WO2022209642A1 - Epoxy resin and production method therefor, curable resin composition, and cured product thereof - Google Patents

Epoxy resin and production method therefor, curable resin composition, and cured product thereof Download PDF

Info

Publication number
WO2022209642A1
WO2022209642A1 PCT/JP2022/010112 JP2022010112W WO2022209642A1 WO 2022209642 A1 WO2022209642 A1 WO 2022209642A1 JP 2022010112 W JP2022010112 W JP 2022010112W WO 2022209642 A1 WO2022209642 A1 WO 2022209642A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
formula
resin composition
parts
average value
Prior art date
Application number
PCT/JP2022/010112
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 遠島
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to KR1020237019237A priority Critical patent/KR20230161416A/en
Priority to CN202280007736.4A priority patent/CN116670199A/en
Publication of WO2022209642A1 publication Critical patent/WO2022209642A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin having a specific structure, a curable resin composition, and a cured product thereof.
  • Epoxy resin is excellent in electrical properties (dielectric constant/dielectric loss tangent, insulating properties), mechanical properties, adhesive properties, and thermal properties (heat resistance, etc.). It is widely used in the fields of electrical and electronic materials, structural materials, adhesives, and paints.
  • Patent Document 1 In recent years, in the electrical and electronic fields, performance improvements such as flame retardancy, moisture resistance, adhesion, and dielectric properties of resin compositions, high purity, low viscosity for high filling of fillers (inorganic or organic fillers) There is a demand for further improvement in various properties such as improved reactivity in order to shorten the molding cycle (Patent Document 1).
  • structural materials lightweight materials with excellent mechanical properties are required for use in aerospace materials, leisure and sports equipment, and the like.
  • substrates substrates (substrates themselves or their peripheral materials) have become more complicated with thinning, stacking, systematization, and three-dimensionalization in accordance with the transition of semiconductors. Required properties such as heat resistance and high fluidity are required.
  • CFRP Carbon Fiber Reinforced Plastics
  • CFRP Carbon Fiber Reinforced Plastics
  • CFRP is used as a matrix resin for aircraft applications, taking advantage of the characteristics that the molded product is lightweight and has high strength.
  • Materials such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and tetraglycidyldiaminodiphenylmethane are generally used as resins for matrix resins such as CFRP.
  • glycidylamine type epoxy resins such as tetraglycidyldiaminodiphenylmethane are used.
  • Patent Document 2 Glycidylamine-based materials have high heat resistance, but have a high water absorption rate, and have the problem of deterioration in properties after water absorption.
  • general glycidyl ether type epoxy resins have relatively low water absorption, there is a problem that their elastic moduli are low. Therefore, materials with high heat resistance, high elastic modulus, and low water absorption are desired.
  • an object of the present invention is to provide an epoxy resin and an epoxy resin composition whose cured product is excellent in low water absorption and high elasticity.
  • the present inventors have completed the present invention as a result of intensive research to solve the above problems. That is, the present invention relates to the following [1] to [7]. In the present application, "(numerical value 1) to (numerical value 2)" indicate that upper and lower limits are included. [1] An epoxy resin represented by the following formula (1).
  • n is the number of repetitions, the average value of which is 1 ⁇ n ⁇ 20.
  • R represents a substituent represented by the following formula (2).
  • p is a real number of 0 to 4, respectively. and the average value of p is 0.5 to 1.5.
  • n is the number of repetitions, and the average value is 1 ⁇ n ⁇ 20.
  • the present invention relates to an epoxy resin having a specific structure, a curable resin composition, and a cured product thereof, which has low water absorption and high elasticity. Therefore, the present invention can be applied to insulating materials for electric and electronic parts (such as highly reliable semiconductor sealing materials), laminated boards (printed wiring boards, build-up boards, etc.), various composite materials such as CFRP, adhesives, paints, etc. Useful.
  • insulating materials for electric and electronic parts such as highly reliable semiconductor sealing materials
  • laminated boards printed wiring boards, build-up boards, etc.
  • various composite materials such as CFRP, adhesives, paints, etc. Useful.
  • FIG. 1 shows a GPC chart of Synthesis Example 1.
  • FIG. 1 shows a GPC chart of Example 1.
  • FIG. 2 shows a GPC chart of Synthesis Example 2.
  • FIG. 1 shows a GPC chart of Synthesis Example 3.
  • FIG. 1 shows a GPC chart of Synthesis Example 1.
  • the epoxy resin of the present invention is represented by the following formula (1).
  • n is the number of repetitions, the average value of which is 1 ⁇ n ⁇ 20.
  • R represents a substituent represented by the following formula (2).
  • p is a real number of 0 to 4, respectively. and the average value of p is 0.5 to 1.5.
  • the average value of n can be calculated from the number average molecular weight obtained by measurement by gel permeation chromatography (GPC, detector: RI), or from the area ratio of each of the separated peaks. .
  • the average value of n is more preferably 1 ⁇ n ⁇ 10, and particularly preferably 1 ⁇ n ⁇ 5.
  • the substituent R of the epoxy resin represented by the formula (1) is represented by the formula (2), and X is a hydrogen atom.
  • each p represents a real number of 0 to 4, the average value of p is preferably 0.5 to 2.0, more preferably 0.5 to 1.5, 0.8 to 1.2 is particularly preferred.
  • the average value of p is 0.5 or more, a high elastic modulus and low water absorbency are likely to be exhibited, and when it is 2.0 or less, a significant increase in viscosity and a significant decrease in heat resistance can be suppressed.
  • An example of a preferable structure of the epoxy resin represented by the formula (1) is an epoxy resin represented by the following formula (3).
  • n is the number of repetitions, and the average value is 1 ⁇ n ⁇ 20.
  • n in the formula (3) is the same as in the formula (1).
  • the method for producing the epoxy resin of the present invention is not particularly limited, it can be obtained, for example, by subjecting the phenol resin represented by the following formula (4) and epihalohydrin to an addition or ring closure reaction in the presence of a solvent and a catalyst.
  • n is the number of repetitions, and the average value is 1 ⁇ n ⁇ 20.
  • R represents a substituent represented by the following formula (5).
  • p is a real number of 0 to 4, respectively. and the average value of p is 0.5 to 1.5.
  • n, p, q, R, and X in the formulas (4) and (5) are the same as in the formulas (1) and (2).
  • the method for producing the phenolic resin represented by the formula (4) is not particularly limited.
  • a dicyclopentadiene-type phenolic resin polycondensation product of a dicyclopentadiene-based compound and a phenolic compound
  • a benzylating agent such as indene or indanol
  • Modification with indene and indene derivatives such as indanol improves the rigidity of the molecule compared to benzylic agents such as benzyl alcohol, so high elastic modulus and low water absorption can be achieved without significantly impairing heat resistance. is possible.
  • the acidic catalyst used in synthesizing the phenolic resin represented by the formula (4) includes hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid, Examples include activated clay and ion exchange resins. These may be used alone or in combination of two or more.
  • the amount of the catalyst used is 0.1 to 50% by weight, preferably 1 to 30% by weight, based on the phenolic hydroxyl groups used. Become slow.
  • the reaction may be carried out using an organic solvent such as toluene or xylene, or without a solvent, if necessary.
  • an organic solvent such as toluene or xylene
  • the reaction may be carried out using an organic solvent such as toluene or xylene, or without a solvent, if necessary.
  • an acidic catalyst to a mixed solution of a phenolic resin and a benzylating agent obtained by polycondensation of a dicyclopentadiene compound and a phenolic compound
  • the water is azeotropically removed from the system. preferably excluded.
  • the temperature is raised to 100 to 220° C., preferably 120 to 180° C., and the reaction is carried out for 1 to 50 hours, preferably 2 to 20 hours.
  • the amount of epihalohydrin to be used is generally 1.0 to 20.0 mol, preferably 1.5 to 10.0 mol, per 1 mol of phenolic hydroxyl group of the phenolic resin.
  • Alkali metal hydroxides that can be used in the epoxidation reaction include sodium hydroxide and potassium hydroxide.
  • the alkali metal hydroxide may be solid or its aqueous solution may be used.
  • an aqueous solution is used, an aqueous solution of the alkali metal hydroxide is continuously added to the reaction system, and water and epihalohydrin are continuously distilled off under reduced pressure or normal pressure, and water is removed by liquid separation. Alternatively, epihalohydrin may be continuously returned to the reaction system.
  • the amount of the alkali metal hydroxide to be used is generally 0.9 to 2.5 mol, preferably 0.95 to 1.5 mol, per 1 mol of the phenolic hydroxyl group of the phenolic resin.
  • a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, or trimethylbenzylammonium chloride may be added as a catalyst to promote the above reaction.
  • the amount of the quaternary ammonium salt to be used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per 1 mol of the phenolic hydroxyl group of the phenolic resin. If the amount used is too small, a sufficient reaction acceleration effect cannot be obtained, and if the amount used is too large, the amount of quaternary ammonium salt remaining in the epoxy resin increases, which may cause deterioration in electrical reliability.
  • an alcohol such as methanol, ethanol and isopropyl alcohol
  • an aprotic polar solvent such as dimethylsulfone, dimethylsulfoxide, tetrahydrofuran and dioxane
  • the amount used is generally 2-50% by weight, preferably 4-20% by weight, based on the amount of epihalohydrin used.
  • an aprotic polar solvent it is usually 5-100% by weight, preferably 10-80% by weight, based on the amount of epihalohydrin used.
  • the reaction temperature is usually 30-90°C, preferably 35-80°C.
  • the reaction time is usually 0.5 to 100 hours, preferably 1 to 30 hours.
  • epihalohydrin, solvent, etc. are removed from the reactant by heating under reduced pressure after washing with water or without washing with water.
  • the recovered epoxy resin is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added. can also be used to ensure ring closure.
  • the alkali metal hydroxide is used in an amount of usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, per 1 mol of the phenolic hydroxyl group of the phenolic resin used for glycidylation.
  • the reaction temperature is generally 50-120° C., and the reaction time is generally 0.5-24 hours.
  • the salt produced is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin of the present invention.
  • the epoxy resin of the present invention is usually in the form of a semi-solid to solid resin at room temperature, and its softening point is preferably 100°C or lower, more preferably 80°C or lower. If the softening point is higher than 100° C., the viscosity is high and the fiber impregnation property is lowered during prepreg preparation. Also, the epoxy equivalent is preferably 200 to 1000 g/eq, more preferably 300 to 800 g/eq, particularly preferably 300 to 700 g/eq, and most preferably 330 to 600 g/eq.
  • the epoxy resin represented by Formula (1) can be used alone or in combination with other epoxy resins.
  • the ratio of the epoxy resin represented by formula (1) to the total epoxy resin is preferably 10 to 98% by weight, more preferably 20 to 95% by weight, and still more preferably 30 to 95% by weight. %.
  • curing agents examples include amine-based curing agents, acid anhydride-based curing agents, amide-based curing agents, and phenol-based curing agents.
  • Specific examples of usable curing agents include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 3,3′-diamino Diphenylsulfone, 2,2'-diaminodiphenylsulfone, diethyltoluenediamine, dimethylthiotoluenediamine, diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4' -diaminodiphenylmethane, 4,4'-
  • an aromatic amine in order to secure a pot life
  • an aliphatic amine in order to impart quick curing.
  • amide compounds such as polyamide resin synthesized from dicyandiamide, dimer of linolenic acid and ethylenediamine; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydro Acid anhydride compounds such as phthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride; bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) or phenols ( Phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formal
  • the amount of the curing agent used in the epoxy resin composition of the present invention is preferably 0.5 to 1.5 equivalents, particularly preferably 0.6 to 1.2 equivalents, relative to 1 equivalent of the epoxy group of the epoxy resin. Good cured physical properties can be obtained by setting the equivalent weight to 0.5 to 1.5.
  • a curing accelerator may be used in combination when performing a curing reaction using the above curing agent.
  • Curing accelerators that can be used include, for example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-(dimethylaminomethyl)phenol, triethylenediamine, tertiary amines such as triethanolamine and 1,8-diazabicyclo(5,4,0)undecene-7; organic phosphines such as triphenylphosphine, diphenylphosphine and tributylphosphine; metal compounds such as tin octylate; Tetraphenylphosphonium/tetraphenylborate, tetrasubstituted phosphonium/tetrasubstituted borate such as tetraphenylphosphonium/ethyltriphenylborate, 2-
  • Carboxylic acid compounds such as phenyl boron salts, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthoic acid, and salicylic acid.
  • a carboxylic acid compound such as salicylic acid is preferred from the viewpoint of promoting the curing reaction between the amine compound and the epoxy resin.
  • the curing accelerator is used in an amount of 0.01 to 15 parts by weight based on 100 parts by weight of the epoxy resin.
  • an inorganic filler can be added to the epoxy resin composition of the present invention as necessary.
  • Inorganic fillers include powders of crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, etc. Beads formed by spheroidizing are included, but are not limited to these. These may be used independently and may use 2 or more types. The amount of these inorganic fillers used varies depending on the application.
  • the epoxy resin composition is preferably used in a proportion of 20% by weight or more in the epoxy resin composition, more preferably 30% by weight or more, and particularly 70 to 95% by weight in order to improve the coefficient of linear expansion with the lead frame. It is more preferable to use it in the ratio which occupies.
  • a release agent can be added to the epoxy resin composition of the present invention to improve release from the mold during molding.
  • the mold release agent any of those conventionally known can be used. system waxes and the like. These may be used alone or in combination of two or more.
  • the blending amount of these release agents is preferably 0.5 to 3% by weight based on the total organic components. If the amount is too small, the release from the mold will be poor, and if the amount is too large, adhesion to the lead frame or the like will be poor.
  • a coupling agent can be added to the epoxy resin composition of the present invention in order to increase the adhesion between the inorganic filler and the resin component.
  • the coupling agent any of conventionally known ones can be used. Examples include various alkoxysilane compounds such as silane, alkoxytitanium compounds, and aluminum chelates. These may be used alone or in combination of two or more.
  • the coupling agent may be added by first treating the surface of the inorganic filler with the coupling agent and then kneading it with the resin, or by mixing the coupling agent with the resin and then kneading the inorganic filler. .
  • additives can be added to the epoxy resin composition of the present invention as necessary.
  • additives that can be used include polybutadiene and its modified products, modified acrylonitrile copolymers, polyphenylene ethers, polystyrene, polyethylene, polyimide, fluororesins, maleimide compounds, cyanate ester compounds, silicone gels, and silicone oils. and coloring agents such as carbon black, phthalocyanine blue and phthalocyanine green.
  • the epoxy resin composition of the present invention is obtained by uniformly mixing the above components.
  • the epoxy resin composition of the present invention can be easily cured by a method similar to the conventionally known method. For example, an epoxy resin and a curing agent, and if necessary, a curing accelerator, an inorganic filler, a release agent, a silane coupling agent, and an additive are mixed until uniform using an extruder, a kneader, a roll, etc.
  • the epoxy resin composition of the present invention is obtained by thorough mixing, which is molded by a melt casting method, transfer molding method, injection molding method, compression molding method, or the like, and further at 80 to 200° C. for 2 to 10 hours.
  • a cured product can be obtained by heating to .
  • the epoxy resin composition of the present invention may contain a solvent as necessary.
  • An epoxy resin composition (epoxy resin varnish) containing a solvent is prepared by impregnating a fibrous substance (base material) such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., followed by heating and drying to obtain a prepreg.
  • a cured product of the epoxy resin composition of the present invention can be obtained by press molding.
  • the solvent content of this epoxy resin composition is usually 10 to 70% by weight, preferably about 15 to 70% by weight.
  • the solvent examples include amide solvents such as ⁇ -butyrolactones, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and N,N-dimethylimidazolidinone; sulfones such as tetramethylenesulfone; Ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monobutyl ether, preferably lower (1 to 3 carbon atoms) alkylene glycol mono- or di-lower (1 to 3 carbon atoms) 3) Alkyl ethers; ketone-based solvents such as methyl ethyl ketone and methyl isobutyl ketone, preferably two alkyl groups may be the same or different. Di-lower (C 1-3) alkyl ketones; aromatic solvents such as toluene
  • a sheet-like adhesive (the sheet of the present invention) can be obtained by coating the release film with the epoxy resin varnish, removing the solvent under heating, and performing B-stage.
  • This sheet-like adhesive can be used as an interlayer insulating layer in multilayer substrates and the like.
  • thermosetting resins such as epoxy resins
  • molding materials including sheets, films, FRP, etc.
  • insulating materials printed circuit boards, wire coating, etc.
  • sealing agents additives to other resins, and the like.
  • Adhesives include adhesives for civil engineering, construction, automobiles, general office and medical use, as well as adhesives for electronic materials.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, adhesives for semiconductors such as underfill, underfill for BGA reinforcement, anisotropic conductive films ( ACF), mounting adhesives such as anisotropic conductive paste (ACP), and the like.
  • ⁇ GPC (gel permeation chromatography) analysis column SHODEX GPC KF-601 (2 columns), KF-602, KF-602.5, KF-603 Flow rate: 0.5 ml/min.
  • Example 1 Thermometer, cooling tube, fractionating tube, while purging a flask equipped with a stirrer, 110 parts of the phenolic resin (P1) obtained in Example 1, 143 parts of epichlorohydrin, 35.8 parts of dimethyl sulfoxide, water 1.4 parts was added, and the internal temperature was raised to 45°C. After adding 16 parts of sodium hydroxide in portions over 1.5 hours, the mixture was reacted at 45° C. for 2 hours and at 70° C. for 1 hour. Unreacted epichlorohydrin and the solvent were distilled off under heating and reduced pressure. 150 parts of MIBK was added, and the organic layer was washed once with 100 parts of water.
  • the organic layer was returned to the reaction vessel, 15 parts of a 30 wt % sodium hydroxide aqueous solution was added, and the mixture was reacted at 70° C. for 2 hours. After standing to cool, the organic layer was washed four times with 100 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 123 parts of the target compound (E1) as a brown solid resin.
  • ICI viscosity (150°C) was 1.07 Pa ⁇ s
  • softening point was 95.2°C.
  • a GPC chart is shown in FIG.
  • the organic layer was returned to the reaction vessel, 15 parts of a 30 wt % sodium hydroxide aqueous solution was added, and the mixture was reacted at 70° C. for 2 hours. After standing to cool, the organic layer was washed three times with 100 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain the target compound (E2) as a brown solid resin.
  • the ICI viscosity (150°C) was 0.08 Pa ⁇ s
  • the softening point was 59.8°C.
  • a GPC chart is shown in FIG.
  • Example 2 Comparative Examples 1 to 3
  • Epoxy resin (E1) obtained in Example 1 epoxy resin (E2) obtained in Synthesis Example 3, bisphenol F type epoxy resin (RE-304S, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 169 g/eq.) , Epoxy resin derived from dicyclopentadiene type phenol resin (XD-1000-2L, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 238 g / eq., ICI viscosity (150 ° C.): 0.05, softening point: 55.4 ° C.
  • Table 1 shows the results of measurement of the test piece for evaluation under the following conditions.
  • Example 2 had high heat resistance, high elastic modulus, and low water absorption.
  • the epoxy resin of the present invention is used as an insulating material for electrical and electronic parts (such as a highly reliable semiconductor sealing material), a laminate (such as a printed wiring board, a BGA substrate, and a build-up substrate), and an adhesive (such as a conductive adhesive). It is useful for various composite materials such as CFRP and coatings, and is particularly useful for various composite materials such as CFRP that strongly require a high elastic modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention provides an epoxy resin and an epoxy resin composition, cured products of which have excellent low water absorption and high elasticity. This epoxy resin is represented by formula (1). (In formula (1), n is the number of repetitions and the average thereof is 1<n<20. R represents a substituent represented by formula (2). Each p represents a real number of 0 to 4, and the average value of p is 0.5 to 1.5.) (In formula (2), * represents the portion bonded to an aromatic ring in formula (1). X represents a hydrogen atom or a hydrocarbon group having 1-6 carbon atoms. q represents a real number of 0 to 5.)

Description

エポキシ樹脂及びその製造方法、硬化性樹脂組成物、およびその硬化物Epoxy resin, method for producing the same, curable resin composition, and cured product thereof
 本発明は特定構造を有するエポキシ樹脂、硬化性樹脂組成物、およびその硬化物に関する。 The present invention relates to an epoxy resin having a specific structure, a curable resin composition, and a cured product thereof.
 エポキシ樹脂は、電気的性質(誘電率・誘電正接、絶縁性)、機械的性質、接着性、熱的性質(耐熱性など)などに優れているため、注型品、積層板、IC封止材料等の電気・電子分野、構造用材料、接着剤、塗料等の分野で幅広く用いられている。 Epoxy resin is excellent in electrical properties (dielectric constant/dielectric loss tangent, insulating properties), mechanical properties, adhesive properties, and thermal properties (heat resistance, etc.). It is widely used in the fields of electrical and electronic materials, structural materials, adhesives, and paints.
 近年、電気・電子分野においては、樹脂組成物の難燃性、耐湿性、密着性、誘電特性等の性能向上、高純度化、フィラー(無機または有機充填剤)を高充填させるための低粘度化、成型サイクルを短くするための反応性向上等の諸特性の一層の向上が求められている(特許文献1)。また、構造用材料としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料が求められている。特に半導体封止分野、基板(基板自体、もしくはその周辺材料)においては、その半導体の変遷に従い、薄層化、スタック化、システム化、三次元化と複雑になっていき、非常に高いレベルの耐熱性や高流動性といった要求特性が求められる。 In recent years, in the electrical and electronic fields, performance improvements such as flame retardancy, moisture resistance, adhesion, and dielectric properties of resin compositions, high purity, low viscosity for high filling of fillers (inorganic or organic fillers) There is a demand for further improvement in various properties such as improved reactivity in order to shorten the molding cycle (Patent Document 1). In addition, as structural materials, lightweight materials with excellent mechanical properties are required for use in aerospace materials, leisure and sports equipment, and the like. Especially in the field of semiconductor encapsulation, substrates (substrates themselves or their peripheral materials) have become more complicated with thinning, stacking, systematization, and three-dimensionalization in accordance with the transition of semiconductors. Required properties such as heat resistance and high fluidity are required.
 構造用材料でのエポキシ樹脂の適用例としては、CFRP(炭素繊維強化プラスチック)が挙げられる。CFRPは、成型体が軽量且つ高強度という特性をいかして航空機用途のマトリックスレジンに使用されている。
 一般にCFRP等のマトリックスレジンに使用される樹脂としてはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン等の材料が使用されている。また、航空機用途においては、テトラグリシジルジアミノジフェニルメタン等、グリシジルアミン型のエポキシ樹脂が使用されている。
Examples of applications of epoxy resins in structural materials include CFRP (Carbon Fiber Reinforced Plastics). CFRP is used as a matrix resin for aircraft applications, taking advantage of the characteristics that the molded product is lightweight and has high strength.
Materials such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and tetraglycidyldiaminodiphenylmethane are generally used as resins for matrix resins such as CFRP. In aircraft applications, glycidylamine type epoxy resins such as tetraglycidyldiaminodiphenylmethane are used.
 近年、CFRPに対する要求特性は厳しくなっており、航空宇宙用途や車両などの構造材料に適用する場合は、高い耐熱性が要求される(特許文献2)。グリシジルアミン系の材料は高い耐熱性を有するが、吸水率が高く、吸水後の特性悪化の課題がある。一方、一般的なグリシジルエーテル型エポキシ樹脂は吸水率が比較的低いもののその弾性率が低いという課題がある。そのため、高耐熱性と高弾性率、そして低吸水率を満たす材料が求められている。 In recent years, the required properties for CFRP have become more stringent, and high heat resistance is required when it is applied to structural materials for aerospace applications and vehicles (Patent Document 2). Glycidylamine-based materials have high heat resistance, but have a high water absorption rate, and have the problem of deterioration in properties after water absorption. On the other hand, although general glycidyl ether type epoxy resins have relatively low water absorption, there is a problem that their elastic moduli are low. Therefore, materials with high heat resistance, high elastic modulus, and low water absorption are desired.
特開2015-147854号公報JP 2015-147854 A 国際公開第2010/204173号WO2010/204173
 本発明は、上記の課題に鑑み、その硬化物が低吸水性、高弾性に優れるエポキシ樹脂、エポキシ樹脂組成物を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an epoxy resin and an epoxy resin composition whose cured product is excellent in low water absorption and high elasticity.
 本発明者らは上記課題を解決するために鋭意研究した結果、本発明を完成させるに到った。すなわち本発明は以下の[1]~[7]に関する。なお、本願において「(数値1)~(数値2)」は上下限値を含むことを示す。
[1]
 下記式(1)で表されるエポキシ樹脂。
The present inventors have completed the present invention as a result of intensive research to solve the above problems. That is, the present invention relates to the following [1] to [7]. In the present application, "(numerical value 1) to (numerical value 2)" indicate that upper and lower limits are included.
[1]
An epoxy resin represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(1)中、nは繰り返し数であり、その平均値は1<n<20である。Rは下記式(2)で表される置換基を示す。pはそれぞれ0~4の実数を表し、pの平均値は0.5~1.5である。) (In formula (1), n is the number of repetitions, the average value of which is 1<n<20. R represents a substituent represented by the following formula (2). p is a real number of 0 to 4, respectively. and the average value of p is 0.5 to 1.5.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(2)中、*は式(1)の芳香環への結合部分を表す。Xは水素原子または炭素数1~6の炭化水素基を示す。qは0~5の実数を表す。) (In Formula (2), * represents a bond to the aromatic ring of Formula (1). X represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. q represents a real number of 0 to 5. )
[2]
 下記式(3)で表されるエポキシ樹脂。
[2]
An epoxy resin represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(3)中、nは繰り返し数であり、その平均値は1<n<20である。) (In formula (3), n is the number of repetitions, and the average value is 1<n<20.)
[3]
 ゲルパーミエーションクロマトグラフィー(GPC)による重量平均分子量が400~3000である前項[1]または[2]に記載のエポキシ樹脂。
[4]
 前項[1]乃至[3]のいずれか一項に記載のエポキシ樹脂を含有する硬化性樹脂組成物。
[5]
 さらに、アミン系硬化剤を含有する前項[4]に記載の硬化性樹脂組成物。
[6]
 前項[4]または[5]に記載の硬化性樹脂組成物を硬化した硬化物。
[7]
 ジシクロペンタジエン系化合物とフェノール系化合物の重縮合物と、インデン誘導体とを反応させてフェノール樹脂を得る工程と、前記フェノール樹脂をエポキシ化する工程を含む、前項[1]乃至[3]のいずれか一項に記載のエポキシ樹脂の製造方法。
[3]
The epoxy resin according to the preceding item [1] or [2], which has a weight average molecular weight of 400 to 3000 as determined by gel permeation chromatography (GPC).
[4]
A curable resin composition containing the epoxy resin according to any one of [1] to [3] above.
[5]
The curable resin composition according to the preceding item [4], further comprising an amine-based curing agent.
[6]
A cured product obtained by curing the curable resin composition according to [4] or [5] above.
[7]
Any one of the preceding items [1] to [3], including a step of reacting a polycondensate of a dicyclopentadiene-based compound and a phenol-based compound with an indene derivative to obtain a phenolic resin, and a step of epoxidizing the phenolic resin. A method for producing an epoxy resin according to claim 1.
 本発明は特定構造を有するエポキシ樹脂、硬化性樹脂組成物およびその硬化物に関するものであり、その硬化物は低吸水性、高弾性を有する。
 そのため、本発明は電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。
The present invention relates to an epoxy resin having a specific structure, a curable resin composition, and a cured product thereof, which has low water absorption and high elasticity.
Therefore, the present invention can be applied to insulating materials for electric and electronic parts (such as highly reliable semiconductor sealing materials), laminated boards (printed wiring boards, build-up boards, etc.), various composite materials such as CFRP, adhesives, paints, etc. Useful.
合成例1のGPCチャートを示す。1 shows a GPC chart of Synthesis Example 1. FIG. 実施例1のGPCチャートを示す。1 shows a GPC chart of Example 1. FIG. 合成例2のGPCチャートを示す。2 shows a GPC chart of Synthesis Example 2. FIG. 合成例3のGPCチャートを示す。1 shows a GPC chart of Synthesis Example 3. FIG.
 以下、本発明を詳細に説明する。 The present invention will be described in detail below.
 本発明のエポキシ樹脂は、下記式(1)で表される。 The epoxy resin of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(1)中、nは繰り返し数であり、その平均値は1<n<20である。Rは下記式(2)で表される置換基を示す。pはそれぞれ0~4の実数を表し、pの平均値は0.5~1.5である。) (In formula (1), n is the number of repetitions, the average value of which is 1<n<20. R represents a substituent represented by the following formula (2). p is a real number of 0 to 4, respectively. and the average value of p is 0.5 to 1.5.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式(2)中、*は式(1)の芳香環への結合部分を表す。Xは水素原子または炭素数1~6の炭化水素基を示す。qは0~5の実数を表す。) (In formula (2), * represents a bond to the aromatic ring of formula (1). X represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. q represents a real number of 0 to 5. )
 前記式(1)中、nの平均値はゲルパーミエーションクロマトグラフィー(GPC、検出器:RI)の測定により求められた数平均分子量、あるいは分離したピークの各々の面積比から算出することが出来る。nの平均値は1<n<10であることがさらに好ましく、1<n<5であることが特に好ましい。 In the above formula (1), the average value of n can be calculated from the number average molecular weight obtained by measurement by gel permeation chromatography (GPC, detector: RI), or from the area ratio of each of the separated peaks. . The average value of n is more preferably 1<n<10, and particularly preferably 1<n<5.
 前記式(1)で表されるエポキシ樹脂の置換基Rは前記式(2)で表されるものであり、Xは水素原子であるときがより好ましい。 It is more preferable that the substituent R of the epoxy resin represented by the formula (1) is represented by the formula (2), and X is a hydrogen atom.
 前記式(1)中、pはそれぞれ0~4の実数を表し、pの平均値は0.5~2.0であることが好ましく、0.5~1.5であることがさらに好ましく、0.8~1.2であることが特に好ましい。pの平均値が0.5以上であることで高弾性率や低吸水性を示しやすく、2.0以下であることで粘度の著しい増加と耐熱性の著しい低下を抑制することができる。 In the above formula (1), each p represents a real number of 0 to 4, the average value of p is preferably 0.5 to 2.0, more preferably 0.5 to 1.5, 0.8 to 1.2 is particularly preferred. When the average value of p is 0.5 or more, a high elastic modulus and low water absorbency are likely to be exhibited, and when it is 2.0 or less, a significant increase in viscosity and a significant decrease in heat resistance can be suppressed.
 前記式(1)で表されるエポキシ樹脂の好ましい構造の一例としては下記式(3)で表されるエポキシ樹脂を挙げることができる。 An example of a preferable structure of the epoxy resin represented by the formula (1) is an epoxy resin represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(3)中、nは繰り返し数であり、その平均値は1<n<20である。) (In formula (3), n is the number of repetitions, and the average value is 1<n<20.)
 前記式(3)中のnの好ましい範囲は、前記式(1)と同じである。 The preferred range of n in the formula (3) is the same as in the formula (1).
 本発明のエポキシ樹脂の製法は特に限定されないが、たとえば下記式(4)で表されるフェノール樹脂とエピハロヒドリンを溶剤、触媒の存在下に付加もしくは閉環反応させることで得ることができる。 Although the method for producing the epoxy resin of the present invention is not particularly limited, it can be obtained, for example, by subjecting the phenol resin represented by the following formula (4) and epihalohydrin to an addition or ring closure reaction in the presence of a solvent and a catalyst.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(4)中、nは繰り返し数であり、その平均値は1<n<20である。Rは下記式(5)で表される置換基を示す。pはそれぞれ0~4の実数を表し、pの平均値は0.5~1.5である。) (In formula (4), n is the number of repetitions, and the average value is 1<n<20. R represents a substituent represented by the following formula (5). p is a real number of 0 to 4, respectively. and the average value of p is 0.5 to 1.5.)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(5)中、*は式(4)の芳香環への結合部分を表す。Xは水素原子または炭素数1~6の炭化水素基を示す。qは0~5の実数を表す。) (In formula (5), * represents a bond to the aromatic ring of formula (4). X represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. q represents a real number of 0 to 5. )
 前記式(4)、(5)のn、p、q、R、Xの好ましい範囲は前記式(1)、(2)と同じである。 The preferred ranges of n, p, q, R, and X in the formulas (4) and (5) are the same as in the formulas (1) and (2).
 ここで、前記式(4)で表されるフェノール樹脂の製法について説明する。
 前記式(4)で表されるフェノール樹脂の製法は特に限定されない。例えば、ジシクロペンタジエン型フェノール樹脂(ジシクロペンタジエン系化合物とフェノール系化合物の重縮合物)に対し、インデンやインダノールなどのベンジル化剤を酸触媒存在下で反応させることで目的のフェノール樹脂を得ることができる。ベンジルアルコールなどのベンジル化剤と比較し、インデンやインダノール等のインデン誘導体による変性では、分子の剛直性が向上することから耐熱性を著しく損なうことなく、高弾性率、低吸水性を発現することが可能である。
Here, a method for producing the phenolic resin represented by the formula (4) will be described.
The method for producing the phenolic resin represented by the formula (4) is not particularly limited. For example, a dicyclopentadiene-type phenolic resin (polycondensation product of a dicyclopentadiene-based compound and a phenolic compound) is reacted with a benzylating agent such as indene or indanol in the presence of an acid catalyst to obtain the desired phenolic resin. be able to. Modification with indene and indene derivatives such as indanol improves the rigidity of the molecule compared to benzylic agents such as benzyl alcohol, so high elastic modulus and low water absorption can be achieved without significantly impairing heat resistance. is possible.
 前記式(4)で表されるフェノール樹脂を合成する際に用いる酸性触媒は、塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、塩化アルミニウム、p-トルエンスルホン酸、メタンスルホン酸、活性白土、イオン交換樹脂等が挙げられる。これらは単独でも二種以上併用しても良い。触媒の使用量は、使用するフェノール性水酸基に対して、0.1~50重量%、好ましくは1~30重量%であり、多すぎると廃棄物が増えてしまい、少なすぎると反応の進行が遅くなる。 The acidic catalyst used in synthesizing the phenolic resin represented by the formula (4) includes hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid, Examples include activated clay and ion exchange resins. These may be used alone or in combination of two or more. The amount of the catalyst used is 0.1 to 50% by weight, preferably 1 to 30% by weight, based on the phenolic hydroxyl groups used. Become slow.
 反応は必要によりトルエン、キシレンなどの有機溶剤を使用して行っても、無溶剤で行っても良い。例えば、ジシクロペンタジエン系化合物とフェノール系化合物の重縮合物により得られるフェノール樹脂とベンジル化剤の混合溶液に酸性触媒を添加した後、触媒が水を含む場合は共沸により水を系内から除くことが好ましい。その後溶剤を系内から除きながら昇温して100~220℃、好ましくは120~180℃で、1~50時間、好ましくは2~20時間反応を行う。アルコール系ベンジル化剤を使用した時には水が副生されるため、昇温時に溶剤と共沸させながら系内から除去する。反応終了後、アルカリ水溶液等で酸性触媒を中和後、油層に非水溶性有機溶剤を加えて廃水が中性になるまで水洗を繰り返したのち、溶剤および過剰のベンジル化剤を加熱減圧下において除去する。活性白土やイオン交換樹脂を用いた場合は、反応終了後に反応液を濾過して触媒を除去する。 The reaction may be carried out using an organic solvent such as toluene or xylene, or without a solvent, if necessary. For example, after adding an acidic catalyst to a mixed solution of a phenolic resin and a benzylating agent obtained by polycondensation of a dicyclopentadiene compound and a phenolic compound, if the catalyst contains water, the water is azeotropically removed from the system. preferably excluded. Thereafter, while removing the solvent from the system, the temperature is raised to 100 to 220° C., preferably 120 to 180° C., and the reaction is carried out for 1 to 50 hours, preferably 2 to 20 hours. Since water is by-produced when an alcohol-based benzylating agent is used, it is removed from the system while azeotroping with the solvent when the temperature is raised. After the completion of the reaction, neutralize the acidic catalyst with an alkaline aqueous solution, etc., add a water-insoluble organic solvent to the oil layer, repeat washing with water until the wastewater becomes neutral, and then remove the solvent and excess benzylation agent under heating and reduced pressure. Remove. When activated clay or ion exchange resin is used, the reaction solution is filtered to remove the catalyst after completion of the reaction.
 つづいて、本発明のエポキシ樹脂の製法について説明する。
 上述したように、本発明のエポキシ樹脂の製法は特に限定されないが、たとえば前記式(4)で表されるフェノール樹脂とエピハロヒドリンを溶剤、触媒の存在下に付加もしくは閉環反応させることで得ることができる。
 エピハロヒドリンの使用量はフェノール樹脂のフェノール性水酸基1モルに対し通常1.0~20.0モル、好ましくは1.5~10.0モルである。
Next, a method for producing the epoxy resin of the present invention will be explained.
As described above, the method for producing the epoxy resin of the present invention is not particularly limited. can.
The amount of epihalohydrin to be used is generally 1.0 to 20.0 mol, preferably 1.5 to 10.0 mol, per 1 mol of phenolic hydroxyl group of the phenolic resin.
 エポキシ化反応において使用できるアルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等が挙げられる。アルカリ金属水酸化物は固形物であっても、その水溶液を使用してもよい。水溶液を使用する場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを留出させ、更に分液して水を除去し、エピハロヒドリンを反応系内に連続的に戻す方法でもよい。アルカリ金属水酸化物の使用量はフェノール樹脂のフェノール性水酸基1モルに対して通常0.9~2.5モルであり、好ましくは0.95~1.5モルである。アルカリ金属水酸化物の使用量が少ないと反応が十分に進行しない。一方で、フェノール樹脂のフェノール性水酸基1モルに対して2.5モルを超えるアルカリ金属水酸化物の過剰使用は不必要な廃棄物の副生を招く。 Alkali metal hydroxides that can be used in the epoxidation reaction include sodium hydroxide and potassium hydroxide. The alkali metal hydroxide may be solid or its aqueous solution may be used. When an aqueous solution is used, an aqueous solution of the alkali metal hydroxide is continuously added to the reaction system, and water and epihalohydrin are continuously distilled off under reduced pressure or normal pressure, and water is removed by liquid separation. Alternatively, epihalohydrin may be continuously returned to the reaction system. The amount of the alkali metal hydroxide to be used is generally 0.9 to 2.5 mol, preferably 0.95 to 1.5 mol, per 1 mol of the phenolic hydroxyl group of the phenolic resin. If the amount of alkali metal hydroxide used is too small, the reaction will not proceed sufficiently. On the other hand, excessive use of alkali metal hydroxide exceeding 2.5 mol per 1 mol of phenolic hydroxyl groups in the phenolic resin leads to unnecessary waste by-production.
 上記反応を促進するためにテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加しても良い。4級アンモニウム塩の使用量としてはフェノール樹脂のフェノール性水酸基1モルに対し通常0.1~15gであり、好ましくは0.2~10gである。使用量が少なすぎると十分な反応促進効果が得られず、使用量が多すぎるとエポキシ樹脂中に残存する4級アンモニウム塩量が増えてしまうため、電気信頼性を悪化させる原因ともなり得る。 A quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, or trimethylbenzylammonium chloride may be added as a catalyst to promote the above reaction. The amount of the quaternary ammonium salt to be used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per 1 mol of the phenolic hydroxyl group of the phenolic resin. If the amount used is too small, a sufficient reaction acceleration effect cannot be obtained, and if the amount used is too large, the amount of quaternary ammonium salt remaining in the epoxy resin increases, which may cause deterioration in electrical reliability.
 エポキシ化反応の際、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等の非プロトン性極性溶媒などを添加して反応を行うことが反応進行上好ましい。アルコール類を使用する場合、その使用量はエピハロヒドリンの使用量に対し通常2~50重量%、好ましくは4~20重量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの使用量に対し通常5~100重量%、好ましくは10~80重量%である。反応温度は通常30~90℃であり、好ましくは35~80℃である。反応時間は通常0.5~100時間であり、好ましくは1~30時間である。
 反応終了後、反応物を水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、回収したエポキシ樹脂をトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を行い、閉環を確実なものにすることもできる。この場合アルカリ金属水酸化物の使用量はグリシジル化に使用したフェノール樹脂のフェノール性水酸基1モルに対して通常0.01~0.3モル、好ましくは0.05~0.2モルである。反応温度は通常50~120℃、反応時間は通常0.5~24時間である。反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下溶剤を留去することにより本発明のエポキシ樹脂が得られる。
During the epoxidation reaction, it is preferable to add an alcohol such as methanol, ethanol and isopropyl alcohol, and an aprotic polar solvent such as dimethylsulfone, dimethylsulfoxide, tetrahydrofuran and dioxane to proceed with the reaction. When alcohols are used, the amount used is generally 2-50% by weight, preferably 4-20% by weight, based on the amount of epihalohydrin used. When an aprotic polar solvent is used, it is usually 5-100% by weight, preferably 10-80% by weight, based on the amount of epihalohydrin used. The reaction temperature is usually 30-90°C, preferably 35-80°C. The reaction time is usually 0.5 to 100 hours, preferably 1 to 30 hours.
After completion of the reaction, epihalohydrin, solvent, etc. are removed from the reactant by heating under reduced pressure after washing with water or without washing with water. In order to further reduce the hydrolyzable halogen content of the epoxy resin, the recovered epoxy resin is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added. can also be used to ensure ring closure. In this case, the alkali metal hydroxide is used in an amount of usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, per 1 mol of the phenolic hydroxyl group of the phenolic resin used for glycidylation. The reaction temperature is generally 50-120° C., and the reaction time is generally 0.5-24 hours. After completion of the reaction, the salt produced is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin of the present invention.
 本発明のエポキシ樹脂は通常は常温で半固形~固体の樹脂状であり、その軟化点は100℃以下であることが好ましく、さらに好ましくは80℃以下である。軟化点が100℃より高い場合、粘度が高く、プリプレグ作成時に繊維含侵性が低下する。また、そのエポキシ当量は200~1000g/eqであることが好ましく、さらに好ましくは300~800g/eq、特に好ましくは300~700g/eq、最も好ましくは330~600g/eqである。 The epoxy resin of the present invention is usually in the form of a semi-solid to solid resin at room temperature, and its softening point is preferably 100°C or lower, more preferably 80°C or lower. If the softening point is higher than 100° C., the viscosity is high and the fiber impregnation property is lowered during prepreg preparation. Also, the epoxy equivalent is preferably 200 to 1000 g/eq, more preferably 300 to 800 g/eq, particularly preferably 300 to 700 g/eq, and most preferably 330 to 600 g/eq.
 以下、本発明のエポキシ樹脂組成物について説明する。
 本発明のエポキシ樹脂組成物において、式(1)で表されるエポキシ樹脂は単独、または他のエポキシ樹脂と併用して使用することができる。併用する場合、式(1)で表されるエポキシ樹脂が全エポキシ樹脂中に占める割合は10~98重量%であることが好ましく、より好ましくは20~95重量%、さらに好ましくは30~95重量%である。添加量を10重量%以上とすることで弾性率向上や低吸水性を発現することができる。
The epoxy resin composition of the present invention is described below.
In the epoxy resin composition of the present invention, the epoxy resin represented by Formula (1) can be used alone or in combination with other epoxy resins. When used in combination, the ratio of the epoxy resin represented by formula (1) to the total epoxy resin is preferably 10 to 98% by weight, more preferably 20 to 95% by weight, and still more preferably 30 to 95% by weight. %. By setting the amount to be added to 10% by weight or more, it is possible to improve the elastic modulus and exhibit low water absorption.
 本発明のエポキシ樹脂と併用されうる他のエポキシ樹脂の具体例としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)もしくはフェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物;前記フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物;前記フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物;前記フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物;前記フェノール類と芳香族ジクロロメチル類(α,α’-ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物;前記フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物;前記ビスフェノール類と各種アルデヒドの重縮合物またはアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。 Specific examples of other epoxy resins that can be used in combination with the epoxy resin of the present invention include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) or phenols (phenol, alkyl-substituted phenol, aromatic-substituted Phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, croton aldehyde, cinnamaldehyde, etc.); the above phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, disopropenylbiphenyl, butadiene, isoprene, etc.); polycondensation products of the phenols and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, etc.); methanol, etc.); polycondensation products of the above phenols and aromatic dichloromethyls (α,α'-dichloroxylene, bischloromethylbiphenyl, etc.); the above phenols and aromatic bisalkoxymethyls ( bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, etc.); polycondensates of the above bisphenols and various aldehydes; glycidyl ether-based epoxy resins obtained by glycidylating alcohols and the like; alicyclic epoxies Examples include resins, glycidylamine-based epoxy resins, glycidyl ester-based epoxy resins, and the like, but are not limited to these as long as they are commonly used epoxy resins. These may be used independently and may use 2 or more types.
 本発明のエポキシ樹脂組成物において使用しうる硬化剤としては、アミン系硬化剤、酸無水物系硬化剤、アミド系硬化剤、フェノール系硬化剤などが挙げられる。使用できる硬化剤の具体例としては、例えばo-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,2’-ジアミノジフェニルスルホン、ジエチルトルエンジアミン、ジメチルチオトルエンジアミン、ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、4,4’-メチレンビス(N-メチルアニリン)、ビス(アミノフェニル)フルオレン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,3’-ビス(4-アミノフェノキシ)ベンゼン、1,4’-ビス(4-アミノフェノキシ)ベンゼン、1,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-(1,3-フェニレンジソプロピリデン)ビスアニリン、4,4’-(1,4-フェニレンジソプロピリデン)ビスアニリン、ナフタレンジアミン、ベンジジン、ジメチルベンジジン、国際公開第2017/170551号合成例1および合成例2に記載の芳香族アミン化合物等の芳香族アミン化合物、1,3-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、ノルボルナンジアミン、エチレンジアミン、プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ダイマージアミン、トリエチレンテトラミン等の脂肪族アミン等が挙げられるが、これに限定されず、組成物に付与したい特性に応じ好適に用いることができる。ポットライフを確保するためには芳香族アミンを使用することが好ましく、即硬化性を付与したい場合には脂肪族アミンを使用することが好ましい。2官能成分を主成分として含有するアミン系化合物を硬化剤として用いることで、硬化反応時、直線性の高いネットワークを構築することができ、特に優れた強靭性を発現することができる。また、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド系化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物系化合物;ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)もしくはフェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、または前記フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、または前記フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、または前記フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物、または前記フェノール類と芳香族ジクロロメチル類(α,α’-ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物、または前記フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物、または前記ビスフェノール類と各種アルデヒドの重縮合物、及びこれらの変性物等のフェノール系化合物;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体などが挙げられるがこれらに限定されることはない。 Examples of curing agents that can be used in the epoxy resin composition of the present invention include amine-based curing agents, acid anhydride-based curing agents, amide-based curing agents, and phenol-based curing agents. Specific examples of usable curing agents include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 3,3′-diamino Diphenylsulfone, 2,2'-diaminodiphenylsulfone, diethyltoluenediamine, dimethylthiotoluenediamine, diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4' -diaminodiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, 4,4'-diamino-3,3',5,5'-tetramethyldiphenylmethane, 4,4 '-diamino-3,3',5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3',5,5'-tetraisopropyldiphenylmethane, 4,4'-methylenebis(N-methylaniline) , bis(aminophenyl)fluorene, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 2,2′-bis[4-(4-aminophenoxy)phenyl]propane, bis[4-(4- aminophenoxy)phenyl]sulfone, 1,3′-bis(4-aminophenoxy)benzene, 1,4′-bis(4-aminophenoxy)benzene, 1,4′-bis(4-aminophenoxy)biphenyl, 4 ,4'-(1,3-phenylenediisopropylidene)bisaniline, 4,4'-(1,4-phenylenediisopropylidene)bisaniline, naphthalenediamine, benzidine, dimethylbenzidine, International Publication No. 2017/170551 Synthesis example 1 and aromatic amine compounds described in Synthesis Example 2, 1,3-bis(aminomethyl)cyclohexane, isophoronediamine, 4,4'-methylenebis(cyclohexylamine), norbornanediamine, ethylenediamine, propane Aliphatic amines such as diamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, dimerdiamine, and triethylenetetramine are included, but are not limited thereto, and can be suitably used depending on the properties desired to be imparted to the composition. can. It is preferable to use an aromatic amine in order to secure a pot life, and it is preferable to use an aliphatic amine in order to impart quick curing. By using an amine-based compound containing a bifunctional component as a main component as a curing agent, a highly linear network can be constructed during the curing reaction, and particularly excellent toughness can be expressed. Also, amide compounds such as polyamide resin synthesized from dicyandiamide, dimer of linolenic acid and ethylenediamine; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydro Acid anhydride compounds such as phthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride; bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) or phenols ( Phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphtho aldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.), or the above phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene , divinylbiphenyl, disopropenylbiphenyl, butadiene, isoprene, etc.); Polycondensates of aromatic dimethanols (benzenedimethanol, biphenyldimethanol, etc.), or polycondensations of the above phenols and aromatic dichloromethyls (α,α'-dichloroxylene, bischloromethylbiphenyl, etc.) or polycondensates of the above phenols and aromatic bisalkoxymethyls (bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, etc.), or polycondensates of the above bisphenols and various aldehydes, and these phenolic compounds such as modified products of; imidazole, trifluoroborane-amine complexes, guanidine derivatives and the like, but are not limited thereto.
 本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.5~1.5当量が好ましく、0.6~1.2当量が特に好ましい。0.5~1.5当量とすることで良好な硬化物性を得ることができる。 The amount of the curing agent used in the epoxy resin composition of the present invention is preferably 0.5 to 1.5 equivalents, particularly preferably 0.6 to 1.2 equivalents, relative to 1 equivalent of the epoxy group of the epoxy resin. Good cured physical properties can be obtained by setting the equivalent weight to 0.5 to 1.5.
 上記硬化剤を用いて硬化反応を行う際には硬化促進剤を併用しても差し支えない。使用できる硬化促進剤としては、例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、2-(ジメチルアミノメチル)フェノール、トリエチレンジアミン、トリエタノールアミン、1,8-ジアザビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン、ジフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類、オクチル酸スズなどの金属化合物、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩、安息香酸、フタル酸、イソフタル酸、テレフタル酸、ナフトエ酸、サリチル酸等のカルボン系酸化合物などが挙げられる。アミン系化合物とエポキシ樹脂の硬化反応を促進する観点からサリチル酸等のカルボン酸系化合物が好ましい。硬化促進剤は、エポキシ樹脂100重量部に対して0.01~15重量部が必要に応じ用いられる。 A curing accelerator may be used in combination when performing a curing reaction using the above curing agent. Curing accelerators that can be used include, for example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-(dimethylaminomethyl)phenol, triethylenediamine, tertiary amines such as triethanolamine and 1,8-diazabicyclo(5,4,0)undecene-7; organic phosphines such as triphenylphosphine, diphenylphosphine and tributylphosphine; metal compounds such as tin octylate; Tetraphenylphosphonium/tetraphenylborate, tetrasubstituted phosphonium/tetrasubstituted borate such as tetraphenylphosphonium/ethyltriphenylborate, 2-ethyl-4-methylimidazole/tetraphenylborate, N-methylmorpholine/tetraphenylborate and the like. Carboxylic acid compounds such as phenyl boron salts, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthoic acid, and salicylic acid. A carboxylic acid compound such as salicylic acid is preferred from the viewpoint of promoting the curing reaction between the amine compound and the epoxy resin. The curing accelerator is used in an amount of 0.01 to 15 parts by weight based on 100 parts by weight of the epoxy resin.
 更に、本発明のエポキシ樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤は、用途によりその使用量は異なるが、例えば半導体の封止剤用途に使用する場合はエポキシ樹脂組成物の硬化物の耐熱性、耐湿性、力学的性質、難燃性などの面からエポキシ樹脂組成物中で20重量%以上占める割合で使用するのが好ましく、より好ましくは30重量%以上であり、特にリードフレームとの線膨張率を向上させるために70~95重量%を占める割合で使用することがさらに好ましい。 Furthermore, an inorganic filler can be added to the epoxy resin composition of the present invention as necessary. Inorganic fillers include powders of crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, etc. Beads formed by spheroidizing are included, but are not limited to these. These may be used independently and may use 2 or more types. The amount of these inorganic fillers used varies depending on the application. From the aspect, it is preferably used in a proportion of 20% by weight or more in the epoxy resin composition, more preferably 30% by weight or more, and particularly 70 to 95% by weight in order to improve the coefficient of linear expansion with the lead frame. It is more preferable to use it in the ratio which occupies.
 本発明のエポキシ樹脂組成物には成形時の金型との離型を良くするために離型剤を配合することができる。離型剤としては従来公知のものいずれも使用できるが、例えばカルナバワックス、モンタンワックスなどのエステル系ワックス、ステアリン酸、パルチミン酸などの脂肪酸およびこれらの金属塩、酸化ポリエチレン、非酸化ポリエチレンなどのポリオレフィン系ワックスなどが挙げられる。これらは単独で使用しても2種以上併用しても良い。これら離型剤の配合量は全有機成分に対して0.5~3重量%が好ましい。これより少なすぎると金型からの離型が悪く、多すぎるとリードフレームなどとの接着が悪くなる。 A release agent can be added to the epoxy resin composition of the present invention to improve release from the mold during molding. As the mold release agent, any of those conventionally known can be used. system waxes and the like. These may be used alone or in combination of two or more. The blending amount of these release agents is preferably 0.5 to 3% by weight based on the total organic components. If the amount is too small, the release from the mold will be poor, and if the amount is too large, adhesion to the lead frame or the like will be poor.
 本発明のエポキシ樹脂組成物には無機充填剤と樹脂成分との接着性を高めるためにカップリング剤を配合することができる。カップリング剤としては従来公知のものをいずれも使用できるが、例えばビニルアルコキシシラン、エポキアルコキシシラン、スチリルアルコキシシラン、メタクリロキシアルコキシシラン、アクリロキシアルコキシシラン、アミノアルコキシシラン、メルカプトアルコキシシラン、イソシアナートアルコキシシランなどの各種アルコキシシラン化合物、アルコキシチタン化合物、アルミニウムキレート類などが挙げられる。これらは単独で使用しても2種以上併用しても良い。カップリング剤の添加方法は、カップリング剤であらかじめ無機充填剤表面を処理した後、樹脂と混練しても良いし、樹脂にカップリング剤を混合してから無機充填剤を混練しても良い。 A coupling agent can be added to the epoxy resin composition of the present invention in order to increase the adhesion between the inorganic filler and the resin component. As the coupling agent, any of conventionally known ones can be used. Examples include various alkoxysilane compounds such as silane, alkoxytitanium compounds, and aluminum chelates. These may be used alone or in combination of two or more. The coupling agent may be added by first treating the surface of the inorganic filler with the coupling agent and then kneading it with the resin, or by mixing the coupling agent with the resin and then kneading the inorganic filler. .
 更に本発明のエポキシ樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びにカーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤などが挙げられる。 Further, known additives can be added to the epoxy resin composition of the present invention as necessary. Specific examples of additives that can be used include polybutadiene and its modified products, modified acrylonitrile copolymers, polyphenylene ethers, polystyrene, polyethylene, polyimide, fluororesins, maleimide compounds, cyanate ester compounds, silicone gels, and silicone oils. and coloring agents such as carbon black, phthalocyanine blue and phthalocyanine green.
 本発明のエポキシ樹脂組成物は、上記各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば、エポキシ樹脂と硬化剤、並びに必要により硬化促進剤、無機充填剤、離型剤、シランカップリング剤及び添加剤とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合することより本発明のエポキシ樹脂組成物を得て、これを溶融注型法あるいはトランスファー成型法やインジェクション成型法、圧縮成型法などによって成型し、更に80~200℃で2~10時間に加熱することにより硬化物を得ることができる。 The epoxy resin composition of the present invention is obtained by uniformly mixing the above components. The epoxy resin composition of the present invention can be easily cured by a method similar to the conventionally known method. For example, an epoxy resin and a curing agent, and if necessary, a curing accelerator, an inorganic filler, a release agent, a silane coupling agent, and an additive are mixed until uniform using an extruder, a kneader, a roll, etc. The epoxy resin composition of the present invention is obtained by thorough mixing, which is molded by a melt casting method, transfer molding method, injection molding method, compression molding method, or the like, and further at 80 to 200° C. for 2 to 10 hours. A cured product can be obtained by heating to .
 また本発明のエポキシ樹脂組成物は必要に応じて溶剤を含んでいてもよい。溶剤を含むエポキシ樹脂組成物(エポキシ樹脂ワニス)はガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの繊維状物質(基材)に含浸させ加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のエポキシ樹脂組成物の硬化物とすることができる。このエポキシ樹脂組成物の溶剤含量は、内割りで通常10~70重量%、好ましくは15~70重量%程度である。溶剤としては例えばγ-ブチロラクトン類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤;テトラメチレンスルフォン等のスルフォン類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、好ましくは低級(炭素数1~3)アルキレングリコールのモノ又はジ低級(炭素数1~3)アルキルエーテル;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、好ましくは2つのアルキル基が同一でも異なってもよい。ジ低級(炭素数1~3)アルキルケトン;トルエン、キシレンなどの芳香族系溶剤等が挙げられる。これらは単独であっても、また2以上の混合溶媒であってもよい。 In addition, the epoxy resin composition of the present invention may contain a solvent as necessary. An epoxy resin composition (epoxy resin varnish) containing a solvent is prepared by impregnating a fibrous substance (base material) such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., followed by heating and drying to obtain a prepreg. A cured product of the epoxy resin composition of the present invention can be obtained by press molding. The solvent content of this epoxy resin composition is usually 10 to 70% by weight, preferably about 15 to 70% by weight. Examples of the solvent include amide solvents such as γ-butyrolactones, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide and N,N-dimethylimidazolidinone; sulfones such as tetramethylenesulfone; Ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monobutyl ether, preferably lower (1 to 3 carbon atoms) alkylene glycol mono- or di-lower (1 to 3 carbon atoms) 3) Alkyl ethers; ketone-based solvents such as methyl ethyl ketone and methyl isobutyl ketone, preferably two alkyl groups may be the same or different. Di-lower (C 1-3) alkyl ketones; aromatic solvents such as toluene and xylene; These may be used alone or as a mixed solvent of two or more.
 また、剥離フィルム上に前記エポキシ樹脂ワニスを塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤(本発明のシート)を得ることができる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することができる。 Also, a sheet-like adhesive (the sheet of the present invention) can be obtained by coating the release film with the epoxy resin varnish, removing the solvent under heating, and performing B-stage. This sheet-like adhesive can be used as an interlayer insulating layer in multilayer substrates and the like.
 本発明で得られる硬化物は各種用途に使用できる。詳しくはエポキシ樹脂等の熱硬化性樹脂が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。 The cured product obtained by the present invention can be used for various purposes. More specifically, general applications where thermosetting resins such as epoxy resins are used include adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (printed circuit boards, wire coating, etc.), sealing agents, additives to other resins, and the like.
 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。 Adhesives include adhesives for civil engineering, construction, automobiles, general office and medical use, as well as adhesives for electronic materials. Among them, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, adhesives for semiconductors such as underfill, underfill for BGA reinforcement, anisotropic conductive films ( ACF), mounting adhesives such as anisotropic conductive paste (ACP), and the like.
 封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSI用などのポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップ用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。 Potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, etc., potting sealing for COBs, COFs, TABs of ICs, LSIs, flip chips, etc. and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
 次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また実施例において、エポキシ当量はJIS K-7236、軟化点はJIS K-7234に準じた方法で測定した。 Next, the present invention will be described in more detail with reference to examples, but hereinafter parts are parts by weight unless otherwise specified. However, the present invention is not limited to these examples. In the examples, the epoxy equivalent was measured according to JIS K-7236, and the softening point was measured according to JIS K-7234.
・GPC(ゲルパーミエーションクロマトグラフィー)分析
カラム:SHODEX GPC KF-601(2本)、KF-602、KF-602.5、KF-603
流速:0.5ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
・GPC (gel permeation chromatography) analysis column: SHODEX GPC KF-601 (2 columns), KF-602, KF-602.5, KF-603
Flow rate: 0.5 ml/min.
Column temperature: 40°C
Solvent used: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
[合成例1]
 トルエン100部、ジシクロペンタジエン型フェノール樹脂(水酸基当量:168g/eq.)84部、インデン58.0部、メタンスルホン酸5部を加え、125℃に昇温し6時間反応させた。トルエン150部を加え、廃液が中性になるまで有機層を水洗後濃縮し、フェノール樹脂樹脂(P1)を115部得た。数平均分子量Mn:686、重量平均分子量Mw:854、水酸基当量は284.2g/eqであった。GPCチャートを図1に示す。
[Synthesis Example 1]
100 parts of toluene, 84 parts of dicyclopentadiene type phenolic resin (hydroxyl group equivalent: 168 g/eq.), 58.0 parts of indene and 5 parts of methanesulfonic acid were added, heated to 125° C. and reacted for 6 hours. 150 parts of toluene was added, and the organic layer was washed with water until the waste liquid became neutral and then concentrated to obtain 115 parts of phenolic resin (P1). The number average molecular weight Mn was 686, the weight average molecular weight Mw was 854, and the hydroxyl group equivalent was 284.2 g/eq. A GPC chart is shown in FIG.
[実施例1]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、実施例1で得られたフェノール樹脂(P1)110部、エピクロルヒドリン143部、ジメチルスルホキシド35.8部、水1.4部を加え、内温を45℃まで昇温した。水酸化ナトリウム16部を1.5時間かけて分割添加後、45℃で2時間、70℃で1時間反応させた。加熱減圧下で未反応のエピクロルヒドリンおよび溶剤を留去した。MIBK150部を加え、水100部で有機層を1回洗浄した。有機層を反応容器に戻し、30wt%水酸化ナトリウム水溶液15部を加え、70℃で2時間反応させた。放冷後、水100部で有機層を4回洗浄し、加熱減圧下、溶剤を留去し、褐色固形樹脂として目的化合物(E1)を123部得た。数平均分子量Mn:723、重量平均分子量Mw:953、エポキシ当量は360.5g/eq.、ICI粘度(150℃)は1.07Pa・s、軟化点は95.2℃であった。GPCチャートを図2に示す。
[Example 1]
Thermometer, cooling tube, fractionating tube, while purging a flask equipped with a stirrer, 110 parts of the phenolic resin (P1) obtained in Example 1, 143 parts of epichlorohydrin, 35.8 parts of dimethyl sulfoxide, water 1.4 parts was added, and the internal temperature was raised to 45°C. After adding 16 parts of sodium hydroxide in portions over 1.5 hours, the mixture was reacted at 45° C. for 2 hours and at 70° C. for 1 hour. Unreacted epichlorohydrin and the solvent were distilled off under heating and reduced pressure. 150 parts of MIBK was added, and the organic layer was washed once with 100 parts of water. The organic layer was returned to the reaction vessel, 15 parts of a 30 wt % sodium hydroxide aqueous solution was added, and the mixture was reacted at 70° C. for 2 hours. After standing to cool, the organic layer was washed four times with 100 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain 123 parts of the target compound (E1) as a brown solid resin. Number average molecular weight Mn: 723, weight average molecular weight Mw: 953, epoxy equivalent is 360.5 g/eq. , ICI viscosity (150°C) was 1.07 Pa·s, and softening point was 95.2°C. A GPC chart is shown in FIG.
[合成例2]
 ジシクロペンタジエン型フェノール樹脂(水酸基当量:168g/eq.)84部、ベンジルアルコール54.2部、パラトルエンスルホン酸一水和物1.4部を加え、生成水を留去しながら150℃に昇温し、3時間反応させた。トルエン100部を加え、廃液が中性になるまで有機層を水洗後濃縮し、フェノール樹脂樹脂(P2)を95部得た。数平均分子量Mn:699、重量平均分子量Mw:769、水酸基当量は258.1g/eqであった。GPCチャートを図3に示す。
[Synthesis Example 2]
84 parts of dicyclopentadiene type phenolic resin (hydroxyl equivalent: 168 g/eq.), 54.2 parts of benzyl alcohol and 1.4 parts of p-toluenesulfonic acid monohydrate were added, and the temperature was raised to 150°C while distilling off the generated water. The temperature was raised and the reaction was allowed to proceed for 3 hours. 100 parts of toluene was added, and the organic layer was washed with water until the waste liquid became neutral and then concentrated to obtain 95 parts of phenolic resin (P2). The number average molecular weight Mn was 699, the weight average molecular weight Mw was 769, and the hydroxyl group equivalent was 258.1 g/eq. A GPC chart is shown in FIG.
[合成例3]
 温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、合成例2で得られたフェノール樹脂(P2)80部、エピクロルヒドリン115部、ジメチルスルホキシド28.7部、水1.3部を加え、内温を45℃まで昇温した。水酸化ナトリウム12.8部を1.5時間かけて分割添加後、45℃で2時間、70℃で1時間反応させた。加熱減圧下で未反応のエピクロルヒドリンおよび溶剤を留去した。MIBK146部を加え、水100部で有機層を1回洗浄した。有機層を反応容器に戻し、30wt%水酸化ナトリウム水溶液15部を加え、70℃で2時間反応させた。放冷後、水100部で有機層を3回洗浄し、加熱減圧下、溶剤を留去し、褐色固形樹脂として目的化合物(E2)を得た。数平均分子量Mn:698、重量平均分子量Mw:824、エポキシ当量は332.1g/eq.、ICI粘度(150℃)は0.08Pa・s、軟化点は59.8℃であった。GPCチャートを図4に示す。
[Synthesis Example 3]
Thermometer, cooling tube, fractionating tube, while purging a flask equipped with a stirrer, 80 parts of the phenol resin (P2) obtained in Synthesis Example 2, 115 parts of epichlorohydrin, 28.7 parts of dimethyl sulfoxide, water 1.3 parts was added, and the internal temperature was raised to 45°C. After adding 12.8 parts of sodium hydroxide in portions over 1.5 hours, the mixture was reacted at 45° C. for 2 hours and at 70° C. for 1 hour. Unreacted epichlorohydrin and the solvent were distilled off under heating and reduced pressure. 146 parts of MIBK was added and the organic layer was washed once with 100 parts of water. The organic layer was returned to the reaction vessel, 15 parts of a 30 wt % sodium hydroxide aqueous solution was added, and the mixture was reacted at 70° C. for 2 hours. After standing to cool, the organic layer was washed three times with 100 parts of water, and the solvent was distilled off under heating and reduced pressure to obtain the target compound (E2) as a brown solid resin. Number average molecular weight Mn: 698, weight average molecular weight Mw: 824, epoxy equivalent is 332.1 g/eq. , the ICI viscosity (150°C) was 0.08 Pa·s, and the softening point was 59.8°C. A GPC chart is shown in FIG.
[実施例2、比較例1~3]
 実施例1で得られたエポキシ樹脂(E1)、合成例3で得られたエポキシ樹脂(E2)、ビスフェノールF型エポキシ樹脂(RE-304S、日本化薬社製、エポキシ当量:169g/eq.)、ジシクロペンタジエン型フェノール樹脂由来のエポキシ樹脂(XD-1000-2L、日本化薬社製、エポキシ当量:238g/eq.、ICI粘度(150℃):0.05、軟化点:55.4℃)および硬化剤として4,4’-メチレンビス(2,6-ジエチルアニリン)(日本化薬社製、KAYABOND C-300S)を使用し、表1の割合(重量部)で配合し、ミキシングロールを用いて均一に混合・混練し、更に脱型後、160℃で2時間、180℃で6時間の条件で硬化し、評価用試験片を得た。
[Example 2, Comparative Examples 1 to 3]
Epoxy resin (E1) obtained in Example 1, epoxy resin (E2) obtained in Synthesis Example 3, bisphenol F type epoxy resin (RE-304S, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 169 g/eq.) , Epoxy resin derived from dicyclopentadiene type phenol resin (XD-1000-2L, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 238 g / eq., ICI viscosity (150 ° C.): 0.05, softening point: 55.4 ° C. ) and 4,4'-methylenebis (2,6-diethylaniline) (manufactured by Nippon Kayaku Co., Ltd., KAYABOND C-300S) as a curing agent, and blended in the proportions (parts by weight) shown in Table 1, and a mixing roll The mixture was uniformly mixed and kneaded using the mixture, and after demolding, it was cured under the conditions of 160° C. for 2 hours and 180° C. for 6 hours to obtain a test piece for evaluation.
<硬化物性物性測定>
 評価用試験片を下記条件で測定した結果を表1に示す。
<Measurement of cured physical properties>
Table 1 shows the results of measurement of the test piece for evaluation under the following conditions.
<耐熱性試験>
 動的粘弾性試験機を用いてガラス転移温度(tanδが最大値のときの温度)を測定した。
・動的粘弾性測定器:TA-instruments製DMA-2980
・昇温速度:2℃/分
<Heat resistance test>
A dynamic viscoelasticity tester was used to measure the glass transition temperature (the temperature at which tan δ reaches its maximum value).
・ Dynamic viscoelasticity measuring instrument: DMA-2980 manufactured by TA-instruments
・Temperature increase rate: 2°C/min
<曲げ弾性率>
 JIS K-6911に準拠して測定した。
・テンシロン:RTG-1310(A&D Company,Limited社製)
・測定温度:室温
<Flexural modulus>
Measured according to JIS K-6911.
・ Tensilon: RTG-1310 (manufactured by A & D Company, Limited)
・Measurement temperature: room temperature
<吸水率>
 直径5cm×厚み4mmの円盤状の試験片を100℃浸水条件下、24時間保持後の質量変化より算出した。
<Water absorption rate>
A disk-shaped test piece of 5 cm in diameter and 4 mm in thickness was kept under water immersion conditions at 100° C. for 24 hours, and then the mass change was calculated.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1の結果より、実施例2は高耐熱性、高弾性率、低吸水性を有することが確認された。 From the results in Table 1, it was confirmed that Example 2 had high heat resistance, high elastic modulus, and low water absorption.
 本発明のエポキシ樹脂は、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、接着剤(導電性接着剤など)やCFRPを始めとする各種複合材料用、塗料等の用途に有用であり、特に、高弾性率を強く要求されるCFRPを始めとする各種複合材料用途において有用である。 The epoxy resin of the present invention is used as an insulating material for electrical and electronic parts (such as a highly reliable semiconductor sealing material), a laminate (such as a printed wiring board, a BGA substrate, and a build-up substrate), and an adhesive (such as a conductive adhesive). It is useful for various composite materials such as CFRP and coatings, and is particularly useful for various composite materials such as CFRP that strongly require a high elastic modulus.

Claims (7)

  1.  下記式(1)で表されるエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、nは繰り返し数であり、その平均値は1<n<20である。Rは下記式(2)で表される置換基を示す。pはそれぞれ0~4の実数を表し、pの平均値は0.5~1.5である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、*は式(1)の芳香環への結合部分を表す。Xは水素原子または炭素数1~6の炭化水素基を示す。qは0~5の実数を表す。)
    An epoxy resin represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), n is the number of repetitions, the average value of which is 1<n<20. R represents a substituent represented by the following formula (2). p is a real number of 0 to 4, respectively. and the average value of p is 0.5 to 1.5.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), * represents a bond to the aromatic ring of formula (1). X represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. q represents a real number of 0 to 5. )
  2.  下記式(3)で表されるエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、nは繰り返し数であり、その平均値は1<n<20である。)
    An epoxy resin represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (3), n is the number of repetitions, and the average value is 1<n<20.)
  3.  ゲルパーミエーションクロマトグラフィー(GPC)による重量平均分子量が400~3000である請求項1または2に記載のエポキシ樹脂。 The epoxy resin according to claim 1 or 2, which has a weight average molecular weight of 400 to 3000 by gel permeation chromatography (GPC).
  4.  請求項1乃至3のいずれか一項に記載のエポキシ樹脂を含有する硬化性樹脂組成物。 A curable resin composition containing the epoxy resin according to any one of claims 1 to 3.
  5.  さらに、アミン系硬化剤を含有する請求項4に記載の硬化性樹脂組成物。 The curable resin composition according to claim 4, which further contains an amine-based curing agent.
  6.  請求項4または5に記載の硬化性樹脂組成物を硬化した硬化物。 A cured product obtained by curing the curable resin composition according to claim 4 or 5.
  7.  ジシクロペンタジエン系化合物とフェノール系化合物の重縮合物と、インデン誘導体とを反応させてフェノール樹脂を得る工程と、前記フェノール樹脂をエポキシ化する工程を含む、請求項1乃至3のいずれか一項に記載のエポキシ樹脂の製造方法。

     
    4. The method according to any one of claims 1 to 3, comprising a step of reacting a polycondensate of a dicyclopentadiene-based compound and a phenol-based compound with an indene derivative to obtain a phenolic resin, and a step of epoxidizing the phenolic resin. A method for producing the epoxy resin according to .

PCT/JP2022/010112 2021-03-30 2022-03-08 Epoxy resin and production method therefor, curable resin composition, and cured product thereof WO2022209642A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237019237A KR20230161416A (en) 2021-03-30 2022-03-08 Epoxy resin and its production method, curable resin composition, and cured product thereof
CN202280007736.4A CN116670199A (en) 2021-03-30 2022-03-08 Epoxy resin, method for producing same, curable resin composition, and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021056836A JP7132385B1 (en) 2021-03-30 2021-03-30 Epoxy resin, curable resin composition, and cured product thereof
JP2021-056836 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209642A1 true WO2022209642A1 (en) 2022-10-06

Family

ID=83188035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010112 WO2022209642A1 (en) 2021-03-30 2022-03-08 Epoxy resin and production method therefor, curable resin composition, and cured product thereof

Country Status (5)

Country Link
JP (1) JP7132385B1 (en)
KR (1) KR20230161416A (en)
CN (1) CN116670199A (en)
TW (1) TW202237572A (en)
WO (1) WO2022209642A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230229134A1 (en) 2020-06-10 2023-07-20 Fanuc Corporation Numerical control device and numerical control method for performing movement control of machining tool by fixed cycle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208673A (en) * 1996-01-30 1997-08-12 Nippon Steel Chem Co Ltd Epoxy resin curing agent, low-permittivity resin composition, and cured low-permittivity resin
JPH10265650A (en) * 1997-03-27 1998-10-06 Hitachi Chem Co Ltd Epoxy resin molding material for use in sealing electronic part and electronic part
JP2009203340A (en) * 2008-02-27 2009-09-10 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition and semiconductor device
JP2019119833A (en) * 2018-01-11 2019-07-22 Jfeケミカル株式会社 Thermosetting resin composition and cured article thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5215909B2 (en) 2009-02-27 2013-06-19 富士フイルム株式会社 Cloth material for rubbing and rubbing treatment method using the same
JP6366052B2 (en) 2014-02-06 2018-08-01 日本化薬株式会社 Modified epoxy resin and curable resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208673A (en) * 1996-01-30 1997-08-12 Nippon Steel Chem Co Ltd Epoxy resin curing agent, low-permittivity resin composition, and cured low-permittivity resin
JPH10265650A (en) * 1997-03-27 1998-10-06 Hitachi Chem Co Ltd Epoxy resin molding material for use in sealing electronic part and electronic part
JP2009203340A (en) * 2008-02-27 2009-09-10 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition and semiconductor device
JP2019119833A (en) * 2018-01-11 2019-07-22 Jfeケミカル株式会社 Thermosetting resin composition and cured article thereof

Also Published As

Publication number Publication date
CN116670199A (en) 2023-08-29
TW202237572A (en) 2022-10-01
JP2022154013A (en) 2022-10-13
KR20230161416A (en) 2023-11-27
JP7132385B1 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
JP5019585B2 (en) Epoxy resin composition, cured product thereof, and fiber-reinforced composite material
KR101408535B1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
KR20100021998A (en) Liquid epoxy resin, epoxy resin composition, and cured product
WO2022209642A1 (en) Epoxy resin and production method therefor, curable resin composition, and cured product thereof
TWI739976B (en) Alkenyl-containing resin, curable resin composition and hardened product
JP7185383B2 (en) Curable resin composition and its cured product
JP4544496B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2017082213A (en) Epoxy resin composition, cured product, semiconductor element, resin sheet, prepreg, and carbon fiber-reinforced composite material
JP7185384B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP7240989B2 (en) Curable resin composition and its cured product
JP7256160B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP5170724B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP7268256B1 (en) Epoxy resin, curable resin composition, and cured product thereof
JP3894628B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP7230285B1 (en) Epoxy resin, curable resin composition, and cured product thereof
JP2022147099A (en) Epoxy resin, curable resin composition, and cured product thereof
JP2006257137A (en) Epoxy resin composition and cured product thereof
WO2023068089A1 (en) Phenolic resin, epoxy resin, curable resin composition, and cured product thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP4404821B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP5254036B2 (en) Phenol resin, epoxy resin, curable resin composition, cured product thereof, and method for producing phenol resin
JPH09328528A (en) Phenol resin, epoxy resin, epoxy resin composition, and cured item thereof
JP2007045978A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JPH1160688A (en) Epoxy resin composition and its cured item

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007736.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779865

Country of ref document: EP

Kind code of ref document: A1