WO2022239833A1 - Method for producing curved glass plate, and glass laminate for vehicle - Google Patents

Method for producing curved glass plate, and glass laminate for vehicle Download PDF

Info

Publication number
WO2022239833A1
WO2022239833A1 PCT/JP2022/020061 JP2022020061W WO2022239833A1 WO 2022239833 A1 WO2022239833 A1 WO 2022239833A1 JP 2022020061 W JP2022020061 W JP 2022020061W WO 2022239833 A1 WO2022239833 A1 WO 2022239833A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
curved
flat glass
flat
curved glass
Prior art date
Application number
PCT/JP2022/020061
Other languages
French (fr)
Japanese (ja)
Inventor
隆宏 浅田
康平 枝村
裕紀 山北
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2023521243A priority Critical patent/JPWO2022239833A1/ja
Publication of WO2022239833A1 publication Critical patent/WO2022239833A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds

Definitions

  • the present disclosure relates to a method for manufacturing a curved glass plate used for laminated glass for vehicles, and laminated glass for vehicles.
  • Laminated glass having an intermediate film between two glass plates is used for automobile windshields and the like in order to prevent the glass from shattering at the time of collision.
  • curved laminated glass it is necessary to manufacture two curved glass plates (curved glass plates).
  • One method of manufacturing a curved glass plate is a press method. In the press method, flat glass sheets are heated one by one and pressed in a softened state to bend the glass sheets.
  • Patent Document 1 of the two glass plates with different thicknesses, the glass plate that is heated faster (that is, the thinner glass plate) is cooled in a heating furnace, and the two glass plates are press-bent.
  • a method is described for controlling substantially the same temperature after processing is complete.
  • the press method generally uses a convex mold and a concave mold.
  • the convex mold is a mold having a convex shape and has a shape corresponding to the curved shape of the glass plate after molding.
  • the concave mold is a ring-shaped mold that presses only the peripheral edge of the glass plate against the convex mold.
  • a curved glass plate is formed by placing the convex mold on top and the concave mold on the bottom, and pressing the heated flat glass between the convex mold and the concave mold.
  • a small hole is provided in the convex mold, and the glass plate can be fixed so that the glass plate does not move during pressing by sucking with a vacuum pump or the like.
  • An object of the present disclosure is to provide a method for manufacturing a curved glass sheet that causes less distortion when it is made into laminated glass, and a laminated glass for vehicles that causes less distortion.
  • the convex mold and the glass plate do not come into direct contact.
  • the convex surface is provided with a metal cloth (also called mold cloth). Further, the glass sheet is conveyed from the heating furnace to the press molding machine by a roller conveyor or the like.
  • the present inventors found that the trace of the metal cloth transferred to the concave surface of the curved glass plate (the surface in contact with the metal cloth provided on the convex surface) during press molding is the value of the distortion of the laminated glass. The present inventors have found that this is the cause of the increase in , leading to the completion of the present disclosure. Although the traces of the metal cloth on the concave surface of the curved glass plate did not significantly increase the distortion of the single glass plate, it is considered that when laminated glass is used, it causes a large amount of distortion. In addition, the present inventors have found that when a roller conveyor is used to transport the glass sheets, the traces of the rollers transferred to the convex surface of the curved glass sheet by the weight of the glass sheets also cause distortion of the laminated glass. Found it.
  • a method for manufacturing a curved glass plate for use in laminated glass for vehicles comprising: (A) heating the flat glass in a heating furnace; A step (B) of conveying the flat glass heated in the step (A) to a press molding machine; a step (C) of bending the flat glass to form a curved glass sheet having a concave surface and a convex surface with the press molding machine; In the step (B), the surface of the flat glass is cooled by injecting a cooling substance.
  • a method for manufacturing a curved glass sheet ⁇ 2> The method for producing a curved glass sheet according to ⁇ 1>, wherein the cooling is performed by injecting the cooling substance onto the concave surface side surface of the flat glass, and the cooling substance is air.
  • step (B) the surface of the flat glass that will become the concave surface in the step (C) is cooled more strongly than the surface that will become the convex surface in the step (C) by injecting a cooling substance.
  • step (B) the surface of the flat glass which will be the convex surface in the step (C) is cooled more strongly than the surface of the flat glass which will be the concave surface in the step (C) by injecting a cooling substance.
  • the method for producing a curved glass plate according to ⁇ 1> the method for producing a curved glass plate according to ⁇ 1>.
  • ⁇ 5> The method for producing a curved glass sheet according to any one of ⁇ 1> to ⁇ 4>, wherein the cooling is performed by injecting air onto both surfaces of the flat glass.
  • ⁇ 6> The method for producing a curved glass sheet according to ⁇ 5>, wherein the air injection pressure onto the concave surface of the flat glass is greater than the air injection pressure onto the convex surface of the flat glass.
  • ⁇ 7> The method for producing a curved glass plate according to ⁇ 5>, wherein the air injection pressure to the convex surface of the flat glass is higher than the air injection pressure to the concave surface of the flat glass.
  • ⁇ 8> The method for manufacturing a curved glass sheet according to any one of ⁇ 1> to ⁇ 7>, wherein the cooling substance has a temperature of 200° C. or lower.
  • ⁇ 9> The method for producing a curved glass sheet according to any one of ⁇ 1> to ⁇ 7>, wherein the cooling substance has a temperature of 100° C. or less.
  • ⁇ 10> The method for manufacturing a curved glass sheet according to any one of ⁇ 1> to ⁇ 7>, wherein the cooling substance has a temperature of 50° C. or lower.
  • ⁇ 11> The method for manufacturing a curved glass plate according to any one of ⁇ 1> to ⁇ 10>, wherein the cooling lowers the temperature of the surface of the flat glass on the concave surface side by 5 to 15°C.
  • ⁇ 12> The method for producing a curved glass sheet according to any one of ⁇ 1> to ⁇ 11>, wherein the press molding machine has a convex mold, and a metal cloth is provided on the surface of the convex mold.
  • ⁇ 13> The method for producing a curved glass sheet according to any one of ⁇ 1> to ⁇ 12>, wherein the cooling is performed outside the heating furnace.
  • ⁇ 14> Two flat glass sheets, a first flat glass and a second flat glass, are used as the flat glass, a first curved glass sheet is produced from the first flat glass, and a second curved glass sheet is produced from the second flat glass.
  • a manufacturing method for manufacturing The method for producing a curved glass plate according to any one of ⁇ 1> to ⁇ 13>, wherein the cooling is performed on at least one of the first flat glass and the second flat glass.
  • ⁇ 15> The method for producing a curved glass plate according to ⁇ 14>, wherein the first flat glass and the second flat glass have the same thickness.
  • ⁇ 16> The method for producing a curved glass plate according to ⁇ 14>, wherein the first flat glass and the second flat glass have different thicknesses.
  • ⁇ 17> The method for producing a curved glass sheet according to ⁇ 14>, wherein the cooling is performed on both the first flat glass and the second flat glass.
  • the thickness of the first flat glass is thicker than the thickness of the second flat glass.
  • ⁇ 19> The method for producing a curved glass sheet according to ⁇ 18>, wherein the temperature of the heating furnace is equal to or higher than the temperature at which the second flat glass can be bent. ⁇ 20> ⁇ 18> or ⁇ 19>.
  • ⁇ 21> a first curved glass plate and a second curved glass plate facing each other;
  • a laminated glass for a vehicle comprising: an interlayer sandwiched between the first curved glass plate and the second curved glass plate, The laminated glass has a thickness of 5 mm or less, The perspective distortion in the test area A defined in JIS R3212 (2015) of the laminated glass is 1.5 minutes or less,
  • a laminated glass for a vehicle wherein the thickness of the first curved glass plate is ⁇ 1.1 times or less the thickness of the second curved glass plate.
  • ⁇ 22> The laminated glass for vehicles according to ⁇ 21>, wherein each of the first curved glass plate and the second curved glass plate has a see-through distortion in the test region A of 0.4 minutes or less.
  • ⁇ 23> a first curved glass plate and a second curved glass plate facing each other;
  • a laminated glass for a vehicle comprising: an interlayer sandwiched between the first curved glass plate and the second curved glass plate, The laminated glass has a thickness of 5 mm or less, The perspective distortion in the test area A defined in JIS R3212 (2015) of the laminated glass is 1.0 minutes or less, A laminated glass for a vehicle, wherein the thickness of the second curved glass plate is 0.8 times or less the thickness of the first curved glass plate.
  • FIG. 1(a) is a schematic diagram of an example of flat glass
  • FIG. 1(b) is a schematic diagram of an example of a curved glass plate. It is a schematic diagram for demonstrating an example of the manufacturing method of a curved glass plate. It is a schematic diagram for demonstrating an example of the manufacturing method of a curved glass plate.
  • the method for manufacturing a curved glass sheet of the present disclosure includes: A method for manufacturing a curved glass plate for use in laminated glass for vehicles, comprising: (A) heating the flat glass in a heating furnace; A step (B) of conveying the flat glass heated in the step (A) to a press molding machine; a step (C) of bending the flat glass to form a curved glass sheet having a concave surface and a convex surface with the press molding machine; In the step (B), the surface of the flat glass is cooled by injecting a cooling substance.
  • a method for manufacturing a curved glass plate comprising: (A) heating the flat glass in a heating furnace; A step (B) of conveying the flat glass heated in the step (A) to a press molding machine; a step (C) of bending the flat glass to form a curved glass sheet having a concave surface and a convex surface with the press molding machine; In the step (B), the surface of the flat glass is cooled by injecting a cooling substance
  • Step (A) is a step of heating flat glass in a heating furnace.
  • the flat glass is heated to a temperature at which it can be bent or higher (for example, 600 to 750° C.).
  • the temperature at which bending can be performed varies depending on the thickness and chemical composition of the flat glass, and can be set to a temperature suitable for the flat glass to be used.
  • a heating method in the heating furnace is not particularly limited, and a known heating method can be used.
  • the flat glass can be heated while being conveyed by a known method such as a roller conveyor.
  • flat glass The type of flat glass is not particularly limited, and known flat glass such as soda lime glass, aluminosilicate glass, borosilicate glass, alkali-free glass, quartz glass, physically strengthened glass, and chemically strengthened glass can be used. In particular, it is preferable to use soda lime silicate glass specified in ISO 16293-1:2008. Further, as a material of the flat glass, a coloring component such as iron or cobalt is appropriately adjusted as a component of the glass composition, and a material exhibiting a color tone of gray, green, blue, or the like can be used.
  • a coloring component such as iron or cobalt is appropriately adjusted as a component of the glass composition, and a material exhibiting a color tone of gray, green, blue, or the like can be used.
  • the thickness of the flat glass is not particularly limited, and can be, for example, 0.05 mm to 10 mm.
  • the thickness of the flat glass is preferably 0.5 mm to 4 mm, more preferably 1 mm to 3 mm.
  • Step (B) is a step of conveying the flat glass heated in step (A) to a press molding machine.
  • the flat glass can be conveyed from the heating furnace to the press molding machine by a known method such as a roller conveyor.
  • step (B) the surface of the flat glass is cooled by injecting a cooling substance.
  • the cooling substance is not particularly limited, and examples thereof include air and atomized water, but air is preferred.
  • the injection pressure of the cooling substance is not particularly limited, but can be, for example, 0.5 MPa or less, and may be 0.2 MPa to 0.5 MPa. Both the injection pressure of the cooling substance onto the surface of the flat glass to be concave in the step (C) and the injection pressure of the cooling substance to the surface of the flat glass to be convex in the step (C) are 0.2 MPa to 0. 0.5 MPa.
  • the injection pressure of the cooling substance onto the concave surface of the flat glass in the step (C) is 0.4 MPa to 0.5 MPa, and the injection pressure of the cooling substance onto the convex surface in the step (C) is It is preferably 0.0 MPa to 0.3 MPa.
  • cooling modes include the following three.
  • the aspect (iii) includes the following three aspects.
  • the surface on the concave side in step (C) is the surface of the flat glass that faces the convex mold of the press molding machine in step (C).
  • the surface that becomes a concave surface in the flat glass process (C) is also referred to as "S2 surface”.
  • the temperature of the glass surface layer portion of the S2 surface is lowered, and the traces of the metal cloth are less likely to be transferred. and the occurrence of distortion can be suppressed. It is preferable to lower the temperature of the S2 surface by 5 to 15°C by cooling in step (B). That is, the temperature of the S2 surface after cooling is preferably 5 to 15° C. lower than the temperature of the S2 surface before cooling.
  • the temperature of the glass surface layer portion of the S1 surface is reduced to This makes it difficult to transfer the traces of the roller, thereby suppressing the occurrence of distortion. It is preferable to lower the temperature of the S1 surface by 5 to 15°C by cooling in step (B). That is, the temperature of the S1 surface after cooling is preferably 5 to 15° C. lower than the temperature of the S1 surface before cooling.
  • the temperature of the S1 surface and the S2 surface is lowered by 5 to 15° C. by cooling in step (B). That is, the temperatures of the S1 and S2 surfaces after cooling are preferably 5 to 15° C. lower than the temperatures of the S1 and S2 surfaces before cooling.
  • the aspect (iii) when cooling substances with the same temperature are used, the higher the injection pressure, the stronger the cooling (that is, the greater the degree of temperature drop).
  • the aspect (iv) is particularly preferable.
  • Fig. 1(a) shows a schematic diagram (a cross-sectional schematic diagram in the thickness direction) of an example of flat glass
  • Fig. 1(b) shows a schematic diagram of an example of a curved glass plate.
  • the cooling in step (B) is preferably performed by injecting air.
  • a method for injecting air is not particularly limited, and a known method can be used. For example, it is possible to adopt a method of supplying air to a tubular member provided with injection holes at predetermined intervals and injecting the air from the injection holes onto the glass plate. Also, in order to increase the cooling power, water may be sprayed in the form of a mist at the same time as the air is sprayed.
  • the temperature of the injected air is preferably 200° C. or lower, more preferably 100° C. or lower, and even more preferably 50° C. or lower.
  • Cooling in step (B) is preferably performed outside the heating furnace. By cooling outside the heating furnace, the temperature of the glass sheet can be easily lowered and more accurate control becomes possible. This makes it possible to more effectively suppress the occurrence of distortion in the laminated glass.
  • Step (C) is a step of bending flat glass to form a curved glass sheet having concave and convex surfaces using a press molding machine.
  • the press molding machine has a convex mold and a metal cloth (mold cloth) on the surface of the convex mold.
  • the convex mold is provided with a hole for sucking and fixing the glass plate during pressing.
  • the press molding machine preferably further has a concave mold (ring-shaped mold) facing the convex mold.
  • the concave mold Since the concave mold has a ring-shaped structure and supports only the peripheral edge of the glass plate, the area other than the glass plate peripheral edge with which the concave mold contacts does not come into contact with the concave mold.
  • a convex mold is used as an upper mold and a concave mold is used as a lower mold. By raising the concave mold and pressing the glass plate against the convex mold, the glass plate can be bent.
  • the press molding machine, convex mold, concave mold, and metal cloth are not particularly limited, and a known press molding machine, convex mold, concave mold, and metal cloth used for bending glass sheets can be used.
  • the press molding machine may be integrated with the heating furnace described above, or may be installed separately downstream of the heating furnace.
  • heating in the heating furnace in step (A) and heating in step (B) can also be carried out continuously.
  • two or more sheets of flat glass can be continuously heated and shaped.
  • a preferred embodiment of the method for manufacturing a curved glass sheet of the present disclosure includes: Manufacture of using two flat glass sheets, the first flat glass and the second flat glass, as the flat glass, manufacturing the first curved glass sheet from the first flat glass, and manufacturing the second curved glass sheet from the second flat glass a method, A method for manufacturing a curved glass sheet, wherein at least one of the first flat glass and the second flat glass is cooled in the step (B) described above.
  • a particularly preferred embodiment of the method for manufacturing a curved glass sheet of the present disclosure is A method for manufacturing a curved glass plate for use in laminated glass for vehicles, comprising: a step (A) of heating the first flat glass and the second flat glass in a heating furnace; a step (B) of conveying the first flat glass and the second flat glass heated in step (A) to a press molding machine; a step (C) of bending the first flat glass and the second flat glass with a press molding machine to form a first curved glass plate and a second curved glass plate having a concave surface and a convex surface; In the step (B), for at least one of the first flat glass and the second flat glass, the surface on the side that becomes the concave surface in the step (C) and the surface on the side that becomes the convex surface in the step (C) cooling more intensely, A method for manufacturing a curved glass plate.
  • the thickness of the first flat glass and the second flat glass may be the same or different.
  • the cooling in step (B) may be performed on either one of the first flat glass and the second flat glass, or may be performed on both the first flat glass and the second flat glass.
  • the thickness of the first flat glass is thicker than the thickness of the second flat glass, it is preferable to perform the cooling in step (B) only on the first flat glass.
  • thin glass sheets are more difficult to mold than thick glass sheets because, for example, wrinkles are more likely to occur in the outer periphery. Therefore, when molding a thin glass plate, it is necessary to mold at a higher temperature than when molding a thick glass plate.
  • the thickness of the first flat glass is thicker than the thickness of the second flat glass (that is, when the first flat glass is thick and the second flat glass is thin)
  • the heating temperature Since it is not usually performed to change the setting of , the first flat glass and the second flat glass are heated to approximately the same temperature.
  • the thicker first flat glass must be heated to a temperature higher than the temperature at which it can be bent. is heated up to
  • the higher the heating temperature the more likely the metal cloth will mark during pressing. Therefore, when the thickness of the first flat glass is thicker than the thickness of the second flat glass, the cooling in step (B) is performed only on the first flat glass so that the temperature is higher than the temperature at which bending is possible.
  • the thickness of each flat glass is not particularly limited.
  • the thickness of the first flat glass is 2.0 to 2.3 mm.
  • the thickness of the second flat glass is 1.6 to 1.8 mm.
  • the temperature of the heating furnace is preferably at least the temperature at which the second flat glass can be bent.
  • the temperature of the concave surface (S2 surface) of the first flat glass is lowered by the cooling in the step (B) to the second flat glass. It is preferably 1 to 10° C. lower than the temperature of the concave surface (S2 surface) of the glass.
  • a laminated glass for a vehicle of the present disclosure includes a first curved glass plate, a second curved glass plate, and an interlayer sandwiched between the first curved glass plate and the second curved glass plate, which face each other. Prepare.
  • the thickness of the laminated glass is preferably 5 mm or less, more preferably 4 mm or less.
  • the thickness of the first curved glass plate is preferably ⁇ 1.1 times or less of the thickness of the second curved glass plate. It is preferable that the perspective distortion in the test area A defined in JIS R3212 (2015) for laminated glass is 1.5 minutes or less. The perspective distortion in the test area A of the first curved glass plate and the second curved glass plate is preferably 0.4 minutes or less, respectively.
  • the laminated glass for a vehicle of the present disclosure is sandwiched between a first curved glass plate, a second curved glass plate, and a first curved glass plate and a second curved glass plate, which face each other. and an interlayer film, wherein the thickness of the laminated glass (total thickness of the first curved glass plate, the interlayer film, and the second curved glass plate) is 5 mm or less, and The perspective distortion in the test area A defined in JIS R3212 (2015) for laminated glass is 1.0 minutes or less, and the thickness of the second curved glass plate is 0.00% of the thickness of the first curved glass plate. It is also preferable to be a laminated glass for vehicles, which is 8 times or less.
  • the thickness of the glass sheets constituting the laminated glass for a vehicle of the present disclosure is constant.
  • the perspective distortion in the test area A of the first curved glass plate and the second curved glass plate is preferably 0.2 minutes or less, respectively.
  • a first flat glass with a glass size of 1370 mm ⁇ 1049 mm and a thickness of 2.0 mm and a second flat glass with a thickness of 2.0 mm curved glass sheets are produced from each flat glass, and these curved glass sheets are manufactured.
  • a laminated glass was produced using this.
  • a curved glass sheet was manufactured by a curved glass sheet manufacturing method using the heating furnace 2, the cooling device 3, and the press molding machine 4 shown in FIG.
  • a cooling device 3 is provided outside the heating furnace 2 and between the heating furnace 2 and the press molding machine 4 .
  • the glass sheet is conveyed by a roller conveyor 5 into the heating furnace 2 and from the heating furnace 2 to the press molding machine 4 .
  • the press molding machine 4 has a convex mold 6 and a concave mold 7 (ring-shaped mold) as molding dies, and has a metal cloth 8 on the surface of the convex mold 6 .
  • a first flat glass with a thickness of 2.0 mm and a second flat glass with a thickness of 2.0 mm were heated while flowing separately in a heating furnace at 648°C.
  • normal temperature 23 ° C.
  • the strain of each curved glass plate was measured. Specifically, based on JIS R3212 (2015), perspective distortion of test areas A and B was measured at an actual vehicle mounting angle of 28.4 degrees. After that, a polyvinyl butyral (PVB) intermediate film having a thickness of 0.76 mm was placed between the two curved glass plates to produce a laminated glass, and the strain was measured in the same manner as described above. The results are shown in Table 1 below. Table 1 shows the perspective strain (in minutes) for each test area. A smaller perspective distortion value is preferable because the distortion is less.
  • PVB polyvinyl butyral
  • Example 1 A curved glass plate was formed in the same manner as in Example 1, except that the flat glass was not cooled after coming out of the heating furnace.
  • the surface temperature of the S2 surface of each flat glass was measured before entering the press molding machine, the surface temperature of the S2 surface in the central portion of each flat glass was 626°C.
  • laminated glass was produced in the same manner as in Example 1, and the distortion of each curved glass plate and laminated glass was measured. The results are shown in Table 2 below.
  • Example 2 Using a first flat glass having a glass size of 1401 mm ⁇ 723 mm and a thickness of 2.0 mm and a second flat glass having a thickness of 1.6 mm, a curved glass sheet is produced from each flat glass, and these curved glass sheets are manufactured. A laminated glass with different thickness was manufactured using this method. Specifically, similarly to Example 1, a curved glass plate was manufactured by the curved glass plate manufacturing method including the heating furnace, the cooling device, and the press molding machine shown in FIG. A first flat glass with a thickness of 2.0 mm and a second flat glass with a thickness of 1.6 mm were heated while flowing separately in a heating furnace at 648°C.
  • the concave surface (S2 surface) of the curved glass plate of the first flat glass is cooled and blown.
  • the first flat glass was cooled by blowing air at normal temperature (23° C.).
  • the second flat glass having a thickness of 1.6 mm was not cooled after leaving the heating furnace.
  • the surface temperature of the S2 surface of each flat glass was measured before entering the press molding machine, the surface temperature of the S2 surface near the center of the 1.6 mm thick second flat glass was 625 ° C.
  • the surface temperature of the S2 surface near the center of the 2.0 mm first flat glass was 620°C, and a temperature difference of 5°C could be produced.
  • Example 2 A curved glass plate was formed in the same manner as in Example 2, except that the first flat glass having a thickness of 2.0 mm was not cooled after coming out of the heating furnace. That is, in Comparative Example 2, neither the first flat glass having a thickness of 2.0 mm nor the second flat glass having a thickness of 1.6 mm was cooled.
  • the surface temperature of the S2 surface of each flat glass before entering the press molding machine was measured, the surface of the S2 surface near the center of the first flat glass with a thickness of 2.0 mm and the second flat glass with a thickness of 1.6 mm All the temperatures were 625° C., and there was no temperature difference. Thereafter, laminated glass was produced in the same manner as in Example 2, and the distortion of each curved glass plate and laminated glass was measured. The results are shown in Table 4 below.
  • Example 2 Comparing Example 2 and Comparative Example 2, it can be seen that perspective distortion is improved in Example 2 compared to Comparative Example 2 in each region when laminated glass is used.
  • Example 3 Using a first flat glass with a glass size of 1370 mm ⁇ 1049 mm and a thickness of 2.0 mm and a second flat glass with a thickness of 2.0 mm, curved glass sheets are produced from each flat glass, and these curved glass sheets are manufactured.
  • a laminated glass was produced using Specifically, a curved glass sheet was manufactured by a curved glass sheet manufacturing method including the heating furnace 2, the cooling devices 3 and 10, and the press molding machine 4 shown in FIG.
  • the manufacturing method of the curved glass sheet shown in FIG. 3 is the same as the manufacturing method of the curved glass sheet of FIG.
  • a cooling device 10 is provided outside the heating furnace 2 and between the heating furnace 2 and the press molding machine 4 .
  • the cooling device 10 can cool the S1 surface.
  • a first flat glass with a thickness of 2.0 mm and a second flat glass with a thickness of 2.0 mm were heated while flowing separately in a heating furnace at 653°C.
  • the concave surface (S2 surface) and the convex surface of the curved glass plate of each flat glass are cooled and blown. Air at room temperature (23° C.) was blown onto (S1 surface) to cool the flat glass.
  • the surface temperature of the S2 surface of each flat glass before entering the press molding machine was measured with a thermometer 9, the surface temperature of the S2 surface near the center of each flat glass was 626°C.
  • Comparative Example 3 which will be described later, the surface temperature of the S2 surface was 631°C when cooling was not performed. I understand. Thereafter, bending was performed using a press molding machine in which the temperature of the mold was set to 450° C. to produce a first curved glass plate with a thickness of 2.0 mm and a second curved glass plate with a thickness of 2.0 mm. An intermediate film made of polyvinyl butyral (PVB) and having a thickness of 0.76 mm was arranged between the manufactured first curved glass plate and the second curved glass plate to manufacture a laminated glass.
  • PVB polyvinyl butyral
  • the distortion of the laminated glass was measured. Specifically, based on JIS R3212 (2015), perspective distortion of test areas A and B was measured at an actual vehicle mounting angle of 28.4 degrees. Table 5 below shows the measurement results for three samples prepared under the same conditions. Table 5 shows the perspective strain (in minutes) for each test area. A smaller perspective distortion value is preferable because the distortion is less.
  • Example 3 A curved glass plate was formed in the same manner as in Example 3, except that the flat glass was not cooled after coming out of the heating furnace.
  • the surface temperature of the S2 surface of each flat glass was measured before entering the press molding machine, the surface temperature of the S2 surface in the central portion of each flat glass was 631°C.
  • a laminated glass was produced, and the distortion of the laminated glass was measured. Table 6 below shows the measurement results for three samples prepared under the same conditions.
  • Example 3 Comparing Example 3 and Comparative Example 3, it can be seen that perspective distortion is improved in Example 3 compared to Comparative Example 3 in each region when laminated glass is used.
  • the method for manufacturing a curved glass sheet of the present disclosure can manufacture a curved glass sheet with little distortion when laminated glass, and can provide laminated glass with particularly little distortion.

Abstract

A method for producing a curved glass plate which exhibits little distortion when used as a glass laminate, and a glass laminate for use in a vehicle which exhibits little distortion, are provided by: a method for producing a curved glass plate provided with a step (A) for heating flat glass in a heating furnace, a step (B) for conveying the flat glass heated in step (A) to a press-forming device, and a step (C) for molding a curved glass plate which has a concave surface and a convex surface by bending the flat glass using the press-forming device, wherein the surface of the flat glass on the side thereof which will become the concave surface in step (C) is more forcefully cooled in step (B) than is the surface on the side thereof which will become the convex surface in step (C); and a glass laminate for use in a vehicle which has a sight-through distortion of 1.5 minutes or less in a test region A as stipulated by JISR3212 (2015).

Description

湾曲ガラス板の製造方法及び車両用合わせガラスMethod for manufacturing curved glass plate and laminated glass for vehicle
 本開示は、車両用合わせガラスに用いられる湾曲ガラス板の製造方法、及び車両用合わせガラスに関する。 The present disclosure relates to a method for manufacturing a curved glass plate used for laminated glass for vehicles, and laminated glass for vehicles.
 自動車のフロントガラスなどには、衝突時のガラスの飛散を防止するために、二枚のガラス板の間に中間膜を有する合わせガラスが用いられている。
 湾曲した形状の合わせガラスを製造する場合、二枚の湾曲した形状のガラス板(湾曲ガラス板)を製造する必要がある。
 湾曲ガラス板を製造する方法の1つとして、プレス工法がある。
 プレス工法では、平板ガラスを一枚ずつ加熱して、柔らかくした状態でプレスしてガラス板を曲げる。
 特許文献1には、厚さの異なる二枚のガラス板のうち、加熱されるのが早いガラス板(すなわち薄い方のガラス板)を加熱炉内で冷却し、二枚のガラス板がプレス曲げ加工を完了した後で、実質的に同じ温度になるように制御する方法が記載されている。
BACKGROUND ART Laminated glass having an intermediate film between two glass plates is used for automobile windshields and the like in order to prevent the glass from shattering at the time of collision.
When manufacturing curved laminated glass, it is necessary to manufacture two curved glass plates (curved glass plates).
One method of manufacturing a curved glass plate is a press method.
In the press method, flat glass sheets are heated one by one and pressed in a softened state to bend the glass sheets.
In Patent Document 1, of the two glass plates with different thicknesses, the glass plate that is heated faster (that is, the thinner glass plate) is cooled in a heating furnace, and the two glass plates are press-bent. A method is described for controlling substantially the same temperature after processing is complete.
日本国特表2006-523173号公報Japanese Patent Publication No. 2006-523173
 プレス工法では、一般的に、凸型と凹型の金型を用いる。凸型は、凸形状の成形型であり、成形後のガラス板の湾曲形状に対応する形状を有する。凹型は、ガラス板の周縁部のみを凸型に押し付けるような、リング状の成形型である。凸型を上に、凹型を下に配置して、凸型と凹型とで加熱された平板ガラスをプレスして、湾曲ガラス板を成形する。凸型には小さい穴が設けられており、真空ポンプ等で吸引することにより、プレス中にガラス板が動かないように、ガラス板を固定することができる。
 しかしながら、これまで、プレス工法にて得られた湾曲ガラス板において、ガラス板単独では歪んでいないものの、合わせガラスとした際に歪みの値が大きくなる場合があった。
 本開示の課題は、合わせガラスにした際に歪みの発生が少ない湾曲ガラス板の製造方法、及び歪みが少ない車両用合わせガラスを提供することにある。
The press method generally uses a convex mold and a concave mold. The convex mold is a mold having a convex shape and has a shape corresponding to the curved shape of the glass plate after molding. The concave mold is a ring-shaped mold that presses only the peripheral edge of the glass plate against the convex mold. A curved glass plate is formed by placing the convex mold on top and the concave mold on the bottom, and pressing the heated flat glass between the convex mold and the concave mold. A small hole is provided in the convex mold, and the glass plate can be fixed so that the glass plate does not move during pressing by sucking with a vacuum pump or the like.
However, in the curved glass sheet obtained by the pressing method, although the glass sheet alone is not distorted, there have been cases where the distortion value becomes large when laminated glass is formed.
An object of the present disclosure is to provide a method for manufacturing a curved glass sheet that causes less distortion when it is made into laminated glass, and a laminated glass for vehicles that causes less distortion.
 通常、ガラス板の凸型からの離型性を向上させるため、また、ガラス板に吸引用の穴の形状が転写されないようにするために、凸型とガラス板とが直接接触しないように、凸型の表面には金属布(モールドクロスとも呼ぶ。)が備えられている。
 また、ガラス板は、ローラコンベヤ等によって、加熱炉からプレス成形機まで搬送される。
Normally, in order to improve the releasability of the glass plate from the convex mold and to prevent the shape of the suction holes from being transferred to the glass plate, the convex mold and the glass plate do not come into direct contact. The convex surface is provided with a metal cloth (also called mold cloth).
Further, the glass sheet is conveyed from the heating furnace to the press molding machine by a roller conveyor or the like.
 本発明者らは、鋭意検討の結果、プレス成形時に湾曲ガラス板の凹面(凸型表面に設けられた金属布と接触した面)に転写された金属布の跡が、合わせガラスの歪みの値が大きくなる原因であることを見出し、本開示を完成させるに至った。湾曲ガラス板の凹面の金属布の跡は、単独のガラス板の歪みを顕著に上昇させることはなかったものの、合わせガラスにすると、大きな歪みの原因となっていると考えられる。
 また、本発明者らは、ガラス板の搬送にローラコンベヤを用いた場合に、ガラス板の自重によって湾曲ガラス板の凸面に転写されたローラの跡も、合わせガラスの歪みの原因となることを見出した。
As a result of extensive studies, the present inventors found that the trace of the metal cloth transferred to the concave surface of the curved glass plate (the surface in contact with the metal cloth provided on the convex surface) during press molding is the value of the distortion of the laminated glass. The present inventors have found that this is the cause of the increase in , leading to the completion of the present disclosure. Although the traces of the metal cloth on the concave surface of the curved glass plate did not significantly increase the distortion of the single glass plate, it is considered that when laminated glass is used, it causes a large amount of distortion.
In addition, the present inventors have found that when a roller conveyor is used to transport the glass sheets, the traces of the rollers transferred to the convex surface of the curved glass sheet by the weight of the glass sheets also cause distortion of the laminated glass. Found it.
 本開示の課題は、下記構成により解決される。 The problem of the present disclosure is solved by the following configuration.
<1>
 車両用合わせガラスに用いられる、湾曲ガラス板の製造方法であって、
 加熱炉において、平板ガラスを加熱する工程(A)と、
 前記工程(A)で加熱された前記平板ガラスを、プレス成形機に搬送する工程(B)と、
 前記プレス成形機で、前記平板ガラスを曲げて、凹面と凸面とを有する湾曲ガラス板を成形する工程(C)とを備え、
 前記工程(B)において、前記平板ガラスの表面を、冷却物質を噴射することにより冷却する、
湾曲ガラス板の製造方法。
<2>
 前記冷却を前記平板ガラスの前記凹面になる側の表面に前記冷却物質を噴射することにより行い、前記冷却物質が空気である、<1>に記載の湾曲ガラス板の製造方法。
<3>
 前記工程(B)において、前記平板ガラスの前記工程(C)で前記凹面になる側の表面を、冷却物質を噴射することにより前記工程(C)で前記凸面になる側の表面より強く冷却する、<1>に記載の湾曲ガラス板の製造方法。
<4>
 前記工程(B)において、前記平板ガラスの前記工程(C)で前記凸面になる側の表面を、冷却物質を噴射することにより前記工程(C)で前記凹面になる側の表面より強く冷却する、<1>に記載の湾曲ガラス板の製造方法。
<5>
 前記冷却を前記平板ガラスの両面に、空気を噴射することにより行う、<1>~<4>のいずれか1つに記載の湾曲ガラス板の製造方法。
<6>
 前記平板ガラスの前記凹面になる側の表面への空気噴射圧力が、前記平板ガラスの前記凸面になる側の表面への空気噴射圧力より大きい、<5>に記載の湾曲ガラス板の製造方法。
<7>
 前記平板ガラスの前記凸面になる側の表面への空気噴射圧力が、前記平板ガラスの前記凹面になる側の表面への空気噴射圧力より大きい、<5>に記載の湾曲ガラス板の製造方法。
<8>
 前記冷却物質の温度が、200℃以下である、<1>~<7>のいずれか1つに記載の湾曲ガラス板の製造方法。
<9>
 前記冷却物質の温度が、100℃以下である、<1>~<7>のいずれか1つに記載の湾曲ガラス板の製造方法。
<10>
 前記冷却物質の温度が、50℃以下である、<1>~<7>のいずれか1つに記載の湾曲ガラス板の製造方法。
<11>
 前記冷却により、前記平板ガラスの前記凹面になる側の表面の温度を5~15℃下げる、<1>~<10>のいずれか1つに記載の湾曲ガラス板の製造方法。
<12>
 前記プレス成形機が凸型を有し、前記凸型の表面に金属布を有する、<1>~<11>のいずれか1つに記載の湾曲ガラス板の製造方法。
<13>
 前記冷却を前記加熱炉の外で行う、<1>~<12>のいずれか1つに記載の湾曲ガラス板の製造方法。
<14>
 前記平板ガラスとして、第一平板ガラス及び第二平板ガラスの二枚の平板ガラスを用い、前記第一平板ガラスから第一湾曲ガラス板を製造し、前記第二平板ガラスから第二湾曲ガラス板を製造する製造方法であって、
 前記冷却を前記第一平板ガラスと前記第二平板ガラスの少なくとも一方に対して行う、<1>~<13>のいずれか1つに記載の湾曲ガラス板の製造方法。
<15>
 前記第一平板ガラス及び前記第二平板ガラスの厚さが同じである、<14>に記載の湾曲ガラス板の製造方法。
<16>
 前記第一平板ガラス及び前記第二平板ガラスの厚さが異なる、<14>に記載の湾曲ガラス板の製造方法。
<17>
 前記冷却を前記第一平板ガラスと前記第二平板ガラスの両方に対して行う、<14>に記載の湾曲ガラス板の製造方法。
<18>
 前記第一平板ガラスの厚さが、前記第二平板ガラスの厚さよりも厚く、
 前記冷却を前記第一平板ガラスのみに対して行う、<16>に記載の湾曲ガラス板の製造方法。
<19>
 前記加熱炉の温度が、前記第二平板ガラスが曲げ成形可能となる温度以上である、<18>に記載の湾曲ガラス板の製造方法。
<20>
 前記冷却により、前記第一平板ガラスの前記凹面になる側の表面の温度が、前記第二平板ガラスの前記凹面になる側の表面の温度よりも1~10℃低くなる、<18>又は<19>に記載の湾曲ガラス板の製造方法。
<21>
 互いに対向する、第一湾曲ガラス板と、第二湾曲ガラス板と、
 前記第一湾曲ガラス板と前記第二湾曲ガラス板との間に挟持される中間膜と、を備える車両用合わせガラスであって、
 前記合わせガラスの厚さが5mm以下であり、
 前記合わせガラスのJIS R3212(2015年)に規定される試験領域Aにおける透視ひずみが、1.5分以下であり、
 前記第一湾曲ガラス板の厚さは、前記第二湾曲ガラス板の厚さの±1.1倍以下である、車両用合わせガラス。
<22>
 前記第一湾曲ガラス板及び前記第二湾曲ガラス板の、前記試験領域Aにおける透視ひずみが、それぞれ0.4分以下である、<21>に記載の車両用合わせガラス。
<23>
 互いに対向する、第一湾曲ガラス板と、第二湾曲ガラス板と、
 前記第一湾曲ガラス板と前記第二湾曲ガラス板との間に挟持される中間膜と、を備える車両用合わせガラスであって、
 前記合わせガラスの厚さが5mm以下であり、
 前記合わせガラスのJIS R3212(2015年)に規定される試験領域Aにおける透視ひずみが、1.0分以下であり、
 前記第二湾曲ガラス板の厚さは、前記第一湾曲ガラス板の厚さの0.8倍以下である、車両用合わせガラス。
<24>
 前記第一湾曲ガラス板及び前記第二湾曲ガラス板の、前記試験領域Aにおける透視ひずみは、それぞれ0.2分以下である、<23>に記載の車両用合わせガラス。
<1>
A method for manufacturing a curved glass plate for use in laminated glass for vehicles, comprising:
(A) heating the flat glass in a heating furnace;
A step (B) of conveying the flat glass heated in the step (A) to a press molding machine;
a step (C) of bending the flat glass to form a curved glass sheet having a concave surface and a convex surface with the press molding machine;
In the step (B), the surface of the flat glass is cooled by injecting a cooling substance.
A method for manufacturing a curved glass sheet.
<2>
The method for producing a curved glass sheet according to <1>, wherein the cooling is performed by injecting the cooling substance onto the concave surface side surface of the flat glass, and the cooling substance is air.
<3>
In the step (B), the surface of the flat glass that will become the concave surface in the step (C) is cooled more strongly than the surface that will become the convex surface in the step (C) by injecting a cooling substance. , the method for producing a curved glass plate according to <1>.
<4>
In the step (B), the surface of the flat glass which will be the convex surface in the step (C) is cooled more strongly than the surface of the flat glass which will be the concave surface in the step (C) by injecting a cooling substance. , the method for producing a curved glass plate according to <1>.
<5>
The method for producing a curved glass sheet according to any one of <1> to <4>, wherein the cooling is performed by injecting air onto both surfaces of the flat glass.
<6>
The method for producing a curved glass sheet according to <5>, wherein the air injection pressure onto the concave surface of the flat glass is greater than the air injection pressure onto the convex surface of the flat glass.
<7>
The method for producing a curved glass plate according to <5>, wherein the air injection pressure to the convex surface of the flat glass is higher than the air injection pressure to the concave surface of the flat glass.
<8>
The method for manufacturing a curved glass sheet according to any one of <1> to <7>, wherein the cooling substance has a temperature of 200° C. or lower.
<9>
The method for producing a curved glass sheet according to any one of <1> to <7>, wherein the cooling substance has a temperature of 100° C. or less.
<10>
The method for manufacturing a curved glass sheet according to any one of <1> to <7>, wherein the cooling substance has a temperature of 50° C. or lower.
<11>
The method for manufacturing a curved glass plate according to any one of <1> to <10>, wherein the cooling lowers the temperature of the surface of the flat glass on the concave surface side by 5 to 15°C.
<12>
The method for producing a curved glass sheet according to any one of <1> to <11>, wherein the press molding machine has a convex mold, and a metal cloth is provided on the surface of the convex mold.
<13>
The method for producing a curved glass sheet according to any one of <1> to <12>, wherein the cooling is performed outside the heating furnace.
<14>
Two flat glass sheets, a first flat glass and a second flat glass, are used as the flat glass, a first curved glass sheet is produced from the first flat glass, and a second curved glass sheet is produced from the second flat glass. A manufacturing method for manufacturing,
The method for producing a curved glass plate according to any one of <1> to <13>, wherein the cooling is performed on at least one of the first flat glass and the second flat glass.
<15>
The method for producing a curved glass plate according to <14>, wherein the first flat glass and the second flat glass have the same thickness.
<16>
The method for producing a curved glass plate according to <14>, wherein the first flat glass and the second flat glass have different thicknesses.
<17>
The method for producing a curved glass sheet according to <14>, wherein the cooling is performed on both the first flat glass and the second flat glass.
<18>
The thickness of the first flat glass is thicker than the thickness of the second flat glass,
The method for producing a curved glass sheet according to <16>, wherein the cooling is performed only on the first flat glass.
<19>
The method for producing a curved glass sheet according to <18>, wherein the temperature of the heating furnace is equal to or higher than the temperature at which the second flat glass can be bent.
<20>
<18> or <19>.
<21>
a first curved glass plate and a second curved glass plate facing each other;
A laminated glass for a vehicle, comprising: an interlayer sandwiched between the first curved glass plate and the second curved glass plate,
The laminated glass has a thickness of 5 mm or less,
The perspective distortion in the test area A defined in JIS R3212 (2015) of the laminated glass is 1.5 minutes or less,
A laminated glass for a vehicle, wherein the thickness of the first curved glass plate is ±1.1 times or less the thickness of the second curved glass plate.
<22>
The laminated glass for vehicles according to <21>, wherein each of the first curved glass plate and the second curved glass plate has a see-through distortion in the test region A of 0.4 minutes or less.
<23>
a first curved glass plate and a second curved glass plate facing each other;
A laminated glass for a vehicle, comprising: an interlayer sandwiched between the first curved glass plate and the second curved glass plate,
The laminated glass has a thickness of 5 mm or less,
The perspective distortion in the test area A defined in JIS R3212 (2015) of the laminated glass is 1.0 minutes or less,
A laminated glass for a vehicle, wherein the thickness of the second curved glass plate is 0.8 times or less the thickness of the first curved glass plate.
<24>
The laminated glass for vehicles according to <23>, wherein each of the first curved glass plate and the second curved glass plate has a see-through distortion in the test area A of 0.2 minutes or less.
 本開示によれば、合わせガラスにした際に歪みの発生が少ない湾曲ガラス板の製造方法、及び歪みが少ない車両用合わせガラスを提供することができる。 According to the present disclosure, it is possible to provide a method for manufacturing a curved glass sheet with little distortion when it is made into laminated glass, and a laminated glass for vehicles with little distortion.
図1(a)は平板ガラスの一例の模式図であり、図1(b)は湾曲ガラス板の一例の模式図である。FIG. 1(a) is a schematic diagram of an example of flat glass, and FIG. 1(b) is a schematic diagram of an example of a curved glass plate. 湾曲ガラス板の製造方法の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the manufacturing method of a curved glass plate. 湾曲ガラス板の製造方法の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the manufacturing method of a curved glass plate.
[湾曲ガラス板の製造方法]
 本開示の湾曲ガラス板の製造方法は、
 車両用合わせガラスに用いられる、湾曲ガラス板の製造方法であって、
 加熱炉において、平板ガラスを加熱する工程(A)と、
 前記工程(A)で加熱された前記平板ガラスを、プレス成形機に搬送する工程(B)と、
 前記プレス成形機で、前記平板ガラスを曲げて、凹面と凸面とを有する湾曲ガラス板を成形する工程(C)とを備え、
 前記工程(B)において、前記平板ガラスの表面を、冷却物質を噴射することにより冷却する、
湾曲ガラス板の製造方法である。
[Manufacturing method of curved glass plate]
The method for manufacturing a curved glass sheet of the present disclosure includes:
A method for manufacturing a curved glass plate for use in laminated glass for vehicles, comprising:
(A) heating the flat glass in a heating furnace;
A step (B) of conveying the flat glass heated in the step (A) to a press molding machine;
a step (C) of bending the flat glass to form a curved glass sheet having a concave surface and a convex surface with the press molding machine;
In the step (B), the surface of the flat glass is cooled by injecting a cooling substance.
A method for manufacturing a curved glass plate.
<工程(A)>
 工程(A)は、加熱炉において、平板ガラスを加熱する工程である。
 工程(A)で、平板ガラスは、曲げ成形可能となる温度以上(例えば、600~750℃)に加熱される。曲げ成形可能となる温度は、平板ガラスの厚さや化学組成により異なり、用いる平板ガラスに適した温度とすることができる。
 加熱炉における加熱方法は特に限定されず、公知の加熱方法を用いることができる。
 また、ローラコンベヤなどの公知の方法で平板ガラスを搬送しながら加熱することもできる。
<Step (A)>
Step (A) is a step of heating flat glass in a heating furnace.
In step (A), the flat glass is heated to a temperature at which it can be bent or higher (for example, 600 to 750° C.). The temperature at which bending can be performed varies depending on the thickness and chemical composition of the flat glass, and can be set to a temperature suitable for the flat glass to be used.
A heating method in the heating furnace is not particularly limited, and a known heating method can be used.
Alternatively, the flat glass can be heated while being conveyed by a known method such as a roller conveyor.
(平板ガラス)
 平板ガラスの種類は特に限定されず、ソーダ石灰ガラス、アルミノケイ酸塩ガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス、物理強化ガラス、化学強化ガラス等の公知の平板ガラスを用いることができる。特に、ISO 16293-1:2008で規定されているソーダ石灰ケイ酸塩ガラスを用いることが好ましい。また、平板ガラスの材質として、鉄やコバルト等の着色成分がガラス組成の成分として適宜調整され、グレー、緑、青などの色調を呈するものも用いることができる。
(flat glass)
The type of flat glass is not particularly limited, and known flat glass such as soda lime glass, aluminosilicate glass, borosilicate glass, alkali-free glass, quartz glass, physically strengthened glass, and chemically strengthened glass can be used. In particular, it is preferable to use soda lime silicate glass specified in ISO 16293-1:2008. Further, as a material of the flat glass, a coloring component such as iron or cobalt is appropriately adjusted as a component of the glass composition, and a material exhibiting a color tone of gray, green, blue, or the like can be used.
 平板ガラスの厚さは、特に限定されず、例えば、0.05mm~10mmとすることができる。本開示の製造方法により製造された湾曲ガラス板を車両用窓ガラスに用いる場合は、平板ガラスの厚さは、0.5mm~4mmであることが好ましく、1mm~3mmであることがより好ましい。 The thickness of the flat glass is not particularly limited, and can be, for example, 0.05 mm to 10 mm. When the curved glass sheet manufactured by the manufacturing method of the present disclosure is used as a vehicle window glass, the thickness of the flat glass is preferably 0.5 mm to 4 mm, more preferably 1 mm to 3 mm.
<工程(B)>
 工程(B)は、工程(A)で加熱された平板ガラスを、プレス成形機に搬送する工程である。
 工程(B)では、例えば、加熱炉からプレス成形機までローラコンベヤなどの公知の方法で平板ガラスを搬送することができる。
<Step (B)>
Step (B) is a step of conveying the flat glass heated in step (A) to a press molding machine.
In step (B), for example, the flat glass can be conveyed from the heating furnace to the press molding machine by a known method such as a roller conveyor.
 工程(B)では、平板ガラスの表面を、冷却物質を噴射することにより冷却する。
 冷却物質は特に限定されないが、例えば、空気や霧状の水などが挙げられるが、空気であることが好ましい。
 冷却物質の噴射圧力は、特に限定されないが、例えば、0.5MPa以下とすることができ、0.2MPa~0.5MPaとしてもよい。
 平板ガラスの工程(C)で凹面になる側の表面への冷却物質の噴射圧力と、工程(C)で凸面になる側の表面への冷却物質の噴射圧力を、どちらも0.2MPa~0.5MPaとしてもよい。
 平板ガラスの工程(C)で凹面になる側の表面への冷却物質の噴射圧力を0.4MPa~0.5MPaとし、工程(C)で凸面になる側の表面への冷却物質の噴射圧力を0.0MPa~0.3MPaとすることが好ましい。
In step (B), the surface of the flat glass is cooled by injecting a cooling substance.
The cooling substance is not particularly limited, and examples thereof include air and atomized water, but air is preferred.
The injection pressure of the cooling substance is not particularly limited, but can be, for example, 0.5 MPa or less, and may be 0.2 MPa to 0.5 MPa.
Both the injection pressure of the cooling substance onto the surface of the flat glass to be concave in the step (C) and the injection pressure of the cooling substance to the surface of the flat glass to be convex in the step (C) are 0.2 MPa to 0. 0.5 MPa.
The injection pressure of the cooling substance onto the concave surface of the flat glass in the step (C) is 0.4 MPa to 0.5 MPa, and the injection pressure of the cooling substance onto the convex surface in the step (C) is It is preferably 0.0 MPa to 0.3 MPa.
 冷却の態様としては、例えば、以下の3つが挙げられる。
 (i):工程(B)において、平板ガラスの工程(C)で凹面になる側の表面を、冷却物質を噴射することにより工程(C)で凸面になる側の表面より強く冷却する態様。
 (ii):工程(B)において、平板ガラスの工程(C)で凸面になる側の表面を、冷却物質を噴射することにより工程(C)で凹面になる側の表面より強く冷却する態様。
 (iii):工程(B)において、平板ガラスの両面に、冷却物質を噴射することにより冷却する態様。
Examples of cooling modes include the following three.
(i): A mode in which, in step (B), the surface of the flat glass that will become concave in step (C) is cooled more strongly than the surface that will become convex in step (C) by injecting a cooling substance.
(ii): A mode in which, in step (B), the surface of the flat glass that will become convex in step (C) is cooled more strongly than the surface that will become concave in step (C) by injecting a cooling substance.
(iii): In step (B), cooling is performed by injecting a cooling substance onto both surfaces of the flat glass.
 上記(iii)の態様は、以下の3つの態様を含む。
 (iv):平板ガラスの凹面になる側の表面への冷却物質の噴射圧力が、平板ガラスの凸面になる側の表面への冷却物質の噴射圧力より大きい態様。
 (v):平板ガラスの凸面になる側の表面への冷却物質の噴射圧力が、平板ガラスの凹面になる側の表面への冷却物質の噴射圧力より大きい態様。
 (vi):平板ガラスの凹面になる側の表面への冷却物質の噴射圧力と、平板ガラスの凸面になる側の表面への冷却物質の噴射圧力とが等しい態様。
The aspect (iii) includes the following three aspects.
(iv): A mode in which the injection pressure of the cooling substance onto the concave surface of the flat glass is greater than the injection pressure of the cooling substance onto the convex surface of the flat glass.
(v): A mode in which the injection pressure of the cooling substance onto the convex surface of the flat glass is greater than the injection pressure of the cooling substance onto the concave surface of the flat glass.
(vi): A mode in which the injection pressure of the cooling substance onto the concave surface of the flat glass is equal to the injection pressure of the cooling substance onto the convex surface of the flat glass.
[(i)の態様]
 上記(i)の態様において、「平板ガラスの工程(C)で凹面になる側の表面を、冷却物質を噴射することにより工程(C)で凸面になる側の表面より強く冷却する」とは、冷却による温度低下の度合いが、平板ガラスの工程(C)で凹面になる側の表面の方が、工程(C)で凸面になる側の表面よりも大きいことを表す。
 (i)の態様では、工程(B)において、平板ガラスの工程(C)で凹面になる側の表面を、工程(C)で凸面になる側の表面より強く冷却する。工程(C)で凹面になる側の表面とは、平板ガラスの表面のうち、工程(C)でプレス成形機の凸型と対向する方の表面である。
 以下、「平板ガラスの工程(C)で凹面になる側の表面」を「S2面」とも呼ぶ。
 工程(B)において、S2面を冷却することで、凹面の歪みの発生が少ない湾曲ガラス板を製造することができる。工程(A)を経た平板ガラスは、曲げ成形可能となる温度以上に加熱され軟化しているため、そのままプレスを行うと、プレス成形機の凸型の表面に設けられた金属布と接触した面(成形後の湾曲ガラス板の凹面)に金属布の跡が付いてしまう。そこで、本開示の製造方法では、平板ガラスの金属布と接触する方の表面であるS2面を冷却することで、S2面のガラス表層部の温度を低下させ、金属布の跡が転写されにくくし、歪みの発生を抑制することができる。
 工程(B)における冷却により、S2面の温度を5~15℃下げることが好ましい。すなわち、冷却後のS2面の温度が、冷却前のS2面の温度よりも、5~15℃低いことが好ましい。
[Aspect of (i)]
In the aspect (i) above, what is meant by "cooling the surface of the flat glass on the concave side in the step (C) more strongly than the surface on the convex side in the step (C) by injecting a cooling substance"? , indicates that the degree of temperature drop due to cooling is greater on the surface of the flat glass that becomes concave in step (C) than on the surface that becomes convex in step (C).
In the aspect (i), in step (B), the surface of the flat glass that will become concave in step (C) is cooled more strongly than the surface that will become convex in step (C). The surface on the concave side in step (C) is the surface of the flat glass that faces the convex mold of the press molding machine in step (C).
Hereinafter, "the surface that becomes a concave surface in the flat glass process (C)" is also referred to as "S2 surface".
By cooling the S2 surface in the step (B), it is possible to manufacture a curved glass sheet with less distortion of the concave surface. Since the flat glass that has undergone the step (A) is heated to a temperature higher than the temperature at which it can be bent and softened, if it is pressed as it is, the surface in contact with the metal cloth provided on the convex surface of the press molding machine will be deformed. (Concave surface of curved glass plate after molding) marks of metal cloth. Therefore, in the manufacturing method of the present disclosure, by cooling the S2 surface, which is the surface of the flat glass that is in contact with the metal cloth, the temperature of the glass surface layer portion of the S2 surface is lowered, and the traces of the metal cloth are less likely to be transferred. and the occurrence of distortion can be suppressed.
It is preferable to lower the temperature of the S2 surface by 5 to 15°C by cooling in step (B). That is, the temperature of the S2 surface after cooling is preferably 5 to 15° C. lower than the temperature of the S2 surface before cooling.
[(ii)の態様]
 上記(ii)の態様において、「平板ガラスの工程(C)で凸面になる側の表面を、冷却物質を噴射することにより工程(C)で凹面になる側の表面より強く冷却する」とは、冷却による温度低下の度合いが、平板ガラスの工程(C)で凸面になる側の表面の方が、工程(C)で凹面になる側の表面よりも大きいことを表す。 ローラコンベヤを用いてガラス板を搬送する場合、特に、工程(B)から工程(C)に移行する過程において、工程(C)で凸面になる側の表面にローラの跡がついてしまうことがある。そこで、S2面とは反対側の表面(工程(C)で凸面になる側の表面であり、以下、「S1面」とも呼ぶ。)を冷却することで、S1面のガラス表層部の温度を低下させ、ローラの跡が転写されにくくし、歪みの発生を抑制することができる。
 工程(B)における冷却により、S1面の温度を5~15℃下げることが好ましい。すなわち、冷却後のS1面の温度が、冷却前のS1面の温度よりも、5~15℃低いことが好ましい。
[Aspect of (ii)]
In the aspect (ii) above, what is meant by "cooling the surface of the flat glass on the convex side in step (C) more strongly than the surface on the concave side in step (C) by injecting a cooling substance"? , indicates that the degree of temperature drop due to cooling is greater for the convex surface of the flat glass in the step (C) than for the concave surface in the step (C). When conveying a glass plate using a roller conveyor, especially in the process of transitioning from step (B) to step (C), the surface on the side that becomes convex in step (C) may be marked by the roller. . Therefore, by cooling the surface opposite to the S2 surface (the surface on the side that becomes a convex surface in the step (C), hereinafter also referred to as the "S1 surface"), the temperature of the glass surface layer portion of the S1 surface is reduced to This makes it difficult to transfer the traces of the roller, thereby suppressing the occurrence of distortion.
It is preferable to lower the temperature of the S1 surface by 5 to 15°C by cooling in step (B). That is, the temperature of the S1 surface after cooling is preferably 5 to 15° C. lower than the temperature of the S1 surface before cooling.
[(iii)の態様]
 工程(B)における冷却により、S1面及びS2面の温度を5~15℃下げることが好ましい。すなわち、冷却後のS1面及びS2面の温度が、冷却前のS1面及びS2面の温度よりも、5~15℃低いことが好ましい。なお、上記(iv)の態様と上記(v)の態様において、同じ温度の冷却物質を使用した場合、噴射圧力が大きい方が強く冷却される(すなわち、温度低下の度合いが大きくなる)。
 (iii)の態様としては、(iv)の態様が特に好ましい。S2面に対する冷却物質の噴射圧力を、S1面に対する冷却物質の噴射圧力より大きくすることで、冷却物質の噴射中に平板ガラスの位置ずれを防止することができ、工程(C)において平板ガラスが割れることを防止することができるためである。
[Aspect of (iii)]
It is preferable that the temperature of the S1 surface and the S2 surface is lowered by 5 to 15° C. by cooling in step (B). That is, the temperatures of the S1 and S2 surfaces after cooling are preferably 5 to 15° C. lower than the temperatures of the S1 and S2 surfaces before cooling. In addition, in the above mode (iv) and the above mode (v), when cooling substances with the same temperature are used, the higher the injection pressure, the stronger the cooling (that is, the greater the degree of temperature drop).
As the aspect (iii), the aspect (iv) is particularly preferable. By making the injection pressure of the cooling substance to the S2 surface higher than the injection pressure of the cooling substance to the S1 surface, it is possible to prevent the flat glass from being displaced during the injection of the cooling substance. This is because cracking can be prevented.
 図1(a)に平板ガラスの一例の模式図(厚さ方向の断面模式図)を、図1(b)に湾曲ガラス板の一例の模式図をそれぞれ示す。図1(a)の平板ガラス1Pを曲げ成形することで、図1(b)の湾曲ガラス板1Cを製造することができる。S1はS1面を、S2はS2面をそれぞれ示す。 Fig. 1(a) shows a schematic diagram (a cross-sectional schematic diagram in the thickness direction) of an example of flat glass, and Fig. 1(b) shows a schematic diagram of an example of a curved glass plate. By bending the flat glass 1P of FIG. 1(a), the curved glass plate 1C of FIG. 1(b) can be manufactured. S1 indicates the S1 surface, and S2 indicates the S2 surface.
 上記いずれの態様においても、工程(B)における冷却は、空気を噴射することにより行うことが好ましい。
 空気を噴射する方法は特に限定されず、公知の方法を用いることができる。例えば、所定の間隔で噴射孔が設けられた管状部材に空気を供給し、噴射孔からガラス板に空気を噴射する方法を採用することができる。また、冷却力を高めるため、空気を噴射すると同時に水を霧状に噴射してもよい。
 噴射する空気の温度は、200℃以下であることが好ましく、100℃以下であることがより好ましく、50℃以下であることが更に好ましい。
 工程(B)における冷却は、加熱炉の外で行うことが好ましい。加熱炉の外で冷却することで、ガラス板の温度を低下させやすく、より正確な制御が可能になる。これにより、合わせガラスの歪みの発生をより効果的に抑制することができる。
In any of the above aspects, the cooling in step (B) is preferably performed by injecting air.
A method for injecting air is not particularly limited, and a known method can be used. For example, it is possible to adopt a method of supplying air to a tubular member provided with injection holes at predetermined intervals and injecting the air from the injection holes onto the glass plate. Also, in order to increase the cooling power, water may be sprayed in the form of a mist at the same time as the air is sprayed.
The temperature of the injected air is preferably 200° C. or lower, more preferably 100° C. or lower, and even more preferably 50° C. or lower.
Cooling in step (B) is preferably performed outside the heating furnace. By cooling outside the heating furnace, the temperature of the glass sheet can be easily lowered and more accurate control becomes possible. This makes it possible to more effectively suppress the occurrence of distortion in the laminated glass.
<工程(C)>
 工程(C)は、プレス成形機で、平板ガラスを曲げて、凹面と凸面とを有する湾曲ガラス板を成形する工程である。
 前述したように、プレス成形機が凸型を有し、凸型の表面に金属布(モールドクロス)を有することが好ましい。また、凸型にはプレス時にガラス板を吸引して固定するための穴が設けられていることが好ましい。
 プレス成形機は、さらに、凸型と対向する凹型(リング状の成形型)を有することが好ましい。凹型はリング状の構造でガラス板の周縁部のみを支えるものであるため、凹型が接触するガラス板周縁部以外の領域は凹型と接触しない。
 凸型を成形上型とし、凹型を成形下型として用い、凹型を上昇させてガラス板を凸型に押し当ててプレスすることで、ガラス板を曲げることができる。
 プレス成形機、凸型、凹型、及び金属布は特に限定されず、ガラス板の曲げ成形に使用するものとして公知のプレス成形機、凸型、凹型、及び金属布を用いることができる。
 プレス成形機は、前述の加熱炉と一体化したものでもよいし、別個に加熱炉の下流に設置したものでもよい。
 加熱炉とプレス成形機をそれぞれ別個に設置する場合においても、例えば、加熱炉からプレス成形機までをローラコンベヤでつなぐことで、工程(A)の加熱炉内での加熱、工程(B)の加熱炉からプレス成形機への搬送及び冷却、工程(C)での成形を、連続的に行うこともできる。
<Step (C)>
Step (C) is a step of bending flat glass to form a curved glass sheet having concave and convex surfaces using a press molding machine.
As described above, it is preferable that the press molding machine has a convex mold and a metal cloth (mold cloth) on the surface of the convex mold. Moreover, it is preferable that the convex mold is provided with a hole for sucking and fixing the glass plate during pressing.
The press molding machine preferably further has a concave mold (ring-shaped mold) facing the convex mold. Since the concave mold has a ring-shaped structure and supports only the peripheral edge of the glass plate, the area other than the glass plate peripheral edge with which the concave mold contacts does not come into contact with the concave mold.
A convex mold is used as an upper mold and a concave mold is used as a lower mold. By raising the concave mold and pressing the glass plate against the convex mold, the glass plate can be bent.
The press molding machine, convex mold, concave mold, and metal cloth are not particularly limited, and a known press molding machine, convex mold, concave mold, and metal cloth used for bending glass sheets can be used.
The press molding machine may be integrated with the heating furnace described above, or may be installed separately downstream of the heating furnace.
Even when the heating furnace and the press molding machine are installed separately, for example, by connecting the heating furnace to the press molding machine with a roller conveyor, heating in the heating furnace in step (A) and heating in step (B) The transfer from the heating furnace to the press molding machine, the cooling, and the molding in step (C) can also be carried out continuously.
 本開示の湾曲ガラス板の製造方法では、二枚以上の平板ガラスを連続的に加熱及び成形を行うこともできる。 In the method of manufacturing a curved glass sheet of the present disclosure, two or more sheets of flat glass can be continuously heated and shaped.
 本開示の湾曲ガラス板の製造方法の好ましい態様は、
 平板ガラスとして、第一平板ガラス及び第二平板ガラスの二枚の平板ガラスを用い、第一平板ガラスから第一湾曲ガラス板を製造し、第二平板ガラスから第二湾曲ガラス板を製造する製造方法であって、
 前述の工程(B)における冷却を第一平板ガラスと第二平板ガラスの少なくとも一方に対して行う、湾曲ガラス板の製造方法である。
A preferred embodiment of the method for manufacturing a curved glass sheet of the present disclosure includes:
Manufacture of using two flat glass sheets, the first flat glass and the second flat glass, as the flat glass, manufacturing the first curved glass sheet from the first flat glass, and manufacturing the second curved glass sheet from the second flat glass a method,
A method for manufacturing a curved glass sheet, wherein at least one of the first flat glass and the second flat glass is cooled in the step (B) described above.
 本開示の湾曲ガラス板の製造方法の特に好ましい態様は、
 車両用合わせガラスに用いられる、湾曲ガラス板の製造方法であって、
 加熱炉において第一平板ガラス及び第二平板ガラスを加熱する工程(A)と、
 工程(A)で加熱された第一平板ガラス及び第二平板ガラスを、プレス成形機に搬送する工程(B)と、
 プレス成形機で、第一平板ガラス及び第二平板ガラスを曲げて、凹面と凸面とを有する第一湾曲ガラス板及び第二湾曲ガラス板を成形する工程(C)とを備え、
 工程(B)において、第一平板ガラスと第二平板ガラスの少なくとも一方に対して、前記工程(C)で前記凹面になる側の表面を、前記工程(C)で前記凸面になる側の表面より強く冷却する、
湾曲ガラス板の製造方法である。
A particularly preferred embodiment of the method for manufacturing a curved glass sheet of the present disclosure is
A method for manufacturing a curved glass plate for use in laminated glass for vehicles, comprising:
a step (A) of heating the first flat glass and the second flat glass in a heating furnace;
a step (B) of conveying the first flat glass and the second flat glass heated in step (A) to a press molding machine;
a step (C) of bending the first flat glass and the second flat glass with a press molding machine to form a first curved glass plate and a second curved glass plate having a concave surface and a convex surface;
In the step (B), for at least one of the first flat glass and the second flat glass, the surface on the side that becomes the concave surface in the step (C) and the surface on the side that becomes the convex surface in the step (C) cooling more intensely,
A method for manufacturing a curved glass plate.
 以下、上記特に好ましい態様について更に説明する。 The above particularly preferred embodiments are further described below.
 第一平板ガラス及び第二平板ガラスの厚さは、同じであってもよいし、異なっていてもよい。 The thickness of the first flat glass and the second flat glass may be the same or different.
 工程(B)における冷却は、第一平板ガラスと第二平板ガラスのどちらか一方のみに対して行ってもよいし、第一平板ガラスと第二平板ガラスの両方に対して行ってもよい。 The cooling in step (B) may be performed on either one of the first flat glass and the second flat glass, or may be performed on both the first flat glass and the second flat glass.
 第一平板ガラスの厚さが、第二平板ガラスの厚さよりも厚い場合、工程(B)における冷却を第一平板ガラスのみに対して行うことが好ましい。
 一般的に、薄いガラス板の方が厚いガラス板よりも外周部にシワが発生しやすい等の理由から成形が難しい。そのため、薄いガラス板を成形する際は、厚いガラス板を成形する際よりも、高温で成形する必要がある。
 第一平板ガラスの厚さが、第二平板ガラスの厚さよりも厚い場合(すなわち、第一平板ガラスが厚く、第二平板ガラスが薄い場合)、同じ加熱炉で加熱する際には、加熱温度の設定を逐一変更することは通常は行われないため、第一平板ガラスと第二平板ガラスは同程度の温度に加熱される。この場合、前述の理由から、薄い方の第二平板ガラスが曲げ成形可能となる温度にあわせて加熱する必要があり、厚い方の第一平板ガラスは、曲げ成形可能となる温度よりも高い温度にまで加熱されてしまう。しかしながら、より高い温度に加熱するほど、プレスの際に金属布の跡が付きやすくなるという問題がある。
 そこで、第一平板ガラスの厚さが、第二平板ガラスの厚さよりも厚い場合、工程(B)における冷却を第一平板ガラスのみに対して行うことで、曲げ成形可能となる温度よりも高い温度にまで加熱された第一平板ガラスの凹面になる側の表面(S2面)のガラス表層部の温度を下げて、金属布の跡の転写を防止し、歪みの発生を抑制することができる。
When the thickness of the first flat glass is thicker than the thickness of the second flat glass, it is preferable to perform the cooling in step (B) only on the first flat glass.
In general, thin glass sheets are more difficult to mold than thick glass sheets because, for example, wrinkles are more likely to occur in the outer periphery. Therefore, when molding a thin glass plate, it is necessary to mold at a higher temperature than when molding a thick glass plate.
When the thickness of the first flat glass is thicker than the thickness of the second flat glass (that is, when the first flat glass is thick and the second flat glass is thin), when heating in the same heating furnace, the heating temperature Since it is not usually performed to change the setting of , the first flat glass and the second flat glass are heated to approximately the same temperature. In this case, for the reason described above, it is necessary to heat the thinner second flat glass to a temperature at which it can be bent, and the thicker first flat glass must be heated to a temperature higher than the temperature at which it can be bent. is heated up to However, there is a problem that the higher the heating temperature, the more likely the metal cloth will mark during pressing.
Therefore, when the thickness of the first flat glass is thicker than the thickness of the second flat glass, the cooling in step (B) is performed only on the first flat glass so that the temperature is higher than the temperature at which bending is possible. By lowering the temperature of the glass surface layer of the concave surface (S2 surface) of the first flat glass heated to the temperature, the transfer of traces of the metal cloth can be prevented, and the occurrence of distortion can be suppressed. .
 第一平板ガラスの厚さが、第二平板ガラスの厚さよりも厚い場合、それぞれの平板ガラスの厚さは特に限定されないが、例えば、第一平板ガラスの厚さが2.0~2.3mmであり、第二平板ガラスの厚さが1.6~1.8mmである場合などが挙げられる。 When the thickness of the first flat glass is thicker than the thickness of the second flat glass, the thickness of each flat glass is not particularly limited. For example, the thickness of the first flat glass is 2.0 to 2.3 mm. and the thickness of the second flat glass is 1.6 to 1.8 mm.
 第一平板ガラスの厚さが、第二平板ガラスの厚さよりも厚い場合、加熱炉の温度が、第二平板ガラスが曲げ成形可能となる温度以上であることが好ましい。 When the thickness of the first flat glass is thicker than the thickness of the second flat glass, the temperature of the heating furnace is preferably at least the temperature at which the second flat glass can be bent.
 第一平板ガラスの厚さが、第二平板ガラスの厚さよりも厚い場合、工程(B)における冷却により、第一平板ガラスの凹面になる側の表面(S2面)の温度が、第二平板ガラスの凹面になる側の表面(S2面)の温度よりも1~10℃低くなることが好ましい。 When the thickness of the first flat glass is thicker than the thickness of the second flat glass, the temperature of the concave surface (S2 surface) of the first flat glass is lowered by the cooling in the step (B) to the second flat glass. It is preferably 1 to 10° C. lower than the temperature of the concave surface (S2 surface) of the glass.
(合わせガラス)
 本開示の車両用合わせガラスは、互いに対向する、第一湾曲ガラス板と、第二湾曲ガラス板と、第一湾曲ガラス板と第二湾曲ガラス板との間に挟持される中間膜と、を備える。
 前記合わせガラスの厚さ(第一湾曲ガラス板と中間膜と第二湾曲ガラス板との合計の厚さ)が5mm以下であることが好ましく、4mm以下であることがより好ましい。
(Laminated glass)
A laminated glass for a vehicle of the present disclosure includes a first curved glass plate, a second curved glass plate, and an interlayer sandwiched between the first curved glass plate and the second curved glass plate, which face each other. Prepare.
The thickness of the laminated glass (total thickness of the first curved glass plate, the intermediate film and the second curved glass plate) is preferably 5 mm or less, more preferably 4 mm or less.
 第一湾曲ガラス板の厚さは、第二湾曲ガラス板の厚さの±1.1倍以下であることが好ましい。合わせガラスのJIS R3212(2015年)に規定される試験領域Aにおける透視ひずみが、1.5分以下であることが好ましい。第一湾曲ガラス板と第二湾曲ガラス板の試験領域Aにおける透視ひずみは、それぞれ0.4分以下であることが好ましい。 The thickness of the first curved glass plate is preferably ±1.1 times or less of the thickness of the second curved glass plate. It is preferable that the perspective distortion in the test area A defined in JIS R3212 (2015) for laminated glass is 1.5 minutes or less. The perspective distortion in the test area A of the first curved glass plate and the second curved glass plate is preferably 0.4 minutes or less, respectively.
 上記態様とは別に、本開示の車両用合わせガラスは、互いに対向する、第一湾曲ガラス板と、第二湾曲ガラス板と、第一湾曲ガラス板と第二湾曲ガラス板との間に挟持される中間膜と、を備える車両用合わせガラスであって、前記合わせガラスの厚さ(第一湾曲ガラス板と中間膜と第二湾曲ガラス板との合計の厚さ)が5mm以下であり、前記合わせガラスのJIS R3212(2015年)に規定される試験領域Aにおける透視ひずみが、1.0分以下であり、第二湾曲ガラス板の厚さは、第一湾曲ガラス板の厚さの0.8倍以下である、車両用合わせガラスであることも好ましい。
 また、本開示の車両用合わせガラスは、構成するガラス板の厚みが一定であること好ましい。 第一湾曲ガラス板と第二湾曲ガラス板の試験領域Aにおける透視ひずみは、それぞれ0.2分以下であることが好ましい。
Separately from the above aspect, the laminated glass for a vehicle of the present disclosure is sandwiched between a first curved glass plate, a second curved glass plate, and a first curved glass plate and a second curved glass plate, which face each other. and an interlayer film, wherein the thickness of the laminated glass (total thickness of the first curved glass plate, the interlayer film, and the second curved glass plate) is 5 mm or less, and The perspective distortion in the test area A defined in JIS R3212 (2015) for laminated glass is 1.0 minutes or less, and the thickness of the second curved glass plate is 0.00% of the thickness of the first curved glass plate. It is also preferable to be a laminated glass for vehicles, which is 8 times or less.
In addition, it is preferable that the thickness of the glass sheets constituting the laminated glass for a vehicle of the present disclosure is constant. The perspective distortion in the test area A of the first curved glass plate and the second curved glass plate is preferably 0.2 minutes or less, respectively.
 なお、合わせガラスやそれぞれの湾曲ガラス板について、完全に透視ひずみをゼロにすることは難しく、0.1分以上の透視ひずみを持つ場合がある。 It should be noted that it is difficult to make the perspective distortion completely zero for laminated glass and each curved glass plate, and it may have perspective distortion of 0.1 minutes or more.
 以下、本開示の実施例について説明するが、本開示は以下の実施例に限定されない。 Examples of the present disclosure will be described below, but the present disclosure is not limited to the following examples.
<実施例1>
 ガラスサイズ1370mm×1049mmで、厚さ2.0mmの第一平板ガラス及び厚さ2.0mmの第二平板ガラスを用いて、それぞれの平板ガラスから湾曲ガラス板を製造し、これらの湾曲ガラス板を用いて合わせガラスを製造した。
 具体的には、図2に示した加熱炉2、冷却装置3、及びプレス成形機4を用いた湾曲ガラス板の製造方法により、湾曲ガラス板を製造した。冷却装置3は加熱炉2の外であって、加熱炉2とプレス成形機4の間に設けられている。ガラス板は、加熱炉2内、及び加熱炉2からプレス成形機4までローラコンベヤ5により搬送される。プレス成形機4は、成形金型として凸型6と凹型7(リング状の成形型)を有し、凸型6の表面に金属布8を有している。
<Example 1>
Using a first flat glass with a glass size of 1370 mm × 1049 mm and a thickness of 2.0 mm and a second flat glass with a thickness of 2.0 mm, curved glass sheets are produced from each flat glass, and these curved glass sheets are manufactured. A laminated glass was produced using this.
Specifically, a curved glass sheet was manufactured by a curved glass sheet manufacturing method using the heating furnace 2, the cooling device 3, and the press molding machine 4 shown in FIG. A cooling device 3 is provided outside the heating furnace 2 and between the heating furnace 2 and the press molding machine 4 . The glass sheet is conveyed by a roller conveyor 5 into the heating furnace 2 and from the heating furnace 2 to the press molding machine 4 . The press molding machine 4 has a convex mold 6 and a concave mold 7 (ring-shaped mold) as molding dies, and has a metal cloth 8 on the surface of the convex mold 6 .
 厚さ2.0mmの第一平板ガラス及び厚さ2.0mmの第二平板ガラスを、648℃の加熱炉内に別々に流しながら加熱した。それぞれの平板ガラスが加熱炉から出た後、プレス成形機に入る前に、冷却ブローより、それぞれの平板ガラスの湾曲ガラス板の凹面になる側の表面(S2面)のみに、常温(23℃)の空気を吹き付けて平板ガラスを冷却した。
 プレス成形機に入る前の各平板ガラスのS2面の表面温度を温度計9により測定したところ、平板ガラスの中央付近のS2面の表面温度はいずれも621℃であった。なお、後述する比較例1では、冷却を行わない場合のS2面の表面温度が626℃であったことから、工程(B)における冷却により、S2面の温度を5℃下げることができたことがわかる。
 その後、成形金型の温度を450℃に設定したプレス成形機にて曲げ成形を行い、厚さ2.0mmの第一湾曲ガラス板及び厚さ2.0mmの第二湾曲ガラス板を製造した。
A first flat glass with a thickness of 2.0 mm and a second flat glass with a thickness of 2.0 mm were heated while flowing separately in a heating furnace at 648°C. After each flat glass came out of the heating furnace and before entering the press molding machine, only the surface (S2 surface) of the curved glass plate of each flat glass on the concave side (S2 surface) was subjected to normal temperature (23 ° C.) ) was blown to cool the flat glass.
When the surface temperature of the S2 surface of each flat glass before entering the press molding machine was measured with a thermometer 9, the surface temperature of the S2 surface near the center of each flat glass was 621°C. In Comparative Example 1, which will be described later, the surface temperature of the S2 surface was 626°C when cooling was not performed. I understand.
Thereafter, bending was performed using a press molding machine in which the temperature of the mold was set to 450° C. to produce a first curved glass plate with a thickness of 2.0 mm and a second curved glass plate with a thickness of 2.0 mm.
 各湾曲ガラス板の歪みを測定した。具体的には、JIS R3212(2015年)に基づいて、実車取付角度28.4度にて試験領域AとBの透視ひずみを測定した。
 その後、2枚の湾曲ガラス板の間にポリビニルブチラール(PVB)製の厚さ0.76mmの中間膜を配置して、合わせガラスを製造し、上記と同様に歪みを測定した。
 結果を下記表1に示す。表1には、各試験領域の透視ひずみ(単位:分)を示した。透視ひずみの値が小さい方が、歪みが少なく、好ましい。
The strain of each curved glass plate was measured. Specifically, based on JIS R3212 (2015), perspective distortion of test areas A and B was measured at an actual vehicle mounting angle of 28.4 degrees.
After that, a polyvinyl butyral (PVB) intermediate film having a thickness of 0.76 mm was placed between the two curved glass plates to produce a laminated glass, and the strain was measured in the same manner as described above.
The results are shown in Table 1 below. Table 1 shows the perspective strain (in minutes) for each test area. A smaller perspective distortion value is preferable because the distortion is less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<比較例1>
 平板ガラスが加熱炉から出た後の冷却を行わなかったこと以外は、実施例1と同様にして湾曲ガラス板の成形を行った。
 プレス成形機に入る前の各平板ガラスのS2面の表面温度を測定したところ、平板ガラスの中央部のS2面の表面温度は、いずれも626℃であった。
 その後、実施例1と同様に、合わせガラスを製造し、それぞれの湾曲ガラス板と合わせガラスの歪みを測定した。
 結果を下記表2に示す。
<Comparative Example 1>
A curved glass plate was formed in the same manner as in Example 1, except that the flat glass was not cooled after coming out of the heating furnace.
When the surface temperature of the S2 surface of each flat glass was measured before entering the press molding machine, the surface temperature of the S2 surface in the central portion of each flat glass was 626°C.
Thereafter, laminated glass was produced in the same manner as in Example 1, and the distortion of each curved glass plate and laminated glass was measured.
The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1と比較例1を比べると、合わせガラスにした際に、実施例1の方が比較例1より各領域において透視ひずみが改善していることがわかる。 Comparing Example 1 and Comparative Example 1, it can be seen that the perspective distortion in Example 1 is more improved than in Comparative Example 1 in each region when laminated glass is used.
<実施例2>
 ガラスサイズ1401mm×723mmで、厚さ2.0mmの第一平板ガラス及び厚さ1.6mmの第二平板ガラスを用いて、それぞれの平板ガラスから湾曲ガラス板を製造し、これらの湾曲ガラス板を用いて異厚合わせガラスを製造した。
 具体的には、実施例1と同様に、図2に示した加熱炉、冷却装置、及びプレス成形機を含む湾曲ガラス板の製造方法により、湾曲ガラス板を製造した。
 厚さ2.0mmの第一平板ガラスと厚さ1.6mmの第二平板ガラスを、648℃の加熱炉内に別々に流しながら加熱した。厚さ2.0mmの第一平板ガラスが加熱炉から出た後、プレス成形機に入る前に、冷却ブローより、第一平板ガラスの湾曲ガラス板の凹面になる側の表面(S2面)のみに、常温(23℃)の空気を吹き付けて第一平板ガラスを冷却した。ただし、厚さ1.6mmの第二平板ガラスに対しては、加熱炉から出た後の冷却を行わなかった。
 プレス成形機に入る前の各平板ガラスのS2面の表面温度を測定したところ、厚さ1.6mmの第二平板ガラスの中央付近のS2面の表面温度は625℃であったが、厚さ2.0mmの第一平板ガラスの中央付近のS2面の表面温度は620℃であり、5℃の温度差を生じさせることができた。
 その後、成形金型の温度を450℃に設定したプレス成形機にて曲げ成形を行い、厚さ2.0mmの第一湾曲ガラス板及び厚さ1.6mmの第二湾曲ガラス板を製造した。
 その後、厚さ2.0mmの第一湾曲ガラス板の凹面と厚さ1.6mmの第二湾曲ガラス板の凸面の間にポリビニルブチラール(PVB)製の厚さ0.76mmの中間膜を配置して、合わせガラスを製造した。実車取付角度56.4度とする以外は実施例1と同様に歪みを測定した。
 結果を下記表3に示す。
<Example 2>
Using a first flat glass having a glass size of 1401 mm × 723 mm and a thickness of 2.0 mm and a second flat glass having a thickness of 1.6 mm, a curved glass sheet is produced from each flat glass, and these curved glass sheets are manufactured. A laminated glass with different thickness was manufactured using this method.
Specifically, similarly to Example 1, a curved glass plate was manufactured by the curved glass plate manufacturing method including the heating furnace, the cooling device, and the press molding machine shown in FIG.
A first flat glass with a thickness of 2.0 mm and a second flat glass with a thickness of 1.6 mm were heated while flowing separately in a heating furnace at 648°C. After the first flat glass with a thickness of 2.0 mm leaves the heating furnace and before entering the press molding machine, only the concave surface (S2 surface) of the curved glass plate of the first flat glass is cooled and blown. The first flat glass was cooled by blowing air at normal temperature (23° C.). However, the second flat glass having a thickness of 1.6 mm was not cooled after leaving the heating furnace.
When the surface temperature of the S2 surface of each flat glass was measured before entering the press molding machine, the surface temperature of the S2 surface near the center of the 1.6 mm thick second flat glass was 625 ° C. The surface temperature of the S2 surface near the center of the 2.0 mm first flat glass was 620°C, and a temperature difference of 5°C could be produced.
Thereafter, bending was performed using a press molding machine in which the temperature of the molding die was set to 450° C. to produce a first curved glass sheet with a thickness of 2.0 mm and a second curved glass sheet with a thickness of 1.6 mm.
After that, an intermediate film made of polyvinyl butyral (PVB) with a thickness of 0.76 mm was placed between the concave surface of the first curved glass plate with a thickness of 2.0 mm and the convex surface of the second curved glass plate with a thickness of 1.6 mm. to produce laminated glass. The strain was measured in the same manner as in Example 1 except that the actual vehicle mounting angle was 56.4 degrees.
The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<比較例2>
 厚さ2.0mmの第一平板ガラスが加熱炉から出た後の冷却を行わなかったこと以外は、実施例2と同様にして湾曲ガラス板の成形を行った。すなわち、比較例2では、厚さ2.0mmの第一平板ガラスと厚さ1.6mmの第二平板ガラスのいずれにも冷却を行わなかった。
 プレス成形機に入る前の各平板ガラスのS2面の表面温度を測定したところ、厚さ2.0mmの第一平板ガラスと厚さ1.6mmの第二平板ガラスの中央付近のS2面の表面温度は、いずれも625℃であり、温度差はなかった。
 その後、実施例2と同様に、合わせガラスを製造し、それぞれの湾曲ガラス板と合わせガラスの歪みを測定した。
 結果を下記表4に示す。
<Comparative Example 2>
A curved glass plate was formed in the same manner as in Example 2, except that the first flat glass having a thickness of 2.0 mm was not cooled after coming out of the heating furnace. That is, in Comparative Example 2, neither the first flat glass having a thickness of 2.0 mm nor the second flat glass having a thickness of 1.6 mm was cooled.
When the surface temperature of the S2 surface of each flat glass before entering the press molding machine was measured, the surface of the S2 surface near the center of the first flat glass with a thickness of 2.0 mm and the second flat glass with a thickness of 1.6 mm All the temperatures were 625° C., and there was no temperature difference.
Thereafter, laminated glass was produced in the same manner as in Example 2, and the distortion of each curved glass plate and laminated glass was measured.
The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例2と比較例2を比べると、合わせガラスにした際に、実施例2の方が比較例2より各領域において透視ひずみが改善していることがわかる。 Comparing Example 2 and Comparative Example 2, it can be seen that perspective distortion is improved in Example 2 compared to Comparative Example 2 in each region when laminated glass is used.
<実施例3>
 ガラスサイズ1370mm×1049mmで、厚さ2.0mmの第一平板ガラス及び厚さ2.0mmの第二平板ガラスを用いて、それぞれの平板ガラスから湾曲ガラス板を製造し、これらの湾曲ガラス板を用いて合わせガラスを製造した。
 具体的には、図3に示した加熱炉2、冷却装置3及び10、並びにプレス成形機4を含む湾曲ガラス板の製造方法により、湾曲ガラス板を製造した。図3に示した湾曲ガラス板の製造方法は、冷却装置10を更に有すること以外は、図2の湾曲ガラス板の製造方法と同じである。冷却装置10は加熱炉2の外であって、加熱炉2とプレス成形機4の間に設けられている。冷却装置10によりS1面を冷却することができる。
<Example 3>
Using a first flat glass with a glass size of 1370 mm × 1049 mm and a thickness of 2.0 mm and a second flat glass with a thickness of 2.0 mm, curved glass sheets are produced from each flat glass, and these curved glass sheets are manufactured. A laminated glass was produced using
Specifically, a curved glass sheet was manufactured by a curved glass sheet manufacturing method including the heating furnace 2, the cooling devices 3 and 10, and the press molding machine 4 shown in FIG. The manufacturing method of the curved glass sheet shown in FIG. 3 is the same as the manufacturing method of the curved glass sheet of FIG. A cooling device 10 is provided outside the heating furnace 2 and between the heating furnace 2 and the press molding machine 4 . The cooling device 10 can cool the S1 surface.
 厚さ2.0mmの第一平板ガラス及び厚さ2.0mmの第二平板ガラスを、653℃の加熱炉内に別々に流しながら加熱した。それぞれの平板ガラスが加熱炉から出た後、プレス成形機に入る前に、冷却ブローより、それぞれの平板ガラスの湾曲ガラス板の凹面になる側の表面(S2面)及び凸面になる側の表面(S1面)に、常温(23℃)の空気を吹き付けて平板ガラスを冷却した。
 プレス成形機に入る前の各平板ガラスのS2面の表面温度を温度計9により測定したところ、平板ガラスの中央付近のS2面の表面温度はいずれも626℃であった。なお、後述する比較例3では、冷却を行わない場合のS2面の表面温度が631℃であったことから、工程(B)における冷却により、S2面の温度を5℃下げることができたことがわかる。
 その後、成形金型の温度を450℃に設定したプレス成形機にて曲げ成形を行い、厚さ2.0mmの第一湾曲ガラス板及び厚さ2.0mmの第二湾曲ガラス板を製造した。
 製造した第一湾曲ガラス板及び第二湾曲ガラス板の間にポリビニルブチラール(PVB)製の厚さ0.76mmの中間膜を配置して、合わせガラスを製造した。
A first flat glass with a thickness of 2.0 mm and a second flat glass with a thickness of 2.0 mm were heated while flowing separately in a heating furnace at 653°C. After each flat glass comes out of the heating furnace and before entering the press molding machine, the concave surface (S2 surface) and the convex surface of the curved glass plate of each flat glass are cooled and blown. Air at room temperature (23° C.) was blown onto (S1 surface) to cool the flat glass.
When the surface temperature of the S2 surface of each flat glass before entering the press molding machine was measured with a thermometer 9, the surface temperature of the S2 surface near the center of each flat glass was 626°C. In Comparative Example 3, which will be described later, the surface temperature of the S2 surface was 631°C when cooling was not performed. I understand.
Thereafter, bending was performed using a press molding machine in which the temperature of the mold was set to 450° C. to produce a first curved glass plate with a thickness of 2.0 mm and a second curved glass plate with a thickness of 2.0 mm.
An intermediate film made of polyvinyl butyral (PVB) and having a thickness of 0.76 mm was arranged between the manufactured first curved glass plate and the second curved glass plate to manufacture a laminated glass.
 合わせガラスの歪みを測定した。具体的には、JIS R3212(2015年)に基づいて、実車取付角度28.4度にて試験領域AとBの透視ひずみを測定した。
 同じ条件で作成した3つの試料についての測定結果を下記表5に示す。表5には、各試験領域の透視ひずみ(単位:分)を示した。透視ひずみの値が小さい方が、歪みが少なく、好ましい。
The distortion of the laminated glass was measured. Specifically, based on JIS R3212 (2015), perspective distortion of test areas A and B was measured at an actual vehicle mounting angle of 28.4 degrees.
Table 5 below shows the measurement results for three samples prepared under the same conditions. Table 5 shows the perspective strain (in minutes) for each test area. A smaller perspective distortion value is preferable because the distortion is less.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<比較例3>
 平板ガラスが加熱炉から出た後の冷却を行わなかったこと以外は、実施例3と同様にして湾曲ガラス板の成形を行った。
 プレス成形機に入る前の各平板ガラスのS2面の表面温度を測定したところ、平板ガラスの中央部のS2面の表面温度は、いずれも631℃であった。
 その後、実施例1と同様に、合わせガラスを製造し、合わせガラスの歪みを測定した。
 同じ条件で作成した3つの試料についての測定結果を下記表6に示す。
<Comparative Example 3>
A curved glass plate was formed in the same manner as in Example 3, except that the flat glass was not cooled after coming out of the heating furnace.
When the surface temperature of the S2 surface of each flat glass was measured before entering the press molding machine, the surface temperature of the S2 surface in the central portion of each flat glass was 631°C.
After that, similarly to Example 1, a laminated glass was produced, and the distortion of the laminated glass was measured.
Table 6 below shows the measurement results for three samples prepared under the same conditions.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例3と比較例3を比べると、合わせガラスにした際に、実施例3の方が比較例3より各領域において透視ひずみが改善していることがわかる。 Comparing Example 3 and Comparative Example 3, it can be seen that perspective distortion is improved in Example 3 compared to Comparative Example 3 in each region when laminated glass is used.
 以上より、本開示の湾曲ガラス板の製造方法により、合わせガラスにした際に歪みの発生が少ない湾曲ガラス板を製造することができ、特に歪みの少ない合わせガラスを提供することができることがわかる。 From the above, it can be seen that the method for manufacturing a curved glass sheet of the present disclosure can manufacture a curved glass sheet with little distortion when laminated glass, and can provide laminated glass with particularly little distortion.
本開示によれば、合わせガラスにした際に歪みの発生が少ない湾曲ガラス板の製造方法、及び歪みが少ない車両用合わせガラスを提供することができる。 Advantageous Effects of Invention According to the present disclosure, it is possible to provide a method for manufacturing a curved glass sheet that causes less distortion when it is made into laminated glass, and a laminated glass for vehicles that causes less distortion.
 本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2021年5月12日出願の日本特許出願(特願2021-080764)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present disclosure has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the disclosure.
This application is based on a Japanese patent application (Japanese Patent Application No. 2021-080764) filed on May 12, 2021, the contents of which are incorporated herein by reference.
 1P 平板ガラス
 1C 湾曲ガラス板
 S1 S1面
 S2 S2面
 2 加熱炉
 3 冷却装置
 4 プレス成形機
 5 ローラコンベヤ
 6 凸型
 7 凹型
 8 金属布
 9 温度計
 10 冷却装置
1P Flat glass 1C Curved glass plate S1 S1 surface S2 S2 surface 2 Heating furnace 3 Cooling device 4 Press molding machine 5 Roller conveyor 6 Convex mold 7 Concave mold 8 Metal cloth 9 Thermometer 10 Cooling device

Claims (24)

  1.  車両用合わせガラスに用いられる、湾曲ガラス板の製造方法であって、
     加熱炉において、平板ガラスを加熱する工程(A)と、
     前記工程(A)で加熱された前記平板ガラスを、プレス成形機に搬送する工程(B)と、
     前記プレス成形機で、前記平板ガラスを曲げて、凹面と凸面とを有する湾曲ガラス板を成形する工程(C)とを備え、
     前記工程(B)において、前記平板ガラスの表面を、冷却物質を噴射することにより冷却する、
    湾曲ガラス板の製造方法。
    A method for manufacturing a curved glass plate for use in laminated glass for vehicles, comprising:
    (A) heating the flat glass in a heating furnace;
    A step (B) of conveying the flat glass heated in the step (A) to a press molding machine;
    a step (C) of bending the flat glass to form a curved glass sheet having a concave surface and a convex surface with the press molding machine;
    In the step (B), the surface of the flat glass is cooled by injecting a cooling substance.
    A method for manufacturing a curved glass plate.
  2.  前記冷却を前記平板ガラスの前記凹面になる側の表面に前記冷却物質を噴射することにより行い、前記冷却物質が空気である、請求項1に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass sheet according to claim 1, wherein the cooling is performed by injecting the cooling substance onto the surface of the flat glass on the concave surface side, and the cooling substance is air.
  3.  前記工程(B)において、前記平板ガラスの前記工程(C)で前記凹面になる側の表面を、冷却物質を噴射することにより前記工程(C)で前記凸面になる側の表面より強く冷却する、請求項1に記載の湾曲ガラス板の製造方法。 In the step (B), the surface of the flat glass that will become the concave surface in the step (C) is cooled more strongly than the surface that will become the convex surface in the step (C) by injecting a cooling substance. , The manufacturing method of the curved glass plate according to claim 1.
  4.  前記工程(B)において、前記平板ガラスの前記工程(C)で前記凸面になる側の表面を、冷却物質を噴射することにより前記工程(C)で前記凹面になる側の表面より強く冷却する、請求項1に記載の湾曲ガラス板の製造方法。 In the step (B), the surface of the flat glass which will be the convex surface in the step (C) is cooled more strongly than the surface of the flat glass which will be the concave surface in the step (C) by injecting a cooling substance. , The manufacturing method of the curved glass plate according to claim 1.
  5.  前記冷却を前記平板ガラスの両面に、空気を噴射することにより行う、請求項1~4のいずれか1項に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass sheet according to any one of claims 1 to 4, wherein the cooling is performed by blowing air onto both sides of the flat glass.
  6.  前記平板ガラスの前記凹面になる側の表面への空気噴射圧力が、前記平板ガラスの前記凸面になる側の表面への空気噴射圧力より大きい、請求項5に記載の湾曲ガラス板の製造方法。 6. The method for manufacturing a curved glass plate according to claim 5, wherein the air injection pressure to the surface of the flat glass on the concave side is higher than the air injection pressure on the surface of the flat glass on the convex side.
  7.  前記平板ガラスの前記凸面になる側の表面への空気噴射圧力が、前記平板ガラスの前記凹面になる側の表面への空気噴射圧力より大きい、請求項5に記載の湾曲ガラス板の製造方法。 6. The method for manufacturing a curved glass plate according to claim 5, wherein the air injection pressure to the surface of the flat glass on the convex side is higher than the air injection pressure on the surface of the flat glass on the concave side.
  8.  前記冷却物質の温度が、200℃以下である、請求項1~4のいずれか1項に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass plate according to any one of claims 1 to 4, wherein the temperature of the cooling substance is 200°C or less.
  9.  前記冷却物質の温度が、100℃以下である、請求項1~4のいずれか1項に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass sheet according to any one of claims 1 to 4, wherein the temperature of the cooling substance is 100°C or less.
  10.  前記冷却物質の温度が、50℃以下である、請求項1~4のいずれか1項に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass sheet according to any one of claims 1 to 4, wherein the temperature of the cooling substance is 50°C or less.
  11.  前記冷却により、前記平板ガラスの前記凹面になる側の表面の温度を5~15℃下げる、請求項1~4のいずれか1項に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass plate according to any one of claims 1 to 4, wherein the cooling lowers the temperature of the surface of the flat glass on the concave surface side by 5 to 15°C.
  12.  前記プレス成形機が凸型を有し、前記凸型の表面に金属布を有する、請求項1~4のいずれか1項に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass sheet according to any one of claims 1 to 4, wherein the press molding machine has a convex mold and has a metal cloth on the surface of the convex mold.
  13.  前記冷却を前記加熱炉の外で行う、請求項1~4のいずれか1項に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass plate according to any one of claims 1 to 4, wherein the cooling is performed outside the heating furnace.
  14.  前記平板ガラスとして、第一平板ガラス及び第二平板ガラスの二枚の平板ガラスを用い、前記第一平板ガラスから第一湾曲ガラス板を製造し、前記第二平板ガラスから第二湾曲ガラス板を製造する製造方法であって、
     前記冷却を前記第一平板ガラスと前記第二平板ガラスの少なくとも一方に対して行う、請求項1~4のいずれか1項に記載の湾曲ガラス板の製造方法。
    Two flat glass sheets, a first flat glass and a second flat glass, are used as the flat glass, a first curved glass sheet is produced from the first flat glass, and a second curved glass sheet is produced from the second flat glass. A manufacturing method for manufacturing,
    The method for manufacturing a curved glass sheet according to any one of claims 1 to 4, wherein the cooling is performed on at least one of the first flat glass and the second flat glass.
  15.  前記第一平板ガラス及び前記第二平板ガラスの厚さが同じである、請求項14に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass plate according to claim 14, wherein the first flat glass and the second flat glass have the same thickness.
  16.  前記第一平板ガラス及び前記第二平板ガラスの厚さが異なる、請求項14に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass sheet according to claim 14, wherein the first flat glass and the second flat glass have different thicknesses.
  17.  前記冷却を前記第一平板ガラスと前記第二平板ガラスの両方に対して行う、請求項14に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass sheet according to claim 14, wherein the cooling is performed on both the first flat glass and the second flat glass.
  18.  前記第一平板ガラスの厚さが、前記第二平板ガラスの厚さよりも厚く、
     前記冷却を前記第一平板ガラスのみに対して行う、請求項16に記載の湾曲ガラス板の製造方法。
    The thickness of the first flat glass is thicker than the thickness of the second flat glass,
    17. The method of manufacturing a curved glass sheet according to claim 16, wherein said cooling is performed only on said first flat glass.
  19.  前記加熱炉の温度が、前記第二平板ガラスが曲げ成形可能となる温度以上である、請求項18に記載の湾曲ガラス板の製造方法。 The method for manufacturing a curved glass sheet according to claim 18, wherein the temperature of the heating furnace is equal to or higher than the temperature at which the second flat glass can be bent.
  20.  前記冷却により、前記第一平板ガラスの前記凹面になる側の表面の温度が、前記第二平板ガラスの前記凹面になる側の表面の温度よりも1~10℃低くなる、請求項18に記載の湾曲ガラス板の製造方法。 19. The method according to claim 18, wherein the cooling makes the temperature of the surface of the first flat glass on the side of the concave surface lower than the temperature of the surface of the second flat glass on the side of the concave surface by 1 to 10°C. of the curved glass sheet.
  21.  互いに対向する、第一湾曲ガラス板と、第二湾曲ガラス板と、
     前記第一湾曲ガラス板と前記第二湾曲ガラス板との間に挟持される中間膜と、を備える車両用合わせガラスであって、
     前記合わせガラスの厚さが5mm以下であり、
     前記合わせガラスのJIS R3212(2015年)に規定される試験領域Aにおける透視ひずみが、1.5分以下であり、
     前記第一湾曲ガラス板の厚さは、前記第二湾曲ガラス板の厚さの±1.1倍以下である、車両用合わせガラス。
    a first curved glass plate and a second curved glass plate facing each other;
    A laminated glass for a vehicle, comprising: an interlayer sandwiched between the first curved glass plate and the second curved glass plate,
    The laminated glass has a thickness of 5 mm or less,
    The perspective distortion in the test area A defined in JIS R3212 (2015) of the laminated glass is 1.5 minutes or less,
    A laminated glass for a vehicle, wherein the thickness of the first curved glass plate is ±1.1 times or less the thickness of the second curved glass plate.
  22.  前記第一湾曲ガラス板及び前記第二湾曲ガラス板の、前記試験領域Aにおける透視ひずみが、それぞれ0.4分以下である、請求項21に記載の車両用合わせガラス。 The laminated glass for vehicles according to claim 21, wherein each of the first curved glass plate and the second curved glass plate has a perspective distortion of 0.4 minutes or less in the test area A.
  23.  互いに対向する、第一湾曲ガラス板と、第二湾曲ガラス板と、
     前記第一湾曲ガラス板と前記第二湾曲ガラス板との間に挟持される中間膜と、を備える車両用合わせガラスであって、
     前記合わせガラスの厚さが5mm以下であり、
     前記合わせガラスのJIS R3212(2015年)に規定される試験領域Aにおける透視ひずみが、1.0分以下であり、
     前記第二湾曲ガラス板の厚さは、前記第一湾曲ガラス板の厚さの0.8倍以下である、車両用合わせガラス。
    a first curved glass plate and a second curved glass plate facing each other;
    A laminated glass for a vehicle, comprising: an interlayer sandwiched between the first curved glass plate and the second curved glass plate,
    The laminated glass has a thickness of 5 mm or less,
    The perspective distortion in the test area A defined in JIS R3212 (2015) of the laminated glass is 1.0 minutes or less,
    A laminated glass for a vehicle, wherein the thickness of the second curved glass plate is 0.8 times or less the thickness of the first curved glass plate.
  24.  前記第一湾曲ガラス板及び前記第二湾曲ガラス板の、前記試験領域Aにおける透視ひずみは、それぞれ0.2分以下である、請求項23に記載の車両用合わせガラス。 24. The laminated glass for vehicles according to claim 23, wherein each of the first curved glass plate and the second curved glass plate has a see-through distortion in the test region A of 0.2 minutes or less.
PCT/JP2022/020061 2021-05-12 2022-05-12 Method for producing curved glass plate, and glass laminate for vehicle WO2022239833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023521243A JPWO2022239833A1 (en) 2021-05-12 2022-05-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-080764 2021-05-12
JP2021080764 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022239833A1 true WO2022239833A1 (en) 2022-11-17

Family

ID=84029696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020061 WO2022239833A1 (en) 2021-05-12 2022-05-12 Method for producing curved glass plate, and glass laminate for vehicle

Country Status (2)

Country Link
JP (1) JPWO2022239833A1 (en)
WO (1) WO2022239833A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132529A (en) * 1984-11-23 1986-06-20 グラステク インコーポレーテツド Method and device for forming glass sheet
JP2006523173A (en) * 2003-03-28 2006-10-12 ピルキントン オートモーティヴ ドイチェラント ゲーエムベーハー A processing method and apparatus for processing a pair of asymmetric glass plates
JP2007533592A (en) * 2004-04-21 2007-11-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Sheet bending apparatus and method using vacuum apparatus
JP2018158883A (en) * 2015-01-26 2018-10-11 Agc株式会社 Laminated glass
JP2020521715A (en) * 2017-06-01 2020-07-27 ピルキントン グループ リミテッド Glass sheet forming method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132529A (en) * 1984-11-23 1986-06-20 グラステク インコーポレーテツド Method and device for forming glass sheet
JP2006523173A (en) * 2003-03-28 2006-10-12 ピルキントン オートモーティヴ ドイチェラント ゲーエムベーハー A processing method and apparatus for processing a pair of asymmetric glass plates
JP2007533592A (en) * 2004-04-21 2007-11-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Sheet bending apparatus and method using vacuum apparatus
JP2018158883A (en) * 2015-01-26 2018-10-11 Agc株式会社 Laminated glass
JP2020521715A (en) * 2017-06-01 2020-07-27 ピルキントン グループ リミテッド Glass sheet forming method and apparatus

Also Published As

Publication number Publication date
JPWO2022239833A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US20230271483A1 (en) Cold-formed laminates
EP2173675B1 (en) Glass bending process
EP0414232B1 (en) Laminated glass and a method of bending glass plates for a laminated glass
CN107001135B (en) Method for producing laminated glass
US20160332423A1 (en) Laminated glass production method
US20230249440A1 (en) Process
JPH04119931A (en) Method for bending glass
WO2016030678A1 (en) Methods of making a laminated glazing and apparatus therefor
US10995028B2 (en) Method and apparatus for bending thin glass
WO2022239833A1 (en) Method for producing curved glass plate, and glass laminate for vehicle
US20200325056A1 (en) System and process for forming curved glass laminate article utilizing glass viscosity differential for improved shape matching
US7775068B2 (en) Production method and production device for laminated glass
US20210221103A1 (en) Process
JPH0238332A (en) Flexural forming process for laminated raw plate glass for laminated glass and unit therefor
WO2019008496A1 (en) Method for bending and laminating thin glass with cover plate
US20020116950A1 (en) Heated ceramic female mold
WO2013137154A1 (en) Glass plate bending formation method, bending formation device, and laminated glass
JPH0230632A (en) Flexural forming process for laminated raw plate glass for laminated glass and unit therefor
KR102665441B1 (en) Cold formed laminates
WO2019008495A1 (en) Method for bending and laminating thin glass with pressing plate
TW201305077A (en) Manufacture method and manufacture system of glass product and electronic device
JP2002284537A (en) Method for bending and forming coated plate grass and plate glass with coating film
JPH04295021A (en) Method for bending and molding blank sheet glass for sandwich glass
JPH0255239A (en) Method for bending raw glass sheet for laminated glass and apparatus therefor
JPH02258641A (en) Production of curved thick glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521243

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE