WO2022254783A1 - Control system - Google Patents

Control system Download PDF

Info

Publication number
WO2022254783A1
WO2022254783A1 PCT/JP2022/004053 JP2022004053W WO2022254783A1 WO 2022254783 A1 WO2022254783 A1 WO 2022254783A1 JP 2022004053 W JP2022004053 W JP 2022004053W WO 2022254783 A1 WO2022254783 A1 WO 2022254783A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
storage device
foot
control system
distance
Prior art date
Application number
PCT/JP2022/004053
Other languages
French (fr)
Japanese (ja)
Inventor
将之 ▲高▼木
Original Assignee
将之 ▲高▼木
▲高▼木 康之
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 将之 ▲高▼木, ▲高▼木 康之 filed Critical 将之 ▲高▼木
Publication of WO2022254783A1 publication Critical patent/WO2022254783A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/212Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/213Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/40Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment
    • A63F13/42Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle
    • A63F13/428Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63GMERRY-GO-ROUNDS; SWINGS; ROCKING-HORSES; CHUTES; SWITCHBACKS; SIMILAR DEVICES FOR PUBLIC AMUSEMENT
    • A63G31/00Amusement arrangements
    • A63G31/02Amusement arrangements with moving substructures
    • A63G31/08Amusement arrangements with moving substructures with looping, hopping, or throwing motions of the substructure

Definitions

  • a part of the user is in contact with a part of the surface of the storage device (hereinafter, a part of the surface of the storage device with which the user is in contact is referred to as a "grounding surface"), and the load of the user is reduced.
  • a control system in which a user moves or exercises while being supported by a ground plane, and relates to a control system that keeps the user's position within a storage device within an arbitrary range by moving the ground plane.
  • Patent Document 1 describes a method and apparatus for immersing a user in virtual reality. Specifically, in Patent Literature 1, a closed shell that limits an actual closed space is formed, the shell is attached to support means so as to be rotatable about a central axis, and the user can move inside the shell. A device is described which allows free movement along the inner surface of the entrance.
  • the present invention provides a control system that can keep the position of the user within an arbitrary range inside the storage device and that can respond to various user actions (movement, exercise, etc.). With the goal.
  • the control system of the present invention includes a substantially spherical storage device that stores a user inside and can rotate in all directions; a sensor to be acquired, and a calculation means for calculating the direction and distance of the foot stepped by the user from changes in the positional information of the foot stepped by the user based on the position information of the object acquired for each time. and a power unit that rotates the enclosure in any direction based on the calculated direction and distance.
  • the direction and distance of the foot stepped by the user are calculated based on the time-based position information of the object obtained by the sensor provided inside the storage device, and the storage device is arbitrarily selected based on the calculation result. (eg, if the user's right foot is stepped forward, the storage device is rotated backward from the user's perspective).
  • control system of the present invention includes a storage device that stores a user therein and includes a substantially spherical spherical portion on which the user can ride and rotate in all directions; A sensor that acquires the positional information of an internal object for each time, and the foot that the user has stepped on based on the change in the positional information of the user's foot based on the acquired positional information of the object for each time. and a power device for moving the spherical portion in any arbitrary direction based on the calculated direction and distance.
  • the direction and distance of the foot stepped by the user are calculated based on the positional information of the object for each time acquired by the sensor provided inside the storage device, and the user rides on the basis of the calculation result.
  • the spherical portion that is positioned is rotated in an arbitrary direction (for example, when the user's right foot is stepped forward, the spherical portion is rotated backward as viewed from the user).
  • the power unit rotates the storage device and the spherical portion so as to move the ground contact surface of the foot different from the foot stepped by the user by the calculated distance in the direction opposite to the calculated direction. .
  • the storage device is rotated by the length of stride (distance) in the opposite direction.
  • the control system further includes a first support provided on the floor to support the storage device from below, a second support provided to a column extending from the floor to support the storage device from above, including.
  • the control system of the present invention includes a substantially spherical storage device that stores a user inside and can rotate in all directions; a sensor to be acquired, and a calculation means for calculating the direction and distance of the foot stepped by the user from changes in the positional information of the foot stepped by the user based on the position information of the object acquired for each time. , and a power unit that rotates the storage device in an arbitrary direction based on the calculated direction and distance, based on the position information of the object for each time obtained by the sensor provided inside the storage device.
  • the direction and distance of the foot stepped by the user are calculated by the calculation result, and the storage device rotates in an arbitrary direction based on the calculation result (for example, when the user steps forward with the right foot, the storage device Therefore, even if the user inside the storage device performs any action, the storage device corresponding to that action is calculated based on the acquired position information. is controlled, the user can always stay within an arbitrary range. At the same time, since the storage device is controlled in rotation, it always stays in a fixed position, and can be used anywhere without taking up space and can be used in any way.
  • control system of the present invention includes a storage device that stores a user therein and includes a substantially spherical spherical portion on which the user can ride and rotate in all directions; A sensor that acquires the positional information of an internal object for each time, and the foot that the user has stepped on based on the change in the positional information of the user's foot based on the acquired positional information of the object for each time.
  • a sensor provided inside the storage device with a configuration including a calculation means for calculating the direction and distance of and a power unit that moves the spherical portion in any arbitrary direction based on the calculated direction and distance
  • the direction and distance of the foot stepped by the user is calculated based on the position information of the object obtained for each time, and the spherical portion on which the user is riding rotates in an arbitrary direction based on the calculation result (for example, the When the right foot of the user steps forward, the sphere rotates backwards from the user's point of view). Based on this, information about the movement is calculated and the sphere corresponding to the movement is controlled, so that the user can always stay within an arbitrary range.
  • the spherical portion is controlled to rotate, it always stays in a fixed position, and can be used anywhere without taking up space, and can be used in any way.
  • the power unit rotates the storage device and the spherical portion so as to move the ground contact surface of the foot different from the foot stepped by the user by the calculated distance in the direction opposite to the calculated direction. Due to the configuration, when the user takes a step in any direction and with what stride (distance), the storage device is rotated in the opposite direction by the stride (distance). It is possible to keep the user within an arbitrary range regardless of what action is taken.
  • the control system further includes a first support provided on the floor to support the storage device from below, a second support provided to a column extending from the floor to support the storage device from above,
  • the storage device is stably supported by the first support and the second support regardless of the shape or movement (rotation) of the storage device. Therefore, the stability is increased, and the control system can be used safely even when the user performs vigorous movements.
  • FIG. 1 is a schematic perspective view of a control system according to an embodiment of the invention
  • FIG. FIG. 10 is a diagram showing the positional relationship when a user stands with their feet parallel when viewed from above the storage device.
  • FIG. 10 is a diagram showing the positional relationship when a user stands with their feet parallel when viewed from the back of the storage device.
  • FIG. 10 is a diagram showing the operation of the control system when the user takes a step forward with the right foot, (A) before taking a step forward and (B) after taking a step forward.
  • FIG. 4 is a schematic diagram of a control system according to another embodiment of the invention.
  • FIG. 1 is a schematic perspective view of a control system according to an embodiment of the invention.
  • the control system 1 includes a storage device 10 that stores the user U inside, a sensor 11, a computing means 12, and a power that rotates the storage device 10 and moves the contact surface with the user U inside the storage device 10. device 13;
  • the control system 1 also includes a first support section 14 that is provided on the floor 20 and supports the storage device 10 from below, and a second support section 14 that is provided on a pillar P extending from the floor 20 and supports the storage device 10 from above. and two supports 15 .
  • the storage device 10 is a device in which the user U is stored, and the inside is hollow.
  • the storage device 10 is provided with a door (not shown) as an entrance, and the user U uses the door to enter and exit the storage device 10 .
  • the storage device 10 is a spherical body that can rotate in all directions (see arrows in FIG. 1), and has a concavely curved bottom surface. The size is about 1.5m to about 15m in radius.
  • the storage device 10 may have a substantially spherical shape, and may have a shape such as a truncated icosahedron, for example, as long as it can rotate in all directions.
  • the sensor 11 is a sensor that is provided inside the storage device 10 and acquires position information of an object inside the storage device 10 for each time.
  • the object inside the storage device 10 is the user U, an object possessed by the user U, or other objects.
  • the sensor 11 can also obtain the wallet separately from the user U.
  • An optical sensor can be used for the sensor 11 .
  • the positional information acquired by the sensor 11 is information indicating where in the storage device 10 an object in the storage device 10 is located. , width, height) information.
  • the sensors 11 are CMOS (Complementary Metal Oxide Semiconductor) image sensors provided along the longest circumferences in the vertical and horizontal directions of the inner surface of the storage device 10 (inner surface of the sphere).
  • CMOS Complementary Metal Oxide Semiconductor
  • the calculation means 12 is a program that performs calculation processing based on the information acquired by the sensor 11, and in this embodiment, the calculation means 12 is assumed to be incorporated in the power plant 13.
  • FIG. In other words, the computing means 12 is a program executed using hardware resources (memory and CPU) of the power plant 13 .
  • the power unit 13 rotates the storage device 10 in any direction. Specifically, the power unit 13 rotates the storage device 10 in an arbitrary direction, thereby moving the contact surface with the user U inside the storage device 10 .
  • storage device 10 is a sphere (rotating body), so power unit 13 is a control mechanism that rotates the sphere.
  • the power device 13 is made of cylindrical rubber without irregularities, and is in contact with the sphere and rotates the sphere in the longitudinal direction (vertical direction) by friction. , and a power device 13b that rotates the sphere in the lateral direction (horizontal direction).
  • three power units 13a and one power unit 13b are provided on the column P, but the number of these may be increased to four or five, or they may be connected in series. may be configured in a circular shape (circle shape).
  • the power plants 13 are configured so that when some power plants operate to control the storage device 10, the other power plants do not interfere with the control.
  • the power device 13b rotates the storage device 10 in the horizontal direction
  • the power device 13a does not come into contact with the storage device 10 only at that timing (the space between the storage device 10 and , etc.).
  • the power unit 13 is configured so that the storage unit 10 can rotate smoothly in all directions.
  • the power plant 13 communicates with the sensor 11 by wire or wirelessly.
  • the power unit 13 receives various information acquired by the sensor 11, and based on the movement direction calculated by the calculation means 12 based on the various information, the contact with the user U inside the storage device 10 is determined. Control the movement of the enclosure 10 so that the ground moves (rotate the enclosure 10).
  • the first support part 14 is provided on the floor surface 20 and supports the storage device 10 from below.
  • the second support part 15 is provided on a support post P extending from the floor surface 20 and supports the storage device 10 from above.
  • there are three pillars P but the number of pillars P and the number and shape of the first support portions 14 and the second support portions 15 are determined so that the storage device 10 can be stably provided. The design can be changed as appropriate.
  • Control system operation The operation of the control system 1 will be described below with reference to each drawing. In the following description, it is assumed that the computing means 12 is incorporated in the power plant 13 .
  • FIG. 2 is a diagram showing the positional relationship of the user U standing with the feet F (see FIG. 1) aligned in parallel, as viewed from above the storage device 10. As shown in FIG. Specifically, the left foot F1 is positioned at point L and the right foot F2 is positioned at point R coaxially along the x-axis direction.
  • FIG. 3 is a diagram showing the positional relationship when the user U stands with the legs F aligned in parallel when viewed from the back of the storage device 10 .
  • the right foot F2 is in contact with the curved surface inside the storage device 10 (sphere), and the position of the ground (temporary ground) positioned vertically below the grounding point is the point R.
  • the provisional ground shown in FIG. 3 means that the storage device 10 (sphere) is not in contact with the ground (floats) during operation as shown in FIG.
  • the line when it is assumed that it is is represented as a temporary ground.
  • a point C is a point where the storage device 10 (sphere) is in contact with the provisional ground. That is, the point C is the lowest point of the enclosure 10 (sphere). Note that the point O is a temporary ground point that is in contact with the storage device 10 (sphere).
  • FIGS. 4A and 4B are diagrams showing the operation of the control system 1 when the user U takes a step forward with the right foot F2.
  • FIG. 11 shows the state after stepping forward;
  • the sensor 11 acquires the positional information of the moving object inside the storage device 10 (sphere) for each time and transmits the positional information to the power unit 13 .
  • Every time may be, for example, every 1 millisecond, every 10 milliseconds, or more, or may be less than or equal to 1 millisecond.
  • the computing means 12 incorporated in the power unit 13 obtains the position information of each foot F of the user U before and after the right foot F2 leaves the ground surface. Extract. For example, the positional information of the right foot F2 is changed by stepping (lifting the toe), but the positional information of the left foot F1 is not changed. Since there is no change, it can be determined that the left foot F1 is the pivot foot.
  • the power unit 13 can perform image analysis based on the image data (continuous images) acquired by the sensor 11 to determine whether or not the user's foot is off the ground.
  • the points in time acquired by the sensor 11 as described above are merely examples. It is also possible to extract positional information such as that the foot is at the top again, that it is descending, and so on.
  • the calculation means 12 calculates the direction and distance of the stepped foot (right foot F2) from such position information. For example, as shown in FIG. 4A, if the point of the right foot F2 before stepping forward is point R, and the point of right foot F2 after stepping forward is point R', point R and point R The direction and distance of the stepped foot are calculated from the difference in position information (vertical, horizontal) from '. At the same time, since the distance traveled per unit time is obtained from the difference in the positional information (longitudinal, horizontal, height) of the point R and the point R', the speed can also be calculated.
  • the power device 13 moves the ground contact surface of the toe (left foot F1) different from the toe (right foot F2) stepped by the user U by the calculated distance in the direction opposite to the calculated direction.
  • Rotate the enclosure 10 so that the That is, the storage device 10 is rotated so that the point L moves to the position of the point L'.
  • the left foot F1 (which is the pivot foot) in contact with the ground surface moves to the position of the point L'.
  • the storage device 10 since the storage device 10 is a sphere, it is possible to accommodate the movement of the user U in an oblique direction. Since the storage device 10 is a sphere, after the rotation, another lowest point C that has rotated is located at the position where the lowest point C was, and the opposite foot (left foot F1) is stepped. Even if there is, the rotation of the storage device 10 (sphere) is similarly controlled. In other words, the storage device 10 itself does not change its installed position when viewed from the outside and rotates in the same place, but the ground surface inside the storage device 10 moves in an arbitrary direction according to the movement of the user U. will do.
  • the operation of the power unit 13 may be such that the stepping foot (the right foot F2 in the description of the operation of this control system) is floating in the air and the ground contact surface is moved.
  • the ground plane may be moved just before it touches the ground.
  • the determination immediately before the stepping foot touches the ground surface is performed by, for example, the sensor 11 adding the positional information to the vertical and horizontal directions, obtaining three-dimensional coordinates including height, and calculating the stepping foot by the calculation means 12. If it is determined that the height is equal to or less than a certain value, it can be determined that the stepping foot is about to touch the ground surface.
  • control system 1 allows the stepping foot to move not only straight (for example, along the y-axis), but also diagonally, laterally, or backwards. Any suitable ground plane movement can be controlled as well. Therefore, it is possible to respond to not only moving behaviors such as walking and running, but also a wide variety of user movements such as dancing.
  • the storage device since the storage device is controlled to rotate, it always stays in a fixed place and can be used in any place such as indoors or outdoors without taking up space. Any usage is possible.
  • the information acquired from the sensor 11 has been described as two types before and after the right foot F2 leaves the ground surface, but of course, the time (span) for acquiring the position information may be further subdivided.
  • the timing at which the power unit 13 moves the ground plane (the timing at which the storage device 10 is rotated) can also be appropriately changed in design.
  • the position information of the right foot F2 may be the central portion (around the arch of the foot) of the right foot F2, or another portion such as the heel or thumb may be used as the position information of the right foot F2. Further, a plurality of pieces of information such as each toe, arch, and heel of the right foot F2 may be used as one set as the positional information of the right foot F2.
  • FIG. 5 is a schematic diagram of a control system according to another embodiment of the invention.
  • the storage device 10 stores the user U inside and is described as a sphere that can rotate in all directions. , and can include a spherical portion 10s on which the user U can ride and rotate in all directions.
  • the spherical portion 10s does not have to be a sphere as long as it can rotate in all directions (a substantially spherical shape is acceptable).
  • control system 1A the operation of the control system 1A according to another embodiment will be described with reference to each drawing, but the same components as those of the control system 1 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the spherical portion 10s is a part of the spherical body 10a that is visible from the floor surface 20.
  • the user U rides on the spherical portion 10s to move or exercise.
  • the sensor 11 acquires the positional information of the moving object in the storage device 10A for each time, and transmits the positional information to the power unit 13 (not shown in FIG. 5).
  • a computing means 12 (not shown in FIG. 5) incorporated in the power unit 13 determines the movement or exercise of the user U based on the received positional information (for example, the direction of the foot stepped by the user U and distance). Then, the power unit 13 rotates the sphere 10a in an arbitrary direction based on the calculated direction and distance. As a result, the spherical portion 10s also rotates, and the position of the user U inside the storage device 10A can be kept within an arbitrary range. Such rotation of the spherical body 10a and the spherical portion 10s can be realized smoothly by a plurality of bearings B provided along the edge of the spherical portion 10s with the floor surface 20. FIG.
  • the sensor 11 for acquiring the movement direction and movement distance of each foot of the user is provided as an angular velocity sensor (gyro sensor) on each foot of the user. good too.
  • a part of the sensor 11 may be built in shoes worn by the user, and a tag containing the sensor 11 may be worn like an anklet. This makes it possible to accurately acquire information about the user's foot even when the user makes a vigorous motion.
  • the senor 11 can also be realized by combining a sensor provided on the user's foot as described above and an electric shock sensor (not shown) embedded inside the storage device. Thereby, it is also possible to obtain the positional information (coordinate information) of the user's foot from the potential difference (electrostatic band distribution) caused by the distance (contact/separation, etc.) of these sensors.
  • the sensor provided on the user's foot is a transmitter, and the position information of the user's foot may be obtained by communicating with a receiver provided on the floor or inside the storage device.
  • the transmitter can be attached not only to the user's foot, but also to various parts and various moving objects (such as objects carried by the user).
  • the sensor 11 can also acquire (determine) the posture of the user based on the position information.
  • the posture of the user is, for example, standing on one leg, raising a hand, or taking an arbitrary pose.
  • the lost item wallet, key, etc.
  • the control system 1 can be brought to an emergency stop.
  • the power unit 13 can adopt a mechanism other than the mechanism that rotates the sphere in an arbitrary direction by friction as described in the present embodiment.
  • gears may be provided on the sphere and the power device, respectively, and the sphere may be rotated in any direction by transmitting the rotational force from the power device to the sphere via the gears.
  • the control mechanism may be such that the sphere is floated on water and rotated by the water flow.
  • the storage device 10 does not have to be a perfect sphere such as an ellipse, and the material that makes up the storage device 10 does not matter.
  • the computing means 12 may be incorporated in a device other than the power plant 13, and there is no particular limitation on the hardware configuration.
  • the present invention can be used as a control system that can respond to a wide variety of user actions. It is useful for

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

The present invention provides a control system that is highly convenient since being able to deal with different highly-variable actions of users. This control system 1 comprises: a substantially spherical housing device 10 which houses a user U therein and is capable of rotating omnidirectionally; a sensor 11 which is disposed inside the housing device 10 and which acquires positional information of an object housed inside the housing device 10 at a certain time interval; an arithmetic means 12 which, on the basis of the positional information about the object acquired at the certain time interval, calculates, from changes in the positional information regarding the tip of a foot, of the user U, stepped forward, the direction and distance of the tip of the foot stepped forward by the the user U; and motive power devices 13 (13a) which, on the basis of the calculated direction and distance, rotate the housing device 10 in a given direction.

Description

制御システムcontrol system
 本発明は、利用者の一部が格納装置の一部の面に接され(以下、利用者の一部が接する格納装置の一部の面を「接地面」という。)、利用者の荷重が接地面に支えられながら利用者の移動や運動が行われる制御システムであり、接地面が移動することにより、格納装置内部における利用者の位置を任意の範囲内に留まらせる制御システムに関する。 According to the present invention, a part of the user is in contact with a part of the surface of the storage device (hereinafter, a part of the surface of the storage device with which the user is in contact is referred to as a "grounding surface"), and the load of the user is reduced. is a control system in which a user moves or exercises while being supported by a ground plane, and relates to a control system that keeps the user's position within a storage device within an arbitrary range by moving the ground plane.
 利用者の動作、例えば歩行や左右のステップなどに対して、利用者が居る位置を変化させて、利用者の位置を一定の範囲内に留まらせる技術がある。このような技術は、仮想現実(VR:Virtual Reality)技術と組み合わされることで、利用者が、仮想現実の世界内でより自由な動きを体験することができる。 There are technologies that change the user's position in response to the user's actions, such as walking or stepping left and right, to keep the user's position within a certain range. By combining such technology with virtual reality (VR) technology, users can experience more free movement within the virtual reality world.
 例えば、特許文献1には、ユーザーを仮想現実に没入させるための方法及び装置が記載されている。具体的には、特許文献1には、現実の閉鎖空間を限定する閉鎖外殻が形成され、外殻は中心軸を中心に回転自在に支持手段に取り付けられており、ユーザーは外殻の中に入り内側面に沿って自由に運動できる装置が記載されている。 For example, Patent Document 1 describes a method and apparatus for immersing a user in virtual reality. Specifically, in Patent Literature 1, a closed shell that limits an actual closed space is formed, the shell is attached to support means so as to be rotatable about a central axis, and the user can move inside the shell. A device is described which allows free movement along the inner surface of the entrance.
特開2007-229500号公報Japanese Patent Application Laid-Open No. 2007-229500
 しかし、よりバリエーションに富んだ、様々な利用者の動作に対応することができる利便性の高い制御システムが求められている。そこで、本発明は、格納装置内部における利用者の位置を任意の範囲内に留まらせることができ、かつ、様々な利用者の動作(移動や運動など)に対応することができる制御システムの提供を目的とする。 However, there is a demand for a highly convenient control system that can respond to a wide variety of user actions. Therefore, the present invention provides a control system that can keep the position of the user within an arbitrary range inside the storage device and that can respond to various user actions (movement, exercise, etc.). With the goal.
 本発明の制御システムは、利用者を内部に格納し、全方向へ回転することができる略球体状の格納装置と、格納装置内部に設けられ、格納装置内部の物体の時間毎の位置情報を取得するセンサと、取得された物体の時間毎の位置情報に基づいて、利用者が踏み出した足先の位置情報の変化より当該利用者が踏み出した足先の方向および距離を算出する演算手段と、算出された方向および距離に基づいて、格納装置を任意の方向へ回転させる動力装置と、を含む。
 これにより、格納装置内部に設けられたセンサにより取得された物体の時間毎の位置情報に基づいて利用者が踏み出した足先の方向および距離が算出され、当該算出結果に基づいて格納装置が任意の方向へ回転(例えば利用者の右足が前方に踏み出された場合、格納装置は利用者から見て後方へ回転)される。
The control system of the present invention includes a substantially spherical storage device that stores a user inside and can rotate in all directions; a sensor to be acquired, and a calculation means for calculating the direction and distance of the foot stepped by the user from changes in the positional information of the foot stepped by the user based on the position information of the object acquired for each time. and a power unit that rotates the enclosure in any direction based on the calculated direction and distance.
As a result, the direction and distance of the foot stepped by the user are calculated based on the time-based position information of the object obtained by the sensor provided inside the storage device, and the storage device is arbitrarily selected based on the calculation result. (eg, if the user's right foot is stepped forward, the storage device is rotated backward from the user's perspective).
 また、本発明の制御システムは、利用者を内部に格納し、利用者が乗り全方向へ回転することができる略球体状の球体部分を含む格納装置と、格納装置内部に設けられ、格納装置内部の物体の時間毎の位置情報を取得するセンサと、取得された物体の時間毎の位置情報に基づいて、利用者が踏み出した足先の位置情報の変化より当該利用者が踏み出した足先の方向および距離を算出する演算手段と、算出された方向および距離に基づいて、球体部分を任意の全方向へ移動させる動力装置と、を含む。
 これにより、格納装置内部に設けられたセンサにより取得された物体の時間毎の位置情報に基づいて利用者が踏み出した足先の方向および距離が算出され、当該算出結果に基づいて利用者が乗っている球体部分が任意の方向へ回転(例えば利用者の右足が前方に踏み出された場合、球体部分は利用者から見て後方へ回転)される。
In addition, the control system of the present invention includes a storage device that stores a user therein and includes a substantially spherical spherical portion on which the user can ride and rotate in all directions; A sensor that acquires the positional information of an internal object for each time, and the foot that the user has stepped on based on the change in the positional information of the user's foot based on the acquired positional information of the object for each time. and a power device for moving the spherical portion in any arbitrary direction based on the calculated direction and distance.
As a result, the direction and distance of the foot stepped by the user are calculated based on the positional information of the object for each time acquired by the sensor provided inside the storage device, and the user rides on the basis of the calculation result. The spherical portion that is positioned is rotated in an arbitrary direction (for example, when the user's right foot is stepped forward, the spherical portion is rotated backward as viewed from the user).
 また、動力装置は、利用者が踏み出した足先とは異なる方の足先の接地面を、算出された方向と逆方向に算出された距離分移動させるように格納装置や球体部分を回転させる。
 これにより、利用者が足をどの方向にどのような歩幅(距離)で踏み出した場合でも、当該方向とは逆方向に当該歩幅(距離)分格納装置が回転される。
In addition, the power unit rotates the storage device and the spherical portion so as to move the ground contact surface of the foot different from the foot stepped by the user by the calculated distance in the direction opposite to the calculated direction. .
As a result, when the user takes a step in any direction and with what length of stride (distance), the storage device is rotated by the length of stride (distance) in the opposite direction.
 また、制御システムはさらに、床面に設けられ、格納装置を下方から支持する第一の支持部と、床面から延びる支柱に設けられ、格納装置を上方から支持する第二の支持部と、を含む。
 これにより、格納装置がどのような形状であったり、どのような動き(回転)をする場合であっても、格納装置は第一の支持部や第二の支持部により安定して支持される。
The control system further includes a first support provided on the floor to support the storage device from below, a second support provided to a column extending from the floor to support the storage device from above, including.
As a result, the storage device is stably supported by the first support and the second support regardless of the shape or movement (rotation) of the storage device. .
 本発明の制御システムは、利用者を内部に格納し、全方向へ回転することができる略球体状の格納装置と、格納装置内部に設けられ、格納装置内部の物体の時間毎の位置情報を取得するセンサと、取得された物体の時間毎の位置情報に基づいて、利用者が踏み出した足先の位置情報の変化より当該利用者が踏み出した足先の方向および距離を算出する演算手段と、算出された方向および距離に基づいて、格納装置を任意の方向へ回転させる動力装置と、を含む構成により、格納装置内部に設けられたセンサにより取得された物体の時間毎の位置情報に基づいて利用者が踏み出した足先の方向および距離が算出され、当該算出結果に基づいて格納装置が任意の方向へ回転(例えば利用者の右足が前方に踏み出された場合、格納装置は利用者から見て後方へ回転)されるため、格納装置内部にいる利用者がどのような動作をしても、取得された位置情報に基づいてその動作に関する情報が算出されてその動作に対応する格納装置の制御が行われるため、常に利用者を任意の範囲内に留まらせることができる。同時に、格納装置は回転制御されるため、常に一定の場所に留まり続け、スペースを取ることなくどのような場所でも使うことができたり、かつどのような使い方も可能となる。 The control system of the present invention includes a substantially spherical storage device that stores a user inside and can rotate in all directions; a sensor to be acquired, and a calculation means for calculating the direction and distance of the foot stepped by the user from changes in the positional information of the foot stepped by the user based on the position information of the object acquired for each time. , and a power unit that rotates the storage device in an arbitrary direction based on the calculated direction and distance, based on the position information of the object for each time obtained by the sensor provided inside the storage device. The direction and distance of the foot stepped by the user are calculated by the calculation result, and the storage device rotates in an arbitrary direction based on the calculation result (for example, when the user steps forward with the right foot, the storage device Therefore, even if the user inside the storage device performs any action, the storage device corresponding to that action is calculated based on the acquired position information. is controlled, the user can always stay within an arbitrary range. At the same time, since the storage device is controlled in rotation, it always stays in a fixed position, and can be used anywhere without taking up space and can be used in any way.
 また、本発明の制御システムは、利用者を内部に格納し、利用者が乗り全方向へ回転することができる略球体状の球体部分を含む格納装置と、格納装置内部に設けられ、格納装置内部の物体の時間毎の位置情報を取得するセンサと、取得された物体の時間毎の位置情報に基づいて、利用者が踏み出した足先の位置情報の変化より当該利用者が踏み出した足先の方向および距離を算出する演算手段と、算出された方向および距離に基づいて、球体部分を任意の全方向へ移動させる動力装置と、を含む構成により、格納装置内部に設けられたセンサにより取得された物体の時間毎の位置情報に基づいて利用者が踏み出した足先の方向および距離が算出され、当該算出結果に基づいて利用者が乗っている球体部分が任意の方向へ回転(例えば利用者の右足が前方に踏み出された場合、球体部分は利用者から見て後方へ回転)されるため、格納装置内部にいる利用者がどのような動作をしても、取得された位置情報に基づいてその動作に関する情報が算出されてその動作に対応する球体の制御が行われるため、利用者を常に任意の範囲内に留まらせることができる。同時に、球体部分は回転制御されるため、常に一定の場所に留まり続け、スペースを取ることなくどのような場所でも使うことができたり、かつどのような使い方も可能となる。 In addition, the control system of the present invention includes a storage device that stores a user therein and includes a substantially spherical spherical portion on which the user can ride and rotate in all directions; A sensor that acquires the positional information of an internal object for each time, and the foot that the user has stepped on based on the change in the positional information of the user's foot based on the acquired positional information of the object for each time. Acquired by a sensor provided inside the storage device with a configuration including a calculation means for calculating the direction and distance of and a power unit that moves the spherical portion in any arbitrary direction based on the calculated direction and distance The direction and distance of the foot stepped by the user is calculated based on the position information of the object obtained for each time, and the spherical portion on which the user is riding rotates in an arbitrary direction based on the calculation result (for example, the When the right foot of the user steps forward, the sphere rotates backwards from the user's point of view). Based on this, information about the movement is calculated and the sphere corresponding to the movement is controlled, so that the user can always stay within an arbitrary range. At the same time, since the spherical portion is controlled to rotate, it always stays in a fixed position, and can be used anywhere without taking up space, and can be used in any way.
 また、動力装置は、利用者が踏み出した足先とは異なる方の足先の接地面を、算出された方向と逆方向に算出された距離分移動させるように格納装置や球体部分を回転させる構成により、利用者が足をどの方向にどのような歩幅(距離)で踏み出した場合でも、当該方向とは逆方向に当該歩幅(距離)分格納装置が回転されるため、利用者がどの方向にどのような動作をした場合であっても、常に利用者を任意の範囲内に留まらせることができる。 In addition, the power unit rotates the storage device and the spherical portion so as to move the ground contact surface of the foot different from the foot stepped by the user by the calculated distance in the direction opposite to the calculated direction. Due to the configuration, when the user takes a step in any direction and with what stride (distance), the storage device is rotated in the opposite direction by the stride (distance). It is possible to keep the user within an arbitrary range regardless of what action is taken.
 また、制御システムはさらに、床面に設けられ、格納装置を下方から支持する第一の支持部と、床面から延びる支柱に設けられ、格納装置を上方から支持する第二の支持部と、を含む構成により、格納装置がどのような形状であったり、どのような動き(回転)をする場合であっても、格納装置は第一の支持部や第二の支持部により安定して支持されるため、安定性が増し、利用者が激しい動作をする場合であっても安全に制御システムを利用することができる。 The control system further includes a first support provided on the floor to support the storage device from below, a second support provided to a column extending from the floor to support the storage device from above, The storage device is stably supported by the first support and the second support regardless of the shape or movement (rotation) of the storage device. Therefore, the stability is increased, and the control system can be used safely even when the user performs vigorous movements.
本発明の実施の形態に係る制御システムの概略斜視図である。1 is a schematic perspective view of a control system according to an embodiment of the invention; FIG. 格納装置の上部から見て、利用者が足を平行に揃えて立っている状態の位置関係を示す図である。FIG. 10 is a diagram showing the positional relationship when a user stands with their feet parallel when viewed from above the storage device. 格納装置の背面から見て、利用者が足を平行に揃えて立っている状態の位置関係を示す図である。FIG. 10 is a diagram showing the positional relationship when a user stands with their feet parallel when viewed from the back of the storage device. 利用者が右足を一歩前方へ踏み出した場合の制御システムの動作を示す図であり、(A)は、一歩前方へ踏み出す前、(B)は、一歩前方へ踏み出した後を示す図である。FIG. 10 is a diagram showing the operation of the control system when the user takes a step forward with the right foot, (A) before taking a step forward and (B) after taking a step forward. 本発明の別の実施の形態に係る制御システムの概略図である。FIG. 4 is a schematic diagram of a control system according to another embodiment of the invention;
 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を変更しない限り、以下の内容に限定されない。 Embodiments of the present invention will be described in detail below. is not limited to the contents of
[制御システム]
 図1は、本発明の実施の形態に係る制御システムの概略斜視図である。制御システム1は、利用者Uを内部に格納する格納装置10と、センサ11と、演算手段12と、格納装置10を回転させて格納装置10内部の利用者Uとの接地面を移動させる動力装置13とを含む。また、制御システム1は、床面20に設けられ、格納装置10を下方から支持する第一の支持部14と、床面20から延びる支柱Pに設けられ、格納装置10を上方から支持する第二の支持部15とを含む。
[Control system]
FIG. 1 is a schematic perspective view of a control system according to an embodiment of the invention. The control system 1 includes a storage device 10 that stores the user U inside, a sensor 11, a computing means 12, and a power that rotates the storage device 10 and moves the contact surface with the user U inside the storage device 10. device 13; The control system 1 also includes a first support section 14 that is provided on the floor 20 and supports the storage device 10 from below, and a second support section 14 that is provided on a pillar P extending from the floor 20 and supports the storage device 10 from above. and two supports 15 .
 格納装置10は、利用者Uが内部に格納される装置であり、内部は空洞になっている。格納装置10には入口である扉(図示せず)が設けられており、利用者Uは、当該扉を使用して格納装置10に出入りする。また、本実施の形態において、格納装置10は全方向(図1の矢印参照)へ回転することができる球体であり、底面は凹状に湾曲している。大きさは、半径が約1.5m~約15mである。格納装置10は略球体状であればよく、全方向へ回転することができれば、例えば切頂二十面体のような形状であってもよい。 The storage device 10 is a device in which the user U is stored, and the inside is hollow. The storage device 10 is provided with a door (not shown) as an entrance, and the user U uses the door to enter and exit the storage device 10 . Further, in this embodiment, the storage device 10 is a spherical body that can rotate in all directions (see arrows in FIG. 1), and has a concavely curved bottom surface. The size is about 1.5m to about 15m in radius. The storage device 10 may have a substantially spherical shape, and may have a shape such as a truncated icosahedron, for example, as long as it can rotate in all directions.
 センサ11は、格納装置10内部に設けられ、格納装置10内部の物体の時間毎の位置情報を取得するセンサである。格納装置10内部の物体とは、利用者Uや利用者Uの所持する物、またはその他の物などである。つまり、センサ11は、利用者Uの所持する物、例えば、ポケットに入れておいた財布が当該ポケットから飛び出した場合、利用者Uとは別に当該財布も取得することができる。センサ11には、光学センサを用いることができる。 The sensor 11 is a sensor that is provided inside the storage device 10 and acquires position information of an object inside the storage device 10 for each time. The object inside the storage device 10 is the user U, an object possessed by the user U, or other objects. In other words, when an item possessed by the user U, such as a wallet that has been put in a pocket, falls out of the pocket, the sensor 11 can also obtain the wallet separately from the user U. An optical sensor can be used for the sensor 11 .
 センサ11により取得される位置情報とは、格納装置10内部の物体が格納装置10内部のどこの位置(場所)にあるかを示す情報であり、例えば、任意の基準点からの三次元(縦、横、高さ)情報である。 The positional information acquired by the sensor 11 is information indicating where in the storage device 10 an object in the storage device 10 is located. , width, height) information.
 例えば、本実施の形態において、センサ11は格納装置10内面(球体内面)の垂直・水平方向の最長円周部に沿ってそれぞれ設けられたCMOS(Complementary Metal Oxide Semiconducоr)イメージセンサである。CMOSイメージセンサを用いることにより、格納装置10内部の物体、例えば利用者Uの足や手などの部位の連続画像を取得することができる。 For example, in the present embodiment, the sensors 11 are CMOS (Complementary Metal Oxide Semiconductor) image sensors provided along the longest circumferences in the vertical and horizontal directions of the inner surface of the storage device 10 (inner surface of the sphere). By using a CMOS image sensor, it is possible to acquire continuous images of an object inside the storage device 10, such as the user's U feet and hands.
 演算手段12は、センサ11により取得された連続画像の差分から、後述するように動いている部分(動体)の移動方向や移動速度、移動距離などを求める。演算手段12は、センサ11により取得された情報に基づいて演算処理を行うプログラムであり、本実施の形態において、演算手段12は動力装置13に組み込まれているものとする。つまり、演算手段12は、動力装置13のハード資源(メモリやCPU)を用いて実行されるプログラムである。 From the difference between the continuous images acquired by the sensor 11, the computing means 12 obtains the moving direction, moving speed, moving distance, etc. of the moving part (moving object) as described later. The calculation means 12 is a program that performs calculation processing based on the information acquired by the sensor 11, and in this embodiment, the calculation means 12 is assumed to be incorporated in the power plant 13. FIG. In other words, the computing means 12 is a program executed using hardware resources (memory and CPU) of the power plant 13 .
 動力装置13は、格納装置10を任意の方向へ回転させる。具体的には、動力装置13は、格納装置10を任意の方向へ回転させることで、格納装置10内部の利用者Uとの接地面を移動させる。本実施の形態において、格納装置10は球体(回転体)であるため、動力装置13は球体を回転させる制御機構である。 The power unit 13 rotates the storage device 10 in any direction. Specifically, the power unit 13 rotates the storage device 10 in an arbitrary direction, thereby moving the contact surface with the user U inside the storage device 10 . In the present embodiment, storage device 10 is a sphere (rotating body), so power unit 13 is a control mechanism that rotates the sphere.
 具体的には、図1に示すように、動力装置13は凹凸の無い筒状のゴム製のものであり、球体と接触し摩擦により球体を縦方向(垂直方向)に回転させる動力装置13aと、球体を横方向(水平方向)に回転させる動力装置13bとを含む。本実施の形態において、動力装置13aは3ヵ所、動力装置13bは支柱Pに1ヵ所設けられているが、これらの数は4ヵ所,5ヵ所と増やしてもよいし、一続き(一繋がり)の円形状(サークル形状)で構成されていてもよい。 Specifically, as shown in FIG. 1, the power device 13 is made of cylindrical rubber without irregularities, and is in contact with the sphere and rotates the sphere in the longitudinal direction (vertical direction) by friction. , and a power device 13b that rotates the sphere in the lateral direction (horizontal direction). In the present embodiment, three power units 13a and one power unit 13b are provided on the column P, but the number of these may be increased to four or five, or they may be connected in series. may be configured in a circular shape (circle shape).
 また、動力装置13(13a,13b)は、一部の動力装置が稼動して格納装置10を制御する際に、他の動力装置が当該制御の妨げとならないような構成とする。例えば、動力装置13bが格納装置10を水平方向に回転させる際、動力装置13aは当該水平方向への回転の妨げとならないように、そのタイミングだけ格納装置10と接触しない(格納装置10との空間を空ける)などの制御を行う。つまり、動力装置13は、格納装置10がスムーズにかつ全方向へ回転できるような構成とする。 In addition, the power plants 13 (13a, 13b) are configured so that when some power plants operate to control the storage device 10, the other power plants do not interfere with the control. For example, when the power device 13b rotates the storage device 10 in the horizontal direction, the power device 13a does not come into contact with the storage device 10 only at that timing (the space between the storage device 10 and , etc.). In other words, the power unit 13 is configured so that the storage unit 10 can rotate smoothly in all directions.
 なお、動力装置13は、センサ11と有線または無線により通信する。つまり、動力装置13は、センサ11により取得された各種情報を受信し、当該各種情報に基づいて演算手段12により算出された移動方向などに基づいて、格納装置10内部の利用者Uとの接地面が移動するように格納装置10の動きを制御する(格納装置10を回転させる)。 It should be noted that the power plant 13 communicates with the sensor 11 by wire or wirelessly. In other words, the power unit 13 receives various information acquired by the sensor 11, and based on the movement direction calculated by the calculation means 12 based on the various information, the contact with the user U inside the storage device 10 is determined. Control the movement of the enclosure 10 so that the ground moves (rotate the enclosure 10).
 第一の支持部14は、床面20に設けられ、格納装置10を下方から支持する。また、第二の支持部15は、床面20から延びる支柱Pに設けられ、格納装置10を上方から支持する。本実施の形態において、支柱Pは3本であるが、支柱Pの本数や第一の支持部14・第二の支持部15の数や形状は、格納装置10が安定して設けられるように適宜設計変更可能である。 The first support part 14 is provided on the floor surface 20 and supports the storage device 10 from below. Also, the second support part 15 is provided on a support post P extending from the floor surface 20 and supports the storage device 10 from above. In this embodiment, there are three pillars P, but the number of pillars P and the number and shape of the first support portions 14 and the second support portions 15 are determined so that the storage device 10 can be stably provided. The design can be changed as appropriate.
[制御システムの動作]
 以下、各図面を参照して、制御システム1の動作について説明する。以下の説明において、演算手段12は動力装置13に組み込まれているものとする。
[Control system operation]
The operation of the control system 1 will be described below with reference to each drawing. In the following description, it is assumed that the computing means 12 is incorporated in the power plant 13 .
 利用者Uは、格納装置10内部で、移動や運動などの何らかの動作を行う。図2は、格納装置10の上部から見て、利用者Uが足F(図1参照)を平行に揃えて立っている状態の位置関係を示す図である。具体的には、x軸方向に沿って同軸上に、地点Lに左足F1が、地点Rに右足F2が位置している状態である。 The user U performs some action such as movement or exercise inside the storage device 10 . FIG. 2 is a diagram showing the positional relationship of the user U standing with the feet F (see FIG. 1) aligned in parallel, as viewed from above the storage device 10. As shown in FIG. Specifically, the left foot F1 is positioned at point L and the right foot F2 is positioned at point R coaxially along the x-axis direction.
 図3は、格納装置10の背面から見て、利用者Uが足Fを平行に揃えて立っている状態の位置関係を示す図である。図3に示すように、右足F2は格納装置10(球体)内部の湾曲した面に接地しており、当該接地点から垂直下方に位置する地面(仮地面)の位置が地点Rとなる。左足F1に対する地点Lも同様である。 FIG. 3 is a diagram showing the positional relationship when the user U stands with the legs F aligned in parallel when viewed from the back of the storage device 10 . As shown in FIG. 3, the right foot F2 is in contact with the curved surface inside the storage device 10 (sphere), and the position of the ground (temporary ground) positioned vertically below the grounding point is the point R. The same applies to the point L for the left foot F1.
 なお、図3に示す仮地面とは、図1に示すように、動作時に格納装置10(球体)は地面と接触していない(浮いている)ため、格納装置10(球体)が地面と接触していると仮定した場合の線(ライン)を仮地面として表している。 The provisional ground shown in FIG. 3 means that the storage device 10 (sphere) is not in contact with the ground (floats) during operation as shown in FIG. The line when it is assumed that it is is represented as a temporary ground.
 また、地点Cは、格納装置10(球体)が仮地面に対して接地(接触)している地点である。つまり、地点Cは、格納装置10(球体)の最下点である。
 なお、地点Oは、格納装置10(球体)と接地している仮地面の地点である。
A point C is a point where the storage device 10 (sphere) is in contact with the provisional ground. That is, the point C is the lowest point of the enclosure 10 (sphere).
Note that the point O is a temporary ground point that is in contact with the storage device 10 (sphere).
 図4は、利用者Uが右足F2を一歩前方へ踏み出した場合の制御システム1の動作を示す図であり、図4(A)は、一歩前方へ踏み出す前、図4(B)は、一歩前方へ踏み出した後を示す図である。 4A and 4B are diagrams showing the operation of the control system 1 when the user U takes a step forward with the right foot F2. FIG. FIG. 11 shows the state after stepping forward;
 この場合、センサ11は、格納装置10(球体)内部の動体の時間毎の位置情報を取得し、動力装置13へ当該位置情報を送信する。時間毎とは、例えば、1ミリ秒毎や10ミリ秒毎、またはそれ以上の間隔でもよいし、1ミリ秒毎以下の間隔でもよい。 In this case, the sensor 11 acquires the positional information of the moving object inside the storage device 10 (sphere) for each time and transmits the positional information to the power unit 13 . “Every time” may be, for example, every 1 millisecond, every 10 milliseconds, or more, or may be less than or equal to 1 millisecond.
 そして、動力装置13に組み込まれた演算手段12は、当該位置情報に基づいて、接地面から右足F2が離れる前の時点と離れた後の時点、利用者Uのそれぞれの足Fの位置情報を抽出する。例えば、右足F2は踏み出す(足先を浮き上がらせる)ことにより位置情報が変化しているが、左足F1は位置情報が変化していない、つまり、右足F1の縦、横、高さなどの情報が変化していないため、左足F1は軸足であると判断できる。
 もしくは、センサ11が取得した画像データ(連続画像)に基づいて動力装置13が画像分析を行い、接地面から利用者の足が離れているか否かを判断することもできる。
Then, based on the position information, the computing means 12 incorporated in the power unit 13 obtains the position information of each foot F of the user U before and after the right foot F2 leaves the ground surface. Extract. For example, the positional information of the right foot F2 is changed by stepping (lifting the toe), but the positional information of the left foot F1 is not changed. Since there is no change, it can be determined that the left foot F1 is the pivot foot.
Alternatively, the power unit 13 can perform image analysis based on the image data (continuous images) acquired by the sensor 11 to determine whether or not the user's foot is off the ground.
 また、上述したようなセンサ11が取得する時点はあくまで一例であり、一歩前方へ踏み出す前と一歩前方へ踏み出した後の他、例えば、膝が曲げられて踏み出そうとしている足先が上昇中である、足先が再頂点にである、下降中である、などの位置情報も抽出することができる。 In addition, the points in time acquired by the sensor 11 as described above are merely examples. It is also possible to extract positional information such as that the foot is at the top again, that it is descending, and so on.
 そして、演算手段12は、このような位置情報より、踏み出した足先(右足F2)の方向および距離を算出する。例えば、図4(A)に示すように、一歩前方へ踏み出す前の右足F2の地点が地点R、一歩前方へ踏み出した後の右足F2の地点が地点R´である場合、地点Rと地点R´との位置情報(縦、横)の差分より、踏み出した足先の方向や距離が算出される。同時に、地点Rと地点R´との位置情報(縦、横、高さ)の差分より、単位時間当たりに進んだ距離が求められるため、速度も算出することができる。 Then, the calculation means 12 calculates the direction and distance of the stepped foot (right foot F2) from such position information. For example, as shown in FIG. 4A, if the point of the right foot F2 before stepping forward is point R, and the point of right foot F2 after stepping forward is point R', point R and point R The direction and distance of the stepped foot are calculated from the difference in position information (vertical, horizontal) from '. At the same time, since the distance traveled per unit time is obtained from the difference in the positional information (longitudinal, horizontal, height) of the point R and the point R', the speed can also be calculated.
 そして、動力装置13は、利用者Uが踏み出した足先(右足F2)とは異なる方の足先(左足F1)の接地面を、算出された方向と逆方向に、算出された距離分移動させるように格納装置10を回転させる。つまり、地点Lが、地点L´の位置まで移動するように、格納装置10を回転させる。これにより、接地面に接地している(軸足である)左足F1は、地点L´の位置まで移動する。一方、接地面に接地していない(空中に浮いている状態である)右足F2は、踏み下ろした際、踏み出した方向とは逆方向に、踏み出した距離分接地面が移動しているので、仮地面から見た地点R´の位置は、踏み出す前の地点Rの位置と同じ位置にくる。 Then, the power device 13 moves the ground contact surface of the toe (left foot F1) different from the toe (right foot F2) stepped by the user U by the calculated distance in the direction opposite to the calculated direction. Rotate the enclosure 10 so that the That is, the storage device 10 is rotated so that the point L moves to the position of the point L'. As a result, the left foot F1 (which is the pivot foot) in contact with the ground surface moves to the position of the point L'. On the other hand, when the right foot F2, which is not in contact with the ground surface (is in a state of floating in the air), is stepped down, the ground surface moves in the opposite direction to the stepping distance, so The position of the point R' seen from the temporary ground is the same as the position of the point R before stepping out.
 要するに、踏み出す方の足が接地面から離れて再び接地面に接地する間に格納装置10(球体)が回転するため、図3,4に示すように格納装置10内部の面Aは面A´の位置に移動し、接地面と接地している軸足は接地面と共に移動し、接地面と接地していない踏み出す足は移動せず、元の位置に踏み下ろされることとなる(図4(B)参照)。 In short, since the storage device 10 (sphere) rotates while the stepping foot leaves the ground plane and touches the ground plane again, the plane A inside the storage device 10 becomes the plane A' as shown in FIGS. , the pivot foot that is in contact with the ground plane moves with the ground plane, and the stepping foot that is not in contact with the ground plane does not move and is stepped down to its original position (Fig. 4 ( B)).
 なお、本実施の形態において、格納装置10は球体であるため、利用者Uの斜め方向の動きにも対応することができる。そして、格納装置10は球体であるため、回転後、最下点Cがあった位置には回転移動してきた別の最下点Cが位置し、逆の足(左足F1)が踏み出される場合であっても、同様に格納装置10(球体)の回転の制御が行われる。つまり、格納装置10自体は、外部から見たら設置されている位置は変わらず、同じ場所で回転するが、格納装置10内部の接地面は、利用者Uの動きに合わせて任意の方向へ移動することになる。 It should be noted that, in the present embodiment, since the storage device 10 is a sphere, it is possible to accommodate the movement of the user U in an oblique direction. Since the storage device 10 is a sphere, after the rotation, another lowest point C that has rotated is located at the position where the lowest point C was, and the opposite foot (left foot F1) is stepped. Even if there is, the rotation of the storage device 10 (sphere) is similarly controlled. In other words, the storage device 10 itself does not change its installed position when viewed from the outside and rotates in the same place, but the ground surface inside the storage device 10 moves in an arbitrary direction according to the movement of the user U. will do.
 また、動力装置13の動作は、踏み出す方の足(本制御システムの動作の説明においては、右足F2)が空中に浮いている状態で接地面を移動させてもよく、踏み出す方の足が接地面に接地する直前に接地面を移動させてもよい。踏み出す方の足が接地面に接地する直前の判断は、例えば、センサ11が位置情報を縦、横に加え、高さを含む三次元座標として取得し、演算手段12により当該踏み出す方の足の高さが一定値以下であると判断された場合、踏み出す方の足が接地面に接地する直前と判断することができる。 Further, the operation of the power unit 13 may be such that the stepping foot (the right foot F2 in the description of the operation of this control system) is floating in the air and the ground contact surface is moved. The ground plane may be moved just before it touches the ground. The determination immediately before the stepping foot touches the ground surface is performed by, for example, the sensor 11 adding the positional information to the vertical and horizontal directions, obtaining three-dimensional coordinates including height, and calculating the stepping foot by the calculation means 12. If it is determined that the height is equal to or less than a certain value, it can be determined that the stepping foot is about to touch the ground surface.
 以上のように本制御システム1の動作を説明したが、制御システム1は、踏み出す方の足が真っすぐ(例えば、y軸方向に沿って)だけでなく、斜め方向や横方向、または後ろ方向であっても同様に適切な接地面の移動を制御することができる。そのため、歩行やランニングなどの移動行動だけでなく、ダンスなどバリエーションに富んだ、様々な利用者の動作にも対応することができる。同時に、格納装置は回転制御されるため、常に一定の場所に留まり続け、スペースを取ることなく、屋内や屋外などどのような場所でも使うことができたり、アトラクションや遊戯としてだけでなく、トレーニングなどどのような使い方も可能となる。 The operation of the control system 1 has been described above, but the control system 1 allows the stepping foot to move not only straight (for example, along the y-axis), but also diagonally, laterally, or backwards. Any suitable ground plane movement can be controlled as well. Therefore, it is possible to respond to not only moving behaviors such as walking and running, but also a wide variety of user movements such as dancing. At the same time, since the storage device is controlled to rotate, it always stays in a fixed place and can be used in any place such as indoors or outdoors without taking up space. Any usage is possible.
 また、センサ11から取得される情報は、接地面から右足F2が離れる前と離れた後の2種類で説明したが、当然、位置情報を取得する時間(スパン)をさらに細分化してもよい。なお、それに合わせて、動力装置13が接地面を移動させるタイミング(格納装置10を回転させるタイミング)も、適宜設計変更することができる。 In addition, the information acquired from the sensor 11 has been described as two types before and after the right foot F2 leaves the ground surface, but of course, the time (span) for acquiring the position information may be further subdivided. The timing at which the power unit 13 moves the ground plane (the timing at which the storage device 10 is rotated) can also be appropriately changed in design.
 その他、右足F2の位置情報は、右足F2の中心部分(土踏まずあたり)としてもよく、踵や親指など、別の部分を右足F2の位置情報として採用してもよい。また、右足F2の各指、土踏まず、踵など複数の情報を1セットとして、右足F2の位置情報として採用してもよい。 In addition, the position information of the right foot F2 may be the central portion (around the arch of the foot) of the right foot F2, or another portion such as the heel or thumb may be used as the position information of the right foot F2. Further, a plurality of pieces of information such as each toe, arch, and heel of the right foot F2 may be used as one set as the positional information of the right foot F2.
(別の実施の形態)
 図5は、本発明の別の実施の形態に係る制御システムの概略図である。本実施の形態において、格納装置10は利用者Uを内部に格納し、全方向へ回転することができる球体として説明したが、別の実施の形態において、格納装置10Aは、利用者Uを内部に格納し、利用者Uが乗り全方向へ回転することができる球体部分10sを含むものとすることができる。もちろん、球体部分10sは、全方向へ回転することができれば球体でなくてもよい(略球体状であればよい)。
(another embodiment)
FIG. 5 is a schematic diagram of a control system according to another embodiment of the invention. In the present embodiment, the storage device 10 stores the user U inside and is described as a sphere that can rotate in all directions. , and can include a spherical portion 10s on which the user U can ride and rotate in all directions. Of course, the spherical portion 10s does not have to be a sphere as long as it can rotate in all directions (a substantially spherical shape is acceptable).
 以下、各図面を参照して別の実施の形態に係る制御システム1Aの動作を説明するが、制御システム1と同じ構成については、同符号を付けて説明を省略する。 Hereinafter, the operation of the control system 1A according to another embodiment will be described with reference to each drawing, but the same components as those of the control system 1 are denoted by the same reference numerals, and the description thereof will be omitted.
 図5に示すように、球体部分10sは、床面20から見えている球体10aの一部である。利用者Uは、球体部分10sの上に乗って移動や運動を行う。そして、センサ11は、格納装置10A内部の動体の時間毎の位置情報を取得し、動力装置13(図5において図示せず)へ当該位置情報を送信する。 As shown in FIG. 5, the spherical portion 10s is a part of the spherical body 10a that is visible from the floor surface 20. The user U rides on the spherical portion 10s to move or exercise. Then, the sensor 11 acquires the positional information of the moving object in the storage device 10A for each time, and transmits the positional information to the power unit 13 (not shown in FIG. 5).
 動力装置13に組み込まれた演算手段12(図5において図示せず)は、受信した位置情報に基づいて利用者Uの移動や運動を判断(例えば、利用者Uの踏み出した足先の方向および距離を算出)する。そして、動力装置13は、算出された方向や距離に基づいて、任意の方向へ球体10aを回転させる。それにより、球体部分10sも回転し、格納装置10A内部における利用者Uの位置を任意の範囲内に留まらせることができる。このような球体10aや球体部分10sの回転は、球体部分10sの床面20との縁に沿って複数設けられたベアリングBによって、スムーズな回転を実現することができる。 A computing means 12 (not shown in FIG. 5) incorporated in the power unit 13 determines the movement or exercise of the user U based on the received positional information (for example, the direction of the foot stepped by the user U and distance). Then, the power unit 13 rotates the sphere 10a in an arbitrary direction based on the calculated direction and distance. As a result, the spherical portion 10s also rotates, and the position of the user U inside the storage device 10A can be kept within an arbitrary range. Such rotation of the spherical body 10a and the spherical portion 10s can be realized smoothly by a plurality of bearings B provided along the edge of the spherical portion 10s with the floor surface 20. FIG.
[変形例]
 以上のように説明した実施の形態の変形例として、利用者のそれぞれの足の移動方向や移動距離を取得するセンサ11は、利用者のそれぞれの足に角速度センサ(ジャイロセンサ)として設けられてもよい。例えば、利用者が履く靴にセンサ11の一部が内蔵されていてもよく、センサ11を内蔵するタグをアンクレットのように装着してもよい。これにより、利用者が激しい動作を行う場合であっても、利用者の足に関する情報を正確に取得することができる。
[Modification]
As a modification of the embodiment described above, the sensor 11 for acquiring the movement direction and movement distance of each foot of the user is provided as an angular velocity sensor (gyro sensor) on each foot of the user. good too. For example, a part of the sensor 11 may be built in shoes worn by the user, and a tag containing the sensor 11 may be worn like an anklet. This makes it possible to accurately acquire information about the user's foot even when the user makes a vigorous motion.
 さらに、センサ11は、上述したような利用者の足に設けられるセンサと、格納装置内部に埋め込まれる感電センサ(図示せず)とを組み合わせることでも実現することができる。これにより、これらのセンサの距離(接触している/離れているなど)により生じる電位差(静電気帯分布)から、利用者の足の位置情報(座標情報)を取得することもできる。 Furthermore, the sensor 11 can also be realized by combining a sensor provided on the user's foot as described above and an electric shock sensor (not shown) embedded inside the storage device. Thereby, it is also possible to obtain the positional information (coordinate information) of the user's foot from the potential difference (electrostatic band distribution) caused by the distance (contact/separation, etc.) of these sensors.
 なお、利用者の足に設けられるセンサは発信機であり、床面や格納装置内に設けられる受信機と通信することで、利用者の足の位置情報を取得してもよい。もちろん、発信機は、利用者の足だけでなく様々な部分や様々な動体(利用者の所持する物など)にも取り付けることができる。 The sensor provided on the user's foot is a transmitter, and the position information of the user's foot may be obtained by communicating with a receiver provided on the floor or inside the storage device. Of course, the transmitter can be attached not only to the user's foot, but also to various parts and various moving objects (such as objects carried by the user).
 また、センサ11は、位置情報に基づいて、利用者の姿勢を取得(判定)することもできる。利用者の姿勢とは、例えば、片足で立っていたり、手を挙げていたり、または任意のポーズを取っているなどである。これにより、例えば利用者Uが運動中に落し物をした際、落とした物(財布や鍵など)を取得して、制御システム1を緊急停止させることができる。 The sensor 11 can also acquire (determine) the posture of the user based on the position information. The posture of the user is, for example, standing on one leg, raising a hand, or taking an arbitrary pose. As a result, for example, when the user U loses an item while exercising, the lost item (wallet, key, etc.) can be retrieved and the control system 1 can be brought to an emergency stop.
 また、動力装置13は、本実施の形態で説明したような、摩擦により球体を任意の方向へ回転させるような機構以外のものも採用することができる。例えば、球体と動力装置とにそれぞれ歯車を設け、当該歯車を介して動力装置からの回転力を球体に伝えることで球体を任意の方向へ回転させてもよい。または、球体を水に浮かべて、水流により球体を回転させるような制御機構としてもよい。 In addition, the power unit 13 can adopt a mechanism other than the mechanism that rotates the sphere in an arbitrary direction by friction as described in the present embodiment. For example, gears may be provided on the sphere and the power device, respectively, and the sphere may be rotated in any direction by transmitting the rotational force from the power device to the sphere via the gears. Alternatively, the control mechanism may be such that the sphere is floated on water and rotated by the water flow.
 以上のように説明した実施の形態はあくまで一例であり、本発明の趣旨を逸脱しない限り、適宜変更可能である。例えば、格納装置10は楕円形状などきれいな球体でなくてもよく、格納装置10を構成する材質は問わない。さらに、演算手段12は動力装置13以外の装置に組み込まれていてもよく、ハード構成に特に制限はない。 The embodiment described above is merely an example, and can be modified as appropriate without departing from the gist of the present invention. For example, the storage device 10 does not have to be a perfect sphere such as an ellipse, and the material that makes up the storage device 10 does not matter. Furthermore, the computing means 12 may be incorporated in a device other than the power plant 13, and there is no particular limitation on the hardware configuration.
 本発明は、バリエーションに富んだ、様々な利用者の動作に対応することができる制御システムとして用いることができ、例えば仮想現実技術と組み合わされ、アトラクションや遊戯施設で利用することができるため、産業上有用である。 INDUSTRIAL APPLICABILITY The present invention can be used as a control system that can respond to a wide variety of user actions. It is useful for
 1,1A 制御システム
 10,10A 格納装置
 10a 球体
 10s 球体部分
 11 センサ
 12 演算手段
 13,13a,13b 動力装置
 14 第一の支持部
 15 第二の支持部
 20 床面
 U 利用者
 F 足
 F1 左足
 F2 右足
 P 支柱
 B ベアリング
1, 1A control system 10, 10A storage device 10a sphere 10s sphere portion 11 sensor 12 computing means 13, 13a, 13b power unit 14 first support 15 second support 20 floor surface U user F foot F1 left foot F2 Right foot P Post B Bearing

Claims (7)

  1.  利用者を内部に格納し、全方向へ回転することができる略球体状の格納装置と、
     前記格納装置内部に設けられ、前記格納装置内部の物体の時間毎の位置情報を取得するセンサと、
     取得された前記物体の時間毎の位置情報に基づいて、前記利用者が踏み出した足先の位置情報の変化より当該利用者が踏み出した足先の方向および距離を算出する演算手段と、
     前記算出された方向および距離に基づいて、前記格納装置を任意の方向へ回転させる動力装置と、
    を含む制御システム。
    a substantially spherical storage device that stores a user inside and can rotate in all directions;
    a sensor provided inside the storage device for acquiring time-based position information of an object inside the storage device;
    a calculation means for calculating the direction and distance of the foot stepped by the user from changes in the position information of the foot stepped by the user based on the acquired position information of the object for each time;
    a power unit that rotates the storage device in any direction based on the calculated direction and distance;
    Control system including.
  2.  利用者を内部に格納し、前記利用者が乗り全方向へ回転することができる略球体状の球体部分を含む格納装置と、
     前記格納装置内部に設けられ、前記格納装置内部の物体の時間毎の位置情報を取得するセンサと、
     取得された前記物体の時間毎の位置情報に基づいて、前記利用者が踏み出した足先の位置情報の変化より当該利用者が踏み出した足先の方向および距離を算出する演算手段と、
     算出された方向および距離に基づいて、前記球体部分を任意の方向へ移動させる動力装置と、
    を含む制御システム。
    a storage device containing a generally spherical spherical portion for storing a user therein and allowing said user to ride and rotate in all directions;
    a sensor provided inside the storage device for acquiring time-based position information of an object inside the storage device;
    a calculation means for calculating the direction and distance of the foot stepped by the user from changes in the position information of the foot stepped by the user based on the acquired position information of the object for each time;
    a power device that moves the spherical portion in any direction based on the calculated direction and distance;
    Control system including.
  3.  前記動力装置は、前記利用者が踏み出した足先とは異なる方の足先の接地面を、算出された前記方向と逆方向に算出された前記距離分移動させるように前記格納装置を回転させる請求項1に記載の制御システム。 The power device rotates the storage device so as to move the ground contact surface of the foot different from the foot stepped by the user by the calculated distance in the direction opposite to the calculated direction. A control system according to claim 1 .
  4.  床面に設けられ、前記格納装置を下方から支持する第一の支持部と、
     前記床面から延びる支柱に設けられ、前記格納装置を上方から支持する第二の支持部と、
    を含む請求項1または3のいずれか1項に記載の制御システム。
    a first support provided on the floor for supporting the storage device from below;
    a second support part provided on a pillar extending from the floor surface and supporting the storage device from above;
    4. The control system of any one of claims 1 or 3, comprising:
  5.  前記センサは、前記格納装置内部に設けられた光学センサである請求項1~4のいずれか1項に記載の制御システム。 The control system according to any one of claims 1 to 4, wherein the sensor is an optical sensor provided inside the enclosure.
  6.  前記センサは、前記利用者のそれぞれの足に装着されるものである請求項1~4のいずれか1項に記載の制御システム。 The control system according to any one of claims 1 to 4, wherein the sensor is attached to each leg of the user.
  7.  前記センサは、前記足に装着されるものと、前記格納装置内部に埋め込まれるものとにより生じる電位差に基づいて位置情報を取得する請求項6に記載の制御システム。 The control system according to claim 6, wherein the sensor acquires position information based on a potential difference between one attached to the foot and one embedded inside the enclosure.
PCT/JP2022/004053 2021-05-31 2022-02-02 Control system WO2022254783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021091567A JP2022183991A (en) 2021-05-31 2021-05-31 control system
JP2021-091567 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022254783A1 true WO2022254783A1 (en) 2022-12-08

Family

ID=84324084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004053 WO2022254783A1 (en) 2021-05-31 2022-02-02 Control system

Country Status (2)

Country Link
JP (1) JP2022183991A (en)
WO (1) WO2022254783A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129789A (en) * 1993-11-02 1995-05-19 Nec Corp Video simulation device
US5860811A (en) * 1996-01-16 1999-01-19 Henderson; Gordon H Geo-positional treading sphere and geo-positional treading sphere operating system
US6135928A (en) * 1999-08-20 2000-10-24 Butterfield; Anthony Virtual reality equipment
US6563489B1 (en) * 1997-05-06 2003-05-13 Nurakhmed Nurislamovich Latypov System for placing a subject into virtual reality
JP2004021570A (en) * 2002-06-17 2004-01-22 Nippon Hoso Kyokai <Nhk> User interface device, virtual space providing method, and virtual space providing system
US20060134583A1 (en) * 2003-07-02 2006-06-22 Gonzalez De Mendoza Y Kaeding Simulation and training sphere for receiving persons

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102542873B (en) * 2012-01-10 2014-04-16 中国人民解放军92995部队 All-direction walking tracking device and virtual interaction system based on same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129789A (en) * 1993-11-02 1995-05-19 Nec Corp Video simulation device
US5860811A (en) * 1996-01-16 1999-01-19 Henderson; Gordon H Geo-positional treading sphere and geo-positional treading sphere operating system
US6563489B1 (en) * 1997-05-06 2003-05-13 Nurakhmed Nurislamovich Latypov System for placing a subject into virtual reality
US6135928A (en) * 1999-08-20 2000-10-24 Butterfield; Anthony Virtual reality equipment
JP2004021570A (en) * 2002-06-17 2004-01-22 Nippon Hoso Kyokai <Nhk> User interface device, virtual space providing method, and virtual space providing system
US20060134583A1 (en) * 2003-07-02 2006-06-22 Gonzalez De Mendoza Y Kaeding Simulation and training sphere for receiving persons

Also Published As

Publication number Publication date
JP2022183991A (en) 2022-12-13

Similar Documents

Publication Publication Date Title
JP7124997B2 (en) Omnidirectional movement method, device and system
EP3157644B1 (en) Moving floor for interactions with virtual reality systems and uses thereof
Tregillus et al. Vr-step: Walking-in-place using inertial sensing for hands free navigation in mobile vr environments
CN107708820B (en) System, method and apparatus for foot-controlled motion and motion control in virtual reality and simulation environments
Tanaka et al. A comparison of exergaming interfaces for use in rehabilitation programs and research
JP7266032B2 (en) VR Walking Mechanism and Walking Method in Virtual Reality Scene
EP3714954A1 (en) Motion control seat input device
US10429924B1 (en) Virtual reality simulation system
JP2012524581A (en) A belt that adapts to movement in virtual reality
CN104906750A (en) All-directional running machine and game system with same
US11013951B2 (en) Platform for enabling omnidirectional movement of an exercising machine
CN104874152A (en) Omni-directional running exercise instrument
CN204723675U (en) Universal road-work apparatus
WO2022254783A1 (en) Control system
US20200097069A1 (en) Virtual Reality Input Device
KR102005373B1 (en) A method for supporting rehabilitation using omni-directional moving platform
Walther-Franks et al. Suspended walking: A physical locomotion interface for virtual reality
Bouguila et al. Virtual Locomotion Interface with Ground Surface Simulation.
CN107153461B (en) method for controlling motion mode of display object and motion control device
CN110270091A (en) Virtual reality device, control method and storage medium
KR20190132200A (en) System for supporting virtual reality indoor bike exercise and method thereof
de la Rubia et al. Natural locomotion based on foot-mounted inertial sensors in a wireless virtual reality system
JP3493708B2 (en) Walking simulator, control method thereof, and predictive control method
US11036283B2 (en) Navigation controller
JP2017099608A (en) Control system and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE