WO2022249456A1 - Optical monitoring device and light intensity measurement method - Google Patents

Optical monitoring device and light intensity measurement method Download PDF

Info

Publication number
WO2022249456A1
WO2022249456A1 PCT/JP2021/020452 JP2021020452W WO2022249456A1 WO 2022249456 A1 WO2022249456 A1 WO 2022249456A1 JP 2021020452 W JP2021020452 W JP 2021020452W WO 2022249456 A1 WO2022249456 A1 WO 2022249456A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
incident
intensity
optical fibers
Prior art date
Application number
PCT/JP2021/020452
Other languages
French (fr)
Japanese (ja)
Inventor
良 小山
宜輝 阿部
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/020452 priority Critical patent/WO2022249456A1/en
Priority to JP2023523915A priority patent/JPWO2022249456A1/ja
Publication of WO2022249456A1 publication Critical patent/WO2022249456A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Definitions

  • the present disclosure relates to an optical monitor device, and more particularly to an optical monitor device for detecting the intensity of light in an optical transmission device and feeding back the detection result to other components.
  • Optical fiber communication often uses the detection of the intensity of light propagating through an optical fiber to control communication and confirm the soundness of equipment. For example, in an access network, test light is propagated through an optical fiber, and the optical intensity is detected to check the loss and soundness of the optical fiber, as well as the target and connection of the core wires.
  • WDM Widelength Division Multiplexing
  • Patent Literature 1 describes a technique for splitting light at a constant splitting ratio using two parallel waveguides, which makes it possible to measure the intensity and propagation loss of optical signals in an access network.
  • Patent Document 2 describes a technique for simultaneously monitoring the intensity of optical signals of a plurality of optical fibers by combining one-dimensionally arranged optical fibers and a dielectric multilayer film.
  • optical monitor device with the conventional arrangement configuration still has the following problems.
  • the optical fiber and the light intensity sensor correspond one-to-one, and it is necessary to arrange the sensor and the optical fiber at the same pitch. Furthermore, it is necessary to precisely position the optical fiber so that the light from the optical fiber is incident on the sensor.
  • Patent No. 3450104 (Furukawa Electric) Japanese Patent Application Laid-Open No. 2004-219523 (Fujitsu, withdrawn)
  • the present disclosure has been made in view of these points, and aims to provide a compact optical monitor device with several tens of cores that can be manufactured at low cost.
  • the optical monitor device of the present disclosure comprises: In an optical monitoring device that detects the intensity of light propagating through multiple optical fibers, an optical component for branching a part of the incident light from the plurality of optical fibers in a first direction and the rest in a second direction at a constant branching ratio, and a light-receiving unit that receives light emitted from the optical component in a second direction; with The light receiving unit is having a light receiving surface large enough to receive all of the light emitted from the optical component in the second direction; More light receiving elements than the optical fibers are arranged two-dimensionally on the light receiving surface.
  • the light intensity measurement method of the present disclosure includes A light intensity measuring method for collectively measuring the intensity of light propagating through a plurality of optical fibers using the optical monitor device of the present disclosure, obtaining in advance the correspondence relationship between the plurality of optical fibers and each light receiving element by measuring the light receiving intensity at each light receiving element when each optical fiber is emitted from the plurality of optical fibers, Detecting the light intensity of each light receiving element received by the light receiving unit in a state where the plurality of optical fibers are propagating the light whose intensity is to be measured, Based on the correspondence relationship, for each of the plurality of optical fibers, (i) intensity of light received by the light receiving unit; (ii) light intensity of incident light incident from the plurality of incident-side optical fibers; (iii) the light intensity of the output light emitted to the plurality of output-side optical fibers; measure at least one of
  • an optical monitoring device for optical fibers with a large number of fibers, such as several tens of fibers, can be used. can be realized in a small size and at a low cost. Further, according to the present disclosure, highly accurate positioning of the light receiving element is not required.
  • FIG. 1 illustrates an example embodiment of an optical monitoring device of the present disclosure
  • An example of the arrangement of incident-side optical fibers is shown.
  • 4 shows an example of arrangement of light receiving elements in a light receiving section.
  • An example of light propagating through a spatial optical system is shown.
  • 1 illustrates an example embodiment of an optical monitoring device of the present disclosure
  • the optical monitor device of this embodiment has the configuration illustrated in FIG.
  • the optical monitoring device of this embodiment is an optical monitoring device that detects the intensity of light propagating through a plurality of incident-side optical fibers 11, For each incident light from the incident side optical fiber 11, most of the incident light is branched in a specific first direction and the rest is branched in another specific second direction at a constant branching ratio, and each branched light a spatial optical system 30 for emitting the a plurality of incident-side optical fibers 11 arranged in a two-dimensional array so that light is incident on the spatial optical system 30; a plurality of output-side optical fibers 12 arranged to receive most of the light 42 emitted from the spatial optical system 30; a light receiving unit 5 arranged to receive a part of the light 43 emitted from the spatial optical system 30; an incident-side optical lens 21 disposed between the spatial optical system 30 and the incident-side optical fiber 11 to convert each incident light from the incident-side optical fiber 11 to the spatial optical system 30 into parallel light; Output-
  • FIG. 1 shows an example in which the specific angle is 45 degrees and the direction of reflected light is 90 degrees
  • the direction of reflected light is not fixed at 90 degrees and can be changed as needed.
  • the spatial optical system 30 is not limited to a spatial system, and any optical component having a branching surface capable of branching into two light beams in different directions can be used.
  • light from the incident side optical fiber 11 becomes parallel light at the incident side optical lens 21, and loss due to diffusion is prevented. Furthermore, most of the light 42 is guided to the output side optical lens 22 by the spatial optical system 30 .
  • the exit-side optical lens 22 collects the light that has passed through the spatial optical system 30 and couples it to the exit-side optical fiber 12 . In this way, most of the light 42 emitted from the incident side optical fiber 11 can be guided to the emitting side optical fiber 12 with little loss.
  • part of the light 43 split by the spatial optical system 30 is guided to the light receiving section 5 arranged in a direction different from that of the majority of the light 42 .
  • the light receiving section 5 has a light receiving surface large enough to receive all the emitted light 43 from the spatial optical system 30 .
  • light-receiving elements larger in number than the incident-side optical fibers 11 are arranged two-dimensionally. Thereby, the intensity of part of the light propagating from the incident side optical fiber 11 to the emitting side optical fiber 12 can be measured.
  • FIG. 2 illustrates the arrangement of the incident-side optical fiber 11
  • FIG. 3 illustrates the arrangement of the light receiving elements on the light receiving surface of the light receiving section 5.
  • FIG. M incident-side optical fibers F1 to FM are arranged two-dimensionally at a constant pitch of four.
  • N light receiving elements M1 to MN are two-dimensionally arranged at a constant pitch.
  • the pitch of the incident side optical fibers F1 to FM does not match the pitch of the light receiving elements M1 to MN, and no special alignment is performed.
  • an image of the outgoing light 43 of the incident side optical fiber F1 is formed as shown in FIG. 3, for example.
  • the emitted light 43 is detected by the light receiving elements M2 to M5, M15 to M18, M28 to M31, and M41 to M44.
  • the light receiving unit 5 detects the sum of the light intensities detected by the light receiving elements M2 to M5, M15 to M18, M28 to M31, and M41 to M44 as the light intensity of the emitted light 43 from the incident side optical fiber F1.
  • the light intensity of each of the light receiving elements M1 to MN when the light of the reference intensity Pr is emitted from the incident side optical fiber F1 is measured in advance and recorded.
  • the correspondences Or 11 to Or 1N between the incident-side optical fiber F1 and the light receiving elements M1 to MN can be obtained.
  • the incident side optical fibers F2 to FM the corresponding relationships Or 21 to Or MN between the incident side optical fibers F2 to FM and the light receiving elements M1 to MN are recorded.
  • ij is the light intensity received by the j-th light-receiving element provided in the light-receiving unit 5 when the light is emitted from the i-th optical fiber among the incident-side optical fibers F1 to FM.
  • Equation 2 the light intensities O 1 to O N detected by the light receiving elements M1 to MN are Since it is the sum of the light incident from F1 to FM, it is represented by Equation 2.
  • Equation (3) the intensity of light incident on the light receiving section 5 from each of the optical fibers F1 to FM is expressed by Equation (3).
  • Equation 4 the intensity of the light incident from the incident side optical fiber 11 is given by Equation 4, and the intensity of the light propagated to the outgoing side optical fiber 12 is given by Equation 4. 5 can be estimated.
  • the light intensity measurement method of the present disclosure includes Acquire in advance the correspondence represented by Equation 1, While the incident-side optical fiber 11 is propagating the light whose intensity is to be measured, the light intensity is measured by the light receiving unit 5 using Equation 3, Measure the light intensity incident from the incident side optical fiber 11 using Equation 4, Using Equation 5, the intensity of light propagated to the output side optical fiber 12 is measured.
  • the light intensity of the light receiving unit 5 is measured by detecting the intensity of light received by each light receiving element when light is emitted from each incident side optical fiber 11 .
  • the correspondence relationship between the incident-side optical fiber 11 and each light receiving element is obtained in advance. Therefore, the intensity of light propagating through the incident-side optical fiber 11 can be collectively measured based on the correspondence relationship.
  • the spatial optical system 30 is provided between the entrance-side member 30A and the exit-side member 30B made of a material with a uniform refractive index.
  • Another single-layer film 33 having a uniform refractive index is provided, and the single-layer film 33 is provided at a specific angle (45 degrees in the figure) with respect to the optical axis of the incident light 41 .
  • the first refractive index interface 33A between the single layer film 33 and the entrance side member 30A and the second refractive index interface 33B between the single layer film 33 and the exit side member 30B are specified as the optical axis of the incident light. is set at an angle of
  • the lights 42B1 and 42B2 with different wavelengths travel in different directions in the single layer film 33. Therefore, the incident positions of the lights 42B1 and 42B2 with different wavelengths on the refractive index interface 33B are different.
  • light incident from the refractive index interface 33B travels in the same direction as the incident side member 30A due to refraction between the single layer film 33 and the emitting side member 30B. Therefore, even if the optical axes of the incident end surfaces of the output-side optical fibers 12 are arranged in parallel, the transmitted light can be coupled to the output-side optical fibers 12 regardless of the wavelength.
  • the single-layer film 33 causes a difference in the incident position to the refractive index interface 33B depending on the wavelength. Therefore, when the emitted lights 43B1 and 43B2 have different wavelengths, the emitted lights 43B1 and 43B2 have different reflection positions at the refractive index interface 33B. Therefore, in the present disclosure, the correspondence represented by Equation 1 may be obtained for each wavelength.
  • the position of the output-side optical lens 22 is determined according to the center wavelength and refraction angle of the incident light 41 and the thickness S of the single layer film 33 .
  • the width of the light reaching the output side optical lens 22 mainly depends on the wavelength width of the incident light 41 and the thickness S of the single layer film 33 . If the width of the light reaching the output-side optical lens 22 is small with respect to the diameter of the output-side optical lens 22, the light loss is small. Therefore, by setting the diameter of the exit-side optical lens 22 to a value equal to or larger than the value determined according to the wavelength width of the incident light 41 and the thickness S of the single-layer film 33, the optical loss can be reduced. On the other hand, if the diameter of the output-side optical lens 22 is greater than or equal to the installation interval of the incident-side fibers, it collides with the adjacent lens. .
  • the incident-side optical fiber 11 and the output-side optical fiber 12 are two-dimensionally arranged, and the spatial optical system 30 splits the two-dimensionally arranged light flux.
  • the size can be reduced more than using an optical monitoring device for each single fiber or an optical monitoring device in which optical fibers are arranged one-dimensionally.
  • the cost can be easily reduced because the number of constituent parts is small.
  • FIG. 5 shows a second example embodiment of the present disclosure.
  • the entrance side member 30A and the exit side member 30B can be made of a transparent material such as quartz glass.
  • the single-layer film 33 can utilize an air layer by arranging a spacer 34 having a uniform predetermined thickness between the incident-side member 30A and the emitting-side member 30B to form a gap.
  • the incident-side optical lens 21 and the output-side optical lens 22 can be realized by a collimator in which a GRIN (GRaded INdex) fiber is incorporated in a rectangular ferrule used in an optical connector or the like.
  • GRIN GRaded INdex
  • the incident-side optical fiber 11 and the output-side optical fiber 12 are also incorporated in the rectangular ferrules 23 and 24 similarly to the incident-side optical lens 21 and the output-side optical lens 22, and the guide pins 25 and the guide holes are used as in the optical connector.
  • the optical axes of the incident-side optical fiber 11, the incident-side optical lens 21, the exit-side optical fiber 12, and the exit-side optical lens 22 can be aligned.
  • the light receiving section 5 can be realized by a commercially available optical image sensor.
  • the single layer film 33 may be glass having a lower refractive index than the incident side member 30A and the output side member 30B.
  • the spatial optical system 30 is not limited to a cubic shape, and may have any shape such as a rectangular parallelepiped.
  • the light receiving section 5 can be arranged at any position where the light branched by the spatial optical system 30 can be received.
  • the light receiving section 5 may be embedded inside the spatial optical system 30 .
  • the optical monitoring device of the present disclosure can be used for monitoring any light transmitted in an optical transmission system.
  • the optical monitoring device of the present disclosure is installed in any device used in an optical transmission system, such as a transmitter, a receiver, or a relay device, and the measurement result at the light receiving unit 5 is measured at any part inside or outside the device.
  • the optical monitor device of the present disclosure can be inserted in the middle of a transmission line in an optical transmission system to measure the intensity and propagation loss of an optical signal in the transmission line.
  • This disclosure can be applied to the information and communications industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The purpose of the present disclosure is to reduce the size and cost of an optical monitoring device for detecting the intensity of light propagating through optical fibers. The present disclosure is an optical monitoring device for detecting the intensity of light propagating through a plurality of optical fibers (11), said device comprising: an optical component (30) that branches, at a fixed branching ratio, a portion of incident light from the plurality of optical fibers (11) in a first direction, and the rest in a second direction, and that emits the branched light; and a light receiving part (5) that receives the light emitted in the second direction from the optical component (30). The light receiving part (5) has a light receiving surface of a size capable of receiving all the light emitted in the second direction from the optical component (30), and has light receiving elements in a number greater than the optical fibers, which are arranged two-dimensionally on the light receiving surface.

Description

光モニタデバイス及び光強度測定方法Optical monitor device and optical intensity measurement method
 本開示は光モニタデバイスに関し、特に光伝送装置などにあって光の強度を検出しその検出結果を他の部品にフィードバックするための光モニタデバイスに関する。 The present disclosure relates to an optical monitor device, and more particularly to an optical monitor device for detecting the intensity of light in an optical transmission device and feeding back the detection result to other components.
 近年、インターネットトラフィックの増大に伴い、通信システムにおいては通信容量を増大することが強く求められている。これを実現するため、通信局舎とユーザ宅間のアクセスネットワークや通信局舎同士を結ぶコアネットワークでは光ファイバを用いた通信システムが使われている。光ファイバ通信では通信の制御や設備の健全性の確認のために光ファイバを伝搬する光強度の検出がしばしば用いられる。例えば、アクセスネットワークでは、光ファイバに試験光を伝搬させ、その光強度検出から光ファイバの損失や健全性、心線対象や繋がりの確認などを行なっている。また、コアネットワークで用いられるWDM(Wavelength Division Multiplexing )伝送ではフィードバック制御のため光強度のモニタリングが必要である。 In recent years, with the increase in Internet traffic, there is a strong demand for increased communication capacity in communication systems. In order to achieve this, a communication system using optical fibers is used in the access network between the communication office and the user's home and in the core network connecting the communication office. Optical fiber communication often uses the detection of the intensity of light propagating through an optical fiber to control communication and confirm the soundness of equipment. For example, in an access network, test light is propagated through an optical fiber, and the optical intensity is detected to check the loss and soundness of the optical fiber, as well as the target and connection of the core wires. In addition, WDM (Wavelength Division Multiplexing) transmission used in core networks requires monitoring of optical intensity for feedback control.
 アクセスネットワークの光強度モニタリングでは、例えば特許文献1に記載のような技術が使われている。特許文献1には2本の平行導波路によって光を一定の分岐比で分岐する技術が記載されており、これによりアクセスネットワークにおける光信号の強度や伝搬損失の測定などが行なえる。 For optical intensity monitoring of access networks, the technology described in Patent Document 1, for example, is used. Patent Literature 1 describes a technique for splitting light at a constant splitting ratio using two parallel waveguides, which makes it possible to measure the intensity and propagation loss of optical signals in an access network.
 WMD伝送での光強度モニタリングでは、例えば特許文献2の技術が使われている。特許文献2には1次元に配列された光ファイバと誘電体多層膜との組み合わせにより複数の光ファイバの光信号の強度を同時にモニタリングする技術が記載されている。 For example, the technology of Patent Document 2 is used for optical intensity monitoring in WMD transmission. Patent Document 2 describes a technique for simultaneously monitoring the intensity of optical signals of a plurality of optical fibers by combining one-dimensionally arranged optical fibers and a dielectric multilayer film.
 しかし、従来のような配置構成とした光モニタデバイスにおいては、まだ以下に示すような課題がある。 However, the optical monitor device with the conventional arrangement configuration still has the following problems.
 光通信が普及し、光設備/光ケーブルの光ファイバ心数が多心化していく中で、まず、光ファイバ1心毎に光カプラを用いる光モニタデバイスの場合は多心化に応じてコストとサイズが増大する。光ファイバと光強度センサを1次元のアレイ状に配置した光モニタデバイスの場合も、光ファイバのアレイ配置には限界があり、それよりも光ファイバの心数が増大すれば、心数に応じてコストとサイズが増大する。 With the spread of optical communication, the number of optical fibers in optical equipment/optical cables is increasing. Increase in size. Even in the case of optical monitoring devices in which optical fibers and light intensity sensors are arranged in a one-dimensional array, there is a limit to the arrangement of optical fibers in the array. increases cost and size.
 また、光ファイバと光強度センサが1対1に対応しており、センサと光ファイバを同じピッチで配置する必要がある。さらに、光ファイバの光がセンサに入射するよう精度よく位置決めする必要がある。 Also, the optical fiber and the light intensity sensor correspond one-to-one, and it is necessary to arrange the sensor and the optical fiber at the same pitch. Furthermore, it is necessary to precisely position the optical fiber so that the light from the optical fiber is incident on the sensor.
特許第3450104号(古河電気工業)Patent No. 3450104 (Furukawa Electric) 特開2004-219523(富士通、取下)Japanese Patent Application Laid-Open No. 2004-219523 (Fujitsu, withdrawn)
 本開示はこのような点に鑑みてなされたものであり、数十心といった心数の光モニタデバイスを低コストで作製することができ、かつ、小型に提供することを目的とする。 The present disclosure has been made in view of these points, and aims to provide a compact optical monitor device with several tens of cores that can be manufactured at low cost.
 本開示の光モニタデバイスは、
 複数の光ファイバを伝搬する光の強度を検出する光モニタデバイスにおいて、
 前記複数の光ファイバからの入射光の一部を第1の方向へ、残りを第2の方向へ一定の分岐比で分岐し、出射する光学部品と、
 前記光学部品からの第2の方向への出射光を受光する受光部と、
 を備え、
 前記受光部は、
 前記光学部品から前記第2の方向への出射光の全てを受光可能な大きさの受光面を有し、
 前記受光面に、前記光ファイバの数よりも多い受光素子が2次元に配列されている。
The optical monitor device of the present disclosure comprises:
In an optical monitoring device that detects the intensity of light propagating through multiple optical fibers,
an optical component for branching a part of the incident light from the plurality of optical fibers in a first direction and the rest in a second direction at a constant branching ratio, and
a light-receiving unit that receives light emitted from the optical component in a second direction;
with
The light receiving unit is
having a light receiving surface large enough to receive all of the light emitted from the optical component in the second direction;
More light receiving elements than the optical fibers are arranged two-dimensionally on the light receiving surface.
 本開示の光強度測定方法は、
 本開示の光モニタデバイスを用いて複数の光ファイバを伝搬する光の強度を一括で測定する光強度測定方法であって、
 前記複数の光ファイバから光ファイバごとに出射したときの各受光素子での受光強度を測定することで、前記複数の光ファイバと各受光素子との対応関係を予め取得し、
 前記複数の光ファイバが強度測定対象となる光を伝搬している状態で、前記受光部で受光した各受光素子の光強度を検出し、
 前記対応関係に基づいて、前記複数の光ファイバごとの、
 (i)前記受光部で受光した光強度、
 (ii)前記複数の入射側光ファイバから入射した入射光の光強度、
 (iii)前記複数の出射側光ファイバに出射される出射光の光強度、
 の少なくともいずれかを測定する。
The light intensity measurement method of the present disclosure includes
A light intensity measuring method for collectively measuring the intensity of light propagating through a plurality of optical fibers using the optical monitor device of the present disclosure,
obtaining in advance the correspondence relationship between the plurality of optical fibers and each light receiving element by measuring the light receiving intensity at each light receiving element when each optical fiber is emitted from the plurality of optical fibers,
Detecting the light intensity of each light receiving element received by the light receiving unit in a state where the plurality of optical fibers are propagating the light whose intensity is to be measured,
Based on the correspondence relationship, for each of the plurality of optical fibers,
(i) intensity of light received by the light receiving unit;
(ii) light intensity of incident light incident from the plurality of incident-side optical fibers;
(iii) the light intensity of the output light emitted to the plurality of output-side optical fibers;
measure at least one of
 本開示によれば、受光面に光ファイバの数よりも多い受光素子が2次元に配列されている受光部を用いて受光するため、数十心といった多心数の光ファイバ用の光モニタデバイスを小型かつ低コストに実現することができる。また、本開示によれば、受光素子の高精度な位置決めが不要となる。 According to the present disclosure, since light is received using a light receiving unit in which light receiving elements larger than the number of optical fibers are arranged two-dimensionally on the light receiving surface, an optical monitoring device for optical fibers with a large number of fibers, such as several tens of fibers, can be used. can be realized in a small size and at a low cost. Further, according to the present disclosure, highly accurate positioning of the light receiving element is not required.
本開示の光モニタデバイスの実施形態例を示す。1 illustrates an example embodiment of an optical monitoring device of the present disclosure; 入射側光ファイバの配置例を示す。An example of the arrangement of incident-side optical fibers is shown. 受光部における受光素子の配置例を示す。4 shows an example of arrangement of light receiving elements in a light receiving section. 空間光学系を伝搬する光の一例を示す。An example of light propagating through a spatial optical system is shown. 本開示の光モニタデバイスの実施形態例を示す。1 illustrates an example embodiment of an optical monitoring device of the present disclosure;
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below. These implementation examples are merely illustrative, and the present disclosure can be implemented in various modified and improved forms based on the knowledge of those skilled in the art. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
(第1の実施形態例)
 本実施形態の光モニタデバイスは、図1に例示する構成を備える。
 本実施形態の光モニタデバイスは、複数の入射側光ファイバ11を伝搬する光の強度を検出する光モニタデバイスにおいて、
 入射側光ファイバ11からの各入射光に対し、入射光の大部分を特定の第1の方向へ、残りを別の特定の第2の方向へと一定の分岐比で分岐し、各分岐光を出射する空間光学系30と、
 前記空間光学系30に光を入射するように2次元配列状に配置された、複数の入射側光ファイバ11と、
 前記空間光学系30から出射される大部分の光42を受光するように配置された、複数の出射側光ファイバ12と、
 前記空間光学系30から出射される一部の光43を受光するように配置された受光部5と、
 前記空間光学系30と前記入射側光ファイバ11の間に配置され、入射側光ファイバ11から空間光学系30への各入射光を平行光とする入射側光学レンズ21と、
 前記空間光学系30と前記出射側光ファイバ12の間に配置され、空間光学系30からの各出射光を、入射側光ファイバ11に対応する出射側光ファイバ12に効率よく結合する出射側光学レンズ22と、
 を有する。
(First embodiment example)
The optical monitor device of this embodiment has the configuration illustrated in FIG.
The optical monitoring device of this embodiment is an optical monitoring device that detects the intensity of light propagating through a plurality of incident-side optical fibers 11,
For each incident light from the incident side optical fiber 11, most of the incident light is branched in a specific first direction and the rest is branched in another specific second direction at a constant branching ratio, and each branched light a spatial optical system 30 for emitting the
a plurality of incident-side optical fibers 11 arranged in a two-dimensional array so that light is incident on the spatial optical system 30;
a plurality of output-side optical fibers 12 arranged to receive most of the light 42 emitted from the spatial optical system 30;
a light receiving unit 5 arranged to receive a part of the light 43 emitted from the spatial optical system 30;
an incident-side optical lens 21 disposed between the spatial optical system 30 and the incident-side optical fiber 11 to convert each incident light from the incident-side optical fiber 11 to the spatial optical system 30 into parallel light;
Output-side optics arranged between the spatial optical system 30 and the output-side optical fiber 12 for efficiently coupling each output light from the spatial optical system 30 to the output-side optical fiber 12 corresponding to the incident-side optical fiber 11 a lens 22;
have
 図1では、特定の角度が45度であり、反射光の方向が90度である例を示すが、反射光の方向は90度固定ではなく、必要に応じて変えることが可能である。又、空間光学系30は、空間系に限らず、方向の異なる2つの光に分岐可能な分岐面を備える任意の光学部品を用いることができる。 Although FIG. 1 shows an example in which the specific angle is 45 degrees and the direction of reflected light is 90 degrees, the direction of reflected light is not fixed at 90 degrees and can be changed as needed. Further, the spatial optical system 30 is not limited to a spatial system, and any optical component having a branching surface capable of branching into two light beams in different directions can be used.
 図1に例示する光モニタデバイスによれば、入射側光ファイバ11から光は入射側光学レンズ21で平行光となり、拡散により損失することが防がれる。さらに空間光学系30によって大部分の光42が出射側光学レンズ22に導かれる。出射側光学レンズ22は空間光学系30を通過した光を集光し、出射側光ファイバ12に結合する。このように、入射側光ファイバ11から出た大部分の光42を損失が少ない状態で出射側光ファイバ12に導くことができる。 According to the optical monitor device illustrated in FIG. 1, light from the incident side optical fiber 11 becomes parallel light at the incident side optical lens 21, and loss due to diffusion is prevented. Furthermore, most of the light 42 is guided to the output side optical lens 22 by the spatial optical system 30 . The exit-side optical lens 22 collects the light that has passed through the spatial optical system 30 and couples it to the exit-side optical fiber 12 . In this way, most of the light 42 emitted from the incident side optical fiber 11 can be guided to the emitting side optical fiber 12 with little loss.
 一方、空間光学系30によって分岐された一部の光43は前記大部分の光42とは別の方向に配置された受光部5に導かれる。受光部5は、空間光学系30からの出射光43の全てを受光可能な大きさの受光面を有する。受光部5の受光面には、入射側光ファイバ11の数よりも多い受光素子が2次元に配列されている。これにより、入射側光ファイバ11から出射側光ファイバ12に伝搬する光の一部の強度を測定できる。 On the other hand, part of the light 43 split by the spatial optical system 30 is guided to the light receiving section 5 arranged in a direction different from that of the majority of the light 42 . The light receiving section 5 has a light receiving surface large enough to receive all the emitted light 43 from the spatial optical system 30 . On the light-receiving surface of the light-receiving unit 5, light-receiving elements larger in number than the incident-side optical fibers 11 are arranged two-dimensionally. Thereby, the intensity of part of the light propagating from the incident side optical fiber 11 to the emitting side optical fiber 12 can be measured.
 図2は入射側光ファイバ11の配置を、図3は受光部5の受光面における受光素子の配置を例示したものである。M本の入射側光ファイバF1~FMが、4本ずつ一定のピッチで2次元配列されている。N個の受光素子M1~MNが、一定のピッチで2次元配列されている。本開示では入射側光ファイバF1~FMのピッチと受光素子M1~MNのピッチは合っておらず、特段の調心も行わないので、入射側光ファイバF1から入射光41が入射した場合、受光部5の受光面上では、例えば図3のように、入射側光ファイバF1の出射光43の像ができる。このとき、受光素子M2~M5、M15~M18、M28~M31、M41~M44で出射光43が検出される。受光部5は、受光素子M2~M5、M15~M18、M28~M31、M41~M44で検出された光強度の総和を、入射側光ファイバF1の出射光43の光強度として検出する。 2 illustrates the arrangement of the incident-side optical fiber 11, and FIG. 3 illustrates the arrangement of the light receiving elements on the light receiving surface of the light receiving section 5. FIG. M incident-side optical fibers F1 to FM are arranged two-dimensionally at a constant pitch of four. N light receiving elements M1 to MN are two-dimensionally arranged at a constant pitch. In the present disclosure, the pitch of the incident side optical fibers F1 to FM does not match the pitch of the light receiving elements M1 to MN, and no special alignment is performed. On the light receiving surface of the portion 5, an image of the outgoing light 43 of the incident side optical fiber F1 is formed as shown in FIG. 3, for example. At this time, the emitted light 43 is detected by the light receiving elements M2 to M5, M15 to M18, M28 to M31, and M41 to M44. The light receiving unit 5 detects the sum of the light intensities detected by the light receiving elements M2 to M5, M15 to M18, M28 to M31, and M41 to M44 as the light intensity of the emitted light 43 from the incident side optical fiber F1.
 そこで、本開示では、入射側光ファイバF1から基準強度Prの光が出射された時の各受光素子M1~MNの光強度を予め測定し、記録する。これにより、入射側光ファイバF1と受光素子M1~MNとの対応関係Or11~Or1Nを取得することができる。同様に入射側光ファイバF2~FMについても、入射側光ファイバF2~FMと受光素子M1~MNとの対応関係Or21~OrMNを記録する。 Therefore, in the present disclosure, the light intensity of each of the light receiving elements M1 to MN when the light of the reference intensity Pr is emitted from the incident side optical fiber F1 is measured in advance and recorded. As a result, the correspondences Or 11 to Or 1N between the incident-side optical fiber F1 and the light receiving elements M1 to MN can be obtained. Similarly, for the incident side optical fibers F2 to FM, the corresponding relationships Or 21 to Or MN between the incident side optical fibers F2 to FM and the light receiving elements M1 to MN are recorded.
 入射側光ファイバF1~FMと受光素子M1~MNとの対応関係は、以下で表すことができる。
Figure JPOXMLDOC01-appb-M000007
ここで、Orijは、入射側光ファイバF1~FMのうちのi番目の光ファイバから光が出射されたときに、受光部5に備わるj番目の受光素子が受光した光強度である。
The correspondence between the incident-side optical fibers F1 to FM and the light receiving elements M1 to MN can be expressed as follows.
Figure JPOXMLDOC01-appb-M000007
Here, Or ij is the light intensity received by the j-th light-receiving element provided in the light-receiving unit 5 when the light is emitted from the i-th optical fiber among the incident-side optical fibers F1 to FM.
 次に入射側光ファイバF1~FMからそれぞれ基準強度Prのk~k倍の光が入射したとすると、各受光素子M1~MNで検出される光強度O~Oは各光ファイバF1~FMから入射した光の和となるので式2のようにあらわされる。
Figure JPOXMLDOC01-appb-M000008
Next, assuming that light with k 1 to kM times the reference intensity Pr is incident from the incident side optical fibers F1 to FM, respectively, the light intensities O 1 to O N detected by the light receiving elements M1 to MN are Since it is the sum of the light incident from F1 to FM, it is represented by Equation 2.
Figure JPOXMLDOC01-appb-M000008
 そこで、各光ファイバF1~FMから受光部5に入射する光強度は式3で表される。
Figure JPOXMLDOC01-appb-M000009
Therefore, the intensity of light incident on the light receiving section 5 from each of the optical fibers F1 to FM is expressed by Equation (3).
Figure JPOXMLDOC01-appb-M000009
 空間光学系30の分岐比が一定であるので、例えばそれがK:1であるとすると、入射側光ファイバ11から入射した光強度は式4、出射側光ファイバ12に伝搬した光強度は式5であると推定することができる。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Since the branching ratio of the spatial optical system 30 is constant, for example, if it is K:1, the intensity of the light incident from the incident side optical fiber 11 is given by Equation 4, and the intensity of the light propagated to the outgoing side optical fiber 12 is given by Equation 4. 5 can be estimated.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 本開示の光強度測定方法は、
 式1で表される対応関係を予め取得し、
 入射側光ファイバ11が強度測定対象となる光を伝搬している状態で、式3を用いて受光部5で光強度を測定し、
 式4を用いて入射側光ファイバ11から入射した光強度を測定し、
 式5を用いて出射側光ファイバ12に伝搬した光強度を測定する。
The light intensity measurement method of the present disclosure includes
Acquire in advance the correspondence represented by Equation 1,
While the incident-side optical fiber 11 is propagating the light whose intensity is to be measured, the light intensity is measured by the light receiving unit 5 using Equation 3,
Measure the light intensity incident from the incident side optical fiber 11 using Equation 4,
Using Equation 5, the intensity of light propagated to the output side optical fiber 12 is measured.
 受光部5での光強度の測定は、入射側光ファイバ11ごとに出射したときの各受光素子での受光強度を検出することで行う。本実施形態では、入射側光ファイバ11と各受光素子との対応関係を予め取得している。このため、前記対応関係に基づいて、入射側光ファイバ11を伝搬する光の強度を一括で測定することができる。 The light intensity of the light receiving unit 5 is measured by detecting the intensity of light received by each light receiving element when light is emitted from each incident side optical fiber 11 . In this embodiment, the correspondence relationship between the incident-side optical fiber 11 and each light receiving element is obtained in advance. Therefore, the intensity of light propagating through the incident-side optical fiber 11 can be collectively measured based on the correspondence relationship.
 さらに、本実施形態の光モニタデバイスでは、図4に示すように、空間光学系30が、一様な屈折率の材料で構成される入射側部材30Aと出射側部材30Bとの間に設けられた別の一様な屈折率を持つ単層膜33を備え、その単層膜33が入射光41の光軸と特定の角度(図では45度)をもって設けられている。これにより、単層膜33と入射側部材30Aとの第1の屈折率界面33A及び単層膜33と出射側部材30Bとの第2の屈折率界面33Bが、それぞれ入射光の光軸と特定の角度をもって設けられている。 Furthermore, in the optical monitor device of the present embodiment, as shown in FIG. 4, the spatial optical system 30 is provided between the entrance-side member 30A and the exit-side member 30B made of a material with a uniform refractive index. Another single-layer film 33 having a uniform refractive index is provided, and the single-layer film 33 is provided at a specific angle (45 degrees in the figure) with respect to the optical axis of the incident light 41 . As a result, the first refractive index interface 33A between the single layer film 33 and the entrance side member 30A and the second refractive index interface 33B between the single layer film 33 and the exit side member 30B are specified as the optical axis of the incident light. is set at an angle of
 入射側部材30Aと出射側部材30Bが同じ屈折率の場合、単層膜33では波長が異なる光42B1及び42B2は異なる方向に進む。このため、波長の異なる光42B1及び42B2の屈折率界面33Bへの入射位置は異なる。一方で、屈折率界面33Bから入射した光は、単層膜33と出射側部材30Bの間の屈折により、入射側部材30Aと同じ方向に進む。このため、各出射側光ファイバ12の入射端面での光軸を平行に配置しても、波長に依らず透過光を出射側光ファイバ12に結合させることができる。 When the incident side member 30A and the emitting side member 30B have the same refractive index, the lights 42B1 and 42B2 with different wavelengths travel in different directions in the single layer film 33. Therefore, the incident positions of the lights 42B1 and 42B2 with different wavelengths on the refractive index interface 33B are different. On the other hand, light incident from the refractive index interface 33B travels in the same direction as the incident side member 30A due to refraction between the single layer film 33 and the emitting side member 30B. Therefore, even if the optical axes of the incident end surfaces of the output-side optical fibers 12 are arranged in parallel, the transmitted light can be coupled to the output-side optical fibers 12 regardless of the wavelength.
 このように、本開示では、単層膜33において波長に応じた屈折率界面33Bへの入射位置の違いが生じる。そのため、出射光43B1及び43B2の波長が異なる場合、屈折率界面33Bでの反射位置が出射光43B1及び43B2で異なる。そこで、本開示では、式1で表される対応関係を、波長ごとに取得してもよい。 As described above, in the present disclosure, the single-layer film 33 causes a difference in the incident position to the refractive index interface 33B depending on the wavelength. Therefore, when the emitted lights 43B1 and 43B2 have different wavelengths, the emitted lights 43B1 and 43B2 have different reflection positions at the refractive index interface 33B. Therefore, in the present disclosure, the correspondence represented by Equation 1 may be obtained for each wavelength.
 また、出射側光学レンズ22の位置は、入射光41の中心波長、屈折角及び単層膜33の厚みSに応じて定められている。さらに、出射側光学レンズ22に到達する光の幅は、入射光41の波長幅と単層膜33の厚みSに主に依存する。出射側光学レンズ22の径に対して出射側光学レンズ22に到達する光の幅が小さいと光損失が小さく、一方でこの幅が大きいと光損失が大きくなる。そのため、出射側光学レンズ22の径を、入射光41の波長幅と単層膜33の厚みSに応じて定める値以上とすることで、光損失を小さくすることができる。一方、出射側光学レンズ22の径が前記入射側ファイバの設置間隔以上となると隣のレンズとぶつかるため、出射側光学レンズ22の径は前記入射側ファイバの設置間隔以下であることが必要である。 In addition, the position of the output-side optical lens 22 is determined according to the center wavelength and refraction angle of the incident light 41 and the thickness S of the single layer film 33 . Furthermore, the width of the light reaching the output side optical lens 22 mainly depends on the wavelength width of the incident light 41 and the thickness S of the single layer film 33 . If the width of the light reaching the output-side optical lens 22 is small with respect to the diameter of the output-side optical lens 22, the light loss is small. Therefore, by setting the diameter of the exit-side optical lens 22 to a value equal to or larger than the value determined according to the wavelength width of the incident light 41 and the thickness S of the single-layer film 33, the optical loss can be reduced. On the other hand, if the diameter of the output-side optical lens 22 is greater than or equal to the installation interval of the incident-side fibers, it collides with the adjacent lens. .
(本開示の効果)
 図1に例示する光モニタデバイスによれば、入射側光ファイバ11と出射側光ファイバ12は2次元に配列されており、空間光学系30によって2次元配列の光束を分岐する。これにより単心毎の光モニタデバイスや光ファイバが1次元に配列された光モニタデバイスを用いるよりも小型化が可能という効果がある。また、構成する部品が少ないことから低コスト化が容易という効果がある。
(Effect of the present disclosure)
According to the optical monitor device illustrated in FIG. 1, the incident-side optical fiber 11 and the output-side optical fiber 12 are two-dimensionally arranged, and the spatial optical system 30 splits the two-dimensionally arranged light flux. As a result, there is an effect that the size can be reduced more than using an optical monitoring device for each single fiber or an optical monitoring device in which optical fibers are arranged one-dimensionally. In addition, there is an effect that the cost can be easily reduced because the number of constituent parts is small.
(第2の実施形態例)
 図5に本開示の第2の実施形態例を示す。入射側部材30A及び出射側部材30Bは例えば石英ガラスなどの透明な材料で作ることができる。単層膜33は、入射側部材30A及び出射側部材30Bの間に一様な所定の厚さのスペーサ34を配置し、隙間を開けることで空気層を利用することができる。入射側光学レンズ21及び出射側光学レンズ22は、光コネクタなどで使用される角形フェルールにGRIN(GRaded INdex)ファイバを内蔵したコリーメータで実現することができる。入射側光ファイバ11及び出射側光ファイバ12も、入射側光学レンズ21及び出射側光学レンズ22と同様に、角形のフェルール23及び24に内蔵し、光コネクタと同様ガイドピン25とガイド穴を用いて入射側光ファイバ11、入射側光学レンズ21、出射側光ファイバ12、出射側光学レンズ22の光軸を調心することができる。受光部5は市販の光イメージセンサで実現できる。単層膜33以外の接続部に屈折率整合材を充填することで、余計なフレネル反射を抑制できる。
(Second embodiment example)
FIG. 5 shows a second example embodiment of the present disclosure. The entrance side member 30A and the exit side member 30B can be made of a transparent material such as quartz glass. The single-layer film 33 can utilize an air layer by arranging a spacer 34 having a uniform predetermined thickness between the incident-side member 30A and the emitting-side member 30B to form a gap. The incident-side optical lens 21 and the output-side optical lens 22 can be realized by a collimator in which a GRIN (GRaded INdex) fiber is incorporated in a rectangular ferrule used in an optical connector or the like. The incident-side optical fiber 11 and the output-side optical fiber 12 are also incorporated in the rectangular ferrules 23 and 24 similarly to the incident-side optical lens 21 and the output-side optical lens 22, and the guide pins 25 and the guide holes are used as in the optical connector. The optical axes of the incident-side optical fiber 11, the incident-side optical lens 21, the exit-side optical fiber 12, and the exit-side optical lens 22 can be aligned. The light receiving section 5 can be realized by a commercially available optical image sensor. By filling the connection portion other than the single layer film 33 with a refractive index matching material, unnecessary Fresnel reflection can be suppressed.
 以上、実施形態例だが、これに制限されるものではない。例えば、本開示では単層膜33が空気層である例を示したが、単層膜33は入射側部材30A及び出射側部材30Bよりも屈折率の低いガラスであってもよい。また、空間光学系30は立方形状に限らず、直方体などの任意の形状でありうる。また受光部5の配置についても、空間光学系30で分岐された光を受光可能な任意の位置に配置することができる。例えば、受光部5は空間光学系30の内部に埋設されていてもよい。 The above is an example embodiment, but it is not limited to this. For example, although an example in which the single layer film 33 is an air layer is shown in the present disclosure, the single layer film 33 may be glass having a lower refractive index than the incident side member 30A and the output side member 30B. Moreover, the spatial optical system 30 is not limited to a cubic shape, and may have any shape such as a rectangular parallelepiped. Also, the light receiving section 5 can be arranged at any position where the light branched by the spatial optical system 30 can be received. For example, the light receiving section 5 may be embedded inside the spatial optical system 30 .
 また本開示の光モニタデバイスは、光伝送システムにおいて伝送される任意の光のモニタリングに用いることが可能である。例えば、送信装置、受信装置又は中継装置などの光伝送システムに用いられる任意の装置に本開示の光モニタデバイスを搭載し、受光部5での測定結果を装置内又は装置外での任意の部品へのフィードバック又はフィードフォワードに用いることができる。また、光伝送システムにおける伝送線路の途中に本開示の光モニタデバイスを挿入し、伝送線路における光信号の強度や伝搬損失の測定を行うことができる。 Also, the optical monitoring device of the present disclosure can be used for monitoring any light transmitted in an optical transmission system. For example, the optical monitoring device of the present disclosure is installed in any device used in an optical transmission system, such as a transmitter, a receiver, or a relay device, and the measurement result at the light receiving unit 5 is measured at any part inside or outside the device. can be used for feedback or feedforward to Also, the optical monitor device of the present disclosure can be inserted in the middle of a transmission line in an optical transmission system to measure the intensity and propagation loss of an optical signal in the transmission line.
 本開示は情報通信産業に適用することができる。 This disclosure can be applied to the information and communications industry.
5:受光部
11:入射側光ファイバ
12:出射側光ファイバ
21:入射側光学レンズ
22:出射側光学レンズ
23、24:フェルール
25:ガイドピン
30:空間光学系
30A:入射側部材
30B:出射側部材
33:単層膜
34:スペーサ
41:入射光
42:大部分の出射光
43:一部の出射光
5: Light receiving part 11: Incident side optical fiber 12: Output side optical fiber 21: Incident side optical lens 22: Output side optical lens 23, 24: Ferrule 25: Guide pin 30: Spatial optical system 30A: Incident side member 30B: Output Side member 33: Single layer film 34: Spacer 41: Incident light 42: Majority of emitted light 43: Part of emitted light

Claims (7)

  1.  複数の光ファイバを伝搬する光の強度を検出する光モニタデバイスにおいて、
     前記複数の光ファイバからの入射光の一部を第1の方向へ、残りを第2の方向へ一定の分岐比で分岐し、出射する光学部品と、
     前記光学部品からの第2の方向への出射光を受光する受光部と、
     を備え、
     前記受光部は、
     前記光学部品から前記第2の方向への出射光の全てを受光可能な大きさの受光面を有し、
     前記受光面に、前記光ファイバの数よりも多い受光素子が2次元に配列されている、
     光モニタデバイス。
    In an optical monitoring device that detects the intensity of light propagating through multiple optical fibers,
    an optical component for branching a part of the incident light from the plurality of optical fibers in a first direction and the rest in a second direction at a constant branching ratio, and
    a light-receiving unit that receives light emitted from the optical component in a second direction;
    with
    The light receiving unit is
    having a light receiving surface large enough to receive all of the light emitted from the optical component in the second direction;
    More light-receiving elements than the optical fibers are arranged two-dimensionally on the light-receiving surface,
    Optical monitor device.
  2.  前記光学部品が、
     一様な厚さを有し、前記入射光の一部を前記第1の方向へ、残りを前記第2の方向へ一定の分岐比で分岐する単層膜と、
     前記単層膜の入射側に設けられ、前記単層膜と異なる屈折率を有する入射側部材と、
     前記単層膜の出射側に設けられ、前記入射側部材と同じ屈折率を有する出射側部材と、
     を備え、
     前記単層膜と前記入射側部材との第1の屈折率界面及び前記単層膜と前記出射側部材との第2の屈折率界面が、それぞれ入射光の光軸と特定の角度をもって設けられている、
     ことを特徴とする請求項1に記載の光モニタデバイス。
    The optical component is
    a single-layer film having a uniform thickness and branching part of the incident light in the first direction and the rest in the second direction at a constant branching ratio;
    an incident-side member provided on the incident side of the single-layer film and having a refractive index different from that of the single-layer film;
    an output-side member provided on the output side of the single-layer film and having the same refractive index as that of the incident-side member;
    with
    A first refractive index interface between the single layer film and the incident side member and a second refractive index interface between the single layer film and the exit side member are provided at specific angles with respect to the optical axis of the incident light. ing,
    2. The optical monitor device of claim 1, wherein:
  3.  前記複数の光ファイバは、前記光学部品に光を入射するように2次元配列されている複数の入射側光ファイバであり、
     前記光学部品からの前記第1の方向への各出射光をそれぞれ受光するように2次元配列されている複数の出射側光ファイバと、
     前記光学部品と前記入射側光ファイバの間に配置され、前記光学部品への各入射光を平行光とする入射側光学レンズと、
     前記光学部品と前記出射側光ファイバの間に配置され、前記光学部品からの各出射光を前記出射側光ファイバに結合させる出射側光学レンズと、
     を備えることを特徴とする請求項1又は2に記載の光モニタデバイス。
    the plurality of optical fibers are a plurality of incident-side optical fibers arranged two-dimensionally so as to allow light to enter the optical component;
    a plurality of exit-side optical fibers arranged two-dimensionally so as to receive respective beams of light emitted from the optical component in the first direction;
    an incident-side optical lens disposed between the optical component and the incident-side optical fiber to convert each incident light beam to the optical component into parallel light;
    an output-side optical lens disposed between the optical component and the output-side optical fiber for coupling each output light from the optical component to the output-side optical fiber;
    3. An optical monitoring device according to claim 1 or 2, comprising:
  4.  前記光学部品における前記第1の方向と前記第2の方向との分岐比がK:1であり、
     M本の前記複数の光ファイバから基準強度Prの光が出射された時の、N個の各受光素子で受光される光強度との対応関係は式C11で表され、
     M本の前記複数の光ファイバのうちの少なくともいずれかの光ファイバから前記基準強度Prのk倍の光が入射した際の、前記複数の光ファイバごとの、前記受光部で受光した光強度を、式C12を用いて測定する、
     請求項1から3のいずれかに記載の光モニタデバイス。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
     ただし、Orijは、前記複数の光ファイバのうちのi番目の光ファイバから光強度Prの光が出射されたときに前記受光部に備わるj番目の受光素子が受光した光強度である。また、Oは、M本の前記複数の光ファイバのうちのi番目の光ファイバから前記基準強度Prのk倍の光が入射した際に、j番目の受光素子で検出された光強度である。
    a branching ratio between the first direction and the second direction in the optical component is K:1;
    The correspondence relationship between the light intensity received by each of the N light-receiving elements when the light of the reference intensity Pr is emitted from the plurality of M optical fibers is expressed by Equation C11,
    light intensity received by the light receiving unit for each of the plurality of optical fibers when light having k times the reference intensity Pr is incident from at least one of the M optical fibers; , as measured using Equation C12,
    4. An optical monitor device according to any of claims 1-3.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    However, Or ij is the light intensity received by the j-th light receiving element provided in the light-receiving unit when the light with the light intensity Pr is emitted from the i-th optical fiber among the plurality of optical fibers. Further, Oj is the light intensity detected by the j-th light receiving element when light having k i times the reference intensity Pr is incident from the i-th optical fiber out of the plurality of M optical fibers. is.
  5.  前記光学部品における前記第1の方向と前記第2の方向との分岐比がK:1であり、
     M本の前記複数の光ファイバから基準強度Prの光が出射された時の、N個の各受光素子で受光される光強度との対応関係は式C21で表され、
     M本の前記複数の光ファイバのうちの少なくともいずれかの光ファイバから前記基準強度Prのk倍の光が入射した際の、前記複数の光ファイバごとの、前記複数の入射側光ファイバから入射した入射光の光強度を、式C22を用いて測定する、
     請求項1から4のいずれかに記載の光モニタデバイス。
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
     ただし、Orijは、前記複数の光ファイバのうちのi番目の光ファイバから光強度Prの光が出射されたときに前記受光部に備わるj番目の受光素子が受光した光強度である。また、Oは、M本の前記複数の光ファイバのうちのi番目の光ファイバから前記基準強度Prのk倍の光が入射した際に、j番目の受光素子で検出された光強度である。
    a branching ratio between the first direction and the second direction in the optical component is K:1;
    The correspondence relationship between the light intensity received by each of the N light-receiving elements when the light of the reference intensity Pr is emitted from the plurality of M optical fibers is represented by the formula C21,
    When light having k times the reference intensity Pr is incident from at least one of the M optical fibers, the light is incident from the plurality of incident side optical fibers for each of the plurality of optical fibers. Measure the light intensity of the incident light using the formula C22,
    5. An optical monitor device according to any of claims 1-4.
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    However, Or ij is the light intensity received by the j-th light receiving element provided in the light-receiving unit when the light with the light intensity Pr is emitted from the i-th optical fiber among the plurality of optical fibers. Further, Oj is the light intensity detected by the j-th light receiving element when light having k i times the reference intensity Pr is incident from the i-th optical fiber out of the plurality of M optical fibers. is.
  6.  前記光学部品における前記第1の方向と前記第2の方向との分岐比がK:1であり、
     M本の前記複数の光ファイバから基準強度Prの光が出射された時の、N個の各受光素子で受光される光強度との対応関係は式C31で表され、
     M本の前記複数の光ファイバのうちの少なくともいずれかの光ファイバから前記基準強度Prのk倍の光が入射した際の、前記複数の光ファイバごとの、前記複数の出射側光ファイバに出射される出射光の光強度を、式C32を用いて測定する、
     請求項1から5のいずれかに記載の光モニタデバイス。
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
     ただし、Orijは、前記複数の光ファイバのうちのi番目の光ファイバから光強度Prの光が出射されたときに前記受光部に備わるj番目の受光素子が受光した光強度である。また、Oは、M本の前記複数の光ファイバのうちのi番目の光ファイバから前記基準強度Prのk倍の光が入射した際に、j番目の受光素子で検出された光強度である。
    a branching ratio between the first direction and the second direction in the optical component is K:1;
    The correspondence relationship between the light intensity received by each of the N light-receiving elements when the light of the reference intensity Pr is emitted from the plurality of M optical fibers is represented by the formula C31,
    When light having k times the reference intensity Pr is incident from at least one of the M optical fibers, it is emitted to the plurality of output side optical fibers for each of the plurality of optical fibers. Measure the light intensity of the emitted light using the equation C32,
    6. An optical monitor device according to any of claims 1-5.
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    However, Or ij is the light intensity received by the j-th light receiving element provided in the light-receiving unit when the light with the light intensity Pr is emitted from the i-th optical fiber among the plurality of optical fibers. Further, Oj is the light intensity detected by the j-th light receiving element when light having k i times the reference intensity Pr is incident from the i-th optical fiber out of the plurality of M optical fibers. is.
  7.  請求項1から6のいずれかに記載の光モニタデバイスを用いて複数の光ファイバを伝搬する光の強度を一括で測定する光強度測定方法であって、
     前記複数の光ファイバから光ファイバごとに出射したときの各受光素子での受光強度を測定することで、前記複数の光ファイバと各受光素子との対応関係を予め取得し、
     前記複数の光ファイバが強度測定対象となる光を伝搬している状態で、前記受光部で受光した各受光素子の光強度を検出し、
     前記対応関係に基づいて、前記複数の光ファイバごとの、
     (i)前記受光部で受光した光強度、
     (ii)前記複数の入射側光ファイバから入射した入射光の光強度、
     (iii)前記複数の出射側光ファイバに出射される出射光の光強度、
     の少なくともいずれかを測定する、
     光強度測定方法。
    A light intensity measuring method for collectively measuring the intensity of light propagating through a plurality of optical fibers using the optical monitor device according to any one of claims 1 to 6,
    obtaining in advance the correspondence relationship between the plurality of optical fibers and each light receiving element by measuring the light receiving intensity at each light receiving element when each optical fiber is emitted from the plurality of optical fibers,
    Detecting the light intensity of each light receiving element received by the light receiving unit in a state where the plurality of optical fibers are propagating the light whose intensity is to be measured,
    Based on the correspondence relationship, for each of the plurality of optical fibers,
    (i) intensity of light received by the light receiving unit;
    (ii) light intensity of incident light incident from the plurality of incident-side optical fibers;
    (iii) the light intensity of the output light emitted to the plurality of output-side optical fibers;
    measuring at least one of
    Light intensity measurement method.
PCT/JP2021/020452 2021-05-28 2021-05-28 Optical monitoring device and light intensity measurement method WO2022249456A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/020452 WO2022249456A1 (en) 2021-05-28 2021-05-28 Optical monitoring device and light intensity measurement method
JP2023523915A JPWO2022249456A1 (en) 2021-05-28 2021-05-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020452 WO2022249456A1 (en) 2021-05-28 2021-05-28 Optical monitoring device and light intensity measurement method

Publications (1)

Publication Number Publication Date
WO2022249456A1 true WO2022249456A1 (en) 2022-12-01

Family

ID=84228504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020452 WO2022249456A1 (en) 2021-05-28 2021-05-28 Optical monitoring device and light intensity measurement method

Country Status (2)

Country Link
JP (1) JPWO2022249456A1 (en)
WO (1) WO2022249456A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184404A (en) * 1986-02-10 1987-08-12 Hitachi Ltd Matrix type optical multiplexing and demultiplexing device
US6873760B2 (en) * 2002-03-19 2005-03-29 Opti Work, Inc. Integrated optical fiber collimator
WO2007026510A1 (en) * 2005-08-29 2007-03-08 Matsushita Electric Industrial Co., Ltd. Fiber laser and optical device
JP2007214189A (en) * 2006-02-07 2007-08-23 Komatsu Ltd Device and method for deterioration determination of laser chamber window
JP2010050299A (en) * 2008-08-22 2010-03-04 Gigaphoton Inc Polarization purity control device and gas laser device with same
US20100202048A1 (en) * 2007-04-22 2010-08-12 Yaakov Amitai Collimating optical device and system
JP2012533915A (en) * 2009-06-26 2012-12-27 アルカテル−ルーセント Receiver for optical transverse mode multiplexed signals
WO2014049852A1 (en) * 2012-09-28 2014-04-03 株式会社日立製作所 Optical path converting optical coupling device connected with optical fiber, and optical module
CN104092493A (en) * 2014-07-30 2014-10-08 四川飞阳科技有限公司 One-way luminous power monitor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184404A (en) * 1986-02-10 1987-08-12 Hitachi Ltd Matrix type optical multiplexing and demultiplexing device
US6873760B2 (en) * 2002-03-19 2005-03-29 Opti Work, Inc. Integrated optical fiber collimator
WO2007026510A1 (en) * 2005-08-29 2007-03-08 Matsushita Electric Industrial Co., Ltd. Fiber laser and optical device
JP2007214189A (en) * 2006-02-07 2007-08-23 Komatsu Ltd Device and method for deterioration determination of laser chamber window
US20100202048A1 (en) * 2007-04-22 2010-08-12 Yaakov Amitai Collimating optical device and system
JP2010050299A (en) * 2008-08-22 2010-03-04 Gigaphoton Inc Polarization purity control device and gas laser device with same
JP2012533915A (en) * 2009-06-26 2012-12-27 アルカテル−ルーセント Receiver for optical transverse mode multiplexed signals
WO2014049852A1 (en) * 2012-09-28 2014-04-03 株式会社日立製作所 Optical path converting optical coupling device connected with optical fiber, and optical module
CN104092493A (en) * 2014-07-30 2014-10-08 四川飞阳科技有限公司 One-way luminous power monitor

Also Published As

Publication number Publication date
JPWO2022249456A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
Klaus et al. Free-space coupling optics for multicore fibers
US5757994A (en) Three-part optical coupler
US20190113682A1 (en) Method for axial alignment of coupled multicore optical fiber
US7313293B2 (en) Optical power monitoring apparatus, optical power monitoring method, and light receiving device
CN101720443A (en) The method and system that is used for the multiplexer waveguide-coupled
US5666448A (en) Variable splitting optical coupler
US11898928B2 (en) Large core apparatus for measuring optical power in multifiber cables
US7577328B2 (en) Optical reflector, optical system and optical multiplexer/demultiplexer device
JP2019015584A (en) Method and device for measuring optical fiber emitted beam profile
US6321001B1 (en) Wavelength division multiplexed optical communication system
US6536957B1 (en) Integrated optical transceiver array
WO2021245774A1 (en) Optical monitor device
JP2020197455A (en) Multicore connector optical fiber measuring device and method
JPH021632A (en) Optical line test system
WO2022249456A1 (en) Optical monitoring device and light intensity measurement method
WO2022249454A1 (en) Optical monitor device
WO2022249455A1 (en) Optical monitor device
WO2024024038A1 (en) Optical monitoring device and light intensity wavelength measurement method
WO2024024024A1 (en) Optical monitoring device and light intensity measurement method
JP2019169780A (en) Optical communication system
JP2000214345A (en) Optical communication device and bi-directional optical communication equipment
JP6411899B2 (en) Multi-core fiber connection device and system
JP7371900B2 (en) Bulk monitor and monitoring method for multi-core fiber
CN109669249B (en) Dual-wavelength bidirectional transmission optical assembly and method
EP4064468A1 (en) Optical coupler and optical amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523915

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943100

Country of ref document: EP

Kind code of ref document: A1