WO2022259728A1 - Manufacturing condition determination method, program, manufacturing condition determination apparatus, metal structure manufacturing method, and additive manufacturing apparatus - Google Patents

Manufacturing condition determination method, program, manufacturing condition determination apparatus, metal structure manufacturing method, and additive manufacturing apparatus Download PDF

Info

Publication number
WO2022259728A1
WO2022259728A1 PCT/JP2022/015883 JP2022015883W WO2022259728A1 WO 2022259728 A1 WO2022259728 A1 WO 2022259728A1 JP 2022015883 W JP2022015883 W JP 2022015883W WO 2022259728 A1 WO2022259728 A1 WO 2022259728A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal structure
manufacturing
additive manufacturing
target
condition determination
Prior art date
Application number
PCT/JP2022/015883
Other languages
French (fr)
Japanese (ja)
Inventor
慎二 松下
啓嗣 川中
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022259728A1 publication Critical patent/WO2022259728A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present disclosure relates to a modeling condition determination method, a program, a modeling condition determination device, a method for manufacturing a metal structure, and an additive manufacturing device.
  • Laminate manufacturing is a technique of forming a shape by stacking layers with a thickness of about several tens to several hundred ⁇ m.
  • powder layers are spread one by one in the area including the cross section of the modeled shape, and the powder at the locations corresponding to the modeled shape is melted and bonded by a laser or the like.
  • the powder supplied to a portion corresponding to the shape to be formed is melted and combined with a laser or the like.
  • Patent Document 1 states, "A strength prediction method for a structure manufactured by a layered manufacturing method, comprising at least one of a material scanning direction, a scanning pitch, a layering direction, and a layering pitch.
  • a strength prediction method for a structure which obtains a material lamination method including and estimates the strength of the structure in consideration of strength anisotropy due to the material lamination method.” is described.
  • the problem to be solved by the present disclosure is to provide a molding condition determination method, a program, a molding condition determination device, a method for manufacturing a metal structure, and a laminate molding apparatus capable of suppressing overheating.
  • the manufacturing condition determination method of the present disclosure is based on at least one molding condition of the shape of the metal structure to be laminated, the constituent material, or the operating conditions of the laminate manufacturing apparatus. and at least one of a cross-sectional area or a rate of change with respect to the manufacturing direction during the additive manufacturing, which is the overheating of the metal structure during the additive manufacturing. and a target condition determination step of determining a target condition to suppress.
  • Other solutions will be described later in the detailed description.
  • a molding condition determination method it is possible to provide a molding condition determination method, a program, a molding condition determination device, a metal structure manufacturing method, and an additive manufacturing device that can suppress overheating.
  • FIG. 4 is a flow chart showing a modeling condition determination method and a metal structure manufacturing method of the present disclosure; It is a figure which shows the metal structure at the time of additive manufacturing.
  • 1 is an exploded perspective view of a metal structure of the present disclosure;
  • FIG. 1 is a side view of a metal structure of the present disclosure;
  • FIG. 1 is a front view of a metal structure of the present disclosure;
  • FIG. It is a front view of the metal structure which concerns on another embodiment.
  • It is a front view of the metal structure which concerns on another embodiment.
  • 5 is a graph showing temperature changes at each position in the height direction during laminate manufacturing of Examples 1 to 3 and Comparative Example 1.
  • FIG. It is a figure explaining the correction method of the design information in another embodiment.
  • 1 is a block diagram showing a modeling condition determination device and a layered modeling device of the present disclosure;
  • FIG. It is an example of an input screen for inputting information to the input unit.
  • FIG. 1 is a flow chart showing the molding condition determination method and the metal structure manufacturing method of the present disclosure.
  • the molding condition determination method includes a design information determination step S1, an index temperature prediction step S2, a target condition determination step S3, and a design information correction step S4.
  • the method for manufacturing the metal structure 1 includes a design information determination step S1, an index temperature prediction step S2, a target condition determination step S3, a design information correction step S4, a laminate manufacturing step S5, and support member removal. including step S6.
  • / ⁇ z is a step of determining design information for at least one of The metal structure 1 and the forming direction will be described with reference to FIG.
  • FIG. 2 is a diagram showing the metal structure 1 during additive manufacturing.
  • the structure of the moldable metal structure 1 is not limited to the illustrated example.
  • the metal structure 1 can be manufactured by any additive manufacturing technique such as, for example, a powder bed fusion method, a directed energy deposition method, etc., but the powder bed fusion method is exemplified in the present disclosure.
  • the powder bed fusion bonding method metal powder is deposited on the base plate 13 as described above.
  • the metal structure 1 having a desired structure is manufactured by repeating melting and solidification of the metal powder from the side closer to the base plate 13 to the side farther from the base plate 13 . Therefore, the upward direction on the paper surface indicated by the white arrow in FIG. 2 corresponds to the modeling direction during layered modeling.
  • the design information of the metal structure 1 designed in advance is defined, for example, by defining the forming posture (shape) of the metal structure 1 to be formed in the forming condition determination device 100 (FIG. 8). can decide.
  • the index temperature prediction step S2 is based on at least one molding condition of the shape of the metal structure 1, the constituent materials, or the operating conditions of the modeling apparatus main body 30 (FIG. 8) that performs the layered manufacturing. Predicting the predictive indicator temperature, which is the temperature that will cause overheating in 1.
  • the predicted index temperature can be predicted by the index temperature prediction step S2, and a target superheating temperature (described later) that can suppress cracking occurring at a temperature higher than the predicted index temperature can be determined.
  • the term "overheating” as used herein refers to a state of being heated to a temperature exceeding the predicted index temperature by, for example, excessive laser light.
  • the constituent materials of the metal structure 1 are, for example, the type and composition of the metal.
  • the operating conditions of the modeling apparatus main body 30 are, for example, the output of a heat source (an irradiation device such as a laser) provided in the modeling apparatus main body 30, the laser moving speed, the preheating temperature, and the like.
  • the predicted index temperature is predicted by heat transfer analysis based on the modeling conditions.
  • the predicted index temperature can be predicted for each of the fine regions (mesh) on the surface and inside of the metal structure 1 .
  • the predicted index temperature can be determined for the entire metal structure 1, and the portion where overheating will occur can be predicted.
  • the modeling condition is either a value input by the user or a value recorded in a database (corresponding to the modeling condition DB 27 (FIG. 8)) recorded in advance corresponding to the constituent material of the metal structure 1 . Using these values, a heat transfer analysis based on build conditions can be performed.
  • the target condition determination step S3 determines at least one of the cross-sectional area S in the direction perpendicular to the manufacturing direction during additive manufacturing or the rate of change ⁇ S/ ⁇ z of the cross-sectional area S in the manufacturing direction, and determines the metal structure during additive manufacturing. 1 is the step of determining the target condition to suppress overheating to 1.
  • the target condition determining step S3 can determine the target condition, which is at least one of the cross-sectional area S and the rate of change ⁇ S/ ⁇ z that can suppress overheating of the metal structure during lamination manufacturing.
  • suppressing overheating is not limited to the limited meaning of not causing overheating at all, but rather mitigates the overheating phenomenon to the extent that a molten pool of a size that does not cause local protrusions during solidification is generated. It means. Specifically, for example, it means that overheating below a target superheating temperature described below is permitted.
  • the heat given during the layered manufacturing is transferred to the base plate 13 (FIG. 2) through the formed portion of the metal structure 1 as a heat transfer path. can escape to As a result, overheating of the metal structure 1 can be suppressed, and generation of an excessively large molten pool due to overheating can be suppressed. Therefore, it is possible to suppress the occurrence of unintended local protrusions during solidification.
  • the target conditions are determined based on the target overheating temperature, which is the temperature at which the metal structure 1 is overheated and cracks occur in the metal structure 1 during additive manufacturing.
  • the target overheating temperature which is the temperature at which the metal structure 1 is overheated and cracks occur in the metal structure 1 during additive manufacturing.
  • overheating occurs in at least a portion of the metal structure 1, and unintended local projections may occur during solidification.
  • Cracks (cracks, cracks, etc.) may occur in the metal structure 1 due to the occurrence of protrusions. Therefore, the above design information is corrected so that the metal structure 1 as a whole can be heated at the target superheating temperature or lower. As a result, it is possible to suppress the occurrence of local protrusions and the occurrence of cracks during solidification.
  • the target overheating temperature is either a value input by the user or a value recorded in a database (corresponding to the target overheating temperature DB 28 (FIG. 8)) recorded in advance corresponding to the constituent material of the metal structure 1. be.
  • a target superheat temperature can be determined.
  • the target superheating temperature can be determined, for example, by experimentation, and for example, the user may input a value obtained by experimentation, or record an experimental value obtained by experimentation in a database.
  • T is the temperature at the uppermost surface (the part with the highest temperature) of the metal structure 1
  • t is the time
  • Z is the height with respect to the modeling direction (modeling height. Height from the base plate 13 (FIG. 2))
  • thermal diffusion Let ⁇ be the ratio and S be the cross-sectional area in the direction perpendicular to the forming direction.
  • the overheating phenomenon is related to the thermal diffusivity ⁇ . depends on ⁇ S/ ⁇ z.
  • the thermal diffusivity ⁇ is determined by the constituent material of the metal structure 1 . Therefore, the overheating phenomenon can be suppressed (alleviated) by shaping the metal structure 1 as follows. For example, when the rate of change ⁇ S/ ⁇ z ⁇ 0, at least one of the conditions of reducing the rate of change ⁇ S/ ⁇ z (changing gently) or reducing the cross-sectional area S may be satisfied.
  • condition for minimizing the volume of the metal structure 1 and minimizing the overheating temperature is expressed by the following formula (2) when the minimum value is obtained based on Lagrange's method of undetermined multipliers.
  • k is a constant.
  • is determined by the constituent materials as described above, and k is a constant. Therefore, as shown in equation (2), if the shape of the metal structure 10 is such that the cross-sectional area S is inversely proportional to the height Z as the target condition, the overheating phenomenon can be alleviated particularly efficiently.
  • the target condition is determined based on the target superheat temperature and the predetermined relationship that associates the target superheat temperature and the target condition (at least one of the cross-sectional area S and the rate of change ⁇ S/ ⁇ z).
  • the target condition can be determined based on the target superheat temperature.
  • the target overheating temperature is determined from the constituent materials of the metal structure 1 based on the database (corresponding to the target overheating temperature DB 28 (FIG. 8)). Then, the target condition can be determined based on the determined target superheating temperature and the predetermined relationship.
  • the predetermined relationship is a formula, table, graph, etc., and there is no limit to the specific format. For example, if the predetermined relationship is a formula, then formula (1) or formula (2) can be used. Also, if the predetermined relationship is a table, a table that associates the target superheating temperature with the target condition can be used.
  • the predetermined relationship is, for example, a relationship in which the cross-sectional area S decreases as the height Z in the modeling direction increases. Specifically, this relationship corresponds to a structure in which the cross-sectional area S is inversely proportional to the height Z, for example. Further, the predetermined relationship is such that the cross-sectional area S becomes smaller as the height Z in the forming direction increases up to a predetermined height in the forming direction, but the cross-sectional area S is the same regardless of the forming direction above the predetermined height. Specifically, this relationship corresponds to, for example, a trapezoid whose width increases in the molding direction up to a predetermined height and whose width is the same beyond that.
  • FIG. 3A is an exploded perspective view of the metal structures 1, 10 of the present disclosure.
  • the metal structures 1, 10 of the present disclosure are formed by additive manufacturing. Although the details will be described later, the metal structure 1 is a preliminarily designed object to be shaped, but by correcting the design information, the metal structure 10 is layered and manufactured during the layered manufacturing. After lamination manufacturing, the metal structure 1 can be manufactured by removing the support 2 that constitutes the metal structure 10 .
  • the cross-sectional area S in the direction (laser irradiation direction, direction in the xy plane) perpendicular to the modeling direction (+z direction) is It gradually increases and is constant above a predetermined position. Also, the rate of change ⁇ S/ ⁇ z is positive up to a predetermined position in the modeling direction, but is 0 above the predetermined position.
  • the metal structure 1 has a portion 1a that narrows in the opposite direction (downward) to the modeling direction (+z direction). For example, as a result of heat transfer analysis, it is assumed that heat is likely to accumulate in the edge portion of the portion 1a, and overheating is likely to occur. In this case, in the portion 1a, the rate of change ⁇ S/ ⁇ z in the height direction of the cross-sectional area S in the modeling direction is positive. Therefore, by increasing the cross-sectional area S of at least the portion 1a, heat can be released and overheating can be suppressed.
  • the metal structure 10 when forming the metal structure 1 as the final product, is provided with the support member 2 that increases the cross-sectional area S in the direction (xy direction) perpendicular to the forming direction (z direction). is additively manufactured.
  • the support member 2 has a rectangular plate shape when viewed from the front (FIG. 3C).
  • FIG. 3B is a side view of the metal structures 1, 10 of the present disclosure.
  • the angle ⁇ 1 will be described later.
  • the x-direction length of the metal structure 1 is, for example, 22 mm.
  • the height of the metal structure 1 and the support member 2 in the forming direction is, for example, 100 mm, and the height of the portion 1a from the lower end of the metal structure 1 is, for example, 30 mm.
  • a portion having a height of 30 mm from the lower end of the metal structure 1 corresponds to the "predetermined height" described in the above "predetermined relationship".
  • the thickness of the support member 2 is, for example, 1 mm.
  • FIG. 3C is a front view of the metal structures 1, 10 of the present disclosure.
  • the length (width) of the support member 2 in the y direction is, for example, 10 mm.
  • FIG. 4 is a front view of metal structures 1 and 11 according to another embodiment.
  • the support member 3 is provided so as to increase the cross-sectional area S at least at the portion 1a and to reduce the rate of change .delta.S/.delta.z.
  • the width in the y direction at the lower end of the support member 3 is 10 mm.
  • the support member 3 has the same plate shape as the support member 2 (FIG. 3B).
  • the support member 3 has a right-angled triangular shape narrowing in the modeling direction (+z direction). By having such a tapered shape, the usage amount of the metal material constituting the support member 3 and the molding time can be reduced as compared with FIGS. 3A to 3C.
  • the angle ⁇ 2 that indicates how the support member 3 narrows is larger than the angle ⁇ 1 (FIG. 3B) of the portion 1a, so that the rate of change ⁇ S/ ⁇ z can be made small (that is, the change is gentle).
  • the support member 3 has a shape in which the cross-sectional area S becomes smaller as it is higher in the modeling direction.
  • FIG. 5 is a front view of metal structures 1 and 12 according to another embodiment.
  • the support member 4 is provided so as to increase the cross-sectional area S at the portion 1a and decrease the rate of change .delta.S/.delta.z.
  • the support member 4 has the same plate shape as the support member 2 (FIG. 3B).
  • the support member 4 has a shape that narrows in the molding direction, similarly to the support member 3 (FIG. 4).
  • the support member 4 has a substantially right-angled triangular shape with a parabolic shape on the oblique side.
  • the metal structure 10 has a shape in which the cross-sectional area S in the molding direction is inversely proportional to the height Z. As shown in FIG.
  • FIG. 6 is a graph showing temperature changes at each position in the height direction during laminate manufacturing in Examples 1 to 3 and Comparative Example 1.
  • Example 1 has the structure shown in FIGS. 3A to 3C
  • Example 2 has the structure shown in FIG. 4
  • Example 3 has the structure shown in FIG. There is only thing 1.
  • the horizontal axis is the height position from the lower end of the metal structure 1 (base plate 13 (FIG. 2)).
  • Example 1 compared to Comparative Example 1, the temperature could be lowered overall, and in particular, initial overheating (30 mm or less) corresponding to the portion 1a (FIG. 3A) where overheating easily occurs could be suppressed.
  • Example 2 and 3 in which the cross-sectional area S decreases in the height direction, the effect of suppressing overheating was exhibited even after the middle stage of modeling (shift to 30 mm in height).
  • Example 3 the temperature rise was suppressed to 80° C. even when forming 100 mm.
  • Example 3 value obtained by subtracting the initial temperature of 25°C from 80°C
  • Comparative Example 1 value obtained by subtracting the initial temperature of 25°C from 140°C
  • the predicted index temperature (highest part) of the metal structure 1 was 130°C as a result of the heat transfer analysis.
  • the temperature T exceeds 130.degree. Therefore, the target superheating temperature is determined to be, for example, 130° C., and support members 2 to 4 are provided to the metal structure 1 to determine the target conditions under which the temperature during lamination molding can be set to the target superheating temperature or less (130° C. or less).
  • the predicted index temperature (temperature T) can be lowered to 130° C. or less in the entire range of 0 mm to 100 mm, and the occurrence of local protrusions, cracks, etc. caused by overheating can be suppressed.
  • the design information correction step S4 is a step of correcting the design information of the pre-designed metal structure 1 so as to achieve the target conditions determined in the target condition determination step S3.
  • the design information correction step S4 can suppress the occurrence of protrusions, cracks, and the like due to overheating, even if the occurrence of protrusions and cracks due to overheating is expected by simply laminating and manufacturing.
  • the design information correction step S4 the design information (at least one of the cross-sectional area S and the rate of change ⁇ S/ ⁇ z) of the pre-designed metal structure 1 is modified so as to meet the target conditions determined in the target condition determination step S3. At least one of the area S or the rate of change ⁇ S/ ⁇ z is given. As a result, the design information of the metal structure 1 designed in advance is corrected, and layered manufacturing can be performed while suppressing overheating.
  • the support members 2 to 4 having at least one of the cross-sectional area S or the rate of change ⁇ S/ ⁇ z for setting the metal structure 10 to the above target conditions are integrally formed with the metal structure 1 designed in advance. This is done by correcting the design information to As a result, the metal structure 10 including the metal structure 1 can be shaped while overheating is suppressed, and the metal structure 1 can be finally manufactured. Specifically, for example, as shown in FIG. 5, the support member 4 that compensates for the shortage of the cross-sectional area S of the metal structure 1 so that the cross-sectional area S of the metal structure 10 is inversely proportional to the height Z. should be given.
  • FIG. 7 is a diagram explaining a method of correcting design information in another embodiment.
  • the metal structure 1 and the support members 2 to 4 are integrally formed.
  • the metal structure 1 and the support members 2 to 4 are formed separately. That is, the above-described application is performed by applying the support member 5 that is shaped in a heat-conducting and non-contact manner to the predesigned metal structure 1 .
  • the support member 5 has at least one of the cross-sectional area S and the rate of change ⁇ S/ ⁇ z for bringing the metal structure 10 to the above target conditions.
  • the metal structure 1 can be formed directly, and unlike the support members 2 to 4, the support member removing step S6 (FIG. 1) can be omitted.
  • the design information correction step S4 (FIG. 1) can be executed as follows. First, the shape of the support member 5 (the cross-sectional area S or rate of change ⁇ S/ ⁇ z for achieving the target condition) is determined in the same manner as the support members 2 to 4 (FIGS. 3A to 5). Next, the design information of the metal structure 1 is corrected so that the support member 5 is simultaneously shaped in proximity to the metal structure 1 to be shaped.
  • the term "at the same time” as used herein means that the first layer of the support member 5 is modeled after the first layer of the metal structure 1 is modeled, and then these models are repeated. Moreover, the proximity here is not limited as long as it is a non-contact distance to the metal structure 1 and heat transfer is possible.
  • the support member 5 can be formed away from the metal structure 1 at a distance at which, for example, 1 to 10, preferably 5 or less, metal particles 14, which are constituent materials of the metal structure 1, can be arranged. From the viewpoint of promoting heat transfer, it is preferable to shape the metal structure 1 and the support member 5 in a state in which metal particles 14 are present between the metal structure 1 and the support member 5 . Thereby, heat can be dissipated through the particles 14 .
  • the layered manufacturing of the example shown in FIG. 7 can adopt any method such as a powder bed fusion method, a directional energy deposition method, etc., but from the viewpoint of ease of stacking, the powder bed fusion method is preferable. .
  • the layered manufacturing step S5 is a step of layeredly manufacturing the metal structure 1 so as to achieve the target information determined in the target condition determination step S3.
  • layered manufacturing is performed based on the design information corrected in the design information correction step S4.
  • the metal structure 1 can be layeredly manufactured.
  • the specific configuration of the additive manufacturing device that performs additive manufacturing is not particularly limited, and any device that can control the operating conditions of additive manufacturing (output of heat source (irradiation device such as laser), laser moving speed, preheating temperature, etc.) can be used.
  • Laminate manufacturing can be performed, for example, by a modeling apparatus main body 30 that performs lamination manufacturing.
  • the support member removing step S6 is performed after the layered manufacturing step S5, and is a step of removing the support members 2 to 4 from the metal structure 10 integrally formed with the metal structure 1.
  • the support member removing step S6 can be omitted when the support member 5 (FIG. 7) is used.
  • the metal structure 1 can be manufactured by the support member removing step S6.
  • FIG. 8 is a block diagram showing the modeling condition determining device 100 and the layered modeling device 200 of the present disclosure.
  • the modeling condition determination device 100 includes an input unit 21, a design information determination unit 22, an index temperature prediction unit 23, a target condition determination unit 24, a design information correction unit 25, an output unit 26, a modeling condition DB 27, and a target overheating temperature DB 28 .
  • DB is an abbreviation for database.
  • the modeling condition determining apparatus 100 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), etc., although none of them are shown.
  • the modeling condition determination apparatus 100 is embodied by developing a predetermined program (control program) stored in the ROM into the RAM and executing it by the CPU.
  • the program referred to here is for causing a computer to execute the above method of determining molding conditions.
  • the layered modeling apparatus 200 includes an input device 31, a display device 32, a modeling condition determining device 100, and a modeling apparatus main body 30 that executes layered modeling.
  • the modeling condition determination device 100 determines the modeling conditions of the metal structure 1 ( FIG. 2A ) in the modeling device main body 30 based on the input conditions from the input device 31 .
  • the input unit 21 receives information necessary for generating the conditions for lamination molding, which is input through the input device 31 (for example, keyboard, mouse, etc.).
  • the necessary conditions include, for example, the shape of the metal structure, the constituent materials, the operating conditions of the layered manufacturing apparatus, the shapes of the support members 2 to 5, and the like.
  • FIG. 9 is an example of an input screen 211 for inputting information to the input unit 21.
  • the input screen 211 has fields 220 for designating the shape and orientation of the metal structure 1 .
  • existing shapes can be referred to as initial shapes of support members 2-5, or the posture of metal structure 1 can be generated from a specified posture.
  • the input screen 211 also has a column 221 for selecting the modeling apparatus main body 30 and constituent materials.
  • an existing modeling apparatus main body 30 and constituent materials may be selected, or in the case of a new modeling apparatus main body 30 and constituent materials, necessary information is entered by pressing the add button 222. can be entered and used.
  • the input screen 211 has a target superheat temperature button 223 that opens a setting screen window for setting the target superheat temperature.
  • the input screen 211 includes a predicted temperature index calculation button 224 that activates the temperature index prediction unit 23 (FIG. 8).
  • the input screen 211 has a molding condition correction button 225 for activating the design information correction section 25 (FIG. 8).
  • the input screen 211 has a field 226 for designating a file storage location when outputting the analysis results and the optimum results to the outside in addition to checking the analysis results and the optimum results on the display screen window.
  • the design information determination unit 22 determines design information for at least one of the cross-sectional area S and the rate of change ⁇ S/ ⁇ z of the pre-designed metal structure 1 (FIG. 3A) to be laminated and manufactured. It is something to do.
  • the design information determination unit 22 executes the design information determination step S1 (FIG. 1).
  • the index temperature prediction unit 23 is a temperature that causes overheating of the metal structure 1 during laminate manufacturing based on at least one molding condition of the shape of the metal structure 1, the constituent materials, or the operating conditions of the molding apparatus main body 30. It predicts the predictive index temperature. Prediction is performed based on at least one of the conditions input by the input device 31 and the modeling condition DB 27, for example.
  • the index temperature prediction unit 23 executes the index temperature prediction step S2 (FIG. 1).
  • the target condition determination unit 24 determines a target condition, which is at least one of the cross-sectional area S and the rate of change ⁇ S/ ⁇ z, for suppressing overheating of the metal structure 1 during additive manufacturing. The determination is made, for example, based on at least one of the conditions input by the input device 31 and the target overheating temperature DB 28 .
  • the target condition determination unit 24 executes target condition determination step S3 (FIG. 1).
  • the design information correction unit 25 corrects the design information of the metal structure 1 so that the target conditions determined by the target condition determination unit 24 are achieved.
  • the modification is performed by applying support members 2 to 5 to the metal structure 1, for example.
  • the design information correction unit 25 executes the design information correction step S4 (FIG. 1).
  • the output unit 26 outputs the corrected design information to the modeling apparatus main body 30 and the display device 32 (such as a display) (only one of them may be used).
  • the modeling apparatus main body 30 models the metal structures 1 and 10 based on the input design information as described above.
  • overheating can be suppressed during layered manufacturing of the metal structure 1.
  • the layered manufacturing apparatus can be used continuously, and the manufacturing efficiency can be improved.
  • the overheating phenomenon it is possible to suppress the occurrence of cracks due to overheating.
  • the metal structure 1 having excellent reliability such as durability can be manufactured.
  • the overheating phenomenon is likely to occur. Therefore, by using, for example, the modeling condition determination method of the present disclosure, the overheating phenomenon can be suppressed.
  • metal structure 10 metal structure 100 molding condition determination device 11 metal structure 12 metal structure 13 base plate 1a portion 2 support member 200 layered manufacturing device 21 input unit 211 input screen 22 design information determination unit 23 index temperature prediction unit 24 target Condition determination unit 25 Design information correction unit 26 Output unit 27 Molding condition DB 28 Target superheat temperature DB 3 support member 30 modeling apparatus main body 31 input device 32 display device 4 support member 5 support member S1 design information determination step S2 index temperature prediction step S3 target condition determination step S4 design information correction step S5 laminate manufacturing step S6 support member removal process

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

Provided is a manufacturing condition determination method capable of suppressing an overheating phenomenon. In order to solve the problem, the manufacturing condition determination method comprises: a design information determining step (S1) for determining design information of a pre-designed metal structure for additive manufacturing, the design information comprising at least one of a cross-sectional area in a direction perpendicular to a manufacturing direction during additive manufacturing and a rate of change in the cross-sectional area in the manufacturing direction; an index temperature predicting step (S2) for predicting, on the basis of a manufacturing condition comprising at least one of the shape of the metal structure, constituent material thereof, and an additive manufacturing apparatus operating condition, a prediction index temperature which is a temperature at which overheating of the metal structure is caused during additive manufacturing; a target condition determining step (S3) for determining a target condition, for at least one of the cross-sectional area and the rate of change, for suppressing overheating of the metal structure during additive manufacturing; and a design information correcting step (S4) for correcting the design information so that the target condition determined in the target condition determining step (S3) can be obtained.

Description

造形条件決定方法、プログラム、造形条件決定装置、金属構造物の製造方法、及び積層造形装置Manufacturing condition determination method, program, manufacturing condition determination device, metal structure manufacturing method, and layered manufacturing device
 本開示は、造形条件決定方法、プログラム、造形条件決定装置、金属構造物の製造方法、及び積層造形装置に関する。 The present disclosure relates to a modeling condition determination method, a program, a modeling condition determination device, a method for manufacturing a metal structure, and an additive manufacturing device.
 金属材料を用いた積層造形では、粉末床融結合方式、指向性エネルギ堆積方式等の各種方式が採用されており、金属材料を熱によって溶融及び結合することで造形する方式が一般的である。積層造形は数十~数百μm程度の厚さの層を重ねていくことにより、形状を造形する技術である。このとき、例えば粉末床融結合方式では、造形形状の断面を包含する領域に1層ごとに粉末の層を敷き詰め、造形形状に対応する箇所の粉末がレーザ等で溶融及び結合される。また、例えば指向性エネルギ堆積方式では、造形形状に対応する箇所に供給された粉末がレーザ等により溶融及び結合される。 In additive manufacturing using metal materials, various methods such as the powder bed fusion method and the directional energy deposition method are adopted, and the method of molding by melting and bonding metal materials with heat is common. Laminate manufacturing is a technique of forming a shape by stacking layers with a thickness of about several tens to several hundred μm. At this time, for example, in the powder bed fusion bonding method, powder layers are spread one by one in the area including the cross section of the modeled shape, and the powder at the locations corresponding to the modeled shape is melted and bonded by a laser or the like. Further, for example, in the directional energy deposition method, the powder supplied to a portion corresponding to the shape to be formed is melted and combined with a laser or the like.
 積層造形に関する技術として、特許文献1の請求項1には「積層造形法により造形した構造物の強度予測方法であって、材料の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料の積層方法を取得し、材料の積層方法による強度の異方性を考慮して前記構造物の強度を推定する、構造物の強度予測方法。」が記載されている。 As a technology related to layered manufacturing, claim 1 of Patent Document 1 states, "A strength prediction method for a structure manufactured by a layered manufacturing method, comprising at least one of a material scanning direction, a scanning pitch, a layering direction, and a layering pitch. A strength prediction method for a structure, which obtains a material lamination method including and estimates the strength of the structure in consideration of strength anisotropy due to the material lamination method." is described.
特開2017-177462号公報JP 2017-177462 A
 積層造形時、金属粉末がレーザにより溶融及び凝固されるため、造形の進展に伴って金属構造物中に熱が蓄積する。熱の蓄積及び過剰なレーザにより過熱現象が発生した過大な溶融池の凝固時には、意図しない局所的な突起が発生し得る。局所的な突起は、造形中にも関わらず積層造形装置の停止を生じさせ得る。しかし、特許文献1に記載の技術では、このような過熱現象の検討は為されていない。
 本開示が解決しようとする課題は、過熱現象を抑制可能な造形条件決定方法、プログラム、造形条件決定装置、金属構造物の製造方法、及び積層造形装置の提供である。
During additive manufacturing, metal powder is melted and solidified by a laser, so heat builds up in the metal structure as the build progresses. Unintended local protrusions can occur during solidification of an excessively large weld pool, where overheating occurs due to heat build-up and excessive laser. Localized protrusions can cause stalling of the additive manufacturing apparatus even during the build. However, the technology described in Patent Document 1 does not consider such an overheating phenomenon.
The problem to be solved by the present disclosure is to provide a molding condition determination method, a program, a molding condition determination device, a method for manufacturing a metal structure, and a laminate molding apparatus capable of suppressing overheating.
 本開示の造形条件決定方法は、積層造形の対象となる金属構造物の形状、構成材料、又は積層造形装置の運転条件の少なくとも1つの造形条件に基づき、積層造形時の前記金属構造物に過熱を生じさせる温度である予測指標温度を予測する指標温度予測ステップと、前記積層造形時の造形方向に対する断面積又は変化率の少なくとも一方であって前記積層造形時の前記金属構造物への過熱を抑制する目標条件を決定する目標条件決定ステップと、を含む。その他の解決手段は発明を実施するための形態において後記する。 The manufacturing condition determination method of the present disclosure is based on at least one molding condition of the shape of the metal structure to be laminated, the constituent material, or the operating conditions of the laminate manufacturing apparatus. and at least one of a cross-sectional area or a rate of change with respect to the manufacturing direction during the additive manufacturing, which is the overheating of the metal structure during the additive manufacturing. and a target condition determination step of determining a target condition to suppress. Other solutions will be described later in the detailed description.
 本開示によれば、過熱現象を抑制可能な造形条件決定方法、プログラム、造形条件決定装置、金属構造物の製造方法、及び積層造形装置を提供できる。 According to the present disclosure, it is possible to provide a molding condition determination method, a program, a molding condition determination device, a metal structure manufacturing method, and an additive manufacturing device that can suppress overheating.
本開示の造形条件決定方法及び金属構造体の製造方法を示すフローチャートである。4 is a flow chart showing a modeling condition determination method and a metal structure manufacturing method of the present disclosure; 積層造形時の金属構造物を示す図である。It is a figure which shows the metal structure at the time of additive manufacturing. 本開示の金属構造体の分解斜視図である。1 is an exploded perspective view of a metal structure of the present disclosure; FIG. 本開示の金属構造体の側面図である。1 is a side view of a metal structure of the present disclosure; FIG. 本開示の金属構造体の正面図である。1 is a front view of a metal structure of the present disclosure; FIG. 別の実施形態に係る金属構造体の正面図である。It is a front view of the metal structure which concerns on another embodiment. 別の実施形態に係る金属構造体の正面図である。It is a front view of the metal structure which concerns on another embodiment. 実施例1~3及び比較例1の積層造形時の高さ方向各位置での温度変化を示すグラフである。5 is a graph showing temperature changes at each position in the height direction during laminate manufacturing of Examples 1 to 3 and Comparative Example 1. FIG. 別の実施形態における設計情報の修正方法を説明する図である。It is a figure explaining the correction method of the design information in another embodiment. 本開示の造形条件決定装置及び積層造形装置を示すブロック図である。1 is a block diagram showing a modeling condition determination device and a layered modeling device of the present disclosure; FIG. 入力部への情報を入力する入力画面の一例である。It is an example of an input screen for inputting information to the input unit.
 以下、図面を参照しながら本開示を実施するための形態(実施形態と称する)を説明する。以下の一の実施形態の説明の中で、適宜、一の実施形態に適用可能な別の実施形態の説明も行う。本開示は以下の一の実施形態に限られず、異なる実施形態同士を組み合わせたり、本開示の効果を著しく損なわない範囲で任意に変形したりできる。また、同じ部材については同じ符号を付すものとし、重複する説明は省略する。更に、同じ機能を有するものは同じ名称を付すものとする。図示の内容は、あくまで模式的なものであり、図示の都合上、本開示の効果を著しく損なわない範囲で実際の構成から変更したり、図面間で一部の部材の図示を省略したり変形したりすることがある。 Hereinafter, a form (referred to as an embodiment) for carrying out the present disclosure will be described with reference to the drawings. In the following description of one embodiment, other embodiments applicable to the one embodiment will also be described as appropriate. The present disclosure is not limited to one embodiment below, and different embodiments can be combined or arbitrarily modified within a range that does not significantly impair the effects of the present disclosure. Also, the same members are denoted by the same reference numerals, and overlapping descriptions are omitted. Furthermore, those having the same function shall have the same name. The contents of the drawings are only schematic, and for the convenience of the drawings, the actual configuration may be changed within a range that does not significantly impair the effects of the present disclosure, or the illustration of some members may be omitted or modified between drawings. sometimes
 図1は、本開示の造形条件決定方法及び金属構造体の製造方法を示すフローチャートである。造形条件決定方法は、設計情報決定ステップS1と、指標温度予測ステップS2と、目標条件決定ステップS3と、設計情報修正ステップS4とを含む。金属構造物1(図2)の製造方法は、設計情報決定ステップS1と、指標温度予測ステップS2と、目標条件決定ステップS3と、設計情報修正ステップS4と、更に積層造形ステップS5及びサポート部材除去工程S6を含む。 FIG. 1 is a flow chart showing the molding condition determination method and the metal structure manufacturing method of the present disclosure. The molding condition determination method includes a design information determination step S1, an index temperature prediction step S2, a target condition determination step S3, and a design information correction step S4. The method for manufacturing the metal structure 1 (FIG. 2) includes a design information determination step S1, an index temperature prediction step S2, a target condition determination step S3, a design information correction step S4, a laminate manufacturing step S5, and support member removal. including step S6.
 設計情報決定ステップS1は、積層造形の対象となる予め設計された金属構造物1の、積層造形時の造形方向に垂直な方向への断面積S又は造形方向への断面積Sの変化率δS/δzの少なくとも一方の設計情報を決定するステップである。金属構造物1及び造形方向について、図2を参照して説明する。 In the design information determination step S1, the rate of change δS of the cross-sectional area S in the direction perpendicular to the molding direction or the cross-sectional area S in the molding direction of the pre-designed metal structure 1 to be the target of lamination molding. /δz is a step of determining design information for at least one of The metal structure 1 and the forming direction will be described with reference to FIG.
 図2は、積層造形時の金属構造物1を示す図である。造形可能な金属構造物1の構造は図示の例に限定されない。金属構造物1は、例えば粉末床融結合方式、指向性エネルギ堆積方式等の任意の積層造形技術によって製造できるが、本開示では粉末床融結合方式が例示される。粉末床融結合方式では、上記のように、ベースプレート13の上に金属粉末が堆積される。そして、ベースプレート13に近い方から遠い方に向かって、金属粉末の溶融及び凝固が繰り返されることで、所望の構造の金属構造物1が製造される。従って、図2において白抜き矢印で示す紙面上方向が、積層造形時の造形方向に相当する。 FIG. 2 is a diagram showing the metal structure 1 during additive manufacturing. The structure of the moldable metal structure 1 is not limited to the illustrated example. The metal structure 1 can be manufactured by any additive manufacturing technique such as, for example, a powder bed fusion method, a directed energy deposition method, etc., but the powder bed fusion method is exemplified in the present disclosure. In the powder bed fusion bonding method, metal powder is deposited on the base plate 13 as described above. Then, the metal structure 1 having a desired structure is manufactured by repeating melting and solidification of the metal powder from the side closer to the base plate 13 to the side farther from the base plate 13 . Therefore, the upward direction on the paper surface indicated by the white arrow in FIG. 2 corresponds to the modeling direction during layered modeling.
 図1に戻って、予め設計された金属構造物1の設計情報は、例えば造形条件決定装置100(図8)において造形対象となる金属構造物1の造形姿勢(形状)を定義することで、決定できる。 Returning to FIG. 1, the design information of the metal structure 1 designed in advance is defined, for example, by defining the forming posture (shape) of the metal structure 1 to be formed in the forming condition determination device 100 (FIG. 8). can decide.
 指標温度予測ステップS2は、金属構造物1の形状、構成材料、又は積層造形を実行する造形装置本体30(図8)の運転条件の少なくとも1つの造形条件に基づき、積層造形時の金属構造物1に過熱を生じさせる温度である予測指標温度を予測するステップである。指標温度予測ステップS2によって予測指標温度を予測でき、予測指標温度よりも高温で生じる亀裂発生を抑制可能な目標過熱温度(後記)を決定できる。ここでいう過熱は、例えば過剰なレーザ光により、予測指標温度を超えた温度にまで加熱された状態をいう。 The index temperature prediction step S2 is based on at least one molding condition of the shape of the metal structure 1, the constituent materials, or the operating conditions of the modeling apparatus main body 30 (FIG. 8) that performs the layered manufacturing. Predicting the predictive indicator temperature, which is the temperature that will cause overheating in 1. The predicted index temperature can be predicted by the index temperature prediction step S2, and a target superheating temperature (described later) that can suppress cracking occurring at a temperature higher than the predicted index temperature can be determined. The term "overheating" as used herein refers to a state of being heated to a temperature exceeding the predicted index temperature by, for example, excessive laser light.
 造形条件のうち、例えば金属構造物1の構成材料は、例えば金属の種類、組成等である。また、造形装置本体30の運転条件は、例えば、造形装置本体30に備えられる熱源(レーザ等照射装置)の出力、レーザ移動速度、予熱温度等である。 Among the modeling conditions, for example, the constituent materials of the metal structure 1 are, for example, the type and composition of the metal. The operating conditions of the modeling apparatus main body 30 are, for example, the output of a heat source (an irradiation device such as a laser) provided in the modeling apparatus main body 30, the laser moving speed, the preheating temperature, and the like.
 指標温度予測ステップS2では、例えば、上記造形条件に基づく伝熱解析により上記予測指標温度が予測される。伝熱解析により、金属構造物1の表面及び内部において微細領域(メッシュ)のそれぞれについて予測指標温度を予測できる。これにより、金属構造物1の全体について予測指標温度を決定でき、過熱が発生する箇所を予測できる。 In the index temperature prediction step S2, for example, the predicted index temperature is predicted by heat transfer analysis based on the modeling conditions. By heat transfer analysis, the predicted index temperature can be predicted for each of the fine regions (mesh) on the surface and inside of the metal structure 1 . As a result, the predicted index temperature can be determined for the entire metal structure 1, and the portion where overheating will occur can be predicted.
 造形条件は、ユーザによる入力値、又は、金属構造物1の構成材料に対応して予め記録されたデータベース(造形条件DB27(図8)に相当)の記録値の何れかの値である。これらの値を使用することで、造形条件に基づく伝熱解析を実行できる。 The modeling condition is either a value input by the user or a value recorded in a database (corresponding to the modeling condition DB 27 (FIG. 8)) recorded in advance corresponding to the constituent material of the metal structure 1 . Using these values, a heat transfer analysis based on build conditions can be performed.
 目標条件決定ステップS3は、積層造形時の造形方向に垂直な方向への断面積S又は造形方向への断面積Sの変化率δS/δzの少なくとも一方であって、積層造形時の金属構造物1への過熱を抑制する目標条件を決定するステップである。目標条件決定ステップS3により、積層造形時の金属構造物への過熱を抑制可能な断面積S又は変化率δS/δzの少なくとも一方である目標条件を決定できる。ここでいう「過熱を抑制」は、過熱を全く生じさせないという限定的な意味に限られず、凝固時に局所的な突起を発生させない大きさの溶融池を発生させる程度にまで、過熱現象を緩和させるという意味である。具体的には例えば、後記の目標過熱温度以下での過熱は許容する意味である。 The target condition determination step S3 determines at least one of the cross-sectional area S in the direction perpendicular to the manufacturing direction during additive manufacturing or the rate of change δS/δz of the cross-sectional area S in the manufacturing direction, and determines the metal structure during additive manufacturing. 1 is the step of determining the target condition to suppress overheating to 1. The target condition determining step S3 can determine the target condition, which is at least one of the cross-sectional area S and the rate of change δS/δz that can suppress overheating of the metal structure during lamination manufacturing. The term "suppressing overheating" as used herein is not limited to the limited meaning of not causing overheating at all, but rather mitigates the overheating phenomenon to the extent that a molten pool of a size that does not cause local protrusions during solidification is generated. It means. Specifically, for example, it means that overheating below a target superheating temperature described below is permitted.
 詳細は後記するが、断面積S又は変化率δS/δzを制御することで、積層造形時に与えられる熱を、金属構造物1の造形済みの部分を伝熱経路として、ベースプレート13(図2)に逃がすことができる。これにより、金属構造物1の過熱を抑制し、過熱に起因する過大な溶融池の発生を抑制できる。このため、凝固時に意図しない局所的な突起の発生を抑制できる。 Although the details will be described later, by controlling the cross-sectional area S or the rate of change δS/δz, the heat given during the layered manufacturing is transferred to the base plate 13 (FIG. 2) through the formed portion of the metal structure 1 as a heat transfer path. can escape to As a result, overheating of the metal structure 1 can be suppressed, and generation of an excessively large molten pool due to overheating can be suppressed. Therefore, it is possible to suppress the occurrence of unintended local protrusions during solidification.
 目標条件決定ステップS3では、積層造形時の金属構造物1に過熱を生じさせ、かつ、金属構造物1に亀裂を生じさせる温度である目標過熱温度に基づき、目標条件が決定される。上記設計情報決定ステップS1で決定された設計情報を有する構造では、金属構造物1の少なくとも一部に過熱が生じ、凝固時に意図しない局所的な突起が発生する場合がある。そして、突起の発生により、金属構造物1に亀裂(ワレ、ひび等)が生じ得る。そこで、金属構造物1の全体において目標過熱温度以下で加熱できるように、上記設計情報が修正される。これにより、凝固時に局所的な突起発生を抑制できるとともに、亀裂発生を抑制できる。 In the target condition determination step S3, the target conditions are determined based on the target overheating temperature, which is the temperature at which the metal structure 1 is overheated and cracks occur in the metal structure 1 during additive manufacturing. In the structure having the design information determined in the design information determination step S1, overheating occurs in at least a portion of the metal structure 1, and unintended local projections may occur during solidification. Cracks (cracks, cracks, etc.) may occur in the metal structure 1 due to the occurrence of protrusions. Therefore, the above design information is corrected so that the metal structure 1 as a whole can be heated at the target superheating temperature or lower. As a result, it is possible to suppress the occurrence of local protrusions and the occurrence of cracks during solidification.
 目標過熱温度は、ユーザによる入力値、又は、金属構造物1の構成材料に対応して予め記録されたデータベース(目標過熱温度DB28(図8)に相当)での記録値の何れかの値である。これらの値を使用することで、目標過熱温度を決定できる。目標過熱温度は例えば実験により決定でき、例えばユーザは実験により把握した値を入力してもよいし、実験により得られた実験値をデータベースに記録してもよい。 The target overheating temperature is either a value input by the user or a value recorded in a database (corresponding to the target overheating temperature DB 28 (FIG. 8)) recorded in advance corresponding to the constituent material of the metal structure 1. be. Using these values, a target superheat temperature can be determined. The target superheating temperature can be determined, for example, by experimentation, and for example, the user may input a value obtained by experimentation, or record an experimental value obtained by experimentation in a database.
 目標過熱温度に基づく目標条件の決定方法を説明する。金属構造物1の最上面(最も温度が高い部分)での温度をT、時間をt、造形方向に対する高さ(造形高さ。ベースプレート13(図2)からの高さ)をZ、熱拡散率をα、造形方向に垂直な方向への断面積をSとすると、これらは、次の式(1)に示す移流拡散方程式に従う。 Explain how to determine the target conditions based on the target superheat temperature. T is the temperature at the uppermost surface (the part with the highest temperature) of the metal structure 1, t is the time, Z is the height with respect to the modeling direction (modeling height. Height from the base plate 13 (FIG. 2)), and thermal diffusion Let α be the ratio and S be the cross-sectional area in the direction perpendicular to the forming direction.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 従って、過熱現象は、材料特性の観点からは熱拡散率αに、造形形状の観点からは、造形方向に垂直な方向への断面積S、及び、断面積Sの高さ方向への変化率δS/δzに依存する。これらのうち、熱拡散率αは金属構造物1の構成材料により決定される。このため、金属構造物1の形状を以下のようにすることで過熱現象を抑制(緩和)できる。例えば、変化率δS/δz≦0の場合には、変化率δS/δzを小さくする(緩やかに変化させる)、又は、断面積Sを小さくする、の少なくとも一方の条件を満たせばよい。一方で、変化率δS/δz>0の場合には、変化率δS/δzを小さくする、又は、断面積Sを大きくする、の少なくとも一方の条件を満たせばよい。 Therefore, from the viewpoint of material properties, the overheating phenomenon is related to the thermal diffusivity α. depends on δS/δz. Of these, the thermal diffusivity α is determined by the constituent material of the metal structure 1 . Therefore, the overheating phenomenon can be suppressed (alleviated) by shaping the metal structure 1 as follows. For example, when the rate of change δS/δz≦0, at least one of the conditions of reducing the rate of change δS/δz (changing gently) or reducing the cross-sectional area S may be satisfied. On the other hand, if the rate of change .delta.S/.delta.z>0, at least one of the conditions of reducing the rate of change .delta.S/.delta.z and increasing the cross-sectional area S should be satisfied.
 また、金属構造物1の体積が最小となり、かつ、過熱温度が最小となる条件は、ラグランジュの未定乗数法に基づき最小値を求めると、以下の式(2)で表される。ここで、kは定数である。 Also, the condition for minimizing the volume of the metal structure 1 and minimizing the overheating temperature is expressed by the following formula (2) when the minimum value is obtained based on Lagrange's method of undetermined multipliers. where k is a constant.
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 αは上記のように構成材料により決定され、kは定数である。従って、式(2)に示すように、上記目標条件として、金属構造物10の形状を、断面積Sが高さZに反比例する形状にすれば、特に効率的に過熱現象を緩和できる。  α is determined by the constituent materials as described above, and k is a constant. Therefore, as shown in equation (2), if the shape of the metal structure 10 is such that the cross-sectional area S is inversely proportional to the height Z as the target condition, the overheating phenomenon can be alleviated particularly efficiently.
 目標条件決定ステップS3では、目標過熱温度と、目標過熱温度と目標条件(断面積S又は変化率δS/δzの少なくとも一方)とを関連付けた所定関係とに基づき、目標条件を決定する。これにより、目標過熱温度に基づき、目標条件を決定できる。例えば、上記データベース(目標過熱温度DB28(図8)に相当)に基づき、金属構造物1の構成材料から目標過熱温度が決定される。そして、決定された目標過熱温度と、当該所定関係とに基づき、目標条件を決定できる。 In the target condition determination step S3, the target condition is determined based on the target superheat temperature and the predetermined relationship that associates the target superheat temperature and the target condition (at least one of the cross-sectional area S and the rate of change δS/δz). Thereby, the target condition can be determined based on the target superheat temperature. For example, the target overheating temperature is determined from the constituent materials of the metal structure 1 based on the database (corresponding to the target overheating temperature DB 28 (FIG. 8)). Then, the target condition can be determined based on the determined target superheating temperature and the predetermined relationship.
 所定関係は、数式、表、グラフ等であり、具体的な形式に制限はない。例えば所定関係が数式であれば、例えば式(1)又は式(2)を利用できる。また、所定関係が表であれば、目標過熱温度と目標条件とを関連付けた表を利用できる。 The predetermined relationship is a formula, table, graph, etc., and there is no limit to the specific format. For example, if the predetermined relationship is a formula, then formula (1) or formula (2) can be used. Also, if the predetermined relationship is a table, a table that associates the target superheating temperature with the target condition can be used.
 所定関係は、例えば、造形方向の高さZが高いほど断面積Sが小さくなる関係である。この関係は、具体的には例えば、例えば断面積Sが高さZに反比例する構造に対応する関係である。また、所定関係は、造形方向で所定高さまでは造形方向の高さZが高いほど断面積Sが小さくなるが、所定高さ以上では造形方向に寄らず同じ断面積Sを有する関係である。この関係は、具体的には例えば、所定高さまでは造形方向に幅広となるがそれ以上は同じ幅となる台形に対応する関係である。 The predetermined relationship is, for example, a relationship in which the cross-sectional area S decreases as the height Z in the modeling direction increases. Specifically, this relationship corresponds to a structure in which the cross-sectional area S is inversely proportional to the height Z, for example. Further, the predetermined relationship is such that the cross-sectional area S becomes smaller as the height Z in the forming direction increases up to a predetermined height in the forming direction, but the cross-sectional area S is the same regardless of the forming direction above the predetermined height. Specifically, this relationship corresponds to, for example, a trapezoid whose width increases in the molding direction up to a predetermined height and whose width is the same beyond that.
 図3Aは、本開示の金属構造物1,10の分解斜視図である。本開示の金属構造物1,10は積層造形により形成される。詳細は後記するが、金属構造物1は予め設計された造形対象物であるが、設計情報の修正により、積層造形時には、金属構造物10が積層造形される。積層造形後、金属構造物10を構成するサポート2が除去されることで、金属構造物1を製造できる。 FIG. 3A is an exploded perspective view of the metal structures 1, 10 of the present disclosure. The metal structures 1, 10 of the present disclosure are formed by additive manufacturing. Although the details will be described later, the metal structure 1 is a preliminarily designed object to be shaped, but by correcting the design information, the metal structure 10 is layered and manufactured during the layered manufacturing. After lamination manufacturing, the metal structure 1 can be manufactured by removing the support 2 that constitutes the metal structure 10 .
 図3Aに示す金属構造物1の例では、造形方向(+z方向)に垂直な方向(レーザの照射方向。xy平面内の方向)への断面積Sは、造形方向に対して所定位置までは徐々に大きくなり、所定位置よりも上方では一定である。また、変化率δS/δzは、造形方向に対して所定位置までは正であるが、所定位置よりも上方では0である。 In the example of the metal structure 1 shown in FIG. 3A, the cross-sectional area S in the direction (laser irradiation direction, direction in the xy plane) perpendicular to the modeling direction (+z direction) is It gradually increases and is constant above a predetermined position. Also, the rate of change δS/δz is positive up to a predetermined position in the modeling direction, but is 0 above the predetermined position.
 金属構造物1は、造形方向(+z方向)とは反対方向(下方)に窄まる部分1aを有する。例えば伝熱解析の結果、部分1aの例えば縁の部分に熱が溜まり易く、過熱が生じ易いと判断されたと仮定する。この場合、部分1aでは、造形方向への断面積Sの高さ方向の変化率δS/δzは正である。従って、少なくとも部分1aで例えば断面積Sを大きくすることで熱を逃がし、過熱を抑制できる。 The metal structure 1 has a portion 1a that narrows in the opposite direction (downward) to the modeling direction (+z direction). For example, as a result of heat transfer analysis, it is assumed that heat is likely to accumulate in the edge portion of the portion 1a, and overheating is likely to occur. In this case, in the portion 1a, the rate of change δS/δz in the height direction of the cross-sectional area S in the modeling direction is positive. Therefore, by increasing the cross-sectional area S of at least the portion 1a, heat can be released and overheating can be suppressed.
 そこで、最終産物である金属構造物1の造形時、造形方向(z方向)に垂直な方向(xy方向)の断面積Sを大きくするサポート部材2を金属構造物1に付与した金属構造物10が積層造形される。サポート部材2は、図示の例では正面視(図3C)で矩形の板状である。そして、金属構造物10の積層造形を行った後、造形した金属構造物10からサポート部材2を除去することで、金属構造物1を造形できる。除去は、例えば任意の工具を使用して実行できる。 Therefore, when forming the metal structure 1 as the final product, the metal structure 10 is provided with the support member 2 that increases the cross-sectional area S in the direction (xy direction) perpendicular to the forming direction (z direction). is additively manufactured. In the illustrated example, the support member 2 has a rectangular plate shape when viewed from the front (FIG. 3C). After the metal structure 10 is layered and manufactured, the metal structure 1 can be formed by removing the support member 2 from the formed metal structure 10 . Removal can be performed using any tool, for example.
 図3Bは、本開示の金属構造物1,10の側面図である。角度θ1は後記する。金属構造物1のx方向長さは例えば22mmである。金属構造物1及びサポート部材2の造形方向の高さは例えば100mm、部分1aの、金属構造物1の下端からの高さは例えば30mmである。金属構造物1の下端からの高さが30mmの部分が、上記「所定関係」で説明した「所定高さ」に相当する。また、サポート部材2の厚さは例えば1mmである。 FIG. 3B is a side view of the metal structures 1, 10 of the present disclosure. The angle θ1 will be described later. The x-direction length of the metal structure 1 is, for example, 22 mm. The height of the metal structure 1 and the support member 2 in the forming direction is, for example, 100 mm, and the height of the portion 1a from the lower end of the metal structure 1 is, for example, 30 mm. A portion having a height of 30 mm from the lower end of the metal structure 1 corresponds to the "predetermined height" described in the above "predetermined relationship". Moreover, the thickness of the support member 2 is, for example, 1 mm.
 図3Cは、本開示の金属構造物1,10の正面図である。サポート部材2のy方向の長さ(幅)は例えば10mmである。 FIG. 3C is a front view of the metal structures 1, 10 of the present disclosure. The length (width) of the support member 2 in the y direction is, for example, 10 mm.
 図4は、別の実施形態に係る金属構造物1,11の正面図である。図4に示す例では、少なくとも部分1aでの断面積Sを大きくするとともに、変化率δS/δzを小さくするように、サポート部材3が付与される。サポート部材3の下端におけるy方向の幅は10mmである。サポート部材3は、図示は省略するがサポート部材2(図3B)と同じ板状を有する。しかし、サポート部材3は、造形方向(+z方向)に窄まる直角三角形状を有する。このように窄まる形状を有することで、図3A~図3Cと比べて、サポート部材3を構成する金属材料の使用量及び造形時間を削減できる。 FIG. 4 is a front view of metal structures 1 and 11 according to another embodiment. In the example shown in FIG. 4, the support member 3 is provided so as to increase the cross-sectional area S at least at the portion 1a and to reduce the rate of change .delta.S/.delta.z. The width in the y direction at the lower end of the support member 3 is 10 mm. Although illustration is omitted, the support member 3 has the same plate shape as the support member 2 (FIG. 3B). However, the support member 3 has a right-angled triangular shape narrowing in the modeling direction (+z direction). By having such a tapered shape, the usage amount of the metal material constituting the support member 3 and the molding time can be reduced as compared with FIGS. 3A to 3C.
 サポート部材3の窄まり方を示す角度θ2は、部分1aの角度θ1(図3B)よりも大きくなっており、これにより、変化率δS/δzを小さく(即ち変化を緩やかに)できる。なお、サポート部材3は、造形方向に高いほど、断面積Sが小さくなる形状を有する。 The angle θ2 that indicates how the support member 3 narrows is larger than the angle θ1 (FIG. 3B) of the portion 1a, so that the rate of change δS/δz can be made small (that is, the change is gentle). In addition, the support member 3 has a shape in which the cross-sectional area S becomes smaller as it is higher in the modeling direction.
 図5は、別の実施形態に係る金属構造物1,12の正面図である。図4に示す例では、部分1aでの断面積Sを大きくするとともに、変化率δS/δzを小さくするように、サポート部材4が付与される。サポート部材4は、図示は省略するがサポート部材2(図3B)と同じ板状を有する。また、サポート部材4は、サポート部材3(図4)と同様に、造形方向に窄まる形状を有する。しかし、サポート部材4は、サポート部材3とは異なり、斜辺に放物線形状を有する略直角三角形状を有する。これにより、金属構造物10は、造形方向への断面積Sが高さZに反比例する形状を有する。 FIG. 5 is a front view of metal structures 1 and 12 according to another embodiment. In the example shown in FIG. 4, the support member 4 is provided so as to increase the cross-sectional area S at the portion 1a and decrease the rate of change .delta.S/.delta.z. Although illustration is omitted, the support member 4 has the same plate shape as the support member 2 (FIG. 3B). Moreover, the support member 4 has a shape that narrows in the molding direction, similarly to the support member 3 (FIG. 4). However, unlike the support member 3, the support member 4 has a substantially right-angled triangular shape with a parabolic shape on the oblique side. Thereby, the metal structure 10 has a shape in which the cross-sectional area S in the molding direction is inversely proportional to the height Z. As shown in FIG.
 図6は、実施例1~3及び比較例1の積層造形時の高さ方向各位置での温度変化を示すグラフである。実施例1は図3A~図3Cに示す構造、実施例2は図4に示す構造、実施例3は図5に示す構造、比較例1は、サポート部材2~4の何れも付与しない金属構造物1のみである。横軸は、金属構造物1の下端(ベースプレート13(図2))からの高さ位置である。 FIG. 6 is a graph showing temperature changes at each position in the height direction during laminate manufacturing in Examples 1 to 3 and Comparative Example 1. Example 1 has the structure shown in FIGS. 3A to 3C, Example 2 has the structure shown in FIG. 4, Example 3 has the structure shown in FIG. There is only thing 1. The horizontal axis is the height position from the lower end of the metal structure 1 (base plate 13 (FIG. 2)).
 実施例1では、比較例1と比較して全体的に降温でき、特に、過熱が生じ易い部分1a(図3A)に対応する初期の過熱(30mm以下)を抑制できた。一方で、断面積Sが高さ方向に減少する実施例2及び3では、造形中盤以降(高さ30mm移行)でも過熱抑制効果を有した。特に、実施例3では、100mm造形時でも80℃の温度上昇に抑えられた。従って、実施例3の温度上昇幅(80℃から初期温度25℃を減じた値)は、比較例1の温度上昇幅(140℃から初期温度25℃を減じた値)の半分以下に低減でき、大きな放熱促進、即ち過熱抑制効果を示すことが確認できた。 In Example 1, compared to Comparative Example 1, the temperature could be lowered overall, and in particular, initial overheating (30 mm or less) corresponding to the portion 1a (FIG. 3A) where overheating easily occurs could be suppressed. On the other hand, in Examples 2 and 3 in which the cross-sectional area S decreases in the height direction, the effect of suppressing overheating was exhibited even after the middle stage of modeling (shift to 30 mm in height). In particular, in Example 3, the temperature rise was suppressed to 80° C. even when forming 100 mm. Therefore, the temperature rise width of Example 3 (value obtained by subtracting the initial temperature of 25°C from 80°C) can be reduced to less than half of the temperature rise width of Comparative Example 1 (value obtained by subtracting the initial temperature of 25°C from 140°C). , it has been confirmed that a large heat dissipation promotion, that is, an overheating suppression effect is exhibited.
 例えば、伝熱解析の結果、金属構造物1の予測指標温度(最も高い部分)が130℃であったと仮定する。この場合、図6に示すように、高さ90mm以上で温度Tが130℃を超えるため過熱が生じ、局所的な突起、亀裂等の発生の可能性がある。そこで、目標過熱温度を例えば130℃に決定し、積層造形時の温度を目標過熱温度以下(130℃以下)にできる目標条件を決定するサポート部材2~4が金属構造物1に付与される。これにより、実施例1~3では予測指標温度(温度T)を低下でき、0mm~100mmの全域において130℃以下にでき、過熱現象に起因する局所的な突起、亀裂等の発生を抑制できる。 For example, assume that the predicted index temperature (highest part) of the metal structure 1 was 130°C as a result of the heat transfer analysis. In this case, as shown in FIG. 6, the temperature T exceeds 130.degree. Therefore, the target superheating temperature is determined to be, for example, 130° C., and support members 2 to 4 are provided to the metal structure 1 to determine the target conditions under which the temperature during lamination molding can be set to the target superheating temperature or less (130° C. or less). As a result, in Examples 1 to 3, the predicted index temperature (temperature T) can be lowered to 130° C. or less in the entire range of 0 mm to 100 mm, and the occurrence of local protrusions, cracks, etc. caused by overheating can be suppressed.
 図1に戻って、設計情報修正ステップS4は、目標条件決定ステップS3で決定した目標条件になるように、予め設計された金属構造物1の設計情報を修正するステップである。設計情報修正ステップS4により、単に積層造形すれば過熱によって突起、亀裂等の発生が予測される場合でも、過熱緩和によりこれらの発生を抑制できる。 Returning to FIG. 1, the design information correction step S4 is a step of correcting the design information of the pre-designed metal structure 1 so as to achieve the target conditions determined in the target condition determination step S3. The design information correction step S4 can suppress the occurrence of protrusions, cracks, and the like due to overheating, even if the occurrence of protrusions and cracks due to overheating is expected by simply laminating and manufacturing.
 設計情報修正ステップS4では、予め設計された金属構造物1の設計情報(断面積S又は変化率δS/δzの少なくとも一方)に対し、目標条件決定ステップS3で決定した目標条件になるような断面積S又は変化率δS/δzの少なくとも一方が付与される。これにより、予め設計された金属構造物1の設計情報が修正され、過熱を抑制しながら積層造形できる。 In the design information correction step S4, the design information (at least one of the cross-sectional area S and the rate of change δS/δz) of the pre-designed metal structure 1 is modified so as to meet the target conditions determined in the target condition determination step S3. At least one of the area S or the rate of change δS/δz is given. As a result, the design information of the metal structure 1 designed in advance is corrected, and layered manufacturing can be performed while suppressing overheating.
 修正は、具体的には例えば、上記図3A~図5を参照して説明したように、金属構造物1を造形したい場合に、例えばサポート部材2~4の付与により金属構造物10を中間体として造形するように行われる。 Specifically, for example, as described with reference to FIGS. It is done to shape as.
 上記付与は、金属構造物10を上記目標条件にするための断面積S又は変化率δS/δzの少なくとも一方を有するサポート部材2~4を、予め設計された金属構造物1と一体造形するように設計情報を修正することにより行われる。これにより、過熱現象を抑制した状態で、金属構造物1を備える金属構造物10を造形でき、最終的に金属構造物1を製造できる。具体的には例えば、上記図5に示すように、例えば金属構造物10での断面積Sが高さZに反比例するように、金属構造物1の断面積Sの不足分を補うサポート部材4を付与すればよい。 The provision is such that the support members 2 to 4 having at least one of the cross-sectional area S or the rate of change δS/δz for setting the metal structure 10 to the above target conditions are integrally formed with the metal structure 1 designed in advance. This is done by correcting the design information to As a result, the metal structure 10 including the metal structure 1 can be shaped while overheating is suppressed, and the metal structure 1 can be finally manufactured. Specifically, for example, as shown in FIG. 5, the support member 4 that compensates for the shortage of the cross-sectional area S of the metal structure 1 so that the cross-sectional area S of the metal structure 10 is inversely proportional to the height Z. should be given.
 図7は、別の実施形態における設計情報の修正方法を説明する図である。上記図2A~図5に示す例では、金属構造物1とサポート部材2~4とは一体造形される。しかし、図7に示す例では、金属構造物1とサポート部材2~4とは別体に造形される。即ち、上記の付与は、予め設計された金属構造物1に伝熱可能かつ非接触に造形されるサポート部材5の付与により行われる。サポート部材5は、金属構造物10を上記目標条件にするための断面積S又は変化率δS/δzの少なくとも一方を有する。このような付与により、直接金属構造物1を造形でき、サポート部材2~4とは異なりサポート部材除去工程S6(図1)を省略できる。 FIG. 7 is a diagram explaining a method of correcting design information in another embodiment. In the examples shown in FIGS. 2A to 5, the metal structure 1 and the support members 2 to 4 are integrally formed. However, in the example shown in FIG. 7, the metal structure 1 and the support members 2 to 4 are formed separately. That is, the above-described application is performed by applying the support member 5 that is shaped in a heat-conducting and non-contact manner to the predesigned metal structure 1 . The support member 5 has at least one of the cross-sectional area S and the rate of change δS/δz for bringing the metal structure 10 to the above target conditions. By such application, the metal structure 1 can be formed directly, and unlike the support members 2 to 4, the support member removing step S6 (FIG. 1) can be omitted.
 図7に示す例では、設計情報修正ステップS4(図1)は次のようにして実行できる。まず、サポート部材2~4(図3A~図5)と同様にして、サポート部材5の形状(目標条件にするための断面積S又は変化率δS/δz)が決定される。次いで、造形対象である金属構造物1に近接して、サポート部材5を同時に造形するように金属構造物1の設計情報が修正される。ここでいう同時には、金属構造物1の1層目造形の次にサポート部材5の1層目を造形し、以降はこれらの造形を繰り返すことをいう。また、ここでいう近接は、金属構造物1に非接触で、かつ伝熱可能な距離であれば制限されない。例えば、サポート部材5は、金属構造物1の構成材料である例えば金属の粒子14が例えば1個以上10個以下、好ましくは5個以下配置可能な距離で金属構造物1から離して造形できる。伝熱促進の観点から、金属構造物1とサポート部材5との間には金属の粒子14が存在する状態で金属構造物1及びサポート部材5を造形することが好ましい。これにより、粒子14を介して放熱できる。 In the example shown in FIG. 7, the design information correction step S4 (FIG. 1) can be executed as follows. First, the shape of the support member 5 (the cross-sectional area S or rate of change δS/δz for achieving the target condition) is determined in the same manner as the support members 2 to 4 (FIGS. 3A to 5). Next, the design information of the metal structure 1 is corrected so that the support member 5 is simultaneously shaped in proximity to the metal structure 1 to be shaped. The term "at the same time" as used herein means that the first layer of the support member 5 is modeled after the first layer of the metal structure 1 is modeled, and then these models are repeated. Moreover, the proximity here is not limited as long as it is a non-contact distance to the metal structure 1 and heat transfer is possible. For example, the support member 5 can be formed away from the metal structure 1 at a distance at which, for example, 1 to 10, preferably 5 or less, metal particles 14, which are constituent materials of the metal structure 1, can be arranged. From the viewpoint of promoting heat transfer, it is preferable to shape the metal structure 1 and the support member 5 in a state in which metal particles 14 are present between the metal structure 1 and the support member 5 . Thereby, heat can be dissipated through the particles 14 .
 図7に示す例の積層造形は、粉末床融結合方式、指向性エネルギ堆積方式等の任意の方式を採用できるが、積層のし易さの観点から、粉末床融結合方式であることが好ましい。 The layered manufacturing of the example shown in FIG. 7 can adopt any method such as a powder bed fusion method, a directional energy deposition method, etc., but from the viewpoint of ease of stacking, the powder bed fusion method is preferable. .
 図1に戻って、積層造形ステップS5は、目標条件決定ステップS3で決定した目標情報になるように、金属構造物1を積層造形するステップである。図示の例では、設計情報修正ステップS4で修正された設計情報に基づいて、積層造形が行われる。積層造形ステップS5により、金属構造物1を積層造形できる。 Returning to FIG. 1, the layered manufacturing step S5 is a step of layeredly manufacturing the metal structure 1 so as to achieve the target information determined in the target condition determination step S3. In the illustrated example, layered manufacturing is performed based on the design information corrected in the design information correction step S4. By the layered manufacturing step S5, the metal structure 1 can be layeredly manufactured.
 積層造形を実行する積層造形装置の具体的に構成は特に制限されず、積層造形の運転条件(熱源(レーザ等照射装置)の出力、レーザ移動速度、予熱温度等)を制御可能な任意の装置を使用できる。積層造形は、例えば、積層造形を実行する造形装置本体30により実行できる。 The specific configuration of the additive manufacturing device that performs additive manufacturing is not particularly limited, and any device that can control the operating conditions of additive manufacturing (output of heat source (irradiation device such as laser), laser moving speed, preheating temperature, etc.) can be used. Laminate manufacturing can be performed, for example, by a modeling apparatus main body 30 that performs lamination manufacturing.
 サポート部材除去工程S6は、積層造形ステップS5の後に行われ、サポート部材2~4を金属構造物1と一体造形された金属構造物10から除去する工程である。サポート部材除去工程S6は、サポート部材5(図7)を使用した場合には省略できる。サポート部材除去工程S6により、金属構造物1を製造できる。 The support member removing step S6 is performed after the layered manufacturing step S5, and is a step of removing the support members 2 to 4 from the metal structure 10 integrally formed with the metal structure 1. The support member removing step S6 can be omitted when the support member 5 (FIG. 7) is used. The metal structure 1 can be manufactured by the support member removing step S6.
 図8は、本開示の造形条件決定装置100及び積層造形装置200を示すブロック図である。造形条件決定装置100は、入力部21と、設計情報決定部22と、指標温度予測部23と、目標条件決定部24と、設計情報修正部25と、出力部26と、造形条件DB27と、目標過熱温度DB28とを備える。DBは、データベースの略である。 FIG. 8 is a block diagram showing the modeling condition determining device 100 and the layered modeling device 200 of the present disclosure. The modeling condition determination device 100 includes an input unit 21, a design information determination unit 22, an index temperature prediction unit 23, a target condition determination unit 24, a design information correction unit 25, an output unit 26, a modeling condition DB 27, and a target overheating temperature DB 28 . DB is an abbreviation for database.
 造形条件決定装置100は、何れも図示はしないが、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備えて
構成される。造形条件決定装置100は、ROMに格納されている所定のプログラム(制御プログラム)がRAMに展開され、CPUによって実行されることにより具現化される。ここでいうプログラムは、コンピュータに上記の造形条件決定方法を実行させるためのものである。
The modeling condition determining apparatus 100 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), etc., although none of them are shown. The modeling condition determination apparatus 100 is embodied by developing a predetermined program (control program) stored in the ROM into the RAM and executing it by the CPU. The program referred to here is for causing a computer to execute the above method of determining molding conditions.
 積層造形装置200は、入力装置31と、表示装置32と、造形条件決定装置100と、積層造形を実行する造形装置本体30とを備える。造形条件決定装置100は、入力装置31による入力条件に基づき、造形装置本体30での金属構造物1(図2A)の造形条件を決定するものである。 The layered modeling apparatus 200 includes an input device 31, a display device 32, a modeling condition determining device 100, and a modeling apparatus main body 30 that executes layered modeling. The modeling condition determination device 100 determines the modeling conditions of the metal structure 1 ( FIG. 2A ) in the modeling device main body 30 based on the input conditions from the input device 31 .
 入力部21は、入力装置31(例えばキーボード、マウス等)を通じて入力された、積層造形条件を生成するために必要な情報を受け付けるものである。必要な条件は、例えば、金属構造物の形状、構成材料、又は積層造形装置の運転条件、サポート部材2~5の形状等を含む。 The input unit 21 receives information necessary for generating the conditions for lamination molding, which is input through the input device 31 (for example, keyboard, mouse, etc.). The necessary conditions include, for example, the shape of the metal structure, the constituent materials, the operating conditions of the layered manufacturing apparatus, the shapes of the support members 2 to 5, and the like.
 図9は、入力部21への情報を入力する入力画面211の一例である。入力画面211は、金属構造物1の形状及び姿勢を指定する欄220を備える。欄220では、サポート部材2~5の初期形状として既存形状を参照するか、又は、金属構造物1の姿勢として指定した姿勢から生成できる。また、入力画面211は、造形装置本体30及び構成材料を選択する欄221を有する。造形装置本体30及び構成材料は、既存の造形装置本体30及び構成材料を選択してもよいし、新規の造形装置本体30及び構成材料の場合には追加ボタン222の押下により、必要な情報を入力して使用できる。 FIG. 9 is an example of an input screen 211 for inputting information to the input unit 21. FIG. The input screen 211 has fields 220 for designating the shape and orientation of the metal structure 1 . In column 220, existing shapes can be referred to as initial shapes of support members 2-5, or the posture of metal structure 1 can be generated from a specified posture. The input screen 211 also has a column 221 for selecting the modeling apparatus main body 30 and constituent materials. For the modeling apparatus main body 30 and constituent materials, an existing modeling apparatus main body 30 and constituent materials may be selected, or in the case of a new modeling apparatus main body 30 and constituent materials, necessary information is entered by pressing the add button 222. can be entered and used.
 入力画面211は、目標過熱温度を設定する設定画面ウィンドウを開く目標過熱温度ボタン223を備える。入力画面211は、温度指標予測部23(図8)を起動させる予測温度指標算出ボタン224を備える。入力画面211は、設計情報修正部25(図8)を起動させる造形条件修正ボタン225を備える。入力画面211は、解析結果及び最適結果を表示画面ウィンドウで確認する以外に、外部に出力したい場合に、ファイル保存場所を指定する欄226を備える。 The input screen 211 has a target superheat temperature button 223 that opens a setting screen window for setting the target superheat temperature. The input screen 211 includes a predicted temperature index calculation button 224 that activates the temperature index prediction unit 23 (FIG. 8). The input screen 211 has a molding condition correction button 225 for activating the design information correction section 25 (FIG. 8). The input screen 211 has a field 226 for designating a file storage location when outputting the analysis results and the optimum results to the outside in addition to checking the analysis results and the optimum results on the display screen window.
 図8に戻って、設計情報決定部22は、積層造形の対象となる予め設計された金属構造物1(図3A)の、断面積S又は変化率δS/δzの少なくとも一方の設計情報を決定するものである。設計情報決定部22は、設計情報決定ステップS1(図1)を実行する。 Returning to FIG. 8, the design information determination unit 22 determines design information for at least one of the cross-sectional area S and the rate of change δS/δz of the pre-designed metal structure 1 (FIG. 3A) to be laminated and manufactured. It is something to do. The design information determination unit 22 executes the design information determination step S1 (FIG. 1).
 指標温度予測部23は、金属構造物1の形状、構成材料、又は造形装置本体30の運転条件の少なくとも1つの造形条件に基づき、積層造形時の金属構造物1に過熱を生じさせる温度である予測指標温度を予測するものである。予測は、例えば、入力装置31による入力条件、又は、造形条件DB27の少なくとも一方に基づき、行われる。指標温度予測部23は、指標温度予測ステップS2(図1)を実行する。 The index temperature prediction unit 23 is a temperature that causes overheating of the metal structure 1 during laminate manufacturing based on at least one molding condition of the shape of the metal structure 1, the constituent materials, or the operating conditions of the molding apparatus main body 30. It predicts the predictive index temperature. Prediction is performed based on at least one of the conditions input by the input device 31 and the modeling condition DB 27, for example. The index temperature prediction unit 23 executes the index temperature prediction step S2 (FIG. 1).
 目標条件決定部24は、断面積S又は変化率δS/δzの少なくとも一方であって積層造形時の金属構造物1への過熱を抑制する目標条件を決定するものである。決定は、例えば、入力装置31による入力条件、又は、目標過熱温度DB28の少なくとも一方に基づき、行われる。目標条件決定部24は、目標条件決定ステップS3(図1)を実行する。 The target condition determination unit 24 determines a target condition, which is at least one of the cross-sectional area S and the rate of change δS/δz, for suppressing overheating of the metal structure 1 during additive manufacturing. The determination is made, for example, based on at least one of the conditions input by the input device 31 and the target overheating temperature DB 28 . The target condition determination unit 24 executes target condition determination step S3 (FIG. 1).
 設計情報修正部25は、目標条件決定部24で決定した目標条件になるように、金属構造物1の設計情報を修正するものである。修正は、金属構造物1に対し、例えばサポート部材2~5の付与により行われる。設計情報修正部25は、設計情報修正ステップS4(図1)を実行する。 The design information correction unit 25 corrects the design information of the metal structure 1 so that the target conditions determined by the target condition determination unit 24 are achieved. The modification is performed by applying support members 2 to 5 to the metal structure 1, for example. The design information correction unit 25 executes the design information correction step S4 (FIG. 1).
 出力部26は、修正された設計情報を、造形装置本体30及び表示装置32(ディスプレイ等)(何れか一方のみでもよい)に出力するものである。造形装置本体30は、上記のように、入力された設計情報に基づいて、金属構造物1,10の造形を行う。 The output unit 26 outputs the corrected design information to the modeling apparatus main body 30 and the display device 32 (such as a display) (only one of them may be used). The modeling apparatus main body 30 models the metal structures 1 and 10 based on the input design information as described above.
 以上の造形条件決定方法、プログラム、造形条件決定装置100、金属構造物1の製造方法、及び積層造形装置200によれば、金属構造物1の積層造形時に過熱現象を抑制できる。これにより、過熱現象に起因する凝固時の局所的な突起の発生を抑制でき、積層造形装置の意図しない停止を抑制できる。このため、積層造形装置を連続的に使用でき、造形効率を向上できる。また、過熱現象の抑制により、過熱に起因する亀裂の発生を抑制できる。これにより、耐久性等の信頼性に優れた金属構造物1を製造できる。 According to the above modeling condition determining method, program, modeling condition determining apparatus 100, method for manufacturing the metal structure 1, and layered manufacturing apparatus 200, overheating can be suppressed during layered manufacturing of the metal structure 1. As a result, it is possible to suppress the occurrence of local projections during solidification due to overheating, and to suppress unintended stoppage of the laminate manufacturing apparatus. Therefore, the layered manufacturing apparatus can be used continuously, and the manufacturing efficiency can be improved. In addition, by suppressing the overheating phenomenon, it is possible to suppress the occurrence of cracks due to overheating. Thereby, the metal structure 1 having excellent reliability such as durability can be manufactured.
 特に、金属構造物1の構成材料としてオーステナイト系ステンレス鋼、ニッケル基合金等の熱伝導率が小さな金属材料を使用した場合、過熱現象が発生し易い。そこで、本開示の例えば造形条件決定方法を使用することで、過熱現象を抑制できる。 In particular, when a metal material with low thermal conductivity such as austenitic stainless steel or nickel-based alloy is used as the constituent material of the metal structure 1, the overheating phenomenon is likely to occur. Therefore, by using, for example, the modeling condition determination method of the present disclosure, the overheating phenomenon can be suppressed.
1 金属構造物
10 金属構造物
100 造形条件決定装置
11 金属構造物
12 金属構造物
13 ベースプレート
1a 部分
2 サポート部材
200 積層造形装置
21 入力部
211 入力画面
22 設計情報決定部
23 指標温度予測部
24 目標条件決定部
25 設計情報修正部
26 出力部
27 造形条件DB
28 目標過熱温度DB
3 サポート部材
30 造形装置本体
31 入力装置
32 表示装置
4 サポート部材
5 サポート部材
S1 設計情報決定ステップ
S2 指標温度予測ステップ
S3 目標条件決定ステップ
S4 設計情報修正ステップ
S5 積層造形ステップ
S6 サポート部材除去工程
1 metal structure 10 metal structure 100 molding condition determination device 11 metal structure 12 metal structure 13 base plate 1a portion 2 support member 200 layered manufacturing device 21 input unit 211 input screen 22 design information determination unit 23 index temperature prediction unit 24 target Condition determination unit 25 Design information correction unit 26 Output unit 27 Molding condition DB
28 Target superheat temperature DB
3 support member 30 modeling apparatus main body 31 input device 32 display device 4 support member 5 support member S1 design information determination step S2 index temperature prediction step S3 target condition determination step S4 design information correction step S5 laminate manufacturing step S6 support member removal process

Claims (17)

  1.  積層造形の対象となる金属構造物の形状、構成材料、又は積層造形を実行する装置の運転条件の少なくとも1つの造形条件に基づき、積層造形時の前記金属構造物に過熱を生じさせる温度である予測指標温度を予測する指標温度予測ステップと、
     前記積層造形時の造形方向に垂直な方向への断面積又は前記造形方向への前記断面積の変化率の少なくとも一方であって前記積層造形時の前記金属構造物への過熱を抑制する目標条件を決定する目標条件決定ステップと、を含む
     ことを特徴とする造形条件決定方法。
    It is a temperature that causes overheating in the metal structure during additive manufacturing based on at least one manufacturing condition of the shape of the metal structure to be subjected to additive manufacturing, the constituent materials, or the operating conditions of the apparatus that performs the additive manufacturing. an index temperature prediction step of predicting a predicted index temperature;
    A target condition for suppressing overheating of the metal structure during the additive manufacturing, which is at least one of a cross-sectional area in a direction perpendicular to the manufacturing direction during the additive manufacturing and a rate of change of the cross-sectional area in the manufacturing direction. and a target condition determination step of determining the molding condition determination method.
  2.  予め設計された前記金属構造物の、前記断面積又は前記変化率の少なくとも一方の設計情報を決定する設計情報決定ステップと、
     前記目標条件決定ステップで決定した前記目標条件になるように、前記設計情報を修正する設計情報修正ステップと、を含む
     ことを特徴とする請求項1に記載の造形条件決定方法。
    a design information determination step of determining design information of at least one of the cross-sectional area and the rate of change of the pre-designed metal structure;
    2. The molding condition determination method according to claim 1, further comprising a design information correction step of correcting the design information so as to achieve the target conditions determined in the target condition determination step.
  3.  前記指標温度予測ステップでは、前記造形条件に基づく伝熱解析により前記予測指標温度を予測する
     ことを特徴とする請求項1に記載の造形条件決定方法。
    The modeling condition determination method according to claim 1, wherein, in the index temperature prediction step, the predicted index temperature is predicted by heat transfer analysis based on the modeling conditions.
  4.  前記造形条件は、ユーザによる入力値、又は、前記金属構造物の構成材料に対応して予め記録されたデータベースの記録値の何れかの値である
     ことを特徴とする請求項3に記載の造形条件決定方法。
    4. The modeling according to claim 3, wherein the modeling conditions are either values input by a user or recorded values in a database recorded in advance corresponding to constituent materials of the metal structure. Condition determination method.
  5.  前記目標条件決定ステップでは、積層造形時の前記金属構造物に過熱を生じさせ、かつ、前記金属構造物に亀裂を生じさせる温度である目標過熱温度に基づき、前記目標条件を決定する
     ことを特徴とする請求項1に記載の造形条件決定方法。
    In the target condition determination step, the target condition is determined based on a target overheating temperature, which is a temperature at which the metal structure is overheated and cracks occur in the metal structure during additive manufacturing. The modeling condition determination method according to claim 1.
  6.  前記目標過熱温度は、ユーザによる入力値、又は、前記金属構造物の構成材料に対応して予め記録されたデータベースでの記録値の何れかの値である
     ことを特徴とする請求項5に記載の造形条件決定方法。
    6. The target superheating temperature according to claim 5, wherein the target superheating temperature is either a value input by a user or a recorded value in a database recorded in advance corresponding to the constituent material of the metal structure. The molding condition determination method.
  7.  前記目標条件決定ステップでは、前記目標過熱温度と、前記目標過熱温度と前記目標条件とを関連付けた所定関係とに基づき、前記目標条件を決定する
     ことを特徴とする請求項5に記載の造形条件決定方法。
    6. The molding condition according to claim 5, wherein, in the target condition determination step, the target condition is determined based on the target superheat temperature and a predetermined relationship that associates the target superheat temperature and the target condition. How to decide.
  8.  前記所定関係は、前記造形方向の高さが高いほど前記断面積が小さくなる関係である
     ことを特徴とする請求項7に記載の造形条件決定方法。
    8. The modeling condition determination method according to claim 7, wherein the predetermined relationship is such that the higher the height in the modeling direction, the smaller the cross-sectional area.
  9.  前記所定関係は、前記造形方向で所定高さまでは前記造形方向の高さが高いほど前記断面積が小さくなるが、前記所定高さ以上では前記造形方向に寄らず同じ断面積を有する関係である
     ことを特徴とする請求項7に記載の造形条件決定方法。
    The predetermined relationship is a relationship in which the cross-sectional area decreases as the height in the shaping direction increases up to a predetermined height in the shaping direction, but the cross-sectional area is the same regardless of the shaping direction above the predetermined height. 8. The molding condition determination method according to claim 7, characterized in that:
  10.  前記設計情報修正ステップでは、前記予め設計された前記金属構造物の前記設計情報に対し、前記目標条件決定ステップで決定した前記目標条件になるような前記断面積又は前記変化率の少なくとも一方の付与により、前記予め設計された金属構造物の設計情報を修正する
     ことを特徴とする請求項2記載の造形条件決定方法。
    In the design information correction step, at least one of the cross-sectional area and the rate of change that satisfy the target conditions determined in the target condition determination step is added to the design information of the predesigned metal structure. 3. The molding condition determination method according to claim 2, wherein the design information of the metal structure designed in advance is corrected by:
  11.  前記付与は、前記目標条件にするための前記断面積又は前記変化率の少なくとも一方を有するサポート部材を、前記予め設計された前記金属構造物と一体造形するように前記設計情報を修正することにより行われる
     ことを特徴とする請求項10に記載の造形条件決定方法。
    By modifying the design information so that the support member having at least one of the cross-sectional area and the rate of change for achieving the target condition is integrally formed with the pre-designed metal structure. 11. The modeling condition determination method according to claim 10, wherein:
  12.  前記付与は、前記目標条件にするための前記断面積又は前記変化率の少なくとも一方を有し、前記予め設計された前記金属構造物に伝熱可能かつ非接触に造形されるサポート部材の付与により行われる
     ことを特徴とする請求項10に記載の造形条件決定方法。
    By providing a support member that has at least one of the cross-sectional area and the rate of change for achieving the target condition and that is heat-transferable and non-contact shaped to the pre-designed metal structure. 11. The modeling condition determination method according to claim 10, wherein:
  13.  コンピュータに、
     積層造形の対象となる金属構造物の形状、構成材料、又は積層造形を実行する装置の運転条件の少なくとも1つの造形条件に基づき、積層造形時の前記金属構造物に過熱を生じさせる温度である予測指標温度を予測する指標温度予測ステップと、
     前記積層造形時の造形方向に垂直な方向への断面積又は前記造形方向への前記断面積の変化率の少なくとも一方であって前記積層造形時の前記金属構造物への過熱を抑制する目標条件を決定する目標条件決定ステップと、を含む
     造形条件決定方法を実行させるためのプログラム。
    to the computer,
    It is a temperature that causes overheating in the metal structure during additive manufacturing based on at least one manufacturing condition of the shape of the metal structure to be subjected to additive manufacturing, the constituent materials, or the operating conditions of the apparatus that performs the additive manufacturing. an index temperature prediction step of predicting a predicted index temperature;
    A target condition for suppressing overheating of the metal structure during the additive manufacturing, which is at least one of a cross-sectional area in a direction perpendicular to the manufacturing direction during the additive manufacturing and a rate of change of the cross-sectional area in the manufacturing direction. a target condition determination step of determining a program for executing a molding condition determination method.
  14.  積層造形の対象となる金属構造物の形状、構成材料、又は積層造形を実行する装置の運転条件の少なくとも1つの造形条件に基づき、積層造形時の前記金属構造物に過熱を生じさせる温度である予測指標温度を予測する温度指標予測部と、
     前記積層造形時の造形方向に垂直な方向への断面積又は前記造形方向への前記断面積の変化率の少なくとも一方であって前記積層造形時の前記金属構造物への過熱を抑制する目標条件を決定する目標条件決定部と、を備える
     ことを特徴とする造形条件決定装置。
    It is a temperature that causes overheating in the metal structure during additive manufacturing based on at least one manufacturing condition of the shape of the metal structure to be subjected to additive manufacturing, the constituent materials, or the operating conditions of the apparatus that performs the additive manufacturing. a temperature index prediction unit that predicts a prediction index temperature;
    A target condition for suppressing overheating of the metal structure during the additive manufacturing, which is at least one of a cross-sectional area in a direction perpendicular to the manufacturing direction during the additive manufacturing and a rate of change of the cross-sectional area in the manufacturing direction. and a target condition determination unit that determines the molding condition determination device.
  15.  積層造形の対象となる金属構造物の形状、構成材料、又は積層造形を実行する装置の運転条件の少なくとも1つの造形条件に基づき、積層造形時の前記金属構造物に過熱を生じさせる温度である予測指標温度を予測する指標温度予測ステップと、
     前記積層造形時の造形方向に垂直な方向への断面積又は前記造形方向への前記断面積の変化率の少なくとも一方であって前記積層造形時の前記金属構造物への過熱を抑制する目標条件を決定する目標条件決定ステップと、
     前記目標条件決定ステップで決定した目標情報になるように、前記金属構造物を積層造形する積層造形ステップと、を含む
     ことを特徴とする金属構造物の製造方法。
    It is a temperature that causes overheating in the metal structure during additive manufacturing based on at least one manufacturing condition of the shape of the metal structure to be subjected to additive manufacturing, the constituent materials, or the operating conditions of the apparatus that performs the additive manufacturing. an index temperature prediction step of predicting a predicted index temperature;
    A target condition for suppressing overheating of the metal structure during the additive manufacturing, which is at least one of a cross-sectional area in a direction perpendicular to the manufacturing direction during the additive manufacturing and a rate of change of the cross-sectional area in the manufacturing direction. a target condition determination step for determining
    A method of manufacturing a metal structure, comprising: a layered manufacturing step of layering and manufacturing the metal structure so as to achieve the target information determined in the target condition determining step.
  16.  予め設計された前記金属構造物の、前記断面積又は前記変化率の少なくとも一方の設計情報を決定する設計情報決定ステップと、
     前記目標条件決定ステップで決定した前記目標条件になるように、前記金属構造物を前記目標条件にするための前記断面積又は前記変化率の少なくとも一方を有するサポート部材を、前記予め設計された前記金属構造物と一体造形するように前記設計情報を修正する設計情報修正ステップと、
     前記積層造形ステップの後に行われ、前記サポート部材を、積層造形された金属構造物から除去するサポート部材除去ステップを含む
     ことを特徴とする請求項15に記載の金属構造物の製造方法。
    a design information determination step of determining design information of at least one of the cross-sectional area and the rate of change of the pre-designed metal structure;
    The predesigned support member having at least one of the cross-sectional area and the rate of change for bringing the metal structure to the target condition so as to meet the target condition determined in the target condition determination step. a design information correction step of correcting the design information so as to integrally form with the metal structure;
    16. The method of manufacturing a metal structure according to claim 15, further comprising a support member removing step, which is performed after the layered manufacturing step and removes the support member from the layeredly manufactured metal structure.
  17.  積層造形を実行する造形装置本体と、
     前記造形装置本体での金属構造物の造形条件を決定する造形条件決定装置と、を備え、 前記造形条件決定装置は、
      積層造形の対象となる金属構造物の形状、構成材料、又は積層造形を実行する装置の運転条件の少なくとも1つの造形条件に基づき、積層造形時の前記金属構造物に過熱を生じさせる温度である予測指標温度を予測する温度指標予測部と、
      前記積層造形時の造形方向に垂直な方向への断面積又は前記造形方向への前記断面積の変化率の少なくとも一方であって前記積層造形時の前記金属構造物への過熱を抑制する目標条件を決定する目標条件決定部と、を備える
     ことを特徴とする積層造形装置。
    a molding device main body that performs additive manufacturing;
    a molding condition determining device that determines molding conditions for the metal structure in the molding apparatus main body, wherein the molding condition determining device is:
    It is a temperature that causes overheating in the metal structure during additive manufacturing based on at least one manufacturing condition of the shape of the metal structure to be subjected to additive manufacturing, the constituent materials, or the operating conditions of the apparatus that performs the additive manufacturing. a temperature index prediction unit that predicts a prediction index temperature;
    A target condition for suppressing overheating of the metal structure during the additive manufacturing, which is at least one of a cross-sectional area in a direction perpendicular to the manufacturing direction during the additive manufacturing and a rate of change of the cross-sectional area in the manufacturing direction. and a target condition determination unit that determines the layered manufacturing apparatus.
PCT/JP2022/015883 2021-06-10 2022-03-30 Manufacturing condition determination method, program, manufacturing condition determination apparatus, metal structure manufacturing method, and additive manufacturing apparatus WO2022259728A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021097043A JP2022188819A (en) 2021-06-10 2021-06-10 Molding condition determination method, program, molding condition determination apparatus, manufacturing method metallic structure, and laminate molding apparatus
JP2021-097043 2021-06-10

Publications (1)

Publication Number Publication Date
WO2022259728A1 true WO2022259728A1 (en) 2022-12-15

Family

ID=84425166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015883 WO2022259728A1 (en) 2021-06-10 2022-03-30 Manufacturing condition determination method, program, manufacturing condition determination apparatus, metal structure manufacturing method, and additive manufacturing apparatus

Country Status (2)

Country Link
JP (1) JP2022188819A (en)
WO (1) WO2022259728A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190047222A1 (en) * 2017-08-14 2019-02-14 Formlabs, Inc. Techniques for producing thermal support structures in additive fabrication and related systems and methods
US20190232427A1 (en) * 2018-01-26 2019-08-01 General Electric Company Systems and methods for dynamic shaping of laser beam profiles in additive manufacturing
WO2020197855A1 (en) * 2019-03-22 2020-10-01 Materialise N.V. Systems and methods for predicting overheating for additive manufacturing using simulation
US20210162506A1 (en) * 2017-09-07 2021-06-03 Siemens Industry Software Inc. Heat sink support structures in additive manufacturing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190047222A1 (en) * 2017-08-14 2019-02-14 Formlabs, Inc. Techniques for producing thermal support structures in additive fabrication and related systems and methods
US20210162506A1 (en) * 2017-09-07 2021-06-03 Siemens Industry Software Inc. Heat sink support structures in additive manufacturing
US20190232427A1 (en) * 2018-01-26 2019-08-01 General Electric Company Systems and methods for dynamic shaping of laser beam profiles in additive manufacturing
WO2020197855A1 (en) * 2019-03-22 2020-10-01 Materialise N.V. Systems and methods for predicting overheating for additive manufacturing using simulation

Also Published As

Publication number Publication date
JP2022188819A (en) 2022-12-22

Similar Documents

Publication Publication Date Title
Chen et al. Surface roughness of selective laser melted Ti-6Al-4V alloy components
US10372110B2 (en) Controlled thin wall thickness of heat exchangers through modeling of additive manufacturing process
Mertens et al. Optimization of scan strategies in selective laser melting of aluminum parts with downfacing areas
JP6859435B2 (en) Methods and thermal structures for additive manufacturing
JP6887755B2 (en) Stacking control device, stacking control method and program
JP6411601B2 (en) Control method for three-dimensional additive manufacturing apparatus, control method for three-dimensional additive manufacturing apparatus, and control program for three-dimensional additive manufacturing apparatus
EP2778992A1 (en) Additive typology optimized manufacturing for multi-functional components
AU2014206669B2 (en) Object production using an additive manufacturing process
JP2019534186A5 (en)
JP6936580B2 (en) Stacking control device, stacking control method and program
JP6552771B1 (en) Additive manufacturing method and processing path generation method
JP6862193B2 (en) Manufacturing method of 3D modeled object, and 3D modeling device
WO2019049981A1 (en) Method and device for analyzing lamination-shaped article, and method and device for manufacturing lamination-shaped article
CN112182921A (en) Prediction method for selective laser melting thermal-mechanical coupling behavior of high-performance alloy steel
JP6200599B1 (en) Control method for three-dimensional additive manufacturing apparatus, control method for three-dimensional additive manufacturing apparatus, and control program for three-dimensional additive manufacturing apparatus
CN112512729B (en) Method for determining a build specification for an additive manufacturing method
Shi et al. T-GMAW based novel Multi-node trajectory planning for fabricating grid stiffened panels: An efficient production technology
WO2022259728A1 (en) Manufacturing condition determination method, program, manufacturing condition determination apparatus, metal structure manufacturing method, and additive manufacturing apparatus
Subedi et al. Towards the optimal design of support structures for laser powder bed fusion-based metal additive manufacturing via thermal equivalent static loads
JP2017211977A (en) Data creation device, three-dimensional lamination system, design method, and program
Zhao et al. Research on curved layer fused deposition modeling with a variable extruded filament
Qin et al. Adaptive toolpath generation for distortion reduction in laser powder bed fusion process
Ben Amor et al. A new method to select optimal part building orientation for additive manufacturing processes based on geometric complexity and heat shrinkage
Lin et al. Optimization of Surface Roughness and Density of Overhang Structures Fabricated by Laser Powder Bed Fusion
Sun et al. Melting cell based compensated design method for improving dimensional accuracy of additively manufactured thin channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE