヨウ素を含んだ不燃性の冷媒が使用される環境下において、露出した銅芯線にR466A冷媒が付着すると、その銅芯線から腐食が進行し、導通不良に至る可能性があるという課題があった。 In the stator of the electric motor described in Patent Document 1, when the connecting wire and the terminal wire are press-fitted into the pressure contact slot, the coating of the connecting wire and the terminal wire is broken by the blade portion, exposing the copper core wire. Nonflammable refrigerants containing iodine, such as R466A refrigerant, react with copper and cause corrosion. Therefore, in the stator of a conventional electric motor, corrosion progresses from the copper core wire when the R466A refrigerant adheres to the exposed copper core wire in an environment where a nonflammable refrigerant containing iodine such as R466A refrigerant is used. , there is a problem that there is a possibility of leading to poor conduction.
 本開示は、以上のような課題を解決するためになされたもので、固定子の巻線の腐食が無く信頼性の高い密閉型圧縮機および冷凍サイクル装置を提供することを目的としている。 The present disclosure has been made to solve the above problems, and aims to provide a hermetic compressor and a refrigeration cycle device that are highly reliable without corrosion of the stator windings.
 本開示に係る密閉型圧縮機は、固定子鉄心と該固定子鉄心に巻かれた固定子巻線とを有する中空円筒形状の固定子、および、前記固定子の内側に回転自在に設けられた回転子を有する電動機構部と、前記電動機構部により駆動され、ヨウ素を含んだ不燃性の冷媒を圧縮する圧縮機構部と、前記電動機構部および前記圧縮機構部を収容する密閉容器と、を備え、前記固定子巻線は、アルミニウムの芯線を有するものである。 A hermetic compressor according to the present disclosure includes a hollow cylindrical stator having a stator core and a stator winding wound around the stator core; an electric mechanism unit having a rotor; a compression mechanism unit that is driven by the electric mechanism unit and compresses a nonflammable refrigerant containing iodine; and a sealed container that houses the electric mechanism unit and the compression mechanism unit. The stator winding has an aluminum core wire.
 本開示に係る冷凍サイクル装置は、上記の密閉型圧縮機、室外側熱交換器、絞り装置、および、室内側熱交換器が、冷媒配管により接続され、前記ヨウ素を含んだ不燃性の冷媒が循環する冷媒回路を備えたものである。 In the refrigeration cycle device according to the present disclosure, the hermetic compressor, the outdoor heat exchanger, the throttle device, and the indoor heat exchanger are connected by refrigerant piping, and the nonflammable refrigerant containing iodine is It has a circulating refrigerant circuit.
 本開示に係る密閉型圧縮機および冷凍サイクル装置によれば、固定子巻線の芯線に銅ではなくアルミニウムが用いられている。そのため、密閉型圧縮機を備えた冷凍サイクル装置の冷媒回路を循環する冷媒として、トリフルオロヨードメタン(CFI)を含む混合冷媒のようにヨウ素を含んだ不燃性の冷媒が使用される場合でも、固定子巻線の芯線の腐食というリスクを低減でき、圧縮機の導通不良というリスクを低減できるため、高い信頼性を得ることができる。 According to the hermetic compressor and the refrigeration cycle apparatus according to the present disclosure, aluminum is used instead of copper for the core wires of the stator windings. Therefore, when a nonflammable refrigerant containing iodine such as a mixed refrigerant containing trifluoroiodomethane (CF 3 I) is used as a refrigerant circulating in a refrigerant circuit of a refrigeration cycle device equipped with a hermetic compressor, However, the risk of corrosion of the core wire of the stator winding can be reduced, and the risk of poor conduction of the compressor can be reduced, so high reliability can be obtained.
実施の形態に係る密閉型圧縮機の内部構成の一例を示す概略図である。1 is a schematic diagram showing an example of an internal configuration of a hermetic compressor according to an embodiment; FIG. 実施の形態に係る密閉型圧縮機の圧縮機構部の断面概略図である。It is a cross-sectional schematic of the compression mechanism part of the hermetic compressor which concerns on embodiment. 実施の形態に係る密閉型圧縮機の電動機構部の断面図である。FIG. 3 is a cross-sectional view of an electric mechanism portion of the hermetic compressor according to the embodiment; 実施の形態に係る密閉型圧縮機における拘束部、拘束溝、渡り線、および、圧接端子の関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between a restraint portion, restraint grooves, a connecting wire, and a press contact terminal in the hermetic compressor according to the embodiment; 図5は、実施の形態に係る密閉型圧縮機の固定子巻線および渡り線がリード線と電気的に接続される様子を示す説明図である。FIG. 5 is an explanatory diagram showing how the stator windings and the connecting wires of the hermetic compressor according to the embodiment are electrically connected to the lead wires. 実施の形態に係る密閉型圧縮機の固定子巻線の被膜部および渡り線の被膜部が剥離される前の状態を示す説明図である。FIG. 4 is an explanatory view showing a state before the coated portions of the stator winding and the coated portion of the connecting wire of the hermetic compressor according to the embodiment are peeled off; 実施の形態に係る密閉型圧縮機の固定子巻線の被膜部および渡り線の被膜部が剥離されて露出した芯線が圧接端子と電気的に接続されている状態を示す説明図である。FIG. 4 is an explanatory view showing a state in which the core wire exposed by peeling off the coated portion of the stator winding and the coated portion of the connecting wire of the hermetic compressor according to the embodiment is electrically connected to the press contact terminal; R466A冷媒環境下での金属触媒の反応試験結果である。It is the reaction test result of the metal catalyst in R466A refrigerant environment. 実施の形態に係る密閉型圧縮機を備えた冷凍サイクル装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration cycle device provided with a hermetic compressor according to an embodiment; FIG.
 以下、実施の形態に係る密閉型圧縮機100および冷凍サイクル装置200について図面を参照しながら説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これは説明のためのものであって、これらの用語は本開示を限定するものではない。これらの方向を示す用語は、特に明示しない限り、密閉型圧縮機100を前面側(正面側)から見た場合の方向を意味している。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。 A hermetic compressor 100 and a refrigeration cycle device 200 according to an embodiment will be described below with reference to the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. Also, in the following drawings, the size relationship of each component may differ from the actual size. Also, in the following description, terms representing directions (for example, "up", "down", "right", "left", "front", "back", etc.) are used as appropriate for ease of understanding. For the purpose of description, these terms are not intended to limit this disclosure. Unless otherwise specified, these directional terms mean directions when the hermetic compressor 100 is viewed from the front side (front side). Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification.
 実施の形態.
 図1は、実施の形態に係る密閉型圧縮機100の内部構成の一例を示す概略図である。図2は、実施の形態に係る密閉型圧縮機100の圧縮機構部20の断面概略図である。図3は、実施の形態に係る密閉型圧縮機100の電動機構部30の断面図である。なお、図3は、密閉型圧縮機100を電動機構部30の部分で、クランクシャフト40の軸方向に対して垂直となる方向に切断した断面図である。
Embodiment.
FIG. 1 is a schematic diagram showing an example of the internal configuration of a hermetic compressor 100 according to an embodiment. FIG. 2 is a schematic cross-sectional view of the compression mechanism section 20 of the hermetic compressor 100 according to the embodiment. FIG. 3 is a cross-sectional view of the electric mechanism section 30 of the hermetic compressor 100 according to the embodiment. 3 is a cross-sectional view of the hermetic compressor 100 cut in a direction perpendicular to the axial direction of the crankshaft 40 at the electric mechanism portion 30. As shown in FIG.
 実施の形態に係る密閉型圧縮機100は、ロータリ型であり、冷媒などの流体を吸入し、圧縮して高温高圧の状態として吐出させる機能を有している。この密閉型圧縮機100は、図1に示すように、外郭を構成する密閉容器10を備えている。この密閉容器10は、上部容器11と下部容器12とで構成されている。 The hermetic compressor 100 according to the embodiment is of a rotary type, and has the function of sucking fluid such as refrigerant, compressing it, and discharging it in a high-temperature, high-pressure state. As shown in FIG. 1, this hermetic compressor 100 includes a hermetic container 10 forming an outer shell. This sealed container 10 is composed of an upper container 11 and a lower container 12 .
 密閉容器10の上部容器11の上面には、吐出管102が貫通して固定されている。吐出管102は、高圧のガス冷媒を密閉容器10の外部に吐出させるものである。吐出管102と上部容器11との固定部分は、例えば溶接などによって接合されている。 A discharge pipe 102 is fixed through the upper surface of the upper container 11 of the closed container 10 . The discharge pipe 102 discharges high-pressure gas refrigerant to the outside of the sealed container 10 . The fixed portion between the discharge pipe 102 and the upper container 11 is joined by welding or the like, for example.
 密閉容器10の側方には、冷媒回路から低圧のガス冷媒を吸入する吸入マフラ101が配置されている。この吸入マフラ101は、溶接などにより密閉容器10の側面に固定されている。 A suction muffler 101 for sucking low-pressure gas refrigerant from the refrigerant circuit is arranged on the side of the sealed container 10 . This suction muffler 101 is fixed to the side surface of the sealed container 10 by welding or the like.
 密閉容器10の内部には、圧縮機構部20、電動機構部30、クランクシャフト40、および、その他の構成部品が収納されている。電動機構部30は、圧縮機構部20より上方に配置されている。クランクシャフト40は、密閉容器10の中心部において、電動機構部30と圧縮機構部20との間に配置され、密閉容器10の中心部を上下方向に延びている。 A compression mechanism 20, an electric mechanism 30, a crankshaft 40, and other components are housed inside the sealed container 10. The electric mechanism section 30 is arranged above the compression mechanism section 20 . The crankshaft 40 is arranged between the electric mechanism section 30 and the compression mechanism section 20 in the central portion of the closed container 10 and extends vertically through the central portion of the closed container 10 .
 クランクシャフト40は、圧縮機構部20の内部に配置される円筒形状の偏心軸部42を有している。偏心軸部42の外周面には、偏心軸部42の外周面に沿って回転自在にローリングピストン21が取り付けられている。また、クランクシャフト40には、クランクシャフト40の回転運動による遠心力により、密閉容器10の下部容器12の底部に貯留された冷凍機油を圧縮機構部20に供給する油穴44(図2参照)が設けられている。 The crankshaft 40 has a cylindrical eccentric shaft portion 42 arranged inside the compression mechanism portion 20 . A rolling piston 21 is attached to the outer peripheral surface of the eccentric shaft portion 42 so as to be rotatable along the outer peripheral surface of the eccentric shaft portion 42 . Further, in the crankshaft 40, an oil hole 44 (see FIG. 2) that supplies the refrigerating machine oil stored in the bottom of the lower container 12 of the closed container 10 to the compression mechanism 20 by centrifugal force due to the rotational motion of the crankshaft 40. is provided.
 圧縮機構部20は、電動機構部30から供給された回転駆動力により、密閉容器10の内部に吸入された低圧のガス冷媒を高圧のガス冷媒に圧縮し、圧縮した高圧のガス冷媒を圧縮機構部20の上方に吐出するものである。 The compression mechanism section 20 compresses the low-pressure gas refrigerant sucked into the sealed container 10 into a high-pressure gas refrigerant by the rotational driving force supplied from the electric mechanism section 30, and converts the compressed high-pressure gas refrigerant into the compression mechanism. The ink is discharged upward from the portion 20 .
 圧縮機構部20は、図1および図2に示すように、ローリングピストン21と、シリンダ22と、ベーン26と、主軸受24と、副軸受25とを備えている。シリンダ22は、中空円筒形状を有し、その外周面は密閉容器10の下部容器12の内周面に固定されている。シリンダ22の中空部分22aには、クランクシャフト40の偏心軸部42およびローリングピストン21が収容されている。すなわち、シリンダ22は、クランクシャフト40の回転により、中空部分22aにおいてクランクシャフト40の偏心軸部42およびローリングピストン21が偏心回転できるように構成されている。 The compression mechanism section 20 includes a rolling piston 21, a cylinder 22, a vane 26, a main bearing 24, and a sub-bearing 25, as shown in FIGS. The cylinder 22 has a hollow cylindrical shape, and its outer peripheral surface is fixed to the inner peripheral surface of the lower container 12 of the closed container 10 . The hollow portion 22 a of the cylinder 22 accommodates the eccentric shaft portion 42 of the crankshaft 40 and the rolling piston 21 . That is, the cylinder 22 is configured such that the rotation of the crankshaft 40 causes the eccentric shaft portion 42 of the crankshaft 40 and the rolling piston 21 to rotate eccentrically in the hollow portion 22a.
 シリンダ22には、密閉容器10内と連通した背圧室22bと、中空部分22aと背圧室22bとを連通させるベーン溝22cとが設けられている。シリンダ22のベーン溝22cには、ベーン26が収容されている。ベーン26は、例えば、ベーン溝22cの内部に設けられたバネなどの弾性体の復元力によって、ローリングピストン21の表面に押しつけられ、ローリングピストン21の偏心運動によってベーン溝22cの内部を往復運動するように構成された摺動部材である。 The cylinder 22 is provided with a back pressure chamber 22b that communicates with the inside of the sealed container 10, and a vane groove 22c that communicates the hollow portion 22a and the back pressure chamber 22b. A vane 26 is accommodated in the vane groove 22 c of the cylinder 22 . The vane 26 is pressed against the surface of the rolling piston 21 by the restoring force of an elastic body such as a spring provided inside the vane groove 22c, and reciprocates inside the vane groove 22c by the eccentric motion of the rolling piston 21. It is a sliding member configured as follows.
 シリンダ22の上側の中空円板面には、クランクシャフト40の主軸部41を支持する主軸受24が配置されている。シリンダ22の下側の中空円板面には、クランクシャフト40の副軸部43を支持する副軸受25が配置されている。主軸受24および副軸受25は、クランクシャフト40を摺動可能に支持する。 A main bearing 24 that supports the main shaft portion 41 of the crankshaft 40 is arranged on the upper hollow disk surface of the cylinder 22 . A sub-bearing 25 that supports the sub-shaft portion 43 of the crankshaft 40 is arranged on the hollow disk surface on the lower side of the cylinder 22 . The main bearing 24 and the sub-bearing 25 slidably support the crankshaft 40 .
 主軸受24は、上面視において中空円板形状を有している。主軸受24は、シリンダ22の上側の中空円板面に固定される固定部(図示せず)と、クランクシャフト40の外周面を摺動可能に支持する軸受部(図示せず)とを有している。また、主軸受24は、例えば、ボルトなどによりシリンダ22の上側の中空円板面に固定されている。 The main bearing 24 has a hollow disk shape when viewed from above. The main bearing 24 has a fixed portion (not shown) that is fixed to the upper hollow disk surface of the cylinder 22 and a bearing portion (not shown) that slidably supports the outer peripheral surface of the crankshaft 40 . doing. Further, the main bearing 24 is fixed to the upper hollow disk surface of the cylinder 22 by, for example, bolts or the like.
 副軸受25は、下面視において中空円板形状を有している。副軸受25は、シリンダ22の下側の中空円板面に固定される固定部(図示せず)と、クランクシャフト40の外周面を摺動可能に支持する軸受部(図示せず)とを有している。また、副軸受25は、例えば、ボルトなどによりシリンダ22の下側の中空円板面に固定されている。 The sub-bearing 25 has a hollow disk shape when viewed from below. The sub-bearing 25 includes a fixed portion (not shown) fixed to the hollow disc surface on the lower side of the cylinder 22 and a bearing portion (not shown) slidably supporting the outer peripheral surface of the crankshaft 40. have. Further, the sub-bearing 25 is fixed to the lower hollow disk surface of the cylinder 22 by, for example, bolts.
 圧縮機構部20において、ローリングピストン21、シリンダ22、ベーン26、主軸受24の固定部、および、副軸受25の固定部に囲まれた密閉自在な空間は、密閉容器10の内部に吸入された低圧のガス冷媒を圧縮する圧縮室を構成する。圧縮室で圧縮された高圧のガス冷媒は、主軸受24に設けられた吐出口(図示せず)から吐出される。 In the compression mechanism portion 20, the sealable space surrounded by the rolling piston 21, the cylinder 22, the vane 26, the fixed portion of the main bearing 24, and the fixed portion of the sub-bearing 25 was sucked into the sealed container 10. It constitutes a compression chamber for compressing a low-pressure gas refrigerant. A high-pressure gas refrigerant compressed in the compression chamber is discharged from a discharge port (not shown) provided in the main bearing 24 .
 なお、圧縮機構部20の構成について、図1および図2に示したロータリ型を例に説明したが、それに限定されるものではなく、スクロール型およびレシプロ型など、いずれの型であっても構わない。また、ローリングピストン21とベーン26とは別体であり、当接される構成を説明したが、それに限定されず、それらが一体型であってもよい。また、圧縮機構部20と電動機構部30との配置について、必ずしも圧縮機構部20の上方に電動機構部30が配置される構成でなくてもよい。すなわち、圧縮機構部20と電動機構部30との配置が、上下逆でもよいし、横向きで左右に並んでいてもよい。これら圧縮機構部20の構成は一例であって、本願の特徴はこれらの構成に限定されるものではない。 Although the rotary type shown in FIGS. 1 and 2 has been described as an example of the configuration of the compression mechanism 20, it is not limited thereto, and may be of any type such as a scroll type or a reciprocating type. No. Also, the rolling piston 21 and the vane 26 are separate bodies and have been described as being in contact with each other, but they are not limited to this and may be integrated. Further, regarding the arrangement of the compression mechanism portion 20 and the electric mechanism portion 30 , the electric mechanism portion 30 may not necessarily be arranged above the compression mechanism portion 20 . That is, the arrangement of the compression mechanism section 20 and the electric mechanism section 30 may be upside down, or may be laterally arranged side by side. The configuration of these compression mechanism units 20 is an example, and the features of the present application are not limited to these configurations.
 以下、実施の形態に係る密閉型圧縮機100の電動機構部30の構成について図1および図3を用いて説明する。  The configuration of the electric mechanism section 30 of the hermetic compressor 100 according to the embodiment will be described below with reference to FIGS. 1 and 3. FIG. 
 電動機構部30は、外部電源から供給された電力を用いて回転駆動力を発生させ、クランクシャフト40を介して圧縮機構部20に回転駆動力を伝達するモータとして構成される。電動機構部30は、中空円筒形状の固定子32と、固定子32の内周面の内側に回転可能に配置された中空円筒形状の回転子31とを備えている。固定子32は、密閉型圧縮機100の密閉容器10内に挿入され、焼嵌などにより、密閉容器10の内周面に固定されている。すなわち、固定子32の半径方向の外周面と密閉容器10の内周面とが接して、固定されている。回転子31は、回転子31の中心軸上に、軸方向に貫通するシャフト穴31bが設けられている。回転子31のシャフト穴31bには、クランクシャフト40の主軸部41が挿入され、回転子31はクランクシャフト40の主軸部41に固定されている。 The electric mechanism section 30 is configured as a motor that generates rotational driving force using electric power supplied from an external power supply and transmits the rotational driving force to the compression mechanism section 20 via the crankshaft 40 . The electric mechanism section 30 includes a hollow cylindrical stator 32 and a hollow cylindrical rotor 31 rotatably arranged inside the inner peripheral surface of the stator 32 . The stator 32 is inserted into the closed container 10 of the closed compressor 100 and fixed to the inner peripheral surface of the closed container 10 by shrink fitting or the like. That is, the radial outer peripheral surface of the stator 32 and the inner peripheral surface of the sealed container 10 are in contact with each other and fixed. The rotor 31 is provided with a shaft hole 31b penetrating in the axial direction on the central axis of the rotor 31 . The main shaft portion 41 of the crankshaft 40 is inserted into the shaft hole 31 b of the rotor 31 , and the rotor 31 is fixed to the main shaft portion 41 of the crankshaft 40 .
 回転子31は、薄板状の電磁鋼板をクランクシャフト40の軸方向に積み重ねた回転子鉄心31aから構成されている。回転子鉄心31aを構成する電磁鋼板は、電磁鋼板を一定の形状に打ち抜き、複数枚、クランクシャフト40の軸方向に積み重ね、積み重ねた電磁鋼板同士が、かしめまたは溶接により固定されている。 The rotor 31 is composed of a rotor core 31 a in which thin electromagnetic steel plates are stacked in the axial direction of the crankshaft 40 . The electromagnetic steel sheets forming the rotor core 31a are formed by punching electromagnetic steel sheets into a predetermined shape, stacking multiple sheets in the axial direction of the crankshaft 40, and fixing the stacked electromagnetic steel sheets to each other by caulking or welding.
 回転子鉄心31aには、シャフト穴31bを囲むように、クランクシャフト40の軸方向に貫通する磁石挿入穴31cが設けられている。その磁石挿入穴31cには、平板形状の希土類から形成された永久磁石33が挿入され、固定されている。磁石挿入穴31cおよび永久磁石33は、一般的に偶数個設けられ、回転子鉄心31aの半径方向の外縁部、すなわち回転子鉄心31aの半径方向の外周面近傍に設けられている。回転子31は、永久磁石33によって磁束を発生させる。 A magnet insertion hole 31c penetrating in the axial direction of the crankshaft 40 is provided in the rotor core 31a so as to surround the shaft hole 31b. A permanent magnet 33 made of a plate-shaped rare earth element is inserted and fixed in the magnet insertion hole 31c. An even number of magnet insertion holes 31c and permanent magnets 33 are generally provided, and are provided near the radial outer edge of the rotor core 31a, that is, the vicinity of the radial outer peripheral surface of the rotor core 31a. The rotor 31 generates magnetic flux with the permanent magnets 33 .
 図1に示すように、回転子鉄心31aの上部には上部バランスウェイト34aが、回転子鉄心31aの下部には下部バランスウェイト34bが、それぞれ設けられている。これら上部バランスウェイト34aおよび下部バランスウェイト34bは、クランクシャフト40の偏心軸部42が偏心回転するときの荷重を打ち消すために設けられている。さらに、上部バランスウェイト34aおよび下部バランスウェイト34bは、永久磁石33の飛散も防止する。上部バランスウェイト34aと下部バランスウェイト34bと回転子鉄心31aとは、リベット35によって固定されている。具体的には、上部バランスウェイト34aと下部バランスウェイト34bと回転子鉄心31aとには、クランクシャフト40の軸方向に貫通するリベット穴(図示せず)が設けられており、そのリベット穴にリベット35が挿入されることで固定されている。なお、クランクシャフト40の偏心軸部42が偏心回転するときの荷重が小さく、打ち消す必要が無い場合には、上部バランスウェイト34aおよび下部バランスウェイト34bの代わりに、永久磁石33の飛散を防止する端板(図示せず)を設けてもよい。 As shown in FIG. 1, an upper balance weight 34a is provided above the rotor core 31a, and a lower balance weight 34b is provided below the rotor core 31a. These upper balance weight 34a and lower balance weight 34b are provided to cancel the load when the eccentric shaft portion 42 of the crankshaft 40 rotates eccentrically. Furthermore, the upper balance weight 34a and the lower balance weight 34b also prevent the permanent magnets 33 from scattering. The upper balance weight 34 a , the lower balance weight 34 b and the rotor core 31 a are fixed by rivets 35 . Specifically, the upper balance weight 34a, the lower balance weight 34b, and the rotor core 31a are provided with rivet holes (not shown) penetrating in the axial direction of the crankshaft 40, and the rivet holes are provided with rivets. It is fixed by inserting 35. If the load generated when the eccentric shaft portion 42 of the crankshaft 40 rotates eccentrically is small and does not need to be counteracted, instead of the upper balance weight 34a and the lower balance weight 34b, the permanent magnet 33 can be provided with an edge that prevents scattering. A plate (not shown) may be provided.
 また、回転子鉄心31aには、クランクシャフト40の軸方向に連通する連通孔(図示せず)が設けられている。この連通孔は、圧縮機構部20から吐出された冷媒ガスを通過させるためのものである。すなわち、圧縮機構部20から吐出された冷媒ガスは、連通孔を通過して吐出管102へ送り出される。なお、連通孔以外にも、回転子31と固定子32との隙間、固定子32内の隙間、および、固定子32と密閉容器10との隙間を介して、圧縮機構部20から吐出された冷媒ガスは、吐出管102へ送り出される。 Further, a communication hole (not shown) communicating with the crankshaft 40 in the axial direction is provided in the rotor core 31a. This communication hole is for allowing the refrigerant gas discharged from the compression mechanism portion 20 to pass therethrough. That is, the refrigerant gas discharged from the compression mechanism portion 20 passes through the communication hole and is delivered to the discharge pipe 102 . In addition to the communication hole, the air discharged from the compression mechanism section 20 also passes through the gap between the rotor 31 and the stator 32, the gap inside the stator 32, and the gap between the stator 32 and the sealed container 10. Refrigerant gas is delivered to the discharge pipe 102 .
 図3に示すように、中空円筒形状の固定子32の内側には回転子31が設けられており、回転子31と固定子32とは、それらの間に0.3mmから1.0mm程度の空隙を有するように設置されている。固定子32は、薄板状の電磁鋼板をクランクシャフト40の軸方向に積み重ねた固定子鉄心32aと、固定子鉄心32aに巻き回される固定子巻線37と、固定子鉄心32aと固定子巻線37とを絶縁する絶縁部材38(後述する図4参照)と、から構成されている。 As shown in FIG. 3, a rotor 31 is provided inside a hollow cylindrical stator 32, and the rotor 31 and the stator 32 are separated by a distance of about 0.3 mm to 1.0 mm. It is installed so as to have an air gap. The stator 32 includes a stator core 32a in which thin electromagnetic steel plates are stacked in the axial direction of the crankshaft 40, stator windings 37 wound around the stator core 32a, the stator core 32a and the stator windings. and an insulating member 38 (see FIG. 4 to be described later) that insulates from the wire 37 .
 固定子鉄心32aは、外縁の円筒形部分を構成するバックヨーク32bと、バックヨーク32bの内側に設けられた磁極歯であるティース32cと、から構成されている。ティース32cは、固定子鉄心32aの中心軸、すなわち、クランクシャフト40に向かって延びており、その先端は、回転子31の外周面と対向するように、逆円弧状に広がっている。隣り合うティース32c間には、固定子巻線37が占有するスロット32dが形成されている。 The stator core 32a is composed of a back yoke 32b that forms a cylindrical portion of the outer edge, and teeth 32c that are magnetic pole teeth provided inside the back yoke 32b. The teeth 32 c extend toward the central axis of the stator core 32 a , that is, toward the crankshaft 40 , and their tips widen in a reverse arc shape so as to face the outer peripheral surface of the rotor 31 . Slots 32d occupied by stator windings 37 are formed between adjacent teeth 32c.
 実施の形態に係る固定子32は、固定子鉄心32aのティース32cごとに固定子巻線37を巻き回した後、バックヨーク32bにて固定子鉄心32aを円環状につなぎ合わせて形成したものである。ただし、これは固定子32の製造方法の一例であって、本願の特徴はこの方法に限定されるものではない。 The stator 32 according to the embodiment is formed by winding the stator winding 37 around each tooth 32c of the stator core 32a and then connecting the stator core 32a in an annular shape with the back yoke 32b. be. However, this is an example of the method of manufacturing the stator 32, and the feature of the present application is not limited to this method.
 ティース32cには、絶縁部材38を介して固定子巻線37が巻き回されている。ティース32cに固定子巻線37が巻き回され、磁極が形成されている。 A stator winding 37 is wound around the tooth 32c via an insulating member 38 . A stator winding 37 is wound around the teeth 32c to form magnetic poles.
 固定子巻線37は、導体である芯線37b(後述する図6および図7参照)と、芯線37bを覆う少なくとも1層の被膜部37a(後述する図6および図7参照)とから構成される導線である。固定子巻線37は、単線であることが多いが単線を複数まとめて使用されることもある。被膜の材質は絶縁性の材質であり、例えばAI(アミドイミド)/EI(エステルイミド)である。固定子32は、固定子巻線37に電流を流すことによって、ティース32cごとに磁束を発生させる。なお、被膜は絶縁性があるので、導線どうしが接触しても導通しないようになっている。 The stator winding 37 is composed of a core wire 37b (see FIGS. 6 and 7 described later), which is a conductor, and at least one layer of coating 37a (see FIGS. 6 and 7 described later) covering the core wire 37b. It is a conductor. The stator winding 37 is often a single wire, but a plurality of single wires may be used collectively. The material of the film is an insulating material such as AI (amide imide)/EI (ester imide). The stator 32 generates magnetic flux for each tooth 32c by applying current to the stator windings 37 . In addition, since the film has an insulating property, the conductors do not conduct even if they come into contact with each other.
 図1に示すように、密閉容器10の上部容器11には、密閉型圧縮機100の外部に設けられた電源、例えば、インバータ装置などに接続される接続端子7が設けられている。また、密閉容器10内の上部にはリード線39が設けられている。このリード線39は、密閉容器10の外部の電源から固定子巻線37に電源を供給する導線であって、接続端子7と固定子巻線37とを接続する導線である。そして、接続端子7を介して電源から電動機構部30に通電され、電動機構部30が動作する。すなわち、固定子32が磁束を発生させ、回転子31が回転運動を行う。そして、クランクシャフト40を介して、圧縮機構部20を駆動する。なお、接続端子7は、密閉容器10の上部容器11ではなく下部容器12に設けられていてもよい。 As shown in FIG. 1, the upper container 11 of the closed container 10 is provided with a connection terminal 7 that is connected to a power supply provided outside the closed compressor 100, such as an inverter device. A lead wire 39 is provided in the upper part of the sealed container 10 . The lead wire 39 is a lead wire that supplies power to the stator windings 37 from a power source outside the sealed container 10 , and is a lead wire that connects the connection terminals 7 and the stator windings 37 . Then, the power source supplies power to the electric mechanism portion 30 through the connection terminal 7, and the electric mechanism portion 30 operates. That is, the stator 32 generates magnetic flux, and the rotor 31 rotates. Then, the compression mechanism section 20 is driven via the crankshaft 40 . Note that the connection terminals 7 may be provided in the lower container 12 instead of the upper container 11 of the closed container 10 .
 図4は、実施の形態に係る密閉型圧縮機100における拘束部51、拘束溝51a、渡り線53、および、圧接端子52の関係を示す説明図である。図5は、実施の形態に係る密閉型圧縮機100の固定子巻線37および渡り線53がリード線39と電気的に接続される様子を示す説明図である。図6は、実施の形態に係る密閉型圧縮機100の固定子巻線37の被膜部37aおよび渡り線53の被膜部53aが剥離される前の状態を示す説明図である。図7は、実施の形態に係る密閉型圧縮機100の固定子巻線37の被膜部37aおよび渡り線53の被膜部53aが剥離されて露出した芯線37b、53bが圧接端子52と電気的に接続されている状態を示す説明図である。 FIG. 4 is an explanatory diagram showing the relationship between the restraining portion 51, the restraining groove 51a, the connecting wire 53, and the press contact terminal 52 in the hermetic compressor 100 according to the embodiment. FIG. 5 is an explanatory diagram showing how the stator winding 37 and the connecting wire 53 of the hermetic compressor 100 according to the embodiment are electrically connected to the lead wire 39. As shown in FIG. FIG. 6 is an explanatory view showing a state before the coated portion 37a of the stator winding 37 and the coated portion 53a of the connecting wire 53 of the hermetic compressor 100 according to the embodiment are peeled off. FIG. 7 shows that core wires 37b and 53b, which are exposed by stripping the coated portion 37a of the stator winding 37 and the coated portion 53a of the connecting wire 53 of the hermetic compressor 100 according to the embodiment, are electrically connected to the pressure contact terminal 52. FIG. 4 is an explanatory diagram showing a connected state;
 絶縁部材38は、主に鉄で構成された固定子鉄心32aと、固定子巻線37とを絶縁する。絶縁部材38の材質には、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、LCP(液晶ポリマー)、および、PPS(ポリフェニレンサルファイド)などが使用される。 The insulating member 38 insulates the stator core 32 a mainly made of iron and the stator winding 37 . PET (polyethylene terephthalate), PBT (polybutylene terephthalate), LCP (liquid crystal polymer), PPS (polyphenylene sulfide), and the like are used as the material of the insulating member 38 .
 図4に示すように、絶縁部材38には、固定子巻線37の末端である端末部を拘束し固定する拘束部51が2つ設けられている。絶縁部材38が固定子鉄心32aに装着された状態では、拘束部51はティース32cとつながるバックヨーク32bの、クランクシャフト40の軸方向の端面に配置される。各拘束部51には、圧接端子52を挿入するために上方が開口し4つの壁部を備えた圧接端子挿入部51bと、圧接端子挿入部51bの対向する一対の壁部に形成された拘束溝51aとが設けられている。一方の拘束部51の拘束溝51aには、ティース32cに巻き回された固定子巻線37の端末部の一方が拘束される。もう一方の拘束部51の拘束溝51aには、ティース32cに巻き回された固定子巻線37の端末部のもう一方が拘束される。このようにして、ティース32cに巻き回された固定子巻線37の2つの端末部は、2つの拘束部51にそれぞれ拘束される。なお、拘束部51の拘束溝51aには、固定子巻線37以外に渡り線53も拘束される。 As shown in FIG. 4, the insulating member 38 is provided with two restraining portions 51 for restraining and fixing the end portion, which is the terminal end of the stator winding 37 . When the insulating member 38 is attached to the stator core 32a, the restraining portion 51 is arranged on the axial end face of the crankshaft 40 of the back yoke 32b connected to the teeth 32c. Each of the restraining portions 51 includes a crimp terminal insertion portion 51b having four walls and an opening at the top for inserting the crimp terminal 52, and a restraint formed on a pair of opposing wall portions of the crimp terminal insertion portion 51b. A groove 51a is provided. One end portion of the stator winding 37 wound around the teeth 32c is restrained in the restraining groove 51a of one of the restraining portions 51. As shown in FIG. In the restraining groove 51a of the other restraining portion 51, the other end portion of the stator winding 37 wound around the teeth 32c is restrained. In this manner, the two end portions of the stator winding 37 wound around the tooth 32c are bound by the two binding portions 51, respectively. In addition to the stator winding 37 , the connecting wire 53 is also constrained in the constraining groove 51 a of the constraining portion 51 .
 圧接端子52は、拘束部51の圧接端子挿入部51bに挿入されるものである。この圧接端子52は、導電性のある金属でできており、例えば黄銅などの金属に錫メッキ処理を行ったものである。圧接端子52には複数の溝52aが設けられており、それら溝52aが固定子巻線37および渡り線53をそれぞれ挟みこむ構造となっている。図5に示すように、圧接端子52が拘束部51に挿入され、圧接端子52の溝52a(図6参照)が固定子巻線37および渡り線53をそれぞれ挟みこんだ状態で、矢印で示す方向にリード線39を移動させ、圧接端子52に取り付ける。そうすることで、圧接端子52は、固定子巻線37と渡り線53とリード線39とを、電気的に接続する。すなわち、固定子巻線37は、拘束部51と、拘束部51に組み込まれる圧接端子52とを介して、渡り線53と接続される。 The pressure contact terminal 52 is to be inserted into the pressure contact terminal insertion portion 51b of the restraining portion 51 . The pressure contact terminal 52 is made of a conductive metal, such as brass, which is plated with tin. The insulation displacement terminal 52 is provided with a plurality of grooves 52a, and the structure is such that the grooves 52a sandwich the stator winding 37 and the connecting wire 53, respectively. As shown in FIG. 5, the pressure contact terminal 52 is inserted into the restraining portion 51, and the groove 52a (see FIG. 6) of the pressure contact terminal 52 sandwiches the stator winding 37 and the connecting wire 53, respectively, as indicated by arrows. The lead wire 39 is moved in the direction and attached to the crimp terminal 52 . By doing so, the pressure contact terminal 52 electrically connects the stator winding 37 , the connecting wire 53 and the lead wire 39 . That is, the stator winding 37 is connected to the crossover wire 53 via the restraint portion 51 and the press contact terminal 52 incorporated in the restraint portion 51 .
 図6および図7に示すように、固定子巻線37の圧接端子52により挟まれている部分は、被膜部37aから芯線37bが露出している。すなわち、固定子巻線37の圧接端子52と電気的に接続される部分の周辺は、被膜部37aが剥離されており、芯線37bが露出している。同様に、渡り線53の圧接端子52により挟まれている部分は、被膜部53aから芯線53bが露出している。すなわち、渡り線53の圧接端子52と電気的に接続される部分の周辺は、被膜部53aが剥離されており、芯線53bが露出している。 As shown in FIGS. 6 and 7, the core wire 37b is exposed from the coated portion 37a at the portion of the stator winding 37 sandwiched between the pressure contact terminals 52. As shown in FIGS. That is, around the portion of the stator winding 37 that is electrically connected to the press contact terminal 52, the coating portion 37a is peeled off, and the core wire 37b is exposed. Similarly, the core wire 53b is exposed from the covering portion 53a at the portion of the connecting wire 53 sandwiched between the pressure contact terminals 52. As shown in FIG. That is, around the portion of the connecting wire 53 electrically connected to the pressure contact terminal 52, the coating portion 53a is peeled off, and the core wire 53b is exposed.
 圧接端子52が図6の矢印の方向に移動して、圧接端子52の溝52a内に、固定子巻線37および渡り線53が挿入される際に、圧接端子52によって固定子巻線37の被膜部37aおよび渡り線53の被膜部53aが剥離される。そして、圧接端子52と固定子巻線37の芯線37bとが電気的に接続され、かつ、圧接端子52と渡り線53の芯線53bとが電気的に接続される。 When the pressure contact terminal 52 moves in the direction of the arrow in FIG. The coating portion 37a and the coating portion 53a of the connecting wire 53 are peeled off. The pressure contact terminal 52 and the core wire 37b of the stator winding 37 are electrically connected, and the pressure contact terminal 52 and the core wire 53b of the crossover wire 53 are electrically connected.
 渡り線53は、導体である芯線53bと、芯線53bを覆う少なくとも1層の被膜部53aとから構成される導線であり、異なるティース32cに巻き回された固定子巻線37同士を接続する。例えば、複数の固定子巻線37を直列あるいは並列に接続したり、複数の固定子巻線37の端末部を接続して中性点を形成したりする。 The crossover wire 53 is a conductive wire composed of a core wire 53b, which is a conductor, and at least one layer of coating 53a covering the core wire 53b, and connects the stator windings 37 wound around different teeth 32c. For example, a plurality of stator windings 37 are connected in series or in parallel, or end portions of a plurality of stator windings 37 are connected to form a neutral point.
 図1に示すリード線39の一端は、絶縁部材38の拘束部51に拘束されている。また、リード線39のもう一端には、端子(図示せず)が取り付けられており、この端子は、接続端子7と接続される。リード線39は、導体である芯線と、芯線を覆う少なくとも1層の被膜とから構成される導線である。 One end of the lead wire 39 shown in FIG. 1 is bound by the binding portion 51 of the insulating member 38 . A terminal (not shown) is attached to the other end of the lead wire 39 , and this terminal is connected to the connection terminal 7 . The lead wire 39 is a conducting wire composed of a core wire that is a conductor and at least one layer of coating that covers the core wire.
 また、接続端子7は、密閉容器10の内外を電気的に接続する。これにより、絶縁部材38の拘束部51に拘束された固定子巻線37および渡り線53を、リード線39、端子、および、接続端子7を介して、外部の電源とつなぎ、電気的に導通させる。 Also, the connection terminal 7 electrically connects the inside and outside of the sealed container 10 . As a result, the stator winding 37 and the connecting wire 53 restrained by the restraining portion 51 of the insulating member 38 are connected to an external power source via the lead wire 39, the terminal, and the connection terminal 7, and are electrically connected. Let
 図8は、R466A冷媒環境下での金属触媒の反応試験結果であり、各触媒における温度に対する油中濃度(冷凍機油中のヨウ素イオン濃度)の変化を示している。図8のグラフの縦軸は油中濃度を、横軸は温度をそれぞれ示している。ここで、上記の反応試験結果は、R466A冷媒環境にて、PVE油に金属触媒Al+FeまたはAl+Fe+Cuを入れたもの、および、PVE油に金属触媒を入れていないものを2週間140℃で加熱し、完了後にPVE油をそれぞれ分析し、残存するI濃度を確認して得られたものである。 FIG. 8 shows the reaction test results of metal catalysts in an R466A refrigerant environment, and shows changes in concentration in oil (concentration of iodine ions in refrigerating machine oil) with respect to temperature for each catalyst. The vertical axis of the graph in FIG. 8 indicates the concentration in oil, and the horizontal axis indicates the temperature. Here, the above reaction test results are obtained by heating PVE oil containing metal catalyst Al + Fe or Al + Fe + Cu and PVE oil containing no metal catalyst at 140 ° C. for 2 weeks in an R466A refrigerant environment. Each PVE oil was analyzed after completion to ascertain the remaining I - concentration.
 図8に示すように、アルミニウム(Al)および鉄(Fe)を触媒とした試験結果と比較し、銅(Cu)、アルミニウム、および、鉄を触媒とした試験結果では、冷凍機油中のヨウ素イオン濃度増加率が大きくなっている。これは、試験後の銅触媒に変色が見られることより、R466A冷媒が含有する成分と銅とが化学反応し、冷凍機油中にヨウ素イオンが発生したと考えられる。 As shown in FIG. 8, in comparison with the test results using aluminum (Al) and iron (Fe) as catalysts, the test results using copper (Cu), aluminum, and iron as catalysts showed that iodide ions in refrigerator oil The concentration increase rate is large. The reason for this is thought to be that the components contained in the R466A refrigerant and copper chemically reacted with each other, and iodide ions were generated in the refrigerating machine oil, since discoloration was observed in the copper catalyst after the test.
 上記試験結果より、圧縮する冷媒としてR466A冷媒が使用されるR466A冷媒環境下では、銅は化学反応による腐食の懸念がある。そのため、圧接端子52によって被膜部37a、53aが剥離されて露出する固定子巻線37および渡り線53の芯線37b、53bの材質に銅は適さない。また、圧接端子52に端子で接続する際に、被膜部から芯線が露出するリード線39の芯線の材質に銅は適さない。そこで、本願では、固定子巻線37、渡り線53、および、リード線39の芯線の材質をアルミニウムとする。 From the above test results, there is concern that copper may corrode due to chemical reactions in an R466A refrigerant environment where R466A refrigerant is used as the refrigerant to be compressed. Therefore, copper is not suitable as a material for the core wires 37b, 53b of the stator winding 37 and the connecting wire 53, which are exposed by peeling off the coating portions 37a, 53a by the pressure contact terminal 52. FIG. Further, copper is not suitable for the material of the core wire of the lead wire 39 whose core wire is exposed from the coating portion when connecting to the pressure contact terminal 52 with a terminal. Therefore, in the present application, the core wires of the stator windings 37, the connecting wires 53, and the lead wires 39 are made of aluminum.
 図9は、実施の形態に係る密閉型圧縮機100を備えた冷凍サイクル装置200の概略構成図である。 FIG. 9 is a schematic configuration diagram of a refrigeration cycle device 200 including a hermetic compressor 100 according to the embodiment.
 冷凍サイクル装置200は、密閉型圧縮機100の吸入側に接続された密閉型圧縮機100の吸入マフラ101、密閉型圧縮機100の吐出側に接続された密閉型圧縮機100からの冷媒の流れを切換える流路切換弁103、室外側熱交換器104、電動膨張などの絞り装置105、および、室内側熱交換器106、が冷媒配管201により接続され、冷媒が循環する冷媒回路を備えている。また、冷媒回路を循環する冷媒には、ヨウ素を含んだ不燃性の冷媒、例えばR466A冷媒が使用されている。R466A冷媒は、トリフルオロヨードメタン(CFI)を含む混合冷媒の一種の冷媒である。なお、一般的に冷凍サイクル装置200では、室内側熱交換器106は屋内の装置に、残る密閉型圧縮機100、流路切換弁103、室外側熱交換器104、および、絞り装置105は屋外の装置に搭載されている。なお、実施の形態に係る冷凍サイクル装置200は、冷暖房運転が可能な空気調和機に適用されているものとする。 The refrigeration cycle device 200 includes a suction muffler 101 of the hermetic compressor 100 connected to the suction side of the hermetic compressor 100, and a refrigerant flow from the hermetic compressor 100 connected to the discharge side of the hermetic compressor 100. , an outdoor heat exchanger 104, a throttle device 105 such as an electric expansion, and an indoor heat exchanger 106 are connected by a refrigerant pipe 201 to form a refrigerant circuit in which the refrigerant circulates. . A nonflammable refrigerant containing iodine, such as R466A refrigerant, is used as the refrigerant circulating in the refrigerant circuit. The R466A refrigerant is a kind of mixed refrigerant containing trifluoroiodomethane (CF 3 I). In general, in the refrigeration cycle device 200, the indoor heat exchanger 106 is an indoor device, and the remaining hermetic compressor 100, flow path switching valve 103, outdoor heat exchanger 104, and expansion device 105 are outdoors. installed in the device. It is assumed that the refrigeration cycle device 200 according to the embodiment is applied to an air conditioner capable of cooling and heating operations.
 例えば、冷凍サイクル装置200の暖房運転では、流路切換弁103は図9の実線側に接続される。密閉型圧縮機100で圧縮された高温高圧の冷媒は、室内側熱交換器106に流れ、凝縮し、液化した後、絞り装置105で絞られ、低温低圧の二相状態となる。低温低圧の二相状態となった冷媒は、室外側熱交換器104へ流れ、蒸発し、ガス化して流路切換弁103を通って再び密閉型圧縮機100に戻る。すなわち、図9の実線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室外側熱交換器104では外気と熱交換して、室外側熱交換器104に送られてきた冷媒が吸熱し、吸熱した冷媒は凝縮器である室内側熱交換器106に送られ、室内の空気と熱交換を行い、室内の空気を温める。 For example, in the heating operation of the refrigeration cycle device 200, the channel switching valve 103 is connected to the solid line side in FIG. The high-temperature, high-pressure refrigerant compressed by the hermetic compressor 100 flows into the indoor-side heat exchanger 106, where it is condensed and liquefied, and then throttled by the expansion device 105 into a low-temperature, low-pressure two-phase state. The low-temperature, low-pressure two-phase refrigerant flows to the outdoor heat exchanger 104 , evaporates, gasifies, and returns to the hermetic compressor 100 through the flow path switching valve 103 . That is, the refrigerant circulates as indicated by solid line arrows in FIG. Due to this circulation, the outdoor heat exchanger 104, which is an evaporator, exchanges heat with the outside air, and the refrigerant sent to the outdoor heat exchanger 104 absorbs heat. It is sent to the vessel 106 and exchanges heat with the air in the room to warm the air in the room.
 また、冷凍サイクル装置200の冷房運転では、流路切換弁103は図9の破線側に接続される。密閉型圧縮機100で圧縮された高温高圧の冷媒は室外側熱交換器104に流れ、凝縮し、液化した後、絞り装置105で絞られ、低温低圧の二相状態となる。低温低圧の二相状態となった冷媒は、室内側熱交換器106へ流れ、蒸発し、ガス化して流路切換弁103を通って再び密閉型圧縮機100に戻る。すなわち、暖房運転から冷房運転に変わると、室内側熱交換器106が凝縮器から蒸発器に変わり、室外側熱交換器104が蒸発器から凝縮器に変わる。よって、図9の破線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室内側熱交換器106では室内の空気と熱交換を行い、室内の空気から吸熱すなわち室内の空気を冷却し、吸熱した冷媒は凝縮器である室外側熱交換器104に送られ、外気と熱交換を行い、外気に放熱する。 Also, in the cooling operation of the refrigeration cycle device 200, the flow path switching valve 103 is connected to the dashed line side in FIG. The high-temperature, high-pressure refrigerant compressed by the hermetic compressor 100 flows to the outdoor heat exchanger 104, where it is condensed and liquefied, and then throttled by the expansion device 105 to become a low-temperature, low-pressure two-phase state. The low-temperature, low-pressure two-phase refrigerant flows to the indoor heat exchanger 106 , evaporates, gasifies, and returns to the hermetic compressor 100 through the flow path switching valve 103 . That is, when the heating operation changes to the cooling operation, the indoor heat exchanger 106 changes from a condenser to an evaporator, and the outdoor heat exchanger 104 changes from an evaporator to a condenser. Therefore, the coolant circulates as indicated by the dashed arrows in FIG. Due to this circulation, the indoor heat exchanger 106, which is an evaporator, exchanges heat with the indoor air, and absorbs heat from the indoor air, that is, cools the indoor air. 104, heat is exchanged with the outside air, and the heat is released to the outside air.
 以上のように、冷凍サイクル装置200に効率の向上した密閉型圧縮機100を用いているので、冷凍サイクル装置200において省エネの性能が向上する。 As described above, since the hermetic compressor 100 with improved efficiency is used in the refrigeration cycle device 200, the energy saving performance of the refrigeration cycle device 200 is improved.
 以上、実施の形態に係る密閉型圧縮機100は、固定子鉄心32aと該固定子鉄心32aに巻かれた固定子巻線37とを有する中空円筒形状の固定子32、および、固定子32の内側に回転自在に設けられた回転子31を有する電動機構部30と、電動機構部30により駆動され、冷媒を圧縮する圧縮機構部20と、電動機構部30および圧縮機構部20を収容する密閉容器10と、を備え、固定子巻線37は、アルミニウムの芯線37bを有するものである。 As described above, the hermetic compressor 100 according to the embodiment includes the hollow cylindrical stator 32 having the stator core 32a and the stator windings 37 wound around the stator core 32a, and the stator 32 An electric mechanism section 30 having a rotor 31 rotatably provided inside; a compression mechanism section 20 driven by the electric mechanism section 30 to compress refrigerant; and a stator winding 37 having an aluminum core wire 37b.
 実施の形態に係る密閉型圧縮機100によれば、固定子巻線37の芯線37bに銅ではなくアルミニウムが用いられている。そのため、密閉型圧縮機100を備えた冷凍サイクル装置200の冷媒回路を循環する冷媒として、R466A冷媒のようにヨウ素を含んだ不燃性の冷媒が使用される場合でも、固定子巻線37の芯線37bの腐食というリスクを低減できる。その結果、圧縮機の導通不良というリスクを低減でき、高い信頼性を得ることができる。 According to the hermetic compressor 100 according to the embodiment, the core wire 37b of the stator winding 37 is made of aluminum instead of copper. Therefore, even when a nonflammable refrigerant containing iodine such as R466A refrigerant is used as the refrigerant circulating in the refrigerant circuit of the refrigeration cycle device 200 including the hermetic compressor 100, the core wire of the stator winding 37 The risk of corrosion of 37b can be reduced. As a result, the risk of poor conduction of the compressor can be reduced, and high reliability can be obtained.
 また、実施の形態に係る密閉型圧縮機100において、固定子32は、異なるティース32cに巻き回された固定子巻線37同士を接続する渡り線53を備え、拘束部51は、渡り線53の端末部を固定し、渡り線53は、アルミニウムの芯線53bと、該芯線53bを覆う絶縁性の被膜部53aと、を有し、圧接端子52と電気的に接続される部分の芯線53bには被膜部53aが設けられておらず、芯線53bが露出している。 Further, in the hermetic compressor 100 according to the embodiment, the stator 32 includes a connecting wire 53 that connects the stator windings 37 wound around different teeth 32c. The connecting wire 53 has an aluminum core wire 53b and an insulating coating 53a covering the core wire 53b. is not provided with the coating portion 53a, and the core wire 53b is exposed.
 実施の形態に係る密閉型圧縮機100によれば、渡り線53の芯線53bにアルミニウムが用いられている。そのため、密閉型圧縮機100を備えた冷凍サイクル装置200の冷媒回路を循環する冷媒として、R466A冷媒のようにヨウ素を含んだ不燃性の冷媒が使用される場合でも、渡り線53の芯線53bの腐食というリスクを低減できる。その結果、圧縮機の導通不良というリスクを低減でき、高い信頼性を得ることができる。 According to the hermetic compressor 100 according to the embodiment, the core wire 53b of the connecting wire 53 is made of aluminum. Therefore, even when a nonflammable refrigerant containing iodine such as R466A refrigerant is used as the refrigerant circulating in the refrigerant circuit of the refrigeration cycle device 200 including the hermetic compressor 100, the core wire 53b of the connecting wire 53 is The risk of corrosion can be reduced. As a result, the risk of poor conduction of the compressor can be reduced, and high reliability can be obtained.
 また、実施の形態に係る密閉型圧縮機100において、密閉容器10の外部の電源に接続する接続端子7と固定子巻線37とを接続するリード線39を備え、拘束部51は、リード線39の端末部を固定し、リード線39は、アルミニウムの芯線と、該芯線を覆う絶縁性の被膜部と、を有し、圧接端子52と電気的に接続される部分の芯線には被膜部が設けられておらず、芯線が露出している。 Further, in the hermetic compressor 100 according to the embodiment, the lead wire 39 that connects the connection terminal 7 connected to the power supply outside the hermetic container 10 and the stator winding 37 is provided. The terminal portion of the lead wire 39 is fixed, and the lead wire 39 has an aluminum core wire and an insulating coating portion covering the core wire. is not provided, and the core wire is exposed.
 実施の形態に係る密閉型圧縮機100によれば、リード線39の芯線にアルミニウムが用いられている。そのため、密閉型圧縮機100を備えた冷凍サイクル装置200の冷媒回路を循環する冷媒として、R466A冷媒のようにヨウ素を含んだ不燃性の冷媒が使用される場合でも、リード線39の芯線の腐食というリスクを低減できる。その結果、圧縮機の導通不良というリスクを低減でき、高い信頼性を得ることができる。 According to the hermetic compressor 100 according to the embodiment, the core wire of the lead wire 39 is made of aluminum. Therefore, even when a nonflammable refrigerant containing iodine such as R466A refrigerant is used as the refrigerant circulating in the refrigerant circuit of the refrigeration cycle device 200 including the hermetic compressor 100, corrosion of the core wire of the lead wire 39 does not occur. can reduce the risk of As a result, the risk of poor conduction of the compressor can be reduced, and high reliability can be obtained.
 また、実施の形態に係る冷凍サイクル装置200は、上記の密閉型圧縮機100、室外側熱交換器104、絞り装置105、および、室内側熱交換器106が、冷媒配管201により接続され、ヨウ素を含んだ不燃性の冷媒が循環する冷媒回路を備えたものである。 Further, in the refrigeration cycle device 200 according to the embodiment, the hermetic compressor 100, the outdoor heat exchanger 104, the expansion device 105, and the indoor heat exchanger 106 are connected by a refrigerant pipe 201, and iodine is provided with a refrigerant circuit in which a nonflammable refrigerant containing is circulated.
 実施の形態に係る冷凍サイクル装置200によれば、上記の密閉型圧縮機100と同様の効果を得ることができる。 According to the refrigeration cycle device 200 according to the embodiment, it is possible to obtain the same effect as the hermetic compressor 100 described above.
 7 接続端子、10 密閉容器、11 上部容器、12 下部容器、20 圧縮機構部、21 ローリングピストン、22 シリンダ、22a 中空部分、22b 背圧室、22c ベーン溝、24 主軸受、25 副軸受、26 ベーン、30 電動機構部、31 回転子、31a 回転子鉄心、31b シャフト穴、31c 磁石挿入穴、32 固定子、32a 固定子鉄心、32b バックヨーク、32c ティース、32d スロット、33 永久磁石、34a 上部バランスウェイト、34b 下部バランスウェイト、35 リベット、37 固定子巻線、37a 被膜部、37b 芯線、38 絶縁部材、39 リード線、40 クランクシャフト、41 主軸部、42 偏心軸部、43 副軸部、44 油穴、51 拘束部、51a 拘束溝、51b 圧接端子挿入部、52 圧接端子、52a 溝、53 渡り線、53a 被膜部、53b 芯線、100 密閉型圧縮機、101 吸入マフラ、102 吐出管、103 流路切換弁、104 室外側熱交換器、105 絞り装置、106 室内側熱交換器、200 冷凍サイクル装置、201 冷媒配管。 7 connection terminal, 10 airtight container, 11 upper container, 12 lower container, 20 compression mechanism, 21 rolling piston, 22 cylinder, 22a hollow part, 22b back pressure chamber, 22c vane groove, 24 main bearing, 25 sub-bearing, 26 Vane, 30 electric mechanism, 31 rotor, 31a rotor core, 31b shaft hole, 31c magnet insertion hole, 32 stator, 32a stator core, 32b back yoke, 32c teeth, 32d slot, 33 permanent magnet, 34a upper part balance weight, 34b lower balance weight, 35 rivet, 37 stator winding, 37a coating portion, 37b core wire, 38 insulating member, 39 lead wire, 40 crankshaft, 41 main shaft portion, 42 eccentric shaft portion, 43 sub shaft portion, 44 oil hole, 51 restraint portion, 51a restraint groove, 51b pressure contact terminal insertion portion, 52 pressure contact terminal, 52a groove, 53 connecting wire, 53a coating portion, 53b core wire, 100 sealed compressor, 101 suction muffler, 102 discharge pipe, 103 Flow path switching valve, 104 outdoor heat exchanger, 105 expansion device, 106 indoor heat exchanger, 200 refrigeration cycle device, 201 refrigerant piping.

Claims (6)

  1.  固定子鉄心と該固定子鉄心に巻かれた固定子巻線とを有する中空円筒形状の固定子、および、前記固定子の内側に回転自在に設けられた回転子を有する電動機構部と、
     前記電動機構部により駆動され、ヨウ素を含んだ不燃性の冷媒を圧縮する圧縮機構部と、
     前記電動機構部および前記圧縮機構部を収容する密閉容器と、を備え、
     前記固定子巻線は、アルミニウムの芯線を有する
     密閉型圧縮機。
    a hollow cylindrical stator having a stator core and stator windings wound around the stator core; and an electric mechanism section having a rotor rotatably provided inside the stator;
    a compression mechanism section driven by the electric mechanism section for compressing a nonflammable refrigerant containing iodine;
    a closed container that houses the electric mechanism unit and the compression mechanism unit,
    The stator winding has an aluminum core wire. The hermetic compressor.
  2.  前記固定子は、
     前記固定子鉄心と前記固定子巻線とを絶縁する絶縁部材を備え、
     前記固定子鉄心は、外縁を構成するバックヨークと、該バックヨークの内側に設けられ、前記絶縁部材を介して前記固定子巻線が巻き回されるティースと、を有し、
     前記絶縁部材は、
     前記固定子巻線の端末部を固定する拘束部を備えた
     請求項1に記載の密閉型圧縮機。
    The stator is
    An insulating member that insulates the stator core and the stator winding,
    The stator core has a back yoke that forms an outer edge, and teeth that are provided inside the back yoke and around which the stator winding is wound via the insulating member,
    The insulating member is
    2. The hermetic compressor according to claim 1, further comprising a restraining portion that fixes the end portion of the stator winding.
  3.  前記拘束部は、圧接端子挿入部を有し、
     前記絶縁部材は、
     前記圧接端子挿入部に挿入され、前記固定子巻線と電気的に接続される圧接端子を備え、
     前記固定子巻線は、
     前記芯線を覆う絶縁性の被膜部を有し、
     前記圧接端子と電気的に接続される部分の前記芯線には前記被膜部が設けられておらず、前記芯線が露出している
     請求項2に記載の密閉型圧縮機。
    The restraining portion has an insulation displacement terminal insertion portion,
    The insulating member is
    an insulation displacement terminal inserted into the insulation displacement terminal insertion portion and electrically connected to the stator winding;
    The stator winding is
    Having an insulating coating that covers the core wire,
    The hermetic compressor according to claim 2, wherein a portion of the core wire electrically connected to the pressure contact terminal is not provided with the coating portion, and the core wire is exposed.
  4.  前記固定子は、
     異なる前記ティースに巻き回された前記固定子巻線同士を接続する渡り線を備え、
     前記拘束部は、前記渡り線の端末部を固定し、
     前記渡り線は、
     アルミニウムの芯線と、該芯線を覆う絶縁性の被膜部と、を有し、
     前記圧接端子と電気的に接続される部分の前記芯線には前記被膜部が設けられておらず、前記芯線が露出している
     請求項3に記載の密閉型圧縮機。
    The stator is
    comprising a crossover wire that connects the stator windings wound around different teeth;
    The restraint part fixes the terminal part of the connecting wire,
    The crossover is
    Having an aluminum core wire and an insulating coating covering the core wire,
    The hermetic compressor according to claim 3, wherein a portion of the core wire electrically connected to the pressure contact terminal is not provided with the coating portion, and the core wire is exposed.
  5.  前記密閉容器の外部の電源に接続する接続端子と前記固定子巻線とを接続するリード線を備え、
     前記拘束部は、前記リード線の端末部を固定し、
     前記リード線は、
     アルミニウムの芯線と、該芯線を覆う絶縁性の被膜部と、を有し、
     前記圧接端子と電気的に接続される部分の前記芯線には前記被膜部が設けられておらず、前記芯線が露出している
     請求項3または4に記載の密閉型圧縮機。
    A lead wire that connects a connection terminal that connects to a power supply outside the closed container and the stator winding,
    The restraint part fixes the terminal part of the lead wire,
    The lead wire
    Having an aluminum core wire and an insulating coating covering the core wire,
    5. The hermetic compressor according to claim 3, wherein a portion of the core wire electrically connected to the press contact terminal is not provided with the coating portion, and the core wire is exposed.
  6.  請求項1~5のいずれか一項に記載の密閉型圧縮機、室外側熱交換器、絞り装置、および、室内側熱交換器が、冷媒配管により接続され、前記ヨウ素を含んだ不燃性の冷媒が循環する冷媒回路を備えた
     冷凍サイクル装置。
    The hermetic compressor, the outdoor heat exchanger, the throttle device, and the indoor heat exchanger according to any one of claims 1 to 5 are connected by refrigerant piping, and the nonflammable gas containing iodine A refrigeration cycle device equipped with a refrigerant circuit in which refrigerant circulates.
PCT/JP2021/023040 2021-06-17 2021-06-17 Hermetic compressor and refrigeration cycle apparatus WO2022264361A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023040 WO2022264361A1 (en) 2021-06-17 2021-06-17 Hermetic compressor and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023040 WO2022264361A1 (en) 2021-06-17 2021-06-17 Hermetic compressor and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2022264361A1 true WO2022264361A1 (en) 2022-12-22

Family

ID=84527324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023040 WO2022264361A1 (en) 2021-06-17 2021-06-17 Hermetic compressor and refrigeration cycle apparatus

Country Status (1)

Country Link
WO (1) WO2022264361A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002368A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Compressor
JP2010166643A (en) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp Hermetically sealed compressor and refrigeration cycle device
JP2011252402A (en) * 2010-05-31 2011-12-15 Kobe Steel Ltd Screw compressor
WO2021020461A1 (en) * 2019-07-31 2021-02-04 ダイキン工業株式会社 Refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002368A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Compressor
JP2010166643A (en) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp Hermetically sealed compressor and refrigeration cycle device
JP2011252402A (en) * 2010-05-31 2011-12-15 Kobe Steel Ltd Screw compressor
WO2021020461A1 (en) * 2019-07-31 2021-02-04 ダイキン工業株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2010166643A (en) Hermetically sealed compressor and refrigeration cycle device
WO2015136977A1 (en) Compressor and refrigeration cycle device
JP6742402B2 (en) Electric motor, compressor, and refrigeration cycle device
JP6351734B2 (en) Electric motor, compressor and refrigeration cycle apparatus
CN108604835B (en) Stator and compressor
CZ2016704A3 (en) An electric motor, a hermetic compressor and a device with a cooling cycle
JP5967971B2 (en) Manufacturing method of electric motor
JP2010279126A (en) Stator core of electric motor, electric motor, sealed compressor, and refrigeration cycle device
WO2022264361A1 (en) Hermetic compressor and refrigeration cycle apparatus
JPWO2019102574A1 (en) Electric motor, compressor and refrigeration cycle device
JP5034476B2 (en) Compressor and air conditioner and water heater
CN108475955A (en) The manufacturing method of motor, compressor, refrigerating circulatory device and motor
US20220224193A1 (en) Compressor and air conditioner
JP2009071934A (en) Polarization method for electric compressor rotor, electric compressor, and refrigerating cycle device
WO2022172361A1 (en) Stator, rotating electrical machine, compressor, refrigeration cycle device, insulating sheet, and method for producing stator
JP2014195384A (en) Motor for compressor, compressor, and refrigeration cycle device
WO2021229742A1 (en) Electric motor, compressor, and refrigeration cycle device
JP7285961B2 (en) Stators, electric motors, compressors and air conditioners
CN112955656B (en) Compressor and refrigeration cycle device
US11378080B2 (en) Compressor
WO2017187534A1 (en) Stator, motor, compressor, and refrigeration cycle apparatus
WO2023148844A1 (en) Electric motor, compressor, and refrigeration cycle device
US20230198328A1 (en) Stator, motor, compressor, refrigeration cycle apparatus, and air conditioner
WO2017064782A1 (en) Stator core, compressor, and refrigeration cycle device
WO2023181238A1 (en) Stator, electric motor, compressor, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE