WO2022210487A1 - Method for producing immunocyte expressing receptor specific to antigen - Google Patents

Method for producing immunocyte expressing receptor specific to antigen Download PDF

Info

Publication number
WO2022210487A1
WO2022210487A1 PCT/JP2022/014872 JP2022014872W WO2022210487A1 WO 2022210487 A1 WO2022210487 A1 WO 2022210487A1 JP 2022014872 W JP2022014872 W JP 2022014872W WO 2022210487 A1 WO2022210487 A1 WO 2022210487A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
antigen
immune cells
immune
cell
Prior art date
Application number
PCT/JP2022/014872
Other languages
French (fr)
Japanese (ja)
Inventor
いづみ 槇
幸子 岡本
舞子 杉崎
泰典 天石
佳典 田中
圭一朗 三原
Original Assignee
タカラバイオ株式会社
学校法人藤田学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカラバイオ株式会社, 学校法人藤田学園 filed Critical タカラバイオ株式会社
Priority to JP2023511233A priority Critical patent/JPWO2022210487A1/ja
Publication of WO2022210487A1 publication Critical patent/WO2022210487A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464426CD38 not IgG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/46448Cancer antigens from embryonic or fetal origin
    • A61K39/464482Carcinoembryonic antigen [CEA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/99Enzyme inactivation by chemical treatment

Definitions

  • the present invention provides a method for producing immune cells expressing receptors specific to antigens present in both immune cells and target cells, and a method for producing immune cells that express antigen-specific receptors present in both immune cells and target cells, It relates to a method for producing a pharmaceutical composition comprising the step of obtaining immune cells that express the receptor.
  • a nucleic acid encoding a chimeric antigen receptor (CAR) that binds to a specific antigen present on the surface of tumor cells, or a T cell receptor (TCR) gene that recognizes tumor cells is used.
  • CAR chimeric antigen receptor
  • TCR T cell receptor
  • Patent Document 1 a method was recently developed to inactivate genes involved in antigen expression or presentation present on both the surface of T cells and the surface of target cells, followed by expression of CAR.
  • the present inventors have made intensive studies to solve the above problems, and found that immune cells into which nucleic acids encoding antigen-specific receptors present in both immune cells and target cells have been introduced into immune cells
  • the inventors have found that the antigen can be produced by suppressing the expression of the antigen in the introduced immune cells with siRNA and culturing the immune cells in a medium containing a kinase inhibitor, thereby completing the present invention.
  • [1] A method for producing immune cells that express antigen-specific receptors present in both immune cells and target cells, the method comprising the following steps in random order: (a) introducing into an immune cell a nucleic acid encoding a receptor specific for said antigen; (b) culturing immune cells in a medium containing a kinase inhibitor; and (c) suppressing expression of said antigen in immune cells; [2] The method of [1], wherein the immune cells are T cells or NK cells; [3] The method of [1], wherein the antigen is present on both the surface of normal immune cells and the surface of target cells.
  • the production of immune cells expressing antigen-specific receptors present on both immune cells and target cells, and the methods for producing antigen-specific receptors present on both immune cells and target cells Methods of making pharmaceutical compositions comprising immune cells expressing immune cells are provided.
  • the immune cells obtained by the production method of the present invention have a low expression rate of exhaustion markers, a high naive cell rate, and high cytotoxic activity.
  • FIG. 3 is a diagram showing the expression level of the CD38 gene with respect to the virus copy number.
  • FIG. 3 is a diagram showing the positive rate of PD-1 expression with respect to virus copy number.
  • FIG. 4 shows cell counts and cell viability.
  • FIG. 3 is a diagram showing the positive rate of PD-1 expression with respect to virus copy number.
  • FIG. 10 is a diagram showing the TIM-3 expression positive rate with respect to the virus copy number.
  • FIG. 4 is a diagram showing the positive rate of LAG-3 expression with respect to virus copy number.
  • FIG. 10 is a graph showing the naive cell rate with respect to virus copy number.
  • FIG. 4 is a diagram showing the cell number of Daudi cells;
  • immune cells refers to cells in general that are involved in immune function in vivo, including neutrophils, macrophages, lymphocytes ⁇ B cells and T cells>, natural killer (NK) cells, plasma A cell etc. are illustrated. Of these, T cells and NK cells are preferred for the present invention.
  • immune cells as used herein also includes "precursor cells of immune cells” that have the ability to differentiate into the aforementioned immune cells.
  • T cells are also called T lymphocytes, and mean cells derived from the thymus among lymphocytes involved in immune responses. T cells include helper T cells, suppressor T cells, regulatory T cells, cytotoxic T cells (CTLs), naive T cells, memory T cells, ⁇ T cells expressing ⁇ and ⁇ chain TCRs, ⁇ chains and ⁇ T cells expressing TCRs of the ⁇ chain.
  • CTLs cytotoxic T cells
  • naive T cells memory T cells
  • ⁇ T cells expressing ⁇ and ⁇ chain TCRs ⁇ chains and ⁇ T cells expressing TCRs of the ⁇ chain.
  • T cells capable of differentiating into T cells and “T cells or cell populations containing cells capable of differentiating into T cells” can also be used in the present invention.
  • Cells that can differentiate into T cells are not particularly limited as long as they are cells that differentiate into T cells in vivo or by artificial stimulation.
  • the "cell population containing T cells or cells capable of differentiating into T cells” includes blood (peripheral blood, umbilical cord blood, etc.), bone marrow fluid, and peripheral blood collected, isolated, purified, and induced therefrom.
  • Cell populations including nuclear cells (PBMC), hematopoietic cells, hematopoietic stem cells, cord blood mononuclear cells and the like are exemplified.
  • PBMC nuclear cells
  • hematopoietic cells hematopoietic stem cells
  • cord blood mononuclear cells and the like are exemplified.
  • Various cell populations derived from blood lineage cells containing T cells can also be used in the present invention. These cells may be activated in vivo or ex vivo by cytokines such as anti-CD3 antibodies and IL-2. These cells can be either collected from a living body or obtained through in vitro culture, for example, a T cell population obtained from a living body as it is or cryopreserved
  • NK cells are cytotoxic cells differentiated from hematopoietic stem cells via lymphoid stem cells, and express CD16, CD56, and CD57 on their surface. NK cells recognize cells that do not express MHC class I antigens and cells bound with antibody molecules as non-self, and directly damage them. NK cells can be prepared in vitro, for example, using PBMC as a starting material and culturing them in the presence of OK432 or other inducers.
  • the immune cells obtained by the present invention are provided with receptors having specificity for antigens known to be commonly expressed by target cells and immune cells or present on the surface of said immune cells.
  • the phrase "known to be present” refers to the presence of an antigen in vivo, particularly on the surface of immune cells in the blood or on the surface of immune cells cultured in vitro. It means that it is not always found. In any event, the use of the methods of the present invention results in reduced antigen expression in immune cells, thereby preventing immune cells expressing the receptor from attacking themselves.
  • target cell means a cell that is desired to be reduced or eliminated in a patient, and is exemplified by tumor cells and pathogen-infected cells. Although not particularly limited, it is preferably a tumor cell, more preferably a B-cell leukemia cell, or a solid tumor cell.
  • the term "antigen” means a biomolecule such as a protein or an immunological fragment thereof, and is a substance that binds to an antibody or an antigen receptor on an immune cell and induces an immune response.
  • an antigen exists on the surface of a cell, the cell will be removed from the body by the action of antibodies and lymphocytes. Normally, antigens originate from foreign pathogens such as bacteria and viruses, and heterologous proteins that enter the body through artificial injections. an immune response occurs.
  • antigens recognized by receptors encoded by nucleic acids introduced into immune cells are present in both immune cells and target cells. Furthermore, in one aspect of the present invention, the antigen is assumed to exist on the surface of normal immune cells. Examples of antigens include CD38, CD4 and CD7, preferably CD38.
  • the CD38 protein is a marker for HIV infection, leukemia, myeloma, solid tumors, type II diabetes, and bone metabolism, as well as several other genetically determined conditions.
  • CD38 protein is used as a prognostic marker for leukemia (Ibrahim, S. et al. 2001, Blood 98: 181-186).
  • the term "receptor” refers to an antigen-specific receptor. Preferably, it is a receptor capable of endowing immune cells with the property of recognizing and/or damaging target cells. Examples of such receptors include CAR and TCR.
  • CAR is a fusion protein comprising an antigen-binding extracellular domain (hereinafter referred to as an antigen-binding domain), a transmembrane domain derived from a polypeptide different from the antigen-binding domain, and at least one intracellular domain.
  • CARs are sometimes called “chimeric receptors,” “T-bodies,” and “chimeric immune receptors (CIRs).”
  • domain refers to a region within a polypeptide that folds into a specific structure independently of other regions.
  • Antigen-binding domain means any oligopeptide or polypeptide that can bind to an antigen.
  • antigen-binding domains include antigen-binding sites derived from antibodies, such as Fab' fragments, Fab fragments, Fv fragments, etc., but single-chain variable region fragments (scFv) are preferred for the present invention.
  • scFv refers to an antibody-derived single-chain polypeptide that retains antigen-binding ability. Examples thereof include polypeptides formed by recombinant DNA technology, in which the Fv region of an immunoglobulin heavy chain (H chain) and the Fv region of a light chain (L chain) are linked via a spacer sequence.
  • Intracellular domain means any oligopeptide or polypeptide known to function as a domain that transmits a signal that activates or inhibits a biological process within a cell.
  • the structure of a typical CAR consists of an scFv, a transmembrane domain, and an intracellular domain that activates cells.
  • Transmembrane domains derived from the TCR complex CD3 ⁇ , CD28, CD8 ⁇ , etc. are known.
  • the intracellular domain the intracellular domain of CD3 ⁇ is preferably used.
  • a CAR with such a configuration is called a first generation CAR.
  • CAR-expressing T cells directly recognize surface antigens of tumor cells independently of the expression of major histocompatibility antigen class I on tumor cells, and simultaneously activate T cells themselves. , can efficiently kill tumor cells.
  • T-cell co-stimulatory molecules As co-stimulatory molecules for T cells, CD28, the intracellular domain of CD137 (4-1BB) or CD134 (OX40), which is a tumor necrosis factor (TNF) receptor superfamily, the intracellular domain of interleukin receptors and modifications thereof glucocorticoid-induced tumor necrosis factor receptor (GITR) intracellular domain and the like are preferably used.
  • CD137 4-1BB
  • CD134 which is a tumor necrosis factor (TNF) receptor superfamily
  • GITR glucocorticoid-induced tumor necrosis factor receptor
  • nucleic acid constructs of the invention can contain any CAR-encoding sequence as the desired gene sequence.
  • TCR is responsible for the antigen recognition function of T cells, and is composed of polypeptides such as ⁇ -chain, ⁇ -chain, ⁇ -chain, and ⁇ -chain.
  • polypeptides such as ⁇ -chain, ⁇ -chain, ⁇ -chain, and ⁇ -chain.
  • heterodimers of TCR ⁇ chain (TCR ⁇ ) and TCR ⁇ chain (TCR ⁇ ) or heterodimers of ⁇ chain and ⁇ chain are used as auxiliary molecules in the CD3 complex ( ⁇ , ⁇ , ⁇ , ⁇ ), together with CD4 or CD8, etc., form the TCR.
  • TCR recognizes peptides (antigen epitopes) presented by target cells (phagocytic cells, virus-infected cells, cancer cells, etc.) via the major histocompatibility complex (MHC) in vivo, and target cells Responsible for the function of making an immune response against Human MHC is also referred to as the human histocompatibility leukocyte antigen (HLA) system.
  • HLA is classified into class I and class II. Class I includes HLA-A, B, C, E, F, G, H, and J. Class II includes HLA-DR, DQ, and DP. included.
  • HLA like TCR, is also formed by a complex of ⁇ and ⁇ chains, and presents antigenic epitopes on the cell surface via these chains.
  • HLA class I is present in almost all cells in the body and presents antigenic epitopes approximately nine amino acid residues long.
  • T cells such as CTL
  • TCR TCR specific to the antigen epitope
  • HLA-restricted refers to TCRs, as well as T cells expressing such TCRs, or antigen-HLA complexes presented by various peptides. , cells and the like. Binding of the TCR to the antigen-epitope-HLA complex results in an immune response, exemplified by the secretion of cytokines (interferon- ⁇ , TNF- ⁇ , IL-2, etc.) by CD8+ T cells.
  • cytokines interferon- ⁇ , TNF- ⁇ , IL-2, etc.
  • Binding of TCRs to antigen-epitope-HLA complexes can be measured indirectly by measuring secretion of the cytokines described above. Further, by detecting the binding of TCR to a complex of HLA (or a peptide fragment thereof) having a label such as green fluorescent protein (GFP) and an antigen epitope, the binding of TCR and antigen-HLA can be detected. It is directly measurable. Alternatively, known optical detection means utilizing the effect of light emission and extinction due to the proximity of two or more molecules can also be used.
  • GFP green fluorescent protein
  • Method for producing immune cells of the present invention (a) Step of introducing a nucleic acid encoding an antigen-specific receptor into immune cells
  • the method for producing immune cells of the present invention comprises antigen-specific receptors. into immune cells. The process is typically performed ex vivo.
  • the method of the present invention can use immune cells derived from mammals, such as humans, or immune cells derived from non-human mammals such as monkeys, mice, rats, pigs, cows, and dogs.
  • the immune cells used in the method of the present invention are not particularly limited, and any immune cells can be used.
  • cells collected, isolated, purified, or induced from blood peripheral blood mononuclear cells (PBMC), T cells, T cell progenitor cells (hematopoietic stem cells, lymphocyte progenitor cells, etc.), or cell populations containing these.
  • PBMC peripheral blood mononuclear cells
  • T cells T cell progenitor cells
  • lymphocyte progenitor cells hematopoietic stem cells, lymphocyte progenitor cells, etc.
  • T cells include CD8 positive T cells, CD4 positive T cells, regulatory T cells, cytotoxic T cells, or tumor infiltrating lymphocytes.
  • NK cells and their progenitor cells are also suitable as hosts for expressing antigen-specific receptors.
  • Cell populations containing T cells and T cell progenitor cells include PBMCs.
  • the above-mentioned cells may be those collected from living organisms, those obtained by expanding culture thereof, or those established as cell lines. When it is desired to transplant cells expressing a receptor specific to the manufactured antigen or cells differentiated from such cells into living organisms, the nucleic acid is transferred to the living organism itself or cells collected from the same kind of living organism. It is preferable to introduce
  • nucleic acids encoding antigen-specific receptors into immune cells can be carried out by known methods.
  • liposomes and WO 96/10038, WO 97/18185, WO 97/25329, WO 97/30170 and WO 97/31934 can be used to introduce nucleic acids encoding antigen-specific receptors into immune cells using condensing agents such as cationic lipids. can.
  • nucleic acids encoding antigen-specific receptors can be introduced into immune cells by calcium phosphate transfection, DEAE-dextran, electroporation, particle bombardment.
  • Nucleic acids encoding antigen-specific receptors can be loaded into appropriate vectors and introduced into immune cells.
  • vectors plasmid vectors (including episomal vectors), viral vectors (retroviral vectors, lentiviral vectors, adenoviral vectors, adeno-associated viral vectors, etc.) and other known vectors can be used.
  • an expression control sequence promoter, terminator, enhancer, etc.
  • Viral vectors can infect cells and introduce nucleic acids retained in the viral genome. Methods for producing viral vectors as infectious particles are also well known to those skilled in the art. For example, when using a retroviral vector (including a lentiviral vector), suitable packaging cells are selected based on the LTR sequence and packaging signal sequence possessed by the vector, and used to prepare retroviral particles. can be prepared and carried out. For example, PG13 (ATCC CRL-10686), PA317 (ATCC CRL-9078), GP + E-86 and GP + envAm-12 (US Patent No. 5,278,056), Psi-Crip [Proceedings of the National Academy of Sciences, Volume 85, 6460-6464 (1988)].
  • Retroviral particles can also be produced using 293 cells and 293T cells, which have high transfection efficiency. Retroviral vectors based on many types of retroviruses and packaging cells that can be used for packaging the vectors are widely available commercially from various companies. Also, many reagents and kits for producing adenovirus vectors and AAV vectors are commercially available.
  • retroviral vectors and lentiviral vectors are suitable for introducing nucleic acids encoding antigen-specific receptors into immune cells.
  • Methods for viral transduction are well known in the art (Waither et al. (2000) Viral Vectors for Gene Transfer. Drugs. 60(2):249-271). Integrating viral vectors allow stable integration of polynucleotides into the cellular genome and long-term expression of antigen-specific receptors.
  • a functional substance that improves the introduction efficiency can be used [e.g., International Publication No. 95/26200, International Publication No. 00/ 01836 pamphlet (both incorporated herein by reference)].
  • Substances that improve transduction efficiency include substances that have activity to bind to viral vectors, such as fibronectin or fibronectin fragments.
  • a fibronectin fragment having a heparin-binding site such as a fragment commercially available as RetroNectin (registered trademark, CH-296, manufactured by Takara Bio Inc.) can be used.
  • RetroNectin registered trademark, CH-296, manufactured by Takara Bio Inc.
  • polybrene, fibroblast growth factor, type V collagen, polylysine, or DEAE-dextran which are synthetic polycations that have the effect of improving the efficiency of retroviral cell infection, can be used.
  • the functional substance is immobilized on an appropriate solid phase, such as a container (plate, petri dish, flask, bag, etc.) or a carrier (microbeads, etc.) used for cell culture.
  • an appropriate solid phase such as a container (plate, petri dish, flask, bag, etc.) or a carrier (microbeads, etc.) used for cell culture.
  • Nucleic acids introduced into immune cells using retroviral vectors are integrated into the chromosomes of the immune cells.
  • methods for integrating nucleic acids onto chromosomes include methods using transposons (PiggyBac, etc.) and methods using genome editing technology (CRISPR/Cas9, TALEN, etc.).
  • Step of culturing immune cells in a medium containing a kinase inhibitor The method for producing immune cells of the present invention is characterized by including a step of culturing immune cells in a medium containing a kinase inhibitor. do.
  • the conditions for culturing immune cells in the medium containing the kinase inhibitor are not particularly limited, and conditions commonly used for cell culture can be used.
  • culture can be performed using plates, flasks, cell culture bags, large culture tanks, etc. under conditions such as 37° C. and 5% CO 2 .
  • operations such as adding fresh medium to the cell culture solution to dilute it at appropriate time intervals, exchanging the medium, and exchanging the cell culture equipment can be performed.
  • the medium used for culture is not particularly limited, either, and a serum-containing medium, serum-free medium, xeno-free medium, or the like having a general composition may be used.
  • kinase inhibitor refers to a drug that inhibits kinase activity, and inhibits kinases such as low-molecular-weight compounds, polypeptides, proteins, nucleic acids (siRNA, miRNA, aptamers, etc.), and other macromolecular compounds. Including drugs.
  • tyrosine kinase inhibitors TKIs
  • a tyrosine kinase is an enzyme that phosphorylates the hydroxyl groups on the side chains of tyrosine residues in proteins, and is a type of protein kinase.
  • a protein kinase transfers phosphate from ATP to a substrate protein and phosphorylates it, thereby changing the three-dimensional structure of the substrate protein and regulating its activity, thereby regulating cell functions.
  • Serine/threonine kinases have long been known as representative intracellular protein kinases, but various tyrosine kinases have been reported since it was discovered that retroviral oncogene products act as tyrosine kinases. . Since these tyrosine kinases were cell growth factor receptors and oncogene products, they are the subject of research on cell signaling, cell proliferation and canceration.
  • tyrosine kinase inhibitors are exemplified by dasatinib, imatinib, nilotinib, sunitinib, pazopanib, quizartinib, crenolanib or sorafenib, preferably dasatinib.
  • Dasatinib is an antineoplastic agent (anti-cancer agent) developed by Bristol-Myers Squibb as a tyrosine kinase inhibitor, a molecularly targeted therapeutic drug that targets multiple tyrosine kinases including BCR-ABL. be.
  • the concentration of the tyrosine kinase inhibitor added to the medium used in this step is, for example, 5-200 nM, preferably 15-100 nM, more preferably 40-60 nM.
  • the tyrosine kinase inhibitor is added after the step of introducing the nucleic acid encoding the antigen-specific receptor (after the last introduction when introducing multiple times), for example, within 3 days, preferably 2 days. It is carried out within days, more preferably within 24 hours.
  • a tyrosine kinase inhibitor may be added immediately after introduction of a nucleic acid encoding an antigen-specific receptor into cells and culture may be initiated.
  • the culture time in the presence of the tyrosine kinase inhibitor is, for example, 1 to 15 days, preferably 2 to 10 days, more preferably 3 to 5 days. It is a matter of course to determine an appropriate culture time depending on the type. Also, the concentration of the tyrosine kinase inhibitor may be changed as appropriate during the culture time. Furthermore, after culturing the cells in the presence of the tyrosine kinase inhibitor, the cells may be cultured in medium without the tyrosine kinase inhibitor.
  • Step of Suppressing Antigen Expression in Immune Cells The method for producing immune cells of the present invention is characterized by including a step of suppressing antigen expression in immune cells.
  • suppression of expression refers to suppression of final production of a polypeptide by preventing transcription and/or translation from a gene encoding a polypeptide. This means that the volume will decrease. Therefore, even if the transcription reaction from the gene encoding the polypeptide is not suppressed, it is included in “suppression of expression” if the transcription product (mRNA) is rapidly degraded and the production of the polypeptide is suppressed.
  • a state in which the expression is suppressed is a state in which the expression level is reduced by 20% or more, 40% or more, 60% or more, or 80% or more compared to the case where the expression is not suppressed, or a state in which the expression level is reduced by 100%, that is, completely suppressed state.
  • the above "suppression of expression” is performed by knocking down the antigen gene using siRNA.
  • Knockdown of an antigen gene by siRNA is performed by introducing into cells a nucleic acid encoding the siRNA, that is, a siRNA-producing sequence.
  • An example of an siRNA generating sequence is a sequence from which RNA is transcribed that forms at least one stem-loop structure and is capable of inducing RNA interference in mammalian cells.
  • RNA interference in the present invention aims to selectively suppress the expression of specific endogenous genes that cells naturally express by introducing nucleic acids containing siRNA-producing sequences.
  • RNA interference is induced by siRNA annealed with an RNA molecule homologous to and complementary to the base sequence of mRNA transcribed from a gene whose expression is desired to be suppressed (hereinafter referred to as a target gene). .
  • the siRNA-generating sequence used in the present invention includes, for example, a sequence (sense sequence) homologous to a region of the mRNA transcribed from the target gene and a complementary sequence (antisense sequence) arranged in series. are placed in A single RNA strand transcribed from this siRNA-producing sequence forms a double-stranded structure by annealing the sense sequence and the antisense sequence within the molecule, and the formed double-stranded RNA portion is used as the stem region.
  • a stem-loop structure is formed with any sequence located between the sequence and the antisense sequence as the loop region.
  • siRNA is produced from this stem region by the action of RNase III (Dicer).
  • the chain length of the portion corresponding to the stem region in the siRNA generating sequence is, for example, 13 to 29 bases, preferably 15 to 25 bases, more preferably 19 to 25 bases.
  • the loop region may have any sequence, and a sequence of 1 to 30 nucleotides is exemplified, preferably a sequence of 1 to 25 nucleotides, more preferably 5 to 22 nucleotides.
  • the siRNA produced in cells according to the present invention is composed of RNA with a sequence that is homologous to the specific base sequence of the mRNA transcribed from the target gene and RNA with a sequence that is complementary to each other. It does not need to be completely homologous or complementary to the specific base sequence of mRNA. siRNA consisting of substantially homologous RNA and substantially complementary sequence RNA may be used as long as the function of suppressing the expression of the target gene is exhibited.
  • the siRNA generating sequence used in the present invention transcribes one type of siRNA targeting one type of gene, and also transcribes a plurality of siRNAs corresponding to the base sequences of different regions of one type of target gene.
  • the number of siRNAs generated from the siRNA-generating sequences used in the present invention is 1-10, 1-6, 1-4, multiple or several.
  • the present invention relates to the siRNA-generating sequences of the base sequences shown in SEQ ID NO: 8 and SEQ ID NO: 9, and nucleic acids in which either or both of these sequences are arranged so that siRNA is expressed in cells, which are described in the following examples. Provide constructs.
  • nucleic acid containing an siRNA-producing sequence into an immune cell can be performed in the same manner as for nucleic acids encoding antigen-specific receptors.
  • the present invention is not particularly limited, from the viewpoint of stably suppressing the expression of antigens in immune cells, retroviral vectors and lentiviral vectors that have the property of integrating introduced nucleic acids into chromosomes are used in cells. It is desirable to load nucleic acid containing an siRNA-producing sequence in such a configuration that siRNA is expressed therein and then introduce it into immune cells.
  • the timing of introducing the nucleic acid containing the siRNA generating sequence into the immune cells may be before, at the same time as, or after the step (a) of introducing the nucleic acid encoding the antigen-specific receptor.
  • introduction of a nucleic acid containing an siRNA-generating sequence into an immune cell is performed at the same time as step (a).
  • a vector carrying a nucleic acid encoding a specific receptor may be simultaneously introduced into an immune cell, or both the nucleic acid containing the siRNA-generating sequence and the nucleic acid encoding the antigen-specific receptor are carried in the same vector. , may be introduced into immune cells. That is, step (a) and step (c) may be performed in one step.
  • the steps (a) to (c) may be performed in any order, or two or more of the steps (a) to (c) may be performed simultaneously.
  • the present invention includes the step of obtaining immune cells expressing antigen-specific receptors present on both immune cells and target cells by the method of (1). , a method of making a pharmaceutical composition.
  • the present invention provides a pharmaceutical composition containing, as an active ingredient, immune cells that express antigen-specific receptors present on both immune cells and target cells.
  • the pharmaceutical composition may further contain suitable excipients.
  • excipients include, for example, pharmaceutically acceptable excipients, various cell culture media, isotonic saline, and the like.
  • the disease to which the pharmaceutical composition is administered is not particularly limited as long as it is a disease that shows sensitivity to the immune cells.
  • Examples include cancer [blood cancer (leukemia), solid tumor, etc.], inflammatory disease /autoimmune diseases (asthma, eczema), infectious diseases caused by viruses such as hepatitis, influenza, HIV, bacteria, and fungi, such as tuberculosis, MRSA, VRE, and deep mycosis.
  • the pharmaceutical composition of the present invention can also be used for bone marrow transplantation, prevention of infectious diseases after irradiation, donor lymphocyte transfusion for the purpose of remission of recurrent leukemia, and the like.
  • the pharmaceutical compositions of the present invention can be administered by, but not limited to, parenteral administration, such as injection or infusion, intradermally, intramuscularly, subcutaneously, intraperitoneally, intranasally, intraarterially, intravenously, intratumorally, or It can be administered into afferent lymphatics and the like.
  • pMS3-MC described in International Publication No. 2013/051718 was prepared.
  • pMS3-MC has, in order from the 5′ end, MMLV (Moloney murine leukemia virus)-derived 5′ LTR (long terminal repeat), MMLV-derived SD (splice donor) sequence, MMLV-derived ⁇ (packaging signal) sequence, It is a retroviral vector plasmid having an SA (splice acceptor) sequence derived from the human EF1 ⁇ gene and a 3'LTR derived from MMLV, and the U3 region of the 3'LTR is replaced with a sequence derived from MSCV (mouse stem cell virus).
  • SA splice acceptor
  • a DNA fragment denoted as antiCD38-CAR in Fig. 1 was synthesized.
  • This DNA fragment contains a Kozak sequence (SEQ ID NO: 1), which is said to have the highest translation efficiency, at the 5' end, a CD8 ⁇ signal peptide (amino acid sequence: SEQ ID NO: 2), and an anti-CD38 monoclonal antibody that binds to the cancer antigen CD38.
  • VL amino acid sequence: SEQ ID NO: 3
  • linker sequence amino acid sequence: SEQ ID NO: 4
  • VH of anti-CD38 monoclonal antibody amino acid sequence: SEQ ID NO: 5
  • CD28 domain CD28-derived polypeptide containing transmembrane domain; It encodes one molecule of CAR containing amino acid sequence: SEQ ID NO: 6) and CD3 ⁇ intracellular domain (amino acid sequence: SEQ ID NO: 7) in order from the N-terminus.
  • This DNA fragment was inserted into pMS3-MC to generate pMS3-CD38-CAR.
  • the Kozak sequence is "K”
  • the CD8 ⁇ signal peptide is "SP”
  • the VL of the anti-CD38 monoclonal antibody is “anti-CD38 VL”
  • the linker sequence is "L”
  • the VH of the anti-CD38 monoclonal antibody is "anti -CD38 VH”
  • CD28 domain as "CD28”
  • CD3 ⁇ intracellular domain as “CD3 ⁇ ”
  • terminal repeat LTR
  • splice donor sequence as "SD”
  • splice acceptor sequence as "SA”
  • packaging signal sequence is displayed as " ⁇ ".
  • FIG. 2 shows a plasmid prepared by modifying pMS3-CD38-CAR. That is, sequences that generate two types of siRNA against the CD38 gene (SEQ ID NO: 8 and SEQ ID NO: 9) are inserted between the ⁇ sequence and SA sequence of pMS3-CD38-CAR to prepare pMS3-CD38-siRNA-CAR. did. Furthermore, the sequences encoding the anti-CD38 monoclonal antibodies VL and VH of pMS3-CD38-CAR were converted to VL and anti-CEA monoclonal antibodies that bind to the cancer antigen CEA (carcinoembryonic antigen), respectively, based on the description of Japanese Patent Application No. 2020-164927.
  • CEA cancer antigen
  • pMS3-CEA-CAR was created by replacing the VH-encoding sequence.
  • interleukin 2 receptor ⁇ chain is inserted between the CD28 domain and the CD3 ⁇ intracellular domain.
  • a portion of the intracellular domain (IL2R ⁇ ) (amino acid sequence: SEQ ID NO: 10) is inserted, and the amino acid sequence (LHMQ) in the CD3 ⁇ intracellular domain is replaced with a STAT3 binding motif (YRHQ) required for activation of STAT3 signaling.
  • pMS3-CD38-JS-CAR and pMS3-CD38-JS-siRNA-CAR were prepared by doing so.
  • IL2R ⁇ interleukin-2 receptor ⁇ chain
  • CD3 ⁇ intracellular domain amino acid sequence: SEQ ID NO: 11
  • YRHQ STAT3 binding motif
  • Example 2 Preparation of Retrovirus Solution Escherichia coli HST08 was transformed with each of the plasmids prepared in Example 1 to obtain transformants. Plasmid DNAs possessed by these transformants were each purified using NucleoBond Xtra Midi (manufactured by Macharei Nagel) and subjected to the following procedures as DNAs for transfection. 293T cells were transfected with the prepared DNA for transfection and pGP vector and pE-eco vector contained in Retrovirus Packaging Kit Eco (manufactured by Takara Bio Inc.). This operation was performed according to the product protocol of the kit.
  • a supernatant containing the ecotropic virus was obtained from each of the obtained transduced cells and filtered through a 0.45 ⁇ m filter (Milex HV, manufactured by Millipore). This supernatant was used to infect PG13 cells (ATCC CRL-10686) with ecotropic virus by a method using polybrene. The culture supernatant of the obtained cells was collected and filtered through a 0.45 ⁇ m filter to prepare each retrovirus solution, which was used in subsequent examples.
  • Example 3 Suppression of CD38 gene expression by siRNA Retronectin (Registered Trademark, manufactured by Takara Bio Inc.) was infected twice by a standard method to prepare PBMCs expressing each CAR. Furthermore, PBMCs were cultured under conditions of 37° C., 95% humidity and 5% CO 2 .
  • the composition of the medium is LymphoONE T-Cell Expansion Xeno containing 200 IU/mL Proleukin (IL-2) (manufactured by Nipro) and 0.6% (v/v) AB serum (manufactured by Access Biologicals).
  • - Free Medium manufactured by Takara Bio Inc.
  • cDNA was synthesized using PrimeScript RT reagent Kit (Perfect Real Time) (manufactured by Takara Bio Inc.).
  • real-time PCR was performed using TB Green Premix Ex Taq II (manufactured by Takara Bio Inc.) and a CD38 gene amplification primer set (SEQ ID NO: 12 and SEQ ID NO: 13) to measure the gene expression level. .
  • the relative expression level of the CD38 gene was calculated by measuring the expression level of the GAPDH gene, which is a housekeeping gene, using the primer set shown in SEQ ID NO: 14 and SEQ ID NO: 15. Furthermore, genomic DNA was extracted from the cells 7 days after the second virus infection using SimplePreagent for DNA (manufactured by Takara Bio Inc.), Provirus Copy Number Detection Primer Set, Human (manufactured by Takara Bio Inc.) and Cycleave PCR Core Kit. (manufactured by Takara Bio Inc.) was used to measure the retrovirus copy number integrated into the genome.
  • the vertical axis indicates the relative value of the expression level of the CD38 gene in the CD38-siRNA-CAR-introduced cells when the expression level of the CD38 gene in the CD38-CAR-introduced cells is set to 100.
  • CD38 gene expression was suppressed in CD38-siRNA-CAR-transfected cells compared to CD38-CAR-transfected cells.
  • Example 4 Increase in Exhaustion Marker by CD38-CAR Expression
  • a standard method using retronectin in which retroviral solutions for expressing CAR prepared in Example 2 were added to PBMCs isolated from human peripheral blood at various dilutions. to generate PBMCs expressing each CAR.
  • the number of retroviruses integrated into the genome of cells 3 days after the second virus infection was measured.
  • FIG. 4 shows the ratio of PD-1 positive cells to the copy numbers of CD38-CAR and CEA-CAR retroviruses. As shown in FIG. 4, the proportion of cells expressing the exhaustion marker PD-1 was increased in CD38-CAR-transfected cells compared to non-transfected cells (NGMC) and CEA-CAR-transfected cells.
  • NGMC non-transfected cells
  • Example 5 Increase in Cell Number and Cell Viability by siRNA and Kinase Inhibitor Retronectin was applied to PBMCs isolated from human peripheral blood at various dilutions of each CAR-expressing retrovirus solution prepared in Example 2.
  • Each CAR-expressing PBMC was generated by two rounds of infection using standard methods. After the second virus infection, each cell was divided into two halves, Dasatinib (manufactured by Cell Signaling Technology) was added to one half at a concentration of 50 nM, and Dasatinib was not added to the other half, and cultured for 4 days.
  • the retrovirus copy number was measured in the same manner as in Example 3, and the cell number and cell viability were measured.
  • Figure 5 shows the cell number and cell viability in CAR-introduced cells with a virus copy number of 1.5 to 1.8 copies/cell.
  • CD38-CAR-transfected cells and CD38-siRNA-CAR-transfected cells decreased in cell number and cell viability compared to NGMC.
  • the number of CD38-siRNA-CAR-introduced cells was greater than the number of CD38-CAR-introduced cells.
  • addition of Dasatinib restored the cell number and cell viability of CD38-CAR-introduced cells and CD38-siRNA-CAR-introduced cells to the same level as NGMC.
  • Example 6 Reduction of Exhaustion Markers by siRNA and Kinase Inhibitor PBMCs isolated from human peripheral blood were diluted with various dilutions of each CAR-expressing retrovirus solution prepared in Example 2, and retronectin was used as a standard method. method to generate PBMCs expressing each CAR.
  • Dasatinib manufactured by Cell Signaling Technology
  • retrovirus copy numbers integrated into the genome of cells cultured for 15 days after retrovirus infection were measured.
  • PE-labeled anti-Human CD279 (PD-1) antibody manufactured by Becton Dickinson
  • APC-Cy7-labeled anti-Human CD366 (Tim-3) antibody manufactured by BioLegend
  • PD-1 antibody manufactured by Becton Dickinson
  • Tim-3 antibody manufactured by BioLegend
  • PAG-3 antibody PerCP/Cyanine 5.5-labeled anti-Human CD223 (LAG-3) antibody
  • Figure 6 shows the ratio of PD-1 positive cells to the virus copy number
  • Figure 7 shows the ratio of Tim-3 positive cells to the virus copy number
  • Figure 8 shows the ratio of LAG-3 positive cells to the virus copy number.
  • the positive rate of each exhaustion marker was decreased in cells expressing siRNA against CD38 compared to cells not expressing siRNA.
  • addition of Dasatinib further decreased the positive rate of exhaustion markers. That is, the positive rate of exhaustion markers decreased most under the condition that Dasatinib was added to cells expressing siRNA against CD38.
  • Example 7 Increase in Naive Rate by siRNA and Kinase Inhibitor PBMCs isolated from human peripheral blood were added with various dilutions of each CAR-expressing retrovirus solution prepared in Example 2, and retronectin-based standard method to generate PBMCs expressing each CAR. Furthermore, under certain conditions, Dasatinib was added at a concentration of 50 nM after the second virus infection, and a biotin-labeled anti-mouse IgG antibody (manufactured by Jackson ImmunoResearch) was added to cells cultured for 15 days after retrovirus infection.
  • streptavidin-APC manufactured by BioLegend
  • PerCP/Cyanine5.5-labeled anti-Human CD8 antibody manufactured by Beckman Coulter
  • FITC-labeled anti-Human CD197 (CCR7) antibody manufactured by BioLegend
  • PE-labeled anti-Human CD45RA Cells were stained by adding an antibody (BioLegend).
  • the percentage of cells positive for CCR7 and CD45RA among cells positive for APC among PerCP/Cyanine5.5-positive cells was measured for the stained cells. That is, the proportion of CAR-positive cells among CD8-positive cells and naive cells was measured.
  • Figure 9 shows the ratio of naive cells to virus copy number.
  • addition of Dasatinib to CD38-CAR-transfected cells resulted in more naive cells.
  • the condition in which Dasatinib was added to the CD38-siRNA-CAR-introduced cells resulted in containing the largest number of naive cells.
  • Example 8 Maintenance of cytotoxic activity by siRNA and kinase inhibitor PBMCs isolated from human peripheral blood were diluted with various dilutions of each CAR-expressing retrovirus solution prepared in Example 2, and retronectin was used as a standard method.
  • Each CAR-expressing PBMC was prepared by infecting each CAR twice. After the second virus infection, each cell was divided into two halves, one of which was added with Dasatinib at a concentration of 50 nM, and the other of which was cultured for 7 days without Dasatinib. Seven days after the second virus infection, the cells were co-cultured with CD38-positive Daudi cells (National Institute of Biomedical Innovation, Health and Nutrition JCRB9071), and the number of Daudi cells was measured every 3 to 4 days. In addition, Daudi cells were added during cell number determination.
  • CD38-positive Daudi cells National Institute of Biomedical Innovation, Health and Nutrition JCRB9071
  • Fig. 10 shows the number of Daudi cells versus the number of days of co-culture. Until the 17th day, proliferation of Daudi cells was suppressed under all conditions except NGMC. However, on day 21, Daudi cells proliferated only in CD38-JS-CAR-introduced cells without the addition of Dasatinib. This result indicates that the cytotoxic activity of CAR-expressing cells is maintained by suppressing CD38 expression with siRNA and/or by adding Dasatinib.
  • the production of immune cells expressing antigen-specific receptors present on both immune cells and target cells and the methods for producing antigen-specific receptors present on both immune cells and target cells
  • Methods of making pharmaceutical compositions comprising immune cells expressing immune cells are provided.
  • the method of the present invention is particularly useful for medical applications.
  • SEQ ID NO:1 Kozak sequence
  • SEQ ID NO:2 CD8 alpha signal peptide
  • SEQ ID NO:3 anti-CD38 VL sequence
  • SEQ ID NO:4 linker sequence
  • SEQ ID NO:5 anti-CD38 VH sequence
  • SEQ ID NO:6 CD28 domains
  • SEQ ID NO:7 CD3 zeta intracellular domain
  • SEQ ID NO:8 CD38_siRNA_2
  • SEQ ID NO:10 IL2R beta domain
  • SEQ ID NO:11 CD3 zeta intracellular domain with STAT3-binding motif (YRHQ)
  • SEQ ID NO:14 GAPDH-Fw primer
  • SEQ ID NO:15 GAPDH-Rv primer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides a method for producing an immunocyte that expresses a receptor specific to an antigen which is present in both an immunocyte and a target cell, and the like, said method being characterized by comprising, in no particular order: (a) a step for introducing a nucleic acid that encodes the receptor specific to the antigen into an immunocyte; (b) a step for culturing the immunocyte in a culture medium that contains a kinase inhibitor; and (c) a step for inhibiting expression of the antigen in the immunocyte.

Description

抗原に特異的な受容体を発現する免疫細胞の製造方法Method for producing immune cells expressing antigen-specific receptors
 本発明は、免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞の製造方法、および、該方法により免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞を得る工程を包含する、医薬組成物の製造方法に関する。 The present invention provides a method for producing immune cells expressing receptors specific to antigens present in both immune cells and target cells, and a method for producing immune cells that express antigen-specific receptors present in both immune cells and target cells, It relates to a method for producing a pharmaceutical composition comprising the step of obtaining immune cells that express the receptor.
 腫瘍に対する治療戦略として、腫瘍細胞の表面に存在する特定の抗原に結合するキメラ抗原受容体(Chimeric Antigen Receptor:CAR)をコードする核酸、または腫瘍細胞を認識するT細胞受容体(TCR)遺伝子を任意のT細胞に導入することにより、当該特定の抗原を標的とするT細胞を作製することが期待できる。ここで、CARをコードする核酸が導入されたT細胞はCAR-T細胞と呼ばれ、TCR遺伝子が導入されたT細胞はTCR-T細胞と呼ばれている。 As a therapeutic strategy for tumors, a nucleic acid encoding a chimeric antigen receptor (CAR) that binds to a specific antigen present on the surface of tumor cells, or a T cell receptor (TCR) gene that recognizes tumor cells is used. By introducing it into any T cell, it can be expected to produce T cells that target the specific antigen. Here, T cells into which a nucleic acid encoding CAR has been introduced are called CAR-T cells, and T cells into which a TCR gene has been introduced are called TCR-T cells.
 しかし、当該特定の抗原が腫瘍細胞の表面のみならず、T細胞の表面にも存在する場合、CAR-T細胞又はTCR-T細胞は、自身を攻撃することになるため、CAR-T細胞又はTCR-T細胞を効率的に製造できないという問題があった。 However, if the specific antigen is present not only on the surface of tumor cells but also on the surface of T cells, CAR-T cells or TCR-T cells will attack themselves, so CAR-T cells or There is a problem that TCR-T cells cannot be produced efficiently.
 この問題に対処する為、近年、T細胞の表面と標的細胞の表面の両方に存在する抗原の発現または提示に関与する遺伝子を不活化し、その後に、CARを発現させるという方法が開発された(特許文献1)。 To address this problem, a method was recently developed to inactivate genes involved in antigen expression or presentation present on both the surface of T cells and the surface of target cells, followed by expression of CAR. (Patent Document 1).
特許第6673838号Patent No. 6673838
 特許文献1に記載された技術において、遺伝子不活化は、CRISPRやTALEN等のエンドヌクレアーゼを用いて、CAR-T細胞のゲノムを改変することにより行われため、当該不活化は不可逆的である。したがって、T細胞の表面における抗原の存在を消失又は減少させる、新規な方法についての必要性が依然存在する。 In the technique described in Patent Document 1, gene inactivation is performed by modifying the genome of CAR-T cells using endonucleases such as CRISPR and TALEN, so the inactivation is irreversible. Therefore, there remains a need for new methods to eliminate or reduce the presence of antigen on the surface of T cells.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体をコードする核酸が導入された免疫細胞が、前記核酸が導入された免疫細胞における前記抗原の発現をsiRNAで抑制し、かつ当該免疫細胞をキナーゼ阻害剤を含む培地中で培養することによって製造できることを見出し、本発明を完成させた。 The present inventors have made intensive studies to solve the above problems, and found that immune cells into which nucleic acids encoding antigen-specific receptors present in both immune cells and target cells have been introduced into immune cells The inventors have found that the antigen can be produced by suppressing the expression of the antigen in the introduced immune cells with siRNA and culturing the immune cells in a medium containing a kinase inhibitor, thereby completing the present invention.
 すなわち本発明を概説すれば、
[1] 免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞の製造方法であって、以下の工程を順不同に含むことを特徴とする、方法:
 (a)免疫細胞に、前記抗原に特異的な受容体をコードする核酸を導入する工程、
 (b)免疫細胞を、キナーゼ阻害剤を含む培地中で培養する工程、及び
 (c)免疫細胞における前記抗原の発現を抑制する工程、
[2] 免疫細胞がT細胞またはNK細胞である、[1]に記載の方法、
[3] 抗原が、正常免疫細胞の表面と標的細胞の表面の両方に存在する抗原である、[1]に記載の方法、
[4] 抗原が、CD38である、[1]に記載の方法、
[5] 受容体が、キメラ抗原受容体又はT細胞受容体である、[1]に記載の方法、
[6] キナーゼ阻害剤が、チロシンキナーゼ阻害剤である、[1]に記載の方法、
[7] キナーゼ阻害剤が、Dasatinibである、[1]に記載の方法、
[8] 工程(c)が、抗原をコードする遺伝子のノックダウンにより実施される、[1]に記載の方法、
[9] 抗原の発現を抑制するsiRNAが使用される、[8]に記載の方法、
[10] 工程(c)が抗原の発現を抑制するsiRNAをコードする核酸を免疫細胞に導入することによって行われ、該siRNAの免疫細胞への導入が工程(a)と同時に行われる、[9]に記載の方法、
[11] [1]に記載の方法により免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞を得る工程を包含する、医薬組成物の製造方法、
に関する。
That is, if the present invention is outlined,
[1] A method for producing immune cells that express antigen-specific receptors present in both immune cells and target cells, the method comprising the following steps in random order:
(a) introducing into an immune cell a nucleic acid encoding a receptor specific for said antigen;
(b) culturing immune cells in a medium containing a kinase inhibitor; and (c) suppressing expression of said antigen in immune cells;
[2] The method of [1], wherein the immune cells are T cells or NK cells;
[3] The method of [1], wherein the antigen is present on both the surface of normal immune cells and the surface of target cells.
[4] the method of [1], wherein the antigen is CD38;
[5] The method of [1], wherein the receptor is a chimeric antigen receptor or a T cell receptor;
[6] The method of [1], wherein the kinase inhibitor is a tyrosine kinase inhibitor;
[7] The method of [1], wherein the kinase inhibitor is Dasatinib;
[8] The method of [1], wherein step (c) is performed by knocking down a gene encoding an antigen;
[9] The method of [8], wherein siRNA that suppresses antigen expression is used;
[10] The step (c) is performed by introducing a nucleic acid encoding an siRNA that suppresses the expression of the antigen into the immune cells, and the introduction of the siRNA into the immune cells is performed at the same time as the step (a) [9 ],
[11] A method for producing a pharmaceutical composition, comprising the step of obtaining immune cells expressing antigen-specific receptors present on both immune cells and target cells by the method of [1];
Regarding.
 本発明により、免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞の製造、および、該方法により免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞を含む医薬組成物の製造方法が提供される。本発明の製造方法により得られる免疫細胞は、疲弊マーカーの発現率が低く、かつ当該免疫細胞はナイーブ細胞率が高く、かつ当該免疫細胞は高い細胞傷害活性を示す。 According to the present invention, the production of immune cells expressing antigen-specific receptors present on both immune cells and target cells, and the methods for producing antigen-specific receptors present on both immune cells and target cells Methods of making pharmaceutical compositions comprising immune cells expressing immune cells are provided. The immune cells obtained by the production method of the present invention have a low expression rate of exhaustion markers, a high naive cell rate, and high cytotoxic activity.
実施例で使用するCARの作製手順を示す図である。It is a figure which shows the preparation procedures of CAR used in an Example. 実施例で使用するCARの構造を示す図である。It is a figure which shows the structure of CAR used in an Example. ウイルスコピー数に対する、CD38遺伝子の発現量を示す図である。FIG. 3 is a diagram showing the expression level of the CD38 gene with respect to the virus copy number. ウイルスコピー数に対する、PD-1の発現陽性率を示す図である。FIG. 3 is a diagram showing the positive rate of PD-1 expression with respect to virus copy number. 細胞数及び細胞生存率を示す図である。FIG. 4 shows cell counts and cell viability. ウイルスコピー数に対する、PD-1の発現陽性率を示す図である。FIG. 3 is a diagram showing the positive rate of PD-1 expression with respect to virus copy number. ウイルスコピー数に対する、TIM-3の発現陽性率を示す図である。FIG. 10 is a diagram showing the TIM-3 expression positive rate with respect to the virus copy number. ウイルスコピー数に対する、LAG-3の発現陽性率を示す図である。FIG. 4 is a diagram showing the positive rate of LAG-3 expression with respect to virus copy number. ウイルスコピー数に対する、ナイーブ細胞率を示す図である。FIG. 10 is a graph showing the naive cell rate with respect to virus copy number. Daudi細胞の細胞数を示す図である。FIG. 4 is a diagram showing the cell number of Daudi cells;
 本明細書において「免疫細胞」とは、生体内において免疫機能に関与している細胞全般を言い、好中球、マクロファージ、リンパ球〈B細胞およびT細胞〉、ナチュラルキラー(NK)細胞、形質細胞等が例示される。これらのうち、本発明にはT細胞およびNK細胞が好適である。なお、本明細書における「免疫細胞」には前記の免疫細胞に分化する能力を有する「免疫細胞の前駆細胞」も包含される。 As used herein, the term "immune cells" refers to cells in general that are involved in immune function in vivo, including neutrophils, macrophages, lymphocytes <B cells and T cells>, natural killer (NK) cells, plasma A cell etc. are illustrated. Of these, T cells and NK cells are preferred for the present invention. The term "immune cells" as used herein also includes "precursor cells of immune cells" that have the ability to differentiate into the aforementioned immune cells.
 「T細胞」とは、Tリンパ球とも呼ばれ、免疫応答に関与するリンパ球のうち胸腺に由来する細胞を意味する。T細胞には、ヘルパーT細胞、サプレッサーT細胞、制御性T細胞、細胞傷害性T細胞(CTL)、ナイーブT細胞、メモリーT細胞、α鎖とβ鎖のTCRを発現するαβT細胞、γ鎖とδ鎖のTCRを発現するγδT細胞が含まれる。また、「T細胞に分化しうる細胞」や「T細胞又はT細胞に分化しうる細胞を含有する細胞集団」も、本発明に使用することができる。「T細胞に分化しうる細胞」としては、生体内においてもしくは人為的な刺激によってT細胞に分化する細胞であれば特に限定はないが、例えば、造血幹細胞、多能性前駆細胞、リンパ系共通前駆細胞、T細胞前駆細胞等が含まれる。「T細胞又はT細胞に分化しうる細胞を含有する細胞集団」としては、血液(末梢血、臍帯血など)、骨髄液の他、これらより採取、単離、精製、誘導された末梢血単核細胞(PBMC)、血球系細胞、造血幹細胞、臍帯血単核球などを含む細胞集団が例示される。また、T細胞を含有する血球系細胞由来の種々の細胞集団を本発明に使用できる。これらの細胞は抗CD3抗体やIL-2などのサイトカインにより生体内(イン・ビボ)や生体外(エクス・ビボ)で活性化されていても良い。これらの細胞は生体から採取されたもの、あるいは生体外での培養を経て得られたもの、例えば生体より得られたT細胞集団をそのままもしくは凍結保存したもののいずれも使用することができる。 "T cells" are also called T lymphocytes, and mean cells derived from the thymus among lymphocytes involved in immune responses. T cells include helper T cells, suppressor T cells, regulatory T cells, cytotoxic T cells (CTLs), naive T cells, memory T cells, αβ T cells expressing α and β chain TCRs, γ chains and γδ T cells expressing TCRs of the δ chain. In addition, "cells capable of differentiating into T cells" and "T cells or cell populations containing cells capable of differentiating into T cells" can also be used in the present invention. "Cells that can differentiate into T cells" are not particularly limited as long as they are cells that differentiate into T cells in vivo or by artificial stimulation. Included are progenitor cells, T-cell progenitor cells, and the like. The "cell population containing T cells or cells capable of differentiating into T cells" includes blood (peripheral blood, umbilical cord blood, etc.), bone marrow fluid, and peripheral blood collected, isolated, purified, and induced therefrom. Cell populations including nuclear cells (PBMC), hematopoietic cells, hematopoietic stem cells, cord blood mononuclear cells and the like are exemplified. Various cell populations derived from blood lineage cells containing T cells can also be used in the present invention. These cells may be activated in vivo or ex vivo by cytokines such as anti-CD3 antibodies and IL-2. These cells can be either collected from a living body or obtained through in vitro culture, for example, a T cell population obtained from a living body as it is or cryopreserved.
 NK細胞は、造血幹細胞よりリンパ球系幹細胞を経て分化した、細胞傷害性を有する細胞であり、その表面にCD16、CD56、CD57を発現している。NK細胞はMHCクラスI抗原を発現していない細胞や抗体分子が結合した細胞を非自己と認識し、これらを直接傷害する。NK細胞は、例えばPBMCを出発材料として、OK432やその他の誘導剤存在下に培養を行うことにより、生体外で調製することができる。 NK cells are cytotoxic cells differentiated from hematopoietic stem cells via lymphoid stem cells, and express CD16, CD56, and CD57 on their surface. NK cells recognize cells that do not express MHC class I antigens and cells bound with antibody molecules as non-self, and directly damage them. NK cells can be prepared in vitro, for example, using PBMC as a starting material and culturing them in the presence of OK432 or other inducers.
 本発明により得られる免疫細胞は、標的細胞と免疫細胞が共通して発現するか、または前記免疫細胞の表面に存在することが知られている抗原に対して特異性を有する受容体を備える。「存在することが知られている」という表現は、イン・ビボで、特に血中にある免疫細胞の表面で、あるいは試験管内(イン・ビトロ)で培養された免疫細胞の表面で、抗原が必ず見出されるとは限らないことを意味する。いずれにしても、本発明の方法を用いると、免疫細胞における抗原の発現が低減され、それによって、受容体を発現する免疫細胞は自己を攻撃しなくなるという結果になる。 The immune cells obtained by the present invention are provided with receptors having specificity for antigens known to be commonly expressed by target cells and immune cells or present on the surface of said immune cells. The phrase "known to be present" refers to the presence of an antigen in vivo, particularly on the surface of immune cells in the blood or on the surface of immune cells cultured in vitro. It means that it is not always found. In any event, the use of the methods of the present invention results in reduced antigen expression in immune cells, thereby preventing immune cells expressing the receptor from attacking themselves.
 本明細書において「標的細胞」とは、患者において低減または排除することが望まれる細胞を意味し、腫瘍細胞や病原体が感染した細胞が例示される。特に限定されないが、好ましくは腫瘍細胞であり、さらに好ましくはB細胞性白血病細胞であり、固形腫瘍細胞である As used herein, the term "target cell" means a cell that is desired to be reduced or eliminated in a patient, and is exemplified by tumor cells and pathogen-infected cells. Although not particularly limited, it is preferably a tumor cell, more preferably a B-cell leukemia cell, or a solid tumor cell.
 本明細書において「抗原」とは、タンパク質等の生体分子またはその免疫性断片を意味し、また、抗体や免疫細胞上の抗原レセプター(抗原受容体)に結合し、免疫反応を引き起こさせる物質の総称をいう。抗原が細胞の表面に存在する場合、当該細胞は抗体やリンパ球の働きによって生体内から除去されることになる。通常、細菌やウイルスなどの外来病原体や人為的な注射などで体内に入る異種タンパク質などが抗原の起源となるが、がんや自己免疫疾患では自分の体を構成している成分が抗原となって免疫反応が起きる。 As used herein, the term "antigen" means a biomolecule such as a protein or an immunological fragment thereof, and is a substance that binds to an antibody or an antigen receptor on an immune cell and induces an immune response. General term. When an antigen exists on the surface of a cell, the cell will be removed from the body by the action of antibodies and lymphocytes. Normally, antigens originate from foreign pathogens such as bacteria and viruses, and heterologous proteins that enter the body through artificial injections. an immune response occurs.
 本発明においては、免疫細胞に導入される核酸がコードする受容体が認識する抗原は、免疫細胞と標的細胞の両方に存在する。さらに本発明の一態様では、当該抗原は、正常な免疫細胞の表面に存在する場合が想定される。抗原として、CD38、CD4及びCD7が例示されるが、好適にはCD38である。 In the present invention, antigens recognized by receptors encoded by nucleic acids introduced into immune cells are present in both immune cells and target cells. Furthermore, in one aspect of the present invention, the antigen is assumed to exist on the surface of normal immune cells. Examples of antigens include CD38, CD4 and CD7, preferably CD38.
 CD38タンパク質は、HIV感染、白血病、骨髄腫、固形腫瘍、II型糖尿病、および骨代謝、ならびに他のいくつかの遺伝的に決定される状態のマーカーである。特にCD38タンパク質は白血病の予後マーカーとして用いられている(Ibrahim, S.et al. 2001, Blood 98 : 181-186)。 The CD38 protein is a marker for HIV infection, leukemia, myeloma, solid tumors, type II diabetes, and bone metabolism, as well as several other genetically determined conditions. In particular, CD38 protein is used as a prognostic marker for leukemia (Ibrahim, S. et al. 2001, Blood 98: 181-186).
 本明細書において「受容体」とは、抗原に特異的な受容体をいう。好適には、標的細胞を認識しおよび/または標的細胞を傷害する性質を免疫細胞に付与することができる受容体である。当該受容体として、CARおよびTCRが例示される。 As used herein, the term "receptor" refers to an antigen-specific receptor. Preferably, it is a receptor capable of endowing immune cells with the property of recognizing and/or damaging target cells. Examples of such receptors include CAR and TCR.
 CARとは、抗原に結合する細胞外ドメイン(以下、抗原結合ドメインと記載する)、前記抗原結合ドメインとは異なるポリペプチドに由来する膜貫通ドメイン及び少なくとも1つの細胞内ドメインを含む融合タンパク質を示す。CARは、「キメラ受容体」、「T-body」、「キメラ免疫受容体(CIR)」と呼ばれることがある。 CAR is a fusion protein comprising an antigen-binding extracellular domain (hereinafter referred to as an antigen-binding domain), a transmembrane domain derived from a polypeptide different from the antigen-binding domain, and at least one intracellular domain. . CARs are sometimes called "chimeric receptors," "T-bodies," and "chimeric immune receptors (CIRs)."
 本明細書において「ドメイン」とは、ポリペプチド内の一領域であって、他の領域とは独立して特定の構造に折りたたまれる(フォールディングされる)領域を意味する。 As used herein, the term "domain" refers to a region within a polypeptide that folds into a specific structure independently of other regions.
 「抗原結合ドメイン」は、ある抗原に結合することができる任意のオリゴペプチド又はポリペプチドを意味する。抗原結合ドメインとして、抗体由来の抗原結合部位、例えばFab’フラグメント、Fabフラグメント、Fvフラグメント等が例示されるが、本発明には単鎖可変領域フラグメント(single chain variable fragment:scFv)が好適である。scFvとは、抗原との結合能力を保持した、抗体由来の一本鎖ポリペプチドを意味する。例えば、組換えDNA技術により形成される、スペーサー配列を介して免疫グロブリン重鎖(H鎖)のFv領域と軽鎖(L鎖)のFv領域を連結したポリペプチドが例示される。scFvの各種作製方法が公知であり、米国特許第4694778号公報、サイエンス(Science)、第242巻、第423-442頁(1988)、ネイチャー(Nature)、第334巻、第54454頁(1989)、サイエンス(Science)、第242巻、第1038-1041頁(1988)に記載されている方法が挙げられる。 "Antigen-binding domain" means any oligopeptide or polypeptide that can bind to an antigen. Examples of antigen-binding domains include antigen-binding sites derived from antibodies, such as Fab' fragments, Fab fragments, Fv fragments, etc., but single-chain variable region fragments (scFv) are preferred for the present invention. . scFv refers to an antibody-derived single-chain polypeptide that retains antigen-binding ability. Examples thereof include polypeptides formed by recombinant DNA technology, in which the Fv region of an immunoglobulin heavy chain (H chain) and the Fv region of a light chain (L chain) are linked via a spacer sequence. Various methods for producing scFv are known, US Pat. No. 4,694,778, Science, vol. 242, pp. 423-442 (1988), Nature, vol. 334, pp. 54454 (1989). , Science, Vol. 242, pp. 1038-1041 (1988).
 「細胞内ドメイン」は、細胞内で生物学的プロセスの活性化又は阻害をもたらすシグナルを伝達するドメインとして機能することが知られている任意のオリゴペプチド又はポリペプチドを意味する。 "Intracellular domain" means any oligopeptide or polypeptide known to function as a domain that transmits a signal that activates or inhibits a biological process within a cell.
 代表的なCARの構造は、scFv、膜貫通ドメイン、及び細胞を活性化させる細胞内ドメインから構成される。膜貫通ドメインとしてはTCR複合体CD3ζ、CD28、CD8α等に由来するものが知られている。また細胞内ドメインとしては、CD3ζの細胞内ドメインが好適に使用されている。このような構成のCARは第一世代CARと呼ばれている。CARを発現するT細胞(CAR-T細胞)は、腫瘍細胞上の主要組織適合抗原クラスIの発現とは無関係に腫瘍細胞の表面抗原を直接認識し、同時にT細胞自身を活性化することで、効率よく腫瘍細胞を殺傷することが可能である。 The structure of a typical CAR consists of an scFv, a transmembrane domain, and an intracellular domain that activates cells. Transmembrane domains derived from the TCR complex CD3ζ, CD28, CD8α, etc. are known. As the intracellular domain, the intracellular domain of CD3ζ is preferably used. A CAR with such a configuration is called a first generation CAR. CAR-expressing T cells (CAR-T cells) directly recognize surface antigens of tumor cells independently of the expression of major histocompatibility antigen class I on tumor cells, and simultaneously activate T cells themselves. , can efficiently kill tumor cells.
 第一世代CARのT細胞活性化能を増強する目的で、T細胞の共刺激分子の細胞内ドメインを連結した第二世代CARが開発されている。T細胞の共刺激分子としては、CD28、腫瘍壊死因子(TNF)受容体スーパーファミリーであるCD137(4-1BB)又はCD134(OX40)の細胞内ドメイン、インターロイキン受容体の細胞内ドメインおよびその改変物、グルココルチコイド誘導腫瘍壊死因子受容体(GITR)細胞内ドメイン等が好適に使用されている。さらなる改良型として、これらの共刺激分子の細胞内ドメインをタンデムに連結した第三世代CARも開発され、様々な腫瘍抗原を標的とした多くのCAR分子が報告されている。本発明の核酸構築物は、所望の遺伝子の配列として、いずれのCARをコードする配列も含み得る。 With the aim of enhancing the ability of first-generation CARs to activate T cells, second-generation CARs linked to the intracellular domains of T-cell co-stimulatory molecules have been developed. As co-stimulatory molecules for T cells, CD28, the intracellular domain of CD137 (4-1BB) or CD134 (OX40), which is a tumor necrosis factor (TNF) receptor superfamily, the intracellular domain of interleukin receptors and modifications thereof glucocorticoid-induced tumor necrosis factor receptor (GITR) intracellular domain and the like are preferably used. As a further improvement, third-generation CARs in which the intracellular domains of these co-stimulatory molecules are linked in tandem have also been developed, and many CAR molecules targeting various tumor antigens have been reported. The nucleic acid constructs of the invention can contain any CAR-encoding sequence as the desired gene sequence.
 本明細書においてTCRとは、T細胞の抗原認識機能を担うものであり、TCRは、α鎖、β鎖、γ鎖、δ鎖などのポリペプチドから構成される。このうち、TCRα鎖(TCRα)とTCRβ鎖(TCRβ)とのヘテロ二量体、またはγ鎖とδ鎖とのヘテロ二量体が、補助分子としてのCD3複合体(γ、δ、ε、ζを含む)、CD4またはCD8などと一緒になってTCRを形成している。 As used herein, TCR is responsible for the antigen recognition function of T cells, and is composed of polypeptides such as α-chain, β-chain, γ-chain, and δ-chain. Among them, heterodimers of TCRα chain (TCRα) and TCRβ chain (TCRβ) or heterodimers of γ chain and δ chain are used as auxiliary molecules in the CD3 complex (γ, δ, ε, ζ ), together with CD4 or CD8, etc., form the TCR.
 TCRは、生体内において、標的とする細胞(食細胞、ウイルス感染細胞、癌細胞等)が主要組織適合遺伝子複合体(MHC)を介して提示するペプチド(抗原エピトープ)を認識し、標的細胞に対して免疫応答を行う機能を担う。ヒトのMHCは、ヒト組織適合性白血球抗原(HLA)系とも称される。HLAはクラスI及びクラスIIに区分されており、クラスIにはHLA-A、B、C、E、F、G、H、Jが含まれ、クラスIIにはHLA-DR、DQ、DPが含まれる。HLAもまたTCRと同様にα鎖およびβ鎖の複合体によって形成されており、これら鎖を介して抗原エピトープを細胞表面に提示する。HLAクラスIは、生体のほぼすべての細胞に存在し、約9アミノ酸残基の長さの抗原エピトープを提示する。例えば、ウイルス感染細胞がウイルス由来の抗原エピトープをHLAを介して提示すると、その抗原エピトープに特異的なTCRを有するT細胞(CTLなど)が活性化されて、その結果、生体の免疫応答(例えば、ウイルス感染細胞の殺傷)がもたらされて生体防御が行なわれている。 TCR recognizes peptides (antigen epitopes) presented by target cells (phagocytic cells, virus-infected cells, cancer cells, etc.) via the major histocompatibility complex (MHC) in vivo, and target cells Responsible for the function of making an immune response against Human MHC is also referred to as the human histocompatibility leukocyte antigen (HLA) system. HLA is classified into class I and class II. Class I includes HLA-A, B, C, E, F, G, H, and J. Class II includes HLA-DR, DQ, and DP. included. HLA, like TCR, is also formed by a complex of α and β chains, and presents antigenic epitopes on the cell surface via these chains. HLA class I is present in almost all cells in the body and presents antigenic epitopes approximately nine amino acid residues long. For example, when a virus-infected cell presents a virus-derived antigen epitope via HLA, T cells (such as CTL) having a TCR specific to the antigen epitope are activated, resulting in an immune response of the body (e.g. , killing of virus-infected cells) are brought about, and biological defense is performed.
 TCRは、通常は特定のタイプのHLAと抗原エピトープで形成された複合体との結合によってのみ免疫応答を行うことができる。この制限は「HLA拘束性」といわれる。本明細書においてHLA(またはMHC)拘束性の用語は、TCRに加えて、そのようなTCRを発現しているT細胞、または提示される抗原-HLA複合体を意味するために、各種のペプチド、細胞等と組み合せて使用され得る。TCRと抗原エピトープ-HLA複合体との結合によって免疫応答が生じるが、この免疫応答の例としては、CD8+T細胞によるサイトカイン(インターフェロンγ、TNF-α、IL-2等)の分泌が挙げられる。TCRと抗原エピトープ-HLA複合体との結合は、上記サイトカインの分泌を測定することによって間接的に測定可能である。また、緑色蛍光タンパク質(GFP)等の標識を有するHLA(又はそのペプチド断片)と抗原エピトープとの複合体に対してTCRが結合することを検出することによって、TCRと抗原-HLAとの結合を直接的に測定可能である。あるいは、2分子以上の分子の近接によって発光・消光する作用を利用した公知の光学的な検出手段も利用できる。 TCRs are usually able to make an immune response only by binding to a complex formed by a specific type of HLA and an antigenic epitope. This restriction is referred to as "HLA-restricted". As used herein, the term HLA (or MHC)-restricted refers to TCRs, as well as T cells expressing such TCRs, or antigen-HLA complexes presented by various peptides. , cells and the like. Binding of the TCR to the antigen-epitope-HLA complex results in an immune response, exemplified by the secretion of cytokines (interferon-γ, TNF-α, IL-2, etc.) by CD8+ T cells. Binding of TCRs to antigen-epitope-HLA complexes can be measured indirectly by measuring secretion of the cytokines described above. Further, by detecting the binding of TCR to a complex of HLA (or a peptide fragment thereof) having a label such as green fluorescent protein (GFP) and an antigen epitope, the binding of TCR and antigen-HLA can be detected. It is directly measurable. Alternatively, known optical detection means utilizing the effect of light emission and extinction due to the proximity of two or more molecules can also be used.
(1)本発明の免疫細胞の製造方法
(a)免疫細胞に、抗原に特異的な受容体をコードする核酸を導入する工程
 本発明の免疫細胞の製造方法は、抗原に特異的な受容体をコードする核酸を免疫細胞に導入する工程を包含することを特徴とする。当該工程は通常、エクス・ビボで実施される。
(1) Method for producing immune cells of the present invention (a) Step of introducing a nucleic acid encoding an antigen-specific receptor into immune cells The method for producing immune cells of the present invention comprises antigen-specific receptors. into immune cells. The process is typically performed ex vivo.
 本発明の方法は、哺乳動物、例えばヒト由来の免疫細胞又はサル、マウス、ラット、ブタ、ウシ、イヌ等の非ヒト哺乳動物由来の免疫細胞が使用できる。本発明の方法に使用される免疫細胞に特に限定はなく、任意の免疫細胞を使用することができる。例えば、血液(末梢血、臍帯血など)、骨髄などの体液、組織又は器官より採取、単離、精製、誘導された細胞を使用することができる。本発明においては、特に末梢血単核細胞(PBMC)、T細胞、T細胞の前駆細胞(造血幹細胞、リンパ球前駆細胞等)又はこれらを含有する細胞集団の使用が好ましい。T細胞には、CD8陽性T細胞、CD4陽性T細胞、制御性T細胞、細胞傷害性T細胞、又は腫瘍浸潤リンパ球が含まれる。さらに、NK細胞およびその前駆細胞も抗原に特異的な受容体を発現させる宿主として好適である。T細胞及びT細胞の前駆細胞を含有する細胞集団には、PBMCが含まれる。前記の細胞は生体より採取されたもの、それを拡大培養したもの又は細胞株として樹立されたもののいずれでもよい。製造された抗原に特異的な受容体を発現する細胞又は当該細胞より分化させた細胞を生体に移植することが望まれる場合には、その生体自身又は同種の生体から採取された細胞に核酸を導入することが好ましい。 The method of the present invention can use immune cells derived from mammals, such as humans, or immune cells derived from non-human mammals such as monkeys, mice, rats, pigs, cows, and dogs. The immune cells used in the method of the present invention are not particularly limited, and any immune cells can be used. For example, cells collected, isolated, purified, or induced from blood (peripheral blood, umbilical cord blood, etc.), bodily fluids such as bone marrow, or tissues or organs can be used. In the present invention, it is particularly preferable to use peripheral blood mononuclear cells (PBMC), T cells, T cell progenitor cells (hematopoietic stem cells, lymphocyte progenitor cells, etc.), or cell populations containing these. T cells include CD8 positive T cells, CD4 positive T cells, regulatory T cells, cytotoxic T cells, or tumor infiltrating lymphocytes. Furthermore, NK cells and their progenitor cells are also suitable as hosts for expressing antigen-specific receptors. Cell populations containing T cells and T cell progenitor cells include PBMCs. The above-mentioned cells may be those collected from living organisms, those obtained by expanding culture thereof, or those established as cell lines. When it is desired to transplant cells expressing a receptor specific to the manufactured antigen or cells differentiated from such cells into living organisms, the nucleic acid is transferred to the living organism itself or cells collected from the same kind of living organism. It is preferable to introduce
 抗原に特異的な受容体をコードする核酸の免疫細胞への導入は公知の方法により実施することができる。例えば、リポソーム及び国際公開第96/10038号パンフレット、国際公開第97/18185号パンフレット、国際公開第97/25329号パンフレット、国際公開第97/30170号パンフレット及び国際公開第97/31934号パンフレット(いずれも、出典明示により本明細書の一部とする)に記載されている陽イオン脂質などの縮合剤を使用して、抗原に特異的な受容体をコードする核酸を免疫細胞に導入することができる。さらに、リン酸カルシウム形質移入、DEAE-デキストラン、エレクトロポレーション、パーティクルボンバードメントにより抗原に特異的な受容体をコードする核酸を免疫細胞に導入することができる。 Introduction of nucleic acids encoding antigen-specific receptors into immune cells can be carried out by known methods. For example, liposomes and WO 96/10038, WO 97/18185, WO 97/25329, WO 97/30170 and WO 97/31934 (any (also incorporated herein by reference) can be used to introduce nucleic acids encoding antigen-specific receptors into immune cells using condensing agents such as cationic lipids. can. In addition, nucleic acids encoding antigen-specific receptors can be introduced into immune cells by calcium phosphate transfection, DEAE-dextran, electroporation, particle bombardment.
 抗原に特異的な受容体をコードする核酸は、適切なベクターに搭載して免疫細胞に導入することができる。ベクターとしてはプラスミドベクター(エピゾーマルベクターを含む)、ウイルスベクター(レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター等)やその他の公知のベクターを使用することができる。抗原に特異的な受容体をコードする核酸をベクターに搭載する際には、導入する免疫細胞で機能する発現調節配列(プロモーター、ターミネーター、エンハンサー等)を付加してもよい。 Nucleic acids encoding antigen-specific receptors can be loaded into appropriate vectors and introduced into immune cells. As vectors, plasmid vectors (including episomal vectors), viral vectors (retroviral vectors, lentiviral vectors, adenoviral vectors, adeno-associated viral vectors, etc.) and other known vectors can be used. When a nucleic acid encoding an antigen-specific receptor is loaded into a vector, an expression control sequence (promoter, terminator, enhancer, etc.) that functions in the introduced immune cells may be added.
 ウイルスベクターは細胞に感染してウイルスゲノムに保持する核酸を導入することができる。感染性粒子としてのウイルスベクターの製造方法も当業者には周知である。例えばレトロウイルスベクター(レンチウイルスベクターを包含する)を使用する場合、ベクターが有しているLTR配列及びパッケージングシグナル配列に基づいて適切なパッケージング細胞を選択し、これを使用してレトロウイルス粒子を調製して実施することができる。例えばPG13(ATCC CRL-10686)、PA317(ATCC CRL-9078)、GP+E-86やGP+envAm-12(米国特許第5,278,056号公報)、Psi-Crip[米国科学アカデミー紀要、第85巻、第6460-6464頁(1988)]のパッケージング細胞が例示される。また、トランスフェクション効率の高い293細胞や293T細胞を用いてレトロウイルス粒子を作製することもできる。多くの種類のレトロウイルスを基に製造されたレトロウイルスベクター及び当該ベクターのパッケージングに使用可能なパッケージング細胞は、各社より広く市販されている。また、アデノウイルスベクターやAAVベクターを製造するための試薬やキットも多数市販されている。 Viral vectors can infect cells and introduce nucleic acids retained in the viral genome. Methods for producing viral vectors as infectious particles are also well known to those skilled in the art. For example, when using a retroviral vector (including a lentiviral vector), suitable packaging cells are selected based on the LTR sequence and packaging signal sequence possessed by the vector, and used to prepare retroviral particles. can be prepared and carried out. For example, PG13 (ATCC CRL-10686), PA317 (ATCC CRL-9078), GP + E-86 and GP + envAm-12 (US Patent No. 5,278,056), Psi-Crip [Proceedings of the National Academy of Sciences, Volume 85, 6460-6464 (1988)]. Retroviral particles can also be produced using 293 cells and 293T cells, which have high transfection efficiency. Retroviral vectors based on many types of retroviruses and packaging cells that can be used for packaging the vectors are widely available commercially from various companies. Also, many reagents and kits for producing adenovirus vectors and AAV vectors are commercially available.
 本発明によれば、抗原に特異的な受容体をコードする核酸の免疫細胞への導入には、レトロウイルスベクターやレンチウイルスベクターの使用が適している。ウイルス形質導入のための方法は当技術分野において周知である(Waither et al. (2000) Viral Vectors for Gene Transfer. Drugs. 60(2):249-271)。組込みウイルスベクターを用いると細胞ゲノムにポリヌクレオチドを安定的に組み込み、長期間にわたって抗原に特異的な受容体を発現させることが可能となる。 According to the present invention, retroviral vectors and lentiviral vectors are suitable for introducing nucleic acids encoding antigen-specific receptors into immune cells. Methods for viral transduction are well known in the art (Waither et al. (2000) Viral Vectors for Gene Transfer. Drugs. 60(2):249-271). Integrating viral vectors allow stable integration of polynucleotides into the cellular genome and long-term expression of antigen-specific receptors.
 抗原に特異的な受容体をコードする核酸を免疫細胞に導入する工程で、導入効率を向上させる機能性物質を用いることもできる[例えば、国際公開第95/26200号パンフレット、国際公開第00/01836号パンフレット(いずれも出典明示により本明細書の一部とする)]。導入効率を向上させる物質としては、ウイルスベクターに結合する活性を有する物質、例えばフィブロネクチン又はフィブロネクチンフラグメントなどの物質が挙げられる。好適には、ヘパリン結合部位を有するフィブロネクチンフラグメント、例えばレトロネクチン(RetroNectin、登録商標、CH-296、タカラバイオ社製)として市販されているフラグメントを用いることができる。また、レトロウイルスの細胞への感染効率を向上させる作用を有する合成ポリカチオンであるポリブレン、線維芽細胞増殖因子、V型コラーゲン、ポリリジン又はDEAE-デキストランを使用することができる。 In the step of introducing a nucleic acid encoding an antigen-specific receptor into an immune cell, a functional substance that improves the introduction efficiency can be used [e.g., International Publication No. 95/26200, International Publication No. 00/ 01836 pamphlet (both incorporated herein by reference)]. Substances that improve transduction efficiency include substances that have activity to bind to viral vectors, such as fibronectin or fibronectin fragments. Preferably, a fibronectin fragment having a heparin-binding site, such as a fragment commercially available as RetroNectin (registered trademark, CH-296, manufactured by Takara Bio Inc.) can be used. In addition, polybrene, fibroblast growth factor, type V collagen, polylysine, or DEAE-dextran, which are synthetic polycations that have the effect of improving the efficiency of retroviral cell infection, can be used.
 本発明の好適な態様において、前記の機能性物質は適切な固相、例えば細胞培養に使用される容器(プレート、シャーレ、フラスコ又はバッグ等)又は担体(マイクロビーズ等)に固定化された状態で使用することができる。 In a preferred embodiment of the present invention, the functional substance is immobilized on an appropriate solid phase, such as a container (plate, petri dish, flask, bag, etc.) or a carrier (microbeads, etc.) used for cell culture. can be used in
 レトロウイルスベクターを使用して免疫細胞に導入された核酸は、当該免疫細胞の染色体上に組み込まれる。同様に、染色体上に核酸を組み込む方法としては、トランスポゾン(PiggyBac等)を使用する方法、ゲノム編集技術(CRISPR/Cas9、TALEN等)を使用する方法が例示される。 Nucleic acids introduced into immune cells using retroviral vectors are integrated into the chromosomes of the immune cells. Similarly, methods for integrating nucleic acids onto chromosomes include methods using transposons (PiggyBac, etc.) and methods using genome editing technology (CRISPR/Cas9, TALEN, etc.).
(b)免疫細胞を、キナーゼ阻害剤を含む培地中で培養する工程
 本発明の免疫細胞の製造方法は、免疫細胞を、キナーゼ阻害剤を含む培地中で培養する工程を包含することを特徴とする。
(b) Step of culturing immune cells in a medium containing a kinase inhibitor The method for producing immune cells of the present invention is characterized by including a step of culturing immune cells in a medium containing a kinase inhibitor. do.
 前記の、キナーゼ阻害剤を含む培地中での免疫細胞の培養条件に特に限定はなく、細胞培養に通常使用される条件を使用することができる。例えば、37℃、5%COなどの条件で、プレート、フラスコ、細胞培養用バッグ、大型培養槽等を使用して培養を実施することができる。また、適当な時間間隔をおいて細胞培養液に新鮮な培地を加えて希釈する、培地を交換する、細胞培養用器材を交換するなどの操作を行うことができる。培養に使用する培地にも特に限定はなく、一般的な組成の血清含有培地、無血清培地、ゼノフリー培地等を使用すればよい。 The conditions for culturing immune cells in the medium containing the kinase inhibitor are not particularly limited, and conditions commonly used for cell culture can be used. For example, culture can be performed using plates, flasks, cell culture bags, large culture tanks, etc. under conditions such as 37° C. and 5% CO 2 . In addition, operations such as adding fresh medium to the cell culture solution to dilute it at appropriate time intervals, exchanging the medium, and exchanging the cell culture equipment can be performed. The medium used for culture is not particularly limited, either, and a serum-containing medium, serum-free medium, xeno-free medium, or the like having a general composition may be used.
 本発明において「キナーゼ阻害剤」とは、キナーゼ活性を阻害する薬剤をいい、低分子化合物、ポリペプチド、タンパク質、核酸(siRNA、miRNA、アプタマー等)、その他の高分子化合物等のキナーゼを阻害する薬剤を包含する。本発明によれば、キナーゼ阻害剤として、チロシンキナーゼ阻害剤(tyrosine kinase inhibitor;TKI)の使用が適している。 In the present invention, the term "kinase inhibitor" refers to a drug that inhibits kinase activity, and inhibits kinases such as low-molecular-weight compounds, polypeptides, proteins, nucleic acids (siRNA, miRNA, aptamers, etc.), and other macromolecular compounds. Including drugs. As kinase inhibitors according to the invention, use of tyrosine kinase inhibitors (TKIs) is suitable.
 チロシンキナーゼとは、タンパク質内のチロシン残基側鎖にある水酸基をリン酸化する酵素で、プロテインキナーゼの一種である。プロテインキナーゼがATPからリン酸を基質タンパク質に転移させ、リン酸化させることにより、基質タンパク質の三次元構造が変化して、その活性が調節され、これにより細胞機能も調節されている。細胞内の代表的なプロテインキナーゼとして、従来からセリン/スレオニンキナーゼが知られていたが、レトロウイルスの癌遺伝子産物がチロシンキナーゼとして働くことが判明して以降、様々なチロシンキナーゼが報告されている。これらのチロシンキナーゼは、細胞増殖因子受容体や癌遺伝子産物であったため、細胞シグナリング、細胞増殖や癌化に関する研究対象となっている。 A tyrosine kinase is an enzyme that phosphorylates the hydroxyl groups on the side chains of tyrosine residues in proteins, and is a type of protein kinase. A protein kinase transfers phosphate from ATP to a substrate protein and phosphorylates it, thereby changing the three-dimensional structure of the substrate protein and regulating its activity, thereby regulating cell functions. Serine/threonine kinases have long been known as representative intracellular protein kinases, but various tyrosine kinases have been reported since it was discovered that retroviral oncogene products act as tyrosine kinases. . Since these tyrosine kinases were cell growth factor receptors and oncogene products, they are the subject of research on cell signaling, cell proliferation and canceration.
 本発明において、チロシンキナーゼ阻害剤としてダサチニブ(dasatinib)、イマチニブ、ニロチニブ、スニチニブ、パゾパニブ、キザルチニブ、クレノラニブ又はソラフェニブが例示されるが、好適にはダサチニブである。ダサチニブは、BCR-ABLをはじめとした複数のチロシンキナーゼを標的とした、分子標的治療薬であるチロシンキナーゼ阻害薬としてブリストル・マイヤーズ スクイブ社により開発された抗悪性腫瘍剤(抗がん剤)である。 In the present invention, tyrosine kinase inhibitors are exemplified by dasatinib, imatinib, nilotinib, sunitinib, pazopanib, quizartinib, crenolanib or sorafenib, preferably dasatinib. Dasatinib is an antineoplastic agent (anti-cancer agent) developed by Bristol-Myers Squibb as a tyrosine kinase inhibitor, a molecularly targeted therapeutic drug that targets multiple tyrosine kinases including BCR-ABL. be.
 本工程に使用される培地に添加されるチロシンキナーゼ阻害剤の濃度は、例えば5~200nM、好ましくは15~100nM、より好ましくは40~60nMである。また、チロシンキナーゼ阻害剤の添加は、抗原に特異的な受容体をコードする核酸を導入する工程の後(複数回導入する場合は最後の導入の後)、例えば3日後までに、好ましくは2日後までに、より好ましくは24時間後までに、実施される。また、抗原に特異的な受容体をコードする核酸を細胞に導入した後、すぐにチロシンキナーゼ阻害剤を添加しての培養を開始してもよい。また、チロシンキナーゼ阻害剤の存在下での培養時間は、例えば1~15日間、好ましくは2~10日間、より好ましくは3~5日間が例示されるが、チロシンキナーゼ阻害剤の濃度や細胞の種類によって、適切な培養時間を決定するのは当然のことである。また、培養時間中にチロシンキナーゼ阻害剤の濃度を適宜変更してもよい。さらに、チロシンキナーゼ阻害剤の存在下で細胞を培養した後に、チロシンキナーゼ阻害剤を含まない培地で細胞を培養してもよい。 The concentration of the tyrosine kinase inhibitor added to the medium used in this step is, for example, 5-200 nM, preferably 15-100 nM, more preferably 40-60 nM. In addition, the tyrosine kinase inhibitor is added after the step of introducing the nucleic acid encoding the antigen-specific receptor (after the last introduction when introducing multiple times), for example, within 3 days, preferably 2 days. It is carried out within days, more preferably within 24 hours. Alternatively, a tyrosine kinase inhibitor may be added immediately after introduction of a nucleic acid encoding an antigen-specific receptor into cells and culture may be initiated. The culture time in the presence of the tyrosine kinase inhibitor is, for example, 1 to 15 days, preferably 2 to 10 days, more preferably 3 to 5 days. It is a matter of course to determine an appropriate culture time depending on the type. Also, the concentration of the tyrosine kinase inhibitor may be changed as appropriate during the culture time. Furthermore, after culturing the cells in the presence of the tyrosine kinase inhibitor, the cells may be cultured in medium without the tyrosine kinase inhibitor.
(c)免疫細胞における抗原の発現を抑制する工程
 本発明の免疫細胞の製造方法は、免疫細胞における抗原の発現を抑制する工程を包含することを特徴とする。
(c) Step of Suppressing Antigen Expression in Immune Cells The method for producing immune cells of the present invention is characterized by including a step of suppressing antigen expression in immune cells.
 本明細書において「発現の抑制」とは、ポリペプチドをコードする遺伝子からの転写及び/又は翻訳を妨げることにより、最終的なポリペプチドの生成を抑制すること、すなわち、生成物としてのポリペプチド量が減少することを意味する。従って、ポリペプチドをコードする遺伝子からの転写反応が抑制されない場合でも、転写産物(mRNA)が速やかに分解され、ポリペプチドの生成が抑制されていれば「発現の抑制」に含まれる。発現が抑制された状態は、抑制しない場合と比較して発現量が20%以上、40%以上、60%以上又は80%以上低下した状態、あるいは100%低下した状態、すなわち完全に抑制された状態である。 As used herein, the term "suppression of expression" refers to suppression of final production of a polypeptide by preventing transcription and/or translation from a gene encoding a polypeptide. This means that the volume will decrease. Therefore, even if the transcription reaction from the gene encoding the polypeptide is not suppressed, it is included in "suppression of expression" if the transcription product (mRNA) is rapidly degraded and the production of the polypeptide is suppressed. A state in which the expression is suppressed is a state in which the expression level is reduced by 20% or more, 40% or more, 60% or more, or 80% or more compared to the case where the expression is not suppressed, or a state in which the expression level is reduced by 100%, that is, completely suppressed state.
 本発明の好ましい態様によれば、上記の「発現の抑制」は、siRNAを用いた抗原遺伝子のノックダウンによって行われる。siRNAによる抗原遺伝子のノックダウンは、当該siRNAをコードする核酸、すなわちsiRNA生成配列を細胞に導入することにより実施される。siRNA生成配列の一例は、少なくとも1つのステム-ループ構造を形成し、哺乳動物細胞内でRNA干渉を誘導し得るRNAが転写される配列である。本発明におけるRNA干渉は、siRNA生成配列を含む核酸の導入が、細胞が天然に発現する特定の内在性遺伝子の発現を選択的に抑制することを目的としている。RNA干渉は、発現を抑制することが望まれる遺伝子(以下、標的遺伝子と記載する)から転写されるmRNAの塩基配列に相同的なRNA分子及び相補的なRNA分子がアニールしたsiRNAにより誘導される。 According to a preferred embodiment of the present invention, the above "suppression of expression" is performed by knocking down the antigen gene using siRNA. Knockdown of an antigen gene by siRNA is performed by introducing into cells a nucleic acid encoding the siRNA, that is, a siRNA-producing sequence. An example of an siRNA generating sequence is a sequence from which RNA is transcribed that forms at least one stem-loop structure and is capable of inducing RNA interference in mammalian cells. RNA interference in the present invention aims to selectively suppress the expression of specific endogenous genes that cells naturally express by introducing nucleic acids containing siRNA-producing sequences. RNA interference is induced by siRNA annealed with an RNA molecule homologous to and complementary to the base sequence of mRNA transcribed from a gene whose expression is desired to be suppressed (hereinafter referred to as a target gene). .
 本発明に使用されるsiRNA生成配列には、例えば標的遺伝子から転写されるmRNAのある領域の塩基配列に相同的な配列(センス配列)と相補的な配列(アンチセンス配列)とが直列に並んで配置されている。このsiRNA生成配列から転写された一本のRNA鎖は、分子内でセンス配列とアンチセンス配列がアニールして二本鎖構造を形成し、形成された二本鎖RNA部分をステム領域とし、センス配列とアンチセンス配列の間に配置される任意の配列をループ領域とするステム-ループ構造を形成する。細胞内では、このステム領域からRNaseIII(ダイサー)の作用によりsiRNAが生成される。siRNA生成配列におけるステム領域に相当する部分の鎖長は、哺乳動物細胞におけるインターフェロン応答抑制の観点から、例えば13~29塩基、好ましくは15~25塩基、更に好ましくは19~25塩基が例示される。また、ループ領域は任意の配列でよく、1~30塩基の鎖長の配列が例示されるが、好ましくは1~25塩基、更に好ましくは5~22塩基の配列が使用される。 The siRNA-generating sequence used in the present invention includes, for example, a sequence (sense sequence) homologous to a region of the mRNA transcribed from the target gene and a complementary sequence (antisense sequence) arranged in series. are placed in A single RNA strand transcribed from this siRNA-producing sequence forms a double-stranded structure by annealing the sense sequence and the antisense sequence within the molecule, and the formed double-stranded RNA portion is used as the stem region. A stem-loop structure is formed with any sequence located between the sequence and the antisense sequence as the loop region. In cells, siRNA is produced from this stem region by the action of RNase III (Dicer). From the viewpoint of interferon response suppression in mammalian cells, the chain length of the portion corresponding to the stem region in the siRNA generating sequence is, for example, 13 to 29 bases, preferably 15 to 25 bases, more preferably 19 to 25 bases. . The loop region may have any sequence, and a sequence of 1 to 30 nucleotides is exemplified, preferably a sequence of 1 to 25 nucleotides, more preferably 5 to 22 nucleotides.
 ここで、本発明により細胞内で生成されるsiRNAは、標的遺伝子から転写されるmRNAの特定塩基配列に相同な配列のRNAと相補的な配列のRNAから構成されるが、各RNAは前記のmRNAの特定塩基配列と完全に相同もしくは相補的であることを要しない。標的遺伝子の発現抑制という機能が発揮される範囲で実質的に相同なRNA及び実質的に相補的な配列のRNAからなるsiRNAを使用してもよい。また、本発明に使用されるsiRNA生成配列は、1種の遺伝子を標的とする1種類のsiRNAを転写するものの他、1種の標的遺伝子の異なる領域の塩基配列に対応する複数のsiRNAを転写するものや、複数の標的遺伝子に対応する複数のsiRNAを転写するものであっても良い。例えば、本発明に使用されるsiRNA生成配列から生成されるsiRNAの数は、1~10個、1~6個、1~4個、複数個又は数個である。本発明は下記実施例に記載された、配列番号8および配列番号9に示す塩基配列のsiRNA生成配列、ならびにこれらのいずれか、もしくは両方が細胞内でsiRNAが発現されるように配置された核酸構築物を提供する。 Here, the siRNA produced in cells according to the present invention is composed of RNA with a sequence that is homologous to the specific base sequence of the mRNA transcribed from the target gene and RNA with a sequence that is complementary to each other. It does not need to be completely homologous or complementary to the specific base sequence of mRNA. siRNA consisting of substantially homologous RNA and substantially complementary sequence RNA may be used as long as the function of suppressing the expression of the target gene is exhibited. In addition, the siRNA generating sequence used in the present invention transcribes one type of siRNA targeting one type of gene, and also transcribes a plurality of siRNAs corresponding to the base sequences of different regions of one type of target gene. or transcribe a plurality of siRNAs corresponding to a plurality of target genes. For example, the number of siRNAs generated from the siRNA-generating sequences used in the present invention is 1-10, 1-6, 1-4, multiple or several. The present invention relates to the siRNA-generating sequences of the base sequences shown in SEQ ID NO: 8 and SEQ ID NO: 9, and nucleic acids in which either or both of these sequences are arranged so that siRNA is expressed in cells, which are described in the following examples. Provide constructs.
 siRNA生成配列を含む核酸の免疫細胞への導入は、前記の、抗原に特異的な受容体をコードする核酸と同様の方法で実施することができる。本発明を特に限定するものではないが、免疫細胞中での抗原の発現を安定して抑制する観点からは、導入された核酸を染色体に組み込む性質を持つレトロウイルスベクターやレンチウイルスベクターに、細胞内でsiRNAが発現されるような配置でsiRNA生成配列を含む核酸を搭載したうえ、免疫細胞に導入することが望ましい。siRNA生成配列を含む核酸を免疫細胞へ導入する時期は、抗原に特異的な受容体をコードする核酸を導入する工程(a)の前、同時、後のいずれでもよい。本発明の一つの態様では、siRNA生成配列を含む核酸の免疫細胞への導入は工程(a)と同時に行われ、この場合、siRNA生成配列を含む核酸が搭載されたベクターと、抗原に特異的な受容体をコードする核酸が搭載されたベクターが同時に免疫細胞に導入されてもよく、またはsiRNA生成配列を含む核酸と抗原に特異的な受容体をコードする核酸の両方が同じベクターに搭載され、免疫細胞に導入されてもよい。すなわち、工程(a)および工程(c)を一工程で行ってもよい。 Introduction of a nucleic acid containing an siRNA-producing sequence into an immune cell can be performed in the same manner as for nucleic acids encoding antigen-specific receptors. Although the present invention is not particularly limited, from the viewpoint of stably suppressing the expression of antigens in immune cells, retroviral vectors and lentiviral vectors that have the property of integrating introduced nucleic acids into chromosomes are used in cells. It is desirable to load nucleic acid containing an siRNA-producing sequence in such a configuration that siRNA is expressed therein and then introduce it into immune cells. The timing of introducing the nucleic acid containing the siRNA generating sequence into the immune cells may be before, at the same time as, or after the step (a) of introducing the nucleic acid encoding the antigen-specific receptor. In one aspect of the present invention, introduction of a nucleic acid containing an siRNA-generating sequence into an immune cell is performed at the same time as step (a). A vector carrying a nucleic acid encoding a specific receptor may be simultaneously introduced into an immune cell, or both the nucleic acid containing the siRNA-generating sequence and the nucleic acid encoding the antigen-specific receptor are carried in the same vector. , may be introduced into immune cells. That is, step (a) and step (c) may be performed in one step.
 上記工程(a)~(c)は、いずれの順序で実施してもよく、または、上記工程(a)~(c)の2以上を同時に行ってもよい。 The steps (a) to (c) may be performed in any order, or two or more of the steps (a) to (c) may be performed simultaneously.
(2)本発明の医薬組成物の製造方法
 本発明は、(1)の方法により免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞を得る工程を包含する、医薬組成物の製造方法である。
(2) Method for producing the pharmaceutical composition of the present invention The present invention includes the step of obtaining immune cells expressing antigen-specific receptors present on both immune cells and target cells by the method of (1). , a method of making a pharmaceutical composition.
 本発明は、免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞を有効成分として含む医薬組成物を提供する。当該医薬組成物は、さらに、適当な賦形剤を含んでいてもよい。該賦形剤としては、例えば、薬学的に許容できる賦形剤、種々の細胞培養培地、等張食塩水などが挙げられる。当該医薬組成物が投与される疾患としては、当該免疫細胞に感受性を示す疾患であればよく特に限定はないが、例えば、がん[血液がん(白血病)、固形腫瘍など]、炎症性疾患/自己免疫疾患(喘息、湿疹)、肝炎や、インフルエンザ、HIVなどのウイルス、細菌、真菌が原因となる感染性疾患、例えば結核、MRSA、VRE、深在性真菌症が例示される。前記の疾患において減少もしくは消失が望まれる細胞が有している抗原、すなわち腫瘍抗原、ウイルス抗原、細菌抗原等に結合する受容体を発現する免疫細胞を有効成分として含む医薬組成物がこれら疾患の治療のために投与される。また、本発明の医薬組成物は、骨髄移植や放射線照射後の感染症予防、再発白血病の寛解を目的としたドナーリンパ球輸注などにも利用できる。本発明の医薬組成物は、限定するものではないが、非経口投与、例えば、注射又は注入により、皮内、筋肉内、皮下、腹腔内、鼻腔内、動脈内、静脈内、腫瘍内、又は輸入リンパ管内などに投与することができる。 The present invention provides a pharmaceutical composition containing, as an active ingredient, immune cells that express antigen-specific receptors present on both immune cells and target cells. The pharmaceutical composition may further contain suitable excipients. Such excipients include, for example, pharmaceutically acceptable excipients, various cell culture media, isotonic saline, and the like. The disease to which the pharmaceutical composition is administered is not particularly limited as long as it is a disease that shows sensitivity to the immune cells. Examples include cancer [blood cancer (leukemia), solid tumor, etc.], inflammatory disease /autoimmune diseases (asthma, eczema), infectious diseases caused by viruses such as hepatitis, influenza, HIV, bacteria, and fungi, such as tuberculosis, MRSA, VRE, and deep mycosis. A pharmaceutical composition containing, as an active ingredient, an immune cell expressing a receptor that binds to an antigen possessed by cells whose reduction or elimination is desired in the aforementioned diseases, that is, a tumor antigen, a viral antigen, a bacterial antigen, or the like, is used to treat these diseases. administered for treatment. In addition, the pharmaceutical composition of the present invention can also be used for bone marrow transplantation, prevention of infectious diseases after irradiation, donor lymphocyte transfusion for the purpose of remission of recurrent leukemia, and the like. The pharmaceutical compositions of the present invention can be administered by, but not limited to, parenteral administration, such as injection or infusion, intradermally, intramuscularly, subcutaneously, intraperitoneally, intranasally, intraarterially, intravenously, intratumorally, or It can be administered into afferent lymphatics and the like.
 以下に実施例を挙げて本発明を更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。 Although the present invention will be described in more detail with reference to examples below, the present invention is not limited only to the following examples.
実施例1 プラスミドの作製
 まず、国際公開第2013/051718号パンフレットに記載されるpMS3-MCを作製した。pMS3-MCは、5’末端から順にMMLV(モロニ-マウス白血病ウイルス)由来の5’LTR(long terminal repeat)、MMLV由来のSD(スプライスドナー)配列、MMLV由来のψ(パッケージングシグナル)配列、ヒトEF1α遺伝子由来のSA(スプライスアクセプター)配列、MMLV由来の3’LTRを有するレトロウイルスベクタープラスミドであり、3’LTRのU3領域はMSCV(マウス幹細胞ウイルス)由来の配列に置換されている。
Example 1 Preparation of Plasmid First, pMS3-MC described in International Publication No. 2013/051718 was prepared. pMS3-MC has, in order from the 5′ end, MMLV (Moloney murine leukemia virus)-derived 5′ LTR (long terminal repeat), MMLV-derived SD (splice donor) sequence, MMLV-derived ψ (packaging signal) sequence, It is a retroviral vector plasmid having an SA (splice acceptor) sequence derived from the human EF1α gene and a 3'LTR derived from MMLV, and the U3 region of the 3'LTR is replaced with a sequence derived from MSCV (mouse stem cell virus).
 次に、特許5328018及び文献(J Immunother. 2009 Sep;32(7):737-43)の記載に基づき、図1中にantiCD38-CARと表記されたDNA断片を合成した。このDNA断片は、翻訳効率が最も高いとされるコザック配列(配列番号1)を5’末端に含み、CD8αシグナルペプチド(アミノ酸配列:配列番号2)、がん抗原CD38と結合する抗CD38モノクローナル抗体のVL(アミノ酸配列:配列番号3)、リンカー配列(アミノ酸配列:配列番号4)、抗CD38モノクローナル抗体のVH(アミノ酸配列:配列番号5)、CD28ドメイン(膜貫通ドメインを含むCD28由来ポリペプチド;アミノ酸配列:配列番号6)、CD3ζ細胞内ドメイン(アミノ酸配列:配列番号7)をN末端から順に含む1分子のCARをコードする。このDNA断片を、pMS3-MCに挿入し、pMS3-CD38-CARを作製した。 Next, based on the description of Patent 5328018 and literature (J Immunother. 2009 Sep;32(7):737-43), a DNA fragment denoted as antiCD38-CAR in Fig. 1 was synthesized. This DNA fragment contains a Kozak sequence (SEQ ID NO: 1), which is said to have the highest translation efficiency, at the 5' end, a CD8α signal peptide (amino acid sequence: SEQ ID NO: 2), and an anti-CD38 monoclonal antibody that binds to the cancer antigen CD38. VL (amino acid sequence: SEQ ID NO: 3), linker sequence (amino acid sequence: SEQ ID NO: 4), VH of anti-CD38 monoclonal antibody (amino acid sequence: SEQ ID NO: 5), CD28 domain (CD28-derived polypeptide containing transmembrane domain; It encodes one molecule of CAR containing amino acid sequence: SEQ ID NO: 6) and CD3ζ intracellular domain (amino acid sequence: SEQ ID NO: 7) in order from the N-terminus. This DNA fragment was inserted into pMS3-MC to generate pMS3-CD38-CAR.
 図1中において、コザック配列を「K」、CD8αシグナルペプチドを「SP」、抗CD38モノクローナル抗体のVLを「anti-CD38 VL」、リンカー配列を「L」、抗CD38モノクローナル抗体のVHを「anti-CD38 VH」、CD28ドメインを「CD28」、CD3ζ細胞内ドメインを「CD3ζ」、末端反復配列を「LTR」、スプライスドナー配列を「SD」、スプライスアクセプター配列を「SA」、パッケージングシグナル配列を「ψ」と表示する。 In FIG. 1, the Kozak sequence is "K", the CD8α signal peptide is "SP", the VL of the anti-CD38 monoclonal antibody is "anti-CD38 VL", the linker sequence is "L", and the VH of the anti-CD38 monoclonal antibody is "anti -CD38 VH", CD28 domain as "CD28", CD3ζ intracellular domain as "CD3ζ", terminal repeat as "LTR", splice donor sequence as "SD", splice acceptor sequence as "SA", packaging signal sequence is displayed as "ψ".
 図2に、pMS3-CD38-CARを改変して作製したプラスミドを示す。すなわち、CD38遺伝子に対する2種類のsiRNAを生成する配列(配列番号8及び配列番号9)を、pMS3-CD38-CARのψ配列及びSA配列の間に挿入し、pMS3-CD38-siRNA-CARを作製した。さらに、pMS3-CD38-CARの抗CD38モノクローナル抗体VL、VHをコードする配列を、特願2020-164927の記載に基づき、それぞれがん抗原CEA(carcinoembryonic antigen)と結合する抗CEAモノクローナル抗体のVL及びVHをコードする配列に置き換えることにより、pMS3-CEA-CARを作製した。また、国際公開第2016/127257号パンフレット及び文献(Nat Med. 2018 Mar;24(3)352-359)の記載に基づき、CD28ドメインとCD3ζ細胞内ドメインの間にインターロイキン2受容体β鎖の細胞内ドメインの一部(IL2Rβ)(アミノ酸配列:配列番号10)を挿入し、さらにCD3ζ細胞内ドメイン内のアミノ酸配列(LHMQ)をSTAT3シグナルの活性化に必要なSTAT3結合モチーフ(YRHQ)に置換することにより、pMS3-CD38-JS-CAR及びpMS3-CD38-JS-siRNA-CARを作製した。
FIG. 2 shows a plasmid prepared by modifying pMS3-CD38-CAR. That is, sequences that generate two types of siRNA against the CD38 gene (SEQ ID NO: 8 and SEQ ID NO: 9) are inserted between the ψ sequence and SA sequence of pMS3-CD38-CAR to prepare pMS3-CD38-siRNA-CAR. did. Furthermore, the sequences encoding the anti-CD38 monoclonal antibodies VL and VH of pMS3-CD38-CAR were converted to VL and anti-CEA monoclonal antibodies that bind to the cancer antigen CEA (carcinoembryonic antigen), respectively, based on the description of Japanese Patent Application No. 2020-164927. pMS3-CEA-CAR was created by replacing the VH-encoding sequence. In addition, based on the description in International Publication No. 2016/127257 and literature (Nat Med. 2018 Mar;24(3)352-359), interleukin 2 receptor β chain is inserted between the CD28 domain and the CD3ζ intracellular domain. A portion of the intracellular domain (IL2Rβ) (amino acid sequence: SEQ ID NO: 10) is inserted, and the amino acid sequence (LHMQ) in the CD3ζ intracellular domain is replaced with a STAT3 binding motif (YRHQ) required for activation of STAT3 signaling. pMS3-CD38-JS-CAR and pMS3-CD38-JS-siRNA-CAR were prepared by doing so.
 図2中において、インターロイキン2受容体β鎖の細胞内ドメインの一部(IL2Rβ)を「IL2Rβ」と表示する。また、STAT3結合モチーフ(YRHQ)を有するCD3ζ細胞内ドメイン(アミノ酸配列:配列番号11)を「CD3ζ(YRHQ)」と表示する。 In Figure 2, a portion of the intracellular domain of the interleukin-2 receptor β chain (IL2Rβ) is indicated as "IL2Rβ". In addition, the CD3ζ intracellular domain (amino acid sequence: SEQ ID NO: 11) having the STAT3 binding motif (YRHQ) is indicated as "CD3ζ (YRHQ)".
実施例2 レトロウイルス溶液の作製
 実施例1で作製したプラスミドにより大腸菌HST08をそれぞれ形質転換し、形質転換体を得た。これら形質転換体の保持するプラスミドDNAをNucleoBond Xtra Midi(マッハライ・ナーゲル社製)を用いてそれぞれ精製し、トランスフェクション用DNAとして以下の操作に供した。調製したトランスフェクション用DNAと、Retrovirus Packaging Kit Eco(タカラバイオ社製)に含有されるpGPベクター及びpE-ecoベクターとを293T細胞にトランスフェクトした。この操作は前記キットの製品プロトコールに従って行った。得られた形質導入細胞のそれぞれよりエコトロピックウイルスを含有する上清液を獲得し、0.45μmフィルター(Milex HV、ミリポア社製)にてろ過した。この上清を用いて、ポリブレンを使用する方法によりPG13細胞(ATCC CRL-10686)にエコトロピックウイルスを感染させた。得られた細胞の培養上清を回収し、0.45μmフィルターによりろ過し、各レトロウイルス溶液とし、後の実施例に使用した。
Example 2 Preparation of Retrovirus Solution Escherichia coli HST08 was transformed with each of the plasmids prepared in Example 1 to obtain transformants. Plasmid DNAs possessed by these transformants were each purified using NucleoBond Xtra Midi (manufactured by Macharei Nagel) and subjected to the following procedures as DNAs for transfection. 293T cells were transfected with the prepared DNA for transfection and pGP vector and pE-eco vector contained in Retrovirus Packaging Kit Eco (manufactured by Takara Bio Inc.). This operation was performed according to the product protocol of the kit. A supernatant containing the ecotropic virus was obtained from each of the obtained transduced cells and filtered through a 0.45 μm filter (Milex HV, manufactured by Millipore). This supernatant was used to infect PG13 cells (ATCC CRL-10686) with ecotropic virus by a method using polybrene. The culture supernatant of the obtained cells was collected and filtered through a 0.45 μm filter to prepare each retrovirus solution, which was used in subsequent examples.
実施例3 siRNAによるCD38遺伝子発現の抑制
 ヒト末梢血より分離した末梢血単核球(PBMC)に、実施例2で作製した各CAR発現用レトロウイルス溶液を種々の希釈率にて、レトロネクチン(登録商標、タカラバイオ社製)を用いた標準的な方法で2回感染させ、それぞれのCARを発現するPBMCを作製した。さらに、37℃、湿度95%、5%COの条件下で、PBMCを培養した。ここで、培地の組成は、200IU/mLのProleukin(IL-2)(ニプロ社製)及び0.6%(v/v)のAB serum(Access Biologicals社製)を含むLymphoONE T-Cell Expansion Xeno-Free Medium(タカラバイオ社製)である。2回目のウイルス感染から7日後に細胞を回収し、NucleoSpin RNA Plus(マッハライナーゲル社製)を用いて全RNAの抽出及びDNaseI処理を行った。得られた全RNAを鋳型として、PrimeScript RT reagent Kit(Perfect Real Time)(タカラバイオ社製)を用いてcDNA合成を行った。更に、このcDNAを鋳型として、TB Green Premix Ex Taq II(タカラバイオ社製)及びCD38遺伝子増幅用プライマーセット(配列番号12及び配列番号13)を用いたリアルタイムPCRを行い、遺伝子発現量を測定した。また、配列番号14及び配列番号15に示すプライマーセットを用いてハウスキーピング遺伝子であるGAPDH遺伝子の発現量を測定することによりCD38遺伝子の発現量の相対値を算出した。さらに、2回目のウイルス感染から7日後の細胞よりSimplePrep reagent for DNA(タカラバイオ社製)を用いてゲノムDNAを抽出し、Provirus Copy Number Detection Primer Set,Human(タカラバイオ社製)とCycleavePCR Core Kit(タカラバイオ社製)を用いて、ゲノムに組み込まれたレトロウイルスコピー数の測定を行った。
Example 3 Suppression of CD38 gene expression by siRNA Retronectin (Registered Trademark, manufactured by Takara Bio Inc.) was infected twice by a standard method to prepare PBMCs expressing each CAR. Furthermore, PBMCs were cultured under conditions of 37° C., 95% humidity and 5% CO 2 . Here, the composition of the medium is LymphoONE T-Cell Expansion Xeno containing 200 IU/mL Proleukin (IL-2) (manufactured by Nipro) and 0.6% (v/v) AB serum (manufactured by Access Biologicals). - Free Medium (manufactured by Takara Bio Inc.). Cells were collected 7 days after the second virus infection, and total RNA was extracted and treated with DNase I using NucleoSpin RNA Plus (manufactured by Mach Liner Gel). Using the obtained total RNA as a template, cDNA was synthesized using PrimeScript RT reagent Kit (Perfect Real Time) (manufactured by Takara Bio Inc.). Furthermore, using this cDNA as a template, real-time PCR was performed using TB Green Premix Ex Taq II (manufactured by Takara Bio Inc.) and a CD38 gene amplification primer set (SEQ ID NO: 12 and SEQ ID NO: 13) to measure the gene expression level. . In addition, the relative expression level of the CD38 gene was calculated by measuring the expression level of the GAPDH gene, which is a housekeeping gene, using the primer set shown in SEQ ID NO: 14 and SEQ ID NO: 15. Furthermore, genomic DNA was extracted from the cells 7 days after the second virus infection using SimplePreagent for DNA (manufactured by Takara Bio Inc.), Provirus Copy Number Detection Primer Set, Human (manufactured by Takara Bio Inc.) and Cycleave PCR Core Kit. (manufactured by Takara Bio Inc.) was used to measure the retrovirus copy number integrated into the genome.
 ウイルスコピー数が1付近における、CD38-CAR導入細胞およびCD38-siRNA-CAR導入細胞でのCD38遺伝子発現の相対値を算出することによって、siRNAによるCD38遺伝子発現の抑制効果を評価した。図3に結果を示す。図3中、縦軸はCD38-CAR導入細胞におけるCD38遺伝子の発現量を100とした時の、CD38-siRNA-CAR導入細胞におけるCD38遺伝子の発現量の相対値を示す。図3に示されるように、CD38-CAR導入細胞と比較してCD38-siRNA-CAR導入細胞ではCD38遺伝子の発現が抑制されていた。 By calculating the relative value of CD38 gene expression in CD38-CAR-introduced cells and CD38-siRNA-CAR-introduced cells when the virus copy number is around 1, the inhibitory effect of siRNA on CD38 gene expression was evaluated. The results are shown in FIG. In FIG. 3, the vertical axis indicates the relative value of the expression level of the CD38 gene in the CD38-siRNA-CAR-introduced cells when the expression level of the CD38 gene in the CD38-CAR-introduced cells is set to 100. As shown in FIG. 3, CD38 gene expression was suppressed in CD38-siRNA-CAR-transfected cells compared to CD38-CAR-transfected cells.
実施例4 CD38-CAR発現による疲弊マーカーの増加
 ヒト末梢血より分離したPBMCに、実施例2で作製した各CAR発現用レトロウイルス溶液を種々の希釈率にて、レトロネクチンを用いた標準的な方法で2回感染させ、それぞれのCARを発現するPBMCを作製した。実施例3と同様の手順で、2回目のウイルス感染から3日後の細胞のゲノムに組み込まれたレトロウイルスコピー数の測定を行った。
Example 4 Increase in Exhaustion Marker by CD38-CAR Expression A standard method using retronectin, in which retroviral solutions for expressing CAR prepared in Example 2 were added to PBMCs isolated from human peripheral blood at various dilutions. to generate PBMCs expressing each CAR. By the same procedure as in Example 3, the number of retroviruses integrated into the genome of cells 3 days after the second virus infection was measured.
 また、2回目のウイルス感染から3日後の細胞に、PerCP/Cyanine5.5標識抗Human CD279(PD-1)抗体(BioLegend社製)を添加することにより、細胞を染色した。フローサイトメーターを使用し、染色後の細胞について、疲弊マーカーであるPD-1が陽性である細胞の割合を測定した。図4に、CD38-CAR、CEA-CARレトロウイルスのコピー数に対するPD-1陽性細胞の比率を示す。図4に示すように、遺伝子非導入細胞(NGMC)及びCEA-CAR導入細胞と比較して、CD38-CAR導入細胞では疲弊マーカーPD-1を発現する細胞の割合が増加した。 In addition, the cells were stained by adding PerCP/Cyanine5.5-labeled anti-Human CD279 (PD-1) antibody (manufactured by BioLegend) to the cells 3 days after the second virus infection. Using a flow cytometer, the percentage of cells positive for the exhaustion marker PD-1 was determined for the stained cells. FIG. 4 shows the ratio of PD-1 positive cells to the copy numbers of CD38-CAR and CEA-CAR retroviruses. As shown in FIG. 4, the proportion of cells expressing the exhaustion marker PD-1 was increased in CD38-CAR-transfected cells compared to non-transfected cells (NGMC) and CEA-CAR-transfected cells.
実施例5 siRNA及びキナーゼ阻害剤による細胞数及び細胞生存率の増加
 ヒト末梢血より分離したPBMCに、実施例2で作製した各CAR発現用レトロウイルス溶液を種々の希釈率にて、レトロネクチンを用いた標準的な方法で2回感染させ、それぞれのCARを発現するPBMCを作製した。2回目のウイルス感染後に各細胞を二等分し、片方にはDasatinib(Cell Signaling Technology社製)を50nMの濃度で添加し、もう一方はDasatinibを添加せずに、4日間培養を行った。実施例3と同様の手順でレトロウイルスコピー数の測定を行い、細胞数及び細胞生存率を測定した。
Example 5 Increase in Cell Number and Cell Viability by siRNA and Kinase Inhibitor Retronectin was applied to PBMCs isolated from human peripheral blood at various dilutions of each CAR-expressing retrovirus solution prepared in Example 2. Each CAR-expressing PBMC was generated by two rounds of infection using standard methods. After the second virus infection, each cell was divided into two halves, Dasatinib (manufactured by Cell Signaling Technology) was added to one half at a concentration of 50 nM, and Dasatinib was not added to the other half, and cultured for 4 days. The retrovirus copy number was measured in the same manner as in Example 3, and the cell number and cell viability were measured.
 ウイルスコピー数が1.5~1.8コピー/細胞であったCAR導入細胞における、細胞数及び細胞生存率を図5に示す。図5に示すように、Dasatinib非添加条件では、NGMCと比較して、CD38-CAR導入細胞及びCD38-siRNA-CAR導入細胞では、細胞数及び細胞生存率が減少した。なお、このとき、CD38-siRNA-CAR導入細胞の細胞数は、CD38-CAR導入細胞の細胞数よりも多かった。一方、Dasatinibを添加することにより、CD38-CAR導入細胞及びCD38-siRNA-CAR導入細胞の細胞数及び細胞生存率がNGMCと同程度に回復した。 Figure 5 shows the cell number and cell viability in CAR-introduced cells with a virus copy number of 1.5 to 1.8 copies/cell. As shown in FIG. 5, under Dasatinib-free conditions, CD38-CAR-transfected cells and CD38-siRNA-CAR-transfected cells decreased in cell number and cell viability compared to NGMC. At this time, the number of CD38-siRNA-CAR-introduced cells was greater than the number of CD38-CAR-introduced cells. On the other hand, addition of Dasatinib restored the cell number and cell viability of CD38-CAR-introduced cells and CD38-siRNA-CAR-introduced cells to the same level as NGMC.
実施例6 siRNA及びキナーゼ阻害剤による疲弊マーカーの減少
 ヒト末梢血より分離したPBMCに、実施例2で作製した各CAR発現用レトロウイルス溶液を種々の希釈率にて、レトロネクチンを用いた標準的な方法で2回感染させ、それぞれのCARを発現するPBMCを作製した。さらに一部の条件では、2回目のウイルス感染後にDasatinib(Cell Signaling Technology社製)を50nMの濃度で添加し、その4日後にDasatinibを除去した。実施例3と同様の手順で、レトロウイルス感染を経て15日間培養した細胞のゲノムに組み込まれたレトロウイルスコピー数の測定を行った。また、レトロウイルス感染を経て15日間培養した細胞に、PE標識抗Human CD279(PD-1)抗体(ベクトンディッキンソン社製)、APC-Cy7標識抗Human CD366(Tim-3)抗体(BioLegend社製)、及びPerCP/Cyanine5.5標識抗Human CD223(LAG-3)抗体(BioLegend社製)を添加することにより、細胞を染色した。フローサイトメーターを使用し、染色後の細胞について、各疲弊マーカーが陽性である細胞の割合を測定した。
Example 6 Reduction of Exhaustion Markers by siRNA and Kinase Inhibitor PBMCs isolated from human peripheral blood were diluted with various dilutions of each CAR-expressing retrovirus solution prepared in Example 2, and retronectin was used as a standard method. method to generate PBMCs expressing each CAR. In some conditions, Dasatinib (manufactured by Cell Signaling Technology) was added at a concentration of 50 nM after the second virus infection, and Dasatinib was removed 4 days later. In the same manner as in Example 3, retrovirus copy numbers integrated into the genome of cells cultured for 15 days after retrovirus infection were measured. In addition, PE-labeled anti-Human CD279 (PD-1) antibody (manufactured by Becton Dickinson) and APC-Cy7-labeled anti-Human CD366 (Tim-3) antibody (manufactured by BioLegend) were added to cells cultured for 15 days after retrovirus infection. , and PerCP/Cyanine 5.5-labeled anti-Human CD223 (LAG-3) antibody (BioLegend) to stain the cells. A flow cytometer was used to determine the percentage of cells positive for each exhaustion marker after staining.
 図6にウイルスコピー数に対するPD-1陽性細胞の比率を、図7にウイルスコピー数に対するTim-3陽性細胞の比率を、図8にウイルスコピー数に対するLAG-3陽性細胞の比率を示す。各図に示すように、siRNAを発現しない細胞に比較して、CD38に対するsiRNAを発現する細胞で各疲弊マーカーの陽性率が減少した。また、Dasatinibを添加することにより疲弊マーカーの陽性率はさらに減少した。すなわち、CD38に対するsiRNAを発現する細胞にDasatinibを添加した条件において、最も疲弊マーカーの陽性率が減少する結果となった。 Figure 6 shows the ratio of PD-1 positive cells to the virus copy number, Figure 7 shows the ratio of Tim-3 positive cells to the virus copy number, and Figure 8 shows the ratio of LAG-3 positive cells to the virus copy number. As shown in each figure, the positive rate of each exhaustion marker was decreased in cells expressing siRNA against CD38 compared to cells not expressing siRNA. In addition, addition of Dasatinib further decreased the positive rate of exhaustion markers. That is, the positive rate of exhaustion markers decreased most under the condition that Dasatinib was added to cells expressing siRNA against CD38.
実施例7 siRNA及びキナーゼ阻害剤によるナイーブ率の増加
 ヒト末梢血より分離したPBMCに、実施例2で作製した各CAR発現用レトロウイルス溶液を種々の希釈率にて、レトロネクチンを用いた標準的な方法で2回感染させ、それぞれのCARを発現するPBMCを作製した。さらに一部の条件では、2回目のウイルス感染後にDasatinibを50nMの濃度で添加し、レトロウイルス感染を経て15日間培養した細胞に、ビオチン標識抗マウスIgG抗体を添加した(Jackson ImmunoResearch社製)後、ストレプトアビジン-APC(BioLegend社製)、PerCP/Cyanine5.5標識抗Human CD8抗体(ベックマン・コールター社製)、FITC標識抗Human CD197(CCR7)抗体(BioLegend社製)、及びPE標識抗Human CD45RA抗体(BioLegend社製)を添加することにより、細胞を染色した。フローサイトメーターを使用し、染色後の細胞について、PerCP/Cyanine5.5陽性細胞中のAPC陽性である細胞のうち、CCR7とCD45RAも陽性である細胞の割合を測定した。すなわちCD8陽性細胞中のCARが陽性である細胞で、さらに、ナイーブ細胞である細胞の割合を測定した。
Example 7 Increase in Naive Rate by siRNA and Kinase Inhibitor PBMCs isolated from human peripheral blood were added with various dilutions of each CAR-expressing retrovirus solution prepared in Example 2, and retronectin-based standard method to generate PBMCs expressing each CAR. Furthermore, under certain conditions, Dasatinib was added at a concentration of 50 nM after the second virus infection, and a biotin-labeled anti-mouse IgG antibody (manufactured by Jackson ImmunoResearch) was added to cells cultured for 15 days after retrovirus infection. , streptavidin-APC (manufactured by BioLegend), PerCP/Cyanine5.5-labeled anti-Human CD8 antibody (manufactured by Beckman Coulter), FITC-labeled anti-Human CD197 (CCR7) antibody (manufactured by BioLegend), and PE-labeled anti-Human CD45RA Cells were stained by adding an antibody (BioLegend). Using a flow cytometer, the percentage of cells positive for CCR7 and CD45RA among cells positive for APC among PerCP/Cyanine5.5-positive cells was measured for the stained cells. That is, the proportion of CAR-positive cells among CD8-positive cells and naive cells was measured.
 図9にウイルスコピー数に対するナイーブ細胞の比率を示す。図9に示すように、CD38-CAR導入細胞にDasatinibを添加することにより、より多くのナイーブ細胞を含むようになった。さらに、CD38-siRNA-CAR導入細胞にDasatinibを添加した条件において、最も多くのナイーブ細胞を含む結果となった。 Figure 9 shows the ratio of naive cells to virus copy number. As shown in FIG. 9, addition of Dasatinib to CD38-CAR-transfected cells resulted in more naive cells. Furthermore, the condition in which Dasatinib was added to the CD38-siRNA-CAR-introduced cells resulted in containing the largest number of naive cells.
実施例8 siRNA及びキナーゼ阻害剤による細胞障害活性の維持
 ヒト末梢血より分離したPBMCに、実施例2で作製した各CAR発現用レトロウイルス溶液を種々の希釈率にて、レトロネクチンを用いた標準的な方法で2回感染させ、それぞれのCARを発現するPBMCを作製した。2回目のウイルス感染後に各細胞を二等分し、片方にはDasatinibを50nMの濃度で添加し、もう一方はDasatinibを添加せずに、7日間培養を行った。2回目のウイルス感染から7日後の細胞をCD38陽性であるDaudi細胞(医薬基盤・健康・栄養研究所 JCRB9071)と共培養し、Daudi細胞の細胞数を3~4日置きに測定した。さらに細胞数の測定の際にDaudi細胞を追加した。
Example 8 Maintenance of cytotoxic activity by siRNA and kinase inhibitor PBMCs isolated from human peripheral blood were diluted with various dilutions of each CAR-expressing retrovirus solution prepared in Example 2, and retronectin was used as a standard method. Each CAR-expressing PBMC was prepared by infecting each CAR twice. After the second virus infection, each cell was divided into two halves, one of which was added with Dasatinib at a concentration of 50 nM, and the other of which was cultured for 7 days without Dasatinib. Seven days after the second virus infection, the cells were co-cultured with CD38-positive Daudi cells (National Institute of Biomedical Innovation, Health and Nutrition JCRB9071), and the number of Daudi cells was measured every 3 to 4 days. In addition, Daudi cells were added during cell number determination.
 図10に共培養の日数に対するDaudi細胞の細胞数を示す。17日目までは、NGMCを除き、いずれの条件でもDaudi細胞の増殖が抑制された。しかし、21日目において、CD38-JS-CAR導入細胞でDasatinibを添加していない条件でのみ、Daudi細胞が増殖した。この結果は、CD38の発現をsiRNAで抑制することにより、及び/又はDasatinibを添加することにより、CAR発現細胞の障害活性が維持されることを示す。 Fig. 10 shows the number of Daudi cells versus the number of days of co-culture. Until the 17th day, proliferation of Daudi cells was suppressed under all conditions except NGMC. However, on day 21, Daudi cells proliferated only in CD38-JS-CAR-introduced cells without the addition of Dasatinib. This result indicates that the cytotoxic activity of CAR-expressing cells is maintained by suppressing CD38 expression with siRNA and/or by adding Dasatinib.
 本発明により、免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞の製造、および、該方法により免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞を含む医薬組成物の製造方法が提供される。本発明の方法は、特に、医療分野への応用に有用である。 According to the present invention, the production of immune cells expressing antigen-specific receptors present on both immune cells and target cells, and the methods for producing antigen-specific receptors present on both immune cells and target cells Methods of making pharmaceutical compositions comprising immune cells expressing immune cells are provided. The method of the present invention is particularly useful for medical applications.
SEQ ID NO:1: Kozak sequence
SEQ ID NO:2: CD8 alpha signal peptide
SEQ ID NO:3: anti-CD38 VL sequence
SEQ ID NO:4: linker sequence
SEQ ID NO:5: anti-CD38 VH sequence
SEQ ID NO:6: CD28 domain
SEQ ID NO:7: CD3 zeta intracellular domain
SEQ ID NO:8: CD38_siRNA_2
SEQ ID NO:9: CD38_siRNA_3
SEQ ID NO:10: IL2R beta domain
SEQ ID NO:11: CD3 zeta intracellular domain with STAT3-binding motif (YRHQ)
SEQ ID NO:12: CD38-Fw primer
SEQ ID NO:13: CD38-Rv primer
SEQ ID NO:14: GAPDH-Fw primer
SEQ ID NO:15: GAPDH-Rv primer
SEQ ID NO:1: Kozak sequence
SEQ ID NO:2: CD8 alpha signal peptide
SEQ ID NO:3: anti-CD38 VL sequence
SEQ ID NO:4: linker sequence
SEQ ID NO:5: anti-CD38 VH sequence
SEQ ID NO:6: CD28 domains
SEQ ID NO:7: CD3 zeta intracellular domain
SEQ ID NO:8: CD38_siRNA_2
SEQ ID NO:9: CD38_siRNA_3
SEQ ID NO:10: IL2R beta domain
SEQ ID NO:11: CD3 zeta intracellular domain with STAT3-binding motif (YRHQ)
SEQ ID NO:12: CD38-Fw primer
SEQ ID NO:13: CD38-Rv primer
SEQ ID NO:14: GAPDH-Fw primer
SEQ ID NO:15: GAPDH-Rv primer

Claims (11)

  1.  免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞の製造方法であって、以下の工程を順不同に含むことを特徴とする、方法:
     (a)免疫細胞に、前記抗原に特異的な受容体をコードする核酸を導入する工程、
     (b)免疫細胞を、キナーゼ阻害剤を含む培地中で培養する工程、及び
     (c)免疫細胞における前記抗原の発現を抑制する工程。
    A method for producing immune cells expressing antigen-specific receptors present on both immune cells and target cells, the method comprising the steps of, in random order:
    (a) introducing into an immune cell a nucleic acid encoding a receptor specific for said antigen;
    (b) culturing immune cells in a medium containing a kinase inhibitor; and (c) suppressing expression of said antigen in immune cells.
  2.  免疫細胞がT細胞またはNK細胞である、請求項1に記載の方法。 The method according to claim 1, wherein the immune cells are T cells or NK cells.
  3.  抗原が、正常免疫細胞の表面と標的細胞の表面の両方に存在する抗原である、請求項1に記載の方法。 The method according to claim 1, wherein the antigen is present on both the surface of normal immune cells and the surface of target cells.
  4.  抗原が、CD38である、請求項1に記載の方法。 The method according to claim 1, wherein the antigen is CD38.
  5.  受容体が、キメラ抗原受容体又はT細胞受容体である、請求項1に記載の方法。 The method according to claim 1, wherein the receptor is a chimeric antigen receptor or a T cell receptor.
  6.  キナーゼ阻害剤が、チロシンキナーゼ阻害剤である、請求項1に記載の方法。 The method according to claim 1, wherein the kinase inhibitor is a tyrosine kinase inhibitor.
  7.  キナーゼ阻害剤が、Dasatinibである、請求項1に記載の方法。 The method of claim 1, wherein the kinase inhibitor is Dasatinib.
  8.  工程(c)が、抗原をコードする遺伝子のノックダウンにより実施される、請求項1に記載の方法。 The method according to claim 1, wherein step (c) is performed by knocking down a gene encoding an antigen.
  9.  抗原の発現を抑制するsiRNAが使用される、請求項8に記載の方法。 The method according to claim 8, wherein siRNA that suppresses antigen expression is used.
  10.  工程(c)が抗原の発現を抑制するsiRNAをコードする核酸を免疫細胞に導入することによって行われ、該siRNAをコードする核酸の免疫細胞への導入が工程(a)と同時に行われる、請求項9に記載の方法。 wherein step (c) is performed by introducing a nucleic acid encoding an siRNA that suppresses antigen expression into immune cells, and the introduction of the nucleic acid encoding the siRNA into immune cells is performed at the same time as step (a). Item 9. The method of Item 9.
  11.  請求項1に記載の方法により免疫細胞と標的細胞の両方に存在する抗原に特異的な受容体を発現する免疫細胞を得る工程を包含する、医薬組成物の製造方法。 A method for producing a pharmaceutical composition, comprising the step of obtaining immune cells expressing antigen-specific receptors present on both immune cells and target cells by the method according to claim 1.
PCT/JP2022/014872 2021-03-29 2022-03-28 Method for producing immunocyte expressing receptor specific to antigen WO2022210487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511233A JPWO2022210487A1 (en) 2021-03-29 2022-03-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054835 2021-03-29
JP2021-054835 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210487A1 true WO2022210487A1 (en) 2022-10-06

Family

ID=83459215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014872 WO2022210487A1 (en) 2021-03-29 2022-03-28 Method for producing immunocyte expressing receptor specific to antigen

Country Status (2)

Country Link
JP (1) JPWO2022210487A1 (en)
WO (1) WO2022210487A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506636A (en) * 2014-02-14 2017-03-09 セレクティスCellectis Cells for immunotherapy that are engineered to target antigens that are present on both immune and diseased cells
JP2017532950A (en) * 2014-07-15 2017-11-09 ジュノー セラピューティクス インコーポレイテッド Engineered cells for adoptive cell therapy
JP2020515581A (en) * 2017-03-31 2020-05-28 ザ・ボード・オブ・トラスティーズ・オブ・ザ・リーランド・スタンフォード・ジュニア・ユニバーシティ Method of treating T cell exhaustion by inhibiting or modulating T cell receptor signaling
WO2020180243A1 (en) * 2019-03-01 2020-09-10 National University Of Singapore Engineered immune cells
JP2021505604A (en) * 2017-12-07 2021-02-18 ユリウス−マクシミリアン−ウニヴェルシテート・ヴュルツブルク Regulation and regulation of the function of genetically modified chimeric antigen receptor T cells with dasatinib and other tyrosine kinase inhibitors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506636A (en) * 2014-02-14 2017-03-09 セレクティスCellectis Cells for immunotherapy that are engineered to target antigens that are present on both immune and diseased cells
JP2017532950A (en) * 2014-07-15 2017-11-09 ジュノー セラピューティクス インコーポレイテッド Engineered cells for adoptive cell therapy
JP2020515581A (en) * 2017-03-31 2020-05-28 ザ・ボード・オブ・トラスティーズ・オブ・ザ・リーランド・スタンフォード・ジュニア・ユニバーシティ Method of treating T cell exhaustion by inhibiting or modulating T cell receptor signaling
JP2021505604A (en) * 2017-12-07 2021-02-18 ユリウス−マクシミリアン−ウニヴェルシテート・ヴュルツブルク Regulation and regulation of the function of genetically modified chimeric antigen receptor T cells with dasatinib and other tyrosine kinase inhibitors
WO2020180243A1 (en) * 2019-03-01 2020-09-10 National University Of Singapore Engineered immune cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AMAISHI YASUNORI, MAKI IZUMI, SUGIZAKI MAIKO, MIHARA KENICHIRO, OKAMOTO SACHIKO, MINENO JUNICHI: "103 Quality improvement of anti-CD38-JAK/STAT CAR-T cells by suppressing CD38 expression and inhibition of tyrosine kinase", JOURNAL FOR IMMUNOTHERAPY OF CANCER, BIOMED CENTRAL, LONDON, GB, vol. 9, no. Suppl 2, 1 November 2021 (2021-11-01) - 14 November 2021 (2021-11-14), GB , pages A113 - A113, XP055971735, ISSN: 2051-1426, DOI: 10.1136/jitc-2021-SITC2021.103 *
OKAMOTO SACHIKO, IZUMI MAKI, MAIKO SUGIZAKI, YASUNORI AMAISHI, KEICHIRO MIHARA, JUNICHI MINENO: "626. Combination of Silencing CD38 and Tyrosine Kinase Inhibitor Treatment Can Improve the Quality of CD38-JAK-STAT CAR-T Cells", MOLECULAR THERAPY, ELSEVIER INC., US, vol. 29, no. 4, Suppl. 1, 27 April 2021 (2021-04-27) - 14 May 2021 (2021-05-14), US , pages 303 - 304, XP055971729, ISSN: 1525-0016, DOI: 10.1016/j.ymthe.2021.04.019 *
YASUNORI AMAISHI, IZUMI MAKI, MAIKO SUGISAKI, KEIICHIRO MIHARA, SACHIKO OKAMOTO, JUNICHI MINENO: "P-14 Improving the quality of anti-CD38-JAK/STAT CAR-T cells by suppressing CD38 expression and combining kinase inhibitors", PROGRAM AND ABSTRACTS OF THE 25TH ANNUAL MEETING OF THE JAPANESE SOCIETY FOR CANCER IMMUNOLOGY; JULY 1-3, 2021, JAPANESE SOCIETY FOR CANCER IMMUNOLOGY, JP, vol. 25, 7 June 2021 (2021-06-07) - 3 July 2021 (2021-07-03), JP, pages 151, XP009539917 *

Also Published As

Publication number Publication date
JPWO2022210487A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US20240091256A1 (en) Genetic engineering of macrophages for immunotherapy
JP6877905B2 (en) Methods and compositions for cell immunotherapy
JP6709549B2 (en) Method for enhancing T cell function
US11931381B2 (en) Immunocompetent cell and expression vector expressing regulatory factors of immune function
BR112021003305A2 (en) methods for producing cells that express chimeric antigen receptor
JP2018504894A (en) Chimeric antigen receptor and method of use thereof
JP7158075B2 (en) GD2-based chimeric antigen receptor and its use
JP5805089B2 (en) Method for producing cell population
CN112204133B (en) CAR NK cells
CN109121413A (en) Use the composition and method of targeting nucleic acid nano carrier programming therapeutic cells
CN113811604A (en) Method for producing CAR-NK cells and uses thereof
WO2011052638A1 (en) Process for production of cytokine-induced killer cells
JP2022513665A (en) Methods for Exvivo Proliferation of Natural Killer Cells and Their Usage
WO2009139413A1 (en) Method for production of cell mass containing cytokine-induced killer cell
JP2023053328A (en) Immunocompetent cell for expressing cell surface molecule specifically recognizing human mesothelin, il-7 and ccl19
WO2011024791A1 (en) Method for producing t cell population under presence of retinoic acid
WO2022210487A1 (en) Method for producing immunocyte expressing receptor specific to antigen
JP5485139B2 (en) Method for producing transgenic cells
WO2024078995A1 (en) Transduction of gammadelta t cells with pseudotyped retroviral vectors
WO2023225512A2 (en) Methods for optimizing t cell immunotherapeutic effector and memory function
CN112851826A (en) Treatment of UPK2 chimeric antigen receptor and its urethral cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511233

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780698

Country of ref document: EP

Kind code of ref document: A1