WO2022220064A1 - Test device, test method, test program, and test system - Google Patents

Test device, test method, test program, and test system Download PDF

Info

Publication number
WO2022220064A1
WO2022220064A1 PCT/JP2022/014347 JP2022014347W WO2022220064A1 WO 2022220064 A1 WO2022220064 A1 WO 2022220064A1 JP 2022014347 W JP2022014347 W JP 2022014347W WO 2022220064 A1 WO2022220064 A1 WO 2022220064A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
sheet
ultraviolet
amount
irradiation
Prior art date
Application number
PCT/JP2022/014347
Other languages
French (fr)
Japanese (ja)
Inventor
誠 大元
健司 笹原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023514556A priority Critical patent/JPWO2022220064A1/ja
Publication of WO2022220064A1 publication Critical patent/WO2022220064A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • A61L2/28Devices for testing the effectiveness or completeness of sterilisation, e.g. indicators which change colour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/48Photometry, e.g. photographic exposure meter using chemical effects
    • G01J1/50Photometry, e.g. photographic exposure meter using chemical effects using change in colour of an indicator, e.g. actinometer

Definitions

  • the present invention relates to an inspection device, an inspection method, an inspection program and an inspection system, and more particularly to an inspection device, an inspection method, an inspection program and an inspection system for inspecting the disinfection effect of ultraviolet rays.
  • Ultraviolet rays are known to have a high disinfection effect (including concepts such as viricidal, virus inactivating, sterilizing, sterilizing, sterilizing, and disinfecting).
  • Patent Document 1 describes a method for visually confirming the disinfection effect of ultraviolet rays using a sheet whose color changes according to the amount of ultraviolet irradiation.
  • Patent Documents 2 and 3 describe an ultraviolet amount measuring device that includes a sheet whose color changes according to the amount of ultraviolet irradiation and a reference section for determining the color of the sheet.
  • US Pat. No. 5,300,000 discloses applying a patch to the skin with multiple sessions each displaying a different color in response to exposure to ultraviolet radiation, taking an image of the patch, and analyzing the taken image. , describes a system for measuring ultraviolet radiation in individuals.
  • the present invention has been made in view of such circumstances, and aims to provide an inspection device, an inspection method, an inspection program, and an inspection system that can quantitatively inspect the disinfection effect of ultraviolet rays.
  • a processor is provided, and the processor is a sheet whose color changes according to the amount of ultraviolet irradiation. Acquisition of the photographed image along with a chart showing the relationship between color and color, analysis of the acquired image, processing of determining the amount of ultraviolet radiation at the location where the sheet is installed, and installation of the sheet based on the determined amount of ultraviolet radiation.
  • An inspection device that performs a process of determining a disinfection effect at a location.
  • the processor further performs a process of acquiring information on the relative positional relationship between the ultraviolet light source and the sheet, and determines the disinfection effect based on the acquired information on the positional relationship and the obtained amount of ultraviolet irradiation. , (1) inspection device.
  • the processor further performs a process of acquiring a three-dimensional model of the space and a process of acquiring information on the position of the ultraviolet light source and the position of the sheet on the three-dimensional model,
  • the inspection apparatus according to (2) wherein the relative positional relationship between the ultraviolet light source and the sheet is calculated based on information on the position of the light source and the position of the sheet, and information on the positional relationship is obtained.
  • the processor further performs processing for displaying the three-dimensional model on the display, receives designation of the position of the ultraviolet light source and the position of the sheet on the three-dimensional model displayed on the display, and emits ultraviolet rays on the three-dimensional model.
  • the inspection device according to (3) which acquires information on the position of the light source and the position of the sheet.
  • the processor performs a process of estimating the irradiation distribution of ultraviolet rays in the space based on the information of the ultraviolet irradiation amount at the plurality of points in the space, which is obtained by installing sheets at a plurality of points in the space.
  • the inspection apparatus according to (3) or (4) which further performs a process of generating a map showing the irradiation distribution obtained and a process of superimposing the generated map on the three-dimensional model and displaying it on a display.
  • Information on the positional relationship includes information on the distance between the ultraviolet light source and the sheet, and information on the angle formed by the installation direction of the sheet with respect to the ultraviolet light source and the irradiation direction of the ultraviolet rays, from (2) to (5). ) inspection equipment.
  • a sheet whose color changes according to the amount of ultraviolet irradiation, a chart showing the relationship between the amount of ultraviolet irradiation and color, an imaging device, a display, and the inspection device according to any one of (1) to (7). and an inspection system comprising:
  • a method of inspection comprising:
  • a processor is provided, and the processor is a sheet whose color changes according to the amount of ultraviolet irradiation, and is a plurality of sheets exposed for a specified time at a plurality of locations in a space irradiated with ultraviolet rays from a fixed ultraviolet light source. are acquired together with a chart showing the relationship between UV dose and color, each acquired image is analyzed to determine the UV dose at each seat installation location, and space A process of acquiring a three-dimensional model, a process of acquiring information on the position of each sheet on the three-dimensional model, information on the position of each sheet on the three-dimensional model, and ultraviolet irradiation amount at each sheet position.
  • a process of estimating the UV irradiation distribution in the space Based on the information, a process of generating a map showing the estimated irradiation distribution, and a process of superimposing the generated map on the three-dimensional model and displaying it on the display. Do, inspection equipment.
  • the disinfection effect of ultraviolet rays can be quantitatively inspected.
  • this facilitates the adjustment of the arrangement of the ultraviolet light sources, making it possible to easily achieve the desired disinfection effect.
  • Block diagram of functions possessed by inspection equipment A diagram showing an example of a map Flowchart showing inspection procedures Flowchart showing the procedure of map generation processing A diagram showing an example of a display of a map showing an irradiation distribution of ultraviolet rays and a determination result The figure which shows another example of an inspection card
  • FIG. 1 is a diagram showing a schematic configuration of an inspection system according to this embodiment.
  • the inspection system 1 of the present embodiment is configured as a system for inspecting the disinfection effect in the room where the ultraviolet irradiation device 10 is installed.
  • FIG. 1 shows an example in which an ultraviolet irradiation device 10 is installed on the ceiling surface 2A and the disinfection effect is inspected in a room 2 in which ultraviolet rays are irradiated vertically downward.
  • an inspection system 1 according to the present embodiment includes an inspection card 20 and an inspection device 100. As shown in FIG.
  • the room 2 in which the ultraviolet irradiation device 10 is installed is an example of a space irradiated with ultraviolet rays from a fixed ultraviolet light source.
  • the ultraviolet irradiation device 10 has an ultraviolet light source (not shown), and irradiates the room with ultraviolet light emitted from the ultraviolet light source with a predetermined light distribution characteristic.
  • the type of ultraviolet light source to be used is not particularly limited. As an example, excimer lamps are used.
  • a light emitting diode (LED), a mercury lamp, a metal halide lamp, a xenon lamp, a semiconductor laser (LD: Laser Diode), or the like can be used as an ultraviolet light source.
  • the ultraviolet rays emitted from the ultraviolet light source are preferably ultraviolet rays with a peak wavelength of 280 nm to 200 nm, that is, ultraviolet C waves (UV-C).
  • UV-C ultraviolet C waves
  • Ultraviolet rays having a peak wavelength in the vicinity of 222 nm are more preferable.
  • Ultraviolet rays having a peak wavelength in the vicinity of 222 nm are said to be safe, having a high disinfecting effect, and having an extremely small effect on the human body. Therefore, it is preferable to use a light source that emits ultraviolet rays having a peak wavelength in the vicinity of 222 nm as the ultraviolet light source.
  • the ultraviolet light source may be used in combination with an optical filter as appropriate. For example, an optical filter that cuts off a wavelength range dangerous to the human body may be combined to irradiate only ultraviolet rays in a specific wavelength range.
  • the ultraviolet irradiation device 10 is installed on the ceiling surface 2A of the room 2, and ultraviolet rays are irradiated vertically downward.
  • the irradiation direction is vertically downward (the direction indicated by arrow V1 in FIG. 1).
  • [Examination card] 2 and 3 are a front perspective view and a rear perspective view showing a schematic configuration of the inspection card.
  • the inspection card 20 has an exterior case 22 and a measurement sheet 24 housed in the exterior case 22, and has a rectangular thin plate shape (so-called card shape) as a whole.
  • the exterior case 22 is composed of two upper and lower plates 22A and 22B.
  • the exterior case 22 accommodates and holds the measurement sheet 24 at a predetermined position inside by sandwiching the measurement sheet 24 between the two plates 22A and 22B.
  • the two plates 22A, 22B are made of a material that is not easily deformed. As an example, it is made of plastic.
  • the exterior case 22 is an example of a holding member.
  • a circular window 26 is provided on the front of the exterior case 22, as shown in FIG. A part of the measurement sheet 24 housed in the exterior case 22 is exposed through the window 26 . The measurement sheet 24 is exposed through this window portion 26 .
  • the rear surface of the exterior case 22 is provided with an adhesive sheet 28 with a release paper 28A, as shown in FIG.
  • the release paper 28A protects the adhesive surface of the adhesive sheet 28 and is peeled off from the adhesive sheet 28 as necessary. As a result, the inspection card 20 can be used by sticking it to the inspection target area as needed.
  • the measurement sheet 24 is a sheet that responds to ultraviolet rays and changes color according to the amount of irradiation.
  • the measurement sheet 24 may change color irreversibly or reversibly.
  • a change in color includes a change in density. Colors to be changed are not particularly limited, but colors with high visual sensitivity such as red, magenta, blue, and cyan are preferred. Since this type of sheet (also referred to as an ultraviolet sensitive sheet) is well known, detailed description thereof will be omitted.
  • a UV scale (trade name) manufactured by FUJIFILM Corporation can be used.
  • a UV scale is a sheet that responds to ultraviolet rays and whose color depth changes irreversibly according to the amount of irradiation.
  • FIG. 4 is a diagram showing how the color of the measurement sheet changes.
  • FIG. 1(A) shows the state immediately after irradiation.
  • B) of the same figure shows the state after a predetermined time has elapsed from the state shown in (A) of the same figure.
  • C) of the same figure shows the state after a predetermined time has elapsed from the state shown in (B) of the same figure.
  • D) of the same figure shows the state after a predetermined time has elapsed from the state shown in (C) of the same figure.
  • E of the same figure shows the state after a predetermined time has elapsed from the state shown in (D) of the same figure.
  • the measurement sheet 24 when the measurement sheet 24 is irradiated with a certain amount of ultraviolet light from a fixed position, the color density of the measurement sheet 24 changes over time.
  • a coloring chart 30 is integrally provided on the front of the exterior case 22, as shown in FIG.
  • the coloring chart 30 is a color table showing the relationship between the amount of UV irradiation and the color of the measurement sheet 24 .
  • the coloring chart 30 is configured by arranging a plurality of color samples 28a, 28b, . . . in a line at regular intervals. In the example shown in FIG. 2, five color samples 28a, 28b, 28c, 28d and 28e are displayed. The number of color samples is not particularly limited. Each color sample 28a, 28b, . . . is arranged so that the density changes in one direction. In the example shown in FIG. 2, the darker the color, the higher the amount of UV irradiation.
  • the color sample 28e indicates that the UV irradiation amount is the largest.
  • the color sample 28a indicates the color when the amount of UV irradiation is zero. That is, it shows the color in the case of non-irradiation.
  • the inspection device 100 determines the disinfection effect of the position where the inspection card 20 is installed based on the photographed image of the inspection card 20 .
  • an inspection apparatus 100 is configured by a tablet computer with a camera.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the inspection device (tablet computer).
  • the inspection apparatus 100 includes a CPU (Central Processing Unit) 110, a RAM (Random Access Memory) 112, a ROM (Read Only Memory) 114, an auxiliary storage device 116, a sensor group 118, a camera 120, and a speaker 122. , a microphone 124, a communication interface 126, a display 128, a touch panel 130, and the like.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • auxiliary storage device 116 e.g., a microphone 124, a communication interface 126, a display 128, a touch panel 130, and the like.
  • the CPU 110 is an example of a processor, and the tablet computer functions as the inspection device 100 by the CPU 110 executing a predetermined program (inspection program).
  • RAM 112 functions as a work area for CPU 110 .
  • the ROM 114 and/or the auxiliary storage device 116 store programs executed by the CPU 110 and data necessary for various processes.
  • the auxiliary storage device 116 is composed of, for example, SSD (Solid State Drive), EEPROM (Electrically Erasable Programmable Read-Only Memory), HDD (Hard Disk Drive), and the like.
  • the sensor group 118 includes various sensors such as an acceleration sensor, a gyro sensor, a magnetic sensor, a GPS (Global Positioning System), and a range sensor.
  • a range sensor is a two-dimensional scanning optical distance sensor that measures the distance to a detected object while scanning light.
  • Ranging sensors include laser scanners, laser range finders (LRF), LIDAR (Light Detection and Ranging or Laser Imaging Detection and Ranging), and the like. Having a range sensor enables three-dimensional scanning of space.
  • the camera 120 is a so-called digital camera and has a lens, an image sensor, and the like.
  • the image sensor is composed of, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a CCD (Charge Coupled Device) image sensor, or the like.
  • Camera 120 is an example of an imaging device.
  • the communication interface 126 is connected to a network and transmits and receives data to and from other devices.
  • a network For example, it is connected to a WAN (Wide Area Network) including the Internet, a LAN (Local Area Network), etc., and transmits and receives data to and from other computers (e.g., servers, etc.) and electronic devices (e.g., printers, etc.) .
  • WAN Wide Area Network
  • LAN Local Area Network
  • printers e.g., printers, etc.
  • the display 128 is composed of, for example, an organic electroluminescence display (OELD), a liquid crystal display (LCD), or the like.
  • OELD organic electroluminescence display
  • LCD liquid crystal display
  • the display 128 has a touch panel 130 on its display surface.
  • FIG. 6 is a block diagram of the functions of the inspection device.
  • the inspection apparatus 100 has functions of an image acquisition section 140A, an image analysis section 140B, a determination section 140C, and a determination result output section 140D. These functions are realized by the CPU 110 executing a predetermined program (inspection program).
  • the image acquisition unit 140A performs processing for acquiring an image of the inspection card 20 (in a narrow sense, an image of the measurement sheet 24 provided in the inspection card 20).
  • the inspection card 20 is photographed by the camera 120 provided in the inspection apparatus 100 to acquire this image.
  • the photographing is performed on the front surface of the inspection card 20 (the surface having the window portion 26), and is performed so that the entire image is captured. That is, not only the portion of the measurement sheet 24 but also the portion of the coloring chart 30 is photographed. Accordingly, an image including the coloring chart 30 can be acquired.
  • the inspection card 20 to be imaged is an exposed inspection card. That is, it is an inspection card exposed for a specified time by leaving it at a position to be detected for a specified time.
  • the image analysis unit 140B analyzes the acquired image and performs processing to obtain the ultraviolet exposure amount. Specifically, first, the area of the measurement sheet 24 is identified from the image. Next, the color of the specified area, that is, the color (color development value) of the measurement sheet 24 is specified. Then, the ultraviolet exposure amount corresponding to the specified color is specified.
  • a known image recognition technique is adopted for the process of specifying the area of the measurement sheet 24 .
  • a technique of detecting the area of the measurement sheet 24 from an image using an image recognition model generated by machine learning, deep learning, or the like can be adopted.
  • the type of machine learning algorithm is not particularly limited.
  • algorithms using neural networks such as RNN (Recurrent Neural Network), CNN (Convolutional Neural Network) and MLP (Multilayer Perceptron) can be used.
  • the process of specifying the area of the measurement sheet 24 is unnecessary. For example, when the inspection card 20 is always placed in a prescribed position within the screen and photographed, the position of the measurement sheet 24 (the position of the window portion 26) within the image is known. No processing is required to identify the area of .
  • the processing for specifying the color of the measurement sheet 24 includes calibration processing.
  • the photographed image varies depending on individual differences of cameras, photographing conditions, and the like. Therefore, calibration processing is performed so that accurate colors can be specified.
  • This processing is performed using the image of the coloring chart 30 photographed together with the measurement sheet 24 . That is, calibration processing is performed using the coloring chart 30 as a calibration chart.
  • the process of specifying the ultraviolet exposure amount corresponding to the specified color is performed by referring to a lookup table (LUT) 142, for example.
  • the lookup table 142 is a table in which the color (color development density) of the measurement sheet 24 and the ultraviolet exposure amount are associated one-to-one.
  • Lookup table 142 is stored in auxiliary storage device 116 .
  • the determination unit 140C performs a process of determining the disinfection effect based on the obtained ultraviolet irradiation amount.
  • the disinfection effect here is the disinfection effect at the installation position of the inspection card 20 .
  • it is determined whether or not a sufficient disinfection effect is obtained by comparing the obtained ultraviolet irradiation amount with a determination threshold value.
  • the disinfection effect is determined alternatively, with "OK” when a sufficient disinfection effect is obtained and "NG" when a sufficient disinfection effect is not obtained.
  • the case where a sufficient disinfection effect is obtained means the case where a sufficient amount of ultraviolet irradiation for disinfection is obtained.
  • the amount of UV irradiation sufficient for disinfection varies depending on the target (bacteria, virus, etc. to be disinfected), the UV species (wavelength) to be irradiated, and the like. Therefore, the determination threshold is determined depending on the object, the type of ultraviolet rays, and the like.
  • a determination threshold is an example of a threshold.
  • the determination unit 140C determines OK when the determined ultraviolet irradiation amount is equal to or greater than the determination threshold. That is, it is determined that a sufficient disinfection effect is obtained. On the other hand, when the obtained ultraviolet irradiation amount is less than the determination threshold value, it is determined as NG. That is, it is determined that a sufficient disinfection effect is not obtained.
  • the determination result output unit 140D performs processing for outputting the determination result by the determination unit 140C.
  • the determination result is displayed on display 128 .
  • FIG. 7 is a diagram showing an example of a screen display of determination results.
  • FIG. 4B shows an example of the screen display when it is determined as NG.
  • the captured image Im and the information If indicating the judgment result are displayed.
  • the captured image Im is displayed in the image display area R1, and the information If indicating the determination result is displayed in the determination result display area R2.
  • the determination result is OK, the characters "Disinfection OK" are displayed as shown in FIG.
  • the determination result is NG, the characters "Disinfection NG" are displayed as shown in FIG.
  • FIG. 8 is a flow chart showing the inspection procedure.
  • the inspection card 20 is installed at the location to be inspected (step S1).
  • a location to be inspected is set within a space to be inspected.
  • a space to be inspected is a space irradiated with ultraviolet rays from a fixed position. That is, it is a space in which the ultraviolet irradiation device 10 is installed. In this embodiment, it is installed in the room 2 in which the ultraviolet irradiation device 10 is installed.
  • the inspection card 20 is exposed for a specified time (step S2). That is, the ultraviolet irradiation device 10 is operated for a specified time, and the measurement sheet 24 provided on the inspection card 20 is exposed for a specified time.
  • operating the ultraviolet irradiation device 10 for a specified time means lighting the ultraviolet light source for a specified time.
  • the prescribed time is a time determined in advance. As an example, the time is set so that the object (bacteria, virus, etc. to be disinfected) can be disinfected when irradiated with a specified illuminance.
  • "Can be disinfected" includes the case where the object can be almost sterilized or inactivated (for example, the case where 99.9% sterilization or inactivation can be achieved).
  • step S3 the inspection card 20 exposed for the specified time is photographed.
  • the inspection card 20 is photographed by the camera 120 provided in the inspection apparatus 100 .
  • the inspection device 100 When the inspection card 20 is photographed, the inspection device 100 performs a disinfection effect determination process (step S4).
  • FIG. 9 is a flow chart showing the procedure of the disinfection effect determination process performed by the inspection device.
  • an image of the inspection card 20 is acquired (step S4-1).
  • the obtained image is analyzed to specify the color (color development value) of the measurement sheet 24 (step S4-2).
  • calibration processing is performed using the coloring chart 30 . This allows more accurate color identification.
  • the amount of UV irradiation is specified (step S4-3). This processing is performed with reference to the lookup table 142 .
  • the disinfection effect is determined based on the specified ultraviolet irradiation dose (step S4-4). Specifically, the specified ultraviolet irradiation amount is compared with the determination threshold.
  • the specified ultraviolet irradiation dose is equal to or greater than the determination threshold value, it is determined that a sufficient disinfection effect has been obtained and that the result is "OK".
  • the specified ultraviolet irradiation amount is less than the determination threshold value, it is determined as "NG" because a sufficient disinfection effect is not obtained.
  • the inspection device 100 After the disinfection effect determination process, the inspection device 100 outputs the determination result (step S5). That is, the judgment result is displayed on the display 128 as shown in FIG.
  • the disinfection effect can be inspected simply by photographing the inspection card 20 .
  • the coloring state of the measurement sheet 24 can be read quantitatively, the disinfection effect can be quantitatively inspected.
  • calibration is also performed, accurate and stable inspection can be realized.
  • Disinfection by ultraviolet rays has the drawback that shadowed areas where ultraviolet rays do not reach are not disinfected at all, but by using the inspection system 1 of this embodiment, the disinfection effect can be easily and accurately confirmed.
  • the ultraviolet light source deteriorates over time, the deterioration state can be easily and accurately confirmed by using the inspection system 1 of the present embodiment.
  • the selection process is performed using the display 128 and the touch panel 130, for example. Specifically, a list of selectable objects and/or ultraviolet rays is displayed on the display 128 and selected by a touch operation using the touch panel 130 .
  • navigation for photographing may be performed so that a predetermined image is photographed.
  • a frame is displayed superimposed on the live view image, and guidance is provided to place the inspection card 20 within the frame and take an image.
  • the frame has a shape corresponding to the outer shape of the inspection card 20 and is displayed at a fixed position within the screen.
  • the inspection card 20 is photographed in a predetermined orientation. For example, as shown in FIG. 7, the image is taken with the coloring chart 30 on the right side. This facilitates the extraction process of the measurement sheet 24 and the coloring chart 30 .
  • the illuminance varies depending on the distance from the light source. Therefore, when the distance from the light source is known, more appropriate determination results can be obtained by determining the disinfection effect in consideration of the distance from the light source.
  • FIG. 10 is a functional block diagram of the inspection device.
  • the inspection apparatus 100 of the present embodiment differs from the inspection apparatus of the first embodiment in that it has the function of the distance information acquisition section 140E.
  • the distance information acquisition unit 140E performs processing for acquiring information on the distance between the ultraviolet light source and the inspection target location.
  • the position of the ultraviolet light source is specified by the installation position of the ultraviolet irradiation device 10 . Therefore, the distance between the ultraviolet light source and the location to be inspected is obtained as the distance between the ultraviolet irradiation device 10 and the location to be inspected.
  • the location to be inspected is the installation position of the inspection card 20 .
  • the distance information for example, the user inputs an actual measurement value on touch panel 130 .
  • the inspection apparatus 100 is equipped with a distance measuring means, the distance can be measured using the measuring means. For example, if the inspection apparatus 100 of the present embodiment has a range sensor, the range sensor can be used to measure the distance between the ultraviolet irradiation device 10 and the location to be inspected.
  • the acquired distance information is added to the determination unit 140C.
  • the determination unit 140C determines the disinfection effect based on the obtained distance information and the ultraviolet irradiation amount information read from the inspection card 20 . Specifically, information on the determination threshold value corresponding to the distance is acquired, and the acquired determination threshold value is compared with the amount of ultraviolet irradiation to determine the disinfection effect. If the amount of UV irradiation is equal to or greater than the determination threshold value, it is determined as OK, and if it is less than the determination threshold value, it is determined as NG.
  • the judgment threshold is determined for each section by dividing the distance into multiple sections.
  • the determination unit 140C identifies the applicable section based on the obtained distance information, and obtains information about the determination threshold set for the identified section.
  • FIG. 11 is a flow chart showing the inspection procedure.
  • the inspection card 20 is installed at the location to be inspected (step S11). Next, the inspection card 20 is exposed for a specified time (step S12). Next, the inspection card 20 exposed for the specified time is photographed (step S13). Next, the distance between the ultraviolet irradiation device 10 and the location to be inspected is measured, and the measurement result is input to the inspection device 100 (step S14). If the inspection apparatus 100 is equipped with a distance measuring means, the distance is measured using the measuring means. In this case, since distance information can be obtained directly, the process of inputting the measurement result is omitted.
  • the inspection device 100 When the photographing of the inspection card 20 and the input of the distance are completed, the inspection device 100 performs a disinfection effect determination process (step S15).
  • FIG. 12 is a flow chart showing the procedure of the disinfection effect determination process performed by the inspection device.
  • an image of the inspection card 20 is acquired (step S15-1).
  • information on the distance between the ultraviolet irradiation device 10 and the inspection target portion is acquired (step S15-2).
  • the obtained image is analyzed to specify the color (color development value) of the measurement sheet 24 (step S15-3).
  • the amount of UV irradiation is specified (step S15-4).
  • the disinfection effect is determined based on the specified ultraviolet irradiation dose and the acquired distance information (step S15-5).
  • information on the determination threshold is acquired based on the acquired information on the distance.
  • the acquired determination threshold is compared with the specified UV dose.
  • the specified ultraviolet irradiation dose is equal to or greater than the determination threshold value, it is determined that a sufficient disinfection effect has been obtained and that the result is "OK".
  • the specified ultraviolet irradiation amount is less than the determination threshold value, it is determined as "NG" because a sufficient disinfection effect is not obtained.
  • the inspection device 100 After completing the determination process, the inspection device 100 outputs the determination result (step S16). In this embodiment, the determination result is displayed on display 128 (see FIG. 7).
  • the disinfection effect is determined in consideration of the distance from the ultraviolet light source, so the disinfection effect at each position can be determined more appropriately.
  • the object, the type of ultraviolet rays, and the like can be selected according to the purpose, application, situation, and the like.
  • a determination threshold is determined for each object, for each type of ultraviolet light, or for each combination thereof, and is determined for each distance.
  • the determination threshold can be configured to be determined by a function. That is, it is also possible to define a function for calculating a determination threshold, input distance information into the function, and obtain a determination threshold corresponding to the distance.
  • the incident angle of the ultraviolet rays at the inspection target location can be roughly calculated from the irradiation direction of the ultraviolet rays from the ultraviolet light source and the direction of the inspection target location with respect to the ultraviolet light source.
  • FIG. 13 is a conceptual diagram of calculation of the incident angle of ultraviolet rays at the measurement target location.
  • the ultraviolet irradiation direction V1 is vertically downward.
  • the direction of the inspection target location with respect to the ultraviolet light source is specified as the direction V2 of the inspection target location with respect to the ultraviolet irradiation device 10 .
  • This direction V2 is determined as the direction of a line connecting the location where the ultraviolet irradiation device 10 is installed and the location to be inspected.
  • the length D of the line segment connecting the installation location of the ultraviolet irradiation device 10 and the inspection target location is the distance between the installation location of the ultraviolet irradiation device 10 and the inspection target location.
  • the incident angle ⁇ is obtained as an angle formed by the irradiation direction V1 of the ultraviolet rays and the direction V2 of the location to be inspected with respect to the ultraviolet irradiation device 10 .
  • the direction V2 of the location to be inspected with respect to the ultraviolet irradiation device 10 is synonymous with the installation direction of the sheet with respect to the ultraviolet light source.
  • the inspection apparatus is equipped with a range sensor such as LIDAR, three-dimensional data of the inspection target space can be acquired on the spot. By using this three-dimensional data, it is possible to obtain the relative positional relationship between the ultraviolet light source and the inspected portion. By using the positional relationship information, the illumination effect can be inspected more appropriately. A case of inspecting the disinfection effect using three-dimensional spatial data will be described below. Since the configuration other than the inspection device is the same as that of the first embodiment, only the inspection device will be described here.
  • FIG. 14 is a functional block diagram of the inspection device.
  • the inspection apparatus 100 of the present embodiment has a three-dimensional data acquisition unit 140F, a three-dimensional model generation unit 140G, a three-dimensional model output unit 140H, a position information acquisition unit 140I, and a positional relationship identification unit 140J. It is different from the inspection apparatus of the embodiment.
  • the 3D data acquisition unit 140F performs processing for acquiring 3D data of the space to be inspected.
  • a range sensor provided in inspection apparatus 100 is used to obtain spatial three-dimensional data. That is, a range sensor is used to scan a space and acquire its three-dimensional data (three-dimensional point cloud data).
  • the 3D model generation unit 140G performs processing for generating a 3D model of the inspection target space based on the acquired 3D data. Specifically, a patch (mesh) is generated from a 3D point cloud to generate a 3D model. Since this type of processing is a well-known technique, detailed description thereof will be omitted.
  • the 3D model output unit 140H performs processing for outputting the generated 3D model (3D model of the processing target space).
  • FIG. 15 is a diagram showing an example of the output of the 3D model.
  • the generated three-dimensional model Md is displayed on the display 128.
  • the displayed three-dimensional model Md is enlarged and reduced, and viewpoints are switched, etc., according to instructions from the user. For example, it is enlarged and reduced by pinch-in and pinch-out operations on the display. Also, the starting point is switched by a swipe operation. Operation detection is performed via the touch panel 130 .
  • the position information acquisition unit 140I performs processing for acquiring information on the installation positions of the ultraviolet irradiation device 10 and the inspection card 20 and information on the irradiation direction of the ultraviolet rays.
  • the user designates the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20 on the three-dimensional model displayed on the display 128, and the information on the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20 is displayed. Enter Specifically, as shown in FIG. 15, by touching the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20 on the display, the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20 are displayed.
  • the position information acquisition unit 140I acquires information on the touched position via the touch panel 130 and acquires information on the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20 .
  • Dots P1 and P2 are displayed at the positions touched as the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20, clearly indicating the input position.
  • dots P1 indicate the installation position of the ultraviolet irradiation device 10
  • dots P2 indicate the installation position (inspection target location) of the inspection card 20.
  • the dots P1 indicating the installation position of the ultraviolet irradiation device 10 and the dots P2 indicating the installation position of the inspection card 20 are displayed in different colors.
  • the user inputs the irradiation direction of the ultraviolet rays on the three-dimensional model displayed on the display 128 .
  • This operation is performed, for example, by touching the position of the ultraviolet irradiation device 10 on the display with a finger and then sliding the finger along the irradiation direction of the ultraviolet rays.
  • the position information acquisition unit 140I detects the sliding direction of the finger via the touch panel 130 and acquires information on the irradiation direction of the ultraviolet rays.
  • the positional relationship specifying unit 140J performs a process of specifying the relative positional relationship between the ultraviolet irradiation device 10 and the inspection card 20 based on the installation position information. That is, a process of identifying the relative positional relationship between the ultraviolet irradiation device 10 as the ultraviolet light source and the installation position of the inspection card 20 indicating the location to be inspected is performed.
  • the coordinates of the installation position of the ultraviolet irradiation device 10 and the coordinates of the installation position of the inspection card 20 are specified in the coordinate space set in the three-dimensional model Md, and the relative positional relationship between the two is determined. Identify.
  • the determination unit 140C determines the disinfection effect based on the information on the specified positional relationship, the information on the irradiation direction of the ultraviolet rays, and the information on the amount of ultraviolet irradiation read from the inspection card 20. Specifically, based on the information on the specified positional relationship and the information on the irradiation direction of the ultraviolet rays, the information on the relevant judgment threshold is acquired, and the acquired judgment threshold and the amount of ultraviolet irradiation are compared to determine the disinfection effect. judge. If the amount of UV irradiation is equal to or greater than the determination threshold value, it is determined as OK, and if it is less than the determination threshold value, it is determined as NG.
  • the determination threshold is determined for each block by dividing the space into a plurality of blocks based on the installation position of the ultraviolet irradiation device 10 . For each block, a determination threshold is set according to the irradiation direction of the ultraviolet rays.
  • the determining unit 140C identifies the corresponding block based on the identified positional relationship information, and acquires information about the determination threshold set for the identified block. That is, the block to which the inspection target location belongs is specified, and the information of the determination threshold set for the specified block is acquired.
  • FIG. 16 is a flow chart showing the inspection procedure.
  • the space to be inspected is three-dimensionally scanned (step S21).
  • this processing is performed using a range sensor provided in the inspection apparatus 100. FIG.
  • a three-dimensional model of the inspection target space is generated (step S22).
  • this processing is performed by the inspection apparatus 100 .
  • the inspection apparatus 100 generates a three-dimensional model of the inspection space from the three-dimensional data of the inspection space obtained by scanning the inspection space.
  • the positional information of the ultraviolet irradiation device 10 and the location to be inspected, and the information of the irradiation direction of the ultraviolet rays are input to the inspection device 100 (step S23).
  • the inspection apparatus 100 displays a three-dimensional model of the space to be inspected on the display 128, and receives the input of the position of the ultraviolet irradiation device 10 and the inspection target portion, and the input of the irradiation direction of the ultraviolet rays.
  • the user touches the installation position of the ultraviolet irradiation device 10 and the position of the inspection target location on the three-dimensional model displayed on the display 128 to input the position information of the ultraviolet irradiation device 10 and the inspection target location.
  • the user inputs the irradiation direction of the ultraviolet rays by sliding the finger along the irradiation direction of the ultraviolet rays on the three-dimensional model displayed on the display 128 .
  • the inspection card 20 is installed at the location to be inspected (step S24).
  • the installation position is the position input to the inspection apparatus 100 as the location to be inspected.
  • the inspection card 20 is exposed for a specified time (step S25).
  • the inspection card 20 exposed for the specified time is photographed (step S26). Photographing is performed using a camera 120 provided in the inspection apparatus 100 .
  • the inspection apparatus 100 performs a disinfection effect determination process (step S27).
  • FIG. 17 is a flow chart showing the procedure of the disinfection effect determination process performed by the inspection device.
  • an image of the inspection card 20 is acquired (step S27-1).
  • the input positional information of the ultraviolet irradiation device 10 and the inspected portion and the information of the irradiation direction of the ultraviolet rays are obtained (step S27-2).
  • the positional relationship between the ultraviolet irradiation device 10 and the inspected portion is identified (step S27-3).
  • the obtained image is analyzed to specify the color (color development value) of the measurement sheet 24 (step S27-4).
  • the amount of UV irradiation is specified (step S27-5).
  • the disinfection effect is determined based on the information on the specified positional relationship and the information on the amount of UV irradiation (step S27-6). Specifically, first, based on the specified information on the positional relationship and information on the irradiation direction of the ultraviolet rays, information on the corresponding determination threshold is acquired. Next, the acquired determination threshold and the amount of UV irradiation are compared. As a result of the comparison, if the amount of UV irradiation is equal to or greater than the determination threshold value, it is determined as OK. On the other hand, when the ultraviolet irradiation amount is less than the determination threshold, it is determined as NG.
  • the inspection device 100 After completion of the determination process, the inspection device 100 outputs the determination result of the disinfection effect (step S28). That is, the judgment result is displayed on the display 128 .
  • FIG. 18 is a diagram showing an example of display of determination results.
  • the display 128 displays the determination result of the disinfection effect and the three-dimensional model Md of the space to be inspected.
  • the determination result is displayed in the determination result display area R12 set in the display area of the display 128.
  • the three-dimensional model Md is displayed in the three-dimensional model display area R11 set in the display area of the display 128.
  • the captured image Im and information If indicating the determination result are displayed as the determination result.
  • the information If indicating the judgment result when the judgment result is OK, the characters "Disinfection OK" are displayed as shown in the figure. On the other hand, if the judgment result is NG, the characters "Disinfection NG" are displayed.
  • a dot P1 indicating the installation position of the ultraviolet irradiation device 10 and a dot P2 indicating the inspection target location (installation position of the inspection card 20) are superimposed. displayed.
  • the dot P1 indicating the installation position of the ultraviolet irradiation device 10 and the dot P2 indicating the inspection target portion are displayed in different colors.
  • the three-dimensional model Md displayed in the three-dimensional model display area R11 is enlarged and reduced, and the viewpoint is switched, etc., according to instructions from the user.
  • the inspection apparatus of the present embodiment it is possible to easily specify the positional relationship between the ultraviolet light source and the location to be inspected, and inspect the disinfection effect.
  • the inspection is performed in consideration of the positional relationship between the ultraviolet light source and the inspected portion, the disinfection effect at each position can be determined more appropriately.
  • inspection cards 20 are installed at all inspection target locations.
  • step S26 all the inspection cards 20 installed at each inspection target location are photographed.
  • the inspection card 20 is photographed in association with the information of the inspection target portion. For example, a location to be inspected is specified on the 3D model displayed on the display 128 (by touching the dot displayed at the location specified as the location to be inspected), and the inspection card 20 placed at that location is photographed. .
  • step S27 the disinfection effect is determined for each inspection target location based on the image of the inspection card 20 captured in association with each inspection target location.
  • FIG. 19 is a diagram showing an example of display of determination results when inspecting multiple locations at once.
  • a three-dimensional model Md is displayed, and the determination results of each inspection target location are individually displayed on the three-dimensional model. Specifically, an inspection target location is indicated by a dot P2, and the determination result at each inspection target location is individually displayed in a balloon SB extending from each dot P2.
  • FIG. 20 is a diagram showing another example of display of determination results when inspecting multiple locations at once.
  • the three-dimensional model Md of the inspection target space is displayed in the three-dimensional model display area R11. Further, the detailed information of the designated inspection target portion is displayed in the detailed information display area R13.
  • the three-dimensional model display area R11 the three-dimensional model Md of the inspection target space, dots P2 indicating inspection target locations, and the determination results of each inspection target location are displayed.
  • the determination result is displayed in a balloon.
  • the location to be inspected is specified by touching the dot P2 of the location to be inspected for which detailed display is desired on the three-dimensional model Md displayed in the three-dimensional model display area R11. Each time the dot P2 is touched, the detailed information of the touched inspection target portion is displayed in the detailed information display area R13.
  • the three-dimensional model Md and the detailed information are displayed on the same screen, but the detailed information can be displayed by switching screens.
  • a three-dimensional model may be displayed on the full screen, and when a dot of an inspection target location is touched, the screen may be switched to display detailed information on the touched inspection target location. good.
  • the procedure of setting the inspection card 20, exposing, and photographing after inputting the positional information and the like into the inspection apparatus 100 is adopted.
  • the range sensor provided in the inspection apparatus 100 is used to acquire the three-dimensional data of the inspection target space, but the method of acquiring the three-dimensional data of the inspection target space is It is not limited to this. A configuration in which three-dimensional data measured by a device other than the inspection device 100 is acquired may be employed. Alternatively, the data of the three-dimensional model of the inspection target space may be obtained directly.
  • the three-dimensional model Md of the inspection target space is displayed on the display 128, and information such as the inspection target location and the inspection result is displayed superimposed on the three-dimensional model Md.
  • a so-called Augmented Reality (AR) technique may be adopted to output the inspection results.
  • a configuration may be adopted in which information such as an inspection target location and inspection results is displayed superimposed on an image obtained from a camera (a so-called live view image).
  • the inspection card 20 can determine the amount of UV irradiation at the installation location from the color development of the measurement sheet 24 .
  • the irradiation distribution of ultraviolet rays in the space to be inspected irradiation amount on the surface irradiated with ultraviolet rays distribution
  • a method for determining the irradiation distribution of ultraviolet rays using a plurality of inspection cards 20 will be described below.
  • FIG. 21 is a functional block diagram of the inspection apparatus.
  • the inspection apparatus 100 of the present embodiment differs from the inspection apparatus of the third embodiment in that it further has the functions of an irradiation distribution estimation section 140K and a map generation section 140L.
  • the irradiation distribution estimation unit 140K performs a process of estimating the ultraviolet irradiation distribution (distribution of the ultraviolet irradiation amount on the surface irradiated with ultraviolet rays) based on information on the ultraviolet irradiation amount measured at each inspection target location.
  • a well-known method is adopted for estimating the distribution.
  • a method of referring to the information of the specification of the ultraviolet irradiation device 10 and estimating it can also be adopted.
  • the information such as the illuminance distribution of the ultraviolet irradiation device 10 is known, the information such as the illuminance distribution can be used to estimate the irradiation distribution of ultraviolet rays.
  • the map generation unit 140L performs a process of generating a map showing the ultraviolet irradiation distribution based on the information on the estimated ultraviolet irradiation distribution.
  • a map showing the irradiation distribution of ultraviolet rays is a map that visualizes the distribution of the irradiation amount of ultraviolet rays on a surface irradiated with ultraviolet rays by using colors or color densities.
  • FIG. 22 is a diagram showing an example of a map. This figure shows an example of displaying a map Mp superimposed on the three-dimensional model Md of the space to be inspected. As shown in the figure, the map Mp visualizes the distribution of the amount of ultraviolet irradiation on the surface irradiated with ultraviolet rays. In the example shown in the figure, the distribution is visualized by color shading.
  • FIG. 23 is a flow chart showing the inspection procedure.
  • the space to be inspected is three-dimensionally scanned (step S31).
  • a three-dimensional model of the space to be inspected is generated (step S32).
  • the positional information of the ultraviolet irradiation device 10 and the location to be inspected, and the information of the irradiation direction of the ultraviolet rays are input to the inspection device 100 (step S33).
  • a plurality of locations to be inspected are set. Enter the position information of all set inspection target locations.
  • the inspection card 20 is installed at each inspection target location (step S34).
  • each inspection card 20 is exposed for a specified time (step S35). After exposure, the inspection card 20 is photographed for each location to be inspected (step S36).
  • the inspection card 20 installed at each inspection target location is individually photographed in association with the position information of the inspection target location.
  • the inspection device 100 performs a disinfection effect determination process (step S37). After that, a process of generating a map showing the irradiation distribution of ultraviolet rays is performed (step S38).
  • FIG. 24 is a flowchart showing the procedure of map generation processing.
  • step S38-1 information on the amount of UV irradiation at each inspection target location is acquired (step S38-1).
  • the amount of UV irradiation at each inspection target location is obtained individually by the image analysis unit 140B. Therefore, the information is acquired from the image analysis unit 140B.
  • the UV irradiation distribution is estimated based on the acquired UV dose information at each inspection target location (step S38-2). That is, in the space to be inspected, the distribution of the irradiation amount of ultraviolet rays on the surface irradiated with ultraviolet rays is estimated.
  • step S38-3 a map showing the estimated UV irradiation distribution is generated. That is, a map that visualizes the irradiation distribution of ultraviolet rays is generated.
  • the inspection device 100 outputs the generated map to the display 128 together with the determination result of the disinfection effect (step S39).
  • FIG. 25 is a diagram showing an example of a display of a map showing the irradiation distribution of ultraviolet rays and a determination result.
  • a map Mp is displayed superimposed on the three-dimensional model Md of the inspection target space.
  • inspection target locations are indicated by dots P2, and determination results for each inspection target location are individually displayed in balloons SB extending from dots P2.
  • the inspection apparatus of the present embodiment in addition to the determination result of the disinfection effect at each inspection target location, the estimated UV irradiation distribution is displayed on the map, so that the disinfection effect can be evaluated. Easy to grasp. This makes it possible to easily adjust the arrangement of the ultraviolet irradiation devices, for example, adjust the position, the number, and the direction of irradiation, making it possible to easily achieve the desired disinfection effect. Become.
  • the map is generated and the disinfection effect is determined.
  • the map may be generated only.
  • the output of the results can be switched according to the user's instruction, such as displaying only the map or displaying only the determination result of the disinfection effect. Furthermore, it is more preferable to enable detailed display of the determination result of the disinfection effect of each inspection target location (see FIG. 20).
  • FIG. 26 is a diagram showing another example of an inspection card.
  • the inspection card 20 of this example does not have a coloring chart on the exterior case 22 .
  • the coloring chart does not necessarily have to be provided integrally with the inspection card 20 .
  • photography is done together with the coloring chart.
  • a sheet (photographing sheet) 50 on which the coloring chart 30 is printed is prepared, and the inspection card 20 is placed on the sheet 50 and photographed.
  • the inspection card 20 and the coloring chart 30 can be captured within the same angle of view.
  • the shape of the inspection card 20 is a so-called card shape, but the shape of the inspection card 20 is not limited to this. Various shapes can be employed, including three-dimensional shapes.
  • the measurement sheet 24 can also be configured to be sensitive only to ultraviolet rays in a specific wavelength range. For example, by providing a band-pass filter, it is possible to have a configuration that is sensitive only to ultraviolet light in a specific wavelength range.
  • the inspection apparatus 100 is preferably configured to record inspection results and read out past inspection results as necessary.
  • the inspection result includes information on the amount of ultraviolet irradiation and the determination result of the disinfection effect, and is recorded in the auxiliary storage device 116 together with information such as the date and time of the inspection, the location of the inspection, and the person in charge of the inspection. This makes it possible, for example, to display past inspection results in a graph, estimate the deterioration state of the ultraviolet light source from the past search results, notify replacement of the ultraviolet light source, and the like.
  • the inspection apparatus 100 preferably has a function of performing these processes.
  • a function to obtain past inspection result information and display it in a graph in a predetermined format For example, a function to obtain past inspection result information and estimate the deterioration state of the ultraviolet light source, and a function to obtain past inspection result information It is preferable to have a function of acquiring information, determining whether or not the ultraviolet light source needs to be replaced, and notifying the user.
  • the deterioration state of the ultraviolet light source is estimated, for example, from time-series changes in the amount of ultraviolet irradiation measured at a fixed point.
  • whether or not the ultraviolet light source needs to be replaced is determined from the time-series change in the amount of ultraviolet irradiation measured at a fixed point. For example, it is determined that replacement is necessary when the amount of UV irradiation below the threshold is continuously measured a predetermined number of times.
  • the inspection apparatus is composed of a tablet computer with a camera
  • the hardware configuration of the inspection apparatus is not limited to this.
  • it can also be configured by a smart phone, a personal computer, or the like.
  • the inspection device does not necessarily have to be equipped with a camera. If the inspection device does not have a camera, an image captured by an external camera is acquired.
  • the inspection device does not necessarily have to consist of a single computer.
  • it can consist of a client computer and a server computer.
  • processors are general-purpose processors that run programs and function as various processing units, such as CPUs and/or GPUs (Graphic Processing Units) and FPGAs (Field Programmable Gate Arrays).
  • Programmable Logic Device which is a programmable processor, ASIC (Application Specific Integrated Circuit), etc.
  • a dedicated electric circuit which is a processor with a circuit configuration specially designed to execute specific processing, etc. included.
  • a program is synonymous with software.
  • a single processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types.
  • one processing unit may be composed of a plurality of FPGAs or a combination of a CPU and an FPGA.
  • a plurality of processing units may be configured by one processor.
  • a single processor is configured with a combination of one or more CPUs and software, as typified by computers used for clients and servers. , in which the processor functions as a plurality of processing units.
  • SoC System on Chip
  • the various processing units are configured using one or more of the above various processors as a hardware structure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Provided is a test device, a test method, a test program, and a test system with which it is possible to quantitatively test the sterilizing effect of UV light. This invention includes: a step for setting, in a space irradiated with UV light from a UV light source at a fixed position, a sheet that changes color according to the UV light irradiation amount; a step for capturing an image of a sheet left exposed in the space for a prescribed amount of time together with a chart indicating the relationship between color and UV light irradiation amounts; a step for analyzing the captured image and establishing the UV light irradiation amount at the position at which the sheet is set; and a step for assessing the sterilizing effect at the position at which the sheet is set, on the basis of the established UV light irradiation amount.

Description

検査装置、検査方法、検査プログラム及び検査システムInspection device, inspection method, inspection program and inspection system
 本発明は、検査装置、検査方法、検査プログラム及び検査システムに係り、特に、紫外線による消毒効果を検査する検査装置、検査方法、検査プログラム及び検査システムに関する。 The present invention relates to an inspection device, an inspection method, an inspection program and an inspection system, and more particularly to an inspection device, an inspection method, an inspection program and an inspection system for inspecting the disinfection effect of ultraviolet rays.
 紫外線は、高い消毒効果(殺ウイルス、ウイルス不活化、殺菌、減菌、滅菌、除菌等の概念を含む)を有していることが知られている。 Ultraviolet rays are known to have a high disinfection effect (including concepts such as viricidal, virus inactivating, sterilizing, sterilizing, sterilizing, and disinfecting).
 特許文献1には、紫外線照射量に応じて色が変化するシートを使用して、紫外線による消毒効果を視覚的に確認する方法が記載されている。 Patent Document 1 describes a method for visually confirming the disinfection effect of ultraviolet rays using a sheet whose color changes according to the amount of ultraviolet irradiation.
 また、特許文献2及び3には、紫外線照射量に応じて色が変化するシートと、そのシートの色を判断するためのレファレンス部と、を備えた紫外線量測定装置が記載されている。 In addition, Patent Documents 2 and 3 describe an ultraviolet amount measuring device that includes a sheet whose color changes according to the amount of ultraviolet irradiation and a reference section for determining the color of the sheet.
 更に、特許文献4には、紫外線放射暴露に応答して、それぞれ異なる色を表示する複数のセッションを備えたパッチを皮膚に貼付し、そのパッチの画像を撮影し、撮影した画像を分析して、個人の紫外線放射を測定するシステムが記載されている。 In addition, US Pat. No. 5,300,000 discloses applying a patch to the skin with multiple sessions each displaying a different color in response to exposure to ultraviolet radiation, taking an image of the patch, and analyzing the taken image. , describes a system for measuring ultraviolet radiation in individuals.
特表2017-524393号公報Japanese Patent Publication No. 2017-524393 特開2003-42844号公報JP-A-2003-42844 特開2006-71580号公報JP-A-2006-71580 特表2019-508679号公報Japanese Patent Publication No. 2019-508679
 しかしながら、従来の手法は、いずれも紫外線の消毒効果に関して、定量的な検査ができないという欠点があった。 However, all of the conventional methods have the drawback of not being able to quantitatively test the disinfection effect of ultraviolet rays.
 本発明は、このような事情に鑑みてなされたもので、紫外線の消毒効果を定量的に検査できる検査装置、検査方法、検査プログラム及び検査システムを提供することを目的とする。 The present invention has been made in view of such circumstances, and aims to provide an inspection device, an inspection method, an inspection program, and an inspection system that can quantitatively inspect the disinfection effect of ultraviolet rays.
 (1)プロセッサを備え、プロセッサは、紫外線照射量に応じて色が変化するシートであって、定位置の紫外線光源から紫外線が照射される空間内で規定時間露光させたシートを、紫外線照射量と色との関係を示すチャートと共に撮影した画像を取得する処理と、取得した画像を解析し、シートの設置箇所における紫外線照射量を求める処理と、求めた紫外線照射量に基づいて、シートの設置箇所における消毒効果を判定する処理と、を行う、検査装置。 (1) A processor is provided, and the processor is a sheet whose color changes according to the amount of ultraviolet irradiation. Acquisition of the photographed image along with a chart showing the relationship between color and color, analysis of the acquired image, processing of determining the amount of ultraviolet radiation at the location where the sheet is installed, and installation of the sheet based on the determined amount of ultraviolet radiation. An inspection device that performs a process of determining a disinfection effect at a location.
 (2)プロセッサは、紫外線光源とシートとの間の相対的な位置関係の情報を取得する処理を更に行い、取得した位置関係の情報及び求めた紫外線照射量に基づいて、消毒効果を判定する、(1)の検査装置。 (2) The processor further performs a process of acquiring information on the relative positional relationship between the ultraviolet light source and the sheet, and determines the disinfection effect based on the acquired information on the positional relationship and the obtained amount of ultraviolet irradiation. , (1) inspection device.
 (3)プロセッサは、空間の3次元モデルを取得する処理と、3次元モデル上での紫外線光源の位置及びシートの位置の情報を取得する処理と、を更に行い、3次元モデル上での紫外線光源の位置及びシートの位置の情報に基づいて、紫外線光源とシートとの間の相対的な位置関係を算出し、位置関係の情報を取得する、(2)の検査装置。 (3) The processor further performs a process of acquiring a three-dimensional model of the space and a process of acquiring information on the position of the ultraviolet light source and the position of the sheet on the three-dimensional model, The inspection apparatus according to (2), wherein the relative positional relationship between the ultraviolet light source and the sheet is calculated based on information on the position of the light source and the position of the sheet, and information on the positional relationship is obtained.
 (4)プロセッサは、3次元モデルをディスプレイに表示させる処理を更に行い、ディスプレイに表示された3次元モデル上で紫外線光源の位置及びシートの位置の指定を受け付けて、3次元モデル上での紫外線光源の位置及びシートの位置の情報を取得する、(3)の検査装置。 (4) The processor further performs processing for displaying the three-dimensional model on the display, receives designation of the position of the ultraviolet light source and the position of the sheet on the three-dimensional model displayed on the display, and emits ultraviolet rays on the three-dimensional model. The inspection device according to (3), which acquires information on the position of the light source and the position of the sheet.
 (5)プロセッサは、空間内の複数箇所にシートを設置することで取得される空間内の複数箇所の紫外線照射量の情報に基づいて、空間内の紫外線の照射分布を推定する処理と、推定した照射分布を示すマップを生成する処理と、生成したマップを3次元モデルに重畳させてディスプレイに表示させる処理と、を更に行う、(3)又は(4)の検査装置。 (5) The processor performs a process of estimating the irradiation distribution of ultraviolet rays in the space based on the information of the ultraviolet irradiation amount at the plurality of points in the space, which is obtained by installing sheets at a plurality of points in the space. The inspection apparatus according to (3) or (4), which further performs a process of generating a map showing the irradiation distribution obtained and a process of superimposing the generated map on the three-dimensional model and displaying it on a display.
 (6)位置関係の情報は、紫外線光源とシートとの間の距離の情報、及び、紫外線光源に対するシートの設置方向と紫外線の照射方向とのなす角度の情報を含む、(2)から(5)のいずれか一の検査装置。 (6) Information on the positional relationship includes information on the distance between the ultraviolet light source and the sheet, and information on the angle formed by the installation direction of the sheet with respect to the ultraviolet light source and the irradiation direction of the ultraviolet rays, from (2) to (5). ) inspection equipment.
 (7)プロセッサは、求めた紫外線照射量を閾値と比較して、消毒効果を判定する、(1)から(6)のいずれか一の検査装置。 (7) The inspection device according to any one of (1) to (6), wherein the processor compares the obtained ultraviolet irradiation amount with a threshold to determine the disinfection effect.
 (8)紫外線照射量に応じて色が変化するシートと、紫外線照射量と色との関係を示すチャートと、撮影装置と、ディスプレイと、(1)から(7)のいずれか一の検査装置と、を備えた検査システム。 (8) A sheet whose color changes according to the amount of ultraviolet irradiation, a chart showing the relationship between the amount of ultraviolet irradiation and color, an imaging device, a display, and the inspection device according to any one of (1) to (7). and an inspection system comprising:
 (9)シートを保持する保持部材にチャートが一体的に備えられる、(8)の検査システム。 (9) The inspection system of (8), wherein the holding member that holds the sheet is integrally provided with the chart.
 (10)シートは、バンドパスフィルタを有し、特定の波長域の紫外線の照射量に応じて色が変化する、(8)又は(9)の検査システム。 (10) The inspection system of (8) or (9), wherein the sheet has a band-pass filter and changes color according to the amount of ultraviolet radiation in a specific wavelength range.
 (11)定位置の紫外線光源から紫外線が照射される空間内に紫外線照射量に応じて色が変化するシートを設置するステップと、空間内で規定時間露光させたシートを紫外線照射量と色との関係を示すチャートと共に撮影するステップと、撮影された画像を解析し、シートの設置箇所における紫外線照射量を求めるステップと、求めた紫外線照射量に基づいて、シートの設置箇所における消毒効果を判定するステップと、を含む、検査方法。 (11) A step of placing a sheet whose color changes according to the amount of ultraviolet irradiation in a space irradiated with ultraviolet rays from a UV light source at a fixed position; Analyzing the photographed image to determine the amount of ultraviolet irradiation at the location where the sheet is installed, and determining the disinfection effect at the location where the sheet is installed based on the determined amount of ultraviolet radiation. A method of inspection, comprising:
 (12)紫外線照射量に応じて色が変化するシートであって、定位置の紫外線光源から紫外線が照射される空間内で規定時間露光させたシートを、紫外線照射量と色との関係を示すチャートと共に撮影した画像を取得する機能と、取得した画像を解析し、シートの設置箇所における紫外線照射量を求める機能と、求めた紫外線照射量に基づいて、シートの設置箇所における消毒効果を判定する機能と、をコンピュータに実現させる検査プログラム。 (12) Shows the relationship between the amount of ultraviolet irradiation and the color of a sheet that changes color depending on the amount of ultraviolet irradiation and is exposed for a specified time in a space where ultraviolet rays are irradiated from a fixed ultraviolet light source. A function to acquire an image taken together with the chart, a function to analyze the acquired image and determine the amount of UV irradiation at the place where the sheet is installed, and based on the determined UV dose, determine the disinfection effect at the place where the sheet is installed. An inspection program that allows a computer to realize functions and
 (13)プロセッサを備え、プロセッサは、紫外線照射量に応じて色が変化するシートであって、定位置の紫外線光源から紫外線が照射される空間内の複数個所で規定時間露光させた複数のシートを、それぞれ紫外線照射量と色との関係を示すチャートと共に撮影した複数の画像を取得する処理と、取得した各画像を解析し、各シートの設置箇所における紫外線照射量を求める処理と、空間の3次元モデルを取得する処理と、3次元モデル上での各シートの位置の情報を取得する処理と、3次元モデル上での各シートの位置の情報及び各シートの位置での紫外線照射量の情報に基づいて、空間内の紫外線の照射分布を推定する処理と、推定した照射分布を示すマップを生成する処理と、生成したマップを3次元モデルに重畳させてディスプレイに表示させる処理と、を行う、検査装置。 (13) A processor is provided, and the processor is a sheet whose color changes according to the amount of ultraviolet irradiation, and is a plurality of sheets exposed for a specified time at a plurality of locations in a space irradiated with ultraviolet rays from a fixed ultraviolet light source. are acquired together with a chart showing the relationship between UV dose and color, each acquired image is analyzed to determine the UV dose at each seat installation location, and space A process of acquiring a three-dimensional model, a process of acquiring information on the position of each sheet on the three-dimensional model, information on the position of each sheet on the three-dimensional model, and ultraviolet irradiation amount at each sheet position. Based on the information, a process of estimating the UV irradiation distribution in the space, a process of generating a map showing the estimated irradiation distribution, and a process of superimposing the generated map on the three-dimensional model and displaying it on the display. Do, inspection equipment.
 本発明によれば、紫外線の消毒効果を定量的に検査できる。また、これにより、紫外線光源の配置の調整が容易になり、所望の消毒効果を容易に実現できる。 According to the present invention, the disinfection effect of ultraviolet rays can be quantitatively inspected. In addition, this facilitates the adjustment of the arrangement of the ultraviolet light sources, making it possible to easily achieve the desired disinfection effect.
検査システムの概略構成を示す図Diagram showing the schematic configuration of the inspection system 検査用カードの概略構成を示す正面斜視図Front perspective view showing a schematic configuration of an inspection card 検査用カードの概略構成を示す背面斜視図Rear perspective view showing a schematic configuration of an inspection card 測定シートの色の変化の様子を示す図A diagram showing how the color of the measurement sheet changes 検査装置のハードウェア構成の一例を示すブロック図Block diagram showing an example of the hardware configuration of an inspection device 検査装置が有する機能のブロック図Block diagram of functions possessed by inspection equipment 判定結果の画面表示の一例を示す図A diagram showing an example of a judgment result screen display 検査の手順を示すフローチャートFlowchart showing inspection procedures 検査装置において行われる消毒効果の判定処理の手順を示すフローチャートFlowchart showing the procedure of the disinfection effect determination process performed in the inspection device 検査装置が有する機能のブロック図Block diagram of functions possessed by inspection equipment 検査の手順を示すフローチャートFlowchart showing inspection procedures 検査装置において行われる消毒効果の判定処理の手順を示すフローチャートFlowchart showing the procedure of the disinfection effect determination process performed in the inspection device 測定対象箇所における紫外線の入射角の算出の概念図Conceptual diagram of calculation of the incident angle of ultraviolet rays at the measurement target location 検査装置が有する機能のブロック図Block diagram of functions possessed by inspection equipment 3次元モデルの出力の一例を示す図A diagram showing an example of the output of a 3D model 検査の手順を示すフローチャートFlowchart showing inspection procedures 検査装置において行われる消毒効果の判定処理の手順を示すフローチャートFlowchart showing the procedure of the disinfection effect determination process performed in the inspection device 判定結果の表示の一例を示す図A diagram showing an example of a judgment result display 一度に複数箇所を検査する場合の判定結果の表示の一例を示す図A diagram showing an example of the display of judgment results when inspecting multiple locations at once 一度に複数箇所を検査する場合の判定結果の表示の他の一例を示す図A diagram showing another example of the display of judgment results when inspecting multiple locations at once. 検査装置が有する機能のブロック図Block diagram of functions possessed by inspection equipment マップの一例を示す図A diagram showing an example of a map 検査の手順を示すフローチャートFlowchart showing inspection procedures マップの生成処理の手順を示すフローチャートFlowchart showing the procedure of map generation processing 紫外線の照射分布を示すマップ及び判定結果の表示の一例を示す図A diagram showing an example of a display of a map showing an irradiation distribution of ultraviolet rays and a determination result 検査用カードの他の一例を示す図The figure which shows another example of an inspection card
 以下、添付図面に従って本発明の好ましい実施の形態について詳説する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
 [第1の実施の形態]
 [検査システム]
 図1は、本実施の形態の検査システムの概略構成を示す図である。
[First embodiment]
[Inspection system]
FIG. 1 is a diagram showing a schematic configuration of an inspection system according to this embodiment.
 本実施の形態の検査システム1は、紫外線照射装置10が設置された室内の消毒効果を検査するシステムとして構成される。図1は、天井面2Aに紫外線照射装置10が設置され、鉛直下向きに紫外線が照射される部屋2の消毒効果を検査する場合の例を示している。図1に示すように、本実施の形態の検査システム1は、検査用カード20及び検査装置100を備えて構成される。 The inspection system 1 of the present embodiment is configured as a system for inspecting the disinfection effect in the room where the ultraviolet irradiation device 10 is installed. FIG. 1 shows an example in which an ultraviolet irradiation device 10 is installed on the ceiling surface 2A and the disinfection effect is inspected in a room 2 in which ultraviolet rays are irradiated vertically downward. As shown in FIG. 1, an inspection system 1 according to the present embodiment includes an inspection card 20 and an inspection device 100. As shown in FIG.
 [検査対象空間]
 紫外線照射装置10が設置された部屋2は、定位置の紫外線光源から紫外線が照射される空間の一例である。紫外線照射装置10は、図示しない紫外線光源を有し、その紫外線光源から出射される紫外線を所定の配光特性をもって室内に照射する。使用する紫外線光源の種類は、特に限定されない。一例として、エキシマランプが使用される。この他、発光ダイオード(LED:Light Emitting Diode)、水銀ランプ、メタルハライドランプ、キセノンランプ、半導体レーザ(LD:Laser Diode)等を紫外線光源として使用できる。
[Space to be inspected]
The room 2 in which the ultraviolet irradiation device 10 is installed is an example of a space irradiated with ultraviolet rays from a fixed ultraviolet light source. The ultraviolet irradiation device 10 has an ultraviolet light source (not shown), and irradiates the room with ultraviolet light emitted from the ultraviolet light source with a predetermined light distribution characteristic. The type of ultraviolet light source to be used is not particularly limited. As an example, excimer lamps are used. In addition, a light emitting diode (LED), a mercury lamp, a metal halide lamp, a xenon lamp, a semiconductor laser (LD: Laser Diode), or the like can be used as an ultraviolet light source.
 紫外線光源から出射させる紫外線は、消毒効果の観点からピーク波長が波長280nm~200nmの紫外線、すなわち、紫外線C波(UV-C:ultraviolet C)が好ましい。より好ましくは、222nm近傍にピーク波長を有する紫外線である。222nm近傍にピーク波長を有する紫外線は、高い消毒効果を有しつつ、人体への影響が極めて小さく、安全であるとされている。したがって、紫外線光源には、222nm近傍にピーク波長を有する紫外線を出射する光源を使用することが好ましい。なお、紫外線光源には、適宜、光学フィルタを組み合わせて使用してもよい。たとえば、人体に危険な波長域をカットする光学フィルタを組み合わせて、特定の波長域の紫外線のみを照射する構成としてもよい。 From the viewpoint of disinfection effect, the ultraviolet rays emitted from the ultraviolet light source are preferably ultraviolet rays with a peak wavelength of 280 nm to 200 nm, that is, ultraviolet C waves (UV-C). Ultraviolet rays having a peak wavelength in the vicinity of 222 nm are more preferable. Ultraviolet rays having a peak wavelength in the vicinity of 222 nm are said to be safe, having a high disinfecting effect, and having an extremely small effect on the human body. Therefore, it is preferable to use a light source that emits ultraviolet rays having a peak wavelength in the vicinity of 222 nm as the ultraviolet light source. Incidentally, the ultraviolet light source may be used in combination with an optical filter as appropriate. For example, an optical filter that cuts off a wavelength range dangerous to the human body may be combined to irradiate only ultraviolet rays in a specific wavelength range.
 上記のように、本実施の形態では、部屋2の天井面2Aに紫外線照射装置10が設置され、鉛直下向きに紫外線が照射される。この場合、照射方向は、鉛直下向き(図1の矢印V1で示す方向)となる。 As described above, in the present embodiment, the ultraviolet irradiation device 10 is installed on the ceiling surface 2A of the room 2, and ultraviolet rays are irradiated vertically downward. In this case, the irradiation direction is vertically downward (the direction indicated by arrow V1 in FIG. 1).
 [検査用カード]
 図2及び図3は、検査用カードの概略構成を示す正面斜視図及び背面斜視図である。
[Examination card]
2 and 3 are a front perspective view and a rear perspective view showing a schematic configuration of the inspection card.
 検査用カード20は、外装ケース22と、その外装ケース22に収容される測定シート24と、を有し、全体として矩形の薄板形状(いわゆるカード形状)を有する。 The inspection card 20 has an exterior case 22 and a measurement sheet 24 housed in the exterior case 22, and has a rectangular thin plate shape (so-called card shape) as a whole.
 外装ケース22は、上下2枚のプレート22A、22Bで構成される。外装ケース22は、その2枚のプレート22A、22Bの間に測定シート24を挟み込むことで、測定シート24を内部の所定位置に収容し、保持する。2枚のプレート22A、22Bは、容易に変形しない素材で構成される。一例として、プラスチックで構成される。外装ケース22は、保持部材の一例である。 The exterior case 22 is composed of two upper and lower plates 22A and 22B. The exterior case 22 accommodates and holds the measurement sheet 24 at a predetermined position inside by sandwiching the measurement sheet 24 between the two plates 22A and 22B. The two plates 22A, 22B are made of a material that is not easily deformed. As an example, it is made of plastic. The exterior case 22 is an example of a holding member.
 外装ケース22の正面には、図2に示すように、円形の窓部26が備えられる。外装ケース22に収容された測定シート24は、一部が、この窓部26から露出する。測定シート24は、この窓部26を介して露光される。 A circular window 26 is provided on the front of the exterior case 22, as shown in FIG. A part of the measurement sheet 24 housed in the exterior case 22 is exposed through the window 26 . The measurement sheet 24 is exposed through this window portion 26 .
 外装ケース22の背面には、図3に示すように、剥離紙28Aを備えた粘着シート28が備えられる。剥離紙28Aは、粘着シート28の粘着面を保護し、必要に応じて粘着シート28から剥離される。これにより、必要に応じて、検査用カード20を検査対象箇所に貼り付けて使用できる。 The rear surface of the exterior case 22 is provided with an adhesive sheet 28 with a release paper 28A, as shown in FIG. The release paper 28A protects the adhesive surface of the adhesive sheet 28 and is peeled off from the adhesive sheet 28 as necessary. As a result, the inspection card 20 can be used by sticking it to the inspection target area as needed.
 測定シート24は、紫外線に感応し、その照射量に応じて色が変化するシートである。測定シート24は、色が不可逆的に変化するものであってもよいし、可逆的に変化するものであってもよい。色の変化は、濃度の変化を含む。変化させる色については、特に限定されないが、赤系、マゼンタ系、青系、シアン系などの視感度の高い色が好ましい。なお、この種のシート(紫外線感光シートともいう)は、公知であるので、その詳細についての説明は省略する。測定シート24には、たとえば、富士フイルム社製のUVスケール(商品名)を使用できる。UVスケールは、紫外線に感応し、その照射量に応じて色の濃さが不可逆的に変化するシートである。 The measurement sheet 24 is a sheet that responds to ultraviolet rays and changes color according to the amount of irradiation. The measurement sheet 24 may change color irreversibly or reversibly. A change in color includes a change in density. Colors to be changed are not particularly limited, but colors with high visual sensitivity such as red, magenta, blue, and cyan are preferred. Since this type of sheet (also referred to as an ultraviolet sensitive sheet) is well known, detailed description thereof will be omitted. For the measurement sheet 24, for example, a UV scale (trade name) manufactured by FUJIFILM Corporation can be used. A UV scale is a sheet that responds to ultraviolet rays and whose color depth changes irreversibly according to the amount of irradiation.
 図4は、測定シートの色の変化の様子を示す図である。 FIG. 4 is a diagram showing how the color of the measurement sheet changes.
 同図は、照射量に応じて色の濃度が変化する測定シートに対し、定位置から一定光量の紫外線を照射した場合の色の経時的変化を示している。同図(A)は、照射直後の状態を示している。同図(B)は、同図(A)に示す状態から所定時間経過後の状態を示している。同図(C)は、同図(B)に示す状態から更に所定時間経過後の状態を示している。同図(D)は、同図(C)に示す状態から更に所定時間経過後の状態を示している。同図(E)は、同図(D)に示す状態から更に所定時間経過後の状態を示している。 The figure shows the change in color over time when the measurement sheet whose color density changes according to the amount of irradiation is irradiated with a certain amount of ultraviolet light from a fixed position. FIG. 1(A) shows the state immediately after irradiation. (B) of the same figure shows the state after a predetermined time has elapsed from the state shown in (A) of the same figure. (C) of the same figure shows the state after a predetermined time has elapsed from the state shown in (B) of the same figure. (D) of the same figure shows the state after a predetermined time has elapsed from the state shown in (C) of the same figure. (E) of the same figure shows the state after a predetermined time has elapsed from the state shown in (D) of the same figure.
 紫外線照射量は、時間による照度の積分値で求められる。すなわち、紫外線照射量(J/m)=照度(W/m)×照射時間(s)で求められる。照度は、単位面積に入射する光束量である。 The amount of UV irradiation is determined by an integral value of illuminance over time. That is, it is determined by UV irradiation amount (J/m 2 )=illuminance (W/m 2 )×irradiation time (s). Illuminance is the amount of luminous flux incident on a unit area.
 したがって、測定シート24に対し定位置から一定光量の紫外線を照射した場合、測定シート24は、経時的に色の濃度が変化する。 Therefore, when the measurement sheet 24 is irradiated with a certain amount of ultraviolet light from a fixed position, the color density of the measurement sheet 24 changes over time.
 外装ケース22の正面には、図2に示すように、発色チャート30が一体的に備えられる。発色チャート30は、紫外線照射量と測定シート24の色との関係を示す色の表である。発色チャート30は、複数の色見本28a、28b、…を一定の間隔で一列に並べて構成される。図2に示す例では、5つの色見本28a、28b、28c、28d、28eを表示している。色見本の数は、特に限定されない。各色見本28a、28b、…は、一方向に向かって濃度が変化するように配列される。図2に示す例では、色が濃くなるほど、紫外線照射量が多いことを示している。したがって、色見本28eが最も紫外線照射量が多いことを示している。なお、図2に示す例において、色見本28aは、紫外線照射量が0の場合の色を示している。すなわち、未照射の場合の色を示している。 A coloring chart 30 is integrally provided on the front of the exterior case 22, as shown in FIG. The coloring chart 30 is a color table showing the relationship between the amount of UV irradiation and the color of the measurement sheet 24 . The coloring chart 30 is configured by arranging a plurality of color samples 28a, 28b, . . . in a line at regular intervals. In the example shown in FIG. 2, five color samples 28a, 28b, 28c, 28d and 28e are displayed. The number of color samples is not particularly limited. Each color sample 28a, 28b, . . . is arranged so that the density changes in one direction. In the example shown in FIG. 2, the darker the color, the higher the amount of UV irradiation. Therefore, the color sample 28e indicates that the UV irradiation amount is the largest. In addition, in the example shown in FIG. 2, the color sample 28a indicates the color when the amount of UV irradiation is zero. That is, it shows the color in the case of non-irradiation.
 このような発色チャート30を外装ケース22に一体的に備えることにより、おおよその紫外線露光量を目視で簡便に判別できる。 By integrally providing such a coloring chart 30 in the exterior case 22, it is possible to visually determine the approximate amount of exposure to ultraviolet rays in a simple manner.
 [検査装置]
 検査装置100は、検査用カード20を撮影した画像に基づいて検査用カード20を設置した位置の消毒効果を判定する。本実施の形態の検査システム1では、カメラ付きのタブレットコンピュータによって検査装置100が構成される。
[Inspection device]
The inspection device 100 determines the disinfection effect of the position where the inspection card 20 is installed based on the photographed image of the inspection card 20 . In the inspection system 1 of the present embodiment, an inspection apparatus 100 is configured by a tablet computer with a camera.
 図5は、検査装置(タブレットコンピュータ)のハードウェア構成の一例を示すブロック図である。 FIG. 5 is a block diagram showing an example of the hardware configuration of the inspection device (tablet computer).
 同図に示すように、検査装置100は、CPU(Central Processing Unit)110、RAM(Random Access Memory)112、ROM(Read Only Memory)114、補助記憶装置116、センサ群118、カメラ120、スピーカ122、マイク124、通信インタフェース126、ディスプレイ128、タッチパネル130等を備えて構成される。 As shown in the figure, the inspection apparatus 100 includes a CPU (Central Processing Unit) 110, a RAM (Random Access Memory) 112, a ROM (Read Only Memory) 114, an auxiliary storage device 116, a sensor group 118, a camera 120, and a speaker 122. , a microphone 124, a communication interface 126, a display 128, a touch panel 130, and the like.
 CPU110は、プロセッサの一例であり、CPU110が、所定のプログラム(検査プログラム)を実行することにより、タブレットコンピュータが検査装置100として機能する。RAM112は、CPU110の作業領域として機能する。ROM114及び/又は補助記憶装置116には、CPU110が実行するプログラム及び各種処理に必要なデータが記憶される。 The CPU 110 is an example of a processor, and the tablet computer functions as the inspection device 100 by the CPU 110 executing a predetermined program (inspection program). RAM 112 functions as a work area for CPU 110 . The ROM 114 and/or the auxiliary storage device 116 store programs executed by the CPU 110 and data necessary for various processes.
 補助記憶装置116は、たとえば、SSD(Solid State Drive)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、HDD(Hard Disk Drive)等で構成される。 The auxiliary storage device 116 is composed of, for example, SSD (Solid State Drive), EEPROM (Electrically Erasable Programmable Read-Only Memory), HDD (Hard Disk Drive), and the like.
 センサ群118は、加速度センサ、ジャイロセンサ、磁気センサ、GPS(Global Positioning System)、測域センサ等の各種センサ類を含む。測域センサは、光をスキャニングしながら検出物までの距離を測定する二次元走査型の光距離センサである。測域センサには、レーザースキャナ、レーザーレンジファインダ(LRF:Laser Range Finger)、LIDAR(Light Detection and Ranging 又は Laser Imaging Detection and Ranging)等が含まれる。測域センサを有することにより、空間を3次元的にスキャンできる。 The sensor group 118 includes various sensors such as an acceleration sensor, a gyro sensor, a magnetic sensor, a GPS (Global Positioning System), and a range sensor. A range sensor is a two-dimensional scanning optical distance sensor that measures the distance to a detected object while scanning light. Ranging sensors include laser scanners, laser range finders (LRF), LIDAR (Light Detection and Ranging or Laser Imaging Detection and Ranging), and the like. Having a range sensor enables three-dimensional scanning of space.
 カメラ120は、いわゆるデジタルカメラであり、レンズ及びイメージセンサ等を有する。イメージセンサは、たとえば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ、CCD(Charge Coupled Device)イメージセンサ等で構成される。カメラ120は、撮影装置の一例である。 The camera 120 is a so-called digital camera and has a lens, an image sensor, and the like. The image sensor is composed of, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a CCD (Charge Coupled Device) image sensor, or the like. Camera 120 is an example of an imaging device.
 通信インタフェース126は、ネットワークに接続され、他の機器との間でデータを送受信する。たとえば、インターネットを含むWAN(Wide Area Network)、LAN(Local Area Network)等に接続されて、他のコンピュータ(たとえば、サーバ等)、電子機器(たとえば、プリンタ等)との間でデータを送受信する。 The communication interface 126 is connected to a network and transmits and receives data to and from other devices. For example, it is connected to a WAN (Wide Area Network) including the Internet, a LAN (Local Area Network), etc., and transmits and receives data to and from other computers (e.g., servers, etc.) and electronic devices (e.g., printers, etc.) .
 ディスプレイ128は、たとえば、有機ELディスプレイ(Organic Electro Luminescence Display:OELD)、液晶ディスプレイ(Liquid Crystal Display:LCD)等で構成される。ディスプレイ128は、その表示面にタッチパネル130が備えられる。 The display 128 is composed of, for example, an organic electroluminescence display (OELD), a liquid crystal display (LCD), or the like. The display 128 has a touch panel 130 on its display surface.
 図6は、検査装置が有する機能のブロック図である。 FIG. 6 is a block diagram of the functions of the inspection device.
 同図に示すように、検査装置100は、画像取得部140A、画像解析部140B、判定部140C及び判定結果出力部140Dの機能を有する。これらの機能は、CPU110が、所定のプログラム(検査プログラム)を実行することで実現される。 As shown in the figure, the inspection apparatus 100 has functions of an image acquisition section 140A, an image analysis section 140B, a determination section 140C, and a determination result output section 140D. These functions are realized by the CPU 110 executing a predetermined program (inspection program).
 画像取得部140Aは、検査用カード20を撮影した画像(狭義には、検査用カード20に備えられた測定シート24を撮影した画像)を取得する処理を行う。本実施の形態では、検査装置100に備えられたカメラ120で検査用カード20を撮影して、この画像を取得する。撮影は、検査用カード20の正面側の面(窓部26を有する面)に対して行われ、かつ、全体が写るように行われる。すなわち、測定シート24の部分だけでなく、発色チャート30の部分も含めて撮影される。これにより、発色チャート30を含む画像を取得できる。なお、撮影対象とする検査用カード20は、露光済みの検査用カードである。すなわち、検出対象とする位置に規定時間放置することで、規定時間露光させた検査用カードである。 The image acquisition unit 140A performs processing for acquiring an image of the inspection card 20 (in a narrow sense, an image of the measurement sheet 24 provided in the inspection card 20). In this embodiment, the inspection card 20 is photographed by the camera 120 provided in the inspection apparatus 100 to acquire this image. The photographing is performed on the front surface of the inspection card 20 (the surface having the window portion 26), and is performed so that the entire image is captured. That is, not only the portion of the measurement sheet 24 but also the portion of the coloring chart 30 is photographed. Accordingly, an image including the coloring chart 30 can be acquired. The inspection card 20 to be imaged is an exposed inspection card. That is, it is an inspection card exposed for a specified time by leaving it at a position to be detected for a specified time.
 画像解析部140Bは、取得した画像を解析し、紫外線露光量を求める処理を行う。具体的には、まず、画像から測定シート24の領域を特定する。次に、特定した領域の色、すなわち、測定シート24の色(発色値)を特定する。そして、特定した色に対応する紫外線露光量を特定する。 The image analysis unit 140B analyzes the acquired image and performs processing to obtain the ultraviolet exposure amount. Specifically, first, the area of the measurement sheet 24 is identified from the image. Next, the color of the specified area, that is, the color (color development value) of the measurement sheet 24 is specified. Then, the ultraviolet exposure amount corresponding to the specified color is specified.
 測定シート24の領域を特定する処理には、公知の画像認識の技術が採用される。たとえば、機械学習、深層学習等により生成した画像認識モデルを用いて、画像から測定シート24の領域を検出する技術等を採用できる。機械学習アルゴリズムの種類については、特に限定されない。たとえば、RNN(Recurrent Neural Network;再帰型ニューラルネットワーク)、CNN(Convolutional Neural Network;畳み込みニューラルネットワーク)及びMLP(Multilayer Perceptron;多層パーセプトロン)等のニューラルネットワークを用いたアルゴリズムを用いることができる。 A known image recognition technique is adopted for the process of specifying the area of the measurement sheet 24 . For example, a technique of detecting the area of the measurement sheet 24 from an image using an image recognition model generated by machine learning, deep learning, or the like can be adopted. The type of machine learning algorithm is not particularly limited. For example, algorithms using neural networks such as RNN (Recurrent Neural Network), CNN (Convolutional Neural Network) and MLP (Multilayer Perceptron) can be used.
 なお、測定シート24の領域が既知の場合、測定シート24の領域を特定する処理は不要である。たとえば、必ず画面内の規定の位置に検査用カード20を納めて撮影するような場合には、画像内での測定シート24の位置(窓部26の位置)が既知となるので、測定シート24の領域を特定する処理は不要である。 Note that if the area of the measurement sheet 24 is known, the process of specifying the area of the measurement sheet 24 is unnecessary. For example, when the inspection card 20 is always placed in a prescribed position within the screen and photographed, the position of the measurement sheet 24 (the position of the window portion 26) within the image is known. No processing is required to identify the area of .
 測定シート24の色を特定する処理には、キャリブレーション処理が含まれる。撮影される画像は、カメラの個体差、撮影状況等によってばらつきが生じる。このため、正確な色を特定できるように、キャリブレーション処理を行う。この処理は、測定シート24と共に撮影された発色チャート30の画像を用いて行われる。すなわち、発色チャート30をキャリブレーションチャートとして、キャリブレーション処理が行われる。 The processing for specifying the color of the measurement sheet 24 includes calibration processing. The photographed image varies depending on individual differences of cameras, photographing conditions, and the like. Therefore, calibration processing is performed so that accurate colors can be specified. This processing is performed using the image of the coloring chart 30 photographed together with the measurement sheet 24 . That is, calibration processing is performed using the coloring chart 30 as a calibration chart.
 特定した色に対応する紫外線露光量を特定する処理は、たとえば、ルックアップテーブル(Lookup table:LUT)142を参照して行われる。ルックアップテーブル142は、測定シート24の色(発色濃度)と紫外線露光量とが一対一で対応づけられたテーブルである。ルックアップテーブル142は、補助記憶装置116に格納される。 The process of specifying the ultraviolet exposure amount corresponding to the specified color is performed by referring to a lookup table (LUT) 142, for example. The lookup table 142 is a table in which the color (color development density) of the measurement sheet 24 and the ultraviolet exposure amount are associated one-to-one. Lookup table 142 is stored in auxiliary storage device 116 .
 判定部140Cは、求めた紫外線照射量に基づいて、消毒効果を判定する処理を行う。ここでの消毒効果は、検査用カード20に設置位置における消毒効果である。本実施の形態では、求めた紫外線照射量を判定閾値と比較して、十分な消毒効果が得られているか否かを判定する。具体的には、十分な消毒効果が得られている場合を「OK」、十分な消毒効果が得られていない場合を「NG」として、消毒効果を択一的に判定する。 The determination unit 140C performs a process of determining the disinfection effect based on the obtained ultraviolet irradiation amount. The disinfection effect here is the disinfection effect at the installation position of the inspection card 20 . In the present embodiment, it is determined whether or not a sufficient disinfection effect is obtained by comparing the obtained ultraviolet irradiation amount with a determination threshold value. Specifically, the disinfection effect is determined alternatively, with "OK" when a sufficient disinfection effect is obtained and "NG" when a sufficient disinfection effect is not obtained.
 ここで、十分な消毒効果が得られている場合とは、消毒するのに十分な紫外線照射量が得られている場合をいう。消毒するのに十分な紫外線照射量は、対象物(消毒の対象とする菌及びウイルス等)、照射する紫外線種(波長)等によって異なる。したがって、対象物及び紫外線種等によって、判定閾値が定められる。判定閾値は閾値の一例である。 Here, the case where a sufficient disinfection effect is obtained means the case where a sufficient amount of ultraviolet irradiation for disinfection is obtained. The amount of UV irradiation sufficient for disinfection varies depending on the target (bacteria, virus, etc. to be disinfected), the UV species (wavelength) to be irradiated, and the like. Therefore, the determination threshold is determined depending on the object, the type of ultraviolet rays, and the like. A determination threshold is an example of a threshold.
 判定閾値の情報は、補助記憶装置116に記憶される。判定部140Cは、求めた紫外線照射量が判定閾値以上の場合、OKと判定する。すなわち、十分な消毒効果が得られていると判定する。一方、求めた紫外線照射量が判定閾値未満の場合、NGと判定する。すなわち、十分な消毒効果が得られていないと判定する。 Information on the determination threshold is stored in the auxiliary storage device 116 . The determination unit 140C determines OK when the determined ultraviolet irradiation amount is equal to or greater than the determination threshold. That is, it is determined that a sufficient disinfection effect is obtained. On the other hand, when the obtained ultraviolet irradiation amount is less than the determination threshold value, it is determined as NG. That is, it is determined that a sufficient disinfection effect is not obtained.
 判定結果出力部140Dは、判定部140Cによる判定結果を出力する処理を行う。本実施の形態では、判定結果をディスプレイ128に表示する。 The determination result output unit 140D performs processing for outputting the determination result by the determination unit 140C. In this embodiment, the determination result is displayed on display 128 .
 図7は、判定結果の画面表示の一例を示す図である。 FIG. 7 is a diagram showing an example of a screen display of determination results.
 同図(A)は、OKと判定された場合の画面表示の一例を示している。同図(B)は、NGと判定された場合の画面表示の一例を示している。 (A) of the same figure shows an example of a screen display when it is determined to be OK. FIG. 4B shows an example of the screen display when it is determined as NG.
 同図(A)及び(B)に示すように、撮影した画像Im及び判定結果を示す情報Ifが表示される。撮影した画像Imは、画像表示領域R1に表示され、判定結果を示す情報Ifは、判定結果表示領域R2に表示される。判定結果を示す情報Ifとして、判定結果がOKの場合、同図(A)に示すように、「消毒 OK」の文字が表示される。また、判定結果がNGの場合、同図(B)に示すように、「消毒 NG」の文字が表示される。 As shown in (A) and (B) of the figure, the captured image Im and the information If indicating the judgment result are displayed. The captured image Im is displayed in the image display area R1, and the information If indicating the determination result is displayed in the determination result display area R2. As information If indicating the determination result, if the determination result is OK, the characters "Disinfection OK" are displayed as shown in FIG. Also, if the determination result is NG, the characters "Disinfection NG" are displayed as shown in FIG.
 [検査方法]
 次に、本実施の形態の検査システム1を使用した消毒効果の検査方法について説明する。
[Inspection methods]
Next, a disinfection effect inspection method using the inspection system 1 of the present embodiment will be described.
 図8は、検査の手順を示すフローチャートである。 FIG. 8 is a flow chart showing the inspection procedure.
 まず、検査対象箇所に検査用カード20を設置する(ステップS1)。検査対象箇所は、検査対象とする空間内に設定される。検査対象とする空間は、定位置から紫外線が照射される空間である。すなわち、紫外線照射装置10が設置された空間である。本実施の形態では、紫外線照射装置10が設置された部屋2内に設置される。 First, the inspection card 20 is installed at the location to be inspected (step S1). A location to be inspected is set within a space to be inspected. A space to be inspected is a space irradiated with ultraviolet rays from a fixed position. That is, it is a space in which the ultraviolet irradiation device 10 is installed. In this embodiment, it is installed in the room 2 in which the ultraviolet irradiation device 10 is installed.
 次に、検査用カード20を規定時間露光させる(ステップS2)。すなわち、紫外線照射装置10を規定時間作動させ、検査用カード20に備えられた測定シート24を規定時間露光させる。なお、紫外線照射装置10を規定時間作動させるとは、紫外線光源を規定時間点灯させることを意味する。規定時間(露光時間)は、あらかじめ定められる時間である。一例として、規定の照度で照射した場合に対象物(消毒の対象とする菌及びウイルス等)を消毒できる時間に設定される。消毒できるとは、対象物をほぼ殺菌ないし不活化できる場合(たとえば、99.9%殺菌ないし不活化できる場合)を含むものである。 Next, the inspection card 20 is exposed for a specified time (step S2). That is, the ultraviolet irradiation device 10 is operated for a specified time, and the measurement sheet 24 provided on the inspection card 20 is exposed for a specified time. Note that operating the ultraviolet irradiation device 10 for a specified time means lighting the ultraviolet light source for a specified time. The prescribed time (exposure time) is a time determined in advance. As an example, the time is set so that the object (bacteria, virus, etc. to be disinfected) can be disinfected when irradiated with a specified illuminance. "Can be disinfected" includes the case where the object can be almost sterilized or inactivated (for example, the case where 99.9% sterilization or inactivation can be achieved).
 次に、規定時間露光させた検査用カード20を撮影する(ステップS3)。本実施の形態では、検査装置100に備えられたカメラ120で検査用カード20を撮影する。 Next, the inspection card 20 exposed for the specified time is photographed (step S3). In this embodiment, the inspection card 20 is photographed by the camera 120 provided in the inspection apparatus 100 .
 検査用カード20が撮影されると、検査装置100において、消毒効果の判定処理が行われる(ステップS4)。 When the inspection card 20 is photographed, the inspection device 100 performs a disinfection effect determination process (step S4).
 図9は、検査装置において行われる消毒効果の判定処理の手順を示すフローチャートである。 FIG. 9 is a flow chart showing the procedure of the disinfection effect determination process performed by the inspection device.
 まず、検査用カード20を撮影した画像を取得する(ステップS4-1)。次に、取得した画像を解析し、測定シート24の色(発色値)を特定する(ステップS4-2)。この際、発色チャート30を利用して、キャリブレーションの処理が行われる。これにより、より正確に色を特定できる。次に、特定した色に基づいて、紫外線照射量を特定する(ステップS4-3)。この処理は、ルックアップテーブル142を参照して行われる。次に、特定した紫外線照射量に基づいて消毒効果を判定する(ステップS4-4)。具体的には、特定した紫外線照射量を判定閾値と比較する。特定した紫外線照射量が判定閾値以上の場合、十分な消毒効果が得られているとして、「OK」と判定する。一方、特定した紫外線照射量が判定閾値未満の場合、十分な消毒効果が得られていないとして、「NG」と判定する。 First, an image of the inspection card 20 is acquired (step S4-1). Next, the obtained image is analyzed to specify the color (color development value) of the measurement sheet 24 (step S4-2). At this time, calibration processing is performed using the coloring chart 30 . This allows more accurate color identification. Next, based on the specified color, the amount of UV irradiation is specified (step S4-3). This processing is performed with reference to the lookup table 142 . Next, the disinfection effect is determined based on the specified ultraviolet irradiation dose (step S4-4). Specifically, the specified ultraviolet irradiation amount is compared with the determination threshold. If the specified ultraviolet irradiation dose is equal to or greater than the determination threshold value, it is determined that a sufficient disinfection effect has been obtained and that the result is "OK". On the other hand, when the specified ultraviolet irradiation amount is less than the determination threshold value, it is determined as "NG" because a sufficient disinfection effect is not obtained.
 消毒効果の判定処理後、検査装置100は、その判定結果を出力する(ステップS5)。すなわち、図7に示すように、判定結果をディスプレイ128に表示する。 After the disinfection effect determination process, the inspection device 100 outputs the determination result (step S5). That is, the judgment result is displayed on the display 128 as shown in FIG.
 以上説明したように、本実施の形態の検査システム1によれば、検査用カード20を撮影するだけで簡単に消毒効果を検査できる。また、測定シート24の発色状態を定量的に読み取ることができるので、消毒効果を定量的に検査できる。更に、キャリブレーションも行うので、正確かつ安定した検査を実現できる。 As described above, according to the inspection system 1 of the present embodiment, the disinfection effect can be inspected simply by photographing the inspection card 20 . In addition, since the coloring state of the measurement sheet 24 can be read quantitatively, the disinfection effect can be quantitatively inspected. Furthermore, since calibration is also performed, accurate and stable inspection can be realized.
 紫外線による消毒は、紫外線が到達しない影の部分は全く消毒されないという欠点があるが、本実施の形態の検査システム1を使用することで、簡便かつ正確に消毒効果を確認できる。 Disinfection by ultraviolet rays has the drawback that shadowed areas where ultraviolet rays do not reach are not disinfected at all, but by using the inspection system 1 of this embodiment, the disinfection effect can be easily and accurately confirmed.
 また、紫外線光源は、経時劣化するが、本実施の形態の検査システム1を使用することで、簡便かつ正確に劣化状態を確認できる。 In addition, although the ultraviolet light source deteriorates over time, the deterioration state can be easily and accurately confirmed by using the inspection system 1 of the present embodiment.
 [変形例]
 [対象物及び紫外線種の選択]
 上記のように、消毒に必要な紫外線照射量は、対象物(消毒の対象とする菌及びウイルス等)、照射する紫外線種(波長)等によって異なる。したがって、目的、用途、状況等に応じて、対象物及び紫外線種等を選択できるようにすることが、より好ましい。この場合、対象物ごと、紫外線種ごと、又は、その組み合わせごとに判定閾値が定められる。
[Modification]
[Selection of target object and ultraviolet species]
As described above, the amount of ultraviolet irradiation required for disinfection varies depending on the target (bacteria, virus, etc. to be disinfected), the type of ultraviolet light (wavelength), and the like. Therefore, it is more preferable to be able to select the target object, the type of ultraviolet rays, etc. according to the purpose, application, situation, and the like. In this case, a determination threshold is determined for each object, each type of ultraviolet rays, or each combination thereof.
 選択処理は、たとえば、ディスプレイ128及びタッチパネル130を使用して行う。具体的には、選択可能な対象物及び/又は紫外線種をディスプレイ128に一覧表示し、タッチパネル130を用いたタッチ操作で選択させる。 The selection process is performed using the display 128 and the touch panel 130, for example. Specifically, a list of selectable objects and/or ultraviolet rays is displayed on the display 128 and selected by a touch operation using the touch panel 130 .
 [撮影のナビゲーション]
 検査用カード20の撮影の際、所定の画像が撮影されるように、撮影のナビゲーションを行う構成としてもよい。たとえば、ライブビュー画像に重畳させて枠を表示し、枠内に検査用カード20を納めて撮影するようにガイドする。枠は、検査用カード20の外形に対応した形状とし、画面内の一定位置に表示する。また、撮影の際は、所定の向きで検査用カード20を撮影する。たとえば、図7に示すように、発色チャート30が右側に写る向きで撮影する。これにより、測定シート24及び発色チャート30の抽出処理を容易にできる。
[Shooting navigation]
When the inspection card 20 is photographed, navigation for photographing may be performed so that a predetermined image is photographed. For example, a frame is displayed superimposed on the live view image, and guidance is provided to place the inspection card 20 within the frame and take an image. The frame has a shape corresponding to the outer shape of the inspection card 20 and is displayed at a fixed position within the screen. When photographing, the inspection card 20 is photographed in a predetermined orientation. For example, as shown in FIG. 7, the image is taken with the coloring chart 30 on the right side. This facilitates the extraction process of the measurement sheet 24 and the coloring chart 30 .
 [第2の実施の形態]
 上記のように、紫外線照射量は、時間による照度の積分値で求められる(紫外線照射量=照度×照射時間)。一方、照度は、光源からの距離によって変化する。したがって、光源からの距離が既知の場合は、光源から距離を考慮して、消毒効果を判定することで、より適切な判定結果が得られる。
[Second embodiment]
As described above, the amount of UV irradiation is determined by the integrated value of the illuminance with respect to time (UV dose=illuminance×irradiation time). On the other hand, the illuminance varies depending on the distance from the light source. Therefore, when the distance from the light source is known, more appropriate determination results can be obtained by determining the disinfection effect in consideration of the distance from the light source.
 以下、光源からの距離を考慮して、消毒効果を検査する場合について説明する。なお、検査装置以外の構成は、上記第1の実施の形態と同じなので、ここでは、検査装置についてのみ説明する。 Below, the case of examining the disinfection effect considering the distance from the light source will be described. Since the configuration other than the inspection device is the same as that of the first embodiment, only the inspection device will be described here.
 [構成]
 図10は、検査装置が有する機能のブロック図である。
[Constitution]
FIG. 10 is a functional block diagram of the inspection device.
 本実施の形態の検査装置100は、距離情報取得部140Eの機能を有する点で上記第1の実施の形態の検査装置と相違する。 The inspection apparatus 100 of the present embodiment differs from the inspection apparatus of the first embodiment in that it has the function of the distance information acquisition section 140E.
 距離情報取得部140Eは、紫外線光源と検査対象箇所との間の距離の情報を取得する処理を行う。紫外線光源の位置は、紫外線照射装置10の設置位置で特定される。したがって、紫外線光源と検査対象箇所との間の距離は、紫外線照射装置10と検査対象箇所との間の距離として求められる。検査対象箇所は、検査用カード20の設置位置である。距離の情報は、たとえば、実測値をユーザがタッチパネル130で入力する。また、検査装置100に距離の計測手段が備えられている場合は、その計測手段を用いて計測することもできる。たとえば、本実施の形態の検査装置100のように測域センサを有する場合は、その測域センサを用いて、紫外線照射装置10と検査対象箇所との間の距離を計測することもできる。取得した距離の情報は、判定部140Cに加えられる。 The distance information acquisition unit 140E performs processing for acquiring information on the distance between the ultraviolet light source and the inspection target location. The position of the ultraviolet light source is specified by the installation position of the ultraviolet irradiation device 10 . Therefore, the distance between the ultraviolet light source and the location to be inspected is obtained as the distance between the ultraviolet irradiation device 10 and the location to be inspected. The location to be inspected is the installation position of the inspection card 20 . For the distance information, for example, the user inputs an actual measurement value on touch panel 130 . Moreover, when the inspection apparatus 100 is equipped with a distance measuring means, the distance can be measured using the measuring means. For example, if the inspection apparatus 100 of the present embodiment has a range sensor, the range sensor can be used to measure the distance between the ultraviolet irradiation device 10 and the location to be inspected. The acquired distance information is added to the determination unit 140C.
 判定部140Cは、取得した距離の情報及び検査用カード20から読み取った紫外線照射量の情報に基づいて、消毒効果を判定する。具体的には、距離に対応した判定閾値の情報を取得し、取得した判定閾値と紫外線照射量とを比較して、消毒効果を判定する。紫外線照射量が、判定閾値以上の場合、OKと判定し、判定閾値未満の場合、NGと判定する。 The determination unit 140C determines the disinfection effect based on the obtained distance information and the ultraviolet irradiation amount information read from the inspection card 20 . Specifically, information on the determination threshold value corresponding to the distance is acquired, and the acquired determination threshold value is compared with the amount of ultraviolet irradiation to determine the disinfection effect. If the amount of UV irradiation is equal to or greater than the determination threshold value, it is determined as OK, and if it is less than the determination threshold value, it is determined as NG.
 判定閾値は、距離を複数の区間に分割し、区間ごとに定められる。判定部140Cは、取得した距離の情報に基づいて該当する区間を特定し、特定した区間に設定された判定閾値の情報を取得する。 The judgment threshold is determined for each section by dividing the distance into multiple sections. The determination unit 140C identifies the applicable section based on the obtained distance information, and obtains information about the determination threshold set for the identified section.
 [検査方法]
 図11は、検査の手順を示すフローチャートである。
[Inspection methods]
FIG. 11 is a flow chart showing the inspection procedure.
 まず、検査対象箇所に検査用カード20を設置する(ステップS11)。次に、検査用カード20を規定時間露光させる(ステップS12)。次に、規定時間露光させた検査用カード20を撮影する(ステップS13)。次に、紫外線照射装置10と検査対象箇所との間の距離を計測し、計測結果を検査装置100に入力する(ステップS14)。検査装置100に距離の計測手段が備えられている場合は、その計測手段を用いて距離を計測する。この場合、距離の情報を直接取得できるので、計測結果を入力する処理は省略される。 First, the inspection card 20 is installed at the location to be inspected (step S11). Next, the inspection card 20 is exposed for a specified time (step S12). Next, the inspection card 20 exposed for the specified time is photographed (step S13). Next, the distance between the ultraviolet irradiation device 10 and the location to be inspected is measured, and the measurement result is input to the inspection device 100 (step S14). If the inspection apparatus 100 is equipped with a distance measuring means, the distance is measured using the measuring means. In this case, since distance information can be obtained directly, the process of inputting the measurement result is omitted.
 検査用カード20の撮影及び距離の入力が完了すると、検査装置100において、消毒効果の判定処理が行われる(ステップS15)。 When the photographing of the inspection card 20 and the input of the distance are completed, the inspection device 100 performs a disinfection effect determination process (step S15).
 図12は、検査装置において行われる消毒効果の判定処理の手順を示すフローチャートである。 FIG. 12 is a flow chart showing the procedure of the disinfection effect determination process performed by the inspection device.
 まず、検査用カード20を撮影した画像を取得する(ステップS15-1)。次に、紫外線照射装置10と検査対象箇所との間の距離の情報を取得する(ステップS15-2)。次に、取得した画像を解析し、測定シート24の色(発色値)を特定する(ステップS15-3)。次に、特定した色に基づいて、紫外線照射量を特定する(ステップS15-4)。次に、特定した紫外線照射量及び取得した距離の情報に基づいて消毒効果を判定する(ステップS15-5)。この処理は、まず、取得した距離の情報に基づいて、判定閾値の情報を取得する。次いで、取得した判定閾値と特定した紫外線照射量とを比較する。特定した紫外線照射量が判定閾値以上の場合、十分な消毒効果が得られているとして、「OK」と判定する。一方、特定した紫外線照射量が判定閾値未満の場合、十分な消毒効果が得られていないとして、「NG」と判定する。 First, an image of the inspection card 20 is acquired (step S15-1). Next, information on the distance between the ultraviolet irradiation device 10 and the inspection target portion is acquired (step S15-2). Next, the obtained image is analyzed to specify the color (color development value) of the measurement sheet 24 (step S15-3). Next, based on the specified color, the amount of UV irradiation is specified (step S15-4). Next, the disinfection effect is determined based on the specified ultraviolet irradiation dose and the acquired distance information (step S15-5). In this process, first, information on the determination threshold is acquired based on the acquired information on the distance. Next, the acquired determination threshold is compared with the specified UV dose. If the specified ultraviolet irradiation dose is equal to or greater than the determination threshold value, it is determined that a sufficient disinfection effect has been obtained and that the result is "OK". On the other hand, when the specified ultraviolet irradiation amount is less than the determination threshold value, it is determined as "NG" because a sufficient disinfection effect is not obtained.
 判定処理の完了後、検査装置100は、判定結果を出力する(ステップS16)。本実施の形態では、判定結果をディスプレイ128に表示する(図7参照)。 After completing the determination process, the inspection device 100 outputs the determination result (step S16). In this embodiment, the determination result is displayed on display 128 (see FIG. 7).
 以上説明したように、本実施の形態の検査装置によれば、紫外線光源との距離を考慮して、消毒効果を判定するので、各位置での消毒効果をより適切に判定できる。 As described above, according to the inspection apparatus of the present embodiment, the disinfection effect is determined in consideration of the distance from the ultraviolet light source, so the disinfection effect at each position can be determined more appropriately.
 [変形例]
 [対象物及び紫外線種の選択]
 本実施の形態においても、目的、用途、状況等に応じて、対象物及び紫外線種等を選択できるようにすることが好ましい。この場合、対象物ごと、紫外線種ごと、又は、その組み合わせごとに判定閾値が定められ、かつ、距離ごとに定められる。
[Modification]
[Selection of target object and ultraviolet species]
Also in the present embodiment, it is preferable that the object, the type of ultraviolet rays, and the like can be selected according to the purpose, application, situation, and the like. In this case, a determination threshold is determined for each object, for each type of ultraviolet light, or for each combination thereof, and is determined for each distance.
 また、判定閾値については、関数で求める構成とすることもできる。すなわち、判定閾値を算出する関数を定義し、その関数に距離情報を入力して、距離に応じた判定閾値を取得する構成とすることもできる。 Also, the determination threshold can be configured to be determined by a function. That is, it is also possible to define a function for calculating a determination threshold, input distance information into the function, and obtain a determination threshold corresponding to the distance.
 [入射角を考慮した判定]
 照度は、入射角によっても変化する。したがって、距離と同様に入射角を考慮して、消毒効果を判定することにより、より適切に消毒効果を判定できる。
[Determination considering incident angle]
The illuminance also changes with the angle of incidence. Therefore, by considering the incident angle as well as the distance and determining the disinfection effect, the disinfection effect can be determined more appropriately.
 検査対象箇所における紫外線の入射角は、紫外線光源からの紫外線の照射方向、及び、紫外線光源に対する検査対象箇所の方向からおおよその値を求めることができる。 The incident angle of the ultraviolet rays at the inspection target location can be roughly calculated from the irradiation direction of the ultraviolet rays from the ultraviolet light source and the direction of the inspection target location with respect to the ultraviolet light source.
 図13は、測定対象箇所における紫外線の入射角の算出の概念図である。 FIG. 13 is a conceptual diagram of calculation of the incident angle of ultraviolet rays at the measurement target location.
 同図に示すように、紫外線照射装置10が鉛直下向きに向けられている場合、紫外線の照射方向V1は、鉛直下向きとなる。 As shown in the figure, when the ultraviolet irradiation device 10 is oriented vertically downward, the ultraviolet irradiation direction V1 is vertically downward.
 紫外線光源に対する検査対象箇所の方向は、紫外線照射装置10に対する検査対象箇所の方向V2として特定される。この方向V2は、紫外線照射装置10の設置箇所と検査対象箇所とを結ぶ線分の方向として求められる。なお、紫外線照射装置10の設置箇所と検査対象箇所とを結ぶ線分の長さDが、紫外線照射装置10の設置箇所と検査対象箇所との間の距離となる。 The direction of the inspection target location with respect to the ultraviolet light source is specified as the direction V2 of the inspection target location with respect to the ultraviolet irradiation device 10 . This direction V2 is determined as the direction of a line connecting the location where the ultraviolet irradiation device 10 is installed and the location to be inspected. The length D of the line segment connecting the installation location of the ultraviolet irradiation device 10 and the inspection target location is the distance between the installation location of the ultraviolet irradiation device 10 and the inspection target location.
 入射角θは、紫外線の照射方向V1及び紫外線照射装置10に対する検査対象箇所の方向V2がなす角度として求められる。紫外線照射装置10に対する検査対象箇所の方向V2は、紫外線光源に対するシートの設置方向と同義である。 The incident angle θ is obtained as an angle formed by the irradiation direction V1 of the ultraviolet rays and the direction V2 of the location to be inspected with respect to the ultraviolet irradiation device 10 . The direction V2 of the location to be inspected with respect to the ultraviolet irradiation device 10 is synonymous with the installation direction of the sheet with respect to the ultraviolet light source.
 入射角を考慮して消毒効果を判定する場合は、距離の場合と同様に、事前に入射角の情報を取得する。そして、取得した入射角及び距離に応じた判定閾値の情報を取得し、測定シートから読み取った紫外線照射量と比較する。 When judging the disinfection effect considering the incident angle, obtain the incident angle information in advance, as in the case of the distance. Then, information on the determination threshold corresponding to the acquired incident angle and distance is acquired, and compared with the amount of UV irradiation read from the measurement sheet.
 [第3の実施の形態]
 検査装置にLIDAR等の測域センサが備えられている場合、その場で検査対象空間の3次元データを取得できる。この3次元データを使用することで、紫外線光源と検査対象箇所との相対的な位置関係を求めることができる。そして、この位置関係の情報を利用することで、より適切に照度効果を検査できる。以下、空間の3次元データを利用して、消毒効果を検査する場合について説明する。なお、検査装置以外の構成は、上記第1の実施の形態と同じなので、ここでは、検査装置についてのみ説明する。
[Third embodiment]
If the inspection apparatus is equipped with a range sensor such as LIDAR, three-dimensional data of the inspection target space can be acquired on the spot. By using this three-dimensional data, it is possible to obtain the relative positional relationship between the ultraviolet light source and the inspected portion. By using the positional relationship information, the illumination effect can be inspected more appropriately. A case of inspecting the disinfection effect using three-dimensional spatial data will be described below. Since the configuration other than the inspection device is the same as that of the first embodiment, only the inspection device will be described here.
 [構成]
 図14は、検査装置が有する機能のブロック図である。
[Constitution]
FIG. 14 is a functional block diagram of the inspection device.
 本実施の形態の検査装置100は、3次元データ取得部140F、3次元モデル生成部140G、3次元モデル出力部140H、位置情報取得部140I及び位置関係特定部140Jを有する点で上記第1の実施の形態の検査装置と相違する。 The inspection apparatus 100 of the present embodiment has a three-dimensional data acquisition unit 140F, a three-dimensional model generation unit 140G, a three-dimensional model output unit 140H, a position information acquisition unit 140I, and a positional relationship identification unit 140J. It is different from the inspection apparatus of the embodiment.
 3次元データ取得部140Fは、検査対象である空間の3次元データを取得する処理を行う。本実施の形態では、検査装置100に備えられた測域センサを用いて、空間の3次元データを取得する。すなわち、測域センサを用いて、空間をスキャンし、その3次元データ(3次元の点群データ)を取得する。 The 3D data acquisition unit 140F performs processing for acquiring 3D data of the space to be inspected. In the present embodiment, a range sensor provided in inspection apparatus 100 is used to obtain spatial three-dimensional data. That is, a range sensor is used to scan a space and acquire its three-dimensional data (three-dimensional point cloud data).
 3次元モデル生成部140Gは、取得した3次元データに基づいて、検査対象空間の3次元モデルを生成する処理を行う。具体的には、3次元の点群からパッチ(メッシュ)を生成し、3次元モデルを生成する。なお、この種の処理は、公知の技術であるので、その詳細についての説明は省略する。 The 3D model generation unit 140G performs processing for generating a 3D model of the inspection target space based on the acquired 3D data. Specifically, a patch (mesh) is generated from a 3D point cloud to generate a 3D model. Since this type of processing is a well-known technique, detailed description thereof will be omitted.
 3次元モデル出力部140Hは、生成された3次元モデル(処理対象空間の3次元モデル)を出力する処理を行う。 The 3D model output unit 140H performs processing for outputting the generated 3D model (3D model of the processing target space).
 図15は、3次元モデルの出力の一例を示す図である。 FIG. 15 is a diagram showing an example of the output of the 3D model.
 同図に示すように、生成された3次元モデルMdが、ディスプレイ128に表示される。表示された3次元モデルMdは、ユーザからの指示に応じて、拡大及び縮小、並びに、視点の切り替え等が行われる。たとえば、ディスプレイ上でのピンチイン及びピンチアウトの操作によって拡大及び縮小される。また、スワイプ操作によって始点の切り替えが行われる。操作の検出は、タッチパネル130を介して行われる。 As shown in the figure, the generated three-dimensional model Md is displayed on the display 128. The displayed three-dimensional model Md is enlarged and reduced, and viewpoints are switched, etc., according to instructions from the user. For example, it is enlarged and reduced by pinch-in and pinch-out operations on the display. Also, the starting point is switched by a swipe operation. Operation detection is performed via the touch panel 130 .
 位置情報取得部140Iは、紫外線照射装置10及び検査用カード20の設置位置の情報、並びに、紫外線の照射方向の情報を取得する処理を行う。ユーザは、ディスプレイ128に表示された3次元モデル上で紫外線照射装置10の設置位置及び検査用カード20の設置位置を指定し、紫外線照射装置10の設置位置及び検査用カード20の設置位置の情報を入力する。具体的には、図15に示すように、ディスプレイ上で紫外線照射装置10の設置位置及び検査用カード20の設置位置をタッチして、紫外線照射装置10の設置位置及び検査用カード20の設置位置の情報を入力する。位置情報取得部140Iは、タッチパネル130を介して、タッチされた位置の情報を取得し、紫外線照射装置10の設置位置及び検査用カード20の設置位置の情報を取得する。紫外線照射装置10の設置位置及び検査用カード20の設置位置としてタッチされた位置には、ドットP1、P2が表示され、入力した位置が明示される。なお、図15に示す例において、ドットP1は、紫外線照射装置10の設置位置を示し、ドットP2は、検査用カード20の設置位置(検査対象箇所)を示している。紫外線照射装置10の設置位置を示すドットP1及び検査用カード20の設置位置を示すドットP2は、互いに異なる色で表示される。 The position information acquisition unit 140I performs processing for acquiring information on the installation positions of the ultraviolet irradiation device 10 and the inspection card 20 and information on the irradiation direction of the ultraviolet rays. The user designates the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20 on the three-dimensional model displayed on the display 128, and the information on the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20 is displayed. Enter Specifically, as shown in FIG. 15, by touching the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20 on the display, the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20 are displayed. Enter the information for The position information acquisition unit 140I acquires information on the touched position via the touch panel 130 and acquires information on the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20 . Dots P1 and P2 are displayed at the positions touched as the installation position of the ultraviolet irradiation device 10 and the installation position of the inspection card 20, clearly indicating the input position. In the example shown in FIG. 15, dots P1 indicate the installation position of the ultraviolet irradiation device 10, and dots P2 indicate the installation position (inspection target location) of the inspection card 20. As shown in FIG. The dots P1 indicating the installation position of the ultraviolet irradiation device 10 and the dots P2 indicating the installation position of the inspection card 20 are displayed in different colors.
 また、ユーザは、ディスプレイ128に表示された3次元モデル上で紫外線の照射方向を入力する。この操作は、たとえば、ディスプレイ上で紫外線照射装置10の位置を指でタッチしたのち、紫外線の照射方向に沿って指をスライドさせることにより行われる。位置情報取得部140Iは、タッチパネル130を介して、指のスライド方向を検出し、紫外線の照射方向の情報を取得する。 Also, the user inputs the irradiation direction of the ultraviolet rays on the three-dimensional model displayed on the display 128 . This operation is performed, for example, by touching the position of the ultraviolet irradiation device 10 on the display with a finger and then sliding the finger along the irradiation direction of the ultraviolet rays. The position information acquisition unit 140I detects the sliding direction of the finger via the touch panel 130 and acquires information on the irradiation direction of the ultraviolet rays.
 位置関係特定部140Jは、紫外線照射装置10及び検査用カード20の設置位置の情報に基づいて、両者の相対的な位置関係を特定する処理を行う。すなわち、紫外線光源である紫外線照射装置10と、検査対象箇所を示す検査用カード20の設置位置との間の相対的な位置関係を特定する処理を行う。本実施の形態では、3次元モデルMdに設定された座標空間において、紫外線照射装置10の設置位置の座標及び検査用カード20の設置位置の座標を特定して、両者の相対的な位置関係を特定する。 The positional relationship specifying unit 140J performs a process of specifying the relative positional relationship between the ultraviolet irradiation device 10 and the inspection card 20 based on the installation position information. That is, a process of identifying the relative positional relationship between the ultraviolet irradiation device 10 as the ultraviolet light source and the installation position of the inspection card 20 indicating the location to be inspected is performed. In this embodiment, the coordinates of the installation position of the ultraviolet irradiation device 10 and the coordinates of the installation position of the inspection card 20 are specified in the coordinate space set in the three-dimensional model Md, and the relative positional relationship between the two is determined. Identify.
 判定部140Cは、特定された位置関係の情報及び紫外線の照射方向の情報、並びに、検査用カード20から読み取った紫外線照射量の情報に基づいて、消毒効果を判定する。具体的には、特定された位置関係の情報及び紫外線の照射方向の情報に基づいて、該当する判定閾値の情報を取得し、取得した判定閾値と紫外線照射量とを比較して、消毒効果を判定する。紫外線照射量が、判定閾値以上の場合、OKと判定し、判定閾値未満の場合、NGと判定する。 The determination unit 140C determines the disinfection effect based on the information on the specified positional relationship, the information on the irradiation direction of the ultraviolet rays, and the information on the amount of ultraviolet irradiation read from the inspection card 20. Specifically, based on the information on the specified positional relationship and the information on the irradiation direction of the ultraviolet rays, the information on the relevant judgment threshold is acquired, and the acquired judgment threshold and the amount of ultraviolet irradiation are compared to determine the disinfection effect. judge. If the amount of UV irradiation is equal to or greater than the determination threshold value, it is determined as OK, and if it is less than the determination threshold value, it is determined as NG.
 判定閾値は、紫外線照射装置10の設置位置を基準として、空間を複数のブロックに分割し、ブロックごとに定められる。各ブロックには、紫外線の照射方向に応じた判定閾値が定められる。判定部140Cは、特定された位置関係の情報に基づいて、該当するブロックを特定し、特定したブロックに設定された判定閾値の情報を取得する。すなわち、検査対象箇所が属するブロックを特定し、特定したブロックに設定された判定閾値の情報を取得する。 The determination threshold is determined for each block by dividing the space into a plurality of blocks based on the installation position of the ultraviolet irradiation device 10 . For each block, a determination threshold is set according to the irradiation direction of the ultraviolet rays. The determining unit 140C identifies the corresponding block based on the identified positional relationship information, and acquires information about the determination threshold set for the identified block. That is, the block to which the inspection target location belongs is specified, and the information of the determination threshold set for the specified block is acquired.
 [検査方法]
 図16は、検査の手順を示すフローチャートである。
[Inspection methods]
FIG. 16 is a flow chart showing the inspection procedure.
 まず、検査対象空間を3次元的にスキャンする(ステップS21)。本実施の形態では、この処理を検査装置100に備えられた測域センサを用いて行う。 First, the space to be inspected is three-dimensionally scanned (step S21). In this embodiment, this processing is performed using a range sensor provided in the inspection apparatus 100. FIG.
 次に、検査対象空間の3次元モデルを生成する(ステップS22)。本実施の形態では、この処理を検査装置100で行う。検査装置100は、検査対象空間をスキャンすることで得られる検査対象空間の3次元データから検査対象空間の3次元モデルを生成する。 Next, a three-dimensional model of the inspection target space is generated (step S22). In this embodiment, this processing is performed by the inspection apparatus 100 . The inspection apparatus 100 generates a three-dimensional model of the inspection space from the three-dimensional data of the inspection space obtained by scanning the inspection space.
 次に、検査装置100に対し、紫外線照射装置10及び検査対象箇所の位置情報、並びに、紫外線の照射方向の情報を入力する(ステップS23)。検査装置100は、検査対象空間の3次元モデルをディスプレイ128に表示し、紫外線照射装置10及び検査対象箇所の位置の入力、及び、紫外線の照射方向の入力を受け付ける。ユーザは、ディスプレイ128に表示された3次元モデル上で紫外線照射装置10の設置位置及び検査対象箇所の位置をタッチして、紫外線照射装置10及び検査対象箇所の位置情報を入力する。また、ユーザは、ディスプレイ128に表示された3次元モデル上で紫外線の照射方向に沿って指をスライドさせることにより、紫外線の照射方向を入力する。 Next, the positional information of the ultraviolet irradiation device 10 and the location to be inspected, and the information of the irradiation direction of the ultraviolet rays are input to the inspection device 100 (step S23). The inspection apparatus 100 displays a three-dimensional model of the space to be inspected on the display 128, and receives the input of the position of the ultraviolet irradiation device 10 and the inspection target portion, and the input of the irradiation direction of the ultraviolet rays. The user touches the installation position of the ultraviolet irradiation device 10 and the position of the inspection target location on the three-dimensional model displayed on the display 128 to input the position information of the ultraviolet irradiation device 10 and the inspection target location. Also, the user inputs the irradiation direction of the ultraviolet rays by sliding the finger along the irradiation direction of the ultraviolet rays on the three-dimensional model displayed on the display 128 .
 次に、検査対象箇所に検査用カード20を設置する(ステップS24)。設置する位置は、検査装置100に検査対象箇所として入力した位置である。次に、検査用カード20を規定時間露光させる(ステップS25)。次に、規定時間露光させた検査用カード20を撮影する(ステップS26)。撮影は、検査装置100に備えられたカメラ120を用いて行う。検査用カード20の撮影が完了すると、検査装置100において、消毒効果の判定処理が行われる(ステップS27)。 Next, the inspection card 20 is installed at the location to be inspected (step S24). The installation position is the position input to the inspection apparatus 100 as the location to be inspected. Next, the inspection card 20 is exposed for a specified time (step S25). Next, the inspection card 20 exposed for the specified time is photographed (step S26). Photographing is performed using a camera 120 provided in the inspection apparatus 100 . When the photographing of the inspection card 20 is completed, the inspection apparatus 100 performs a disinfection effect determination process (step S27).
 図17は、検査装置において行われる消毒効果の判定処理の手順を示すフローチャートである。 FIG. 17 is a flow chart showing the procedure of the disinfection effect determination process performed by the inspection device.
 まず、検査用カード20を撮影した画像を取得する(ステップS27-1)。次に、入力された紫外線照射装置10及び検査対象箇所の位置情報並びに紫外線の照射方向の情報を取得する(ステップS27-2)。次に、取得した位置情報に基づいて、紫外線照射装置10と検査対象箇所との位置関係を特定する(ステップS27-3)。次に、取得した画像を解析し、測定シート24の色(発色値)を特定する(ステップS27-4)。次に、特定した色に基づいて、紫外線照射量を特定する(ステップS27-5)。次に、特定した位置関係の情報及び紫外線照射量の情報に基づいて、消毒効果を判定する(ステップS27-6)。具体的には、まず、特定された位置関係の情報及び紫外線の照射方向の情報に基づいて、該当する判定閾値の情報を取得する。次いで、取得した判定閾値と紫外線照射量とを比較する。比較の結果、紫外線照射量が判定閾値以上の場合、OKと判定する。一方、紫外線照射量が判定閾値未満の場合、NGと判定する。 First, an image of the inspection card 20 is acquired (step S27-1). Next, the input positional information of the ultraviolet irradiation device 10 and the inspected portion and the information of the irradiation direction of the ultraviolet rays are obtained (step S27-2). Next, based on the acquired positional information, the positional relationship between the ultraviolet irradiation device 10 and the inspected portion is identified (step S27-3). Next, the obtained image is analyzed to specify the color (color development value) of the measurement sheet 24 (step S27-4). Next, based on the specified color, the amount of UV irradiation is specified (step S27-5). Next, the disinfection effect is determined based on the information on the specified positional relationship and the information on the amount of UV irradiation (step S27-6). Specifically, first, based on the specified information on the positional relationship and information on the irradiation direction of the ultraviolet rays, information on the corresponding determination threshold is acquired. Next, the acquired determination threshold and the amount of UV irradiation are compared. As a result of the comparison, if the amount of UV irradiation is equal to or greater than the determination threshold value, it is determined as OK. On the other hand, when the ultraviolet irradiation amount is less than the determination threshold, it is determined as NG.
 判定処理の完了後、検査装置100は、消毒効果の判定結果を出力する(ステップS28)。すなわち、判定結果をディスプレイ128に表示する。 After completion of the determination process, the inspection device 100 outputs the determination result of the disinfection effect (step S28). That is, the judgment result is displayed on the display 128 .
 図18は、判定結果の表示の一例を示す図である。 FIG. 18 is a diagram showing an example of display of determination results.
 同図に示すように、ディスプレイ128に消毒効果の判定結果及び検査対象空間の3次元モデルMdが表示される。判定結果は、ディスプレイ128の表示領域に設定された判定結果表示領域R12に表示される。一方、3次元モデルMdは、ディスプレイ128の表示領域に設定された3次元モデル表示領域R11に表示される。 As shown in the figure, the display 128 displays the determination result of the disinfection effect and the three-dimensional model Md of the space to be inspected. The determination result is displayed in the determination result display area R12 set in the display area of the display 128. FIG. On the other hand, the three-dimensional model Md is displayed in the three-dimensional model display area R11 set in the display area of the display 128. FIG.
 判定結果表示領域R12には、判定結果として、撮影した画像Im及び判定結果を示す情報Ifが表示される。判定結果を示す情報Ifは、判定結果がOKの場合、同図に示すように、「消毒 OK」の文字が表示される。一方、判定結果がNGの場合、「消毒 NG」の文字が表示される。 In the determination result display area R12, the captured image Im and information If indicating the determination result are displayed as the determination result. As for the information If indicating the judgment result, when the judgment result is OK, the characters "Disinfection OK" are displayed as shown in the figure. On the other hand, if the judgment result is NG, the characters "Disinfection NG" are displayed.
 3次元モデル表示領域R11に表示される3次元モデルMdには、紫外線照射装置10の設置位置を示すドットP1、及び、検査対象箇所(検査用カード20の設置位置)を示すドットP2が重畳されて表示される。紫外線照射装置10の設置位置を示すドットP1、及び、検査対象箇所を示すドットP2は、異なる色で表示される。 On the three-dimensional model Md displayed in the three-dimensional model display area R11, a dot P1 indicating the installation position of the ultraviolet irradiation device 10 and a dot P2 indicating the inspection target location (installation position of the inspection card 20) are superimposed. displayed. The dot P1 indicating the installation position of the ultraviolet irradiation device 10 and the dot P2 indicating the inspection target portion are displayed in different colors.
 また、3次元モデル表示領域R11に表示された3次元モデルMdは、ユーザからの指示に応じて、拡大及び縮小、並びに、視点の切り替え等が行われる。 Also, the three-dimensional model Md displayed in the three-dimensional model display area R11 is enlarged and reduced, and the viewpoint is switched, etc., according to instructions from the user.
 以上説明したように、本実施の形態の検査装置によれば、簡単に紫外線光源と検査対象箇所との位置関係を特定して、消毒効果を検査できる。また、検査は、紫外線光源と検査対象箇所との位置関係を考慮して行われるので、各位置での消毒効果をより適切に判定できる。 As described above, according to the inspection apparatus of the present embodiment, it is possible to easily specify the positional relationship between the ultraviolet light source and the location to be inspected, and inspect the disinfection effect. In addition, since the inspection is performed in consideration of the positional relationship between the ultraviolet light source and the inspected portion, the disinfection effect at each position can be determined more appropriately.
 [変形例]
 [複数箇所の検査]
 一度に複数箇所を検査することもできる。一度に複数箇所を検査する場合は、検査装置100に対し、紫外線照射装置10及び検査対象箇所の位置情報、並びに、紫外線の照射方向の情報を入力する工程(ステップS23)において、すべての検査対象箇所の位置情報を入力する。この場合、たとえば、ディスプレイ128に表示された3次元モデル上ですべての検査対象箇所をタッチする。
[Modification]
[Inspection of multiple locations]
Multiple locations can be inspected at once. When inspecting a plurality of locations at once, in the step of inputting the position information of the ultraviolet irradiation device 10 and the location to be inspected, and the information on the irradiation direction of the ultraviolet rays to the inspection device 100 (step S23), all inspection targets Enter the location information of the place. In this case, for example, all inspection target locations on the three-dimensional model displayed on the display 128 are touched.
 また、検査対象箇所に検査用カード20を設置する工程(ステップS24)において、すべての検査対象箇所に検査用カード20を設置する。 In addition, in the step of installing inspection cards 20 at inspection target locations (step S24), inspection cards 20 are installed at all inspection target locations.
 更に、露光後の検査用カード20を撮影する工程(ステップS26)において、各検査対象箇所に設置された検査用カード20をすべて撮影する。この際、検査対象箇所の情報に関連づけて、検査用カード20を撮影する。たとえば、ディスプレイ128に表示された3Dモデル上で検査対象箇所を指定し(検査対象箇所として指定された位置に表示されるドットをタッチする)、その位置に設置された検査用カード20を撮影する。 Further, in the step of photographing the inspection card 20 after exposure (step S26), all the inspection cards 20 installed at each inspection target location are photographed. At this time, the inspection card 20 is photographed in association with the information of the inspection target portion. For example, a location to be inspected is specified on the 3D model displayed on the display 128 (by touching the dot displayed at the location specified as the location to be inspected), and the inspection card 20 placed at that location is photographed. .
 消毒効果を判定する工程(ステップS27)では、各検査対象箇所に関連づけられて撮影された検査用カード20の画像に基づいて、検査対象箇所ごとに消毒効果を判定する。 In the step of determining the disinfection effect (step S27), the disinfection effect is determined for each inspection target location based on the image of the inspection card 20 captured in association with each inspection target location.
 図19は、一度に複数箇所を検査する場合の判定結果の表示の一例を示す図である。 FIG. 19 is a diagram showing an example of display of determination results when inspecting multiple locations at once.
 同図に示すように、3次元モデルMdが表示され、その3次元モデル上で各検査対象箇所の判定結果が個別に表示される。具体的には、検査対象箇所がドットP2で示され、各ドットP2から延びる吹き出しSB内に各検査対象箇所での判定結果が個別に表示される。 As shown in the figure, a three-dimensional model Md is displayed, and the determination results of each inspection target location are individually displayed on the three-dimensional model. Specifically, an inspection target location is indicated by a dot P2, and the determination result at each inspection target location is individually displayed in a balloon SB extending from each dot P2.
 図20は、一度に複数箇所を検査する場合の判定結果の表示の他の一例を示す図である。 FIG. 20 is a diagram showing another example of display of determination results when inspecting multiple locations at once.
 同図に示すように、本例では、3次元モデル表示領域R11に検査対象空間の3次元モデルMdが表示される。また、指定された検査対象箇所の詳細情報が、詳細情報表示領域R13に表示される。 As shown in the figure, in this example, the three-dimensional model Md of the inspection target space is displayed in the three-dimensional model display area R11. Further, the detailed information of the designated inspection target portion is displayed in the detailed information display area R13.
 3次元モデル表示領域R11には、検査対象空間の3次元モデルMdと共に、検査対象箇所を示すドットP2と、各検査対象箇所の判定結果が表示される。判定結果は、吹き出し内に表示される。 In the three-dimensional model display area R11, the three-dimensional model Md of the inspection target space, dots P2 indicating inspection target locations, and the determination results of each inspection target location are displayed. The determination result is displayed in a balloon.
 詳細情報表示領域R13には、詳細情報として、指定された検査対象箇所に設置された検査用カード20の画像(撮影画像)Imと、その判定結果を示す情報Ifと、が表示される。 In the detailed information display area R13, as detailed information, an image (captured image) Im of the inspection card 20 installed at the specified inspection target location, and information If indicating the determination result thereof are displayed.
 検査対象箇所の指定は、3次元モデル表示領域R11に表示された3次元モデルMd上で詳細表示を希望する検査対象箇所のドットP2をタッチすることにより行われる。ドットP2をタッチするたびにタッチされた検査対象箇所の詳細情報が、詳細情報表示領域R13に表示される。 The location to be inspected is specified by touching the dot P2 of the location to be inspected for which detailed display is desired on the three-dimensional model Md displayed in the three-dimensional model display area R11. Each time the dot P2 is touched, the detailed information of the touched inspection target portion is displayed in the detailed information display area R13.
 なお、本例では、同一画面内で3次元モデルMd及び詳細情報を表示する構成としているが、詳細情報については、画面を切り替えて表示する構成とすることもできる。たとえば、図19に示すように、3次元モデルを全画面表示し、検査対象箇所のドットがタッチされた場合に、画面を切り替えて、タッチされた検査対象箇所の詳細情報を表示する構成としてもよい。 In this example, the three-dimensional model Md and the detailed information are displayed on the same screen, but the detailed information can be displayed by switching screens. For example, as shown in FIG. 19, a three-dimensional model may be displayed on the full screen, and when a dot of an inspection target location is touched, the screen may be switched to display detailed information on the touched inspection target location. good.
 [処理の手順]
 上記実施の形態では、検査装置100に位置情報等を入力した後に、検査用カード20を設置し、露光し、撮影するという手順を採用しているが、判定処理を行うまでの手順は、適宜変更できる。たとえば、検査用カード20を設置し、露光し、撮影した後に、検査対象空間をスキャンし、位置情報等を入力する手順を採用することもできる。
[Processing procedure]
In the above-described embodiment, the procedure of setting the inspection card 20, exposing, and photographing after inputting the positional information and the like into the inspection apparatus 100 is adopted. can be changed. For example, it is also possible to employ a procedure in which the inspection card 20 is installed, exposed, photographed, then the space to be inspected is scanned, and the positional information and the like are input.
 [空間の3次元データの取得]
 上記実施の形態では、検査装置100に備えられた測域センサを使用することで、検査対象空間の3次元データを取得する構成としているが、検査対象空間の3次元データを取得する方法は、これに限定されるものではない。検査装置100とは別の装置で計測された3次元データを取得する構成としてもよい。また、直接、検査対象空間の3次元モデルのデータを取得する構成としてもよい。
[Acquisition of spatial 3D data]
In the above embodiment, the range sensor provided in the inspection apparatus 100 is used to acquire the three-dimensional data of the inspection target space, but the method of acquiring the three-dimensional data of the inspection target space is It is not limited to this. A configuration in which three-dimensional data measured by a device other than the inspection device 100 is acquired may be employed. Alternatively, the data of the three-dimensional model of the inspection target space may be obtained directly.
 [拡張現実表示等]
 上記実施の形態では、検査結果を出力する際、検査対象空間の3次元モデルMdをディスプレイ128に表示し、その3次元モデルMdに重ねて検査対象箇所及び検査結果等の情報を表示する構成としているが、いわゆる拡張現実(Augmented Reality:AR)の手法を採用して検査結果を出力してもよい。たとえば、カメラから得られる画像(いわゆるライブビュー画像)に重ねて、検査対象箇所及び検査結果等の情報を表示する構成としてもよい。
[Augmented reality display, etc.]
In the above-described embodiment, when outputting the inspection result, the three-dimensional model Md of the inspection target space is displayed on the display 128, and information such as the inspection target location and the inspection result is displayed superimposed on the three-dimensional model Md. However, a so-called Augmented Reality (AR) technique may be adopted to output the inspection results. For example, a configuration may be adopted in which information such as an inspection target location and inspection results is displayed superimposed on an image obtained from a camera (a so-called live view image).
 [第4の実施の形態]
 上記のように、検査用カード20は、測定シート24の発色からその設置箇所の紫外線照射量を求めることができる。複数の検査用カード20を検査対象空間内に設置し、各検査用カード20の設置位置における紫外線照射量を求めることにより、検査対象空間における紫外線の照射分布(紫外線が照射される面における照射量の分布)を推定することができる。以下、複数の検査用カード20を使用して、紫外線の照射分布を求める方法について説明する。
[Fourth embodiment]
As described above, the inspection card 20 can determine the amount of UV irradiation at the installation location from the color development of the measurement sheet 24 . By installing a plurality of inspection cards 20 in the space to be inspected and determining the amount of ultraviolet irradiation at the installation position of each inspection card 20, the irradiation distribution of ultraviolet rays in the space to be inspected (irradiation amount on the surface irradiated with ultraviolet rays distribution) can be estimated. A method for determining the irradiation distribution of ultraviolet rays using a plurality of inspection cards 20 will be described below.
 [構成]
 図21は、検査装置が有する機能のブロック図である。
[Constitution]
FIG. 21 is a functional block diagram of the inspection apparatus.
 本実施の形態の検査装置100は、照射分布推定部140K及びマップ生成部140Lの機能を更に有する点で上記第3の実施の形態の検査装置と相違する。 The inspection apparatus 100 of the present embodiment differs from the inspection apparatus of the third embodiment in that it further has the functions of an irradiation distribution estimation section 140K and a map generation section 140L.
 照射分布推定部140Kは、各検査対象箇所で測定される紫外線照射量の情報に基づいて、紫外線の照射分布(紫外線が照射される面における紫外線照射量の分布)を推定する処理を行う。分布の推定には、公知の手法が採用される。また、紫外線照射装置10における仕様が既知の場合は、紫外線照射装置10の仕様の情報を参照して推定する手法を採用することもできる。たとえば、紫外線照射装置10の照度分布等の情報が既知の場合は、その照度分布等の情報を利用して、紫外線の照射分布を推定することもできる。 The irradiation distribution estimation unit 140K performs a process of estimating the ultraviolet irradiation distribution (distribution of the ultraviolet irradiation amount on the surface irradiated with ultraviolet rays) based on information on the ultraviolet irradiation amount measured at each inspection target location. A well-known method is adopted for estimating the distribution. Moreover, when the specification of the ultraviolet irradiation device 10 is known, a method of referring to the information of the specification of the ultraviolet irradiation device 10 and estimating it can also be adopted. For example, when information such as the illuminance distribution of the ultraviolet irradiation device 10 is known, the information such as the illuminance distribution can be used to estimate the irradiation distribution of ultraviolet rays.
 マップ生成部140Lは、推定された紫外線の照射分布の情報に基づいて、紫外線の照射分布を示すマップを生成する処理を行う。紫外線の照射分布を示すマップとは、紫外線が照射される面における紫外線の照射量の分布を色又は色の濃淡によって可視化したマップをいう。図22は、マップの一例を示す図である。同図は、検査対象空間の3次元モデルMdに重畳してマップMpを表示した場合の例を示している。同図に示すように、マップMpにより、紫外線が照射される面における紫外線照射量の分布が可視化される。同図に示す例では、分布が色の濃淡によって可視化されている。 The map generation unit 140L performs a process of generating a map showing the ultraviolet irradiation distribution based on the information on the estimated ultraviolet irradiation distribution. A map showing the irradiation distribution of ultraviolet rays is a map that visualizes the distribution of the irradiation amount of ultraviolet rays on a surface irradiated with ultraviolet rays by using colors or color densities. FIG. 22 is a diagram showing an example of a map. This figure shows an example of displaying a map Mp superimposed on the three-dimensional model Md of the space to be inspected. As shown in the figure, the map Mp visualizes the distribution of the amount of ultraviolet irradiation on the surface irradiated with ultraviolet rays. In the example shown in the figure, the distribution is visualized by color shading.
 [検査方法]
 図23は、検査の手順を示すフローチャートである。
[Inspection methods]
FIG. 23 is a flow chart showing the inspection procedure.
 まず、検査対象空間を3次元的にスキャンする(ステップS31)。次に、検査対象空間の3次元モデルを生成する(ステップS32)。次に、検査装置100に対し、紫外線照射装置10及び検査対象箇所の位置情報、並びに、紫外線の照射方向の情報を入力する(ステップS33)。検査対象箇所は、複数個所に設定される。設定されたすべての検査対象箇所の位置情報を入力する。次に、各検査対象箇所に検査用カード20を設置する(ステップS34)。次に、各検査用カード20を規定時間露光させる(ステップS35)。露光後、検査対象箇所ごとに検査用カード20を撮影する(ステップS36)。すなわち、検査対象箇所の位置情報に関連付けて、各検査対象箇所に設置された検査用カード20を個別に撮影する。すべての検査用カード20の撮影が完了すると、検査装置100において、消毒効果の判定処理が行われる(ステップS37)。その後、紫外線の照射分布を示すマップの生成処理が行われる(ステップS38)。 First, the space to be inspected is three-dimensionally scanned (step S31). Next, a three-dimensional model of the space to be inspected is generated (step S32). Next, the positional information of the ultraviolet irradiation device 10 and the location to be inspected, and the information of the irradiation direction of the ultraviolet rays are input to the inspection device 100 (step S33). A plurality of locations to be inspected are set. Enter the position information of all set inspection target locations. Next, the inspection card 20 is installed at each inspection target location (step S34). Next, each inspection card 20 is exposed for a specified time (step S35). After exposure, the inspection card 20 is photographed for each location to be inspected (step S36). That is, the inspection card 20 installed at each inspection target location is individually photographed in association with the position information of the inspection target location. When the photographing of all inspection cards 20 is completed, the inspection device 100 performs a disinfection effect determination process (step S37). After that, a process of generating a map showing the irradiation distribution of ultraviolet rays is performed (step S38).
 図24は、マップの生成処理の手順を示すフローチャートである。 FIG. 24 is a flowchart showing the procedure of map generation processing.
 まず、各検査対象箇所における紫外線照射量の情報を取得する(ステップS38-1)。各検査対象箇所における紫外線照射量は、画像解析部140Bで個別に求められる。したがって、画像解析部140Bから当該情報を取得する。 First, information on the amount of UV irradiation at each inspection target location is acquired (step S38-1). The amount of UV irradiation at each inspection target location is obtained individually by the image analysis unit 140B. Therefore, the information is acquired from the image analysis unit 140B.
 次に、取得した各検査対象箇所における紫外線照射量の情報に基づいて、紫外線の照射分布を推定する(ステップS38-2)。すなわち、検査対象空間において、紫外線が照射された面における紫外線の照射量の分布を推定する。 Next, the UV irradiation distribution is estimated based on the acquired UV dose information at each inspection target location (step S38-2). That is, in the space to be inspected, the distribution of the irradiation amount of ultraviolet rays on the surface irradiated with ultraviolet rays is estimated.
 次に、推定した紫外線の照射分布を示すマップを生成する(ステップS38-3)。すなわち、紫外線の照射分布を可視化したマップを生成する。 Next, a map showing the estimated UV irradiation distribution is generated (step S38-3). That is, a map that visualizes the irradiation distribution of ultraviolet rays is generated.
 検査装置100は、生成したマップを消毒効果の判定結果と共にディスプレイ128に出力する(ステップS39)。 The inspection device 100 outputs the generated map to the display 128 together with the determination result of the disinfection effect (step S39).
 図25は、紫外線の照射分布を示すマップ及び判定結果の表示の一例を示す図である。 FIG. 25 is a diagram showing an example of a display of a map showing the irradiation distribution of ultraviolet rays and a determination result.
 同図に示すように、検査対象空間の3次元モデルMdに重畳してマップMpが表示される。また、検査対象箇所がドットP2で示され、ドットP2から延びる吹き出しSB内に各検査対象箇所の判定結果が個別に表示される。 As shown in the figure, a map Mp is displayed superimposed on the three-dimensional model Md of the inspection target space. In addition, inspection target locations are indicated by dots P2, and determination results for each inspection target location are individually displayed in balloons SB extending from dots P2.
 以上説明したように、本実施の形態の検査装置によれば、各検査対象箇所での消毒効果の判定結果に加えて、推定される紫外線の照射分布がマップで表示されるので、消毒効果を容易に把握できる。これにより、紫外線照射装置の配置の調整、たとえば、位置の調整、数の調整、照射方向の調整等を容易に行うことができるようになり、所望の消毒効果を容易に実現することが可能になる。 As described above, according to the inspection apparatus of the present embodiment, in addition to the determination result of the disinfection effect at each inspection target location, the estimated UV irradiation distribution is displayed on the map, so that the disinfection effect can be evaluated. Easy to grasp. This makes it possible to easily adjust the arrangement of the ultraviolet irradiation devices, for example, adjust the position, the number, and the direction of irradiation, making it possible to easily achieve the desired disinfection effect. Become.
 [変形例]
 上記実施の形態では、マップの生成に加えて、消毒効果の判定も行う構成としているが、マップの生成のみを行う構成とすることもできる。
[Modification]
In the above-described embodiment, the map is generated and the disinfection effect is determined. However, the map may be generated only.
 また、結果の出力は、マップのみの表示、消毒効果の判定結果のみの表示等、ユーザからの指示に応じて切り替えられる構成とすることが好ましい。更に、各検査対象箇所の消毒効果の判定結果については、詳細表示ができるようにすることがより好ましい(図20参照)。 In addition, it is preferable that the output of the results can be switched according to the user's instruction, such as displaying only the map or displaying only the determination result of the disinfection effect. Furthermore, it is more preferable to enable detailed display of the determination result of the disinfection effect of each inspection target location (see FIG. 20).
 [その他の実施の形態]
 [検査用カード]
 図26は、検査用カードの他の一例を示す図である。
[Other embodiments]
[Examination card]
FIG. 26 is a diagram showing another example of an inspection card.
 同図に示すように、本例の検査用カード20は、外装ケース22に発色チャートを備えていない。このように、発色チャートは、必ずしも検査用カード20に一体的に備えている必要はない。ただし、キャリブレーションを行うため、撮影は発色チャートと共に行う。たとえば、図26に示すように、発色チャート30をプリントしたシート(撮影用シート)50を用意し、そのシート50の上に検査用カード20を載せて撮影する。これにより、同一の画角内に検査用カード20と発色チャート30とを収めて撮影することができる。 As shown in the figure, the inspection card 20 of this example does not have a coloring chart on the exterior case 22 . Thus, the coloring chart does not necessarily have to be provided integrally with the inspection card 20 . However, in order to carry out calibration, photography is done together with the coloring chart. For example, as shown in FIG. 26, a sheet (photographing sheet) 50 on which the coloring chart 30 is printed is prepared, and the inspection card 20 is placed on the sheet 50 and photographed. As a result, the inspection card 20 and the coloring chart 30 can be captured within the same angle of view.
 また、上記実施の形態では、検査用カード20の形状をいわゆるカード形状としているが、検査用カード20の形状は、これに限定されるものではない。立体的な形状を含め、種々の形状を採用できる。 Also, in the above embodiment, the shape of the inspection card 20 is a so-called card shape, but the shape of the inspection card 20 is not limited to this. Various shapes can be employed, including three-dimensional shapes.
 更に、測定シート単体で使用することも可能である。ただし、この場合も撮影は発色チャートと共に行われる。 Furthermore, it is also possible to use the measurement sheet alone. However, even in this case, the photographing is performed together with the coloring chart.
 [測定シート]
 測定シート24については、特定の波長域の紫外線についてのみ感応する構成とすることもできる。たとえば、バンドパスフィルタを備えることで、特定の波長域の紫外線についてのみ感応する構成とすることができる。
[Measurement sheet]
The measurement sheet 24 can also be configured to be sensitive only to ultraviolet rays in a specific wavelength range. For example, by providing a band-pass filter, it is possible to have a configuration that is sensitive only to ultraviolet light in a specific wavelength range.
 [履歴の記録]
 検査装置100は、検査結果を記録し、必要に応じて、過去の検査結果を読み出せる構成とすることが好ましい。検査結果は、紫外線照射量及び消毒効果の判定結果の情報を含み、検査日時、検査場所、検査担当者等の情報と共に補助記憶装置116に記録する。これにより、たとえば、過去の検査結果をグラフ表示したり、過去の検索結果から紫外線光源の劣化状態を推定したり、紫外線光源の交換を告知したりすること等が可能になる。検査装置100は、これらの処理を行う機能を備えることが好ましい。たとえば、過去の検査結果の情報を取得して、所定のフォーマットでグラフ表示する機能、過去の検査結果の情報を取得して、紫外線光源の劣化状態を推定する機能、過去の検査結果の情報を取得して、紫外線光源の交換の要否を判定し、告知する機能等を備えることが好ましい。紫外線光源の劣化状態は、たとえば、定点で測定される紫外線照射量の時系列変化から推定する。紫外線光源の交換の要否についても同様に、定点で測定される紫外線照射量の時系列変化から判定する。たとえば、閾値以下の紫外線照射量が連続して所定回数測定された場合に交換が必要と判定する。
[Record History]
The inspection apparatus 100 is preferably configured to record inspection results and read out past inspection results as necessary. The inspection result includes information on the amount of ultraviolet irradiation and the determination result of the disinfection effect, and is recorded in the auxiliary storage device 116 together with information such as the date and time of the inspection, the location of the inspection, and the person in charge of the inspection. This makes it possible, for example, to display past inspection results in a graph, estimate the deterioration state of the ultraviolet light source from the past search results, notify replacement of the ultraviolet light source, and the like. The inspection apparatus 100 preferably has a function of performing these processes. For example, a function to obtain past inspection result information and display it in a graph in a predetermined format, a function to obtain past inspection result information and estimate the deterioration state of the ultraviolet light source, and a function to obtain past inspection result information It is preferable to have a function of acquiring information, determining whether or not the ultraviolet light source needs to be replaced, and notifying the user. The deterioration state of the ultraviolet light source is estimated, for example, from time-series changes in the amount of ultraviolet irradiation measured at a fixed point. Likewise, whether or not the ultraviolet light source needs to be replaced is determined from the time-series change in the amount of ultraviolet irradiation measured at a fixed point. For example, it is determined that replacement is necessary when the amount of UV irradiation below the threshold is continuously measured a predetermined number of times.
 [検査装置]
 上記実施の形態では、検査装置がカメラ付きのタブレットコンピュータで構成される場合を例で説明したが、検査装置のハードウェア構成は、これに限定されるものではない。この他、スマートホン、パーソナルコンピュータ等で構成することもできる。
[Inspection device]
In the above-described embodiment, an example in which the inspection apparatus is composed of a tablet computer with a camera has been described, but the hardware configuration of the inspection apparatus is not limited to this. In addition, it can also be configured by a smart phone, a personal computer, or the like.
 また、検査装置は、必ずしもカメラを備えている必要はない。検査装置がカメラを備えていない場合、外部のカメラで撮影した画像を取得する。 Also, the inspection device does not necessarily have to be equipped with a camera. If the inspection device does not have a camera, an image captured by an external camera is acquired.
 また、検査装置は、必ずしも単体のコンピュータで構成する必要はない。たとえば、クライアントコンピュータとサーバーコンピュータとで構成することもできる。 In addition, the inspection device does not necessarily have to consist of a single computer. For example, it can consist of a client computer and a server computer.
 また、検査装置が有する機能は、各種のプロセッサ(Processor)で実現される。各種のプロセッサには、プログラムを実行して各種の処理部として機能する汎用的なプロセッサであるCPU及び/又はGPU(Graphic Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。プログラムは、ソフトウェアと同義である。 In addition, the functions of the inspection device are realized by various processors. Various processors are general-purpose processors that run programs and function as various processing units, such as CPUs and/or GPUs (Graphic Processing Units) and FPGAs (Field Programmable Gate Arrays). Programmable Logic Device (PLD), which is a programmable processor, ASIC (Application Specific Integrated Circuit), etc. A dedicated electric circuit, which is a processor with a circuit configuration specially designed to execute specific processing, etc. included. A program is synonymous with software.
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサで構成されてもよい。たとえば、1つの処理部は、複数のFPGA、或いは、CPUとFPGAの組み合わせによって構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどに用いられるコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System on Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 A single processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types. For example, one processing unit may be composed of a plurality of FPGAs or a combination of a CPU and an FPGA. Also, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with a single processor, firstly, a single processor is configured with a combination of one or more CPUs and software, as typified by computers used for clients and servers. , in which the processor functions as a plurality of processing units. Second, as typified by System on Chip (SoC), etc., there is a form of using a processor that realizes the function of the entire system including multiple processing units with a single IC (Integrated Circuit) chip. be. In this way, the various processing units are configured using one or more of the above various processors as a hardware structure.
1 検査システム
2 部屋
2A 天井面
10 紫外線照射装置
20 検査用カード
22 外装ケース
22A プレート
22B プレート
24 測定シート
26 窓部
28 粘着シート
28A 剥離紙
28a 色見本
28b 色見本
28e 色見本
30 発色チャート
50 シート
100 検査装置
110 CPU
112 RAM
114 ROM
116 補助記憶装置
118 センサ群
120 カメラ
122 スピーカ
124 マイク
126 通信インタフェース
128 ディスプレイ
130 タッチパネル
140A 画像取得部
140B 画像解析部
140C 判定部
140D 判定結果出力部
140E 距離情報取得部
140F 3次元データ取得部
140G 3次元モデル生成部
140H 3次元モデル出力部
140I 位置情報取得部
140J 位置関係特定部
140K 照射分布推定部
140L マップ生成部
142 ルックアップテーブル
If 判定結果を示す情報
Im 検査用カードを撮影した画像
Md 3次元モデル
Mp 紫外線の照射分布を示すマップ
P1 ドット
P2 ドット
R1 画像表示領域
R2 判定結果表示領域
R11 3次元モデル表示領域
R12 判定結果表示領域
R13 詳細情報表示領域
SB 吹き出し
S1~S5 検査の手順
V1 紫外線の照射方向
V2 紫外線照射装置に対する検査対象箇所の方向
θ 入射角
S4-1~S4-4 消毒効果の判定処理の手順
S11~S16 検査の手順
S15-1~S15-5 消毒効果の判定処理の手順
S21~S28 検査の手順
S27-1~S27-6 消毒効果の判定処理の手順
S31~S39 検査の手順
S38-1~S38-3 マップの生成処理の手順
1 Inspection system 2 Room 2A Ceiling surface 10 Ultraviolet irradiation device 20 Inspection card 22 Exterior case 22A Plate 22B Plate 24 Measurement sheet 26 Window 28 Adhesive sheet 28A Release paper 28a Color sample 28b Color sample 28e Color sample 30 Color development chart 50 Sheet 100 Inspection device 110 CPU
112 RAMs
114 ROMs
116 auxiliary storage device 118 sensor group 120 camera 122 speaker 124 microphone 126 communication interface 128 display 130 touch panel 140A image acquisition unit 140B image analysis unit 140C determination unit 140D determination result output unit 140E distance information acquisition unit 140F three-dimensional data acquisition unit 140G three-dimensional Model generation unit 140H Three-dimensional model output unit 140I Position information acquisition unit 140J Positional relationship identification unit 140K Irradiation distribution estimation unit 140L Map generation unit 142 Lookup table If Information indicating determination results Im Image Md of photographed inspection card Three-dimensional model Mp Map showing UV irradiation distribution P1 Dot P2 Dot R1 Image display area R2 Judgment result display area R11 3D model display area R12 Judgment result display area R13 Detailed information display area SB Balloons S1 to S5 Inspection procedure V1 Direction of UV irradiation V2 Direction of inspection target location θ with respect to ultraviolet irradiation device Incident angle S4-1 to S4-4 Disinfection effect determination processing procedures S11 to S16 Inspection procedures S15-1 to S15-5 Disinfection effect determination processing procedures S21 to S28 Inspection procedures S27-1 to S27-6 Disinfection effect determination processing procedures S31 to S39 Inspection procedures S38-1 to S38-3 Map generation processing procedures

Claims (14)

  1.  プロセッサを備え、
     前記プロセッサは、
     紫外線照射量に応じて色が変化するシートであって、定位置の紫外線光源から紫外線が照射される空間内で規定時間露光させた前記シートを、紫外線照射量と色との関係を示すチャートと共に撮影した画像を取得する処理と、
     取得した前記画像を解析し、前記シートの設置箇所における紫外線照射量を求める処理と、
     求めた前記紫外線照射量に基づいて、前記シートの設置箇所における消毒効果を判定する処理と、
     を行う、
     検査装置。
    with a processor
    The processor
    A sheet that changes color depending on the amount of ultraviolet irradiation, and is exposed for a specified time in a space where ultraviolet rays are irradiated from a fixed ultraviolet light source, together with a chart showing the relationship between the amount of ultraviolet irradiation and color. a process of acquiring a photographed image;
    A process of analyzing the acquired image and determining the amount of ultraviolet irradiation at the installation location of the sheet;
    A process of determining the disinfection effect at the installation location of the sheet based on the obtained ultraviolet irradiation amount;
    I do,
    inspection equipment.
  2.  前記プロセッサは、
     前記紫外線光源と前記シートとの間の相対的な位置関係の情報を取得する処理を更に行い、
     取得した前記位置関係の情報及び求めた前記紫外線照射量に基づいて、前記消毒効果を判定する、
     請求項1に記載の検査装置。
    The processor
    further performing a process of acquiring information on the relative positional relationship between the ultraviolet light source and the sheet;
    Determining the disinfection effect based on the obtained positional relationship information and the obtained ultraviolet irradiation amount;
    The inspection device according to claim 1.
  3.  前記プロセッサは、
     前記空間の3次元モデルを取得する処理と、
     前記3次元モデル上での前記紫外線光源の位置及び前記シートの位置の情報を取得する処理と、
     を更に行い、
     前記3次元モデル上での前記紫外線光源の位置及び前記シートの位置の情報に基づいて、前記紫外線光源と前記シートとの間の相対的な前記位置関係を算出し、前記位置関係の情報を取得する、
     請求項2に記載の検査装置。
    The processor
    a process of obtaining a three-dimensional model of the space;
    a process of acquiring information on the position of the ultraviolet light source and the position of the sheet on the three-dimensional model;
    and
    calculating the relative positional relationship between the ultraviolet light source and the sheet based on information on the position of the ultraviolet light source and the position of the sheet on the three-dimensional model, and acquiring information on the positional relationship; do,
    The inspection device according to claim 2.
  4.  前記プロセッサは、
     前記3次元モデルをディスプレイに表示させる処理を更に行い、
     前記ディスプレイに表示された前記3次元モデル上で前記紫外線光源の位置及び前記シートの位置の指定を受け付けて、前記3次元モデル上での前記紫外線光源の位置及び前記シートの位置の情報を取得する、
     請求項3に記載の検査装置。
    The processor
    further performing processing for displaying the three-dimensional model on a display;
    Receiving designation of the position of the ultraviolet light source and the position of the sheet on the three-dimensional model displayed on the display, and acquiring information on the position of the ultraviolet light source and the position of the sheet on the three-dimensional model. ,
    The inspection device according to claim 3.
  5.  前記プロセッサは、
     前記空間内の複数箇所に前記シートを設置することで取得される前記空間内の複数箇所の前記紫外線照射量の情報に基づいて、前記空間内の紫外線の照射分布を推定する処理と、
     推定した前記照射分布を示すマップを生成する処理と、
     生成した前記マップを前記3次元モデルに重畳させてディスプレイに表示させる処理と、
     を更に行う、
     請求項3又は4に記載の検査装置。
    The processor
    A process of estimating the irradiation distribution of ultraviolet rays in the space based on the information of the ultraviolet irradiation amount at the plurality of points in the space, which is obtained by installing the sheet at the plurality of points in the space;
    a process of generating a map indicating the estimated irradiation distribution;
    a process of superimposing the generated map on the three-dimensional model and displaying it on a display;
    do more
    The inspection device according to claim 3 or 4.
  6.  前記位置関係の情報は、前記紫外線光源と前記シートとの間の距離の情報、及び、前記紫外線光源に対する前記シートの設置方向と前記紫外線の照射方向とのなす角度の情報を含む、
     請求項2から5のいずれか1項に記載の検査装置。
    The information on the positional relationship includes information on the distance between the ultraviolet light source and the sheet, and information on the angle formed by the installation direction of the sheet with respect to the ultraviolet light source and the irradiation direction of the ultraviolet light.
    The inspection device according to any one of claims 2 to 5.
  7.  前記プロセッサは、
     求めた前記紫外線照射量を閾値と比較して、前記消毒効果を判定する、
     請求項1から6のいずれか1項に記載の検査装置。
    The processor
    Comparing the obtained ultraviolet irradiation amount with a threshold value to determine the disinfection effect;
    The inspection device according to any one of claims 1 to 6.
  8.  紫外線照射量に応じて色が変化するシートと、
     紫外線照射量と色との関係を示すチャートと、
     撮影装置と、
     ディスプレイと、
     請求項1から7のいずれか1項に記載の検査装置と、
     を備えた検査システム。
    a sheet whose color changes according to the amount of UV irradiation;
    A chart showing the relationship between the amount of UV irradiation and the color;
    a photographic device;
    a display;
    an inspection apparatus according to any one of claims 1 to 7;
    inspection system with
  9.  前記シートを保持する保持部材に前記チャートが一体的に備えられる、
     請求項8に記載の検査システム。
    The chart is integrally provided with a holding member that holds the sheet,
    An inspection system according to claim 8 .
  10.  前記シートは、バンドパスフィルタを有し、特定の波長域の紫外線の照射量に応じて色が変化する、
     請求項8又は9に記載の検査システム。
    The sheet has a band-pass filter, and changes color depending on the amount of ultraviolet radiation in a specific wavelength range.
    Inspection system according to claim 8 or 9.
  11.  定位置の紫外線光源から紫外線が照射される空間内に紫外線照射量に応じて色が変化するシートを設置するステップと、
     前記空間内で規定時間露光させた前記シートを紫外線照射量と色との関係を示すチャートと共に撮影するステップと、
     撮影された画像を解析し、前記シートの設置箇所における紫外線照射量を求めるステップと、
     求めた前記紫外線照射量に基づいて、前記シートの設置箇所における消毒効果を判定するステップと、
     を含む、
     検査方法。
    placing a sheet whose color changes according to the amount of ultraviolet irradiation in a space irradiated with ultraviolet rays from a UV light source at a fixed position;
    a step of photographing the sheet exposed for a specified time in the space together with a chart showing the relationship between the amount of UV irradiation and the color;
    a step of analyzing the photographed image and determining the amount of ultraviolet irradiation at the installation location of the sheet;
    a step of determining the disinfection effect at the location where the sheet is installed based on the obtained ultraviolet irradiation amount;
    including,
    Inspection methods.
  12.  紫外線照射量に応じて色が変化するシートであって、定位置の紫外線光源から紫外線が照射される空間内で規定時間露光させた前記シートを、紫外線照射量と色との関係を示すチャートと共に撮影した画像を取得する機能と、
     取得した前記画像を解析し、前記シートの設置箇所における紫外線照射量を求める機能と、
     求めた前記紫外線照射量に基づいて、前記シートの設置箇所における消毒効果を判定する機能と、
     をコンピュータに実現させる検査プログラム。
    A sheet that changes color depending on the amount of ultraviolet irradiation, and is exposed for a specified time in a space where ultraviolet rays are irradiated from a fixed ultraviolet light source, together with a chart showing the relationship between the amount of ultraviolet irradiation and color. A function to acquire the photographed image,
    A function of analyzing the acquired image and determining the amount of ultraviolet irradiation at the installation location of the sheet;
    A function of determining the disinfection effect at the installation location of the sheet based on the obtained ultraviolet irradiation amount;
    An inspection program that realizes on a computer.
  13.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項12に記載のプログラムが記録された記録媒体。 A recording medium that is non-temporary and computer-readable, in which the program according to claim 12 is recorded.
  14.  プロセッサを備え、
     前記プロセッサは、
     紫外線照射量に応じて色が変化するシートであって、定位置の紫外線光源から紫外線が照射される空間内の複数個所で規定時間露光させた複数の前記シートを、それぞれ紫外線照射量と色との関係を示すチャートと共に撮影した複数の画像を取得する処理と、
     取得した各前記画像を解析し、各前記シートの設置箇所における紫外線照射量を求める処理と、
     前記空間の3次元モデルを取得する処理と、
     前記3次元モデル上での各前記シートの位置の情報を取得する処理と、
     前記3次元モデル上での各前記シートの位置の情報及び各前記シートの位置での前記紫外線照射量の情報に基づいて、前記空間内の紫外線の照射分布を推定する処理と、
     推定した前記照射分布を示すマップを生成する処理と、
     生成した前記マップを前記3次元モデルに重畳させてディスプレイに表示させる処理と、
     を行う、
     検査装置。
    with a processor
    The processor
    A plurality of sheets that change color according to the amount of ultraviolet irradiation, and are exposed for a specified time at a plurality of locations in a space where ultraviolet rays are irradiated from a fixed ultraviolet light source. A process of acquiring a plurality of images taken together with a chart showing the relationship of
    A process of analyzing each of the acquired images and determining the amount of ultraviolet irradiation at the installation location of each of the sheets;
    a process of obtaining a three-dimensional model of the space;
    a process of acquiring position information of each of the sheets on the three-dimensional model;
    a process of estimating the irradiation distribution of ultraviolet rays in the space based on information on the position of each sheet on the three-dimensional model and information on the amount of ultraviolet irradiation at the position of each sheet;
    a process of generating a map indicating the estimated irradiation distribution;
    a process of superimposing the generated map on the three-dimensional model and displaying it on a display;
    I do,
    inspection equipment.
PCT/JP2022/014347 2021-04-16 2022-03-25 Test device, test method, test program, and test system WO2022220064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514556A JPWO2022220064A1 (en) 2021-04-16 2022-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021069839 2021-04-16
JP2021-069839 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022220064A1 true WO2022220064A1 (en) 2022-10-20

Family

ID=83640623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014347 WO2022220064A1 (en) 2021-04-16 2022-03-25 Test device, test method, test program, and test system

Country Status (3)

Country Link
JP (1) JPWO2022220064A1 (en)
TW (1) TW202246738A (en)
WO (1) WO2022220064A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014674A (en) * 2012-06-29 2014-01-30 Johnson & Johnson Vision Care Inc Method for quantifying uv sterilization radiation dose using indicator
JP2017524393A (en) * 2014-05-28 2017-08-31 パープルサン インコーポレイテッド Photochromic detection of UV irradiation
WO2019241453A1 (en) * 2018-06-12 2019-12-19 Phonesoap Llc Systems and methods for managing sanitization
WO2020003001A1 (en) * 2018-06-29 2020-01-02 Asp Global Manufacturing Gmbh Apparatus, method, and system for indication of an oxidative treatment
US20210085811A1 (en) * 2019-09-25 2021-03-25 Bolb Inc. Systems and methods for quantifying ultraviolet dosages

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014674A (en) * 2012-06-29 2014-01-30 Johnson & Johnson Vision Care Inc Method for quantifying uv sterilization radiation dose using indicator
JP2017524393A (en) * 2014-05-28 2017-08-31 パープルサン インコーポレイテッド Photochromic detection of UV irradiation
WO2019241453A1 (en) * 2018-06-12 2019-12-19 Phonesoap Llc Systems and methods for managing sanitization
WO2020003001A1 (en) * 2018-06-29 2020-01-02 Asp Global Manufacturing Gmbh Apparatus, method, and system for indication of an oxidative treatment
US20210085811A1 (en) * 2019-09-25 2021-03-25 Bolb Inc. Systems and methods for quantifying ultraviolet dosages

Also Published As

Publication number Publication date
JPWO2022220064A1 (en) 2022-10-20
TW202246738A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
EP3606410B1 (en) Anatomical surface assessment methods, devices and systems
CN104880412B (en) Freshness information output method and freshness information output device
KR101777436B1 (en) Exposure control using digital radiography detector
KR101532395B1 (en) Device, system and method for estimating the size of an object in a body lumen
RU2763756C1 (en) Obtaining images for use in determining one or more properties of the subject's skin
EP3148411A1 (en) Imaging apparatus, imaging method and medical imaging system
JP5133626B2 (en) Surface reflection characteristic measuring device
JP6787076B2 (en) Color reaction detection system, color reaction detection method and program
RU2014132705A (en) METHOD AND APPARATUS FOR MEASURING WARRANTY OF MECHANICAL AND DOSIMETRIC QUALITY IN REAL TIME IN RADIATION THERAPY
US9531950B2 (en) Imaging system and imaging method that perform a correction of eliminating an influence of ambient light for measurement data
JP7062926B2 (en) Color reaction detection system, color reaction detection method and program
US11047807B2 (en) Defect detection
JP2008167853A (en) Test sheet, object diagnostic apparatus and method, and program
WO2022220064A1 (en) Test device, test method, test program, and test system
US8705698B2 (en) X-ray analyzer and mapping method for an X-ray analysis
JP2009006089A (en) Face imaging apparatus
US20160287359A1 (en) Device and method for generating dental three-dimensional surface image
CN112041665A (en) Display device, image processing device, and control method
JP6898150B2 (en) Pore detection method and pore detection device
US20190251689A1 (en) Automatic pan-tilt-zoom adjustment to improve vital sign acquisition
WO2012060393A1 (en) Target position tracking device and target luminescence detection device
JP7282307B2 (en) Mechanoluminescent data processing device, mechanoluminescent data processing method, mechanoluminescent measuring device, and mechanoluminescent test system
JP2018066713A5 (en)
CN211796530U (en) Light radiation field visual detection equipment and light radiation field image acquisition device
JP6860090B2 (en) Spectroscopic data management equipment, measuring equipment and measuring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514556

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787989

Country of ref document: EP

Kind code of ref document: A1