WO2022224318A1 - Control device, base material, system, control method, and program - Google Patents

Control device, base material, system, control method, and program Download PDF

Info

Publication number
WO2022224318A1
WO2022224318A1 PCT/JP2021/015906 JP2021015906W WO2022224318A1 WO 2022224318 A1 WO2022224318 A1 WO 2022224318A1 JP 2021015906 W JP2021015906 W JP 2021015906W WO 2022224318 A1 WO2022224318 A1 WO 2022224318A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
susceptor
power
heating
control unit
Prior art date
Application number
PCT/JP2021/015906
Other languages
French (fr)
Japanese (ja)
Inventor
泰弘 小野
和俊 芹田
玲二朗 川崎
寛 手塚
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/015906 priority Critical patent/WO2022224318A1/en
Publication of WO2022224318A1 publication Critical patent/WO2022224318A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/65Devices with integrated communication means, e.g. wireless communication means

Definitions

  • the present invention relates to a control device, substrate, system, control method and program.
  • the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component.
  • a user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device.
  • the action of the user inhaling the aerosol is hereinafter also referred to as puffing or puffing action.
  • Patent Document 1 describes a technique for identifying a substrate by observing a change in the magnetism of the susceptor before and after the Curie point when the substrate containing two types of susceptors with different Curie points is induction-heated. disclosed.
  • Patent Document 1 it is difficult to identify the substrate unless the susceptor is heated to around the Curie point. Therefore, there is a risk that the base material that should not be heated may be heated, and the user may inhale inappropriate aerosol.
  • an object of the present invention is to provide a mechanism capable of improving the quality of the user's puff experience.
  • a control device for controlling a suction device, wherein the suction device includes a power supply unit that stores and supplies power, and a an inverter circuit that converts DC power into AC power; a housing part that can house a substrate containing an aerosol source and a susceptor that is thermally adjacent to the aerosol source; and the AC power supplied from the inverter circuit.
  • an electromagnetic induction source that uses electric power to generate a fluctuating magnetic field in the internal space; and the electromagnetic induction source from the inverter circuit based on a heating profile that defines a time-series transition of a target temperature, which is a target temperature of the susceptor.
  • a control device comprising an operation control section that controls the operation of the heating control section based on a state value that is a value corresponding to the state of the susceptor.
  • the operation control unit may control whether or not to perform power supply based on the heating profile, based on a comparison result between the state value and the reference value.
  • the state value may be the impedance of an RLC circuit including the electromagnetic induction source.
  • the state value may be a current value when the RLC circuit including the electromagnetic induction source is operated at a predetermined frequency.
  • the state value may be a Q value that indicates the sharpness of the resonance peak of the RLC circuit including the electromagnetic induction source.
  • the operation control unit may control whether or not to perform power supply based on the heating profile, based on the plurality of state values.
  • the amount of power supplied to the electromagnetic induction source for detecting the state value may be smaller than the amount of power supplied to the electromagnetic induction source during power supply based on the heating profile.
  • the state value may be detected as a trigger that a predetermined user operation has been performed.
  • the state value may be detected by triggering that the base material has been stored in the storage unit.
  • the storage portion has an opening that communicates the internal space with the outside, and stores the base material inserted into the internal space through the opening. It may be detected based on information of a partial space that is a part of the internal space on the opening side.
  • the operation control unit may select the heating profile based on the state value.
  • the operation control unit may control whether or not to execute power supply based on the heating profile based on the state value and the remaining power of the power supply unit.
  • the control device may be the suction device.
  • control device and the suction device are configured separately, the suction device transmits the state value to the control device, and the control device controls the operation of the heating control unit based on the received state value. Control information for controlling may be transmitted to the suction device.
  • the heating control unit may perform power supply based on the heating profile triggered by a predetermined user operation in a state where power supply based on the heating profile is permitted by the operation control unit. good.
  • the heating control unit may execute power supply based on the heating profile, triggered by the operation control unit permitting execution of power supply based on the heating profile.
  • a substrate for use in a suction device controlled by a control device comprising a power source for storing and supplying power.
  • an inverter circuit that converts DC power supplied from the power supply unit into AC power; and a housing that can house a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space.
  • an electromagnetic induction source that uses the AC power supplied from the inverter circuit to generate a varying magnetic field in the internal space; a heating control unit configured to control power supply from the inverter circuit to the electromagnetic induction source based on the heating profile, wherein the control device controls power supply from the inverter circuit to the electromagnetic induction source before power supply based on the heating profile is performed.
  • an operation control unit that controls the operation of the heating control unit based on a state value corresponding to the state of the susceptor that is detected when power is supplied to the source;
  • a substrate is provided comprising a source and the susceptor in thermal proximity to the aerosol source.
  • a power supply unit that stores and supplies electric power
  • an inverter circuit that converts the DC power supplied from the power supply unit into AC power
  • an aerosol source an accommodating portion capable of accommodating a base material and a susceptor thermally adjacent to the aerosol source in an internal space, and electromagnetic induction generating a varying magnetic field in the internal space using the AC power supplied from the inverter circuit.
  • a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor; Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit and a substrate housed in the housing and having the aerosol source and the susceptor in thermal proximity to the aerosol source.
  • a control method for controlling a suction device wherein the suction device includes a power supply unit that stores and supplies power; an inverter circuit for converting DC power supplied from a unit into AC power; a housing unit capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space; an electromagnetic induction source that uses the supplied AC power to generate a varying magnetic field in the internal space; and a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source, and the control method is configured to control power supply from the inverter circuit to the electromagnetic induction source before power supply based on the heating profile is performed. controlling the operation of the heating control unit based on the detected state value corresponding to the state of the susceptor.
  • a heating control unit for controlling power supply from the inverter circuit to the electromagnetic induction source, wherein the program controls power supply from the inverter circuit to the electromagnetic induction source before power supply based on the heating profile is executed.
  • a program is provided for controlling the operation of the heating control unit based on a state value, which is a value corresponding to the state of the susceptor, detected when the heating is performed.
  • a mechanism is provided that can improve the quality of the user's puff experience.
  • FIG. 2 is a block diagram showing a configuration related to induction heating by the suction device 100 according to the embodiment; It is a figure which shows the equivalent circuit of the circuit involved in the induction heating by the suction device 100 which concerns on this embodiment.
  • 4 is a flow chart showing an example of the flow of processing executed by the suction device 100 according to the present embodiment;
  • FIG. 8 is a diagram for explaining processing for determining whether or not the susceptor 161 is corroded based on the value of current flowing through the RLC circuit 164;
  • Configuration example of suction device The suction device according to this configuration example generates an aerosol by heating a substrate including an aerosol source by induction heating (IH (Induction Heating)). This configuration example will be described below with reference to FIG.
  • IH Induction Heating
  • FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device.
  • the suction device 100 includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, a susceptor 161, an electromagnetic induction source 162, and A retainer 140 is included.
  • the user performs suction while the stick-shaped substrate 150 is held by the holding portion 140 .
  • Each component will be described in order below.
  • the power supply unit 111 accumulates power.
  • the power supply unit 111 supplies electric power to each component of the suction device 100 .
  • the power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
  • the power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like.
  • the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology. Alternatively, only the power supply unit 111 may be detached from the suction device 100 or may be replaced with a new power supply unit 111 .
  • the sensor unit 112 detects various information regarding the suction device 100 .
  • the sensor unit 112 then outputs the detected information to the control unit 116 .
  • the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, or a temperature sensor.
  • the sensor unit 112 detects a numerical value associated with the user's suction
  • the sensor unit 112 outputs information indicating that the user has performed suction to the control unit 116 .
  • the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user.
  • sensor unit 112 may include a button for instructing start/stop of aerosol generation.
  • the sensor unit 112 then outputs the information input by the user to the control unit 116 .
  • the sensor section 112 is configured by a temperature sensor that detects the temperature of the susceptor 161 .
  • a temperature sensor detects the temperature of the susceptor 161 based on the electrical resistance value of the electromagnetic induction source 162, for example.
  • the sensor section 112 may detect the temperature of the stick-shaped substrate 150 held by the holding section 140 based on the temperature of the susceptor 161 .
  • the notification unit 113 notifies the user of information.
  • the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode).
  • the notification unit 113 emits light in different light emission patterns when the power supply unit 111 is in a charging required state, when the power supply unit 111 is being charged, when an abnormality occurs in the suction device 100, and the like.
  • the light emission pattern here is a concept including color, timing of lighting/lighting out, and the like.
  • the notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device.
  • the notification unit 113 may notify information indicating that suction by the user has become possible. Information indicating that suction by the user is enabled is notified when the temperature of the stick-shaped base material 150 heated by electromagnetic induction reaches a predetermined temperature.
  • the storage unit 114 stores various information for the operation of the suction device 100 .
  • the storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory.
  • An example of the information stored in the storage unit 114 is information regarding the OS (Operating System) of the suction device 100, such as control details of various components by the control unit 116.
  • FIG. Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction, suction time, total suction time, and the like.
  • the communication unit 115 is a communication interface for transmitting and receiving information between the suction device 100 and other devices.
  • the communication unit 115 performs communication conforming to any wired or wireless communication standard.
  • a communication standard for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted.
  • the communication unit 115 transmits information about suction by the user to the smartphone so that the smartphone displays information about suction by the user.
  • the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
  • the control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 100 according to various programs.
  • the control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor.
  • the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate.
  • the suction device 100 executes various processes under the control of the controller 116 .
  • the holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 .
  • the holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 .
  • the holding portion 140 is a tubular body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 .
  • the holding part 140 is configured such that the inner diameter is smaller than the outer diameter of the stick-shaped base material 150 at least in part in the height direction of the cylindrical body, and holds the stick-shaped base material 150 inserted into the internal space 141.
  • the stick-shaped substrate 150 can be held by pressing from the outer periphery.
  • the retainer 140 also functions to define air flow paths through the stick-shaped substrate 150 .
  • An air inlet hole which is an inlet for air into the flow path, is arranged, for example, in the bottom portion 143 .
  • the air outflow hole which is the exit of air from such a channel, is the opening 142 .
  • the stick-shaped base material 150 is a stick-shaped member.
  • the stick-type substrate 150 includes a substrate portion 151 and a mouthpiece portion 152 .
  • the base material portion 151 includes an aerosol source.
  • the aerosol source is atomized by heating to produce an aerosol.
  • the aerosol source may be tobacco-derived, such as, for example, a processed product of cut tobacco or tobacco material formed into granules, sheets, or powder. Aerosol sources may also include non-tobacco sources made from plants other than tobacco, such as mints and herbs. By way of example, the aerosol source may contain perfume ingredients such as menthol. If the inhalation device 100 is a medical inhaler, the aerosol source may contain a medicament for inhalation by the patient.
  • the aerosol source is not limited to solids, and may be, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. At least part of the base material part 151 is accommodated in the internal space 141 of the holding part 140 in a state in which the stick-shaped base material 150 is held by the holding part 140.
  • the mouthpiece 152 is a member held by the user when inhaling. At least part of the mouthpiece 152 protrudes from the opening 142 when the stick-shaped base material 150 is held by the holding part 140 . Then, when the user holds the mouthpiece 152 protruding from the opening 142 and sucks, air flows into the inside of the holding part 140 from an air inlet hole (not shown). The air that has flowed in passes through the internal space 141 of the holding part 140 , that is, passes through the base material part 151 and reaches the inside of the user's mouth together with the aerosol generated from the base material part 151 .
  • the stick-type base material 150 includes a susceptor 161 .
  • the susceptor 161 generates heat by electromagnetic induction.
  • the susceptor 161 is made of a conductive material such as metal.
  • the susceptor 161 is configured in a plate shape.
  • the susceptor 161 is arranged such that the longitudinal direction of the susceptor 161 coincides with the longitudinal direction of the stick-shaped substrate 150 .
  • the susceptor 161 is placed in thermal proximity to the aerosol source.
  • the susceptor 161 being thermally close to the aerosol source means that the susceptor 161 is arranged at a position where heat generated in the susceptor 161 is transferred to the aerosol source.
  • the susceptor 161 is contained in the substrate portion 151 along with the aerosol source and is surrounded by the aerosol source. With such a configuration, the heat generated from the susceptor 161 can be efficiently used to heat the aerosol source.
  • the susceptor 161 may not be accessible from the outside of the stick-shaped substrate 150 .
  • the susceptors 161 may be distributed in the central portion of the stick-shaped substrate 150 and not distributed near the periphery.
  • the electromagnetic induction source 162 causes the susceptor 161 to generate heat by electromagnetic induction.
  • the electromagnetic induction source 162 is composed of, for example, a coiled conductor wire, and is arranged so as to wrap around the outer periphery of the holding portion 140 .
  • the electromagnetic induction source 162 generates a magnetic field when alternating current is supplied from the power supply section 111 .
  • the electromagnetic induction source 162 is arranged at a position where the internal space 141 of the holding section 140 overlaps the generated magnetic field. Therefore, when a magnetic field is generated while the stick-shaped substrate 150 is held by the holding portion 140, an eddy current is generated in the susceptor 161 and Joule heat is generated.
  • the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 and atomizes it to generate an aerosol.
  • power may be supplied and an aerosol may be generated when the sensor unit 112 detects that a predetermined user input has been performed.
  • the temperature of the stick-shaped substrate 150 induction-heated by the susceptor 161 and the electromagnetic induction source 162 reaches a predetermined temperature, the suction by the user becomes possible.
  • the power supply may be stopped.
  • power may be supplied and aerosol may be generated during a period in which the sensor unit 112 detects that the user has inhaled.
  • FIG. 1 shows an example in which the susceptor 161 is included in the base material portion 151 of the stick-shaped base material 150
  • the holding part 140 may serve the function of the susceptor 161 .
  • the magnetic field generated by the electromagnetic induction source 162 generates an eddy current in the holding portion 140 and generates Joule heat.
  • the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 and atomizes it to generate an aerosol.
  • the combination of the suction device 100 and the stick-shaped substrate 150 may be regarded as one system in that aerosol can be generated by combining the suction device 100 and the stick-shaped substrate 150 .
  • Induction heating is the process of heating a conductive object by penetrating a varying magnetic field into the object.
  • Induction heating involves a magnetic field generator that generates a fluctuating magnetic field, and a conductive heated object that is heated by being exposed to the fluctuating magnetic field.
  • An example of a varying magnetic field is an alternating magnetic field.
  • the electromagnetic induction source 162 shown in FIG. 1 is an example of a magnetic field generator.
  • the susceptor 161 shown in FIG. 1 is an example of the object to be heated.
  • the magnetic field generator and the object to be heated are arranged in relative positions such that the fluctuating magnetic field generated by the magnetic field generator penetrates into the object to be heated, when the fluctuating magnetic field is generated from the magnetic field generator, the object to be heated Eddy currents are induced.
  • Joule heat corresponding to the electrical resistance of the object to be heated is generated and the object to be heated is heated.
  • Such heating is also referred to as joule heating, ohmic heating, or resistance heating.
  • the object to be heated may have magnetism.
  • the object to be heated is further heated by magnetic hysteresis heating.
  • Magnetic hysteresis heating is the process of heating a magnetic object by impinging it with a varying magnetic field.
  • the magnetic dipoles contained in the magnetic body align along the magnetic field. Therefore, when a fluctuating magnetic field penetrates a magnetic material, the orientation of the magnetic dipole changes according to the applied fluctuating magnetic field. Due to such reorientation of the magnetic dipoles, heat is generated in the magnetic material, and the object to be heated is heated.
  • Magnetic hysteresis heating typically occurs at temperatures below the Curie point and does not occur at temperatures above the Curie point.
  • the Curie point is the temperature at which a magnetic material loses its magnetic properties. For example, when the temperature of an object to be heated which has ferromagnetism at a temperature below the Curie point exceeds the Curie point, the magnetism of the object to be heated undergoes a reversible phase transition from ferromagnetism to paramagnetism. When the temperature of the object to be heated exceeds the Curie point, magnetic hysteresis heating does not occur, so the rate of temperature increase slows down.
  • the object to be heated is made of a conductive material. Furthermore, it is desirable that the object to be heated is made of a ferromagnetic material. In the latter case, it is possible to increase the heating efficiency by combining resistance heating and magnetic hysteresis heating.
  • the object to be heated is made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, stainless steel, and the like.
  • induction heating directly heats the susceptor 161 included in the stick-shaped base material 150
  • the base material can be heated more efficiently than when the stick-shaped base material 150 is heated from the outer periphery or the like by an external heat source. It is possible.
  • the temperature of the external heat source is inevitably higher than that of the stick-shaped substrate 150 .
  • the electromagnetic induction source 162 does not become hotter than the stick-shaped substrate 150 . Therefore, the temperature of the suction device 100 can be kept lower than when an external heat source is used, which is a great advantage in terms of user safety.
  • the electromagnetic induction source 162 uses power supplied from the power supply unit 111 to generate a varying magnetic field.
  • the power supply unit 111 may be a DC (Direct Current) power supply. In that case, the power supply unit 111 supplies AC power to the electromagnetic induction source 162 via a DC/AC (Alternate Current) inverter. In that case, the electromagnetic induction source 162 can generate an alternating magnetic field.
  • DC Direct Current
  • AC Alternate Current
  • the electromagnetic induction source 162 causes the fluctuating magnetic field generated from the electromagnetic induction source 162 to enter the susceptor 161 which is arranged in thermal proximity to the aerosol source contained in the stick-shaped base material 150 held by the holding part 140 . placed in position.
  • the susceptor 161 generates heat when a fluctuating magnetic field enters.
  • the electromagnetic induction source 162 shown in FIG. 1 is a solenoid coil.
  • the solenoid-type coil is arranged so that the conductive wire is wound around the outer periphery of the holding portion 140 . When a current is applied to the solenoid type coil, a magnetic field is generated in the central space surrounded by the coil, that is, the internal space 141 of the holding part 140 . As shown in FIG.
  • the susceptor 161 when the stick-shaped substrate 150 is held by the holding portion 140, the susceptor 161 is surrounded by the coil. Therefore, the fluctuating magnetic field generated by the electromagnetic induction source 162 enters the susceptor 161 and heats the susceptor 161 by induction.
  • FIG. 2 is a block diagram showing a configuration related to induction heating by the suction device 100 according to this embodiment.
  • the suction device 100 includes a drive circuit 169 including an inverter circuit 163 and an RLC circuit 164.
  • the drive circuit 169 is a circuit for generating a varying magnetic field using power supplied from the power supply section 111 .
  • the power supply unit 111 is a DC (Direct Current) power supply.
  • the power supply unit 111 supplies DC power.
  • the inverter circuit 163 is a DC/AC (Alternate Current) inverter that converts the DC power supplied from the power supply unit 111 into AC power.
  • inverter circuit 163 is configured as a half-bridge inverter or a full-bridge inverter having one or more switching elements. Examples of switching elements include MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors).
  • the RLC circuit 164 is a circuit that uses the AC power supplied from the inverter circuit 163 to generate a varying magnetic field.
  • RLC circuit 164 includes at least electromagnetic induction source 162 .
  • RLC circuit 164 may further comprise other circuits such as capacitors, resistors, matching circuits, and the like.
  • the holding part 140 is an example of an accommodating part capable of accommodating a stick-shaped base material 150, which is a base material containing an aerosol source, and a susceptor 161 thermally adjacent to the aerosol source.
  • the holding part 140 accommodates and holds the stick-shaped base material 150 inserted into the internal space 141 through the opening 142 .
  • the side closer to the bottom 143 is also called upstream, and the side closer to the opening 142 is also called downstream. This is because an air flow is generated from upstream to downstream when puffing is performed.
  • the electromagnetic induction source 162 uses the AC power supplied from the inverter circuit 163 to generate a varying magnetic field in the internal space 141 of the holding section 140 . Thereby, the susceptor 161 is induction-heated and an aerosol is generated.
  • the sensor section 112 has a detection section 180 .
  • the detector 180 has a function of detecting a state value, which is a value corresponding to the state of the susceptor 161 . State values are described in detail later.
  • control unit 116 includes a heating control unit 171 and an operation control unit 172.
  • the heating control unit 171 controls induction heating by the electromagnetic induction source 162 . Specifically, the heating control unit 171 controls power supply from the inverter circuit 163 to the electromagnetic induction source 162 . For example, the heating control unit 171 estimates the temperature of the susceptor 161 based on information on DC power supplied from the power supply unit 111 to the drive circuit 169 . Then, the heating control unit 171 controls power supply to the electromagnetic induction source 162 based on the estimated temperature of the susceptor 161 .
  • FIG. 3 is a diagram showing an equivalent circuit of a circuit involved in induction heating by the suction device 100 according to this embodiment.
  • Apparent electrical resistance value RA shown in FIG. resistance value.
  • the apparent electrical resistance value R A corresponds to the series connection formed by the electrical resistance value R C of the drive circuit 169 and the electrical resistance value R S of the susceptor 161 .
  • the control unit 116 can calculate the apparent electrical resistance value RA based on the current value IDC and the voltage value VDC , and estimate the temperature of the susceptor 161 based on the apparent electrical resistance value RA . is.
  • the heating control unit 171 controls power supply to the electromagnetic induction source 162 so that the temperature of the susceptor 161 changes according to the heating profile.
  • the heating profile is information that defines the time series transition of the target temperature, which is the target value of the temperature of the susceptor 161 .
  • the suction device 100 controls power supply to the electromagnetic induction source 162 so that the actual temperature of the susceptor 161 (hereinafter also referred to as the actual temperature) changes in the same manner as the target temperature specified in the heating profile changes over time. do. This produces an aerosol as planned by the heating profile.
  • the heating profile is typically designed to optimize the flavor experienced by the user when the user inhales the aerosol produced from the stick-shaped substrate 150 . Therefore, by controlling the operation of the electromagnetic induction source 162 based on the heating profile, the flavor experienced by the user can be optimized.
  • a heating profile includes one or more combinations of the elapsed time from the start of heating and the target temperature to be reached in that elapsed time. Then, the heating control unit 171 controls the temperature of the susceptor 161 based on the difference between the target temperature in the heating profile corresponding to the elapsed time from the start of the current heating and the current actual temperature. Temperature control of the susceptor 161 can be realized, for example, by known feedback control. In feedback control, the heating control section 171 may control the power supplied to the electromagnetic induction source 162 based on the difference between the actual temperature and the target temperature. Feedback control may be, for example, PID control (Proportional-Integral-Differential Controller).
  • the heating control section 171 may perform simple ON-OFF control.
  • the heating control unit 171 may supply power to the electromagnetic induction source 162 until the actual temperature reaches the target temperature, and interrupt power supply to the electromagnetic induction source 162 when the actual temperature reaches the target temperature. .
  • the time interval from the start to the end of the process of generating an aerosol using the stick-shaped substrate 150 is also referred to as a heating session below. called.
  • the beginning of the heating session is the timing at which heating based on the heating profile is started.
  • the end of the heating session is when a sufficient amount of aerosol is no longer produced.
  • a heating session consists of a first half preheating period and a second half puffable period.
  • the puffable period is the period during which a sufficient amount of aerosol is assumed to be generated.
  • the preheating period is the period from the start of heating to the start of the puffable period. Heating performed in the preheating period is also referred to as preheating.
  • the operation control unit 172 controls the operation of the heating control unit 171. Specifically, the operation control unit 172 controls whether or not the heating control unit 171 can supply power to the electromagnetic induction source 162 (that is, induction heating) based on the state value detected by the detection unit 180 .
  • the suction device 100 is an example of a control device having an operation control section 172 .
  • the operation control unit 172 determines the heating control unit based on the state value detected when power is supplied from the inverter circuit 163 to the electromagnetic induction source 162 before the power supply based on the heating profile is executed. 171 operation. Specifically, the operation control unit 172 supplies AC power for detecting the state value from the inverter circuit 163 to the RLC circuit 164 prior to power supply based on the heating profile (that is, induction heating based on the heating profile). Let At that time, the detection unit 180 detects the state value. Then, based on the state value detected by the detection unit 180, the operation control unit 172 controls whether power supply can be performed based on the heating profile.
  • a state value is a value corresponding to the state of the susceptor 161 .
  • the operation control unit 172 determines whether the state of the susceptor 161 is normal based on the state value. Then, when the operation control unit 172 determines that the state of the susceptor 161 is normal, the operation control unit 172 permits execution of power supply based on the heating profile. On the other hand, when the operation control unit 172 determines that the state of the susceptor 161 is abnormal, it prohibits the power supply based on the heating profile.
  • An example of the state of the susceptor 161 is whether or not the susceptor 161 is corroded.
  • a normal state of the susceptor 161 means that the susceptor 161 is not corroded (more precisely, the degree of corrosion is less than a predetermined threshold).
  • the state of the susceptor 161 being abnormal means that the susceptor 161 is corroded (more precisely, the degree of corrosion exceeds a predetermined threshold). If the package in which the stick-shaped substrate 150 is sealed is left unsealed for a long period of time, the susceptor 161 may oxidize and corrode.
  • rust may occur on the surface of the susceptor 161, the thickness of the susceptor 161 may be reduced, or holes formed in the surface of the susceptor 161 may open.
  • the degree of corrosion of the susceptor 161 may also be proportional to the degree of deterioration of the aerosol source and flavor source. Therefore, when the stick-type substrate 150 containing the corroded susceptor 161 is heated, problems such as an insufficient amount of aerosol being generated and a deteriorated flavor being imparted to the aerosol can occur. In this respect, according to this configuration, it is possible to avoid the inconvenience associated with corrosion of the susceptor 161 .
  • the operation control unit 172 may control whether or not power supply can be performed based on the heating profile based on the comparison result between the state value and the reference value.
  • the reference value corresponds to a state value assumed to be detected when the susceptor 161 is in a normal state.
  • the operation control unit 172 determines that the state of the susceptor 161 is normal when the difference between the state value and the reference value is within a predetermined threshold value, and otherwise determines that the state of the susceptor 161 is abnormal. I judge.
  • the reference value may be a value having a certain width. In this case, the operation control unit 172 determines that the state of the susceptor 161 is normal when the state value is within the range of the reference value, and determines that the state of the susceptor 161 is abnormal otherwise.
  • the state value may be a value detected with respect to the AC power flowing through the electromagnetic induction source 162 .
  • the state value may be the impedance of RLC circuit 164 .
  • the detection unit 180 measures the voltage value applied to the RLC circuit 164 and the current value flowing through the RLC circuit 164, and calculates the impedance of the RLC circuit 164 based on the measured voltage value and current value.
  • the impedance of RLC circuit 164 changes according to the state of susceptor 161 . Therefore, it is possible to determine the state of the susceptor 161 according to the impedance of the RLC circuit 164 .
  • the amount of power supplied to the electromagnetic induction source 162 for detecting the state value is smaller than the amount of power supplied to the electromagnetic induction source 162 during power supply based on the heating profile. More simply, the operation control unit 172 supplies weak power from the inverter circuit 163 to the RLC circuit 164 compared to the case of performing power supply based on the heating profile so that the detection unit 180 can detect the state value.
  • An example of the amount of electric power here is a current value. According to such a configuration, it is possible to reduce power consumption when detecting the state value. Furthermore, since the temperature of the susceptor 161 does not rise or can be suppressed to a slight temperature rise, the life of the stick-shaped substrate 150 can be prevented from being shortened. The life of the stick-shaped substrate 150 is the length of time until the aerosol source contained in the stick-shaped substrate 150 is exhausted.
  • the detection unit 180 may detect the state value triggered by a predetermined user operation.
  • An example of the predetermined user operation is pressing a button provided on the suction device 100 . According to such a configuration, the state value is not detected until there is an explicit instruction from the user. Since the state value is not detected when the user does not intend to puff, power consumption can be suppressed.
  • the detection unit 180 may detect the state value triggered by the holding of the stick-shaped base material 150 in the holding unit 140 . According to this configuration, when the stick-shaped base material 150 is inserted into the suction device 100, the state of the susceptor 161 is determined, and it is determined whether or not power supply can be performed based on the heating profile. Since the user's operation for detecting the detection value is not required, usability can be improved.
  • the fact that the stick-shaped base material 150 is housed in the holding part 140 may be detected based on the information of the partial space, which is a part of the internal space 141 on the opening 142 side.
  • a capacitive proximity sensor provided near the opening 142 detects that the stick-shaped substrate 150 is accommodated in the holding portion 140 .
  • a capacitive proximity sensor is a sensor that generates an electric field and detects an object based on a change in capacitance or dielectric constant when the object enters the electric field.
  • a proximity sensor provided near the opening 142 detects the capacitance, dielectric constant, or the like of a partial space near the opening 142 in the internal space 141 .
  • the operation control section 172 can determine whether or not the stick-shaped substrate 150 is held by the holding section 140 according to the time-series change in the capacitance or dielectric constant of the partial space.
  • the heating control unit 171 may execute power supply based on the heating profile, triggered by a predetermined user operation performed in a state where power supply based on the heating profile is permitted by the operation control unit 172 .
  • An example of the predetermined user operation is pressing a button provided on the suction device 100 . According to such a configuration, the suction device 100 waits without performing induction heating until there is an explicit instruction from the user. Since it is not heated when the user does not intend to puff, power consumption can be suppressed.
  • the heating control unit 171 may perform power supply based on the heating profile, triggered by the permission of the operation control unit 172 to perform power supply based on the heating profile. According to such a configuration, induction heating is automatically started when execution of power supply based on the heating profile is permitted. Since no user operation is required to execute power supply based on the heating profile, usability can be improved.
  • FIG. 4 is a flowchart showing an example of the flow of processing executed by the suction device 100 according to this embodiment.
  • the operation control unit 172 first determines whether or not a suction request has been detected (step S102).
  • a puff request is a user action requesting to generate an aerosol.
  • An example of the suction request is an operation on the suction device 100 such as operating a switch or the like provided on the suction device 100 .
  • Another example of a suction request is inserting a stick substrate 150 into the suction device 100 .
  • step S102 NO
  • the operation control unit 172 waits until a suction request is detected.
  • the operation control unit 172 controls to supply AC power for detecting the state value to the RLC circuit 164 (step S104). For example, the operation control unit 172 causes the inverter circuit 163 to supply the RLC circuit 164 with weak power compared to the power supplied when performing induction heating based on the heating profile.
  • the detection unit 180 detects the state value (step S106). For example, detection unit 180 detects the impedance of RLC circuit 164 .
  • the operation control unit 172 determines whether the state of the susceptor 161 is normal (step S108). As an example, the operation control unit 172 determines that the state of the susceptor 161 is normal when the difference between the state value and the reference value is within a predetermined threshold value, and otherwise determines that the state of the susceptor 161 is abnormal. I judge.
  • the notification unit 113 may notify the user of the determination result. Alternatively, the determination result may be transmitted by the communication unit 115 and notified to the user via a smartphone or the like.
  • step S108 When it is determined that the state of the susceptor 161 is normal (step S108: YES), the operation control unit 172 permits power supply based on the heating profile (step S110).
  • the heating control unit 171 performs power supply based on the heating profile (step S112). This heats the susceptor 161 and generates an aerosol.
  • the power supply based on the heating profile may be triggered by determination that the state of the susceptor 161 is normal, or may be triggered by a predetermined user operation. . After that, the process ends.
  • step S108 if the state of the susceptor 161 is determined to be abnormal (step S108: NO), the operation control unit 172 prohibits power supply based on the heating profile (step S114). That is, the susceptor 161 is not heated and no aerosol is generated. After that, the process ends.
  • the state value may be a current value when the RLC circuit 164 is operated at a predetermined frequency.
  • An example of the predetermined frequency is the resonance frequency f0 of the RLC circuit 164 when the stick-shaped substrate 150 with the susceptor 161 not corroded is held by the holding portion 140 .
  • the resonance frequency f0 is measured in advance at a factory or the like where the suction device 100 is manufactured. A determination method based on the current value will be described in detail with reference to FIG.
  • FIG. 5 is a diagram for explaining the process of determining whether or not the susceptor 161 is corroded based on the current value flowing through the RLC circuit 164.
  • FIG. Graph 30 shows the relationship between the operating frequency of RLC circuit 164 and the value of current flowing through RLC circuit 164 .
  • the operating frequency of RLC circuit 164 is the frequency of AC power supplied from inverter circuit 163 to RLC circuit 164 .
  • Line 31 shows the relationship when the susceptor 161 is not corroded.
  • Line 32 shows the relationship when the susceptor 161 is corroded.
  • the horizontal axis of graph 30 is the operating frequency of RLC circuit 164 .
  • the vertical axis of graph 30 is the effective value of the current flowing through RLC circuit 164 .
  • the impedance of the RLC circuit 164 can be regarded as 0, so the current value flowing through the RLC circuit 164 is the largest. Therefore, as indicated by line 31, if the susceptor 161 is not corroded and the RLC circuit 164 is operated at the frequency f0 , the maximum current value IA will be detected.
  • the resonant frequency f 0 ′ of the RLC circuit 164 will change from the previously measured resonant frequency f 0 . Therefore, if the RLC circuit 164 is operated at the frequency f0 while the susceptor 161 is corroded, as indicated by the line 32, the impedance cannot be regarded as 0, so the current value I is smaller than the current value IA . B will be detected.
  • the operation control unit 172 determines whether or not the susceptor 161 is corroded based on the current value detected when the RLC circuit 164 is operated at the frequency f0 . Specifically, the operation control unit 172 determines that the current value I A detected when the RLC circuit 164 is operated at the resonance frequency f 0 as indicated by the line 31 is included in the range of the reference values I C to I D . If so, it is determined that the susceptor 161 is not corroded. On the other hand, the operation control unit 172 controls the current value I B detected when the RLC circuit 164 is operated at the frequency f 0 as indicated by the line 32 when the current value I B is not included in the range of the reference values I C to I D .
  • the susceptor 161 is determined to be corroded.
  • the reference values I C and I D are the upper and lower limits of the current value assumed to be detected when the RLC circuit 164 is operated at the frequency f0 while the susceptor 161 is not corroded. is.
  • the state value may be the resonant frequency of the RLC circuit 164 .
  • the operation control unit 172 compares the detected resonance frequency f 0 ′ of the RLC circuit 164 with the previously measured resonance frequency f 0 to determine whether the susceptor 161 is corroded. becomes possible.
  • the state value may be a Q factor (Quality factor) that indicates the sharpness of the resonance peak of the RLC circuit 164 . If the RLC circuit 164 is a series resonant circuit, the Q value is calculated by the following equation.
  • Q is the Q value.
  • R is the series resistance of the RLC circuit 164;
  • L is the inductance of the RLC circuit 164;
  • C is the capacitance of the RLC circuit 164;
  • the inductance L changes as the susceptor 161 corrodes. Therefore, the Q value changes as the susceptor 161 corrodes. Therefore, by using the Q value as a state value, it is possible to determine whether or not the susceptor 161 is corroded.
  • the status value may be the value of a corrosion sensor that detects the corrosion rate of the environment.
  • Such sensors include an ACM (Atmospheric Corrosion Monitor) sensor.
  • An ACM sensor is a sensor in which two metals are embedded in an insulator while insulated from each other, and both ends are exposed to the environment. If the environment is moist, a film of water will connect between the ends and current will flow. The magnitude of this current corresponds to the corrosion rate. It is believed that the longer the period of high corrosion rate, the more the stick-shaped substrate 150 corrodes. Therefore, the operation control unit 172 controls the susceptor 161 to corrode when the period during which the ACM sensor detects a high current value (that is, a high corrosion rate) while the stick-shaped base material 150 is being held exceeds a predetermined period. determined to be
  • the operation control unit 172 may control whether or not to perform power supply based on the heating profile, based on a plurality of state values. For example, the operation control unit 172 compares each of the plurality of state values with a reference value to determine whether the susceptor 161 is corroded. Then, the operation control unit 172 may determine that corrosion occurs when the number of state values determined to be corroded is greater than the number of state values determined to not be corroded. On the other hand, the operation control unit 172 may determine that there is no corrosion when the number of state values determined to be corroded is smaller than the number of state values determined to be not corroded.
  • the state of the susceptor 161 is the presence or absence of corrosion of the susceptor 161, but the present invention is not limited to this example.
  • the state of the susceptor 161 may be whether or not the susceptor 161 is genuine, that is, whether or not the stick-shaped substrate 150 is genuine. That the susceptor 161 is in a normal state means that the stick-shaped substrate 150 held by the holding portion 140 is a genuine product.
  • the state of the susceptor 161 being abnormal means that the stick-shaped base material 150 held by the holding part 140 is not a genuine product (for example, a counterfeit product).
  • the reference value corresponds to a state value assumed to be detected when the stick-shaped substrate 150 is a genuine product. If the stick-shaped base material 150 is not a genuine product, problems such as failure to generate suitable aerosol or failure of the suction device 100 may occur. In this respect, according to such a configuration, it is possible to avoid the inconvenience associated with the non-genuine stick-type base material 150 .
  • different types of stick-shaped substrates 150 may contain different types of susceptors 161 .
  • the state of the susceptor 161 may be the type of the susceptor 161 , that is, the type of the stick-type substrate 150 . That the susceptor 161 is in a normal state means that one stick-shaped substrate 150 out of a plurality of types of stick-shaped substrates 150 sold as regular products is held by the holding portion 140 .
  • the state of the susceptor 161 being abnormal means that the holding portion 140 holds the stick-shaped substrate 150 that does not match any of the plurality of types of stick-shaped substrates 150 sold as regular products.
  • the operation control section 172 may determine the type of the stick-shaped base material 150 based on the state value.
  • a reference value is set for each of the plurality of types of stick-shaped substrates 150 .
  • the operation control unit 172 may select a heating profile based on the state value. Specifically, the operation control unit 172 selects a heating profile according to the type of the stick-shaped substrate 150 determined based on the state value. A suitable heating profile may differ for each type of stick-type substrate 150 . In this respect, according to this configuration, it is possible to provide the user with a suitable puff experience according to the type of stick-type base material 150 .
  • the operation control unit 172 may determine whether power supply can be performed based on the heating profile based on the state value and the remaining power of the power supply unit 111 . Specifically, the operation control unit 172 selects a heating profile according to the type of the stick-shaped substrate 150 determined based on the state value. Then, when the amount of power required for power supply based on the selected heating profile is equal to or greater than the remaining power level of the power supply unit 111, the operation control unit 172 permits power supply based on the heating profile. On the other hand, the operation control unit 172 prohibits the execution of power supply based on the heating profile when the amount of power required for power supply based on the selected heating profile is less than the remaining power of the power supply unit 111 . Different heating profiles may require different amounts of power. In this respect, according to this configuration, heating can be started only when it is possible to continue heating until the end of the heating session. Therefore, it is possible to prevent inconvenience such as stopping heating due to a decrease in remaining power during a heating session.
  • the reference value, the suitable heating profile, and the amount of electric power required for heating based on the suitable heating profile differ for each type of stick-shaped base material 150 .
  • the amount of power required for heating is shown as a ratio to the fully charged amount of the power supply unit 111 .
  • the operation control unit 172 causes the holding unit 140 to set the first It is determined that the type of stick-type substrate 150 is held. In that case, the operation control unit 172 selects the heating profile “A”, permits heating if the remaining power of the power supply unit 111 is 3% or more, and prohibits heating if it is less than 3%.
  • a control device having the operation control unit 172 and the suction device 100 may be configured separately.
  • the control device may be, for example, a terminal device such as a smartphone that communicates with the suction device 100, or may be a server on the cloud.
  • the control device controls the operation of the suction device 100 while transmitting and receiving information to and from the suction device 100 .
  • the suction device 100 operates under the control of the control device. Specifically, the suction device 100 transmits the state values detected by the detection unit 180 to the control device.
  • the control device transmits control information for controlling the operation of the heating control section 171 to the suction device 100 based on the received state value.
  • the control information includes, for example, information indicating whether or not power supply can be performed based on the heating profile. Then, the heating control section 171 operates based on the received control information.
  • the combination of the suction device 100, the control device, and the stick-shaped substrate 150 can be regarded as one system in that aerosol can be generated by combining the suction device 100, the control device, and the stick-shaped substrate 150.
  • the susceptor 161 is configured in a plate shape, but the present invention is not limited to such an example.
  • the susceptor 161 may be configured in a bar shape, or may be configured as a piece of metal and widely distributed on the base member 151 .
  • the present invention is not limited to such an example. That is, the susceptor 161 can be placed at any location where the susceptor 161 is in thermal proximity to the aerosol source.
  • the susceptor 161 may be configured in a blade shape and arranged to protrude from the bottom portion 143 of the holding portion 140 into the internal space 141 . Then, when the stick-shaped base material 150 is inserted into the holding part 140, the blade-shaped susceptor 161 may be inserted so as to pierce the base part 151 from the end of the stick-shaped base material 150 in the insertion direction. .
  • a series of processes by each device described in this specification may be implemented using software, hardware, or a combination of software and hardware.
  • Programs that make up the software are stored in advance in, for example, recording media (non-transitory media) provided inside or outside each device.
  • Each program for example, is read into a RAM when executed by a computer that controls each device described in this specification, and is executed by a processor such as a CPU.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed, for example, via a network without using a recording medium.
  • a control device for controlling a suction device is a power supply that stores and supplies power; an inverter circuit that converts the DC power supplied from the power supply unit into AC power; a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space; an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit; a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor; has The control device is Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit an operation control unit that controls the operation of A controller.
  • the operation control unit controls whether power supply can be executed based on the heating profile based on a comparison result between the state value and the reference value.
  • the state value is a current value when the RLC circuit including the electromagnetic induction source is operated at a predetermined frequency, The control device according to (1) or (2) above.
  • the state value is a Q value that indicates the sharpness of the resonance peak of an RLC circuit that includes the electromagnetic induction source.
  • the operation control unit controls whether or not to execute power supply based on the heating profile, based on the plurality of state values.
  • the control device according to any one of (1) to (5) above. (7) the amount of power supplied to the electromagnetic induction source for detecting the state value is less than the amount of power supplied to the electromagnetic induction source during power supply based on the heating profile; The control device according to any one of (1) to (6) above. (8) The state value is detected as a trigger that a predetermined user operation has been performed. The control device according to any one of (1) to (7) above. (9) The state value is detected by triggering that the base material has been stored in the storage unit. The control device according to any one of (1) to (7) above.
  • the accommodating part has an opening that communicates the internal space with the outside, and accommodates the base material inserted into the internal space through the opening, The fact that the base material is accommodated in the accommodating portion is detected based on information of a partial space that is a part of the internal space on the opening side, The control device according to (9) above.
  • the operation control unit selects the heating profile based on the state value.
  • (12) The operation control unit controls whether power supply can be executed based on the heating profile based on the state value and the remaining power of the power supply unit.
  • the control device according to any one of (1) to (11) above. (13) wherein the control device is the suction device;
  • the control device transmits control information for controlling the operation of the heating control unit to the suction device based on the received state value.
  • the control device according to any one of (1) to (12) above.
  • the heating control unit executes power supply based on the heating profile, triggered by detection of a predetermined user operation in a state where power supply based on the heating profile is permitted by the operation control unit.
  • the control device according to any one of (1) to (14) above.
  • the heating control unit executes power supply based on the heating profile, triggered by permission by the operation control unit to perform power supply based on the heating profile.
  • the control device according to any one of (1) to (14) above.
  • a substrate for use with a suction device controlled by a controller comprising:
  • the suction device is a power supply that stores and supplies power; an inverter circuit that converts the DC power supplied from the power supply unit into AC power; a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space; an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit; a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor; has The control device is Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit an operation control unit that controls the operation of has The base material is the aerosol source; the
  • a power source that stores and supplies electric power, an inverter circuit that converts DC power supplied from the power source into AC power, a substrate containing an aerosol source, and a susceptor thermally adjacent to the aerosol source are housed in the internal space.
  • a storage unit an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit, and a time-series transition of a target temperature, which is a target value of the temperature of the susceptor.
  • the suction device is a power supply that stores and supplies power; an inverter circuit that converts the DC power supplied from the power supply unit into AC power; a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space; an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit; a heating control unit that controls power supply from the inverter
  • suction device 111 power supply unit 112 sensor unit 113 notification unit 114 storage unit 115 communication unit 116 control unit 140 holding unit (accommodating unit) 141 Internal space 142 Opening 143 Bottom 150 Stick-type base material 151 Base material part 152 Mouthpiece part 161 Susceptor 162 Electromagnetic induction source 163 Inverter circuit 164 RLC circuit 169 Drive circuit 171 Heating control part 172 Operation control part 180 Detection part

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Induction Heating (AREA)

Abstract

[Problem] To provide a mechanism enabling further improvement of the quality of a puff experience of a user. [Solution] A control device provided with an operation control unit that controls the operation of a heating control unit, which controls, on the basis of a heating profile, power supply to an electromagnetic induction source in an inhalation device in which a susceptor is inductively heated by the electromagnetic induction source, on the basis of a status value. The status value is a value corresponding to a status of the susceptor detected when power was supplied to the electromagnetic induction source prior to execution of the power supply based on the heating profile.

Description

制御装置、基材、システム、制御方法及びプログラムControl device, base material, system, control method and program
 本発明は、制御装置、基材、システム、制御方法及びプログラムに関する。 The present invention relates to a control device, substrate, system, control method and program.
 電子タバコ及びネブライザ等の、ユーザに吸引される物質を生成する吸引装置が広く普及している。例えば、吸引装置は、エアロゾルを生成するためのエアロゾル源、及び生成されたエアロゾルに香味成分を付与するための香味源等を含む基材を用いて、香味成分が付与されたエアロゾルを生成する。ユーザは、吸引装置により生成された、香味成分が付与されたエアロゾルを吸引することで、香味を味わうことができる。ユーザがエアロゾルを吸引する動作を、以下ではパフ又はパフ動作とも称する。 Inhalation devices, such as electronic cigarettes and nebulizers, that produce substances that are inhaled by the user are widespread. For example, the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component. A user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device. The action of the user inhaling the aerosol is hereinafter also referred to as puffing or puffing action.
 これまでは、加熱用ブレード等の外部熱源を用いる方式の吸引装置が主流であった。しかし近年では、コイルとして構成された電磁誘導源を用いてサセプタを誘導加熱することでエアロゾルを生成する、誘導加熱式の吸引装置が注目を集めている。例えば、下記特許文献1では、キュリー点が異なる2種類のサセプタを含有する基材を誘導加熱した際の、キュリー点前後におけるサセプタの磁性の変化を観測することで、基材を識別する技術が開示されている。 Until now, suction devices that use external heat sources such as heating blades have been the mainstream. However, in recent years, attention has been focused on an induction heating suction device that generates an aerosol by induction heating a susceptor using an electromagnetic induction source configured as a coil. For example, Patent Document 1 below describes a technique for identifying a substrate by observing a change in the magnetism of the susceptor before and after the Curie point when the substrate containing two types of susceptors with different Curie points is induction-heated. disclosed.
特許第6653260号公報Japanese Patent No. 6653260
 しかし、上記特許文献1に記載の技術では、キュリー点前後までサセプタを加熱してからでないと、基材を識別することが困難であった。そのため、本来加熱するべきではない基材を加熱してしまい、ユーザが不適切なエアロゾルを吸引してしまうおそれがあった。 However, with the technique described in Patent Document 1, it is difficult to identify the substrate unless the susceptor is heated to around the Curie point. Therefore, there is a risk that the base material that should not be heated may be heated, and the user may inhale inappropriate aerosol.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、ユーザのパフ体験の質を向上させることが可能な仕組みを提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a mechanism capable of improving the quality of the user's puff experience.
 上記課題を解決するために、本発明のある観点によれば、吸引装置を制御する制御装置であって、前記吸引装置は、電力を蓄積及び供給する電源部と、前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、を有し、前記制御装置は、前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御する動作制御部、を備える、制御装置が提供される。 In order to solve the above problems, according to one aspect of the present invention, there is provided a control device for controlling a suction device, wherein the suction device includes a power supply unit that stores and supplies power, and a an inverter circuit that converts DC power into AC power; a housing part that can house a substrate containing an aerosol source and a susceptor that is thermally adjacent to the aerosol source; and the AC power supplied from the inverter circuit. an electromagnetic induction source that uses electric power to generate a fluctuating magnetic field in the internal space; and the electromagnetic induction source from the inverter circuit based on a heating profile that defines a time-series transition of a target temperature, which is a target temperature of the susceptor. and a heating control unit that controls power supply to the electromagnetic induction source, wherein the control device detects when power is supplied from the inverter circuit to the electromagnetic induction source before power supply based on the heating profile is performed. A control device is provided, comprising an operation control section that controls the operation of the heating control section based on a state value that is a value corresponding to the state of the susceptor.
 前記動作制御部は、前記状態値と基準値との比較結果に基づいて、前記加熱プロファイルに基づく給電の実行可否を制御してもよい。 The operation control unit may control whether or not to perform power supply based on the heating profile, based on a comparison result between the state value and the reference value.
 前記状態値は、前記電磁誘導源を含むRLC回路のインピーダンスであってもよい。 The state value may be the impedance of an RLC circuit including the electromagnetic induction source.
 前記状態値は、前記電磁誘導源を含むRLC回路を所定の周波数で動作させたときの電流値であってもよい。 The state value may be a current value when the RLC circuit including the electromagnetic induction source is operated at a predetermined frequency.
 前記状態値は、前記電磁誘導源を含むRLC回路の共振のピークの鋭さを示すQ値であってもよい。 The state value may be a Q value that indicates the sharpness of the resonance peak of the RLC circuit including the electromagnetic induction source.
 前記動作制御部は、複数の前記状態値に基づいて、前記加熱プロファイルに基づく給電の実行可否を制御してもよい。 The operation control unit may control whether or not to perform power supply based on the heating profile, based on the plurality of state values.
 前記状態値を検出するために前記電磁誘導源に供給される電力量は、前記加熱プロファイルに基づく給電の際に前記電磁誘導源に供給される電力量よりも小さくてもよい。 The amount of power supplied to the electromagnetic induction source for detecting the state value may be smaller than the amount of power supplied to the electromagnetic induction source during power supply based on the heating profile.
 前記状態値は、所定のユーザ操作が行われたことをトリガとして検出されてもよい。 The state value may be detected as a trigger that a predetermined user operation has been performed.
 前記状態値は、前記収容部に前記基材が収容されたことをトリガとして検出されてもよい。 The state value may be detected by triggering that the base material has been stored in the storage unit.
 前記収容部は、前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された前記基材を収容し、前記収容部に前記基材が収容されたことは、前記内部空間のうち前記開口側の一部分である部分空間の情報に基づいて検出されてもよい。 The storage portion has an opening that communicates the internal space with the outside, and stores the base material inserted into the internal space through the opening. It may be detected based on information of a partial space that is a part of the internal space on the opening side.
 前記動作制御部は、前記状態値に基づいて、前記加熱プロファイルを選択してもよい。 The operation control unit may select the heating profile based on the state value.
 前記動作制御部は、前記状態値及び前記電源部の電力残量に基づいて、前記加熱プロファイルに基づく給電の実行可否を制御してもよい。 The operation control unit may control whether or not to execute power supply based on the heating profile based on the state value and the remaining power of the power supply unit.
 前記制御装置は、前記吸引装置であってもよい。 The control device may be the suction device.
 前記制御装置と前記吸引装置とは別に構成され、前記吸引装置は、前記状態値を前記制御装置に送信し、前記制御装置は、受信した前記状態値に基づいて、前記加熱制御部の動作を制御するための制御情報を前記吸引装置に送信してもよい。 The control device and the suction device are configured separately, the suction device transmits the state value to the control device, and the control device controls the operation of the heating control unit based on the received state value. Control information for controlling may be transmitted to the suction device.
 前記加熱制御部は、前記加熱プロファイルに基づく給電の実行が前記動作制御部により許可された状態で、所定のユーザ操作が行われたことをトリガとして、前記加熱プロファイルに基づく給電を実行してもよい。 The heating control unit may perform power supply based on the heating profile triggered by a predetermined user operation in a state where power supply based on the heating profile is permitted by the operation control unit. good.
 前記加熱制御部は、前記加熱プロファイルに基づく給電の実行が前記動作制御部により許可されたことをトリガとして、前記加熱プロファイルに基づく給電を実行してもよい。 The heating control unit may execute power supply based on the heating profile, triggered by the operation control unit permitting execution of power supply based on the heating profile.
 また、上記課題を解決するために、本発明の別の観点によれば、制御装置により制御される吸引装置により使用される基材であって、前記吸引装置は、電力を蓄積及び供給する電源部と、前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、を有し、前記制御装置は、前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御する動作制御部、を有し、前記基材は、前記エアロゾル源と、前記エアロゾル源に熱的に近接する前記サセプタと、を備える、基材が提供される。 In order to solve the above problems, according to another aspect of the present invention, there is provided a substrate for use in a suction device controlled by a control device, the suction device comprising a power source for storing and supplying power. an inverter circuit that converts DC power supplied from the power supply unit into AC power; and a housing that can house a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space. an electromagnetic induction source that uses the AC power supplied from the inverter circuit to generate a varying magnetic field in the internal space; a heating control unit configured to control power supply from the inverter circuit to the electromagnetic induction source based on the heating profile, wherein the control device controls power supply from the inverter circuit to the electromagnetic induction source before power supply based on the heating profile is performed. an operation control unit that controls the operation of the heating control unit based on a state value corresponding to the state of the susceptor that is detected when power is supplied to the source; A substrate is provided comprising a source and the susceptor in thermal proximity to the aerosol source.
 また、上記課題を解決するために、本発明の別の観点によれば、電力を蓄積及び供給する電源部、前記電源部から供給された直流電力を交流電力に変換するインバータ回路、エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部、前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源、及び前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部、を有する吸引装置と、前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御する動作制御部を有する制御装置と、前記収容部に収容され、前記エアロゾル源、及び前記エアロゾル源に熱的に近接する前記サセプタ、を有する基材と、を備えるシステムが提供される。 Further, in order to solve the above problems, according to another aspect of the present invention, a power supply unit that stores and supplies electric power, an inverter circuit that converts the DC power supplied from the power supply unit into AC power, and an aerosol source. An accommodating portion capable of accommodating a base material and a susceptor thermally adjacent to the aerosol source in an internal space, and electromagnetic induction generating a varying magnetic field in the internal space using the AC power supplied from the inverter circuit. a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor; Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit and a substrate housed in the housing and having the aerosol source and the susceptor in thermal proximity to the aerosol source. be.
 また、上記課題を解決するために、本発明の別の観点によれば、吸引装置を制御するための制御方法であって、前記吸引装置は、電力を蓄積及び供給する電源部と、前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、を有し、前記制御方法は、前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御すること、を含む、制御方法が提供される。 In order to solve the above-described problems, according to another aspect of the present invention, there is provided a control method for controlling a suction device, wherein the suction device includes a power supply unit that stores and supplies power; an inverter circuit for converting DC power supplied from a unit into AC power; a housing unit capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space; an electromagnetic induction source that uses the supplied AC power to generate a varying magnetic field in the internal space; and a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source, and the control method is configured to control power supply from the inverter circuit to the electromagnetic induction source before power supply based on the heating profile is performed. controlling the operation of the heating control unit based on the detected state value corresponding to the state of the susceptor.
 また、上記課題を解決するために、本発明の別の観点によれば、吸引装置を制御するコンピュータに実行させるためのプログラムであって、前記吸引装置は、電力を蓄積及び供給する電源部と、前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、を有し、前記プログラムは、前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御すること、を実行させる、プログラムが提供される。 In order to solve the above problems, according to another aspect of the present invention, there is provided a program for being executed by a computer that controls a suction device, wherein the suction device stores and supplies power, and an inverter circuit for converting DC power supplied from the power supply unit into AC power; a housing unit capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space; Based on an electromagnetic induction source that generates a fluctuating magnetic field in the internal space using the AC power supplied from the inverter circuit, and a heating profile that defines the time series transition of the target temperature, which is the target temperature of the susceptor. a heating control unit for controlling power supply from the inverter circuit to the electromagnetic induction source, wherein the program controls power supply from the inverter circuit to the electromagnetic induction source before power supply based on the heating profile is executed. A program is provided for controlling the operation of the heating control unit based on a state value, which is a value corresponding to the state of the susceptor, detected when the heating is performed.
 以上説明したように本発明によれば、ユーザのパフ体験の質を向上させることが可能な仕組みが提供される。 As described above, according to the present invention, a mechanism is provided that can improve the quality of the user's puff experience.
吸引装置の構成例を模式的に示す模式図である。It is a schematic diagram which shows the structural example of a suction device typically. 本実施形態に係る吸引装置100による誘導加熱に関与する構成を示すブロック図である。Fig. 2 is a block diagram showing a configuration related to induction heating by the suction device 100 according to the embodiment; 本実施形態に係る吸引装置100による誘導加熱に関与する回路の等価回路を示す図である。It is a figure which shows the equivalent circuit of the circuit involved in the induction heating by the suction device 100 which concerns on this embodiment. 本実施形態に係る吸引装置100により実行される処理の流れの一例を示すフローチャートである。4 is a flow chart showing an example of the flow of processing executed by the suction device 100 according to the present embodiment; RLC回路164を流れる電流値に基づいてサセプタ161が腐食しているか否かを判定する処理について説明するための図である。FIG. 8 is a diagram for explaining processing for determining whether or not the susceptor 161 is corroded based on the value of current flowing through the RLC circuit 164;
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
 <1.吸引装置の構成例>
 本構成例に係る吸引装置は、エアロゾル源を含む基材を、誘導加熱(IH(Induction Heating))により加熱することで、エアロゾルを生成する。以下、図1を参照しながら、本構成例を説明する。
<1. Configuration example of suction device>
The suction device according to this configuration example generates an aerosol by heating a substrate including an aerosol source by induction heating (IH (Induction Heating)). This configuration example will be described below with reference to FIG.
 図1は、吸引装置の構成例を模式的に示す模式図である。図1に示すように、本構成例に係る吸引装置100は、電源部111、センサ部112、通知部113、記憶部114、通信部115、制御部116、サセプタ161、電磁誘導源162、及び保持部140を含む。保持部140にスティック型基材150が保持された状態で、ユーザによる吸引が行われる。以下、各構成要素について順に説明する。 FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device. As shown in FIG. 1, the suction device 100 according to this configuration example includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, a susceptor 161, an electromagnetic induction source 162, and A retainer 140 is included. The user performs suction while the stick-shaped substrate 150 is held by the holding portion 140 . Each component will be described in order below.
 電源部111は、電力を蓄積する。そして、電源部111は、吸引装置100の各構成要素に、電力を供給する。電源部111は、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。電源部111は、USB(Universal Serial Bus)ケーブル等により外部電源に接続されることで、充電されてもよい。また、電源部111は、ワイヤレス電力伝送技術により送電側のデバイスに非接続な状態で充電されてもよい。他にも、電源部111のみを吸引装置100から取り外すことができてもよく、新しい電源部111と交換することができてもよい。 The power supply unit 111 accumulates power. The power supply unit 111 supplies electric power to each component of the suction device 100 . The power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery. The power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like. Also, the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology. Alternatively, only the power supply unit 111 may be detached from the suction device 100 or may be replaced with a new power supply unit 111 .
 センサ部112は、吸引装置100に関する各種情報を検出する。そして、センサ部112は、検出した情報を制御部116に出力する。一例として、センサ部112は、コンデンサマイクロホン等の圧力センサ、流量センサ又は温度センサにより構成される。そして、センサ部112は、ユーザによる吸引に伴う数値を検出した場合に、ユーザによる吸引が行われたことを示す情報を制御部116に出力する。他の一例として、センサ部112は、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置により構成される。とりわけ、センサ部112は、エアロゾルの生成開始/停止を指示するボタンを含み得る。そして、センサ部112は、ユーザにより入力された情報を制御部116に出力する。他の一例として、センサ部112は、サセプタ161の温度を検出する温度センサにより構成される。かかる温度センサは、例えば、電磁誘導源162の電気抵抗値に基づいてサセプタ161の温度を検出する。センサ部112は、サセプタ161の温度に基づいて、保持部140により保持されたスティック型基材150の温度を検出してもよい。 The sensor unit 112 detects various information regarding the suction device 100 . The sensor unit 112 then outputs the detected information to the control unit 116 . As an example, the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, or a temperature sensor. When the sensor unit 112 detects a numerical value associated with the user's suction, the sensor unit 112 outputs information indicating that the user has performed suction to the control unit 116 . As another example, the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user. Among other things, sensor unit 112 may include a button for instructing start/stop of aerosol generation. The sensor unit 112 then outputs the information input by the user to the control unit 116 . As another example, the sensor section 112 is configured by a temperature sensor that detects the temperature of the susceptor 161 . Such a temperature sensor detects the temperature of the susceptor 161 based on the electrical resistance value of the electromagnetic induction source 162, for example. The sensor section 112 may detect the temperature of the stick-shaped substrate 150 held by the holding section 140 based on the temperature of the susceptor 161 .
 通知部113は、情報をユーザに通知する。一例として、通知部113は、LED(Light Emitting Diode)などの発光装置により構成される。その場合、通知部113は、電源部111の状態が要充電である場合、電源部111が充電中である場合、及び吸引装置100に異常が発生した場合等に、それぞれ異なる発光パターンで発光する。ここでの発光パターンとは、色、及び点灯/消灯のタイミング等を含む概念である。通知部113は、発光装置と共に、又は代えて、画像を表示する表示装置、音を出力する音出力装置、及び振動する振動装置等により構成されてもよい。他にも、通知部113は、ユーザによる吸引が可能になったことを示す情報を通知してもよい。ユーザによる吸引が可能になったことを示す情報は、電磁誘導により発熱したスティック型基材150の温度が所定の温度に達した場合に、通知される。 The notification unit 113 notifies the user of information. As an example, the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode). In this case, the notification unit 113 emits light in different light emission patterns when the power supply unit 111 is in a charging required state, when the power supply unit 111 is being charged, when an abnormality occurs in the suction device 100, and the like. . The light emission pattern here is a concept including color, timing of lighting/lighting out, and the like. The notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device. In addition, the notification unit 113 may notify information indicating that suction by the user has become possible. Information indicating that suction by the user is enabled is notified when the temperature of the stick-shaped base material 150 heated by electromagnetic induction reaches a predetermined temperature.
 記憶部114は、吸引装置100の動作のための各種情報を記憶する。記憶部114は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。記憶部114に記憶される情報の一例は、制御部116による各種構成要素の制御内容等の、吸引装置100のOS(Operating System)に関する情報である。記憶部114に記憶される情報の他の一例は、吸引回数、吸引時刻、吸引時間累計等の、ユーザによる吸引に関する情報である。 The storage unit 114 stores various information for the operation of the suction device 100 . The storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory. An example of the information stored in the storage unit 114 is information regarding the OS (Operating System) of the suction device 100, such as control details of various components by the control unit 116. FIG. Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction, suction time, total suction time, and the like.
 通信部115は、吸引装置100と他の装置との間で情報を送受信するための、通信インタフェースである。通信部115は、有線又は無線の任意の通信規格に準拠した通信を行う。かかる通信規格としては、例えば、無線LAN(Local Area Network)、有線LAN、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。一例として、通信部115は、ユーザによる吸引に関する情報をスマートフォンに表示させるために、ユーザによる吸引に関する情報をスマートフォンに送信する。他の一例として、通信部115は、記憶部114に記憶されているOSの情報を更新するために、サーバから新たなOSの情報を受信する。 The communication unit 115 is a communication interface for transmitting and receiving information between the suction device 100 and other devices. The communication unit 115 performs communication conforming to any wired or wireless communication standard. As such a communication standard, for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted. As an example, the communication unit 115 transmits information about suction by the user to the smartphone so that the smartphone displays information about suction by the user. As another example, the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
 制御部116は、演算処理装置及び制御装置として機能し、各種プログラムに従って吸引装置100内の動作全般を制御する。制御部116は、例えばCPU(Central Processing Unit)、及びマイクロプロセッサ等の電子回路によって実現される。他に、制御部116は、使用するプログラム及び演算パラメータ等を記憶するROM(Read Only Memory)、並びに適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)を含んでいてもよい。吸引装置100は、制御部116による制御に基づいて、各種処理を実行する。電源部111から他の各構成要素への給電、電源部111の充電、センサ部112による情報の検出、通知部113による情報の通知、記憶部114による情報の記憶及び読み出し、並びに通信部115による情報の送受信は、制御部116により制御される処理の一例である。各構成要素への情報の入力、及び各構成要素から出力された情報に基づく処理等、吸引装置100により実行されるその他の処理も、制御部116により制御される。 The control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 100 according to various programs. The control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor. In addition, the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate. The suction device 100 executes various processes under the control of the controller 116 . Power supply from power supply unit 111 to other components, charging of power supply unit 111, detection of information by sensor unit 112, notification of information by notification unit 113, storage and reading of information by storage unit 114, and communication unit 115 Transmission and reception of information is an example of processing controlled by the control unit 116 . Other processes executed by the suction device 100, such as information input to each component and processing based on information output from each component, are also controlled by the control unit 116. FIG.
 保持部140は、内部空間141を有し、内部空間141にスティック型基材150の一部を収容しながらスティック型基材150を保持する。保持部140は、内部空間141を外部に連通する開口142を有し、開口142から内部空間141に挿入されたスティック型基材150を保持する。例えば、保持部140は、開口142及び底部143を底面とする筒状体であり、柱状の内部空間141を画定する。保持部140は、筒状体の高さ方向の少なくとも一部において、内径がスティック型基材150の外径よりも小さくなるように構成され、内部空間141に挿入されたスティック型基材150を外周から圧迫するようにしてスティック型基材150を保持し得る。保持部140は、スティック型基材150を通る空気の流路を画定する機能も有する。かかる流路内への空気の入り口である空気流入孔は、例えば底部143に配置される。他方、かかる流路からの空気の出口である空気流出孔は、開口142である。 The holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 . The holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 . For example, the holding portion 140 is a tubular body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 . The holding part 140 is configured such that the inner diameter is smaller than the outer diameter of the stick-shaped base material 150 at least in part in the height direction of the cylindrical body, and holds the stick-shaped base material 150 inserted into the internal space 141. The stick-shaped substrate 150 can be held by pressing from the outer periphery. The retainer 140 also functions to define air flow paths through the stick-shaped substrate 150 . An air inlet hole, which is an inlet for air into the flow path, is arranged, for example, in the bottom portion 143 . On the other hand, the air outflow hole, which is the exit of air from such a channel, is the opening 142 .
 スティック型基材150は、スティック型の部材である。スティック型基材150は、基材部151、及び吸口部152を含む。 The stick-shaped base material 150 is a stick-shaped member. The stick-type substrate 150 includes a substrate portion 151 and a mouthpiece portion 152 .
 基材部151は、エアロゾル源を含む。エアロゾル源は、加熱されることで霧化され、エアロゾルが生成される。エアロゾル源は、例えば、刻みたばこ又はたばこ原料を、粒状、シート状、又は粉末状に成形した加工物などの、たばこ由来のものであってもよい。また、エアロゾル源は、たばこ以外の植物(例えばミント及びハーブ等)から作られた、非たばこ由来のものを含んでいてもよい。一例として、エアロゾル源は、メントール等の香料成分を含んでいてもよい。吸引装置100が医療用吸入器である場合、エアロゾル源は、患者が吸入するための薬剤を含んでもよい。なお、エアロゾル源は固体に限られるものではなく、例えば、グリセリン及びプロピレングリコール等の多価アルコール、並びに水等の液体であってもよい。基材部151の少なくとも一部は、スティック型基材150が保持部140に保持された状態において、保持部140の内部空間141に収容される The base material portion 151 includes an aerosol source. The aerosol source is atomized by heating to produce an aerosol. The aerosol source may be tobacco-derived, such as, for example, a processed product of cut tobacco or tobacco material formed into granules, sheets, or powder. Aerosol sources may also include non-tobacco sources made from plants other than tobacco, such as mints and herbs. By way of example, the aerosol source may contain perfume ingredients such as menthol. If the inhalation device 100 is a medical inhaler, the aerosol source may contain a medicament for inhalation by the patient. The aerosol source is not limited to solids, and may be, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. At least part of the base material part 151 is accommodated in the internal space 141 of the holding part 140 in a state in which the stick-shaped base material 150 is held by the holding part 140.
 吸口部152は、吸引の際にユーザに咥えられる部材である。吸口部152の少なくとも一部は、スティック型基材150が保持部140に保持された状態において、開口142から突出する。そして、開口142から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流入孔から保持部140の内部に空気が流入する。流入した空気は、保持部140の内部空間141を通過して、すなわち、基材部151を通過して、基材部151から発生するエアロゾルと共に、ユーザの口内に到達する。 The mouthpiece 152 is a member held by the user when inhaling. At least part of the mouthpiece 152 protrudes from the opening 142 when the stick-shaped base material 150 is held by the holding part 140 . Then, when the user holds the mouthpiece 152 protruding from the opening 142 and sucks, air flows into the inside of the holding part 140 from an air inlet hole (not shown). The air that has flowed in passes through the internal space 141 of the holding part 140 , that is, passes through the base material part 151 and reaches the inside of the user's mouth together with the aerosol generated from the base material part 151 .
 さらに、スティック型基材150は、サセプタ161を含む。サセプタ161は、電磁誘導により発熱する。サセプタ161は、金属等の導電性の素材により構成される。一例として、サセプタ161は、板状に構成される。そして、サセプタ161は、サセプタ161の長手方向がスティック型基材150の長手方向に一致するように、配置される。 Furthermore, the stick-type base material 150 includes a susceptor 161 . The susceptor 161 generates heat by electromagnetic induction. The susceptor 161 is made of a conductive material such as metal. As an example, the susceptor 161 is configured in a plate shape. The susceptor 161 is arranged such that the longitudinal direction of the susceptor 161 coincides with the longitudinal direction of the stick-shaped substrate 150 .
 ここで、サセプタ161は、エアロゾル源に熱的に近接して配置される。サセプタ161がエアロゾル源に熱的に近接しているとは、サセプタ161に発生した熱が、エアロゾル源に伝達される位置に、サセプタ161が配置されていることを指す。例えば、サセプタ161は、エアロゾル源と共に基材部151に含有され、エアロゾル源により周囲を囲まれる。かかる構成により、サセプタ161から発生した熱を、効率よくエアロゾル源の加熱に使用することが可能となる。 Here, the susceptor 161 is placed in thermal proximity to the aerosol source. The susceptor 161 being thermally close to the aerosol source means that the susceptor 161 is arranged at a position where heat generated in the susceptor 161 is transferred to the aerosol source. For example, the susceptor 161 is contained in the substrate portion 151 along with the aerosol source and is surrounded by the aerosol source. With such a configuration, the heat generated from the susceptor 161 can be efficiently used to heat the aerosol source.
 なお、サセプタ161には、スティック型基材150の外部から接触不可能であってもよい。例えば、サセプタ161は、スティック型基材150の中心部分に分布し、外周付近には分布していなくてもよい。 It should be noted that the susceptor 161 may not be accessible from the outside of the stick-shaped substrate 150 . For example, the susceptors 161 may be distributed in the central portion of the stick-shaped substrate 150 and not distributed near the periphery.
 電磁誘導源162は、電磁誘導によりサセプタ161を発熱させる。電磁誘導源162は、例えば、コイル状の導線により構成され、保持部140の外周に巻き付くように配置される。電磁誘導源162は、電源部111から交流電流が供給されると、磁界を発生させる。電磁誘導源162は、発生させた磁界に保持部140の内部空間141が重畳する位置に配置される。よって、保持部140にスティック型基材150が保持された状態で磁界が発生すると、サセプタ161において渦電流が発生して、ジュール熱が発生する。そして、かかるジュール熱によりスティック型基材150に含まれるエアロゾル源が加熱されて霧化され、エアロゾルが生成される。一例として、所定のユーザ入力が行われたことがセンサ部112により検出された場合に、給電され、エアロゾルが生成されてもよい。サセプタ161及び電磁誘導源162により誘導加熱されたスティック型基材150の温度が所定の温度に達した場合に、ユーザによる吸引が可能となる。その後、所定のユーザ入力が行われたことがセンサ部112により検出された場合に、給電が停止されてもよい。他の一例として、ユーザによる吸引が行われたことがセンサ部112により検出されている期間において、給電され、エアロゾルが生成されてもよい。 The electromagnetic induction source 162 causes the susceptor 161 to generate heat by electromagnetic induction. The electromagnetic induction source 162 is composed of, for example, a coiled conductor wire, and is arranged so as to wrap around the outer periphery of the holding portion 140 . The electromagnetic induction source 162 generates a magnetic field when alternating current is supplied from the power supply section 111 . The electromagnetic induction source 162 is arranged at a position where the internal space 141 of the holding section 140 overlaps the generated magnetic field. Therefore, when a magnetic field is generated while the stick-shaped substrate 150 is held by the holding portion 140, an eddy current is generated in the susceptor 161 and Joule heat is generated. Then, the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 and atomizes it to generate an aerosol. As an example, power may be supplied and an aerosol may be generated when the sensor unit 112 detects that a predetermined user input has been performed. When the temperature of the stick-shaped substrate 150 induction-heated by the susceptor 161 and the electromagnetic induction source 162 reaches a predetermined temperature, the suction by the user becomes possible. After that, when the sensor unit 112 detects that a predetermined user input has been performed, the power supply may be stopped. As another example, power may be supplied and aerosol may be generated during a period in which the sensor unit 112 detects that the user has inhaled.
 なお、図1では、サセプタ161が、スティック型基材150の基材部151に含まれる例を示したが、本構成例はかかる例に限定されない。例えば、保持部140が、サセプタ161の機能を担っても良い。この場合、電磁誘導源162が発生させた磁界によって、保持部140において渦電流が発生して、ジュール熱が発生する。そして、かかるジュール熱によりスティック型基材150に含まれるエアロゾル源が加熱されて霧化され、エアロゾルが生成される。 Although FIG. 1 shows an example in which the susceptor 161 is included in the base material portion 151 of the stick-shaped base material 150, this configuration example is not limited to such an example. For example, the holding part 140 may serve the function of the susceptor 161 . In this case, the magnetic field generated by the electromagnetic induction source 162 generates an eddy current in the holding portion 140 and generates Joule heat. Then, the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 and atomizes it to generate an aerosol.
 なお、吸引装置100とスティック型基材150とを組み合わせることでエアロゾルを生成可能になる点で、吸引装置100とスティック型基材150との組み合わせが1つのシステムとして捉えられてもよい。 Note that the combination of the suction device 100 and the stick-shaped substrate 150 may be regarded as one system in that aerosol can be generated by combining the suction device 100 and the stick-shaped substrate 150 .
 <2.誘導加熱>
 誘導加熱について、以下に詳細に説明する。
<2. Induction heating>
Induction heating is described in detail below.
 誘導加熱とは、導電性を有する物体に変動磁場を侵入させることによって、その物体を加熱するプロセスである。誘導加熱には、変動磁場を発生させる磁場発生器と、変動磁場に曝されることにより加熱される、導電性を有する被加熱物とが関与する。変動磁場の一例は、交番磁場である。図1に示した電磁誘導源162は、磁場発生器の一例である。図1に示したサセプタ161は、被加熱物の一例である。 Induction heating is the process of heating a conductive object by penetrating a varying magnetic field into the object. Induction heating involves a magnetic field generator that generates a fluctuating magnetic field, and a conductive heated object that is heated by being exposed to the fluctuating magnetic field. An example of a varying magnetic field is an alternating magnetic field. The electromagnetic induction source 162 shown in FIG. 1 is an example of a magnetic field generator. The susceptor 161 shown in FIG. 1 is an example of the object to be heated.
 磁場発生器と被加熱物とが、磁場発生器から発生した変動磁場が被加熱物に侵入するような相対位置に配置された状態で、磁場発生器から変動磁場が発生すると、被加熱物に渦電流が誘起される。被加熱物に渦電流が流れることにより、被加熱物の電気抵抗に応じたジュール熱が発生し、被加熱物が加熱される。このような加熱は、ジュール加熱、オーム加熱、又は抵抗加熱とも称される。 When the magnetic field generator and the object to be heated are arranged in relative positions such that the fluctuating magnetic field generated by the magnetic field generator penetrates into the object to be heated, when the fluctuating magnetic field is generated from the magnetic field generator, the object to be heated Eddy currents are induced. When the eddy current flows through the object to be heated, Joule heat corresponding to the electrical resistance of the object to be heated is generated and the object to be heated is heated. Such heating is also referred to as joule heating, ohmic heating, or resistance heating.
 被加熱物は、磁性を有していてもよい。その場合、被加熱物は、磁気ヒステリシス加熱によりさらに加熱される。磁気ヒステリシス加熱とは、磁性を有する物体に変動磁場を侵入させることによって、その物体を加熱するプロセスである。磁場が磁性体に侵入すると、磁性体に含まれる磁気双極子が磁場に沿って整列する。従って、変動磁場が磁性体に侵入すると、磁気双極子の向きは、印可された変動磁場に応じて変化する。このような磁気双極子の再配向によって、磁性体に熱が発生し、被加熱物が加熱される。 The object to be heated may have magnetism. In that case, the object to be heated is further heated by magnetic hysteresis heating. Magnetic hysteresis heating is the process of heating a magnetic object by impinging it with a varying magnetic field. When a magnetic field penetrates a magnetic body, the magnetic dipoles contained in the magnetic body align along the magnetic field. Therefore, when a fluctuating magnetic field penetrates a magnetic material, the orientation of the magnetic dipole changes according to the applied fluctuating magnetic field. Due to such reorientation of the magnetic dipoles, heat is generated in the magnetic material, and the object to be heated is heated.
 磁気ヒステリシス加熱は、典型的には、キュリー点以下の温度で発生し、キュリー点を超える温度では発生しない。キュリー点とは、磁性体がその磁気特性を失う温度である。例えば、キュリー点以下の温度で強磁性を有する被加熱物の温度がキュリー点を超えると、被加熱物の磁性には、強磁性から常磁性への可逆的な相転移が生じる。被加熱物の温度がキュリー点を超えると、磁気ヒステリシス加熱が発生しなくなるので、昇温速度が鈍化する。 Magnetic hysteresis heating typically occurs at temperatures below the Curie point and does not occur at temperatures above the Curie point. The Curie point is the temperature at which a magnetic material loses its magnetic properties. For example, when the temperature of an object to be heated which has ferromagnetism at a temperature below the Curie point exceeds the Curie point, the magnetism of the object to be heated undergoes a reversible phase transition from ferromagnetism to paramagnetism. When the temperature of the object to be heated exceeds the Curie point, magnetic hysteresis heating does not occur, so the rate of temperature increase slows down.
 被加熱物は、導電性の材料により構成されることが望ましい。さらに、被加熱物は、強磁性を有する材料により構成されることが望ましい。後者の場合、抵抗加熱と磁気ヒステリシス加熱との組み合わせにより、加熱効率を高めることが可能なためである。例えば、被加熱物は、アルミニウム、鉄、ニッケル、コバルト、導電性炭素、銅、及びステンレス鋼などを含む素材群から選択される1以上の素材により構成される。 It is desirable that the object to be heated is made of a conductive material. Furthermore, it is desirable that the object to be heated is made of a ferromagnetic material. In the latter case, it is possible to increase the heating efficiency by combining resistance heating and magnetic hysteresis heating. For example, the object to be heated is made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, stainless steel, and the like.
 抵抗加熱、及び磁気ヒステリシス加熱の双方において、熱は、外部熱源からの熱伝導により発生するのではなく、被加熱物の内部で発生する。そのため、被加熱物の急速な温度上昇、及び均一な熱分布を実現することができる。これは、被加熱物の材料及び形状、並びに変動磁場の大きさ及び向きを適切に設計することにより、実現することができる。即ち、スティック型基材150に含まれるサセプタ161の分布を適切に設計することにより、スティック型基材150の急速な温度上昇、及び均一な熱分布を実現することができる。従って、予備加熱にかかる時間を短縮可能な上に、ユーザが味わう香味の質を向上させることも可能である。 In both resistance heating and magnetic hysteresis heating, heat is generated inside the object to be heated, not by heat conduction from an external heat source. Therefore, rapid temperature rise of the object to be heated and uniform heat distribution can be realized. This can be realized by appropriately designing the material and shape of the object to be heated and the magnitude and direction of the varying magnetic field. That is, by appropriately designing the distribution of the susceptors 161 included in the stick-shaped substrate 150, a rapid temperature rise and uniform heat distribution of the stick-shaped substrate 150 can be achieved. Therefore, the time required for preheating can be shortened, and the quality of flavor that the user can enjoy can be improved.
 誘導加熱は、スティック型基材150に含まれるサセプタ161を直接加熱するため、外部熱源によりスティック型基材150を外周等から加熱する場合と比較して、基材を効率的に加熱することが可能である。また、外部熱源による加熱を行う場合、外部熱源は必然的にスティック型基材150よりも高温になる。一方で、誘導加熱を行う場合、電磁誘導源162はスティック型基材150よりも高温にならない。そのため、外部熱源を用いる場合と比較して吸引装置100の温度を低く維持することができるので、ユーザの安全面に関し大きな利点となる。 Since induction heating directly heats the susceptor 161 included in the stick-shaped base material 150, the base material can be heated more efficiently than when the stick-shaped base material 150 is heated from the outer periphery or the like by an external heat source. It is possible. Moreover, when heating is performed by an external heat source, the temperature of the external heat source is inevitably higher than that of the stick-shaped substrate 150 . On the other hand, when performing induction heating, the electromagnetic induction source 162 does not become hotter than the stick-shaped substrate 150 . Therefore, the temperature of the suction device 100 can be kept lower than when an external heat source is used, which is a great advantage in terms of user safety.
 電磁誘導源162は、電源部111から供給された電力を使用して変動磁場を発生させる。一例として、電源部111は、DC(Direct Current)電源であってもよい。その場合、電源部111は、DC/AC(Alternate Current)インバータを介して、交流電力を電磁誘導源162に供給する。その場合、電磁誘導源162は、交番磁場を発生させることができる。 The electromagnetic induction source 162 uses power supplied from the power supply unit 111 to generate a varying magnetic field. As an example, the power supply unit 111 may be a DC (Direct Current) power supply. In that case, the power supply unit 111 supplies AC power to the electromagnetic induction source 162 via a DC/AC (Alternate Current) inverter. In that case, the electromagnetic induction source 162 can generate an alternating magnetic field.
 電磁誘導源162は、保持部140により保持されたスティック型基材150に含有されたエアロゾル源に熱的に近接して配置されたサセプタ161に、電磁誘導源162から発生した変動磁場が侵入する位置に配置される。そして、サセプタ161は、変動磁場が侵入した場合に発熱する。図1に示した電磁誘導源162は、ソレノイド型のコイルである。そして、当該ソレノイド型のコイルは、導線が保持部140の外周に巻き付くように配置される。ソレノイド型のコイルに電流が印可された場合、コイルにより囲まれる中央の空間、即ち保持部140の内部空間141に磁場が発生する。図1に示すように、スティック型基材150が保持部140に保持された状態では、サセプタ161は、コイルにより囲まれることとなる。そのため、電磁誘導源162から発生した変動磁場は、サセプタ161に侵入し、サセプタ161を誘導加熱する。 The electromagnetic induction source 162 causes the fluctuating magnetic field generated from the electromagnetic induction source 162 to enter the susceptor 161 which is arranged in thermal proximity to the aerosol source contained in the stick-shaped base material 150 held by the holding part 140 . placed in position. The susceptor 161 generates heat when a fluctuating magnetic field enters. The electromagnetic induction source 162 shown in FIG. 1 is a solenoid coil. The solenoid-type coil is arranged so that the conductive wire is wound around the outer periphery of the holding portion 140 . When a current is applied to the solenoid type coil, a magnetic field is generated in the central space surrounded by the coil, that is, the internal space 141 of the holding part 140 . As shown in FIG. 1, when the stick-shaped substrate 150 is held by the holding portion 140, the susceptor 161 is surrounded by the coil. Therefore, the fluctuating magnetic field generated by the electromagnetic induction source 162 enters the susceptor 161 and heats the susceptor 161 by induction.
 <3.技術的特徴>
 (1)詳細な内部構成
 本実施形態に係る誘導加熱に関与する構成について、図2を参照しながら詳しく説明する。図2は、本実施形態に係る吸引装置100による誘導加熱に関与する構成を示すブロック図である。
<3. Technical features>
(1) Detailed Internal Configuration A configuration related to induction heating according to the present embodiment will be described in detail with reference to FIG. FIG. 2 is a block diagram showing a configuration related to induction heating by the suction device 100 according to this embodiment.
 図2に示すように、吸引装置100は、インバータ回路163及びRLC回路164を含む駆動回路169を備える。駆動回路169は、電源部111から供給された電力を使用して変動磁場を発生させるための回路である。 As shown in FIG. 2, the suction device 100 includes a drive circuit 169 including an inverter circuit 163 and an RLC circuit 164. The drive circuit 169 is a circuit for generating a varying magnetic field using power supplied from the power supply section 111 .
 電源部111は、DC(Direct Current)電源である。電源部111は、直流電力を供給する。 The power supply unit 111 is a DC (Direct Current) power supply. The power supply unit 111 supplies DC power.
 インバータ回路163は、電源部111から供給された直流電力を交流電力に変換する、DC/AC(Alternate Current)インバータである。一例として、インバータ回路163は、1つ以上のスイッチング素子を有する、ハーフブリッジインバータ又はフルブリッジインバータとして構成される。スイッチング素子としては、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)及びIGBT(Insulated Gate Bipolar Transistor)等が挙げられる。 The inverter circuit 163 is a DC/AC (Alternate Current) inverter that converts the DC power supplied from the power supply unit 111 into AC power. As an example, inverter circuit 163 is configured as a half-bridge inverter or a full-bridge inverter having one or more switching elements. Examples of switching elements include MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors).
 RLC回路164は、インバータ回路163から供給された交流電力を使用して変動磁場を発生させるための回路である。RLC回路164は、少なくとも電磁誘導源162を含む。RLC回路164は、コンデンサ、抵抗、整合回路等の他の回路をさらに備えていてもよい。 The RLC circuit 164 is a circuit that uses the AC power supplied from the inverter circuit 163 to generate a varying magnetic field. RLC circuit 164 includes at least electromagnetic induction source 162 . RLC circuit 164 may further comprise other circuits such as capacitors, resistors, matching circuits, and the like.
 保持部140は、エアロゾル源を含有する基材であるスティック型基材150、及びエアロゾル源に熱的に近接するサセプタ161を内部空間に収容可能な収容部の一例である。保持部140は、開口142から内部空間141に挿入されたスティック型基材150を収容及び保持する。なお、保持部140及び内部空間141のうち、底部143に近い側を上流とも称し、開口142に近い側を下流とも称する。パフが行われた際に、上流から下流に向けての空気流が発生するためである。 The holding part 140 is an example of an accommodating part capable of accommodating a stick-shaped base material 150, which is a base material containing an aerosol source, and a susceptor 161 thermally adjacent to the aerosol source. The holding part 140 accommodates and holds the stick-shaped base material 150 inserted into the internal space 141 through the opening 142 . Of the holding portion 140 and the internal space 141, the side closer to the bottom 143 is also called upstream, and the side closer to the opening 142 is also called downstream. This is because an air flow is generated from upstream to downstream when puffing is performed.
 電磁誘導源162は、インバータ回路163から供給された交流電力を使用して、保持部140の内部空間141に変動磁場を発生させる。これにより、サセプタ161が誘導加熱され、エアロゾルが生成される。 The electromagnetic induction source 162 uses the AC power supplied from the inverter circuit 163 to generate a varying magnetic field in the internal space 141 of the holding section 140 . Thereby, the susceptor 161 is induction-heated and an aerosol is generated.
 センサ部112は、検出部180を有する。検出部180は、サセプタ161の状態に対応する値である状態値を検出する機能を有する。状態値については、後に詳しく説明する。 The sensor section 112 has a detection section 180 . The detector 180 has a function of detecting a state value, which is a value corresponding to the state of the susceptor 161 . State values are described in detail later.
 図2に示すように、制御部116は、加熱制御部171及び動作制御部172を含む。 As shown in FIG. 2, the control unit 116 includes a heating control unit 171 and an operation control unit 172.
 加熱制御部171は、電磁誘導源162による誘導加熱を制御する。具体的には、加熱制御部171は、インバータ回路163から電磁誘導源162への給電を制御する。例えば、加熱制御部171は、電源部111から駆動回路169に供給される直流電力の情報に基づいて、サセプタ161の温度を推定する。そして、加熱制御部171は、推定したサセプタ161の温度に基づいて、電磁誘導源162への給電を制御する。 The heating control unit 171 controls induction heating by the electromagnetic induction source 162 . Specifically, the heating control unit 171 controls power supply from the inverter circuit 163 to the electromagnetic induction source 162 . For example, the heating control unit 171 estimates the temperature of the susceptor 161 based on information on DC power supplied from the power supply unit 111 to the drive circuit 169 . Then, the heating control unit 171 controls power supply to the electromagnetic induction source 162 based on the estimated temperature of the susceptor 161 .
 サセプタ161の温度を推定する方法を、図3を参照しながら簡単に説明する。 A method for estimating the temperature of the susceptor 161 will be briefly described with reference to FIG.
 図3は、本実施形態に係る吸引装置100による誘導加熱に関与する回路の等価回路を示す図である。図3に示す見かけの電気抵抗値Rは、電源部111から駆動回路169に供給される直流電力の電流値IDC及び電圧値VDCにより計算される、駆動回路169を含む閉回路の電気抵抗値である。図3に示すように、見かけの電気抵抗値Rは、駆動回路169の電気抵抗値Rとサセプタ161の電気抵抗値Rとによって形成される直列接続に相当する。見かけの電気抵抗値Rとサセプタ161の温度との間には、極めて単調な関係がある。例えば、吸引装置100による誘導加熱によってサセプタ161が温度変化し得る範囲(例えば、0℃~400℃等)内では、見かけの電気抵抗値Rとサセプタ161の温度との間には、実質的に線形の関係があり得る。そのため、制御部116は、電流値IDC及び電圧値VDCに基づいて見かけの電気抵抗値Rを計算し、見かけの電気抵抗値Rに基づいてサセプタ161の温度を推定することが可能である。 FIG. 3 is a diagram showing an equivalent circuit of a circuit involved in induction heating by the suction device 100 according to this embodiment. Apparent electrical resistance value RA shown in FIG. resistance value. As shown in FIG. 3, the apparent electrical resistance value R A corresponds to the series connection formed by the electrical resistance value R C of the drive circuit 169 and the electrical resistance value R S of the susceptor 161 . There is a very monotonic relationship between the apparent electrical resistance value RA and the temperature of the susceptor 161 . For example, within a range (for example, 0° C. to 400° C.) in which the temperature of the susceptor 161 can change due to induction heating by the suction device 100, the apparent electrical resistance value RA and the temperature of the susceptor 161 are substantially can be linearly related. Therefore, the control unit 116 can calculate the apparent electrical resistance value RA based on the current value IDC and the voltage value VDC , and estimate the temperature of the susceptor 161 based on the apparent electrical resistance value RA . is.
 加熱制御部171は、加熱プロファイルに従ってサセプタ161の温度が推移するように、電磁誘導源162への給電を制御する。加熱プロファイルとは、サセプタ161の温度の目標値である目標温度の時系列推移が規定された情報である。吸引装置100は、加熱プロファイルにおいて規定された目標温度の時系列推移と同様に、サセプタ161の実際の温度(以下、実温度とも称する)が推移するように、電磁誘導源162への給電を制御する。これにより、加熱プロファイルにより計画された通りにエアロゾルが生成される。加熱プロファイルは、典型的には、スティック型基材150から生成されるエアロゾルをユーザが吸引した際にユーザが味わう香味が最適になるように設計される。よって、加熱プロファイルに基づいて電磁誘導源162の動作を制御することにより、ユーザが味わう香味を最適にすることができる。 The heating control unit 171 controls power supply to the electromagnetic induction source 162 so that the temperature of the susceptor 161 changes according to the heating profile. The heating profile is information that defines the time series transition of the target temperature, which is the target value of the temperature of the susceptor 161 . The suction device 100 controls power supply to the electromagnetic induction source 162 so that the actual temperature of the susceptor 161 (hereinafter also referred to as the actual temperature) changes in the same manner as the target temperature specified in the heating profile changes over time. do. This produces an aerosol as planned by the heating profile. The heating profile is typically designed to optimize the flavor experienced by the user when the user inhales the aerosol produced from the stick-shaped substrate 150 . Therefore, by controlling the operation of the electromagnetic induction source 162 based on the heating profile, the flavor experienced by the user can be optimized.
 加熱プロファイルは、加熱を開始してからの経過時間と、当該経過時間において到達するべき目標温度と、の組み合わせを、ひとつ以上含む。そして、加熱制御部171は、現在の加熱を開始してからの経過時間に対応する加熱プロファイルにおける目標温度と、現在の実温度と、の乖離に基づいて、サセプタ161の温度を制御する。サセプタ161の温度制御は、例えば公知のフィードバック制御によって実現できる。フィードバック制御では、加熱制御部171は、実温度と目標温度との差分等に基づいて、電磁誘導源162へ供給する電力を制御すればよい。フィードバック制御は、例えばPID制御(Proportional-Integral-Differential Controller)であってよい。若しくは、加熱制御部171は、単純なON-OFF制御を行ってもよい。例えば、加熱制御部171は、実温度が目標温度に達するまで電磁誘導源162への給電を実行し、実温度が目標温度に達した場合に電磁誘導源162への給電を中断してもよい。 A heating profile includes one or more combinations of the elapsed time from the start of heating and the target temperature to be reached in that elapsed time. Then, the heating control unit 171 controls the temperature of the susceptor 161 based on the difference between the target temperature in the heating profile corresponding to the elapsed time from the start of the current heating and the current actual temperature. Temperature control of the susceptor 161 can be realized, for example, by known feedback control. In feedback control, the heating control section 171 may control the power supplied to the electromagnetic induction source 162 based on the difference between the actual temperature and the target temperature. Feedback control may be, for example, PID control (Proportional-Integral-Differential Controller). Alternatively, the heating control section 171 may perform simple ON-OFF control. For example, the heating control unit 171 may supply power to the electromagnetic induction source 162 until the actual temperature reaches the target temperature, and interrupt power supply to the electromagnetic induction source 162 when the actual temperature reaches the target temperature. .
 スティック型基材150を用いてエアロゾルを生成する処理が開始してから終了するまでの時間区間、より詳しくは、電磁誘導源162が加熱プロファイルに基づいて動作する時間区間を、以下では加熱セッションとも称する。加熱セッションの始期は、加熱プロファイルに基づく加熱が開始されるタイミングである。加熱セッションの終期は、十分な量のエアロゾルが生成されなくなったタイミングである。加熱セッションは、前半の予備加熱期間、及び後半のパフ可能期間から成る。パフ可能期間とは、十分な量のエアロゾルが発生すると想定される期間である。予備加熱期間とは、加熱が開始されてからパフ可能期間が開始されるまでの期間である。予備加熱期間において行われる加熱は、予備加熱とも称される。 The time interval from the start to the end of the process of generating an aerosol using the stick-shaped substrate 150, more specifically, the time interval during which the electromagnetic induction source 162 operates based on the heating profile, is also referred to as a heating session below. called. The beginning of the heating session is the timing at which heating based on the heating profile is started. The end of the heating session is when a sufficient amount of aerosol is no longer produced. A heating session consists of a first half preheating period and a second half puffable period. The puffable period is the period during which a sufficient amount of aerosol is assumed to be generated. The preheating period is the period from the start of heating to the start of the puffable period. Heating performed in the preheating period is also referred to as preheating.
 動作制御部172は、加熱制御部171の動作を制御する。具体的には、動作制御部172は、検出部180により検出された状態値に基づいて、加熱制御部171による電磁誘導源162への給電(即ち、誘導加熱)の実行可否を制御する。吸引装置100は、動作制御部172を有する制御装置の一例である。 The operation control unit 172 controls the operation of the heating control unit 171. Specifically, the operation control unit 172 controls whether or not the heating control unit 171 can supply power to the electromagnetic induction source 162 (that is, induction heating) based on the state value detected by the detection unit 180 . The suction device 100 is an example of a control device having an operation control section 172 .
 (2)加熱可否の判定
 動作制御部172は、加熱プロファイルに基づく給電が実行されるより前にインバータ回路163から電磁誘導源162に給電した際に検出された状態値に基づいて、加熱制御部171の動作を制御する。具体的には、動作制御部172は、加熱プロファイルに基づく給電(即ち、加熱プロファイルに基づく誘導加熱)に先立って、インバータ回路163からRLC回路164に、状態値を検出するための交流電力を供給させる。その際に、検出部180は、状態値を検出する。そして、動作制御部172は、検出部180により検出された状態値に基づいて、加熱プロファイルに基づく給電の実行可否を制御する。
(2) Determining Whether Heating is Possible The operation control unit 172 determines the heating control unit based on the state value detected when power is supplied from the inverter circuit 163 to the electromagnetic induction source 162 before the power supply based on the heating profile is executed. 171 operation. Specifically, the operation control unit 172 supplies AC power for detecting the state value from the inverter circuit 163 to the RLC circuit 164 prior to power supply based on the heating profile (that is, induction heating based on the heating profile). Let At that time, the detection unit 180 detects the state value. Then, based on the state value detected by the detection unit 180, the operation control unit 172 controls whether power supply can be performed based on the heating profile.
 状態値は、サセプタ161の状態に対応する値である。例えば、動作制御部172は、状態値に基づいてサセプタ161の状態が正常であるか否かを判定する。そして、動作制御部172は、サセプタ161の状態が正常であると判定した場合に、加熱プロファイルに基づく給電の実行を許可する。一方で、動作制御部172は、サセプタ161の状態が異常であると判定した場合に、加熱プロファイルに基づく給電の実行を禁止する。 A state value is a value corresponding to the state of the susceptor 161 . For example, the operation control unit 172 determines whether the state of the susceptor 161 is normal based on the state value. Then, when the operation control unit 172 determines that the state of the susceptor 161 is normal, the operation control unit 172 permits execution of power supply based on the heating profile. On the other hand, when the operation control unit 172 determines that the state of the susceptor 161 is abnormal, it prohibits the power supply based on the heating profile.
 かかる構成によれば、サセプタ161の状態が正常である場合に限定して、スティック型基材150を加熱してエアロゾルを生成することが可能となる。即ち、サセプタ161の状態が異常である場合にスティック型基材150が加熱され、ユーザが不適切なエアロゾルを吸引することが回避される。従って、ユーザのパフ体験の質を向上させることが可能となる。 According to such a configuration, it is possible to heat the stick-shaped substrate 150 and generate an aerosol only when the state of the susceptor 161 is normal. That is, when the state of the susceptor 161 is abnormal, the stick-shaped substrate 150 is heated to prevent the user from inhaling inappropriate aerosol. Therefore, it is possible to improve the quality of the user's puff experience.
 サセプタ161の状態の一例は、サセプタ161の腐食の有無である。サセプタ161の状態が正常であるとは、サセプタ161が腐食していないこと(より正確には、腐食度合いが所定の閾値未満であること)を指す。サセプタ161の状態が異常であるとは、サセプタ161が腐食していること(より正確には、腐食度合いが所定の閾値を超えていること)を指す。スティック型基材150を密封していたパッケージが開封された後、長期間放置されると、サセプタ161が酸化し腐食する場合がある。例えば、サセプタ161の表面に錆が発生したり、サセプタ161の厚みが減少したり、サセプタ161の表面に形成された孔が開いたりし得る。サセプタ161の腐食度合いは、エアロゾル源及び香味源の劣化度合いにも比例し得る。そのため、腐食したサセプタ161を含有したスティック型基材150を加熱すると、生成されるエアロゾルの量が不十分である、及びエアロゾルに劣化した香味が付与される、等々の不都合が生じ得る。この点、かかる構成によれば、サセプタ161の腐食に伴う不都合を回避することが可能となる。 An example of the state of the susceptor 161 is whether or not the susceptor 161 is corroded. A normal state of the susceptor 161 means that the susceptor 161 is not corroded (more precisely, the degree of corrosion is less than a predetermined threshold). The state of the susceptor 161 being abnormal means that the susceptor 161 is corroded (more precisely, the degree of corrosion exceeds a predetermined threshold). If the package in which the stick-shaped substrate 150 is sealed is left unsealed for a long period of time, the susceptor 161 may oxidize and corrode. For example, rust may occur on the surface of the susceptor 161, the thickness of the susceptor 161 may be reduced, or holes formed in the surface of the susceptor 161 may open. The degree of corrosion of the susceptor 161 may also be proportional to the degree of deterioration of the aerosol source and flavor source. Therefore, when the stick-type substrate 150 containing the corroded susceptor 161 is heated, problems such as an insufficient amount of aerosol being generated and a deteriorated flavor being imparted to the aerosol can occur. In this respect, according to this configuration, it is possible to avoid the inconvenience associated with corrosion of the susceptor 161 .
 動作制御部172は、状態値と基準値との比較結果に基づいて、加熱プロファイルに基づく給電の実行可否を制御してもよい。基準値は、サセプタ161の状態が正常である場合に検出されると想定される状態値に対応する。一例として、動作制御部172は、状態値と基準値との乖離が所定の閾値以内である場合にサセプタ161の状態は正常であると判定し、そうでない場合にサセプタ161の状態は異常であると判定する。他の一例として、基準値は、一定の幅を有する値であってもよい。その場合、動作制御部172は、状態値が基準値の範囲に含まれる場合にサセプタ161の状態は正常であると判定し、そうでない場合にサセプタ161の状態は異常であると判定する。 The operation control unit 172 may control whether or not power supply can be performed based on the heating profile based on the comparison result between the state value and the reference value. The reference value corresponds to a state value assumed to be detected when the susceptor 161 is in a normal state. As an example, the operation control unit 172 determines that the state of the susceptor 161 is normal when the difference between the state value and the reference value is within a predetermined threshold value, and otherwise determines that the state of the susceptor 161 is abnormal. I judge. As another example, the reference value may be a value having a certain width. In this case, the operation control unit 172 determines that the state of the susceptor 161 is normal when the state value is within the range of the reference value, and determines that the state of the susceptor 161 is abnormal otherwise.
 状態値は、電磁誘導源162を流れる交流電力に関して検出された値であってもよい。例えば、状態値は、RLC回路164のインピーダンスであってもよい。検出部180は、RLC回路164に印可された電圧値、及びRLC回路164を流れる電流値を測定し、測定した電圧値及び電流値に基づいてRLC回路164のインピーダンスを計算する。RLC回路164のインピーダンスは、サセプタ161の状態に応じて変化する。よって、RLC回路164のインピーダンスに応じて、サセプタ161の状態を判定することが可能となる。 The state value may be a value detected with respect to the AC power flowing through the electromagnetic induction source 162 . For example, the state value may be the impedance of RLC circuit 164 . The detection unit 180 measures the voltage value applied to the RLC circuit 164 and the current value flowing through the RLC circuit 164, and calculates the impedance of the RLC circuit 164 based on the measured voltage value and current value. The impedance of RLC circuit 164 changes according to the state of susceptor 161 . Therefore, it is possible to determine the state of the susceptor 161 according to the impedance of the RLC circuit 164 .
 状態値を検出するために電磁誘導源162に供給される電力量は、加熱プロファイルに基づく給電の際に電磁誘導源162に供給される電力量よりも小さい。より簡易には、動作制御部172は、検出部180が状態値を検出可能するために、加熱プロファイルに基づく給電を行う場合と比して、微弱な電力をインバータ回路163からRLC回路164に供給させる。ここでの電力量の一例は、電流値である。かかる構成によれば、状態値を検出する際の消費電力を低減することが可能となる。さらに、サセプタ161を昇温させない又は軽微な昇温に抑えることができるので、スティック型基材150の寿命を徒に縮めることが防止される。なお、スティック型基材150の寿命とは、スティック型基材150に含有されたエアロゾル源が枯渇するまでの時間長である。 The amount of power supplied to the electromagnetic induction source 162 for detecting the state value is smaller than the amount of power supplied to the electromagnetic induction source 162 during power supply based on the heating profile. More simply, the operation control unit 172 supplies weak power from the inverter circuit 163 to the RLC circuit 164 compared to the case of performing power supply based on the heating profile so that the detection unit 180 can detect the state value. Let An example of the amount of electric power here is a current value. According to such a configuration, it is possible to reduce power consumption when detecting the state value. Furthermore, since the temperature of the susceptor 161 does not rise or can be suppressed to a slight temperature rise, the life of the stick-shaped substrate 150 can be prevented from being shortened. The life of the stick-shaped substrate 150 is the length of time until the aerosol source contained in the stick-shaped substrate 150 is exhausted.
 検出部180は、所定のユーザ操作が行われたことをトリガとして、状態値を検出してもよい。所定のユーザ操作の一例は、吸引装置100に設けられたボタンの押下である。かかる構成によれば、ユーザからの明示的な指示があるまで状態値が検出されない。ユーザがパフを行うつもりがないときには状態値が検出されないので、消費電力を抑制することが可能となる。 The detection unit 180 may detect the state value triggered by a predetermined user operation. An example of the predetermined user operation is pressing a button provided on the suction device 100 . According to such a configuration, the state value is not detected until there is an explicit instruction from the user. Since the state value is not detected when the user does not intend to puff, power consumption can be suppressed.
 検出部180は、保持部140にスティック型基材150が収容されたことをトリガとして、状態値を検出してもよい。かかる構成によれば、吸引装置100にスティック型基材150が挿入された際に、サセプタ161の状態が判定され、加熱プロファイルに基づく給電の実行可否が判定される。検出値を検出させるためのユーザ操作が不要になるので、ユーザビリティを向上させることが可能となる。 The detection unit 180 may detect the state value triggered by the holding of the stick-shaped base material 150 in the holding unit 140 . According to this configuration, when the stick-shaped base material 150 is inserted into the suction device 100, the state of the susceptor 161 is determined, and it is determined whether or not power supply can be performed based on the heating profile. Since the user's operation for detecting the detection value is not required, usability can be improved.
 保持部140にスティック型基材150が収容されたことは、内部空間141のうち開口142側の一部分である部分空間の情報に基づいて検出されてもよい。例えば、保持部140にスティック型基材150が収容されたことは、開口142付近に設けられた静電容量型の近接センサにより検出される。静電容量型の近接センサは、電界を発生させ、対象物が電界に進入した際の静電容量又は誘電率の変化により対象物を検出するセンサである。開口142付近に設けられた近接センサは、内部空間141のうち開口142付近の部分空間の静電容量又は誘電率等を検出する。スティック型基材150が挿入/抜去されるに伴い、スティック型基材150の様々な部分(サセプタ161を含む部分、及びサセプタ161を含まない部分)が当該部分空間を通過する。それに伴い、当該部分空間の静電容量及び誘電率が変化する。従って、動作制御部172は、当該部分空間の静電容量又は誘電率の時系列変化に応じて、保持部140にスティック型基材150が保持されているか否かを判定することができる。 The fact that the stick-shaped base material 150 is housed in the holding part 140 may be detected based on the information of the partial space, which is a part of the internal space 141 on the opening 142 side. For example, a capacitive proximity sensor provided near the opening 142 detects that the stick-shaped substrate 150 is accommodated in the holding portion 140 . A capacitive proximity sensor is a sensor that generates an electric field and detects an object based on a change in capacitance or dielectric constant when the object enters the electric field. A proximity sensor provided near the opening 142 detects the capacitance, dielectric constant, or the like of a partial space near the opening 142 in the internal space 141 . As the stick-shaped substrate 150 is inserted/removed, various portions of the stick-shaped substrate 150 (a portion including the susceptor 161 and a portion not including the susceptor 161) pass through the partial spaces. Accordingly, the capacitance and dielectric constant of the partial space change. Therefore, the operation control section 172 can determine whether or not the stick-shaped substrate 150 is held by the holding section 140 according to the time-series change in the capacitance or dielectric constant of the partial space.
 加熱制御部171は、加熱プロファイルに基づく給電の実行が動作制御部172により許可された状態で、所定のユーザ操作が行われたことをトリガとして、加熱プロファイルに基づく給電を実行してもよい。所定のユーザ操作の一例は、吸引装置100に設けられたボタンの押下である。かかる構成によれば、ユーザからの明示的な指示があるまで、吸引装置100は誘導加熱せずに待機する。ユーザがパフを行うつもりがないときには加熱されないので、消費電力を抑制することが可能となる。 The heating control unit 171 may execute power supply based on the heating profile, triggered by a predetermined user operation performed in a state where power supply based on the heating profile is permitted by the operation control unit 172 . An example of the predetermined user operation is pressing a button provided on the suction device 100 . According to such a configuration, the suction device 100 waits without performing induction heating until there is an explicit instruction from the user. Since it is not heated when the user does not intend to puff, power consumption can be suppressed.
 加熱制御部171は、加熱プロファイルに基づく給電の実行が動作制御部172により許可されたことをトリガとして、加熱プロファイルに基づく給電を実行してもよい。かかる構成によれば、加熱プロファイルに基づく給電の実行が許可された際に、自動的に誘導加熱が開始される。加熱プロファイルに基づく給電を実行させるためのユーザ操作が不要になるので、ユーザビリティを向上させることが可能となる。 The heating control unit 171 may perform power supply based on the heating profile, triggered by the permission of the operation control unit 172 to perform power supply based on the heating profile. According to such a configuration, induction heating is automatically started when execution of power supply based on the heating profile is permitted. Since no user operation is required to execute power supply based on the heating profile, usability can be improved.
 (3)処理の流れ
 図4は、本実施形態に係る吸引装置100により実行される処理の流れの一例を示すフローチャートである。
(3) Flow of Processing FIG. 4 is a flowchart showing an example of the flow of processing executed by the suction device 100 according to this embodiment.
 図4に示すように、まず、動作制御部172は、吸引要求が検出されたか否かを判定する(ステップS102)。吸引要求とは、エアロゾルを生成するよう要求するユーザ操作である。吸引要求の一例は、吸引装置100に設けられたスイッチ等を操作すること等の、吸引装置100に対する操作である。吸引要求の他の一例は、吸引装置100にスティック型基材150を挿入することである。 As shown in FIG. 4, the operation control unit 172 first determines whether or not a suction request has been detected (step S102). A puff request is a user action requesting to generate an aerosol. An example of the suction request is an operation on the suction device 100 such as operating a switch or the like provided on the suction device 100 . Another example of a suction request is inserting a stick substrate 150 into the suction device 100 .
 吸引要求が検出されていないと判定された場合(ステップS102:NO)、動作制御部172は、吸引要求が検出されるまで待機する。 When it is determined that a suction request has not been detected (step S102: NO), the operation control unit 172 waits until a suction request is detected.
 吸引要求が検出されたと判定された場合(ステップS102:YES)、動作制御部172は、状態値を検出するための交流電力をRLC回路164に供給するよう制御する(ステップS104)。例えば、動作制御部172は、加熱プロファイルに基づく誘導加熱を実行する際に給電される電力と比較して微弱な電力を、インバータ回路163からRLC回路164に供給させる。 When it is determined that a suction request has been detected (step S102: YES), the operation control unit 172 controls to supply AC power for detecting the state value to the RLC circuit 164 (step S104). For example, the operation control unit 172 causes the inverter circuit 163 to supply the RLC circuit 164 with weak power compared to the power supplied when performing induction heating based on the heating profile.
 次いで、検出部180は、状態値を検出する(ステップS106)。例えば、検出部180は、RLC回路164のインピーダンスを検出する。 Next, the detection unit 180 detects the state value (step S106). For example, detection unit 180 detects the impedance of RLC circuit 164 .
 次に、動作制御部172は、サセプタ161の状態は正常であるか否かを判定する(ステップS108)。一例として、動作制御部172は、状態値と基準値との乖離が所定の閾値以内である場合にサセプタ161の状態は正常であると判定し、そうでない場合にサセプタ161の状態は異常であると判定する。なお、通知部113は、判定結果をユーザに通知してもよい。もしくは、判定結果は、通信部115により送信され、スマートフォン等を介してユーザに通知されてもよい。 Next, the operation control unit 172 determines whether the state of the susceptor 161 is normal (step S108). As an example, the operation control unit 172 determines that the state of the susceptor 161 is normal when the difference between the state value and the reference value is within a predetermined threshold value, and otherwise determines that the state of the susceptor 161 is abnormal. I judge. Note that the notification unit 113 may notify the user of the determination result. Alternatively, the determination result may be transmitted by the communication unit 115 and notified to the user via a smartphone or the like.
 サセプタ161の状態が正常であると判定された場合(ステップS108:YES)、動作制御部172は、加熱プロファイルに基づく給電を許可する(ステップS110)。 When it is determined that the state of the susceptor 161 is normal (step S108: YES), the operation control unit 172 permits power supply based on the heating profile (step S110).
 そして、加熱制御部171は、加熱プロファイルに基づく給電を実行する(ステップS112)。これにより、サセプタ161が加熱され、エアロゾルが生成される。なお、加熱プロファイルに基づく給電は、サセプタ161の状態が正常であると判定されたことをトリガとして実行されてもよいし、さらに所定のユーザ操作が行われたことをトリガとして実行されてもよい。その後、処理は終了する。 Then, the heating control unit 171 performs power supply based on the heating profile (step S112). This heats the susceptor 161 and generates an aerosol. The power supply based on the heating profile may be triggered by determination that the state of the susceptor 161 is normal, or may be triggered by a predetermined user operation. . After that, the process ends.
 他方、サセプタ161の状態が異常であると判定された場合(ステップS108:NO)、動作制御部172は、加熱プロファイルに基づく給電を禁止する(ステップS114)。即ち、サセプタ161は加熱されず、エアロゾルは生成されない。その後、処理は終了する。 On the other hand, if the state of the susceptor 161 is determined to be abnormal (step S108: NO), the operation control unit 172 prohibits power supply based on the heating profile (step S114). That is, the susceptor 161 is not heated and no aerosol is generated. After that, the process ends.
 <4.変形例>
 <4.1.第1の変形例>
 上記では、状態値がRLC回路164のインピーダンスである例を説明したが、本発明はかかる例に限定されない。
<4. Variation>
<4.1. First modification>
Although the above describes an example in which the state value is the impedance of the RLC circuit 164, the present invention is not limited to such an example.
 -電流値
 状態値は、RLC回路164を所定の周波数で動作させたときの電流値であってもよい。所定の周波数の一例は、サセプタ161が腐食していないスティック型基材150が保持部140に保持されている場合の、RLC回路164の共振周波数fである。当該共振周波数fは、吸引装置100を製造する工場等において事前に測定される。電流値に基づく判定方法について、図5を参照しながら詳しく説明する。
-Current value The state value may be a current value when the RLC circuit 164 is operated at a predetermined frequency. An example of the predetermined frequency is the resonance frequency f0 of the RLC circuit 164 when the stick-shaped substrate 150 with the susceptor 161 not corroded is held by the holding portion 140 . The resonance frequency f0 is measured in advance at a factory or the like where the suction device 100 is manufactured. A determination method based on the current value will be described in detail with reference to FIG.
 図5は、RLC回路164を流れる電流値に基づいてサセプタ161が腐食しているか否かを判定する処理について説明するための図である。グラフ30は、RLC回路164の動作周波数とRLC回路164を流れる電流値との関係を示している。なお、RLC回路164の動作周波数とは、インバータ回路163からRLC回路164に供給される交流電力の周波数である。線31は、サセプタ161が腐食していない場合の関係を示している。線32は、サセプタ161が腐食している場合の関係を示している。グラフ30の横軸は、RLC回路164の動作周波数である。グラフ30の縦軸は、RLC回路164を流れる電流値の実効値である。 FIG. 5 is a diagram for explaining the process of determining whether or not the susceptor 161 is corroded based on the current value flowing through the RLC circuit 164. FIG. Graph 30 shows the relationship between the operating frequency of RLC circuit 164 and the value of current flowing through RLC circuit 164 . The operating frequency of RLC circuit 164 is the frequency of AC power supplied from inverter circuit 163 to RLC circuit 164 . Line 31 shows the relationship when the susceptor 161 is not corroded. Line 32 shows the relationship when the susceptor 161 is corroded. The horizontal axis of graph 30 is the operating frequency of RLC circuit 164 . The vertical axis of graph 30 is the effective value of the current flowing through RLC circuit 164 .
 RLC回路164が共振周波数で動作する場合、RLC回路164のインピーダンスは0と見なせるので、RLC回路164を流れる電流値は最も大きくなる。従って、線31に示すように、サセプタ161が腐食していない状態で、周波数fでRLC回路164を動作させると、最も大きな電流値Iが検出されることとなる。 When the RLC circuit 164 operates at the resonant frequency, the impedance of the RLC circuit 164 can be regarded as 0, so the current value flowing through the RLC circuit 164 is the largest. Therefore, as indicated by line 31, if the susceptor 161 is not corroded and the RLC circuit 164 is operated at the frequency f0 , the maximum current value IA will be detected.
 他方、サセプタ161が腐食している場合、RLC回路164の共振周波数f´は、事前に測定された共振周波数fから変化する。従って、線32に示すように、サセプタ161が腐食している状態で、周波数fでRLC回路164を動作させると、インピーダンスは0と見なせないので、電流値Iよりも小さな電流値Iが検出されることとなる。 On the other hand, if the susceptor 161 is corroded, the resonant frequency f 0 ′ of the RLC circuit 164 will change from the previously measured resonant frequency f 0 . Therefore, if the RLC circuit 164 is operated at the frequency f0 while the susceptor 161 is corroded, as indicated by the line 32, the impedance cannot be regarded as 0, so the current value I is smaller than the current value IA . B will be detected.
 そこで、動作制御部172は、RLC回路164を周波数fで動作させたときに検出された電流値に基づいて、サセプタ161が腐食しているか否かを判定する。具体的には、動作制御部172は、線31に示すようにRLC回路164を共振周波数fで動作させたときに検出された電流値Iが基準値I~Iの範囲に含まれる場合に、サセプタ161は腐食していないと判定する。他方、動作制御部172は、線32に示すようにRLC回路164を周波数fで動作させたときに検出された電流値Iが基準値I~Iの範囲に含まれない場合に、サセプタ161は腐食していると判定する。なお、基準値I及びIは、サセプタ161が腐食していない状態で、周波数fでRLC回路164を動作させた場合に検出されると想定される電流値の、上限値及び下限値である。 Therefore, the operation control unit 172 determines whether or not the susceptor 161 is corroded based on the current value detected when the RLC circuit 164 is operated at the frequency f0 . Specifically, the operation control unit 172 determines that the current value I A detected when the RLC circuit 164 is operated at the resonance frequency f 0 as indicated by the line 31 is included in the range of the reference values I C to I D . If so, it is determined that the susceptor 161 is not corroded. On the other hand, the operation control unit 172 controls the current value I B detected when the RLC circuit 164 is operated at the frequency f 0 as indicated by the line 32 when the current value I B is not included in the range of the reference values I C to I D . , the susceptor 161 is determined to be corroded. Note that the reference values I C and I D are the upper and lower limits of the current value assumed to be detected when the RLC circuit 164 is operated at the frequency f0 while the susceptor 161 is not corroded. is.
 -共振周波数
 状態値は、RLC回路164の共振周波数であってもよい。図5を参照しながら上記説明したように、サセプタ161が腐食している場合、RLC回路164の共振周波数f´は、事前に測定された共振周波数fから変化する。従って、動作制御部172は、検出されたRLC回路164の共振周波数f´と事前に測定された共振周波数fとを比較することで、サセプタ161が腐食しているか否かを判定することが可能となる。
- Resonant frequency The state value may be the resonant frequency of the RLC circuit 164 . As described above with reference to FIG. 5, if the susceptor 161 is corroded, the resonant frequency f 0 ′ of the RLC circuit 164 will change from the previously measured resonant frequency f 0 . Therefore, the operation control unit 172 compares the detected resonance frequency f 0 ′ of the RLC circuit 164 with the previously measured resonance frequency f 0 to determine whether the susceptor 161 is corroded. becomes possible.
 -Q値
 状態値は、RLC回路164の共振のピークの鋭さを示すQ値(Quality factor)であってもよい。RLC回路164が直列共振回路である場合、Q値は、次式により計算される。
-Q factor The state value may be a Q factor (Quality factor) that indicates the sharpness of the resonance peak of the RLC circuit 164 . If the RLC circuit 164 is a series resonant circuit, the Q value is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Qは、Q値である。Rは、RLC回路164の直列抵抗である。Lは、RLC回路164のインダクタンスである。Cは、RLC回路164のキャパシタンスである。 Here, Q is the Q value. R is the series resistance of the RLC circuit 164; L is the inductance of the RLC circuit 164; C is the capacitance of the RLC circuit 164;
 サセプタ161が腐食するに伴い、インダクタンスLが変化する。そのため、サセプタ161が腐食する伴い、Q値が変化することとなる。よって、Q値を状態値として用いることで、サセプタ161が腐食しているか否かを判定することが可能となる。 The inductance L changes as the susceptor 161 corrodes. Therefore, the Q value changes as the susceptor 161 corrodes. Therefore, by using the Q value as a state value, it is possible to determine whether or not the susceptor 161 is corroded.
 -腐食センサの値
 状態値は、環境の腐食速度を検出する腐食センサの値であってもよい。そのようなセンサとしては、ACM(Atmospheric Corrosion Monitor)センサが挙げられる。
- Corrosion sensor value The status value may be the value of a corrosion sensor that detects the corrosion rate of the environment. Such sensors include an ACM (Atmospheric Corrosion Monitor) sensor.
 ACMセンサは、二つの金属を互いに絶縁した状態で絶縁体に埋め込み、両者の端部を環境に露出したセンサである。環境が湿潤である場合には両端部間を水膜が連結して電流が流れる。この電流の大きさは腐食速度に対応する。腐食速度が速い期間が長いほど、スティック型基材150は腐食すると考えられる。そこで、動作制御部172は、スティック型基材150を保持した状態においてACMセンサにより高い電流値(即ち、早い腐食速度)が検出された期間が所定期間を超えた場合に、サセプタ161は腐食していると判定する。 An ACM sensor is a sensor in which two metals are embedded in an insulator while insulated from each other, and both ends are exposed to the environment. If the environment is moist, a film of water will connect between the ends and current will flow. The magnitude of this current corresponds to the corrosion rate. It is believed that the longer the period of high corrosion rate, the more the stick-shaped substrate 150 corrodes. Therefore, the operation control unit 172 controls the susceptor 161 to corrode when the period during which the ACM sensor detects a high current value (that is, a high corrosion rate) while the stick-shaped base material 150 is being held exceeds a predetermined period. determined to be
 -組み合わせ
 上記説明したように、複数の状態値を、サセプタ161の腐食判定に使用可能である。そのため、動作制御部172は、複数の状態値に基づいて、加熱プロファイルに基づく給電の実行可否を制御してもよい。例えば、動作制御部172は、複数の状態値の各々について基準値と比較し、サセプタ161が腐食しているか否かを判定する。そして、動作制御部172は、腐食していると判定した状態値の数が腐食していないと判定した状態値の数よりも多い場合に、腐食していると判定してもよい。他方、動作制御部172は、腐食していると判定した状態値の数が腐食していないと判定した状態値の数よりも少ない場合に、腐食していないと判定してもよい。
-Combination As explained above, multiple state values can be used to determine corrosion of the susceptor 161 . Therefore, the operation control unit 172 may control whether or not to perform power supply based on the heating profile, based on a plurality of state values. For example, the operation control unit 172 compares each of the plurality of state values with a reference value to determine whether the susceptor 161 is corroded. Then, the operation control unit 172 may determine that corrosion occurs when the number of state values determined to be corroded is greater than the number of state values determined to not be corroded. On the other hand, the operation control unit 172 may determine that there is no corrosion when the number of state values determined to be corroded is smaller than the number of state values determined to be not corroded.
 かかる構成によれば、複数の状態値を使用することで、サセプタ161が腐食しているか否かをより精度よく判定することが可能となる。 According to this configuration, it is possible to more accurately determine whether the susceptor 161 is corroded by using a plurality of state values.
 <4.2.第2の変形例>
 上記実施形態では、サセプタ161の状態がサセプタ161の腐食の有無である例を説明したが、本発明はかかる例に限定されない。
<4.2. Second modification>
In the above embodiment, the state of the susceptor 161 is the presence or absence of corrosion of the susceptor 161, but the present invention is not limited to this example.
 一例として、サセプタ161の状態は、サセプタ161が正規品であるか否か、即ちスティック型基材150が正規品であるか否かであってもよい。サセプタ161の状態が正常であるとは、保持部140に保持されたスティック型基材150が正規品であることを指す。サセプタ161の状態が異常であるとは、保持部140に保持されたスティック型基材150が正規品でない(例えば、模造品等)ことを指す。基準値は、スティック型基材150が正規品である場合に検出されると想定される状態値に対応する。スティック型基材150が正規品でない場合、好適なエアロゾルを生成できない、又は吸引装置100が故障する、等々の不都合が生じ得る。この点、かかる構成によれば、スティック型基材150が正規品でないことに伴う不都合を回避することが可能となる。 As an example, the state of the susceptor 161 may be whether or not the susceptor 161 is genuine, that is, whether or not the stick-shaped substrate 150 is genuine. That the susceptor 161 is in a normal state means that the stick-shaped substrate 150 held by the holding portion 140 is a genuine product. The state of the susceptor 161 being abnormal means that the stick-shaped base material 150 held by the holding part 140 is not a genuine product (for example, a counterfeit product). The reference value corresponds to a state value assumed to be detected when the stick-shaped substrate 150 is a genuine product. If the stick-shaped base material 150 is not a genuine product, problems such as failure to generate suitable aerosol or failure of the suction device 100 may occur. In this respect, according to such a configuration, it is possible to avoid the inconvenience associated with the non-genuine stick-type base material 150 .
 他の一例として、異なる種類のスティック型基材150に異なる種類のサセプタ161が含有される場合がある。その場合、サセプタ161の状態は、サセプタ161の種類、即ちスティック型基材150の種類であってもよい。サセプタ161の状態が正常であるとは、正規品として販売されている複数種類のスティック型基材150のうち1つのスティック型基材150が保持部140に保持されていることを指す。サセプタ161の状態が異常であるとは、正規品として販売されている複数種類のスティック型基材150のいずれにも合致しないスティック型基材150が保持部140に保持されていることを指す。 As another example, different types of stick-shaped substrates 150 may contain different types of susceptors 161 . In that case, the state of the susceptor 161 may be the type of the susceptor 161 , that is, the type of the stick-type substrate 150 . That the susceptor 161 is in a normal state means that one stick-shaped substrate 150 out of a plurality of types of stick-shaped substrates 150 sold as regular products is held by the holding portion 140 . The state of the susceptor 161 being abnormal means that the holding portion 140 holds the stick-shaped substrate 150 that does not match any of the plurality of types of stick-shaped substrates 150 sold as regular products.
 動作制御部172は、状態値に基づいてスティック型基材150の種類を判定してもよい。基準値は、複数種類のスティック型基材150の各々に対し設定される。 The operation control section 172 may determine the type of the stick-shaped base material 150 based on the state value. A reference value is set for each of the plurality of types of stick-shaped substrates 150 .
 動作制御部172は、状態値に基づいて、加熱プロファイルを選択してもよい。詳しくは、動作制御部172は、状態値に基づいて判定したスティック型基材150の種類に応じた加熱プロファイルを選択する。スティック型基材150の種類ごとに、適する加熱プロファイルが異なり得る。この点、かかる構成によれば、スティック型基材150の種類に応じた好適なパフ体験をユーザに提供することが可能となる。 The operation control unit 172 may select a heating profile based on the state value. Specifically, the operation control unit 172 selects a heating profile according to the type of the stick-shaped substrate 150 determined based on the state value. A suitable heating profile may differ for each type of stick-type substrate 150 . In this respect, according to this configuration, it is possible to provide the user with a suitable puff experience according to the type of stick-type base material 150 .
 動作制御部172は、状態値及び電源部111の電力残量に基づいて、加熱プロファイルに基づく給電の実行可否を判定してもよい。詳しくは、動作制御部172は、状態値に基づいて判定したスティック型基材150の種類に応じた加熱プロファイルを選択する。そして、動作制御部172は、選択した加熱プロファイルに基づく給電に要する電力量が電源部111の電力残量以上である場合に、加熱プロファイルに基づく給電の実行を許可する。他方、動作制御部172は、選択した加熱プロファイルに基づく給電に要する電力量が電源部111の電力残量未満である場合に、加熱プロファイルに基づく給電の実行を禁止する。加熱プロファイルごとに、必要な電力量は異なり得る。この点、かかる構成によれば、加熱セッションの最後まで加熱を継続することが可能な場合に限定して加熱を開始することができる。従って、加熱セッションの途中で電力残量低下により加熱が停止してしまうような不都合を防止することが可能となる。 The operation control unit 172 may determine whether power supply can be performed based on the heating profile based on the state value and the remaining power of the power supply unit 111 . Specifically, the operation control unit 172 selects a heating profile according to the type of the stick-shaped substrate 150 determined based on the state value. Then, when the amount of power required for power supply based on the selected heating profile is equal to or greater than the remaining power level of the power supply unit 111, the operation control unit 172 permits power supply based on the heating profile. On the other hand, the operation control unit 172 prohibits the execution of power supply based on the heating profile when the amount of power required for power supply based on the selected heating profile is less than the remaining power of the power supply unit 111 . Different heating profiles may require different amounts of power. In this respect, according to this configuration, heating can be started only when it is possible to continue heating until the end of the heating session. Therefore, it is possible to prevent inconvenience such as stopping heating due to a decrease in remaining power during a heating session.
 以下、表1を参照しながら、上記の点について具体的に説明する。 The above points will be specifically described below with reference to Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1に示すように、スティック型基材150の種類ごとに、基準値、適する加熱プロファイル、及び当該適する加熱プロファイルに基づく加熱に要する電力量が異なっている。なお、加熱に要する電力量は、電源部111の満充電量に対する比率で示されている。 As shown in Table 1 above, the reference value, the suitable heating profile, and the amount of electric power required for heating based on the suitable heating profile differ for each type of stick-shaped base material 150 . Note that the amount of power required for heating is shown as a ratio to the fully charged amount of the power supply unit 111 .
 例えば、動作制御部172は、RLC回路164を共振周波数fで動作させたときに検出された電流値が基準値IC1~ID1の範囲に含まれる場合に、保持部140は第1の種類のスティック型基材150を保持していると判定する。その場合、動作制御部172は、加熱プロファイル「A」を選択し、電源部111の電力残量が3%以上であれば加熱を許可し、3%未満であれば加熱を禁止する。 For example, when the current value detected when the RLC circuit 164 is operated at the resonance frequency f 0 is within the range of the reference values I C1 to I D1 , the operation control unit 172 causes the holding unit 140 to set the first It is determined that the type of stick-type substrate 150 is held. In that case, the operation control unit 172 selects the heating profile “A”, permits heating if the remaining power of the power supply unit 111 is 3% or more, and prohibits heating if it is less than 3%.
 <4.3.第3の変形例>
 上記実施形態では、吸引装置100が動作制御部172を有する例を説明したが、本発明はかかる例に限定されない。動作制御部172を有する制御装置と吸引装置100とが別に構成されてもよい。制御装置は、例えば吸引装置100と通信するスマートフォン等の端末装置であってもよいし、クラウド上のサーバであってもよい。
<4.3. Third modification>
Although the example in which the suction device 100 has the operation control unit 172 has been described in the above embodiment, the present invention is not limited to this example. A control device having the operation control unit 172 and the suction device 100 may be configured separately. The control device may be, for example, a terminal device such as a smartphone that communicates with the suction device 100, or may be a server on the cloud.
 制御装置は、吸引装置100との間で情報を送受信しながら、吸引装置100の動作を制御する。吸引装置100は、制御装置による制御に基づいて動作する。詳しくは、吸引装置100は、検出部180により検出された状態値を制御装置に送信する。制御装置は、受信した状態値に基づいて、加熱制御部171の動作を制御するための制御情報を吸引装置100に送信する。制御情報は、例えば、加熱プロファイルに基づく給電の実行可否を示す情報を含む。そして、加熱制御部171は、受信された制御情報に基づいて動作する。 The control device controls the operation of the suction device 100 while transmitting and receiving information to and from the suction device 100 . The suction device 100 operates under the control of the control device. Specifically, the suction device 100 transmits the state values detected by the detection unit 180 to the control device. The control device transmits control information for controlling the operation of the heating control section 171 to the suction device 100 based on the received state value. The control information includes, for example, information indicating whether or not power supply can be performed based on the heating profile. Then, the heating control section 171 operates based on the received control information.
 なお、吸引装置100と制御装置とスティック型基材150とを組み合わせることでエアロゾルを生成可能になる点で、吸引装置100と制御装置とスティック型基材150との組み合わせが1つのシステムとして捉えられてもよい。 Note that the combination of the suction device 100, the control device, and the stick-shaped substrate 150 can be regarded as one system in that aerosol can be generated by combining the suction device 100, the control device, and the stick-shaped substrate 150. may
 <5.補足>
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
<5. Supplement>
Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.
 例えば、上記実施形態では、サセプタ161が板状に構成される例を説明したが、本発明はかかる例に限定されない。例えば、サセプタ161は、棒状に構成されてもよいし、金属片として構成され基材部151に広く分布していてもよい。 For example, in the above embodiment, an example in which the susceptor 161 is configured in a plate shape has been described, but the present invention is not limited to such an example. For example, the susceptor 161 may be configured in a bar shape, or may be configured as a piece of metal and widely distributed on the base member 151 .
 例えば、上記実施形態では、スティック型基材150にサセプタ161が含有される例を説明したが、本発明はかかる例に限定されない。即ち、サセプタ161は、サセプタ161がエアロゾル源に熱的に近接する任意の位置に配置され得る。一例として、サセプタ161は、ブレード状に構成されて保持部140の底部143から内部空間141に突出するように配置されてもよい。そして、スティック型基材150が保持部140に挿入された際に、スティック型基材150の挿入方向の端部から基材部151に、ブレード状のサセプタ161が突き刺さるように挿入されてもよい。 For example, in the above embodiment, an example in which the stick-shaped base material 150 contains the susceptor 161 was described, but the present invention is not limited to such an example. That is, the susceptor 161 can be placed at any location where the susceptor 161 is in thermal proximity to the aerosol source. As an example, the susceptor 161 may be configured in a blade shape and arranged to protrude from the bottom portion 143 of the holding portion 140 into the internal space 141 . Then, when the stick-shaped base material 150 is inserted into the holding part 140, the blade-shaped susceptor 161 may be inserted so as to pierce the base part 151 from the end of the stick-shaped base material 150 in the insertion direction. .
 なお、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記録媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、本明細書において説明した各装置を制御するコンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。上記記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 A series of processes by each device described in this specification may be implemented using software, hardware, or a combination of software and hardware. Programs that make up the software are stored in advance in, for example, recording media (non-transitory media) provided inside or outside each device. Each program, for example, is read into a RAM when executed by a computer that controls each device described in this specification, and is executed by a processor such as a CPU. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。 Also, the processes described using the flowcharts and sequence diagrams in this specification do not necessarily have to be executed in the illustrated order. Some processing steps may be performed in parallel. Also, additional processing steps may be employed, and some processing steps may be omitted.
 なお、以下のような構成も本発明の技術的範囲に属する。
(1)
 吸引装置を制御する制御装置であって、
 前記吸引装置は、
  電力を蓄積及び供給する電源部と、
  前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、
  エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、
  前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、
  前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、
  を有し、
 前記制御装置は、
  前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御する動作制御部、
 を備える、制御装置。
(2)
 前記動作制御部は、前記状態値と基準値との比較結果に基づいて、前記加熱プロファイルに基づく給電の実行可否を制御する、
 前記(1)に記載の制御装置。
(3)
 前記状態値は、前記電磁誘導源を含むRLC回路のインピーダンスである、
 前記(1)又は(2)に記載の制御装置。
(4)
 前記状態値は、前記電磁誘導源を含むRLC回路を所定の周波数で動作させたときの電流値である、
 前記(1)又は(2)に記載の制御装置。
(5)
 前記状態値は、前記電磁誘導源を含むRLC回路の共振のピークの鋭さを示すQ値である、
 前記(1)又は(2)に記載の制御装置。
(6)
 前記動作制御部は、複数の前記状態値に基づいて、前記加熱プロファイルに基づく給電の実行可否を制御する、
 前記(1)~(5)のいずれか一項に記載の制御装置。
(7)
 前記状態値を検出するために前記電磁誘導源に供給される電力量は、前記加熱プロファイルに基づく給電の際に前記電磁誘導源に供給される電力量よりも小さい、
 前記(1)~(6)のいずれか一項に記載の制御装置。
(8)
 前記状態値は、所定のユーザ操作が行われたことをトリガとして検出される、
 前記(1)~(7)のいずれか一項に記載の制御装置。
(9)
 前記状態値は、前記収容部に前記基材が収容されたことをトリガとして検出される、
 前記(1)~(7)のいずれか一項に記載の制御装置。
(10)
 前記収容部は、前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された前記基材を収容し、
 前記収容部に前記基材が収容されたことは、前記内部空間のうち前記開口側の一部分である部分空間の情報に基づいて検出される、
 前記(9)に記載の制御装置。
(11)
 前記動作制御部は、前記状態値に基づいて、前記加熱プロファイルを選択する、
 前記(1)~(10)のいずれか一項に記載の制御装置。
(12)
 前記動作制御部は、前記状態値及び前記電源部の電力残量に基づいて、前記加熱プロファイルに基づく給電の実行可否を制御する、
 前記(1)~(11)のいずれか一項に記載の制御装置。
(13)
 前記制御装置は、前記吸引装置である、
 前記(1)~(12)のいずれか一項に記載の制御装置。
(14)
 前記制御装置と前記吸引装置とは別に構成され、
 前記吸引装置は、前記状態値を前記制御装置に送信し、
 前記制御装置は、受信した前記状態値に基づいて、前記加熱制御部の動作を制御するための制御情報を前記吸引装置に送信する、
 前記(1)~(12)のいずれか一項に記載の制御装置。
(15)
 前記加熱制御部は、前記加熱プロファイルに基づく給電の実行が前記動作制御部により許可された状態で、所定のユーザ操作が検出されたことをトリガとして、前記加熱プロファイルに基づく給電を実行する、
 前記(1)~(14)のいずれか一項に記載の制御装置。
(16)
 前記加熱制御部は、前記加熱プロファイルに基づく給電の実行が前記動作制御部により許可されたことをトリガとして、前記加熱プロファイルに基づく給電を実行する、
 前記(1)~(14)のいずれか一項に記載の制御装置。
(17)
 制御装置により制御される吸引装置により使用される基材であって、
 前記吸引装置は、
  電力を蓄積及び供給する電源部と、
  前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、
  エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、
  前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、
  前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、
 を有し、
 前記制御装置は、
  前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御する動作制御部、
 を有し、
 前記基材は、
 前記エアロゾル源と、
 前記エアロゾル源に熱的に近接する前記サセプタと、
 を備える、基材。
(18)
 電力を蓄積及び供給する電源部、前記電源部から供給された直流電力を交流電力に変換するインバータ回路、エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部、前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源、及び前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部、を有する吸引装置と、
 前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御する動作制御部を有する制御装置と、
 前記収容部に収容され、前記エアロゾル源、及び前記エアロゾル源に熱的に近接する前記サセプタ、を有する基材と、
 を備えるシステム。
(19)
 吸引装置を制御するための制御方法であって、
 前記吸引装置は、
  電力を蓄積及び供給する電源部と、
  前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、
  エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、
  前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、
  前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、
  を有し、
 前記制御方法は、
  前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御すること、
 を含む、制御方法。
(20)
 吸引装置を制御するコンピュータに実行させるためのプログラムであって、
 前記吸引装置は、
  電力を蓄積及び供給する電源部と、
  前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、
  エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、
  前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、
  前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、
  を有し、
 前記プログラムは、
  前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御すること、
 を実行させる、プログラム。
The following configuration also belongs to the technical scope of the present invention.
(1)
A control device for controlling a suction device,
The suction device is
a power supply that stores and supplies power;
an inverter circuit that converts the DC power supplied from the power supply unit into AC power;
a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space;
an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit;
a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor;
has
The control device is
Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit an operation control unit that controls the operation of
A controller.
(2)
The operation control unit controls whether power supply can be executed based on the heating profile based on a comparison result between the state value and the reference value.
The control device according to (1) above.
(3)
wherein the state value is the impedance of an RLC circuit containing the electromagnetic induction source;
The control device according to (1) or (2) above.
(4)
The state value is a current value when the RLC circuit including the electromagnetic induction source is operated at a predetermined frequency,
The control device according to (1) or (2) above.
(5)
The state value is a Q value that indicates the sharpness of the resonance peak of an RLC circuit that includes the electromagnetic induction source.
The control device according to (1) or (2) above.
(6)
The operation control unit controls whether or not to execute power supply based on the heating profile, based on the plurality of state values.
The control device according to any one of (1) to (5) above.
(7)
the amount of power supplied to the electromagnetic induction source for detecting the state value is less than the amount of power supplied to the electromagnetic induction source during power supply based on the heating profile;
The control device according to any one of (1) to (6) above.
(8)
The state value is detected as a trigger that a predetermined user operation has been performed.
The control device according to any one of (1) to (7) above.
(9)
The state value is detected by triggering that the base material has been stored in the storage unit.
The control device according to any one of (1) to (7) above.
(10)
The accommodating part has an opening that communicates the internal space with the outside, and accommodates the base material inserted into the internal space through the opening,
The fact that the base material is accommodated in the accommodating portion is detected based on information of a partial space that is a part of the internal space on the opening side,
The control device according to (9) above.
(11)
The operation control unit selects the heating profile based on the state value.
The control device according to any one of (1) to (10) above.
(12)
The operation control unit controls whether power supply can be executed based on the heating profile based on the state value and the remaining power of the power supply unit.
The control device according to any one of (1) to (11) above.
(13)
wherein the control device is the suction device;
The control device according to any one of (1) to (12) above.
(14)
configured separately from the control device and the suction device,
the suction device sending the state value to the controller;
The control device transmits control information for controlling the operation of the heating control unit to the suction device based on the received state value.
The control device according to any one of (1) to (12) above.
(15)
The heating control unit executes power supply based on the heating profile, triggered by detection of a predetermined user operation in a state where power supply based on the heating profile is permitted by the operation control unit.
The control device according to any one of (1) to (14) above.
(16)
The heating control unit executes power supply based on the heating profile, triggered by permission by the operation control unit to perform power supply based on the heating profile.
The control device according to any one of (1) to (14) above.
(17)
A substrate for use with a suction device controlled by a controller, comprising:
The suction device is
a power supply that stores and supplies power;
an inverter circuit that converts the DC power supplied from the power supply unit into AC power;
a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space;
an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit;
a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor;
has
The control device is
Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit an operation control unit that controls the operation of
has
The base material is
the aerosol source;
the susceptor in thermal proximity to the aerosol source;
A substrate.
(18)
A power source that stores and supplies electric power, an inverter circuit that converts DC power supplied from the power source into AC power, a substrate containing an aerosol source, and a susceptor thermally adjacent to the aerosol source are housed in the internal space. A storage unit, an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit, and a time-series transition of a target temperature, which is a target value of the temperature of the susceptor. a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on the obtained heating profile;
Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit A control device having an operation control unit that controls the operation of
a substrate housed in the housing portion and having the aerosol source and the susceptor in thermal proximity to the aerosol source;
A system with
(19)
A control method for controlling a suction device, comprising:
The suction device is
a power supply that stores and supplies power;
an inverter circuit that converts the DC power supplied from the power supply unit into AC power;
a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space;
an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit;
a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor;
has
The control method is
Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit to control the behavior of
control methods, including;
(20)
A program to be executed by a computer that controls a suction device,
The suction device is
a power supply that stores and supplies power;
an inverter circuit that converts the DC power supplied from the power supply unit into AC power;
a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space;
an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit;
a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor;
has
Said program
Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit to control the behavior of
The program that causes the to run.
 100  吸引装置
 111  電源部
 112  センサ部
 113  通知部
 114  記憶部
 115  通信部
 116  制御部
 140  保持部(収容部)
 141  内部空間
 142  開口
 143  底部
 150  スティック型基材
 151  基材部
 152  吸口部
 161  サセプタ
 162  電磁誘導源
 163  インバータ回路
 164  RLC回路
 169  駆動回路
 171  加熱制御部
 172  動作制御部
 180  検出部
100 suction device 111 power supply unit 112 sensor unit 113 notification unit 114 storage unit 115 communication unit 116 control unit 140 holding unit (accommodating unit)
141 Internal space 142 Opening 143 Bottom 150 Stick-type base material 151 Base material part 152 Mouthpiece part 161 Susceptor 162 Electromagnetic induction source 163 Inverter circuit 164 RLC circuit 169 Drive circuit 171 Heating control part 172 Operation control part 180 Detection part

Claims (20)

  1.  吸引装置を制御する制御装置であって、
     前記吸引装置は、
      電力を蓄積及び供給する電源部と、
      前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、
      エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、
      前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、
      前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、
      を有し、
     前記制御装置は、
      前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御する動作制御部、
     を備える、制御装置。
    A control device for controlling a suction device,
    The suction device is
    a power supply that stores and supplies power;
    an inverter circuit that converts the DC power supplied from the power supply unit into AC power;
    a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space;
    an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit;
    a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor;
    has
    The control device is
    Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit an operation control unit that controls the operation of
    A controller.
  2.  前記動作制御部は、前記状態値と基準値との比較結果に基づいて、前記加熱プロファイルに基づく給電の実行可否を制御する、
     請求項1に記載の制御装置。
    The operation control unit controls whether power supply can be executed based on the heating profile based on a comparison result between the state value and the reference value.
    A control device according to claim 1 .
  3.  前記状態値は、前記電磁誘導源を含むRLC回路のインピーダンスである、
     請求項1又は2に記載の制御装置。
    wherein the state value is the impedance of an RLC circuit containing the electromagnetic induction source;
    3. A control device according to claim 1 or 2.
  4.  前記状態値は、前記電磁誘導源を含むRLC回路を所定の周波数で動作させたときの電流値である、
     請求項1又は2に記載の制御装置。
    The state value is a current value when the RLC circuit including the electromagnetic induction source is operated at a predetermined frequency,
    3. A control device according to claim 1 or 2.
  5.  前記状態値は、前記電磁誘導源を含むRLC回路の共振のピークの鋭さを示すQ値である、
     請求項1又は2に記載の制御装置。
    The state value is a Q value that indicates the sharpness of the resonance peak of an RLC circuit that includes the electromagnetic induction source.
    3. A control device according to claim 1 or 2.
  6.  前記動作制御部は、複数の前記状態値に基づいて、前記加熱プロファイルに基づく給電の実行可否を制御する、
     請求項1~5のいずれか一項に記載の制御装置。
    The operation control unit controls whether or not to execute power supply based on the heating profile, based on the plurality of state values.
    A control device according to any one of claims 1 to 5.
  7.  前記状態値を検出するために前記電磁誘導源に供給される電力量は、前記加熱プロファイルに基づく給電の際に前記電磁誘導源に供給される電力量よりも小さい、
     請求項1~6のいずれか一項に記載の制御装置。
    the amount of power supplied to the electromagnetic induction source for detecting the state value is less than the amount of power supplied to the electromagnetic induction source during power supply based on the heating profile;
    A control device according to any one of claims 1 to 6.
  8.  前記状態値は、所定のユーザ操作が行われたことをトリガとして検出される、
     請求項1~7のいずれか一項に記載の制御装置。
    The state value is detected as a trigger that a predetermined user operation has been performed.
    A control device according to any one of claims 1 to 7.
  9.  前記状態値は、前記収容部に前記基材が収容されたことをトリガとして検出される、
     請求項1~7のいずれか一項に記載の制御装置。
    The state value is detected by triggering that the base material has been stored in the storage unit.
    A control device according to any one of claims 1 to 7.
  10.  前記収容部は、前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された前記基材を収容し、
     前記収容部に前記基材が収容されたことは、前記内部空間のうち前記開口側の一部分である部分空間の情報に基づいて検出される、
     請求項9に記載の制御装置。
    The accommodating part has an opening that communicates the internal space with the outside, and accommodates the base material inserted into the internal space through the opening,
    The fact that the base material is accommodated in the accommodating portion is detected based on information of a partial space that is a part of the internal space on the opening side,
    A control device according to claim 9 .
  11.  前記動作制御部は、前記状態値に基づいて、前記加熱プロファイルを選択する、
     請求項1~10のいずれか一項に記載の制御装置。
    The operation control unit selects the heating profile based on the state value.
    A control device according to any one of claims 1 to 10.
  12.  前記動作制御部は、前記状態値及び前記電源部の電力残量に基づいて、前記加熱プロファイルに基づく給電の実行可否を制御する、
     請求項1~11のいずれか一項に記載の制御装置。
    The operation control unit controls whether power supply can be executed based on the heating profile based on the state value and the remaining power of the power supply unit.
    A control device according to any one of claims 1 to 11.
  13.  前記制御装置は、前記吸引装置である、
     請求項1~12のいずれか一項に記載の制御装置。
    wherein the control device is the suction device;
    Control device according to any one of claims 1 to 12.
  14.  前記制御装置と前記吸引装置とは別に構成され、
     前記吸引装置は、前記状態値を前記制御装置に送信し、
     前記制御装置は、受信した前記状態値に基づいて、前記加熱制御部の動作を制御するための制御情報を前記吸引装置に送信する、
     請求項1~12のいずれか一項に記載の制御装置。
    configured separately from the control device and the suction device,
    the suction device sending the state value to the controller;
    The control device transmits control information for controlling the operation of the heating control unit to the suction device based on the received state value.
    Control device according to any one of claims 1 to 12.
  15.  前記加熱制御部は、前記加熱プロファイルに基づく給電の実行が前記動作制御部により許可された状態で、所定のユーザ操作が行われたことをトリガとして、前記加熱プロファイルに基づく給電を実行する、
     請求項1~14のいずれか一項に記載の制御装置。
    The heating control unit executes power supply based on the heating profile, triggered by a predetermined user operation performed in a state where power supply based on the heating profile is permitted by the operation control unit.
    A control device according to any one of claims 1 to 14.
  16.  前記加熱制御部は、前記加熱プロファイルに基づく給電の実行が前記動作制御部により許可されたことをトリガとして、前記加熱プロファイルに基づく給電を実行する、
     請求項1~14のいずれか一項に記載の制御装置。
    The heating control unit executes power supply based on the heating profile, triggered by permission by the operation control unit to perform power supply based on the heating profile.
    A control device according to any one of claims 1 to 14.
  17.  制御装置により制御される吸引装置により使用される基材であって、
     前記吸引装置は、
      電力を蓄積及び供給する電源部と、
      前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、
      エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、
      前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、
      前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、
     を有し、
     前記制御装置は、
      前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御する動作制御部、
     を有し、
     前記基材は、
     前記エアロゾル源と、
     前記エアロゾル源に熱的に近接する前記サセプタと、
     を備える、基材。
    A substrate for use with a suction device controlled by a controller, comprising:
    The suction device is
    a power supply that stores and supplies power;
    an inverter circuit that converts the DC power supplied from the power supply unit into AC power;
    a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space;
    an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit;
    a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor;
    has
    The control device is
    Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit an operation control unit that controls the operation of
    has
    The base material is
    the aerosol source;
    the susceptor in thermal proximity to the aerosol source;
    A substrate.
  18.  電力を蓄積及び供給する電源部、前記電源部から供給された直流電力を交流電力に変換するインバータ回路、エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部、前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源、及び前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部、を有する吸引装置と、
     前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御する動作制御部を有する制御装置と、
     前記収容部に収容され、前記エアロゾル源、及び前記エアロゾル源に熱的に近接する前記サセプタ、を有する基材と、
     を備えるシステム。
    A power source that stores and supplies electric power, an inverter circuit that converts DC power supplied from the power source into AC power, a substrate containing an aerosol source, and a susceptor thermally adjacent to the aerosol source are housed in the internal space. A storage unit, an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit, and a time-series transition of a target temperature, which is a target value of the temperature of the susceptor. a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on the obtained heating profile;
    Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit A control device having an operation control unit that controls the operation of
    a substrate housed in the housing portion and having the aerosol source and the susceptor in thermal proximity to the aerosol source;
    A system with
  19.  吸引装置を制御するための制御方法であって、
     前記吸引装置は、
      電力を蓄積及び供給する電源部と、
      前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、
      エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、
      前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、
      前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、
      を有し、
     前記制御方法は、
      前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御すること、
     を含む、制御方法。
    A control method for controlling a suction device, comprising:
    The suction device is
    a power supply that stores and supplies power;
    an inverter circuit that converts the DC power supplied from the power supply unit into AC power;
    a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space;
    an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit;
    a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor;
    has
    The control method is
    Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit to control the behavior of
    control methods, including;
  20.  吸引装置を制御するコンピュータに実行させるためのプログラムであって、
     前記吸引装置は、
      電力を蓄積及び供給する電源部と、
      前記電源部から供給された直流電力を交流電力に変換するインバータ回路と、
      エアロゾル源を含有する基材及び前記エアロゾル源に熱的に近接するサセプタを内部空間に収容可能な収容部と、
      前記インバータ回路から供給された前記交流電力を使用して前記内部空間に変動磁場を発生させる電磁誘導源と、
      前記サセプタの温度の目標値である目標温度の時系列推移を規定した加熱プロファイルに基づいて前記インバータ回路から前記電磁誘導源への給電を制御する加熱制御部と、
      を有し、
     前記プログラムは、
      前記加熱プロファイルに基づく給電が実行されるより前に前記インバータ回路から前記電磁誘導源に給電した際に検出された、前記サセプタの状態に対応する値である状態値に基づいて、前記加熱制御部の動作を制御すること、
     を実行させる、プログラム。
    A program to be executed by a computer that controls a suction device,
    The suction device is
    a power supply that stores and supplies power;
    an inverter circuit that converts the DC power supplied from the power supply unit into AC power;
    a housing portion capable of housing a substrate containing an aerosol source and a susceptor thermally adjacent to the aerosol source in an internal space;
    an electromagnetic induction source that generates a varying magnetic field in the internal space using the AC power supplied from the inverter circuit;
    a heating control unit that controls power supply from the inverter circuit to the electromagnetic induction source based on a heating profile that defines a time-series transition of a target temperature, which is a target value of the temperature of the susceptor;
    has
    Said program
    Based on a state value corresponding to the state of the susceptor detected when power is supplied from the inverter circuit to the electromagnetic induction source before the power supply based on the heating profile is executed, the heating control unit to control the behavior of
    The program that causes the to run.
PCT/JP2021/015906 2021-04-19 2021-04-19 Control device, base material, system, control method, and program WO2022224318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015906 WO2022224318A1 (en) 2021-04-19 2021-04-19 Control device, base material, system, control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015906 WO2022224318A1 (en) 2021-04-19 2021-04-19 Control device, base material, system, control method, and program

Publications (1)

Publication Number Publication Date
WO2022224318A1 true WO2022224318A1 (en) 2022-10-27

Family

ID=83723588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015906 WO2022224318A1 (en) 2021-04-19 2021-04-19 Control device, base material, system, control method, and program

Country Status (1)

Country Link
WO (1) WO2022224318A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511175A (en) * 1994-04-08 1996-11-26 フイリップ モーリス プロダクツ インコーポレイテッド Induction heating system for smoking articles
WO2015166952A1 (en) * 2014-05-02 2015-11-05 日本たばこ産業株式会社 Non-combustion-type flavor inhaler and computer-readable medium
JP2017516269A (en) * 2014-05-21 2017-06-15 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Induction heating device, aerosol delivery system with induction heating device, and method of operating the same
JP2019106989A (en) * 2017-12-19 2019-07-04 ハウニ・マシイネンバウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Vaporizer device for inhaler, in particular for electronic cigarette product, and fabrication method
JP2019531049A (en) * 2016-07-26 2019-10-31 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish Americantobacco (Investments) Limited Device for heating smoking material
JP2020511990A (en) * 2017-03-31 2020-04-23 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Susceptor assembly for induction heating of an aerosol-forming substrate
JP2020516014A (en) * 2017-03-31 2020-05-28 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Determination of temperature
JP2020521438A (en) * 2017-05-26 2020-07-27 ケーティー・アンド・ジー・コーポレーション Apparatus and method for producing aerosol having cigarette insertion sensing function
JP2020536575A (en) * 2018-08-01 2020-12-17 ケーティー・アンド・ジー・コーポレーション A method of controlling the temperature of a heater and an aerosol generator that carries out the method.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511175A (en) * 1994-04-08 1996-11-26 フイリップ モーリス プロダクツ インコーポレイテッド Induction heating system for smoking articles
WO2015166952A1 (en) * 2014-05-02 2015-11-05 日本たばこ産業株式会社 Non-combustion-type flavor inhaler and computer-readable medium
JP2017516269A (en) * 2014-05-21 2017-06-15 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Induction heating device, aerosol delivery system with induction heating device, and method of operating the same
JP2019531049A (en) * 2016-07-26 2019-10-31 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish Americantobacco (Investments) Limited Device for heating smoking material
JP2020511990A (en) * 2017-03-31 2020-04-23 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Susceptor assembly for induction heating of an aerosol-forming substrate
JP2020516014A (en) * 2017-03-31 2020-05-28 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Determination of temperature
JP2020521438A (en) * 2017-05-26 2020-07-27 ケーティー・アンド・ジー・コーポレーション Apparatus and method for producing aerosol having cigarette insertion sensing function
JP2019106989A (en) * 2017-12-19 2019-07-04 ハウニ・マシイネンバウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Vaporizer device for inhaler, in particular for electronic cigarette product, and fabrication method
JP2020536575A (en) * 2018-08-01 2020-12-17 ケーティー・アンド・ジー・コーポレーション A method of controlling the temperature of a heater and an aerosol generator that carries out the method.

Similar Documents

Publication Publication Date Title
JP7381695B2 (en) Induction heating device, aerosol generation system comprising induction heating device, and method of operating the same
CN109890233B (en) Induction heating device, aerosol-generating system comprising the same and method of operating the same
JP7323600B2 (en) Aerosol generating system and device
JP2021510497A (en) Heating assembly for steam generator
EP3731681B1 (en) Induction heating assembly for a vapour generating device
WO2022224318A1 (en) Control device, base material, system, control method, and program
WO2022195769A1 (en) Suction device, program, and system
WO2022195770A1 (en) Inhalation device, program, and system
WO2022224317A1 (en) Inhalation device, base material, control method, and program
WO2023026408A1 (en) Inhalation device, substrate, and control method
WO2022176129A1 (en) Inhalation device, program, and system
WO2022176126A1 (en) Inhalation device, program, and system
WO2022176112A1 (en) Suction device, program, and system
WO2022195771A1 (en) Suction device, program, and system
WO2023042361A1 (en) Aerosol generation system, control method, and program
WO2023286116A1 (en) Inhalation device, substrate, and control method
WO2023157276A1 (en) Induction heating system, control method, and program
WO2023042362A1 (en) Aerosol generation system, control method, and program
KR20200082143A (en) Inductively heatable vaporization device
US20240008551A1 (en) Aerosol-generating device with means for identifying a type of an aerosol-generating article being used with the device
WO2023157275A1 (en) Induction heating system, control method, and program
WO2023007525A1 (en) Aerosol generation system
WO2022195868A1 (en) Inhalation device and system
WO2023227466A1 (en) Aerosol generating system
WO2023162196A1 (en) Inhaling device and aerosol generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937816

Country of ref document: EP

Kind code of ref document: A1