WO2022202507A1 - Stainless steel material and method for manufacturing same, and antibacterial/antiviral member - Google Patents

Stainless steel material and method for manufacturing same, and antibacterial/antiviral member Download PDF

Info

Publication number
WO2022202507A1
WO2022202507A1 PCT/JP2022/011738 JP2022011738W WO2022202507A1 WO 2022202507 A1 WO2022202507 A1 WO 2022202507A1 JP 2022011738 W JP2022011738 W JP 2022011738W WO 2022202507 A1 WO2022202507 A1 WO 2022202507A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
steel material
phase
content
Prior art date
Application number
PCT/JP2022/011738
Other languages
French (fr)
Japanese (ja)
Inventor
明訓 河野
一幸 景岡
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021054054A external-priority patent/JP2022151130A/en
Priority claimed from JP2021054052A external-priority patent/JP2022151128A/en
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to US18/260,513 priority Critical patent/US20240060151A1/en
Priority to EP22775296.1A priority patent/EP4317481A1/en
Priority to CN202280006944.2A priority patent/CN116368246A/en
Priority to MX2023011015A priority patent/MX2023011015A/en
Priority to KR1020237014019A priority patent/KR20230076838A/en
Publication of WO2022202507A1 publication Critical patent/WO2022202507A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/24Polishing of heavy metals of iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a stainless steel material, its manufacturing method, and an antibacterial/antiviral member.
  • stainless steel Because of its excellent corrosion resistance, stainless steel is used in a wide range of applications, including kitchen equipment, home appliances, medical equipment, interior building materials, and transportation equipment. use is also increasing. In recent years, there has been a growing concern about the adverse effects on the human body caused by the propagation of bacteria and attachment of viruses. Antibacterial and antiviral properties are also required for various members used for goods and transportation equipment.
  • Patent Document 1 contains C: 0.1% by weight or less, Si: 2% by weight or less, Mn: 2% by weight or less, Cr: 10 to 30% by weight, and Cu: 0.4 to 3% by weight.
  • a ferritic stainless steel material having excellent antibacterial properties in which a Cu-rich phase ( ⁇ -Cu phase) is precipitated in a matrix at a rate of 0.2% by volume or more has been proposed.
  • This ferritic stainless steel material contains C: 0.1% by weight or less, Si: 2% by weight or less, Mn: 2% by weight or less, Cr: 10 to 30% by weight, and Cu: 0.4 to 3% by weight. It is produced by cold-rolling stainless steel, final annealing, and aging treatment at 500 to 800° C. to precipitate a Cu-rich phase ( ⁇ -Cu phase) to 0.2% by volume or more.
  • Patent Document 2 C: 0.1% by weight or less, Si: 2% by weight or less, Mn: 5% by weight or less, Cr: 10 to 30% by weight, Ni: 5 to 15% by weight, Cu: 1 It has a composition containing 0 to 5.0% by weight, and has excellent antibacterial properties in which the second phase ( ⁇ -Cu phase) mainly composed of Cu is dispersed in the matrix at a rate of 0.2% by volume or more.
  • Austenitic stainless steel materials have been proposed. This austenitic stainless steel material contains C: 0.1% by weight or less, Si: 2% by weight or less, Mn: 5% by weight or less, Cr: 10 to 30% by weight, Ni: 5 to 15% by weight, and Cu: 1.0% by weight. It is produced by subjecting austenitic stainless steel containing 0 to 5.0 wt.
  • the purpose of the present invention is to provide a stainless steel material that can maintain antibacterial and antiviral properties for a long period of time, a method for manufacturing the same, and an antibacterial/antiviral member.
  • the inventors of the present invention have made intensive studies to solve the above problems, and as a result, the distribution state of the ⁇ -Cu phase on the surface of the stainless steel material (particularly, the area ratio of the ⁇ -Cu phase on the surface, the ⁇ -Cu The inventors have found that the average particle size of the phase and the maximum interparticle distance of the ⁇ -Cu phase) are closely related to the antibacterial and antiviral properties and their durability, and have completed the present invention.
  • the present invention has an ⁇ -Cu phase exposed on the surface
  • the ⁇ -Cu phase on the surface is a stainless steel material having an area ratio of 0.1 to 4.0%, an average particle diameter of 10 to 300 nm, and a maximum interparticle distance of 100 to 1000 nm.
  • C 0.10% or less, Si: 4.00% or less, Mn: 2.00% or less, P: 0.050% or less, S: 0.030% or less, Slab having a ferritic composition containing Ni: 4.00% or less, Cr: 10.00 to 32.00%, Cu: 0.40 to 4.00%, the balance being Fe and impurities, or mass basis C: 0.12% or less, Si: 4.00% or less, Mn: 6.00% or less, P: 0.050% or less, S: 0.030% or less, Ni: 4.00-20. 00%, Cr: 10.00 to 32.00%, Cu: 2.00 to 6.00%, and the balance being Fe and impurities.
  • the finish hot rolling finish temperature is 700 to 900 ° C. when the slab composition is the ferrite system, and the finish hot rolling finish temperature is 850 to 1050 ° C. when the slab composition is the austenite system.
  • the present invention is an antibacterial/antiviral member containing the stainless steel material.
  • the present invention it is possible to provide a stainless steel material capable of maintaining antibacterial and antiviral properties for a long period of time, a method for producing the same, and an antibacterial/antiviral member.
  • FIG. 1 is a schematic diagram of the surface of a typical stainless steel material of the present invention.
  • the present invention is a stainless steel material having an ⁇ -Cu phase exposed on the surface.
  • the ⁇ -Cu phase has an area ratio of 0.1 to 4.0%, an average particle diameter of 10 to 300 nm, and a maximum interparticle distance of 100 to 1000 nm.
  • FIG. 1 shows a schematic diagram of the surface of a typical stainless steel material of the present invention. As shown in FIG. 1, the stainless steel material 10 has an ⁇ -Cu phase 11 exposed on the surface of the parent phase. A passive film 12 is formed on the surface of the matrix phase where the ⁇ -Cu phase 11 is not exposed.
  • Cu ions By exposing the ⁇ -Cu phase 11 on the surface of the parent phase, Cu ions can be eluted from the ⁇ -Cu phase 11 when water contacts the surface of the stainless steel material 10 .
  • a human hand touches the surface of the stainless steel material 10
  • Cu ions can be eluted from the ⁇ -Cu phase 11 by the moisture of the hand. Therefore, even if bacteria adhere to the surface, they can be sterilized, and even if viruses adhere to the surface, they can be inactivated and eventually killed.
  • the passivation film 12 is formed on the surface of the matrix phase where the ⁇ -Cu phase 11 is not exposed, corrosion resistance is also good.
  • the composition of the stainless steel material of the present invention is not particularly limited, but C: 0.12% or less, Si: 4.00% or less, Mn: 6.00% or less, P: 0.050% or less, S: 0.05% or less. 030% or less, Ni: 20.00% or less, Cr: 10.00 to 32.00%, Cu: 0.40 to 6.00%, and the balance being Fe and impurities.
  • “%” for components means “% by mass” unless otherwise specified.
  • the metallographic structure of the stainless steel material of the present invention is not particularly limited, it is preferably ferritic or austenitic.
  • embodiments of the present invention will be specifically described with reference to ferritic stainless steel materials and austenitic stainless steel materials as examples.
  • the present invention is not limited to the following embodiments, and modifications and improvements can be made to the following embodiments based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. are also within the scope of the present invention.
  • the ferritic stainless steel material according to Embodiment 1 of the present invention contains C: 0.10% or less, Si: 4.00% or less, Mn: 2.00% or less, P: 0.050% or less, and S: 0.05% or less.
  • the term "steel material” means materials of various types such as steel plates.
  • the term “steel plate” is a concept including a steel strip.
  • impurities refers to components mixed in by various factors in the manufacturing process, such as raw materials such as ores and scraps, during the industrial production of stainless steel materials, and is permissible within a range that does not adversely affect the present invention. means to be
  • the ferritic stainless steel material according to Embodiment 1 of the present invention has Nb: 1.00% or less, Ti: 0.60% or less, V: 1.00% or less, W: 2.00% or less, Mo: 3.00% or less, N: 0.050% or less, Sn: 0.50% or less, Al: 5.00% or less, Zr: 0.50% or less, Co: 0.50% or less, B: 0.50% or less. 010% or less, Ca: 0.10% or less, and REM: 0.20% or less.
  • Nb 1.00% or less
  • Ti 0.60% or less
  • V 1.00% or less
  • W 2.00% or less
  • Mo 3.00% or less
  • N 0.050% or less
  • Sn 0.50% or less
  • Al 5.00% or less
  • Zr 0.50% or less
  • Co 0.50% or less
  • B 0.50% or less
  • Ca 0.10% or less
  • REM 0.20% or less.
  • C is an effective element for improving the strength of the ferritic stainless steel material and uniformly dispersing and precipitating the ⁇ -Cu phase by forming Cr carbide.
  • the upper limit of the C content is controlled to 0.10%, preferably 0.06%, more preferably 0.04%, still more preferably 0.03%.
  • the lower limit of the C content is not particularly limited, but is preferably 0.001%, more preferably 0.003%, and still more preferably 0.005%.
  • Si is an element that forms a ferrite phase ( ⁇ phase), and is an element that is effective in improving the corrosion resistance and strength of ferritic stainless steel materials.
  • the upper limit of the Si content is controlled to 4.00%, preferably 2.00%, more preferably 1.50%, still more preferably 1.00%.
  • the lower limit of the Si content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and still more preferably 0.10%.
  • Mn is an element that improves the heat resistance of ferritic stainless steel. However, if the Mn content is too high, the corrosion resistance of the ferritic stainless steel will be lowered. Moreover, since Mn is an austenite phase ( ⁇ phase)-forming element, it forms a ⁇ phase (a martensite phase at room temperature) at high temperatures, thereby deteriorating the workability of ferritic stainless steel materials. Therefore, the upper limit of the Mn content is controlled to 2.00%, preferably 1.50%, more preferably 1.20%, still more preferably 1.00%. On the other hand, the lower limit of the Mn content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and still more preferably 0.10%.
  • ⁇ P 0.050% or less> If the content of P is too high, the corrosion resistance and workability of the ferritic stainless steel will be lowered. Therefore, the upper limit of the P content is controlled to 0.050%, preferably 0.040%, more preferably 0.030%. On the other hand, the lower limit of the P content is not particularly limited. 010%.
  • the upper limit of the S content is controlled to 0.030%, preferably 0.020%, more preferably 0.010%.
  • the lower limit of the S content is not particularly limited. 0003%.
  • Ni is an element that improves the corrosion resistance of ferritic stainless steel.
  • Ni like Mn, is an austenite phase ( ⁇ phase)-forming element. sexuality declines.
  • the upper limit of the Ni content is controlled to 4.00%, preferably 2.00%, more preferably 1.00%, still more preferably 0.60%.
  • the lower limit of the Ni content is not particularly limited, but is preferably 0.005%, more preferably 0.01%, and still more preferably 0.03%.
  • Cr is an important element for maintaining the corrosion resistance of ferritic stainless steel.
  • the upper limit of the Cr content is controlled to 32.00%, preferably 22.00%, more preferably 20.00%, still more preferably 18.00%.
  • the lower limit of the Cr content is controlled to 10.00%, preferably 14.00%, more preferably 15.00%, still more preferably 16.00%.
  • Cu is an element necessary for precipitating the ⁇ -Cu phase, which provides antibacterial and antiviral properties.
  • Cu is also an element that improves the workability of ferritic stainless steel.
  • the lower limit of the Cu content is controlled to 0.40%, preferably 0.70%, more preferably 1.00%, still more preferably 1.30%.
  • the upper limit of the Cu content is controlled to 4.00%, preferably 3.00%, more preferably 2.00%, still more preferably 1.70%.
  • Nb is an element that exhibits the effect of forming precipitates and uniformly precipitating the ⁇ -Cu phase around them, and is added as necessary.
  • the upper limit of the Nb content is controlled to 1.00%, preferably 0.80%, more preferably 0.60%, still more preferably 0.55%.
  • the lower limit of the Nb content is not particularly limited, but from the viewpoint of obtaining the effect of Nb, it is preferably 0.05%, more preferably 0.10%, still more preferably 0.20%, and particularly preferably 0.25%.
  • Ti like Nb, is an element that forms precipitates and exhibits the effect of uniformly precipitating the ⁇ -Cu phase around them, and is added as necessary.
  • the upper limit of the Ti content is controlled to 0.60%, preferably 0.30%.
  • the lower limit of the Ti content is not particularly limited, but from the viewpoint of obtaining the effect of Ti, it is preferably 0.01%, more preferably 0.03%.
  • V like Nb and Ti
  • the upper limit of the V content is controlled to 1.00%, preferably 0.50%.
  • the lower limit of the V content is not particularly limited, but from the viewpoint of obtaining the effect of V, it is preferably 0.01%, more preferably 0.03%.
  • ⁇ W 2.00% or less>
  • W like Nb, Ti, and V, is an element that exhibits the effect of forming precipitates and uniformly precipitating the ⁇ -Cu phase around them, and is added as necessary.
  • the upper limit of the W content is controlled to 2.00%, preferably 1.00%.
  • the lower limit of the W content is not particularly limited, but from the viewpoint of obtaining the effect of W, it is preferably 0.01%, more preferably 0.03%.
  • Mo is an element that improves the corrosion resistance of ferritic stainless steel materials and is added as necessary.
  • the upper limit of the Mo content is controlled to 3.00%, preferably 2.00%, more preferably 1.50%, still more preferably 1.00%.
  • the lower limit of the Mo content is not particularly limited, but from the viewpoint of obtaining the effect of Mo, it is preferably 0.01%, more preferably 0.03%, and still more preferably 0.10%.
  • N is an element that improves the corrosion resistance of ferritic stainless steel materials and is added as necessary.
  • the upper limit of the N content is controlled to 0.050%, preferably 0.030%, more preferably 0.025%, still more preferably 0.015%.
  • the lower limit of the N content is not particularly limited, but from the viewpoint of obtaining the effect of N, it is preferably 0.001%, preferably 0.003%.
  • Sn 0.50% or less>
  • Sn is an element that improves the corrosion resistance of ferritic stainless steel materials, and is added as necessary.
  • the upper limit of the Sn content is controlled to 0.50%, preferably 0.30%.
  • the lower limit of the Sn content is not particularly limited, but from the viewpoint of obtaining the effect of Sn, it is preferably 0.01%, more preferably 0.03%.
  • Al is an element used for deoxidation in the refining process and is added as necessary. Al is also an element that improves the corrosion resistance and oxidation resistance of ferritic stainless steel. However, if the Al content is too high, the amount of inclusions produced increases and the quality deteriorates. Therefore, the upper limit of the Al content is 5.00%, preferably 3.00%, more preferably 2.00%, still more preferably 1.00%. On the other hand, the lower limit of the Al content is not particularly limited, but from the viewpoint of obtaining the effect of Al, it is preferably 0.01%, more preferably 0.05%.
  • ⁇ Zr 0.50% or less>
  • Zr like Al
  • the upper limit of the Zr content is controlled to 0.50%, preferably 0.30%.
  • the lower limit of the Zr content is not particularly limited, but from the viewpoint of obtaining the effect of Zr, it is preferably 0.01%, more preferably 0.03%.
  • Co like Al and Zr
  • Co is an element that improves the oxidation resistance of ferritic stainless steel materials, and is added as necessary.
  • the upper limit of the Co content is controlled to 0.50%, preferably 0.30%.
  • the lower limit of the Co content is not particularly limited, but from the viewpoint of obtaining the effect of Co, it is preferably 0.01%, more preferably 0.03%.
  • B is an element that improves the hot workability of ferritic stainless steel materials, and is added as necessary.
  • B is also an element that improves the secondary workability of ferritic stainless steel materials by strengthening grain boundaries.
  • the upper limit of the B content is controlled to 0.010%, preferably 0.070%.
  • the lower limit of the content of B is not particularly limited, but from the viewpoint of obtaining the effect of B, it is preferably 0.001%, more preferably 0.002%.
  • Ca like B, is an element that improves the hot workability of ferritic stainless steel materials, and is added as necessary. Ca is also an element that forms sulfides and suppresses grain boundary segregation of S, thereby improving grain boundary oxidation resistance. However, if the Ca content is too high, workability is lowered. Therefore, the upper limit of the Ca content is controlled to 0.10%, preferably 0.05%. On the other hand, the lower limit of the Ca content is not particularly limited, but is preferably 0.001%, more preferably 0.003%, from the viewpoint of obtaining the effect of Ca.
  • REM rare earth element
  • the upper limit of the REM content is controlled to 0.20%, preferably 0.10%.
  • the lower limit of the REM content is not particularly limited, but is preferably 0.001%, more preferably 0.01%, from the viewpoint of obtaining the effect of REM.
  • REM is a general term for two elements, scandium (Sc) and yttrium (Y), and fifteen elements (lanthanoids) from lanthanum (La) to lutetium (Lu). These may be used alone or as a mixture of two or more.
  • ⁇ Area ratio 0.1 to 4.0%>
  • the area ratio of the ⁇ -Cu phase exposed to the surface increases, the amount of Cu ions eluted increases, so antibacterial and antiviral properties can be enhanced.
  • the area fraction of this ⁇ -Cu phase mainly depends on the crystal structure and the Cu content. Therefore, considering the Cu content in the ferritic stainless steel material, the upper limit of the area ratio of the ⁇ -Cu phase is 4.0%, preferably 2.0%, more preferably 1.9%, and even more preferably controlled at 1.8%.
  • the lower limit of the area ratio of the ⁇ -Cu phase is controlled to 0.1%, preferably 0.3%, more preferably 0.6% from the viewpoint of ensuring antibacterial and antiviral properties.
  • the "area ratio of the ⁇ -Cu phase exposed on the surface” in this specification can be calculated by observing the surface of the stainless steel material with a TEM (transmission electron microscope). Specifically, after photographing TEM images at three or more randomly selected locations on the surface of the stainless steel material, the TEM images are image-analyzed to measure the area of the ⁇ -Cu phase. is divided by the visual field area, the "area ratio of the ⁇ -Cu phase exposed on the surface” can be calculated.
  • the field of view area is not particularly limited, it is preferably 10 ⁇ m 2 or more in total of the photographed locations.
  • ⁇ Average particle size 10 to 300 nm>
  • the average particle size of the ⁇ -Cu phase exposed on the surface is larger, Cu ions can be eluted over a longer period of time, thereby improving the durability of the antibacterial and antiviral properties.
  • the average particle size of the ⁇ -Cu phase is too large, the distance between particles of the ⁇ -Cu phase exposed on the surface tends to increase. Therefore, when bacteria or viruses adhere between the particles of the ⁇ -Cu phase exposed on the surface, sufficient antibacterial and antiviral properties may not be obtained. Therefore, the upper limit of the average particle size of the ⁇ -Cu phase is controlled to 300 nm, preferably 250 nm, more preferably 200 nm.
  • the lower limit of the average particle size of the ⁇ -Cu phase is controlled to 10 nm, preferably 30 nm, more preferably 50 nm, from the viewpoint of ensuring the elution sustainability of Cu ions.
  • the "average particle size of the ⁇ -Cu phase exposed on the surface” in this specification can be calculated by observing the surface of the stainless steel material with a TEM (transmission electron microscope). Specifically, after photographing TEM images at three or more randomly selected locations on the surface of the stainless steel material, the TEM images are image-analyzed to obtain the circle-equivalent diameter of the ⁇ -Cu phase, and the average value is calculated as " The average particle size of the ⁇ -Cu phase exposed on the surface”.
  • ⁇ Maximum distance between particles 100 to 1000 nm>
  • the size of bacteria is 0.5-3 ⁇ m, whereas the size of viruses is very small, 10-200 nm. Therefore, if the maximum interparticle distance of the ⁇ -Cu phase exposed on the surface is too large, sufficient antiviral properties cannot be obtained particularly when a virus adheres between the particles of the ⁇ -Cu phase exposed on the surface. Sometimes. Therefore, the upper limit of the maximum interparticle distance of the ⁇ -Cu phase is controlled to 1000 nm, preferably 800 nm, more preferably 500 nm. On the other hand, the smaller the maximum interparticle distance of the ⁇ -Cu phase exposed on the surface, the better the antibacterial and antiviral properties.
  • the lower limit of the maximum distance between grains of the ⁇ -Cu phase is thought to be 100 nm. Therefore, the lower limit of the maximum interparticle distance of the ⁇ -Cu phase is controlled to 100 nm, preferably 150 nm, more preferably 200 nm.
  • the "maximum interparticle distance of the ⁇ -Cu phase exposed on the surface” in this specification can be calculated by observing the surface of the stainless steel material with a TEM (transmission electron microscope). Specifically, after photographing TEM images at three or more randomly selected locations on the surface of the stainless steel material, the TEM images are image-analyzed, and the position of the center of gravity (generating point) of the ⁇ -Cu phase is obtained, followed by Voronoi division. do. Next, the distance between the centers of gravity of the ⁇ -Cu phase in the adjacent Voronoi regions is measured as the inter-particle distance, and the maximum value can be taken as the "maximum inter-particle distance of the ⁇ -Cu phase exposed on the surface".
  • TEM transmission electron microscope
  • the ferritic stainless steel material according to Embodiment 1 of the present invention preferably has a Vickers hardness of 160 Hv or less. By controlling the Vickers hardness in such a manner, workability can be ensured, so that it can be used for various purposes.
  • the lower limit of Vickers hardness is not particularly limited, it is generally 100Hv.
  • the "Vickers hardness" in this specification can be measured according to JIS Z2244:2009. In the measurement of Vickers hardness, the measurement load is 10 kg, the measurement is performed at 5 or more randomly selected locations, and the average value is taken as the result of Vickers hardness.
  • the ferritic stainless steel material according to Embodiment 1 of the present invention preferably has an antibacterial activity value of 2.0 or more in an antibacterial test conforming to JIS Z2801:2010. With such an antibacterial activity value, high antibacterial properties can be objectively ensured.
  • the "antibacterial test” in this specification conforms to JIS Z2801:2010 and is performed using Staphylococcus aureus as bacteria.
  • the ferritic stainless steel material according to Embodiment 1 of the present invention preferably has an antiviral activity value of 2.0 or more in an antiviral test conforming to ISO 21702:2019. With such an antiviral activity value, high antiviral properties can be objectively guaranteed.
  • the "antiviral test" in the present specification is performed in accordance with ISO 21702:2019 using influenza A virus as the virus.
  • the type of the ferritic stainless steel material according to Embodiment 1 of the present invention is not particularly limited, it is preferably a hot-rolled material or a cold-rolled material.
  • hot-rolled material its thickness is generally 3 mm or more.
  • cold-rolled material the thickness is generally less than 3 mm.
  • the ferritic stainless steel material according to Embodiment 1 of the present invention can be manufactured by a method including a hot rolling process, a cooling process, and a heat treatment process.
  • the hot-rolling step is a step of hot-rolling a slab having the above composition to obtain a hot-rolled material.
  • a hot-rolled material is obtained by subjecting a slab having the above composition to rough rolling, followed by finish hot rolling. This hot-rolled material may be wound into a coil.
  • the slab having the above composition is not particularly limited, but can be obtained, for example, by melting stainless steel having the above composition and forging or casting.
  • Finish hot rolling is carried out so that the finishing temperature of finish hot rolling is 700 to 900°C.
  • the final hot rolling temperature within this temperature range, a small amount of fine "seeds" of the ⁇ -Cu phase can be easily precipitated uniformly in the cooling process after the final hot rolling.
  • the distribution of the ⁇ -Cu phase on the surface can be controlled as described above.
  • the finish hot rolling finish temperature is lower than 700° C., fine "seeds" of the ⁇ -Cu phase are not sufficiently precipitated in the cooling step after the finish hot rolling finish.
  • the finish hot rolling finish temperature exceeds 900°C, the structure becomes coarse and the workability and toughness are lowered.
  • Other conditions in the hot rolling process may be appropriately set according to the composition of the slab, and are not particularly limited.
  • the cooling step is a step for precipitating fine “seeds” of the ⁇ -Cu phase. °C by cooling.
  • a small amount of fine “seeds” of the ⁇ -Cu phase can be uniformly precipitated in the precipitation temperature range (900 to 500° C.) of the ⁇ -Cu phase.
  • the fine "seeds" of the ⁇ -Cu phase preferentially grow in the heat treatment process, relatively large ⁇ -Cu phases are uniformly dispersed.
  • the distribution state of the ⁇ -Cu phase on the surface can be controlled as described above.
  • the average cooling rate is preferably 1 to 5° C./second, more preferably 2 to 4° C./second.
  • the cooling method in the cooling step is not particularly limited, and a method known in the art can be used.
  • the cooling temperature can be finely adjusted by controlling the amount of gas (for example, Ar gas) supplied to the heat insulating box.
  • the heat treatment step is a step of growing fine ⁇ -Cu phase “seeds” precipitated in the cooling step, and is performed by heating the hot-rolled material cooled in the cooling step at 750 to 850° C. for 4 hours or more. .
  • the heating time is preferably 6 to 48 hours, more preferably 8 to 36 hours.
  • the heating temperature is less than 750° C. or the heating time is less than 4 hours, the fine “seeds” of the ⁇ -Cu phase do not grow sufficiently, and the average grains of the ⁇ -Cu phase The diameter becomes too small.
  • the heating temperature exceeds 850° C., the ⁇ -Cu phase dissolves in the matrix phase.
  • a surface layer removing step of pickling and/or polishing may be further performed, if necessary.
  • the thickness of the surface layer to be removed in the surface layer removing step is not particularly limited and may be appropriately adjusted according to the composition of the slab. For example, when removing a Cr-poor layer, it is preferable to remove a surface layer having a thickness of 10 ⁇ m or more.
  • the ferritic stainless steel material is a cold-rolled material
  • cold rolling may be performed, followed by a cold rolling/annealing process in which annealing is performed within 300 seconds.
  • the surface layer removing process is performed after the heat treatment process
  • the cold rolling/annealing process may be performed after the surface layer removing process, or the surface layer removing process may be performed after the cold rolling/annealing process.
  • the conditions for cold rolling and annealing treatment are not particularly limited and may be appropriately adjusted according to the composition of the slab.
  • the ferritic stainless steel material according to Embodiment 1 of the present invention can maintain antibacterial and antiviral properties for a long period of time, it can be used as an antibacterial/antiviral member.
  • the ferritic stainless steel material according to Embodiment 1 of the present invention can have a Vickers hardness of 160 Hv or less, it can be easily processed into a shape suitable for antibacterial/antiviral members.
  • the austenitic stainless steel material according to Embodiment 2 of the present invention contains C: 0.12% or less, Si: 4.00% or less, Mn: 6.00% or less, P: 0.050% or less, and S: 0.05% or less. 030% or less, Ni: 4.00 to 20.00%, Cr: 10.00 to 32.00%, Cu: 2.00 to 6.00%, and the balance being Fe and impurities.
  • the austenitic stainless steel material according to Embodiment 2 of the present invention has Nb: 1.00% or less, Ti: 1.00% or less, V: 1.00% or less, W: 2.00% or less, Mo: 6.00% or less, N: 0.350% or less, Sn: 0.50% or less, Al: 5.00% or less, Zr: 0.50% or less, Co: 0.50% or less, B: 0.50% or less. 020% or less, Ca: 0.10% or less, and REM: 0.20% or less.
  • Nb 1.00% or less
  • Ti 1.00% or less
  • V 1.00% or less
  • W 2.00% or less
  • Mo 6.00% or less
  • N 0.350% or less
  • Sn 0.50% or less
  • Al 5.00% or less
  • Zr 0.50% or less
  • Co 0.50% or less
  • B 0.50% or less
  • Ca 0.10% or less
  • REM 0.20% or less.
  • C is an austenite-forming element, and is an element effective in improving the strength of the austenitic stainless steel material and uniformly dispersing and precipitating the ⁇ -Cu phase by forming Cr carbide.
  • the upper limit of the C content is controlled to 0.12%, preferably 0.10%, more preferably 0.09%, still more preferably 0.08%.
  • the lower limit of the C content is not particularly limited, but is preferably 0.001%, more preferably 0.003%, and still more preferably 0.005%.
  • Si is an effective element for improving the corrosion resistance and strength of austenitic stainless steel.
  • the Si content is too high, the workability of the austenitic stainless steel material will be reduced due to hardening.
  • the upper limit of the Si content is controlled to 4.00%, preferably 3.00%, more preferably 2.00%, still more preferably 1.50%.
  • the lower limit of the Si content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and still more preferably 0.10%.
  • Mn is an austenite phase ( ⁇ phase) forming element. Also, Mn generates MnS, and MnS acts as a nucleus of the ⁇ -Cu phase. However, if the Mn content is too high, the corrosion resistance of the austenitic stainless steel will be lowered. Therefore, the upper limit of the Mn content is controlled to 6.00%, preferably 4.00%, more preferably 3.00%, still more preferably 2.50%. On the other hand, the lower limit of the Mn content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and still more preferably 0.10%.
  • ⁇ P 0.050% or less> If the P content is too high, the corrosion resistance and workability of the austenitic stainless steel will be lowered. Therefore, the upper limit of the P content is controlled to 0.050%, preferably 0.040%, more preferably 0.035%. On the other hand, the lower limit of the P content is not particularly limited. 010%.
  • the upper limit of the S content is controlled to 0.030%, preferably 0.020%, more preferably 0.010%.
  • the lower limit of the S content is not particularly limited. 0003%.
  • Ni like Mn, is an austenite phase ( ⁇ phase) forming element and improves corrosion resistance and workability. Since Ni is an expensive element, an excessive Ni content leads to an increase in manufacturing costs. Therefore, the upper limit of the Ni content is controlled to less than 20.00%, preferably 15.00% or less, more preferably 12.00% or less, still more preferably 10.00% or less. On the other hand, if the Ni content is too low, the corrosion resistance of the austenitic stainless steel will be lowered. Therefore, the lower limit of the Ni content is controlled to 4.00%, preferably 6.00%, more preferably 8.00%, still more preferably 8.50%.
  • Cr is an important element for maintaining the corrosion resistance of austenitic stainless steel.
  • the upper limit of the Cr content is controlled to 32.00%, preferably 25.00%, more preferably 22.00%, still more preferably 20.00%.
  • the lower limit of the Cr content is controlled to 10.00%, preferably 14.00%, more preferably 15.00%, still more preferably 18.00%.
  • Cu is an element necessary for precipitating the ⁇ -Cu phase, which provides antibacterial and antiviral properties.
  • Cu is also an element that improves the workability of austenitic stainless steel.
  • the lower limit of the Cu content is controlled to 2.00%, preferably 2.50%, more preferably 3.00%, still more preferably 3.60%.
  • the upper limit of the Cu content is controlled to 6.00%, preferably 5.00%, more preferably 4.80%, still more preferably 4.50%.
  • Nb 1.00% or less
  • Nb, Ti, V and W are elements that form carbides and nitrides to reduce sensitization due to grain boundary segregation of C and N and improve intergranular corrosion resistance, and are added as necessary. be.
  • the upper limits of the contents of Nb, Ti and V are all controlled to 1.00%, preferably 0.50%.
  • the upper limit of the W content is controlled to 2.00%, preferably 1.50%.
  • the lower limit of the content of Nb, Ti, V and W is not particularly limited, but from the viewpoint of obtaining the effect of these elements, it is 0.01%, preferably 0.02%.
  • Mo is an element that improves the corrosion resistance of austenitic stainless steel materials and is added as necessary. However, if the Mo content is too high, the manufacturing cost will increase. Therefore, the upper limit of the Mo content is controlled to 6.00%, preferably 5.00%, more preferably 3.00%, still more preferably 2.00%. On the other hand, the lower limit of the Mo content is not particularly limited, but from the viewpoint of obtaining the effect of Mo, it is preferably 0.01%, more preferably 0.03%, and still more preferably 0.10%.
  • N is an element that improves the corrosion resistance of austenitic stainless steel materials and is added as necessary.
  • the upper limit of the N content is controlled to 0.350%, preferably 0.200%, more preferably 0.150%, still more preferably 0.050%.
  • the lower limit of the N content is not particularly limited, but from the viewpoint of obtaining the effect of N, it is preferably 0.001%, preferably 0.003%.
  • Sn 0.50% or less> Sn, like Mo and N, is an element that improves the corrosion resistance of austenitic stainless steel materials, and is added as necessary. However, if the Sn content is too high, the hot workability of the austenitic stainless steel will deteriorate. Therefore, the upper limit of the Sn content is controlled to 0.50%, preferably 0.30%. On the other hand, the lower limit of the Sn content is not particularly limited, but from the viewpoint of obtaining the effect of Sn, it is preferably 0.01%, more preferably 0.02%.
  • Al is an element used for deoxidation in the refining process and is added as necessary. Al is also an element that improves the corrosion resistance and oxidation resistance of austenitic stainless steel. However, if the Al content is too high, the amount of inclusions produced increases and the quality deteriorates. Therefore, the upper limit of the Al content is 5.00%, preferably 3.00%, more preferably 2.00%, still more preferably 1.00%. On the other hand, the lower limit of the Al content is not particularly limited, but from the viewpoint of obtaining the effect of Al, it is preferably 0.01%, more preferably 0.03%.
  • ⁇ Zr 0.50% or less>
  • Zr like Al
  • the upper limit of the Zr content is controlled to 0.50%, preferably 0.30%.
  • the lower limit of the Zr content is not particularly limited, but from the viewpoint of obtaining the effect of Zr, it is preferably 0.01%, more preferably 0.03%.
  • Co like Al and Zr
  • Co is an element that improves the oxidation resistance of austenitic stainless steel materials and is added as necessary.
  • the upper limit of the Co content is controlled to 0.50%, preferably 0.30%.
  • the lower limit of the Co content is not particularly limited, but from the viewpoint of obtaining the effect of Co, it is preferably 0.01%, more preferably 0.03%.
  • B is an element that improves hot workability and is added as necessary. However, if the content of B is too high, the corrosion resistance and weldability of the austenitic stainless steel material will deteriorate. Therefore, the upper limit of the B content is controlled to 0.020%, preferably 0.015%, more preferably 0.010%, and even more preferably 0.005%. On the other hand, the lower limit of the content of B is not particularly limited, but is controlled to 0.0001%, preferably 0.0003%, more preferably 0.0005% from the viewpoint of obtaining the effect of B.
  • Ca like B, is an element that improves the hot workability of austenitic stainless steel materials, and is added as necessary. Ca is also an element that forms sulfides and suppresses grain boundary segregation of S, thereby improving grain boundary oxidation resistance. However, if the Ca content is too high, workability is lowered. Therefore, the upper limit of the Ca content is controlled to 0.10%, preferably 0.05%. On the other hand, the lower limit of the Ca content is not particularly limited, but is preferably 0.001%, more preferably 0.003%, from the viewpoint of obtaining the effect of Ca.
  • REM 0.20% or less> REM (rare earth element), like B and Ca, is an element that improves the hot workability of an austenitic stainless steel material, and is added as necessary. REM is also an element that improves corrosion resistance by forming sulfides that are difficult to elute and suppressing the formation of MnS, which is a starting point for corrosion. However, if the REM content is too high, it will lead to an increase in manufacturing costs. Therefore, the upper limit of the REM content is controlled to 0.20%, preferably 0.10%. On the other hand, the lower limit of the REM content is not particularly limited, but is preferably 0.001%, more preferably 0.01%, from the viewpoint of obtaining the effect of REM. It should be noted that REM may be used singly or as a mixture of two or more.
  • ⁇ Area ratio 0.1 to 4.0%>
  • the area ratio of the ⁇ -Cu phase exposed to the surface increases, the amount of Cu ions eluted increases, so antibacterial and antiviral properties can be enhanced.
  • the area fraction of this ⁇ -Cu phase mainly depends on the crystal structure and the Cu content. Therefore, the upper limit of the area ratio of the ⁇ -Cu phase is controlled to 4.0%, preferably 3.0%, more preferably 2.0%, considering the Cu content in the austenitic stainless steel material. .
  • the lower limit of the area ratio of the ⁇ -Cu phase is controlled to 0.1%, preferably 0.3%, more preferably 0.6% from the viewpoint of ensuring antibacterial and antiviral properties.
  • ⁇ Average particle size 10 to 300 nm>
  • the average particle size of the ⁇ -Cu phase exposed on the surface is larger, Cu ions can be eluted over a longer period of time, thereby improving the durability of the antibacterial and antiviral properties.
  • the average particle size of the ⁇ -Cu phase is too large, the distance between particles of the ⁇ -Cu phase exposed on the surface tends to increase. Therefore, when bacteria or viruses adhere between the particles of the ⁇ -Cu phase exposed on the surface, sufficient antibacterial and antiviral properties may not be obtained. Therefore, the upper limit of the average particle size of the ⁇ -Cu phase is controlled to 300 nm, preferably 250 nm, more preferably 200 nm, still more preferably 150 nm.
  • the lower limit of the average particle size of the ⁇ -Cu phase is controlled to 10 nm, preferably 20 nm, more preferably 30 nm, from the viewpoint of ensuring the elution sustainability of Cu ions.
  • ⁇ Maximum distance between particles 100 to 1000 nm>
  • the size of bacteria is 0.5-3 ⁇ m, whereas the size of viruses is very small, 10-200 nm. Therefore, if the maximum interparticle distance of the ⁇ -Cu phase exposed on the surface is too large, sufficient antiviral properties cannot be obtained particularly when a virus adheres between the particles of the ⁇ -Cu phase exposed on the surface. Sometimes. Therefore, the upper limit of the maximum interparticle distance of the ⁇ -Cu phase is controlled to 1000 nm, preferably 800 nm, more preferably 500 nm. On the other hand, the smaller the maximum interparticle distance of the ⁇ -Cu phase exposed on the surface, the better the antibacterial and antiviral properties.
  • the lower limit of the maximum distance between grains of the ⁇ -Cu phase is thought to be 100 nm. Therefore, the lower limit of the maximum interparticle distance of the ⁇ -Cu phase is controlled to 100 nm, preferably 150 nm, more preferably 200 nm.
  • the austenitic stainless steel material according to Embodiment 2 of the present invention preferably has a Vickers hardness of 190 Hv or less, more preferably 180 Hv or less. By controlling the Vickers hardness in such a manner, workability can be ensured, so that it can be used for various purposes. Although the lower limit of Vickers hardness is not particularly limited, it is generally 100Hv.
  • the austenitic stainless steel material according to Embodiment 2 of the present invention preferably has an antibacterial activity value of 2.0 or more in an antibacterial test conforming to JIS Z2801:2010. With such an antibacterial activity value, high antibacterial properties can be objectively ensured.
  • the austenitic stainless steel material according to Embodiment 2 of the present invention preferably has an antiviral activity value of 2.0 or more in an antiviral test conforming to ISO 21702:2019. With such an antiviral activity value, high antiviral properties can be objectively guaranteed.
  • the type of the austenitic stainless steel material according to the second embodiment of the present invention is not particularly limited, it is preferably a hot-rolled material or a cold-rolled material.
  • hot-rolled material its thickness is generally 3 mm or more.
  • cold-rolled material the thickness is generally less than 3 mm.
  • the austenitic stainless steel material according to Embodiment 2 of the present invention can be manufactured by a method including a hot rolling process, a cooling process and a heat treatment process.
  • the hot-rolling step is a step of hot-rolling a slab having the above composition to obtain a hot-rolled material.
  • a hot-rolled material is obtained by subjecting a slab having the above composition to rough rolling, followed by finish hot rolling. This hot-rolled material may be wound into a coil.
  • the slab having the above composition is not particularly limited, but can be obtained, for example, by melting stainless steel having the above composition and forging or casting.
  • Finish hot rolling is carried out so that the finishing temperature of finish hot rolling is 850 to 1050°C.
  • the final hot rolling temperature within this temperature range, a small amount of fine "seeds" of the ⁇ -Cu phase can be easily precipitated uniformly in the cooling process after the final hot rolling.
  • the distribution of the ⁇ -Cu phase on the surface can be controlled as described above.
  • the finish hot rolling finish temperature is lower than 850° C., the fine “seeds” of the ⁇ -Cu phase are not sufficiently precipitated in the cooling step after the finish hot rolling finish.
  • the finish hot rolling finish temperature exceeds 1050°C, the structure becomes coarse and the workability and toughness are lowered.
  • multiple times of rolling and heat treatment are required to return the coarsened structure to a fine structure, which increases the manufacturing cost.
  • Other conditions in the hot rolling process may be appropriately set according to the composition of the slab, and are not particularly limited.
  • the cooling step is a step for precipitating fine “seeds” of the ⁇ -Cu phase. °C by cooling.
  • a small amount of fine “seeds” of the ⁇ -Cu phase can be uniformly precipitated in the precipitation temperature range (900 to 500° C.) of the ⁇ -Cu phase.
  • the fine "seeds" of the ⁇ -Cu phase preferentially grow in the heat treatment process, relatively large ⁇ -Cu phases are uniformly dispersed.
  • the distribution state of the ⁇ -Cu phase on the surface can be controlled as described above.
  • the average cooling rate is preferably 1 to 5° C./second, more preferably 2 to 4° C./second.
  • the cooling method in the cooling step is not particularly limited, and a method known in the art can be used.
  • the cooling temperature can be finely adjusted by controlling the amount of gas (for example, Ar gas) supplied to the heat insulating box.
  • the heat treatment step is a step of growing fine ⁇ -Cu phase “seeds” precipitated in the cooling step, and is performed by heating the hot-rolled material cooled in the cooling step at 750 to 850° C. for 4 hours or more. .
  • the heating time is preferably 6 to 48 hours, more preferably 8 to 36 hours.
  • the heating temperature is less than 750° C. or the heating time is less than 4 hours, the fine “seeds” of the ⁇ -Cu phase do not grow sufficiently, and the average grains of the ⁇ -Cu phase The diameter becomes too small.
  • the heating temperature exceeds 850° C., the ⁇ -Cu phase dissolves in the matrix phase.
  • a surface layer removing step of pickling and/or polishing may be further performed, if necessary.
  • the thickness of the surface layer to be removed in the surface layer removing step is not particularly limited and may be appropriately adjusted according to the composition of the slab. For example, when removing a Cr-poor layer, it is preferable to remove a surface layer having a thickness of 10 ⁇ m or more.
  • the austenitic stainless steel material is a cold-rolled material
  • cold rolling may be performed, followed by a cold rolling/annealing step of annealing within 300 seconds.
  • the surface layer removing process is performed after the heat treatment process
  • the cold rolling/annealing process may be performed after the surface layer removing process, or the surface layer removing process may be performed after the cold rolling/annealing process.
  • the conditions for cold rolling and annealing treatment are not particularly limited and may be appropriately adjusted according to the composition of the slab.
  • the austenitic stainless steel material according to Embodiment 2 of the present invention can maintain antibacterial and antiviral properties for a long period of time, so it can be used for antibacterial and antiviral members.
  • the austenitic stainless steel material according to Embodiment 2 of the present invention can have a Vickers hardness of 190 Hv or less, it can be easily processed into a shape suitable for antibacterial/antiviral members.
  • the antibacterial/antiviral member of the present invention includes the above stainless steel material (for example, the ferritic stainless steel material according to Embodiment 1 of the present invention and/or the austenitic stainless steel material according to Embodiment 2 of the present invention).
  • the above stainless steel material used for this antibacterial/antiviral member may be processed into various shapes by methods known in the art.
  • the antibacterial/antiviral member of the present invention can further include members other than the stainless steel material described above.
  • the antibacterial/antiviral member is not particularly limited, but is used for kitchen equipment, home appliances, medical equipment, building interior building materials, transportation equipment, laboratory equipment, sanitary equipment, etc., and antibacterial and antiviral properties are required. and various members.
  • Stainless steels having a ferritic composition (the balance being Fe and impurities) of steel grades A to J shown in Table 1 were melted and forged into slabs, and then the finish hot rolling finish temperature was measured as shown in Table 2.
  • a hot-rolled material was obtained by hot-pressing to a thickness of 3 mm.
  • the hot-rolled material was wound into a coil, quickly placed in a heat-insulating box, and then cooled at an average cooling rate shown in Table 2 between 900 and 500°C.
  • the average cooling rate was adjusted by the amount of Ar gas supplied to the heat insulating box.
  • the cooled hot-rolled material was subjected to heat treatment using a batch annealing furnace in an air atmosphere at 800° C.
  • the heat-treated hot-rolled material is cut into pieces of 100 mm (rolling direction) x 100 mm (width direction) by cutting, then pickled to remove scales, and polished with a P400 buff (#400). A ferritic stainless steel material was obtained.
  • a disk having a diameter of 3 mm was cut out from a ferritic stainless steel material, one surface of which was ground to a thickness of 0.5 mm, and then the ground surface was electropolished to prepare a test piece.
  • TEM images were taken at 10 randomly selected points (total visual field area: 15 ⁇ m 2 ) on the electrolytically polished surface of this test piece, and then the TEM images were image-analyzed to measure the area of the ⁇ -Cu phase. .
  • the area ratio of the ⁇ -Cu phase was calculated by dividing the measured ⁇ -Cu phase area by the viewing area.
  • the equivalent circle diameter of the ⁇ -Cu phase (30 pieces) was obtained by image analysis of the TEM image obtained in the same manner as the area ratio above, and the average value was calculated to obtain the average particle diameter of the ⁇ -Cu phase. got
  • Antibacterial test antibacterial activity value
  • a test piece of 50 mm (rolling direction) ⁇ 50 mm (width direction) from the ferritic stainless steel material an antibacterial test was performed in accordance with JIS Z2801:2010 to obtain an antibacterial activity value (initial).
  • Staphylococcus aureus was used as bacteria
  • a polyethylene film of 40 mm ⁇ 40 mm was used as the adhesion film.
  • the inoculum amount of the fungus solution was 0.4 mL, and the entire surface of the test piece was lightly wiped with a local gauze soaked with ethanol having a purity of 99% or more just before the start of the test, and the test was performed after sufficiently drying. .
  • the test piece was immersed in 500 mL of water and held at 80 ° C. for 16 hours in a constant temperature bath. after immersion) was determined.
  • Antiviral test antiviral activity value
  • an antiviral test was performed in accordance with ISO 21702:2019 to determine the antiviral activity value (initial).
  • influenza A virus was used as the virus
  • a polyethylene film of 40 mm ⁇ 40 mm was used as the adhesion film.
  • the amount of virus suspension (test solution) inoculated was 0.4 mL, and just before the start of the test, the entire surface of the test piece was lightly wiped with a local gauze soaked with ethanol with a purity of 99% or more, and dried thoroughly. After that, the test was carried out.
  • test piece was immersed in 500 mL of water, held at 80 ° C. for 16 hours in a constant temperature bath, and then subjected to an antiviral test in the same manner as described above. Values (after immersion in water) were determined.
  • Vickers hardness Vickers hardness was measured according to JIS Z2244:2009.
  • a Vickers hardness tester HV-100 manufactured by Mitutoyo Co., Ltd. was used, the measurement load was 10 kg, the surface Vickers hardness was measured at 10 randomly selected points, and the average value was taken as the result. .
  • Table 3 shows the above evaluation results.
  • Stainless steels having an austenitic composition (the balance being Fe and impurities) of steel grades a to j shown in Table 4 were melted and forged into slabs, and the finish hot rolling finish temperature was measured as shown in Table 5.
  • a hot-rolled material was obtained by hot-pressing to a thickness of 3 mm.
  • the hot-rolled material was wound into a coil, quickly placed in a heat-insulating box, and then cooled between 900 and 500° C. at the average cooling rate shown in Table 5.
  • the average cooling rate was adjusted by the amount of Ar gas supplied to the heat insulating box.
  • the cooled hot-rolled material was subjected to heat treatment using a batch annealing furnace in an air atmosphere at 800° C.
  • the heat-treated hot-rolled material is cut into pieces of 100 mm (rolling direction) x 100 mm (width direction) by cutting, then pickled to remove scales, and polished with a P400 buff (#400). An austenitic stainless steel material was obtained.
  • the obtained austenitic stainless steel material was evaluated in the same manner as the above ferritic stainless steel material.
  • Table 6 shows the evaluation results.
  • the austenitic stainless steel materials 2-1 to 2-11 (examples of the present invention) had a predetermined composition and a distribution state of the ⁇ -Cu phase on the surface. Viral activity values (initial and after water immersion) and Vickers hardness results were all good. On the other hand, No. In the austenitic stainless steel material No. 2-12 (comparative example), the finish hot rolling finishing temperature was too low and the average cooling rate was too high, so that the average particle size of the ⁇ -Cu phase was too large. As a result, antiviral properties (antiviral activity value of 2.0 or more) were not obtained. No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Metal Extraction Processes (AREA)
  • Catalysts (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

This stainless steel material has an ε-Cu phase exposed on the surface. The ε-Cu phase in the surface of the stainless steel material has an area fraction of 0.1-4.0%, an average particle size of 10-300 nm, and a maximum inter-particle distance of 100-1000 nm.

Description

ステンレス鋼材及びその製造方法、並びに抗菌・抗ウィルス部材Stainless steel material, manufacturing method thereof, and antibacterial/antiviral member
 本発明は、ステンレス鋼材及びその製造方法、並びに抗菌・抗ウィルス部材に関する。 The present invention relates to a stainless steel material, its manufacturing method, and an antibacterial/antiviral member.
 ステンレス鋼材は、耐食性に優れているため、厨房機器、家電機器、医療器具、内装建材、輸送機器などの広範な用途で使用されており、細菌の繁殖やウィルスの付着などが起こり易い環境下での使用も多くなっている。近年、このような細菌の繁殖やウィルスの付着などによる人体への悪影響を懸念する傾向が強まっており、とりわけ、清潔さが必須とされる医療器具や厨房機器に加え、多数の人が集まる建造物や輸送機器に用いられる各種部材にも抗菌性や抗ウィルス性が要求されている。 Because of its excellent corrosion resistance, stainless steel is used in a wide range of applications, including kitchen equipment, home appliances, medical equipment, interior building materials, and transportation equipment. use is also increasing. In recent years, there has been a growing concern about the adverse effects on the human body caused by the propagation of bacteria and attachment of viruses. Antibacterial and antiviral properties are also required for various members used for goods and transportation equipment.
 抗菌・抗ウィルス性を有する金属元素としては、AgやCuなどが知られていることから、これらの金属元素を添加することで抗菌・抗ウィルス性を付与したステンレス鋼材が提案されている。
 例えば、特許文献1には、C:0.1重量%以下、Si:2重量%以下、Mn:2重量%以下、Cr:10~30重量%及びCu:0.4~3重量%を含み、マトリックス中にCuリッチ相(ε-Cu相)が0.2体積%以上の割合で析出している抗菌性に優れたフェライト系ステンレス鋼材が提案されている。このフェライト系ステンレス鋼材は、C:0.1重量%以下、Si:2重量%以下、Mn:2重量%以下、Cr:10~30重量%及びCu:0.4~3重量%を含むフェライト系ステンレス鋼を冷間圧延し、最終焼鈍した後、500~800℃で時効処理を施すことでCuリッチ相(ε-Cu相)を0.2体積%以上に析出させることによって製造される。
Since Ag, Cu, and the like are known as metal elements having antibacterial and antiviral properties, stainless steel materials to which antibacterial and antiviral properties are imparted by adding these metal elements have been proposed.
For example, Patent Document 1 contains C: 0.1% by weight or less, Si: 2% by weight or less, Mn: 2% by weight or less, Cr: 10 to 30% by weight, and Cu: 0.4 to 3% by weight. , a ferritic stainless steel material having excellent antibacterial properties in which a Cu-rich phase (ε-Cu phase) is precipitated in a matrix at a rate of 0.2% by volume or more has been proposed. This ferritic stainless steel material contains C: 0.1% by weight or less, Si: 2% by weight or less, Mn: 2% by weight or less, Cr: 10 to 30% by weight, and Cu: 0.4 to 3% by weight. It is produced by cold-rolling stainless steel, final annealing, and aging treatment at 500 to 800° C. to precipitate a Cu-rich phase (ε-Cu phase) to 0.2% by volume or more.
 また、特許文献2には、C:0.1重量%以下、Si:2重量%以下、Mn:5重量%以下、Cr:10~30重量%、Ni:5~15重量%、Cu:1.0~5.0重量%を含む組成をもち、Cuを主体とする第2相(ε-Cu相)がマトリックス中に0.2体積%以上の割合で分散している抗菌性に優れたオーステナイト系ステンレス鋼材が提案されている。このオーステナイト系ステンレス鋼材は、C:0.1重量%以下、Si:2重量%以下、Mn:5重量%以下、Cr:10~30重量%、Ni:5~15重量%、Cu:1.0~5.0重量%を含むオーステナイト系ステンレス鋼を熱間圧延後から最終製品となるまでの間に500~900℃の温度範囲で熱処理を1回以上施すことによって製造される。 Further, in Patent Document 2, C: 0.1% by weight or less, Si: 2% by weight or less, Mn: 5% by weight or less, Cr: 10 to 30% by weight, Ni: 5 to 15% by weight, Cu: 1 It has a composition containing 0 to 5.0% by weight, and has excellent antibacterial properties in which the second phase (ε-Cu phase) mainly composed of Cu is dispersed in the matrix at a rate of 0.2% by volume or more. Austenitic stainless steel materials have been proposed. This austenitic stainless steel material contains C: 0.1% by weight or less, Si: 2% by weight or less, Mn: 5% by weight or less, Cr: 10 to 30% by weight, Ni: 5 to 15% by weight, and Cu: 1.0% by weight. It is produced by subjecting austenitic stainless steel containing 0 to 5.0 wt.
特開平9-170053号公報JP-A-9-170053 特開平9-176800号公報JP-A-9-176800
 特許文献1及び2に記載のステンレス鋼材は、表面におけるε-Cu相の分布状態が適切に制御されていないため、所望の抗菌性が得られなかったり、抗菌性が早期に失われ易かったりすることがある。
 また、ウィルスは、細菌に比べて小さいため、表面におけるε-Cu相の間にウィルスが付着した場合には、抗ウィルス性がほとんど得られないこともある。
In the stainless steel materials described in Patent Documents 1 and 2, the distribution state of the ε-Cu phase on the surface is not properly controlled, so the desired antibacterial properties cannot be obtained or the antibacterial properties tend to be lost early. Sometimes.
Also, since viruses are smaller than bacteria, if the virus adheres between the ε-Cu phases on the surface, little antiviral properties may be obtained.
 本発明は、抗菌性及び抗ウィルス性を長期間にわたって維持することが可能なステンレス鋼材及びその製造方法、並びに抗菌・抗ウィルス部材を提供することを目的とする。 The purpose of the present invention is to provide a stainless steel material that can maintain antibacterial and antiviral properties for a long period of time, a method for manufacturing the same, and an antibacterial/antiviral member.
 本発明者らは、上記のような問題を解決すべく鋭意研究を行った結果、ステンレス鋼材の表面におけるε-Cu相の分布状態(特に、表面におけるε-Cu相の面積率、ε-Cu相の平均粒子径及びε-Cu相の最大粒子間距離)が、抗菌性及び抗ウィルス性、並びにそれらの持続性と密接に関係していることを見出し、本発明を完成するに至った。 The inventors of the present invention have made intensive studies to solve the above problems, and as a result, the distribution state of the ε-Cu phase on the surface of the stainless steel material (particularly, the area ratio of the ε-Cu phase on the surface, the ε-Cu The inventors have found that the average particle size of the phase and the maximum interparticle distance of the ε-Cu phase) are closely related to the antibacterial and antiviral properties and their durability, and have completed the present invention.
 すなわち、本発明は、表面に露出したε-Cu相を有し、
 前記表面における前記ε-Cu相は、面積率が0.1~4.0%、平均粒子径が10~300nm、最大粒子間距離が100~1000nmであるステンレス鋼材である。
That is, the present invention has an ε-Cu phase exposed on the surface,
The ε-Cu phase on the surface is a stainless steel material having an area ratio of 0.1 to 4.0%, an average particle diameter of 10 to 300 nm, and a maximum interparticle distance of 100 to 1000 nm.
 また、本発明は、質量基準で、C:0.10%以下、Si:4.00%以下、Mn:2.00%以下、P:0.050%以下、S:0.030%以下、Ni:4.00%以下、Cr:10.00~32.00%、Cu:0.40~4.00%を含み、残部がFe及び不純物からなるフェライト系の組成を有するスラブ、又は質量基準で、C:0.12%以下、Si:4.00%以下、Mn:6.00%以下、P:0.050%以下、S:0.030%以下、Ni:4.00~20.00%、Cr:10.00~32.00%、Cu:2.00~6.00%を含み、残部がFe及び不純物からなるオーステナイト系の組成を有するスラブを熱延して熱延材を得る熱延工程であって、前記スラブの組成が前記フェライト系の場合に仕上熱延終了温度を700~900℃、前記オーステナイト系の場合に仕上熱延終了温度を850~1050℃とする熱延工程と、
 前記熱延工程で得られた前記熱延材を0.2~5℃/秒の平均冷却速度で900~500℃の間を冷却する冷却工程と、
 前記冷却工程で冷却された前記熱延材を750~850℃で4時間以上加熱する熱処理工程と
を含むステンレス鋼材の製造方法である。
Further, in the present invention, on the mass basis, C: 0.10% or less, Si: 4.00% or less, Mn: 2.00% or less, P: 0.050% or less, S: 0.030% or less, Slab having a ferritic composition containing Ni: 4.00% or less, Cr: 10.00 to 32.00%, Cu: 0.40 to 4.00%, the balance being Fe and impurities, or mass basis C: 0.12% or less, Si: 4.00% or less, Mn: 6.00% or less, P: 0.050% or less, S: 0.030% or less, Ni: 4.00-20. 00%, Cr: 10.00 to 32.00%, Cu: 2.00 to 6.00%, and the balance being Fe and impurities. In the hot rolling step to obtain, the finish hot rolling finish temperature is 700 to 900 ° C. when the slab composition is the ferrite system, and the finish hot rolling finish temperature is 850 to 1050 ° C. when the slab composition is the austenite system. process and
a cooling step of cooling the hot-rolled material obtained in the hot-rolling step to a temperature between 900 and 500°C at an average cooling rate of 0.2 to 5°C/sec;
and a heat treatment step of heating the hot-rolled material cooled in the cooling step at 750 to 850° C. for 4 hours or longer.
 さらに、本発明は、前記ステンレス鋼材を含む抗菌・抗ウィルス部材である。 Further, the present invention is an antibacterial/antiviral member containing the stainless steel material.
 本発明によれば、抗菌性及び抗ウィルス性を長期間にわたって維持することが可能なステンレス鋼材及びその製造方法、並びに抗菌・抗ウィルス部材を提供することができる。 According to the present invention, it is possible to provide a stainless steel material capable of maintaining antibacterial and antiviral properties for a long period of time, a method for producing the same, and an antibacterial/antiviral member.
本発明の典型的なステンレス鋼材の表面の模式図である。1 is a schematic diagram of the surface of a typical stainless steel material of the present invention; FIG.
 本発明は、表面に露出したε-Cu相を有するステンレス鋼材である。このε-Cu相は、面積率が0.1~4.0%、平均粒子径が10~300nm、最大粒子間距離が100~1000nmである。
 ここで、本発明の典型的なステンレス鋼材の表面の模式図を図1に示す。
 図1に示されるように、ステンレス鋼材10は、母相の表面にε-Cu相11が露出している。また、ε-Cu相11が露出していない母相の表面には、不働態皮膜12が形成されている。
The present invention is a stainless steel material having an ε-Cu phase exposed on the surface. The ε-Cu phase has an area ratio of 0.1 to 4.0%, an average particle diameter of 10 to 300 nm, and a maximum interparticle distance of 100 to 1000 nm.
FIG. 1 shows a schematic diagram of the surface of a typical stainless steel material of the present invention.
As shown in FIG. 1, the stainless steel material 10 has an ε-Cu phase 11 exposed on the surface of the parent phase. A passive film 12 is formed on the surface of the matrix phase where the ε-Cu phase 11 is not exposed.
 母相の表面にε-Cu相11を露出させることにより、ステンレス鋼材10の表面に水分が接触した際に、ε-Cu相11からCuイオンを溶出させることができる。例えば、ステンレス鋼材10の表面に人の手が触れると、手の水分によってε-Cu相11からCuイオンを溶出させることができる。そのため、細菌が表面に付着しても殺菌することができるとともに、ウィルスが表面に付着しても不活性化し、やがて死滅させることができる。
 また、ε-Cu相11が露出していない母相の表面には、不働態皮膜12が形成されているため、耐食性も良好である。
By exposing the ε-Cu phase 11 on the surface of the parent phase, Cu ions can be eluted from the ε-Cu phase 11 when water contacts the surface of the stainless steel material 10 . For example, when a human hand touches the surface of the stainless steel material 10, Cu ions can be eluted from the ε-Cu phase 11 by the moisture of the hand. Therefore, even if bacteria adhere to the surface, they can be sterilized, and even if viruses adhere to the surface, they can be inactivated and eventually killed.
Moreover, since the passivation film 12 is formed on the surface of the matrix phase where the ε-Cu phase 11 is not exposed, corrosion resistance is also good.
 本発明のステンレス鋼材の組成は、特に限定されないが、C:0.12%以下、Si:4.00%以下、Mn:6.00%以下、P:0.050%以下、S:0.030%以下、Ni:20.00%以下、Cr:10.00~32.00%、Cu:0.40~6.00%を含み、残部がFe及び不純物からなる組成であることが好ましい。
 ここで、本明細書において成分に関する「%」表示は、特に断らない限り「質量%」を意味する。
The composition of the stainless steel material of the present invention is not particularly limited, but C: 0.12% or less, Si: 4.00% or less, Mn: 6.00% or less, P: 0.050% or less, S: 0.05% or less. 030% or less, Ni: 20.00% or less, Cr: 10.00 to 32.00%, Cu: 0.40 to 6.00%, and the balance being Fe and impurities.
Here, in this specification, "%" for components means "% by mass" unless otherwise specified.
 本発明のステンレス鋼材の金属組織は、特に限定されないが、フェライト系又はオーステナイト系であることが好ましい。
 以下、本発明の実施形態について、フェライト系ステンレス鋼材及びオーステナイト系ステンレス鋼材を例に挙げて具体的に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し変更、改良などが適宜加えられたものも本発明の範囲に入ることが理解されるべきである。
Although the metallographic structure of the stainless steel material of the present invention is not particularly limited, it is preferably ferritic or austenitic.
Hereinafter, embodiments of the present invention will be specifically described with reference to ferritic stainless steel materials and austenitic stainless steel materials as examples. The present invention is not limited to the following embodiments, and modifications and improvements can be made to the following embodiments based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. are also within the scope of the present invention.
(実施形態1)
 本発明の実施形態1に係るフェライト系ステンレス鋼材は、C:0.10%以下、Si:4.00%以下、Mn:2.00%以下、P:0.050%以下、S:0.030%以下、Ni:4.00%以下、Cr:10.00~32.00%、Cu:0.40~4.00%を含み、残部がFe及び不純物からなる組成を有する。
 ここで、本明細書において、「鋼材」とは、鋼板などの各種材形の材料のことを意味する。また、「鋼板」とは、鋼帯を含む概念である。さらに、「不純物」とは、ステンレス鋼材を工業的に製造する際に、鉱石、スクラップなどの原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
(Embodiment 1)
The ferritic stainless steel material according to Embodiment 1 of the present invention contains C: 0.10% or less, Si: 4.00% or less, Mn: 2.00% or less, P: 0.050% or less, and S: 0.05% or less. 030% or less, Ni: 4.00% or less, Cr: 10.00-32.00%, Cu: 0.40-4.00%, and the balance being Fe and impurities.
Here, in this specification, the term "steel material" means materials of various types such as steel plates. In addition, the term “steel plate” is a concept including a steel strip. Further, the term "impurities" refers to components mixed in by various factors in the manufacturing process, such as raw materials such as ores and scraps, during the industrial production of stainless steel materials, and is permissible within a range that does not adversely affect the present invention. means to be
 また、本発明の実施形態1に係るフェライト系ステンレス鋼材は、Nb:1.00%以下、Ti:0.60%以下、V:1.00%以下、W:2.00%以下、Mo:3.00%以下、N:0.050%以下、Sn:0.50%以下、Al:5.00%以下、Zr:0.50%以下、Co:0.50%以下、B:0.010%以下、Ca:0.10%以下、REM:0.20%以下から選択される1種以上を更に含むことができる。
 以下、各成分について詳細に説明する。
Further, the ferritic stainless steel material according to Embodiment 1 of the present invention has Nb: 1.00% or less, Ti: 0.60% or less, V: 1.00% or less, W: 2.00% or less, Mo: 3.00% or less, N: 0.050% or less, Sn: 0.50% or less, Al: 5.00% or less, Zr: 0.50% or less, Co: 0.50% or less, B: 0.50% or less. 010% or less, Ca: 0.10% or less, and REM: 0.20% or less.
Each component will be described in detail below.
<C:0.10%以下>
 Cは、フェライト系ステンレス鋼材の強度を向上させるとともに、Cr炭化物の生成によってε-Cu相を均一に分散析出させるのに有効な元素である。ただし、Cの含有量は多すぎると、硬質になって加工性が下がることに加え、溶接などの熱影響を受けた際に鋭敏化が生じ、フェライト系ステンレス鋼材の耐食性が低下してしまう。そのため、Cの含有量の上限値は、0.10%、好ましくは0.06%、より好ましくは0.04%、更に好ましくは0.03%に制御される。一方、Cの含有量の下限値は、特に限定されないが、好ましくは0.001%、より好ましくは0.003%、更に好ましくは0.005%である。
<C: 0.10% or less>
C is an effective element for improving the strength of the ferritic stainless steel material and uniformly dispersing and precipitating the ε-Cu phase by forming Cr carbide. However, if the C content is too high, the material becomes hard and workability deteriorates, and in addition, sensitization occurs when subjected to thermal effects such as welding, and the corrosion resistance of ferritic stainless steel deteriorates. Therefore, the upper limit of the C content is controlled to 0.10%, preferably 0.06%, more preferably 0.04%, still more preferably 0.03%. On the other hand, the lower limit of the C content is not particularly limited, but is preferably 0.001%, more preferably 0.003%, and still more preferably 0.005%.
<Si:4.00%以下>
 Siは、フェライト相(α相)生成元素であり、フェライト系ステンレス鋼材の耐食性及び強度を向上させるのに有効な元素である。ただし、Siの含有量は多すぎると、硬質化してフェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Siの含有量の上限値は、4.00%、好ましくは2.00%、より好ましくは1.50%、更に好ましくは1.00%に制御される。一方、Siの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.05%、更に好ましくは0.10%である。
<Si: 4.00% or less>
Si is an element that forms a ferrite phase (α phase), and is an element that is effective in improving the corrosion resistance and strength of ferritic stainless steel materials. However, if the content of Si is too high, the workability of the ferritic stainless steel decreases due to hardening. Therefore, the upper limit of the Si content is controlled to 4.00%, preferably 2.00%, more preferably 1.50%, still more preferably 1.00%. On the other hand, the lower limit of the Si content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and still more preferably 0.10%.
<Mn:2.00%以下>
 Mnは、フェライト系ステンレス鋼材の耐熱性を向上させる元素である。しかし、Mnの含有量が多すぎると、フェライト系ステンレス鋼材の耐食性が低下してしまう。また、Mnは、オーステナイト相(γ相)形成元素であるため、高温でγ相(室温ではマルテンサイト相)を生成し、フェライト系ステンレス鋼材の加工性も低下してしまう。そのため、Mnの含有量の上限値は、2.00%、好ましくは1.50%、より好ましくは1.20%、更に好ましくは1.00%に制御される。一方、Mnの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.05%、更に好ましくは0.10%である。
<Mn: 2.00% or less>
Mn is an element that improves the heat resistance of ferritic stainless steel. However, if the Mn content is too high, the corrosion resistance of the ferritic stainless steel will be lowered. Moreover, since Mn is an austenite phase (γ phase)-forming element, it forms a γ phase (a martensite phase at room temperature) at high temperatures, thereby deteriorating the workability of ferritic stainless steel materials. Therefore, the upper limit of the Mn content is controlled to 2.00%, preferably 1.50%, more preferably 1.20%, still more preferably 1.00%. On the other hand, the lower limit of the Mn content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and still more preferably 0.10%.
<P:0.050%以下>
 Pの含有量は多すぎると、フェライト系ステンレス鋼材の耐食性や加工性が低下してしまう。そのため、Pの含有量の上限値は、0.050%、好ましくは0.040%、より好ましくは0.030%に制御される。一方、Pの含有量の下限値は、特に限定されないが、Pの含有量の低減には精錬コストが生じるため、好ましくは0.001%、より好ましくは0.005%、更に好ましくは0.010%である。
<P: 0.050% or less>
If the content of P is too high, the corrosion resistance and workability of the ferritic stainless steel will be lowered. Therefore, the upper limit of the P content is controlled to 0.050%, preferably 0.040%, more preferably 0.030%. On the other hand, the lower limit of the P content is not particularly limited. 010%.
<S:0.030%以下>
 Sの含有量は多すぎると、熱間加工性が下がってフェライト系ステンレス鋼材の製造性が低下してしまうとともに、耐食性にも悪影響を及ぼす。そのため、Sの含有量の上限値は、0.030%、好ましくは0.020%、より好ましくは0.010%に制御される。一方、Sの含有量の下限値は、特に限定されないが、Sの含有量の低減には精錬コストが生じるため、好ましくは0.0001%、より好ましくは0.0002%、更に好ましくは0.0003%である。
<S: 0.030% or less>
If the S content is too high, the hot workability is lowered, the manufacturability of the ferritic stainless steel is lowered, and the corrosion resistance is also adversely affected. Therefore, the upper limit of the S content is controlled to 0.030%, preferably 0.020%, more preferably 0.010%. On the other hand, the lower limit of the S content is not particularly limited. 0003%.
<Ni:4.00%以下>
 Niは、フェライト系ステンレス鋼材の耐食性を向上させる元素である。しかし、Niは、Mnと同様にオーステナイト相(γ相)形成元素であるため、その含有量が多すぎると、高温でγ相(室温ではマルテンサイト相)を生成し、フェライト系ステンレス鋼材の加工性が低下してしまう。また、Niは、高価な元素であるため、製造コストの上昇にもつながる。そのため、Niの含有量の上限値は、4.00%、好ましくは2.00%、より好ましくは1.00%、更に好ましくは0.60%に制御される。一方、Niの含有量の下限値は、特に限定されないが、好ましくは0.005%、より好ましくは0.01%、更に好ましくは0.03%である。
<Ni: 4.00% or less>
Ni is an element that improves the corrosion resistance of ferritic stainless steel. However, Ni, like Mn, is an austenite phase (γ phase)-forming element. sexuality declines. In addition, since Ni is an expensive element, it also leads to an increase in manufacturing costs. Therefore, the upper limit of the Ni content is controlled to 4.00%, preferably 2.00%, more preferably 1.00%, still more preferably 0.60%. On the other hand, the lower limit of the Ni content is not particularly limited, but is preferably 0.005%, more preferably 0.01%, and still more preferably 0.03%.
<Cr:10.00~32.00%>
 Crは、フェライト系ステンレス鋼材の耐食性を維持するために重要な元素である。ただし、Crの含有量は多すぎると、精錬コストの上昇を招く上に、固溶強化によって硬質化し、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Crの含有量の上限値は、32.00%、好ましくは22.00%、より好ましくは20.00%、更に好ましくは18.00%に制御される。一方、Crの含有量は少なすぎると、耐食性が十分に得られない。そのため、Crの含有量の下限値は、10.00%、好ましくは14.00%、より好ましくは15.00%、更に好ましくは16.00%に制御される。
<Cr: 10.00 to 32.00%>
Cr is an important element for maintaining the corrosion resistance of ferritic stainless steel. However, if the Cr content is too high, the refining cost will increase, and solid-solution strengthening will harden the steel, thereby degrading the workability of the ferritic stainless steel material. Therefore, the upper limit of the Cr content is controlled to 32.00%, preferably 22.00%, more preferably 20.00%, still more preferably 18.00%. On the other hand, if the Cr content is too small, sufficient corrosion resistance cannot be obtained. Therefore, the lower limit of the Cr content is controlled to 10.00%, preferably 14.00%, more preferably 15.00%, still more preferably 16.00%.
<Cu:0.40~4.00%>
 Cuは、抗菌性及び抗ウィルス性を与えるε-Cu相を析出させるのに必要な元素である。また、Cuは、フェライト系ステンレス鋼材の加工性を改善する元素でもある。このような効果を得るために、Cuの含有量の下限値は、0.40%、好ましくは0.70%、より好ましくは1.00%、更に好ましくは1.30%に制御される。一方、Cuの含有量が多すぎると、フェライト系ステンレス鋼材の耐食性が低下してしまうとともに、鋳造時に低融点相を形成して熱間加工性の低下を招く。そのため、Cuの含有量の上限値は、4.00%、好ましくは3.00%、より好ましくは2.00%、更に好ましくは1.70%に制御される。
<Cu: 0.40 to 4.00%>
Cu is an element necessary for precipitating the ε-Cu phase, which provides antibacterial and antiviral properties. Cu is also an element that improves the workability of ferritic stainless steel. In order to obtain such effects, the lower limit of the Cu content is controlled to 0.40%, preferably 0.70%, more preferably 1.00%, still more preferably 1.30%. On the other hand, if the Cu content is too high, the corrosion resistance of the ferritic stainless steel material is lowered, and a low-melting-point phase is formed during casting, resulting in poor hot workability. Therefore, the upper limit of the Cu content is controlled to 4.00%, preferably 3.00%, more preferably 2.00%, still more preferably 1.70%.
<Nb:1.00%以下>
 Nbは、析出物を形成し、その周囲にε-Cu相を均一に析出させる効果を呈する元素であり、必要に応じて添加される。ただし、Nbの含有量が多すぎると、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Nbの含有量の上限値は、1.00%、好ましくは0.80%、より好ましくは0.60%、更に好ましくは0.55%に制御される。一方、Nbの含有量の下限値は、特に限定されないが、Nbによる効果を得る観点から、好ましくは0.05%、より好ましくは0.10%、更に好ましくは0.20%、特に好ましくは0.25%である。
<Nb: 1.00% or less>
Nb is an element that exhibits the effect of forming precipitates and uniformly precipitating the ε-Cu phase around them, and is added as necessary. However, if the Nb content is too high, the workability of the ferritic stainless steel material will deteriorate. Therefore, the upper limit of the Nb content is controlled to 1.00%, preferably 0.80%, more preferably 0.60%, still more preferably 0.55%. On the other hand, the lower limit of the Nb content is not particularly limited, but from the viewpoint of obtaining the effect of Nb, it is preferably 0.05%, more preferably 0.10%, still more preferably 0.20%, and particularly preferably 0.25%.
<Ti:0.60%以下>
 Tiは、Nbと同様に析出物を形成し、その周囲にε-Cu相を均一に析出させる効果を呈する元素であり、必要に応じて添加される。ただし、Tiの含有量は多すぎると、表面疵の原因となって品質低下を招くとともに、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Tiの含有量の上限値は、0.60%、好ましくは0.30%に制御される。一方、Tiの含有量の下限値は、特に限定されないが、Tiによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%である。
<Ti: 0.60% or less>
Ti, like Nb, is an element that forms precipitates and exhibits the effect of uniformly precipitating the ε-Cu phase around them, and is added as necessary. However, if the content of Ti is too high, it causes surface defects, leading to deterioration in quality and deterioration in workability of the ferritic stainless steel material. Therefore, the upper limit of the Ti content is controlled to 0.60%, preferably 0.30%. On the other hand, the lower limit of the Ti content is not particularly limited, but from the viewpoint of obtaining the effect of Ti, it is preferably 0.01%, more preferably 0.03%.
<V:1.00%以下>
 Vは、Nb、Tiと同様に析出物を形成し、その周囲にε-Cu相を均一に析出させる効果を呈する元素であり、必要に応じて添加される。ただし、Vの含有量が多すぎると、表面疵の原因となって品質低下を招くとともに、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Vの含有量の上限値は、1.00%、好ましくは0.50%に制御される。一方、Vの含有量の下限値は、特に限定されないが、Vによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%である。
<V: 1.00% or less>
V, like Nb and Ti, is an element that exhibits the effect of forming precipitates and uniformly precipitating the ε-Cu phase around them, and is added as necessary. However, if the V content is too high, it causes surface flaws, resulting in deterioration of quality and deterioration in workability of the ferritic stainless steel material. Therefore, the upper limit of the V content is controlled to 1.00%, preferably 0.50%. On the other hand, the lower limit of the V content is not particularly limited, but from the viewpoint of obtaining the effect of V, it is preferably 0.01%, more preferably 0.03%.
<W:2.00%以下>
 Wは、Nb、Ti、Vと同様に析出物を形成し、その周囲にε-Cu相を均一に析出させる効果を呈する元素であり、必要に応じて添加される。ただし、Wの含有量が多すぎると、表面疵の原因となって品質低下を招くとともに、フェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Wの含有量の上限値は、2.00%、好ましくは1.00%に制御される。一方、Wの含有量の下限値は、特に限定されないが、Wによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%である。
<W: 2.00% or less>
W, like Nb, Ti, and V, is an element that exhibits the effect of forming precipitates and uniformly precipitating the ε-Cu phase around them, and is added as necessary. However, if the W content is too high, it causes surface flaws, resulting in deterioration in quality and deterioration in workability of the ferritic stainless steel material. Therefore, the upper limit of the W content is controlled to 2.00%, preferably 1.00%. On the other hand, the lower limit of the W content is not particularly limited, but from the viewpoint of obtaining the effect of W, it is preferably 0.01%, more preferably 0.03%.
<Mo:3.00%以下>
 Moは、フェライト系ステンレス鋼材の耐食性を改善する元素であり、必要に応じて添加される。ただし、Moの含有量は多すぎると、製造コストの上昇につながる。そのため、Moの含有量の上限値は、3.00%、好ましくは2.00%、より好ましくは1.50%、更に好ましくは1.00%に制御される。一方、Moの含有量の下限値は、特に限定されないが、Moによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%、更に好ましくは0.10%である。
<Mo: 3.00% or less>
Mo is an element that improves the corrosion resistance of ferritic stainless steel materials and is added as necessary. However, if the Mo content is too high, the manufacturing cost will increase. Therefore, the upper limit of the Mo content is controlled to 3.00%, preferably 2.00%, more preferably 1.50%, still more preferably 1.00%. On the other hand, the lower limit of the Mo content is not particularly limited, but from the viewpoint of obtaining the effect of Mo, it is preferably 0.01%, more preferably 0.03%, and still more preferably 0.10%.
<N:0.050%以下>
 Nは、Moと同様にフェライト系ステンレス鋼材の耐食性を改善する元素であり、必要に応じて添加される。ただし、Nの含有量は多すぎると、硬質化してフェライト系ステンレス鋼材の加工性が低下してしまう。そのため、Nの含有量の上限値は、0.050%、好ましくは0.030%、より好ましくは0.025%、更に好ましくは0.015%に制御される。一方、Nの含有量の下限値は、特に限定されないが、Nによる効果を得る観点から、好ましくは0.001%、好ましくは0.003%である。
<N: 0.050% or less>
N, like Mo, is an element that improves the corrosion resistance of ferritic stainless steel materials and is added as necessary. However, if the N content is too high, the workability of the ferritic stainless steel material is reduced due to hardening. Therefore, the upper limit of the N content is controlled to 0.050%, preferably 0.030%, more preferably 0.025%, still more preferably 0.015%. On the other hand, the lower limit of the N content is not particularly limited, but from the viewpoint of obtaining the effect of N, it is preferably 0.001%, preferably 0.003%.
<Sn:0.50%以下>
 Snは、Mo、Nと同様にフェライト系ステンレス鋼材の耐食性を改善する元素であり、必要に応じて添加される。ただし、Snの含有量は多すぎると、製造コストの上昇につながる。そのため、Snの含有量の上限値は、0.50%、好ましくは0.30%に制御される。一方、Snの含有量の下限値は、特に限定されないが、Snによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%である。
<Sn: 0.50% or less>
Sn, like Mo and N, is an element that improves the corrosion resistance of ferritic stainless steel materials, and is added as necessary. However, if the Sn content is too high, the manufacturing cost will increase. Therefore, the upper limit of the Sn content is controlled to 0.50%, preferably 0.30%. On the other hand, the lower limit of the Sn content is not particularly limited, but from the viewpoint of obtaining the effect of Sn, it is preferably 0.01%, more preferably 0.03%.
<Al:5.00%以下>
 Alは、精錬工程において脱酸のために用いられる元素であり、必要に応じて添加される。また、Alは、フェライト系ステンレス鋼材の耐食性や耐酸化性を改善する元素でもある。ただし、Alの含有量は多すぎると、介在物の生成量が増加して品質を低下させてしまう。そのため、Alの含有量の上限値は、5.00%、好ましくは3.00%、より好ましくは2.00%、更に好ましくは1.00%である。一方、Alの含有量の下限値は、特に限定されないが、Alによる効果を得る観点から、好ましくは0.01%、より好ましくは0.05%である。
<Al: 5.00% or less>
Al is an element used for deoxidation in the refining process and is added as necessary. Al is also an element that improves the corrosion resistance and oxidation resistance of ferritic stainless steel. However, if the Al content is too high, the amount of inclusions produced increases and the quality deteriorates. Therefore, the upper limit of the Al content is 5.00%, preferably 3.00%, more preferably 2.00%, still more preferably 1.00%. On the other hand, the lower limit of the Al content is not particularly limited, but from the viewpoint of obtaining the effect of Al, it is preferably 0.01%, more preferably 0.05%.
<Zr:0.50%以下>
 Zrは、Alと同様にフェライト系ステンレス鋼材の耐酸化性を改善する元素であり、必要に応じて添加される。ただし、Zrの含有量は多すぎると、製造コストの上昇につながる。そのため、Zrの含有量の上限値は、0.50%、好ましくは0.30%に制御される。一方、Zrの含有量の下限値は、特に限定されないが、Zrによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%である。
<Zr: 0.50% or less>
Zr, like Al, is an element that improves the oxidation resistance of ferritic stainless steel materials, and is added as necessary. However, if the Zr content is too high, it will lead to an increase in manufacturing costs. Therefore, the upper limit of the Zr content is controlled to 0.50%, preferably 0.30%. On the other hand, the lower limit of the Zr content is not particularly limited, but from the viewpoint of obtaining the effect of Zr, it is preferably 0.01%, more preferably 0.03%.
<Co:0.50%以下>
 Coは、Al、Zrと同様にフェライト系ステンレス鋼材の耐酸化性を改善する元素であり、必要に応じて添加される。ただし、Coの含有量は多すぎると、製造コストの上昇につながる。そのため、Coの含有量の上限値は、0.50%、好ましくは0.30%に制御される。一方、Coの含有量の下限値は、特に限定されないが、Coによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%である。
<Co: 0.50% or less>
Co, like Al and Zr, is an element that improves the oxidation resistance of ferritic stainless steel materials, and is added as necessary. However, if the Co content is too high, the manufacturing cost will increase. Therefore, the upper limit of the Co content is controlled to 0.50%, preferably 0.30%. On the other hand, the lower limit of the Co content is not particularly limited, but from the viewpoint of obtaining the effect of Co, it is preferably 0.01%, more preferably 0.03%.
<B:0.010%以下>
 Bは、フェライト系ステンレス鋼材の熱間加工性を改善する元素であり、必要に応じて添加される。また、Bは、粒界強化によりフェライト系ステンレス鋼材の二次加工性を改善する元素でもある。ただし、Bの含有量は多すぎると、溶接性や疲労強度の低下を招く。そのため、Bの含有量の上限値は、0.010%、好ましくは0.070%に制御される。一方、Bの含有量の下限値は、特に限定されないが、Bによる効果を得る観点から、好ましくは0.001%、より好ましくは0.002%である。
<B: 0.010% or less>
B is an element that improves the hot workability of ferritic stainless steel materials, and is added as necessary. B is also an element that improves the secondary workability of ferritic stainless steel materials by strengthening grain boundaries. However, if the content of B is too high, the weldability and fatigue strength will be lowered. Therefore, the upper limit of the B content is controlled to 0.010%, preferably 0.070%. On the other hand, the lower limit of the content of B is not particularly limited, but from the viewpoint of obtaining the effect of B, it is preferably 0.001%, more preferably 0.002%.
<Ca:0.10%以下>
 Caは、Bと同様にフェライト系ステンレス鋼材の熱間加工性を改善する元素であり、必要に応じて添加される。また、Caは、硫化物を形成してSの粒界偏析を抑制することで耐粒界酸化性を改善する元素でもある。ただし、Caの含有量は多すぎると、加工性の低下を招く。そのため、Caの含有量の上限値は、0.10%、好ましくは0.05%に制御される。一方、Caの含有量の下限値は、特に限定されないが、Caによる効果を得る観点から、好ましくは0.001%、より好ましくは0.003%である。
<Ca: 0.10% or less>
Ca, like B, is an element that improves the hot workability of ferritic stainless steel materials, and is added as necessary. Ca is also an element that forms sulfides and suppresses grain boundary segregation of S, thereby improving grain boundary oxidation resistance. However, if the Ca content is too high, workability is lowered. Therefore, the upper limit of the Ca content is controlled to 0.10%, preferably 0.05%. On the other hand, the lower limit of the Ca content is not particularly limited, but is preferably 0.001%, more preferably 0.003%, from the viewpoint of obtaining the effect of Ca.
<REM:0.20%以下>
 REM(希土類元素)は、B、Caと同様にフェライト系ステンレス鋼材の熱間加工性を改善する元素であり、必要に応じて添加される。また、REMは、溶出し難い硫化物を形成し、腐食起点となるMnSの生成を抑制することで耐食性を改善する元素でもある。ただし、REMの含有量は多すぎると、製造コストの上昇につながる。そこで、REMの含有量の上限値は、0.20%、好ましくは0.10%に制御される。一方、REMの含有量の下限値は、特に限定されないが、REMによる効果を得る観点から、好ましくは0.001%、より好ましくは0.01%である。
 なお、本明細書において「REM」は、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。これらは単独で用いてもよいし、2種以上の混合物として用いてもよい。
<REM: 0.20% or less>
REM (rare earth element), like B and Ca, is an element that improves the hot workability of ferritic stainless steel materials, and is added as necessary. REM is also an element that improves corrosion resistance by forming sulfides that are difficult to elute and suppressing the formation of MnS, which is a starting point for corrosion. However, if the REM content is too high, it will lead to an increase in manufacturing costs. Therefore, the upper limit of the REM content is controlled to 0.20%, preferably 0.10%. On the other hand, the lower limit of the REM content is not particularly limited, but is preferably 0.001%, more preferably 0.01%, from the viewpoint of obtaining the effect of REM.
In this specification, "REM" is a general term for two elements, scandium (Sc) and yttrium (Y), and fifteen elements (lanthanoids) from lanthanum (La) to lutetium (Lu). These may be used alone or as a mixture of two or more.
 次に、本発明の実施形態1に係るフェライト系ステンレス鋼材の表面に露出するε-Cu相の特徴について詳細に説明する。 Next, the features of the ε-Cu phase exposed on the surface of the ferritic stainless steel material according to Embodiment 1 of the present invention will be described in detail.
<面積率:0.1~4.0%>
 表面に露出するε-Cu相の面積率は大きいほど、Cuイオンの溶出量が多くなるため抗菌性及び抗ウィルス性を高めることができる。このε-Cu相の面積率は、結晶構造及びCuの含有量に主に依存する。そのため、ε-Cu相の面積率の上限値は、フェライト系ステンレス鋼材におけるCuの含有量を考慮すると、4.0%、好ましくは2.0%、より好ましくは1.9%、更に好ましくは1.8%に制御される。一方、ε-Cu相の面積率の下限値は、抗菌性及び抗ウィルス性を確保する観点から、0.1%、好ましくは0.3%、より好ましくは0.6%に制御される。
<Area ratio: 0.1 to 4.0%>
As the area ratio of the ε-Cu phase exposed to the surface increases, the amount of Cu ions eluted increases, so antibacterial and antiviral properties can be enhanced. The area fraction of this ε-Cu phase mainly depends on the crystal structure and the Cu content. Therefore, considering the Cu content in the ferritic stainless steel material, the upper limit of the area ratio of the ε-Cu phase is 4.0%, preferably 2.0%, more preferably 1.9%, and even more preferably controlled at 1.8%. On the other hand, the lower limit of the area ratio of the ε-Cu phase is controlled to 0.1%, preferably 0.3%, more preferably 0.6% from the viewpoint of ensuring antibacterial and antiviral properties.
 ここで、本明細書における「表面に露出するε-Cu相の面積率」は、ステンレス鋼材の表面をTEM(透過型電子顕微鏡)観察することによって算出することができる。具体的には、ステンレス鋼材の表面において、無作為に選んだ3箇所以上でTEM像を撮影した後、TEM像を画像解析してε-Cu相の面積を測定し、ε-Cu相の面積を視野面積で除することにより、「表面に露出するε-Cu相の面積率」を算出することができる。視野面積は、特に限定されないが、撮影箇所の合計で10μm2以上であることが好ましい。 Here, the "area ratio of the ε-Cu phase exposed on the surface" in this specification can be calculated by observing the surface of the stainless steel material with a TEM (transmission electron microscope). Specifically, after photographing TEM images at three or more randomly selected locations on the surface of the stainless steel material, the TEM images are image-analyzed to measure the area of the ε-Cu phase. is divided by the visual field area, the "area ratio of the ε-Cu phase exposed on the surface" can be calculated. Although the field of view area is not particularly limited, it is preferably 10 μm 2 or more in total of the photographed locations.
<平均粒子径:10~300nm>
 表面に露出するε-Cu相の平均粒子径は大きいほど、Cuイオンを長期にわたって溶出させることができるため、抗菌性及び抗ウィルス性の持続性が向上する。ただし、ε-Cu相の平均粒子径が大きすぎると、表面に露出するε-Cu相の粒子間距離が大きくなる傾向にある。そのため、表面に露出するε-Cu相の粒子間に細菌やウィルスが付着した際に、抗菌性及び抗ウィルス性が十分に得られないことがある。したがって、ε-Cu相の平均粒子径の上限値は、300nm、好ましくは250nm、より好ましくは200nmに制御される。一方、ε-Cu相の平均粒子径の下限値は、Cuイオンの溶出持続性を確保する観点から、10nm、好ましくは30nm、より好ましくは50nmに制御される。
<Average particle size: 10 to 300 nm>
As the average particle size of the ε-Cu phase exposed on the surface is larger, Cu ions can be eluted over a longer period of time, thereby improving the durability of the antibacterial and antiviral properties. However, if the average particle size of the ε-Cu phase is too large, the distance between particles of the ε-Cu phase exposed on the surface tends to increase. Therefore, when bacteria or viruses adhere between the particles of the ε-Cu phase exposed on the surface, sufficient antibacterial and antiviral properties may not be obtained. Therefore, the upper limit of the average particle size of the ε-Cu phase is controlled to 300 nm, preferably 250 nm, more preferably 200 nm. On the other hand, the lower limit of the average particle size of the ε-Cu phase is controlled to 10 nm, preferably 30 nm, more preferably 50 nm, from the viewpoint of ensuring the elution sustainability of Cu ions.
 ここで、本明細書における「表面に露出するε-Cu相の平均粒子径」は、ステンレス鋼材の表面をTEM(透過型電子顕微鏡)観察することによって算出することができる。具体的には、ステンレス鋼材の表面において、無作為に選んだ3箇所以上でTEM像を撮影した後、TEM像を画像解析してε-Cu相の円相当径を求め、その平均値を「表面に露出するε-Cu相の平均粒子径」とすることができる。 Here, the "average particle size of the ε-Cu phase exposed on the surface" in this specification can be calculated by observing the surface of the stainless steel material with a TEM (transmission electron microscope). Specifically, after photographing TEM images at three or more randomly selected locations on the surface of the stainless steel material, the TEM images are image-analyzed to obtain the circle-equivalent diameter of the ε-Cu phase, and the average value is calculated as " The average particle size of the ε-Cu phase exposed on the surface”.
<最大粒子間距離:100~1000nm>
 一般的に、細菌の大きさは0.5~3μmであるのに対し、ウィルスの大きさは10~200nmと非常に小さい。そのため、表面に露出するε-Cu相の最大粒子間距離が大きすぎると、特に、表面に露出するε-Cu相の粒子間にウィルスが付着した際に、抗ウィルス性が十分に得られないことがある。そのため、ε-Cu相の最大粒子間距離の上限値は、1000nm、好ましくは800nm、より好ましくは500nmに制御される。一方、表面に露出するε-Cu相の最大粒子間距離は小さいほど、抗菌性及び抗ウィルス性を高めることができるが、平均粒子径が10~300nmの比較的大きいε-Cu相とする場合、熱処理によるε-Cu相の成長過程を考慮すると、ε-Cu相の最大粒子間距離の下限値は、100nmが限界であると考えられる。そのため、ε-Cu相の最大粒子間距離の下限値は、100nm、好ましくは150nm、より好ましくは200nmに制御される。
<Maximum distance between particles: 100 to 1000 nm>
In general, the size of bacteria is 0.5-3 μm, whereas the size of viruses is very small, 10-200 nm. Therefore, if the maximum interparticle distance of the ε-Cu phase exposed on the surface is too large, sufficient antiviral properties cannot be obtained particularly when a virus adheres between the particles of the ε-Cu phase exposed on the surface. Sometimes. Therefore, the upper limit of the maximum interparticle distance of the ε-Cu phase is controlled to 1000 nm, preferably 800 nm, more preferably 500 nm. On the other hand, the smaller the maximum interparticle distance of the ε-Cu phase exposed on the surface, the better the antibacterial and antiviral properties. Considering the growth process of the ε-Cu phase due to heat treatment, the lower limit of the maximum distance between grains of the ε-Cu phase is thought to be 100 nm. Therefore, the lower limit of the maximum interparticle distance of the ε-Cu phase is controlled to 100 nm, preferably 150 nm, more preferably 200 nm.
 ここで、本明細書における「表面に露出するε-Cu相の最大粒子間距離」は、ステンレス鋼材の表面をTEM(透過型電子顕微鏡)観察することによって算出することができる。具体的には、ステンレス鋼材の表面において、無作為に選んだ3箇所以上でTEM像を撮影した後、TEM像を画像解析し、ε-Cu相の重心(母点)位置を求めてボロノイ分割する。次に、隣接するボロノイ領域におけるε-Cu相の重心間距離を粒子間距離として測定し、その最大値を「表面に露出するε-Cu相の最大粒子間距離」とすることができる。 Here, the "maximum interparticle distance of the ε-Cu phase exposed on the surface" in this specification can be calculated by observing the surface of the stainless steel material with a TEM (transmission electron microscope). Specifically, after photographing TEM images at three or more randomly selected locations on the surface of the stainless steel material, the TEM images are image-analyzed, and the position of the center of gravity (generating point) of the ε-Cu phase is obtained, followed by Voronoi division. do. Next, the distance between the centers of gravity of the ε-Cu phase in the adjacent Voronoi regions is measured as the inter-particle distance, and the maximum value can be taken as the "maximum inter-particle distance of the ε-Cu phase exposed on the surface".
 本発明の実施形態1に係るフェライト系ステンレス鋼材は、ビッカース硬さが160Hv以下であることが好ましい。このようなビッカース硬さに制御することにより、加工性を確保することができるため、様々な用途に用いることが可能となる。
 なお、ビッカース硬さの下限値は、特に限定されないが、一般的に100Hvである。
 ここで、本明細書における「ビッカース硬さ」は、JIS Z2244:2009に準拠して測定することができる。ビッカース硬さの測定において、測定荷重は10kgとし、無作為に選んだ5箇所以上で測定を行い、その平均値をビッカース硬さの結果とする。
The ferritic stainless steel material according to Embodiment 1 of the present invention preferably has a Vickers hardness of 160 Hv or less. By controlling the Vickers hardness in such a manner, workability can be ensured, so that it can be used for various purposes.
Although the lower limit of Vickers hardness is not particularly limited, it is generally 100Hv.
Here, the "Vickers hardness" in this specification can be measured according to JIS Z2244:2009. In the measurement of Vickers hardness, the measurement load is 10 kg, the measurement is performed at 5 or more randomly selected locations, and the average value is taken as the result of Vickers hardness.
 本発明の実施形態1に係るフェライト系ステンレス鋼材は、JIS Z2801:2010に準拠した抗菌試験において、抗菌活性値が2.0以上であることが好ましい。このような抗菌活性値であれば、抗菌性が高いことを客観的に担保することができる。
 ここで、本明細書における「抗菌試験」は、JIS Z2801:2010に準拠し、細菌として黄色ぶどう球菌を用いて行う。
The ferritic stainless steel material according to Embodiment 1 of the present invention preferably has an antibacterial activity value of 2.0 or more in an antibacterial test conforming to JIS Z2801:2010. With such an antibacterial activity value, high antibacterial properties can be objectively ensured.
Here, the "antibacterial test" in this specification conforms to JIS Z2801:2010 and is performed using Staphylococcus aureus as bacteria.
 本発明の実施形態1に係るフェライト系ステンレス鋼材は、ISO 21702:2019に準拠した抗ウィルス試験において、抗ウィルス活性値が2.0以上であることが好ましい。このような抗ウィルス活性値であれば、抗ウィルス性が高いことを客観的に担保することができる。
 ここで、本明細書における「抗ウィルス試験」は、ISO 21702:2019に準拠し、ウィルスとしてA型インフルエンザウィルスを用いて行う。
The ferritic stainless steel material according to Embodiment 1 of the present invention preferably has an antiviral activity value of 2.0 or more in an antiviral test conforming to ISO 21702:2019. With such an antiviral activity value, high antiviral properties can be objectively guaranteed.
Here, the "antiviral test" in the present specification is performed in accordance with ISO 21702:2019 using influenza A virus as the virus.
 本発明の実施形態1に係るフェライト系ステンレス鋼材の種類は、特に限定されないが、熱延材又は冷延材であることが好ましい。
 熱延材の場合、その厚みは、一般的に3mm以上である。また、冷延材である場合、その厚みは、一般的に3mm未満である。
Although the type of the ferritic stainless steel material according to Embodiment 1 of the present invention is not particularly limited, it is preferably a hot-rolled material or a cold-rolled material.
In the case of hot-rolled material, its thickness is generally 3 mm or more. In the case of cold-rolled material, the thickness is generally less than 3 mm.
 本発明の実施形態1に係るフェライト系ステンレス鋼材は、熱延工程、冷却工程及び熱処理工程を含む方法によって製造することができる。
 熱延工程は、上記の組成を有するスラブを熱延して熱延材を得る工程である。具体的には、上記の組成を有するスラブを粗圧延した後、仕上熱延することによって熱延材が得られる。この熱延材は、コイル状に巻取ってもよい。
 なお、上記の組成を有するスラブは、特に限定されないが、例えば、上記の組成を有するステンレス鋼を溶製し、鍛造又は鋳造によって得ることができる。
The ferritic stainless steel material according to Embodiment 1 of the present invention can be manufactured by a method including a hot rolling process, a cooling process, and a heat treatment process.
The hot-rolling step is a step of hot-rolling a slab having the above composition to obtain a hot-rolled material. Specifically, a hot-rolled material is obtained by subjecting a slab having the above composition to rough rolling, followed by finish hot rolling. This hot-rolled material may be wound into a coil.
The slab having the above composition is not particularly limited, but can be obtained, for example, by melting stainless steel having the above composition and forging or casting.
 仕上熱延は、仕上熱延終了温度が700~900℃となるようにして行われる。この温度範囲に仕上熱延終了温度を制御することにより、仕上熱延終了から冷却工程においてε-Cu相の微細な「種」を少量且つ均一に析出させ易くなる。その結果、熱処理工程でε-Cu相を成長させることにより、表面におけるε-Cu相の分布状態を上記のように制御することが可能となる。これに対して、仕上熱延終了温度が700℃未満であると、仕上熱延終了から冷却工程においてε-Cu相の微細な「種」が十分に析出しない。その結果、熱処理工程でε-Cu相を成長させると、表面におけるε-Cu相の平均粒子径や最大粒子間距離が大きくなりすぎてしまう。また、仕上熱延終了温度が900℃を超えると、組織が粗大化して加工性及び靭性が低下してしまう。
 なお、熱延工程におけるその他の条件は、スラブの組成に応じて適宜設定すればよく、特に限定されない。
Finish hot rolling is carried out so that the finishing temperature of finish hot rolling is 700 to 900°C. By controlling the final hot rolling temperature within this temperature range, a small amount of fine "seeds" of the ε-Cu phase can be easily precipitated uniformly in the cooling process after the final hot rolling. As a result, by growing the ε-Cu phase in the heat treatment process, the distribution of the ε-Cu phase on the surface can be controlled as described above. On the other hand, if the finish hot rolling finish temperature is lower than 700° C., fine "seeds" of the ε-Cu phase are not sufficiently precipitated in the cooling step after the finish hot rolling finish. As a result, when the ε-Cu phase is grown in the heat treatment process, the average particle size and maximum inter-particle distance of the ε-Cu phase on the surface become too large. On the other hand, if the finish hot rolling finish temperature exceeds 900°C, the structure becomes coarse and the workability and toughness are lowered.
Other conditions in the hot rolling process may be appropriately set according to the composition of the slab, and are not particularly limited.
 冷却工程は、ε-Cu相の微細な「種」を析出させるための工程であり、熱延工程で得られた熱延材を0.2~5℃/秒の平均冷却速度で900~500℃の間を冷却することによって行われる。このような条件で緩やかに冷却することにより、ε-Cu相の析出温度域(900~500℃)でε-Cu相の微細な「種」を少量且つ均一に析出させることができる。このε-Cu相の微細な「種」は、熱処理工程において優先的に成長するため、比較的大きなε-Cu相が均一に分散した状態となる。その結果として、表面におけるε-Cu相の分布状態を上記のように制御することが可能となる。このような効果を安定して得る観点から、平均冷却速度は1~5℃/秒であることが好ましく、2~4℃/秒であることがより好ましい。これに対して、900~500℃の間を5℃/秒よりも大きい平均冷却速度で冷却すると、ε-Cu相の微細な「種」が十分に析出しない。その結果、熱処理工程でε-Cu相を成長させると、表面におけるε-Cu相の平均粒子径や最大粒子間距離が大きくなりすぎてしまう。また、900~500℃の間を0.2℃/秒よりも小さい平均冷却速度で冷却すると、ε-Cu相の微細な「種」の析出量が多くなってしまう。その結果、熱処理工程において比較的小さなε-Cu相が多量に析出した状態となる。
 なお、冷却工程における冷却方法は、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、コイル状に巻取った熱延材を保温ボックスに入れるだけで、復熱によって上記の冷却条件で緩やかに冷却することが可能となる。また、冷却温度の細かな調整は、保温ボックスに供給するガス(例えば、Arガス)の供給量を制御することによって行うことができる。
The cooling step is a step for precipitating fine “seeds” of the ε-Cu phase. °C by cooling. By gently cooling under such conditions, a small amount of fine "seeds" of the ε-Cu phase can be uniformly precipitated in the precipitation temperature range (900 to 500° C.) of the ε-Cu phase. Since the fine "seeds" of the ε-Cu phase preferentially grow in the heat treatment process, relatively large ε-Cu phases are uniformly dispersed. As a result, the distribution state of the ε-Cu phase on the surface can be controlled as described above. From the viewpoint of stably obtaining such effects, the average cooling rate is preferably 1 to 5° C./second, more preferably 2 to 4° C./second. In contrast, when cooling between 900 and 500° C. at an average cooling rate greater than 5° C./sec, fine “seeds” of the ε-Cu phase are not sufficiently precipitated. As a result, when the ε-Cu phase is grown in the heat treatment process, the average particle size and maximum inter-particle distance of the ε-Cu phase on the surface become too large. Further, when cooling between 900 and 500° C. at an average cooling rate of less than 0.2° C./sec, the amount of fine “seeds” of the ε-Cu phase is increased. As a result, a large amount of relatively small ε-Cu phase precipitates in the heat treatment process.
In addition, the cooling method in the cooling step is not particularly limited, and a method known in the art can be used. For example, just by putting the hot-rolled material wound into a coil into a heat insulating box, it is possible to gently cool the material under the above-mentioned cooling conditions by recuperation. Also, the cooling temperature can be finely adjusted by controlling the amount of gas (for example, Ar gas) supplied to the heat insulating box.
 熱処理工程は、冷却工程で析出したε-Cu相の微細な「種」を成長させる工程であり、冷却工程で冷却された熱延材を750~850℃で4時間以上加熱することによって行われる。このような条件で熱処理を行うことにより、表面におけるε-Cu相の分布状態を上記のように制御することが可能となる。このような効果を安定して得る観点から、加熱時間は6~48時間であることが好ましく、8~36時間であることがより好ましい。これに対して、加熱温度が750℃未満であったり、加熱時間が4時間未満であったりすると、ε-Cu相の微細な「種」が十分に成長せず、ε-Cu相の平均粒子径が小さくなりすぎてしまう。また、加熱温度が850℃を超えると、ε-Cu相が母相に固溶してしまう。 The heat treatment step is a step of growing fine ε-Cu phase “seeds” precipitated in the cooling step, and is performed by heating the hot-rolled material cooled in the cooling step at 750 to 850° C. for 4 hours or more. . By performing the heat treatment under such conditions, it becomes possible to control the distribution state of the ε-Cu phase on the surface as described above. From the viewpoint of stably obtaining such effects, the heating time is preferably 6 to 48 hours, more preferably 8 to 36 hours. On the other hand, when the heating temperature is less than 750° C. or the heating time is less than 4 hours, the fine “seeds” of the ε-Cu phase do not grow sufficiently, and the average grains of the ε-Cu phase The diameter becomes too small. Moreover, when the heating temperature exceeds 850° C., the ε-Cu phase dissolves in the matrix phase.
 熱処理工程後には、必要に応じて、酸洗及び/又は研磨を行う表層除去工程を更に行ってもよい。表層除去工程を行うことにより、表面に形成されたスケールやCr貧化層の除去を行うことができる。
 表層除去工程で除去される表層の厚さは、スラブの組成などに応じて適宜調整すればよく、特に限定されない。例えば、Cr貧化層を除去する場合には、10μm以上の厚さの表層を除去することが好ましい。
After the heat treatment step, a surface layer removing step of pickling and/or polishing may be further performed, if necessary. By carrying out the surface layer removing step, it is possible to remove scales and a Cr-poor layer formed on the surface.
The thickness of the surface layer to be removed in the surface layer removing step is not particularly limited and may be appropriately adjusted according to the composition of the slab. For example, when removing a Cr-poor layer, it is preferable to remove a surface layer having a thickness of 10 μm or more.
 フェライト系ステンレス鋼材が冷延材である場合、熱処理工程後に、冷間圧延を行い、次いで300秒以内の焼鈍処理を行う冷間圧延・焼鈍工程を更に行ってもよい。なお、熱処理工程後に表層除去工程を行う場合、表層除去工程後に冷間圧延・焼鈍工程を行ってもよいし、冷間圧延・焼鈍工程後に表層除去工程を行ってもよい。
 焼鈍処理を300秒以内の短時間とすることにより、表面に露出するε-Cu相への影響を抑えつつ、冷間圧延で生じた歪を除去することができる。
 なお、冷間圧延及び焼鈍処理の条件は、スラブの組成などに応じて適宜調整すればよく、特に限定されない。
When the ferritic stainless steel material is a cold-rolled material, after the heat treatment process, cold rolling may be performed, followed by a cold rolling/annealing process in which annealing is performed within 300 seconds. When the surface layer removing process is performed after the heat treatment process, the cold rolling/annealing process may be performed after the surface layer removing process, or the surface layer removing process may be performed after the cold rolling/annealing process.
By setting the annealing treatment to a short time of 300 seconds or less, the strain caused by cold rolling can be removed while suppressing the influence on the ε-Cu phase exposed on the surface.
The conditions for cold rolling and annealing treatment are not particularly limited and may be appropriately adjusted according to the composition of the slab.
 本発明の実施形態1に係るフェライト系ステンレス鋼材は、抗菌性及び抗ウィルス性を長期間にわたって維持することができるため、抗菌・抗ウィルス部材に用いることができる。また、本発明の実施形態1に係るフェライト系ステンレス鋼材は、ビッカース硬さを160Hv以下にすることができるため、抗菌・抗ウィルス部材に適した形状に加工することも容易である。 Since the ferritic stainless steel material according to Embodiment 1 of the present invention can maintain antibacterial and antiviral properties for a long period of time, it can be used as an antibacterial/antiviral member. In addition, since the ferritic stainless steel material according to Embodiment 1 of the present invention can have a Vickers hardness of 160 Hv or less, it can be easily processed into a shape suitable for antibacterial/antiviral members.
(実施形態2)
 本発明の実施形態2に係るオーステナイト系ステンレス鋼材は、C:0.12%以下、Si:4.00%以下、Mn:6.00%以下、P:0.050%以下、S:0.030%以下、Ni:4.00~20.00%、Cr:10.00~32.00%、Cu:2.00~6.00%を含み、残部がFe及び不純物からなる組成を有する。
 また、本発明の実施形態2に係るオーステナイト系ステンレス鋼材は、Nb:1.00%以下、Ti:1.00%以下、V:1.00%以下、W:2.00%以下、Mo:6.00%以下、N:0.350%以下、Sn:0.50%以下、Al:5.00%以下、Zr:0.50%以下、Co:0.50%以下、B:0.020%以下、Ca:0.10%以下、REM:0.20%以下から選択される1種以上を更に含むことができる。
 以下、各成分について詳細に説明する。
(Embodiment 2)
The austenitic stainless steel material according to Embodiment 2 of the present invention contains C: 0.12% or less, Si: 4.00% or less, Mn: 6.00% or less, P: 0.050% or less, and S: 0.05% or less. 030% or less, Ni: 4.00 to 20.00%, Cr: 10.00 to 32.00%, Cu: 2.00 to 6.00%, and the balance being Fe and impurities.
Further, the austenitic stainless steel material according to Embodiment 2 of the present invention has Nb: 1.00% or less, Ti: 1.00% or less, V: 1.00% or less, W: 2.00% or less, Mo: 6.00% or less, N: 0.350% or less, Sn: 0.50% or less, Al: 5.00% or less, Zr: 0.50% or less, Co: 0.50% or less, B: 0.50% or less. 020% or less, Ca: 0.10% or less, and REM: 0.20% or less.
Each component will be described in detail below.
<C:0.12%以下>
 Cは、オーステナイト生成元素であり、オーステナイト系ステンレス鋼材の強度を向上させるとともに、Cr炭化物の生成によってε-Cu相を均一に分散析出させるのに有効な元素である。ただし、Cの含有量は多すぎると、硬質になって加工性が下がることに加え、溶接などの熱影響を受けた際に鋭敏化が生じ、オーステナイト系ステンレス鋼材の耐食性が低下してしまう。そのため、Cの含有量の上限値は、0.12%、好ましくは0.10%、より好ましくは0.09%、更に好ましくは0.08%に制御される。一方、Cの含有量の下限値は、特に限定されないが、好ましくは0.001%、より好ましくは0.003%、更に好ましくは0.005%である。
<C: 0.12% or less>
C is an austenite-forming element, and is an element effective in improving the strength of the austenitic stainless steel material and uniformly dispersing and precipitating the ε-Cu phase by forming Cr carbide. However, if the C content is too high, the material becomes hard and workability is reduced, and in addition, sensitization occurs when subjected to thermal effects such as welding, and the corrosion resistance of the austenitic stainless steel is reduced. Therefore, the upper limit of the C content is controlled to 0.12%, preferably 0.10%, more preferably 0.09%, still more preferably 0.08%. On the other hand, the lower limit of the C content is not particularly limited, but is preferably 0.001%, more preferably 0.003%, and still more preferably 0.005%.
<Si:4.00%以下>
 Siは、オーステナイト系ステンレス鋼材の耐食性及び強度を向上させるのに有効な元素である。ただし、Siの含有量が多すぎると、硬質化してオーステナイト系ステンレス鋼材の加工性が低下してしまう。また、Siは、フェライト相(α相)生成元素であるため、オーステナイト相(γ相)の不安定化やフェライト相の生成を招く。そのため、Siの含有量の上限値は、4.00%、好ましくは3.00%、より好ましくは2.00%、更に好ましくは1.50%に制御される。一方、Siの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.05%、更に好ましくは0.10%である。
<Si: 4.00% or less>
Si is an effective element for improving the corrosion resistance and strength of austenitic stainless steel. However, if the Si content is too high, the workability of the austenitic stainless steel material will be reduced due to hardening. In addition, since Si is a ferrite phase (α phase) forming element, it causes destabilization of the austenite phase (γ phase) and formation of the ferrite phase. Therefore, the upper limit of the Si content is controlled to 4.00%, preferably 3.00%, more preferably 2.00%, still more preferably 1.50%. On the other hand, the lower limit of the Si content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and still more preferably 0.10%.
<Mn:6.00%以下>
 Mnは、オーステナイト相(γ相)生成元素である。また、MnはMnSを生成し、MnSはε-Cu相の核として作用する。しかし、Mnの含有量が多すぎると、オーステナイト系ステンレス鋼材の耐食性が低下してしまう。そのため、Mnの含有量の上限値は、6.00%、好ましくは4.00%、より好ましくは3.00%、更に好ましくは2.50%に制御される。一方、Mnの含有量の下限値は、特に限定されないが、好ましくは0.01%、より好ましくは0.05%、更に好ましくは0.10%である。
<Mn: 6.00% or less>
Mn is an austenite phase (γ phase) forming element. Also, Mn generates MnS, and MnS acts as a nucleus of the ε-Cu phase. However, if the Mn content is too high, the corrosion resistance of the austenitic stainless steel will be lowered. Therefore, the upper limit of the Mn content is controlled to 6.00%, preferably 4.00%, more preferably 3.00%, still more preferably 2.50%. On the other hand, the lower limit of the Mn content is not particularly limited, but is preferably 0.01%, more preferably 0.05%, and still more preferably 0.10%.
<P:0.050%以下>
 Pの含有量は多すぎると、オーステナイト系ステンレス鋼材の耐食性や加工性が低下してしまう。そのため、Pの含有量の上限値は、0.050%、好ましくは0.040%、より好ましくは0.035%に制御される。一方、Pの含有量の下限値は、特に限定されないが、Pの含有量の低減には精錬コストが生じるため、好ましくは0.001%、より好ましくは0.005%、更に好ましくは0.010%である。
<P: 0.050% or less>
If the P content is too high, the corrosion resistance and workability of the austenitic stainless steel will be lowered. Therefore, the upper limit of the P content is controlled to 0.050%, preferably 0.040%, more preferably 0.035%. On the other hand, the lower limit of the P content is not particularly limited. 010%.
<S:0.030%以下>
 Sの含有量は多すぎると、熱間加工性が下がってオーステナイト系ステンレス鋼材の製造性が低下してしまうとともに、耐食性にも悪影響を及ぼす。そのため、Sの含有量の上限値は、0.030%、好ましくは0.020%、より好ましくは0.010%に制御される。一方、Sの含有量の下限値は、特に限定されないが、Sの含有量の低減には精錬コストが生じるため、好ましくは0.0001%、より好ましくは0.0002%、更に好ましくは0.0003%である。
<S: 0.030% or less>
If the S content is too high, the hot workability is lowered, the manufacturability of the austenitic stainless steel is lowered, and the corrosion resistance is also adversely affected. Therefore, the upper limit of the S content is controlled to 0.030%, preferably 0.020%, more preferably 0.010%. On the other hand, the lower limit of the S content is not particularly limited. 0003%.
<Ni:4.00~20.00%>
 Niは、Mnと同様にオーステナイト相(γ相)生成元素であり、耐食性と加工性を向上させる。Niは高価な元素であるため、含有量が多すぎると、製造コストの上昇につながる。そのため、Niの含有量の上限値は、20.00%未満、好ましくは15.00%以下、より好ましくは12.00%以下、更に好ましくは10.00%以下に制御される。一方、Niの含有量は少なすぎると、オーステナイト系ステンレス鋼材の耐食性が低下する。そのため、Niの含有量の下限値は、4.00%、好ましくは6.00%、より好ましくは8.00%、更に好ましくは8.50%に制御される。
<Ni: 4.00 to 20.00%>
Ni, like Mn, is an austenite phase (γ phase) forming element and improves corrosion resistance and workability. Since Ni is an expensive element, an excessive Ni content leads to an increase in manufacturing costs. Therefore, the upper limit of the Ni content is controlled to less than 20.00%, preferably 15.00% or less, more preferably 12.00% or less, still more preferably 10.00% or less. On the other hand, if the Ni content is too low, the corrosion resistance of the austenitic stainless steel will be lowered. Therefore, the lower limit of the Ni content is controlled to 4.00%, preferably 6.00%, more preferably 8.00%, still more preferably 8.50%.
<Cr:10.00~32.00%>
 Crは、オーステナイト系ステンレス鋼材の耐食性を維持するために重要な元素である。ただし、Crの含有量は多すぎると、精錬コストの上昇を招く上に、固溶強化によって硬質化し、オーステナイト系ステンレス鋼材の加工性が低下してしまう。そのため、Crの含有量の上限値は、32.00%、好ましくは25.00%、より好ましくは22.00%、更に好ましくは20.00%に制御される。一方、Crの含有量は少なすぎると、耐食性が十分に得られない。そのため、Crの含有量の下限値は、10.00%、好ましくは14.00%、より好ましくは15.00%、更に好ましくは18.00%に制御される。
<Cr: 10.00 to 32.00%>
Cr is an important element for maintaining the corrosion resistance of austenitic stainless steel. However, if the Cr content is too high, the refining cost will increase, and solid-solution strengthening will harden the austenitic stainless steel. Therefore, the upper limit of the Cr content is controlled to 32.00%, preferably 25.00%, more preferably 22.00%, still more preferably 20.00%. On the other hand, if the Cr content is too small, sufficient corrosion resistance cannot be obtained. Therefore, the lower limit of the Cr content is controlled to 10.00%, preferably 14.00%, more preferably 15.00%, still more preferably 18.00%.
<Cu:2.00~6.00%>
 Cuは、抗菌性及び抗ウィルス性を与えるε-Cu相を析出させるのに必要な元素である。また、Cuは、オーステナイト系ステンレス鋼材の加工性を改善する元素でもある。このような効果を得るために、Cuの含有量の下限値は、2.00%、好ましくは2.50%、より好ましくは3.00%、更に好ましくは3.60%に制御される。一方、Cuの含有量が多すぎると、オーステナイト系ステンレス鋼材の耐食性が低下してしまうとともに、鋳造時に低融点相を形成して熱間加工性の低下を招く。そのため、Cuの含有量の上限値は、6.00%、好ましくは5.00%、より好ましくは4.80%、更に好ましくは4.50%に制御される。
<Cu: 2.00 to 6.00%>
Cu is an element necessary for precipitating the ε-Cu phase, which provides antibacterial and antiviral properties. Cu is also an element that improves the workability of austenitic stainless steel. In order to obtain such effects, the lower limit of the Cu content is controlled to 2.00%, preferably 2.50%, more preferably 3.00%, still more preferably 3.60%. On the other hand, if the Cu content is too high, the corrosion resistance of the austenitic stainless steel material is reduced, and a low melting point phase is formed during casting, resulting in deterioration of hot workability. Therefore, the upper limit of the Cu content is controlled to 6.00%, preferably 5.00%, more preferably 4.80%, still more preferably 4.50%.
<Nb:1.00%以下、Ti:1.00%以下、V:1.00%以下、W:2.00%以下>
 Nb、Ti、V及びWは、炭化物や窒化物を形成することでCやNの粒界偏析による鋭敏化を低減し、耐粒界腐食性を改善する元素であり、必要に応じて添加される。ただし、Nb、Ti、V及びWの含有量は多すぎると、表面疵の原因となって品質低下を招くとともに、オーステナイト系ステンレス鋼材の加工性が低下してしまう。そのため、Nb、Ti及びVの含有量の上限値はいずれも1.00%、好ましくは0.50%に制御される。また、Wの含有量の上限値は、2.00%、好ましくは1.50%に制御される。一方、Nb、Ti、V及びWの含有量の下限値はいずれも特に限定されないが、これらの元素による効果を得る観点から、0.01%、好ましくは0.02%である。
<Nb: 1.00% or less, Ti: 1.00% or less, V: 1.00% or less, W: 2.00% or less>
Nb, Ti, V and W are elements that form carbides and nitrides to reduce sensitization due to grain boundary segregation of C and N and improve intergranular corrosion resistance, and are added as necessary. be. However, if the contents of Nb, Ti, V, and W are too high, they cause surface flaws, leading to deterioration in quality and deterioration in workability of the austenitic stainless steel material. Therefore, the upper limits of the contents of Nb, Ti and V are all controlled to 1.00%, preferably 0.50%. Also, the upper limit of the W content is controlled to 2.00%, preferably 1.50%. On the other hand, the lower limit of the content of Nb, Ti, V and W is not particularly limited, but from the viewpoint of obtaining the effect of these elements, it is 0.01%, preferably 0.02%.
<Mo:6.00%以下>
 Moは、オーステナイト系ステンレス鋼材の耐食性を改善する元素であり、必要に応じて添加される。ただし、Moの含有量は多すぎると、製造コストの上昇につながる。そのため、Moの含有量の上限値は、6.00%、好ましくは5.00%、より好ましくは3.00%、更に好ましくは2.00%に制御される。一方、Moの含有量の下限値は、特に限定されないが、Moによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%、更に好ましくは0.10%である。
<Mo: 6.00% or less>
Mo is an element that improves the corrosion resistance of austenitic stainless steel materials and is added as necessary. However, if the Mo content is too high, the manufacturing cost will increase. Therefore, the upper limit of the Mo content is controlled to 6.00%, preferably 5.00%, more preferably 3.00%, still more preferably 2.00%. On the other hand, the lower limit of the Mo content is not particularly limited, but from the viewpoint of obtaining the effect of Mo, it is preferably 0.01%, more preferably 0.03%, and still more preferably 0.10%.
<N:0.350%以下>
 Nは、Moと同様にオーステナイト系ステンレス鋼材の耐食性を改善する元素であり、必要に応じて添加される。ただし、Nの含有量は多すぎると、硬質化してオーステナイト系ステンレス鋼材の加工性が低下してしまう。そのため、Nの含有量の上限値は、0.350%、好ましくは0.200%、より好ましくは0.150%、更に好ましくは0.050%に制御される。一方、Nの含有量の下限値は、特に限定されないが、Nによる効果を得る観点から、好ましくは0.001%、好ましくは0.003%である。
<N: 0.350% or less>
N, like Mo, is an element that improves the corrosion resistance of austenitic stainless steel materials and is added as necessary. However, if the content of N is too high, the workability of the austenitic stainless steel deteriorates due to hardening. Therefore, the upper limit of the N content is controlled to 0.350%, preferably 0.200%, more preferably 0.150%, still more preferably 0.050%. On the other hand, the lower limit of the N content is not particularly limited, but from the viewpoint of obtaining the effect of N, it is preferably 0.001%, preferably 0.003%.
<Sn:0.50%以下>
 Snは、Mo、Nと同様にオーステナイト系ステンレス鋼材の耐食性を改善する元素であり、必要に応じて添加される。ただし、Snの含有量は多すぎると、オーステナイト系ステンレス鋼材の熱間加工性の低下を招く。そのため、Snの含有量の上限値は、0.50%、好ましくは0.30%に制御される。一方、Snの含有量の下限値は、特に限定されないが、Snの効果を得る観点から、好ましくは0.01%、さらに好ましくは0.02%である。
<Sn: 0.50% or less>
Sn, like Mo and N, is an element that improves the corrosion resistance of austenitic stainless steel materials, and is added as necessary. However, if the Sn content is too high, the hot workability of the austenitic stainless steel will deteriorate. Therefore, the upper limit of the Sn content is controlled to 0.50%, preferably 0.30%. On the other hand, the lower limit of the Sn content is not particularly limited, but from the viewpoint of obtaining the effect of Sn, it is preferably 0.01%, more preferably 0.02%.
<Al:5.00%以下>
 Alは、精錬工程において脱酸のために用いられる元素であり、必要に応じて添加される。また、Alは、オーステナイト系ステンレス鋼材の耐食性や耐酸化性を改善する元素でもある。ただし、Alの含有量は多すぎると、介在物の生成量が増加して品質を低下させてしまう。そのため、Alの含有量の上限値は、5.00%、好ましくは3.00%、より好ましくは2.00%、更に好ましくは1.00%である。一方、Alの含有量の下限値は、特に限定されないが、Alによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%である。
<Al: 5.00% or less>
Al is an element used for deoxidation in the refining process and is added as necessary. Al is also an element that improves the corrosion resistance and oxidation resistance of austenitic stainless steel. However, if the Al content is too high, the amount of inclusions produced increases and the quality deteriorates. Therefore, the upper limit of the Al content is 5.00%, preferably 3.00%, more preferably 2.00%, still more preferably 1.00%. On the other hand, the lower limit of the Al content is not particularly limited, but from the viewpoint of obtaining the effect of Al, it is preferably 0.01%, more preferably 0.03%.
<Zr:0.50%以下>
 Zrは、Alと同様にオーステナイト系ステンレス鋼材の耐酸化性を改善する元素であり、必要に応じて添加される。ただし、Zrの含有量は多すぎると、製造コストの上昇につながる。そのため、Zrの含有量の上限値は、0.50%、好ましくは0.30%に制御される。一方、Zrの含有量の下限値は、特に限定されないが、Zrによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%である。
<Zr: 0.50% or less>
Zr, like Al, is an element that improves the oxidation resistance of austenitic stainless steel materials, and is added as necessary. However, if the Zr content is too high, it will lead to an increase in manufacturing cost. Therefore, the upper limit of the Zr content is controlled to 0.50%, preferably 0.30%. On the other hand, the lower limit of the Zr content is not particularly limited, but from the viewpoint of obtaining the effect of Zr, it is preferably 0.01%, more preferably 0.03%.
<Co:0.50%以下>
 Coは、Al、Zrと同様にオーステナイト系ステンレス鋼材の耐酸化性を改善する元素であり、必要に応じて添加される。ただし、Coの含有量は多すぎると、製造コストの上昇につながる。そのため、Coの含有量の上限値は、0.50%、好ましくは0.30%に制御される。一方、Coの含有量の下限値は、特に限定されないが、Coによる効果を得る観点から、好ましくは0.01%、より好ましくは0.03%である。
<Co: 0.50% or less>
Co, like Al and Zr, is an element that improves the oxidation resistance of austenitic stainless steel materials and is added as necessary. However, if the Co content is too high, the manufacturing cost will increase. Therefore, the upper limit of the Co content is controlled to 0.50%, preferably 0.30%. On the other hand, the lower limit of the Co content is not particularly limited, but from the viewpoint of obtaining the effect of Co, it is preferably 0.01%, more preferably 0.03%.
<B:0.020%以下>
 Bは、熱間加工性を向上させる元素であり、必要に応じて添加される。ただし、Bの含有量は多すぎると、オーステナイト系ステンレス鋼材の耐食性や溶接性が低下してしまう。そのため、Bの含有量の上限値は、0.020%、好ましくは0.015%、より好ましくは0.010%、更に好ましくは0.005%に制御される。一方、Bの含有量の下限値は、特に限定されないが、Bによる効果を得る観点から、0.0001%、好ましくは0.0003%、より好ましくは0.0005%に制御される。
<B: 0.020% or less>
B is an element that improves hot workability and is added as necessary. However, if the content of B is too high, the corrosion resistance and weldability of the austenitic stainless steel material will deteriorate. Therefore, the upper limit of the B content is controlled to 0.020%, preferably 0.015%, more preferably 0.010%, and even more preferably 0.005%. On the other hand, the lower limit of the content of B is not particularly limited, but is controlled to 0.0001%, preferably 0.0003%, more preferably 0.0005% from the viewpoint of obtaining the effect of B.
<Ca:0.10%以下>
 Caは、Bと同様にオーステナイト系ステンレス鋼材の熱間加工性を改善する元素であり、必要に応じて添加される。また、Caは、硫化物を形成してSの粒界偏析を抑制することで耐粒界酸化性を改善する元素でもある。ただし、Caの含有量は多すぎると、加工性の低下を招く。そのため、Caの含有量の上限値は、0.10%、好ましくは0.05%に制御される。一方、Caの含有量の下限値は、特に限定されないが、Caによる効果を得る観点から、好ましくは0.001%、より好ましくは0.003%である。
<Ca: 0.10% or less>
Ca, like B, is an element that improves the hot workability of austenitic stainless steel materials, and is added as necessary. Ca is also an element that forms sulfides and suppresses grain boundary segregation of S, thereby improving grain boundary oxidation resistance. However, if the Ca content is too high, workability is lowered. Therefore, the upper limit of the Ca content is controlled to 0.10%, preferably 0.05%. On the other hand, the lower limit of the Ca content is not particularly limited, but is preferably 0.001%, more preferably 0.003%, from the viewpoint of obtaining the effect of Ca.
<REM:0.20%以下>
 REM(希土類元素)は、B、Caと同様にオーステナイト系ステンレス鋼材の熱間加工性を改善する元素であり、必要に応じて添加される。また、REMは、溶出し難い硫化物を形成し、腐食起点となるMnSの生成を抑制することで耐食性を改善する元素でもある。ただし、REMの含有量は多すぎると、製造コストの上昇につながる。そこで、REMの含有量の上限値は、0.20%、好ましくは0.10%に制御される。一方、REMの含有量の下限値は、特に限定されないが、REMによる効果を得る観点から、好ましくは0.001%、より好ましくは0.01%である。
 なお、REMは、単独の種類を用いてもよいし、2種類以上の混合物として用いてもよい。
<REM: 0.20% or less>
REM (rare earth element), like B and Ca, is an element that improves the hot workability of an austenitic stainless steel material, and is added as necessary. REM is also an element that improves corrosion resistance by forming sulfides that are difficult to elute and suppressing the formation of MnS, which is a starting point for corrosion. However, if the REM content is too high, it will lead to an increase in manufacturing costs. Therefore, the upper limit of the REM content is controlled to 0.20%, preferably 0.10%. On the other hand, the lower limit of the REM content is not particularly limited, but is preferably 0.001%, more preferably 0.01%, from the viewpoint of obtaining the effect of REM.
It should be noted that REM may be used singly or as a mixture of two or more.
 次に、本発明の実施形態2に係るオーステナイト系ステンレス鋼材の表面に露出するε-Cu相の特徴について詳細に説明する。 Next, the features of the ε-Cu phase exposed on the surface of the austenitic stainless steel material according to Embodiment 2 of the present invention will be described in detail.
<面積率:0.1~4.0%>
 表面に露出するε-Cu相の面積率は大きいほど、Cuイオンの溶出量が多くなるため抗菌性及び抗ウィルス性を高めることができる。このε-Cu相の面積率は、結晶構造及びCuの含有量に主に依存する。そのため、ε-Cu相の面積率の上限値は、オーステナイト系ステンレス鋼材におけるCuの含有量を考慮すると、4.0%、好ましくは3.0%、より好ましくは2.0%に制御される。一方、ε-Cu相の面積率の下限値は、抗菌性及び抗ウィルス性を確保する観点から、0.1%、好ましくは0.3%、より好ましくは0.6%に制御される。
<Area ratio: 0.1 to 4.0%>
As the area ratio of the ε-Cu phase exposed to the surface increases, the amount of Cu ions eluted increases, so antibacterial and antiviral properties can be enhanced. The area fraction of this ε-Cu phase mainly depends on the crystal structure and the Cu content. Therefore, the upper limit of the area ratio of the ε-Cu phase is controlled to 4.0%, preferably 3.0%, more preferably 2.0%, considering the Cu content in the austenitic stainless steel material. . On the other hand, the lower limit of the area ratio of the ε-Cu phase is controlled to 0.1%, preferably 0.3%, more preferably 0.6% from the viewpoint of ensuring antibacterial and antiviral properties.
<平均粒子径:10~300nm>
 表面に露出するε-Cu相の平均粒子径は大きいほど、Cuイオンを長期にわたって溶出させることができるため、抗菌性及び抗ウィルス性の持続性が向上する。ただし、ε-Cu相の平均粒子径が大きすぎると、表面に露出するε-Cu相の粒子間距離が大きくなる傾向にある。そのため、表面に露出するε-Cu相の粒子間に細菌やウィルスが付着した際に、抗菌性及び抗ウィルス性が十分に得られないことがある。したがって、ε-Cu相の平均粒子径の上限値は、300nm、好ましくは250nm、より好ましくは200nm、更に好ましくは150nmに制御される。一方、ε-Cu相の平均粒子径の下限値は、Cuイオンの溶出持続性を確保する観点から、10nm、好ましくは20nm、より好ましくは30nmに制御される。
<Average particle size: 10 to 300 nm>
As the average particle size of the ε-Cu phase exposed on the surface is larger, Cu ions can be eluted over a longer period of time, thereby improving the durability of the antibacterial and antiviral properties. However, if the average particle size of the ε-Cu phase is too large, the distance between particles of the ε-Cu phase exposed on the surface tends to increase. Therefore, when bacteria or viruses adhere between the particles of the ε-Cu phase exposed on the surface, sufficient antibacterial and antiviral properties may not be obtained. Therefore, the upper limit of the average particle size of the ε-Cu phase is controlled to 300 nm, preferably 250 nm, more preferably 200 nm, still more preferably 150 nm. On the other hand, the lower limit of the average particle size of the ε-Cu phase is controlled to 10 nm, preferably 20 nm, more preferably 30 nm, from the viewpoint of ensuring the elution sustainability of Cu ions.
<最大粒子間距離:100~1000nm>
 一般的に、細菌の大きさは0.5~3μmであるのに対し、ウィルスの大きさは10~200nmと非常に小さい。そのため、表面に露出するε-Cu相の最大粒子間距離が大きすぎると、特に、表面に露出するε-Cu相の粒子間にウィルスが付着した際に、抗ウィルス性が十分に得られないことがある。そのため、ε-Cu相の最大粒子間距離の上限値は、1000nm、好ましくは800nm、より好ましくは500nmに制御される。一方、表面に露出するε-Cu相の最大粒子間距離は小さいほど、抗菌性及び抗ウィルス性を高めることができるが、平均粒子径が10~300nmの比較的大きいε-Cu相とする場合、熱処理によるε-Cu相の成長過程を考慮すると、ε-Cu相の最大粒子間距離の下限値は、100nmが限界であると考えられる。そのため、ε-Cu相の最大粒子間距離の下限値は、100nm、好ましくは150nm、より好ましくは200nmに制御される。
<Maximum distance between particles: 100 to 1000 nm>
In general, the size of bacteria is 0.5-3 μm, whereas the size of viruses is very small, 10-200 nm. Therefore, if the maximum interparticle distance of the ε-Cu phase exposed on the surface is too large, sufficient antiviral properties cannot be obtained particularly when a virus adheres between the particles of the ε-Cu phase exposed on the surface. Sometimes. Therefore, the upper limit of the maximum interparticle distance of the ε-Cu phase is controlled to 1000 nm, preferably 800 nm, more preferably 500 nm. On the other hand, the smaller the maximum interparticle distance of the ε-Cu phase exposed on the surface, the better the antibacterial and antiviral properties. Considering the growth process of the ε-Cu phase due to heat treatment, the lower limit of the maximum distance between grains of the ε-Cu phase is thought to be 100 nm. Therefore, the lower limit of the maximum interparticle distance of the ε-Cu phase is controlled to 100 nm, preferably 150 nm, more preferably 200 nm.
 本発明の実施形態2に係るオーステナイト系ステンレス鋼材は、ビッカース硬さが190Hv以下であることが好ましく、180Hv以下であることがより好ましい。このようなビッカース硬さに制御することにより、加工性を確保することができるため、様々な用途に用いることが可能となる。
 なお、ビッカース硬さの下限値は、特に限定されないが、一般的に100Hvである。
The austenitic stainless steel material according to Embodiment 2 of the present invention preferably has a Vickers hardness of 190 Hv or less, more preferably 180 Hv or less. By controlling the Vickers hardness in such a manner, workability can be ensured, so that it can be used for various purposes.
Although the lower limit of Vickers hardness is not particularly limited, it is generally 100Hv.
 本発明の実施形態2に係るオーステナイト系ステンレス鋼材は、JIS Z2801:2010に準拠した抗菌試験において、抗菌活性値が2.0以上であることが好ましい。このような抗菌活性値であれば、抗菌性が高いことを客観的に担保することができる。 The austenitic stainless steel material according to Embodiment 2 of the present invention preferably has an antibacterial activity value of 2.0 or more in an antibacterial test conforming to JIS Z2801:2010. With such an antibacterial activity value, high antibacterial properties can be objectively ensured.
 本発明の実施形態2に係るオーステナイト系ステンレス鋼材は、ISO 21702:2019に準拠した抗ウィルス試験において、抗ウィルス活性値が2.0以上であることが好ましい。このような抗ウィルス活性値であれば、抗ウィルス性が高いことを客観的に担保することができる。 The austenitic stainless steel material according to Embodiment 2 of the present invention preferably has an antiviral activity value of 2.0 or more in an antiviral test conforming to ISO 21702:2019. With such an antiviral activity value, high antiviral properties can be objectively guaranteed.
 本発明の実施形態2に係るオーステナイト系ステンレス鋼材の種類は、特に限定されないが、熱延材又は冷延材であることが好ましい。
 熱延材の場合、その厚みは、一般的に3mm以上である。また、冷延材である場合、その厚みは、一般的に3mm未満である。
Although the type of the austenitic stainless steel material according to the second embodiment of the present invention is not particularly limited, it is preferably a hot-rolled material or a cold-rolled material.
In the case of hot-rolled material, its thickness is generally 3 mm or more. In the case of cold-rolled material, the thickness is generally less than 3 mm.
 本発明の実施形態2に係るオーステナイト系ステンレス鋼材は、熱延工程、冷却工程及び熱処理工程を含む方法によって製造することができる。
 熱延工程は、上記の組成を有するスラブを熱延して熱延材を得る工程である。具体的には、上記の組成を有するスラブを粗圧延した後、仕上熱延することによって熱延材が得られる。この熱延材は、コイル状に巻取ってもよい。
 なお、上記の組成を有するスラブは、特に限定されないが、例えば、上記の組成を有するステンレス鋼を溶製し、鍛造又は鋳造によって得ることができる。
The austenitic stainless steel material according to Embodiment 2 of the present invention can be manufactured by a method including a hot rolling process, a cooling process and a heat treatment process.
The hot-rolling step is a step of hot-rolling a slab having the above composition to obtain a hot-rolled material. Specifically, a hot-rolled material is obtained by subjecting a slab having the above composition to rough rolling, followed by finish hot rolling. This hot-rolled material may be wound into a coil.
The slab having the above composition is not particularly limited, but can be obtained, for example, by melting stainless steel having the above composition and forging or casting.
 仕上熱延は、仕上熱延終了温度が850~1050℃となるようにして行われる。この温度範囲に仕上熱延終了温度を制御することにより、仕上熱延終了から冷却工程においてε-Cu相の微細な「種」を少量且つ均一に析出させ易くなる。その結果、熱処理工程でε-Cu相を成長させることにより、表面におけるε-Cu相の分布状態を上記のように制御することが可能となる。これに対して、仕上熱延終了温度が850℃未満であると、仕上熱延終了から冷却工程においてε-Cu相の微細な「種」が十分に析出しない。その結果、熱処理工程でε-Cu相を成長させると、表面におけるε-Cu相の平均粒子径や最大粒子間距離が大きくなりすぎてしまう。また、仕上熱延終了温度が1050℃を超えると、組織が粗大化して加工性及び靭性が低下してしまう。また、粗大化した組織を微細な組織に戻すために複数回の圧延処理や熱処理が必要となってしまい、製造コストが上昇してしまう。
 なお、熱延工程におけるその他の条件は、スラブの組成に応じて適宜設定すればよく、特に限定されない。
Finish hot rolling is carried out so that the finishing temperature of finish hot rolling is 850 to 1050°C. By controlling the final hot rolling temperature within this temperature range, a small amount of fine "seeds" of the ε-Cu phase can be easily precipitated uniformly in the cooling process after the final hot rolling. As a result, by growing the ε-Cu phase in the heat treatment process, the distribution of the ε-Cu phase on the surface can be controlled as described above. On the other hand, if the finish hot rolling finish temperature is lower than 850° C., the fine “seeds” of the ε-Cu phase are not sufficiently precipitated in the cooling step after the finish hot rolling finish. As a result, when the ε-Cu phase is grown in the heat treatment process, the average particle size and maximum inter-particle distance of the ε-Cu phase on the surface become too large. On the other hand, if the finish hot rolling finish temperature exceeds 1050°C, the structure becomes coarse and the workability and toughness are lowered. In addition, multiple times of rolling and heat treatment are required to return the coarsened structure to a fine structure, which increases the manufacturing cost.
Other conditions in the hot rolling process may be appropriately set according to the composition of the slab, and are not particularly limited.
 冷却工程は、ε-Cu相の微細な「種」を析出させるための工程であり、熱延工程で得られた熱延材を0.2~5℃/秒の平均冷却速度で900~500℃の間を冷却することによって行われる。このような条件で緩やかに冷却することにより、ε-Cu相の析出温度域(900~500℃)でε-Cu相の微細な「種」を少量且つ均一に析出させることができる。このε-Cu相の微細な「種」は、熱処理工程において優先的に成長するため、比較的大きなε-Cu相が均一に分散した状態となる。その結果として、表面におけるε-Cu相の分布状態を上記のように制御することが可能となる。このような効果を安定して得る観点から、平均冷却速度は1~5℃/秒であることが好ましく、2~4℃/秒であることがより好ましい。これに対して、900~500℃の間を5℃/秒よりも大きい平均冷却速度で冷却すると、ε-Cu相の微細な「種」が十分に析出しない。その結果、熱処理工程でε-Cu相を成長させると、表面におけるε-Cu相の平均粒子径や最大粒子間距離が大きくなりすぎてしまう。また、900~500℃の間を0.2℃/秒よりも小さい平均冷却速度で冷却すると、ε-Cu相の微細な「種」の析出量が多くなってしまう。その結果、熱処理工程において比較的小さなε-Cu相が多量に析出した状態となる。
 なお、冷却工程における冷却方法は、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、コイル状に巻取った熱延材を保温ボックスに入れるだけで、復熱によって上記の冷却条件で緩やかに冷却することが可能となる。また、冷却温度の細かな調整は、保温ボックスに供給するガス(例えば、Arガス)の供給量を制御することによって行うことができる。
The cooling step is a step for precipitating fine “seeds” of the ε-Cu phase. °C by cooling. By gently cooling under such conditions, a small amount of fine "seeds" of the ε-Cu phase can be uniformly precipitated in the precipitation temperature range (900 to 500° C.) of the ε-Cu phase. Since the fine "seeds" of the ε-Cu phase preferentially grow in the heat treatment process, relatively large ε-Cu phases are uniformly dispersed. As a result, the distribution state of the ε-Cu phase on the surface can be controlled as described above. From the viewpoint of stably obtaining such effects, the average cooling rate is preferably 1 to 5° C./second, more preferably 2 to 4° C./second. In contrast, when cooling between 900 and 500° C. at an average cooling rate greater than 5° C./sec, fine “seeds” of the ε-Cu phase are not sufficiently precipitated. As a result, when the ε-Cu phase is grown in the heat treatment process, the average particle size and maximum inter-particle distance of the ε-Cu phase on the surface become too large. Further, when cooling between 900 and 500° C. at an average cooling rate of less than 0.2° C./sec, the amount of fine “seeds” of the ε-Cu phase is increased. As a result, a large amount of relatively small ε-Cu phase precipitates in the heat treatment process.
In addition, the cooling method in the cooling step is not particularly limited, and a method known in the art can be used. For example, just by putting the hot-rolled material wound into a coil into a heat insulating box, it is possible to gently cool the material under the above-mentioned cooling conditions by recuperation. Also, the cooling temperature can be finely adjusted by controlling the amount of gas (for example, Ar gas) supplied to the heat insulating box.
 熱処理工程は、冷却工程で析出したε-Cu相の微細な「種」を成長させる工程であり、冷却工程で冷却された熱延材を750~850℃で4時間以上加熱することによって行われる。このような条件で熱処理を行うことにより、表面におけるε-Cu相の分布状態を上記のように制御することが可能となる。このような効果を安定して得る観点から、加熱時間は6~48時間であることが好ましく、8~36時間であることがより好ましい。これに対して、加熱温度が750℃未満であったり、加熱時間が4時間未満であったりすると、ε-Cu相の微細な「種」が十分に成長せず、ε-Cu相の平均粒子径が小さくなりすぎてしまう。また、加熱温度が850℃を超えると、ε-Cu相が母相に固溶してしまう。 The heat treatment step is a step of growing fine ε-Cu phase “seeds” precipitated in the cooling step, and is performed by heating the hot-rolled material cooled in the cooling step at 750 to 850° C. for 4 hours or more. . By performing the heat treatment under such conditions, it becomes possible to control the distribution state of the ε-Cu phase on the surface as described above. From the viewpoint of stably obtaining such effects, the heating time is preferably 6 to 48 hours, more preferably 8 to 36 hours. On the other hand, when the heating temperature is less than 750° C. or the heating time is less than 4 hours, the fine “seeds” of the ε-Cu phase do not grow sufficiently, and the average grains of the ε-Cu phase The diameter becomes too small. Moreover, when the heating temperature exceeds 850° C., the ε-Cu phase dissolves in the matrix phase.
 熱処理工程後には、必要に応じて、酸洗及び/又は研磨を行う表層除去工程を更に行ってもよい。表層除去工程を行うことにより、表面に形成されたスケールやCr貧化層の除去を行うことができる。
 表層除去工程で除去される表層の厚さは、スラブの組成などに応じて適宜調整すればよく、特に限定されない。例えば、Cr貧化層を除去する場合には、10μm以上の厚さの表層を除去することが好ましい。
After the heat treatment step, a surface layer removing step of pickling and/or polishing may be further performed, if necessary. By carrying out the surface layer removing step, it is possible to remove scales and a Cr-poor layer formed on the surface.
The thickness of the surface layer to be removed in the surface layer removing step is not particularly limited and may be appropriately adjusted according to the composition of the slab. For example, when removing a Cr-poor layer, it is preferable to remove a surface layer having a thickness of 10 μm or more.
 オーステナイト系ステンレス鋼材が冷延材である場合、熱処理工程後に、冷間圧延を行い、次いで300秒以内の焼鈍処理を行う冷間圧延・焼鈍工程を更に行ってもよい。なお、熱処理工程後に表層除去工程を行う場合、表層除去工程後に冷間圧延・焼鈍工程を行ってもよいし、冷間圧延・焼鈍工程後に表層除去工程を行ってもよい。
 焼鈍処理を300秒以内の短時間とすることにより、表面に露出するε-Cu相への影響を抑えつつ、冷間圧延で生じた歪を除去することができる。
 なお、冷間圧延及び焼鈍処理の条件は、スラブの組成などに応じて適宜調整すればよく、特に限定されない。
When the austenitic stainless steel material is a cold-rolled material, after the heat treatment step, cold rolling may be performed, followed by a cold rolling/annealing step of annealing within 300 seconds. When the surface layer removing process is performed after the heat treatment process, the cold rolling/annealing process may be performed after the surface layer removing process, or the surface layer removing process may be performed after the cold rolling/annealing process.
By setting the annealing treatment to a short time of 300 seconds or less, the strain caused by cold rolling can be removed while suppressing the influence on the ε-Cu phase exposed on the surface.
The conditions for cold rolling and annealing treatment are not particularly limited and may be appropriately adjusted according to the composition of the slab.
 本発明の実施形態2に係るオーステナイト系ステンレス鋼材は、抗菌性及び抗ウィルス性を長期間にわたって維持することができるため、抗菌・抗ウィルス部材に用いることができる。また、本発明の実施形態2に係るオーステナイト系ステンレス鋼材は、ビッカース硬さを190Hv以下にすることができるため、抗菌・抗ウィルス部材に適した形状に加工することも容易である。 The austenitic stainless steel material according to Embodiment 2 of the present invention can maintain antibacterial and antiviral properties for a long period of time, so it can be used for antibacterial and antiviral members. In addition, since the austenitic stainless steel material according to Embodiment 2 of the present invention can have a Vickers hardness of 190 Hv or less, it can be easily processed into a shape suitable for antibacterial/antiviral members.
 本発明の抗菌・抗ウィルス部材は、上記のステンレス鋼材(例えば、本発明の実施形態1に係るフェライト系ステンレス鋼材及び/又は本発明の実施形態2に係るオーステナイト系ステンレス鋼材)を含む。この抗菌・抗ウィルス部材に用いられる上記のステンレス鋼材は、当該技術分野において公知の方法によって各種形状に加工されていてもよい。
 本発明の抗菌・抗ウィルス部材は、上記のステンレス鋼材以外の部材を更に含むことができる。
 抗菌・抗ウィルス部材としては、特に限定されないが、厨房機器、家電機器、医療器具、建造物の内装建材、輸送機器、実験器具、衛生器具などに用いられる、抗菌性や抗ウィルス性が要求される各種部材が挙げられる。
The antibacterial/antiviral member of the present invention includes the above stainless steel material (for example, the ferritic stainless steel material according to Embodiment 1 of the present invention and/or the austenitic stainless steel material according to Embodiment 2 of the present invention). The above stainless steel material used for this antibacterial/antiviral member may be processed into various shapes by methods known in the art.
The antibacterial/antiviral member of the present invention can further include members other than the stainless steel material described above.
The antibacterial/antiviral member is not particularly limited, but is used for kitchen equipment, home appliances, medical equipment, building interior building materials, transportation equipment, laboratory equipment, sanitary equipment, etc., and antibacterial and antiviral properties are required. and various members.
 以下に、実施例を挙げて本発明の内容を詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 Although the contents of the present invention will be described in detail below with reference to Examples, the present invention is not to be construed as being limited to these.
<フェライト系ステンレス鋼材>
 表1に示す鋼種A~Jのフェライト系の組成(残部はFe及び不純物である)を有するステンレス鋼を溶製し、鍛造してスラブとした後、仕上熱延終了温度を表2に示す通りに制御して厚さ3mmに熱圧して熱延材を得た。熱延材はコイル状に巻取り、速やかに保温ボックスに入れた後、900~500℃の間を表2に示す平均冷却速度で冷却した。平均冷却速度は、保温ボックスに供給するArガスの供給量によって調節した。次に、冷却した熱延材を、バッチ焼鈍炉を用いて、大気雰囲気下、800℃で表2に示す加熱時間の間、加熱する熱処理を行った。次に、熱処理を行った熱延材を切削加工によって100mm(圧延方向)×100mm(幅方向)に切り出した後、酸洗してスケールを除去し、P400番バフ(#400)によって研磨仕上げしてフェライト系ステンレス鋼材を得た。
<Ferritic stainless steel material>
Stainless steels having a ferritic composition (the balance being Fe and impurities) of steel grades A to J shown in Table 1 were melted and forged into slabs, and then the finish hot rolling finish temperature was measured as shown in Table 2. A hot-rolled material was obtained by hot-pressing to a thickness of 3 mm. The hot-rolled material was wound into a coil, quickly placed in a heat-insulating box, and then cooled at an average cooling rate shown in Table 2 between 900 and 500°C. The average cooling rate was adjusted by the amount of Ar gas supplied to the heat insulating box. Next, the cooled hot-rolled material was subjected to heat treatment using a batch annealing furnace in an air atmosphere at 800° C. for the heating time shown in Table 2. Next, the heat-treated hot-rolled material is cut into pieces of 100 mm (rolling direction) x 100 mm (width direction) by cutting, then pickled to remove scales, and polished with a P400 buff (#400). A ferritic stainless steel material was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られたフェライト系ステンレス鋼材について以下の評価を行った。 The following evaluations were performed on the obtained ferritic stainless steel material.
(表面に露出するε-Cu相の面積率)
 フェライト系ステンレス鋼材から直径3mmの円板を切り出し、厚さ0.5mmまで片面を研削した後、研削した面を電解研磨することによって試験片を作製した。この試験片の電解研磨した面について、無作為に選んだ10箇所(視野面積の合計:15μm2)でTEM像を撮影した後、TEM像を画像解析してε-Cu相の面積を測定した。測定したε-Cu相の面積を視野面積で除することにより、ε-Cu相の面積率を算出した。
(Area ratio of ε-Cu phase exposed on the surface)
A disk having a diameter of 3 mm was cut out from a ferritic stainless steel material, one surface of which was ground to a thickness of 0.5 mm, and then the ground surface was electropolished to prepare a test piece. TEM images were taken at 10 randomly selected points (total visual field area: 15 μm 2 ) on the electrolytically polished surface of this test piece, and then the TEM images were image-analyzed to measure the area of the ε-Cu phase. . The area ratio of the ε-Cu phase was calculated by dividing the measured ε-Cu phase area by the viewing area.
(表面に露出するε-Cu相の平均粒子径)
 上記の面積率と同様にして得られたTEM像を画像解析してε-Cu相(30個)の円相当径を求め、その平均値を算出することにより、ε-Cu相の平均粒子径を得た。
(Average particle size of ε-Cu phase exposed on the surface)
The equivalent circle diameter of the ε-Cu phase (30 pieces) was obtained by image analysis of the TEM image obtained in the same manner as the area ratio above, and the average value was calculated to obtain the average particle diameter of the ε-Cu phase. got
(表面に露出するε-Cu相の最大粒子間距離)
 上記の面積率と同様にして得られたTEM像を画像解析し、上記した方法に従って隣接するボロノイ領域におけるε-Cu相の重心間距離を粒子間距離として測定し、その最大値を求めることにより、ε-Cu相の最大粒子間距離を得た。
(Maximum interparticle distance of ε-Cu phase exposed on the surface)
Image analysis of the TEM image obtained in the same manner as the above area ratio is performed, the distance between the centers of gravity of the ε-Cu phase in the adjacent Voronoi regions is measured as the distance between particles according to the method described above, and the maximum value is obtained. , to obtain the maximum interparticle distance of the ε-Cu phase.
(抗菌試験:抗菌活性値)
 フェライト系ステンレス鋼材から50mm(圧延方向)×50mm(幅方向)の試験片を切り出した後、JIS Z2801:2010に準拠して抗菌試験を行い、抗菌活性値(初期)を求めた。抗菌試験では、細菌として黄色ぶどう球菌を用い、密着フィルムとして40mm×40mmのポリエチレンフィルムを用いた。また、菌液の接種量は0.4mLとし、試験開始の直前に試験片の全面を純度99%以上のエタノールを吸収させた局法ガーゼで軽く拭き、十分に乾燥させた後に試験を実施した。
 また、抗菌効果の持続性を評価するために、試験片を500mLの水に浸漬し、恒温槽にて80℃で16時間保持した後、上記と同様に抗菌試験を行い、抗菌活性値(水浸漬後)を求めた。
(Antibacterial test: antibacterial activity value)
After cutting out a test piece of 50 mm (rolling direction)×50 mm (width direction) from the ferritic stainless steel material, an antibacterial test was performed in accordance with JIS Z2801:2010 to obtain an antibacterial activity value (initial). In the antibacterial test, Staphylococcus aureus was used as bacteria, and a polyethylene film of 40 mm×40 mm was used as the adhesion film. In addition, the inoculum amount of the fungus solution was 0.4 mL, and the entire surface of the test piece was lightly wiped with a local gauze soaked with ethanol having a purity of 99% or more just before the start of the test, and the test was performed after sufficiently drying. .
In addition, in order to evaluate the durability of the antibacterial effect, the test piece was immersed in 500 mL of water and held at 80 ° C. for 16 hours in a constant temperature bath. after immersion) was determined.
(抗ウィルス試験:抗ウィルス活性値)
 フェライト系ステンレス鋼材から50mm(圧延方向)×50mm(幅方向)の試験片を切り出した後、ISO 21702:2019に準拠して抗ウィルス試験を行い、抗ウィルス活性値(初期)を求めた。抗ウィルス試験では、ウィルスとしてA型インフルエンザウィルスを用い、密着フィルムとして40mm×40mmのポリエチレンフィルムを用いた。また、ウィルス懸濁液(試験液)の接種量は0.4mLとし、試験開始の直前に試験片の全面を純度99%以上のエタノールを吸収させた局法ガーゼで軽く拭き、十分に乾燥させた後に試験を実施した。
 また、抗ウィルス効果の持続性を評価するために、試験片を500mLの水に浸漬し、恒温槽にて80℃で16時間保持した後、上記と同様に抗ウィルス試験を行い、抗ウィルス活性値(水浸漬後)を求めた。
(Antiviral test: antiviral activity value)
After cutting a test piece of 50 mm (rolling direction) x 50 mm (width direction) from the ferritic stainless steel material, an antiviral test was performed in accordance with ISO 21702:2019 to determine the antiviral activity value (initial). In the antiviral test, influenza A virus was used as the virus, and a polyethylene film of 40 mm×40 mm was used as the adhesion film. In addition, the amount of virus suspension (test solution) inoculated was 0.4 mL, and just before the start of the test, the entire surface of the test piece was lightly wiped with a local gauze soaked with ethanol with a purity of 99% or more, and dried thoroughly. After that, the test was carried out.
In addition, in order to evaluate the durability of the antiviral effect, the test piece was immersed in 500 mL of water, held at 80 ° C. for 16 hours in a constant temperature bath, and then subjected to an antiviral test in the same manner as described above. Values (after immersion in water) were determined.
(ビッカース硬さ)
 JIS Z2244:2009に準拠してビッカース硬さを測定した。測定は、株式会社ミツトヨ製のビッカース硬さ試験機HV-100を用い、測定荷重を10kgとし、無作為に選んだ10箇所で表面のビッカース硬さを測定して、その平均値を結果とした。
(Vickers hardness)
Vickers hardness was measured according to JIS Z2244:2009. For the measurement, a Vickers hardness tester HV-100 manufactured by Mitutoyo Co., Ltd. was used, the measurement load was 10 kg, the surface Vickers hardness was measured at 10 randomly selected points, and the average value was taken as the result. .
 上記の各評価結果を表3に示す。 Table 3 shows the above evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、No.1-1~1-11のフェライト系ステンレス鋼材(本発明例)は、所定の組成及び表面におけるε-Cu相の分布状態を有していたため、抗菌活性値(初期及び水浸漬後)、抗ウィルス活性値(初期及び水浸漬後)及びビッカース硬さの結果が全て良好であった。
 これに対してNo.1-12のフェライト系ステンレス鋼材(比較例)は、仕上熱延終了温度が低すぎるとともに平均冷却速度が大きすぎたため、ε-Cu相の最大粒子間距離が大きくなりすぎた。その結果、抗ウィルス性(2.0以上の抗ウィルス活性値)が得られなかった。
 No.1-13及び1-14のフェライト系ステンレス鋼材(比較例)は、平均冷却速度が大きすぎたため、ε-Cu相の平均粒子径や最大粒子間距離が大きくなった。その結果、抗ウィルス性(2.0以上の抗ウィルス活性値)が得られなかった。
As shown in Table 3, No. Since the ferritic stainless steel materials 1-1 to 1-11 (examples of the present invention) had a predetermined composition and a distribution state of the ε-Cu phase on the surface, the antibacterial activity value (initial and after immersion in water), the antibacterial activity value Viral activity values (initial and after water immersion) and Vickers hardness results were all good.
On the other hand, No. In the ferritic stainless steel material 1-12 (comparative example), the finish hot rolling finish temperature was too low and the average cooling rate was too high, so that the maximum interparticle distance of the ε-Cu phase was too large. As a result, antiviral properties (antiviral activity value of 2.0 or more) were not obtained.
No. In the ferritic stainless steel materials 1-13 and 1-14 (comparative examples), the average cooling rate was too high, so the average particle size of the ε-Cu phase and the maximum distance between particles increased. As a result, antiviral properties (antiviral activity value of 2.0 or more) were not obtained.
 No.1-15のフェライト系ステンレス鋼材(比較例)は、平均冷却速度が小さすぎたため、ε-Cu相の最大粒子間距離が小さくなった。その結果、水浸漬後の抗菌活性値及び抗ウィルス活性値が低く、抗菌性及び抗ウィルス性の維持効果が十分でなかった。
 No.1-16及び1-17のフェライト系ステンレス鋼材(比較例)は、所定の組成を有していないため、表面におけるε-Cu相の分布状態を適切に制御できなかった。その結果、抗菌性(2.0以上の抗菌活性値)及び抗ウィルス性(2.0以上の抗ウィルス活性値)が得られなかった。
 No.1-18(比較例)は、熱延中に割れが生じてしまい、フェライト系ステンレス鋼材を製造することができなかった。
No. In the ferritic stainless steel material 1-15 (comparative example), the average cooling rate was too small, so the maximum interparticle distance of the ε-Cu phase was small. As a result, the antibacterial activity value and the antiviral activity value after immersion in water were low, and the effect of maintaining the antibacterial and antiviral properties was not sufficient.
No. Since the ferritic stainless steel materials 1-16 and 1-17 (comparative examples) did not have a predetermined composition, the distribution state of the ε-Cu phase on the surface could not be controlled appropriately. As a result, antibacterial properties (antibacterial activity value of 2.0 or more) and antiviral properties (antiviral activity value of 2.0 or more) were not obtained.
No. In 1-18 (comparative example), cracks occurred during hot rolling, and a ferritic stainless steel material could not be produced.
<オーステナイト系ステンレス鋼材>
 表4に示す鋼種a~jのオーステナイト系の組成(残部はFe及び不純物である)を有するステンレス鋼を溶製し、鍛造してスラブとした後、仕上熱延終了温度を表5に示す通りに制御して厚さ3mmに熱圧して熱延材を得た。熱延材はコイル状に巻取り、速やかに保温ボックスに入れた後、900~500℃の間を表5に示す平均冷却速度で冷却した。平均冷却速度は、保温ボックスに供給するArガスの供給量によって調節した。次に、冷却した熱延材を、バッチ焼鈍炉を用いて、大気雰囲気下、800℃で表5に示す加熱時間の間、加熱する熱処理を行った。次に、熱処理を行った熱延材を切削加工によって100mm(圧延方向)×100mm(幅方向)に切り出した後、酸洗してスケールを除去し、P400番バフ(#400)によって研磨仕上げしてオーステナイト系ステンレス鋼材を得た。
<Austenitic stainless steel material>
Stainless steels having an austenitic composition (the balance being Fe and impurities) of steel grades a to j shown in Table 4 were melted and forged into slabs, and the finish hot rolling finish temperature was measured as shown in Table 5. A hot-rolled material was obtained by hot-pressing to a thickness of 3 mm. The hot-rolled material was wound into a coil, quickly placed in a heat-insulating box, and then cooled between 900 and 500° C. at the average cooling rate shown in Table 5. The average cooling rate was adjusted by the amount of Ar gas supplied to the heat insulating box. Next, the cooled hot-rolled material was subjected to heat treatment using a batch annealing furnace in an air atmosphere at 800° C. for the heating time shown in Table 5. Next, the heat-treated hot-rolled material is cut into pieces of 100 mm (rolling direction) x 100 mm (width direction) by cutting, then pickled to remove scales, and polished with a P400 buff (#400). An austenitic stainless steel material was obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 得られたオーステナイト系ステンレス鋼材について、上記のフェライト系ステンレス鋼材と同様の評価を行った。その評価結果を表6に示す。 The obtained austenitic stainless steel material was evaluated in the same manner as the above ferritic stainless steel material. Table 6 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、No.2-1~2-11のオーステナイト系ステンレス鋼材(本発明例)は、所定の組成及び表面におけるε-Cu相の分布状態を有していたため、抗菌活性値(初期及び水浸漬後)、抗ウィルス活性値(初期及び水浸漬後)及びビッカース硬さの結果が全て良好であった。
 これに対してNo.2-12のオーステナイト系ステンレス鋼材(比較例)は、仕上熱延終了温度が低すぎるとともに平均冷却速度が大きすぎたため、ε-Cu相の平均粒子径が大きくなりすぎた。その結果、抗ウィルス性(2.0以上の抗ウィルス活性値)が得られなかった。
 No.2-13及び2-14のオーステナイト系ステンレス鋼材(比較例)は、平均冷却速度が大きすぎたため、ε-Cu相の最大粒子間距離が大きくなった。その結果、抗ウィルス性(2.0以上の抗ウィルス活性値)が得られなかった。
As shown in Table 6, No. The austenitic stainless steel materials 2-1 to 2-11 (examples of the present invention) had a predetermined composition and a distribution state of the ε-Cu phase on the surface. Viral activity values (initial and after water immersion) and Vickers hardness results were all good.
On the other hand, No. In the austenitic stainless steel material No. 2-12 (comparative example), the finish hot rolling finishing temperature was too low and the average cooling rate was too high, so that the average particle size of the ε-Cu phase was too large. As a result, antiviral properties (antiviral activity value of 2.0 or more) were not obtained.
No. In the austenitic stainless steel materials 2-13 and 2-14 (comparative examples), the average cooling rate was too high, so the maximum interparticle distance of the ε-Cu phase was large. As a result, antiviral properties (antiviral activity value of 2.0 or more) were not obtained.
 No.2-15のオーステナイト系ステンレス鋼材(比較例)は、平均冷却速度が小さすぎたため、ε-Cu相の平均粒子径が小さくなった。その結果、水浸漬後の抗菌活性値及び抗ウィルス活性値が低く、抗菌性及び抗ウィルス性の維持効果が十分でなかった。
 No.2-16及び2-17のオーステナイト系ステンレス鋼材(比較例)は、所定の組成を有していないため、表面におけるε-Cu相の分布状態を適切に制御できなかった。その結果、抗菌性(2.0以上の抗菌活性値)及び、抗ウィルス性(2.0以上の抗ウィルス活性値)が得られなかった。
 No.2-18(比較例)は、所定の組成を有していないため、熱延中に割れが生じてしまい、オーステナイト系ステンレス鋼材を製造することができなかった。
No. In the austenitic stainless steel material No. 2-15 (comparative example), the average cooling rate was too low, so the average particle size of the ε-Cu phase was small. As a result, the antibacterial activity value and the antiviral activity value after immersion in water were low, and the effect of maintaining the antibacterial and antiviral properties was not sufficient.
No. Since the austenitic stainless steel materials 2-16 and 2-17 (comparative examples) did not have a predetermined composition, it was not possible to appropriately control the distribution of the ε-Cu phase on the surface. As a result, antibacterial properties (antibacterial activity value of 2.0 or more) and antiviral properties (antiviral activity value of 2.0 or more) were not obtained.
No. Since 2-18 (comparative example) did not have a predetermined composition, cracks occurred during hot rolling, and an austenitic stainless steel material could not be produced.
 以上の結果からわかるように、本発明によれば、抗菌性及び抗ウィルス性を長期間にわたって維持することが可能なステンレス鋼材及びその製造方法、並びに抗菌・抗ウィルス部材を提供することができる。 As can be seen from the above results, according to the present invention, it is possible to provide a stainless steel material capable of maintaining antibacterial and antiviral properties for a long period of time, a method for producing the same, and an antibacterial/antiviral member.
 10 ステンレス鋼材
 11 ε-Cu相
 12 不働態皮膜
10 stainless steel material 11 ε-Cu phase 12 passive film

Claims (15)

  1.  表面に露出したε-Cu相を有し、
     前記表面における前記ε-Cu相は、面積率が0.1~4.0%、平均粒子径が10~300nm、最大粒子間距離が100~1000nmであるステンレス鋼材。
    Having an ε-Cu phase exposed on the surface,
    The stainless steel material, wherein the ε-Cu phase on the surface has an area ratio of 0.1 to 4.0%, an average particle size of 10 to 300 nm, and a maximum interparticle distance of 100 to 1000 nm.
  2.  質量基準で、C:0.12%以下、Si:4.00%以下、Mn:6.00%以下、P:0.050%以下、S:0.030%以下、Ni:20.00%以下、Cr:10.00~32.00%、Cu:0.40~6.00%を含み、残部がFe及び不純物からなる組成を有する、請求項1に記載のステンレス鋼材。 On mass basis, C: 0.12% or less, Si: 4.00% or less, Mn: 6.00% or less, P: 0.050% or less, S: 0.030% or less, Ni: 20.00% The stainless steel material according to claim 1, having a composition containing 10.00 to 32.00% Cr, 0.40 to 6.00% Cu, and the balance being Fe and impurities.
  3.  C含有量が0.10%以下、Mn含有量が2.00%以下、Ni含有量が4.00%以下、Cu含有量が0.40~4.00%のフェライト系である、請求項2に記載のステンレス鋼材。 C content is 0.10% or less, Mn content is 2.00% or less, Ni content is 4.00% or less, Cu content is a ferritic system of 0.40 to 4.00%. 2. The stainless steel material according to 2.
  4.  質量基準で、Nb:1.00%以下、Ti:0.60%以下、V:1.00%以下、W:2.00%以下、Mo:3.00%以下、N:0.050%以下、Sn:0.50%以下、Al:5.00%以下、Zr:0.50%以下、Co:0.50%以下、B:0.010%以下、Ca:0.10%以下、REM:0.20%以下から選択される1種以上を更に含む、請求項3に記載のステンレス鋼材。 Based on mass, Nb: 1.00% or less, Ti: 0.60% or less, V: 1.00% or less, W: 2.00% or less, Mo: 3.00% or less, N: 0.050% Below, Sn: 0.50% or less, Al: 5.00% or less, Zr: 0.50% or less, Co: 0.50% or less, B: 0.010% or less, Ca: 0.10% or less, REM: The stainless steel material according to claim 3, further comprising one or more selected from 0.20% or less.
  5.  ビッカース硬さが160Hv以下である、請求項3又は4に記載のステンレス鋼材。 The stainless steel material according to claim 3 or 4, which has a Vickers hardness of 160 Hv or less.
  6.  Ni含有量が4.00~20.00%、Cu含有量が2.00~6.00%のオーステナイト系である、請求項2に記載のステンレス鋼材。 The stainless steel material according to claim 2, which is austenitic with a Ni content of 4.00 to 20.00% and a Cu content of 2.00 to 6.00%.
  7.  質量基準で、Nb:1.00%以下、Ti:1.00%以下、V:1.00%以下、W:2.00%以下、Mo:6.00%以下、N:0.350%以下、Sn:0.50%以下、Al:5.00%以下、Zr:0.50%以下、Co:0.50%以下、B:0.020%以下、Ca:0.10%以下、REM:0.20%以下から選択される1種以上を更に含む、請求項6に記載のステンレス鋼材。 Based on mass, Nb: 1.00% or less, Ti: 1.00% or less, V: 1.00% or less, W: 2.00% or less, Mo: 6.00% or less, N: 0.350% Below, Sn: 0.50% or less, Al: 5.00% or less, Zr: 0.50% or less, Co: 0.50% or less, B: 0.020% or less, Ca: 0.10% or less, REM: The stainless steel material according to claim 6, further comprising one or more selected from 0.20% or less.
  8.  ビッカース硬さが190Hv以下である、請求項6又は7に記載のステンレス鋼材。 The stainless steel material according to claim 6 or 7, which has a Vickers hardness of 190 Hv or less.
  9.  JIS Z2801:2010に準拠した抗菌試験において、抗菌活性値が2.0以上である、請求項1~8のいずれか一項に記載のステンレス鋼材。 The stainless steel material according to any one of claims 1 to 8, which has an antibacterial activity value of 2.0 or more in an antibacterial test according to JIS Z2801:2010.
  10.  ISO 21702:2019に準拠した抗ウィルス試験において、抗ウィルス活性値が2.0以上である、請求項1~9のいずれか一項に記載のステンレス鋼材。 The stainless steel material according to any one of claims 1 to 9, which has an antiviral activity value of 2.0 or more in an antiviral test conforming to ISO 21702:2019.
  11.  質量基準で、C:0.10%以下、Si:4.00%以下、Mn:2.00%以下、P:0.050%以下、S:0.030%以下、Ni:4.00%以下、Cr:10.00~32.00%、Cu:0.40~4.00%を含み、残部がFe及び不純物からなるフェライト系の組成を有するスラブ、又は質量基準で、C:0.12%以下、Si:4.00%以下、Mn:6.00%以下、P:0.050%以下、S:0.030%以下、Ni:4.00~20.00%、Cr:10.00~32.00%、Cu:2.00~6.00%を含み、残部がFe及び不純物からなるオーステナイト系の組成を有するスラブを熱延して熱延材を得る熱延工程であって、前記スラブの組成が前記フェライト系の場合に仕上熱延終了温度を700~900℃、前記オーステナイト系の場合に仕上熱延終了温度を850~1050℃とする工程と、
     前記熱延工程で得られた前記熱延材を0.2~5℃/秒の平均冷却速度で900~500℃の間を冷却する冷却工程と、
     前記冷却工程で冷却された前記熱延材を750~850℃で4時間以上加熱する熱処理工程と
    を含むステンレス鋼材の製造方法。
    On mass basis, C: 0.10% or less, Si: 4.00% or less, Mn: 2.00% or less, P: 0.050% or less, S: 0.030% or less, Ni: 4.00% Hereinafter, slabs having a ferritic composition containing Cr: 10.00 to 32.00%, Cu: 0.40 to 4.00%, and the balance being Fe and impurities, or C: 0.00% by mass. 12% or less, Si: 4.00% or less, Mn: 6.00% or less, P: 0.050% or less, S: 0.030% or less, Ni: 4.00 to 20.00%, Cr: 10 00 to 32.00%, Cu: 2.00 to 6.00%, and the balance being Fe and impurities. a step of setting the finish hot rolling finish temperature to 700 to 900° C. when the composition of the slab is ferritic, and setting the finish hot rolling finish temperature to 850 to 1050° C. when the composition is austenitic;
    a cooling step of cooling the hot-rolled material obtained in the hot-rolling step to a temperature between 900 and 500°C at an average cooling rate of 0.2 to 5°C/sec;
    and a heat treatment step of heating the hot-rolled material cooled in the cooling step at 750 to 850° C. for 4 hours or longer.
  12.  前記フェライト系の組成を有する前記スラブは、質量基準で、Nb:1.00%以下、Ti:0.60%以下、V:1.00%以下、W:2.00%以下、Mo:3.00%以下、N:0.050%以下、Sn:0.50%以下、Al:5.00%以下、Zr:0.50%以下、Co:0.50%以下、B:0.010%以下、Ca:0.10%以下、REM:0.20%以下から選択される1種以上を更に含み、
     前記オーステナイト系の組成を有する前記スラブは、質量基準で、Nb:1.00%以下、Ti:1.00%以下、V:1.00%以下、W:2.00%以下、Mo:6.00%以下、N:0.350%以下、Sn:0.50%以下、Al:5.00%以下、Zr:0.50%以下、Co:0.50%以下、B:0.020%以下、Ca:0.10%以下、REM:0.20%以下から選択される1種以上を更に含む
    請求項11に記載のステンレス鋼材の製造方法。
    The slab having the ferrite-based composition has, on a mass basis, Nb: 1.00% or less, Ti: 0.60% or less, V: 1.00% or less, W: 2.00% or less, Mo: 3 .00% or less, N: 0.050% or less, Sn: 0.50% or less, Al: 5.00% or less, Zr: 0.50% or less, Co: 0.50% or less, B: 0.010 % or less, Ca: 0.10% or less, REM: 0.20% or less,
    The slab having the austenitic composition is, on a mass basis, Nb: 1.00% or less, Ti: 1.00% or less, V: 1.00% or less, W: 2.00% or less, Mo: 6 .00% or less, N: 0.350% or less, Sn: 0.50% or less, Al: 5.00% or less, Zr: 0.50% or less, Co: 0.50% or less, B: 0.020 % or less, Ca: 0.10% or less, and REM: 0.20% or less.
  13.  前記熱処理工程後に、酸洗及び/又は研磨を行う表層除去工程を更に含む、請求項11又は12に記載のステンレス鋼材の製造方法。 The method for manufacturing a stainless steel material according to claim 11 or 12, further comprising a surface removal step of pickling and/or polishing after the heat treatment step.
  14.  前記熱処理工程後に、冷間圧延を行い、次いで300秒以内の焼鈍処理を行う冷間圧延・焼鈍工程を更に含む、請求項11~13のいずれか一項に記載のステンレス鋼材の製造方法。 The method for producing a stainless steel material according to any one of claims 11 to 13, further comprising a cold rolling/annealing step in which cold rolling is performed after the heat treatment step and then annealing treatment is performed within 300 seconds.
  15.  請求項1~10のいずれか一項に記載のステンレス鋼材を含む抗菌・抗ウィルス部材。 An antibacterial/antiviral member containing the stainless steel material according to any one of claims 1 to 10.
PCT/JP2022/011738 2021-03-26 2022-03-15 Stainless steel material and method for manufacturing same, and antibacterial/antiviral member WO2022202507A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/260,513 US20240060151A1 (en) 2021-03-26 2022-03-15 Stainless steel material, method for producing same, and antibacterial and antiviral member
EP22775296.1A EP4317481A1 (en) 2021-03-26 2022-03-15 Stainless steel material and method for manufacturing same, and antibacterial/antiviral member
CN202280006944.2A CN116368246A (en) 2021-03-26 2022-03-15 Stainless steel material, method for producing same, and antibacterial/antiviral member
MX2023011015A MX2023011015A (en) 2021-03-26 2022-03-15 Stainless steel material and method for manufacturing same, and antibacterial/antiviral member.
KR1020237014019A KR20230076838A (en) 2021-03-26 2022-03-15 Stainless steel material and its manufacturing method, and antibacterial/antiviral member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-054054 2021-03-26
JP2021-054052 2021-03-26
JP2021054054A JP2022151130A (en) 2021-03-26 2021-03-26 Austenitic stainless steel, manufacturing method thereof, and antibacterial and antivirus member
JP2021054052A JP2022151128A (en) 2021-03-26 2021-03-26 Ferritic stainless steel, manufacturing method thereof, and antibacterial and antivirus member

Publications (1)

Publication Number Publication Date
WO2022202507A1 true WO2022202507A1 (en) 2022-09-29

Family

ID=83396140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011738 WO2022202507A1 (en) 2021-03-26 2022-03-15 Stainless steel material and method for manufacturing same, and antibacterial/antiviral member

Country Status (7)

Country Link
US (1) US20240060151A1 (en)
EP (1) EP4317481A1 (en)
KR (1) KR20230076838A (en)
CN (1) CN116368246A (en)
MX (1) MX2023011015A (en)
TW (1) TWI814284B (en)
WO (1) WO2022202507A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170053A (en) 1995-12-15 1997-06-30 Nisshin Steel Co Ltd Ferritic stainless steel excellent in antibacterial characteristic and its production
JPH09176800A (en) 1995-12-26 1997-07-08 Nisshin Steel Co Ltd Austenitic stainless steel excellent in antibacterial characteristic and its production
JP2012162760A (en) * 2011-02-04 2012-08-30 Nippon Steel & Sumikin Stainless Steel Corp Free-cutting ferritic stainless steel and method for producing the same
CN102876990A (en) * 2012-10-24 2013-01-16 章磊 Corrosion-resisting antibacterial stainless steel and manufacturing method thereof
JP2017206725A (en) * 2016-05-17 2017-11-24 Jfeスチール株式会社 Ferritic stainless steel and manufacturing method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110093566A (en) * 2019-04-15 2019-08-06 上海大学 Direct drinking anti-corrosion antibacterial ferritic stainless steel and preparation method thereof
CN110129538A (en) * 2019-05-21 2019-08-16 中国科学院金属研究所 The separation method of nano-scale copper-rich phase in cupric microbial corrosion resistance pipe line steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170053A (en) 1995-12-15 1997-06-30 Nisshin Steel Co Ltd Ferritic stainless steel excellent in antibacterial characteristic and its production
JPH09176800A (en) 1995-12-26 1997-07-08 Nisshin Steel Co Ltd Austenitic stainless steel excellent in antibacterial characteristic and its production
JP2012162760A (en) * 2011-02-04 2012-08-30 Nippon Steel & Sumikin Stainless Steel Corp Free-cutting ferritic stainless steel and method for producing the same
CN102876990A (en) * 2012-10-24 2013-01-16 章磊 Corrosion-resisting antibacterial stainless steel and manufacturing method thereof
JP2017206725A (en) * 2016-05-17 2017-11-24 Jfeスチール株式会社 Ferritic stainless steel and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUZUKI SATOSHI, MIYAKUSU KATSUHISA, SATO YOSHIHIRO, KIKUCHI YASUSHI, KAWAKAMI HIROSHI: "Antimicrobiability of Cu Contained Stainless Steels", TETSU TO HAGANE: JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, IRON AND STEEL INSTITUTE OF JAPAN. TOKYO., JP, vol. 100, no. 8, 1 January 2014 (2014-01-01), JP , pages 1021 - 1028, XP055971382, ISSN: 0021-1575, DOI: 10.2355/tetsutohagane.100.1021 *

Also Published As

Publication number Publication date
KR20230076838A (en) 2023-05-31
EP4317481A1 (en) 2024-02-07
MX2023011015A (en) 2023-09-27
US20240060151A1 (en) 2024-02-22
TWI814284B (en) 2023-09-01
TW202242161A (en) 2022-11-01
CN116368246A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
EP2952602B1 (en) Ferritic stainless steel sheet which is excellent in workability and method of production of same
JP6488012B2 (en) High hardness martensitic stainless steel with excellent antibacterial properties and method for producing the same
KR101594664B1 (en) High carbon steel sheet and method for manufacturing the same
JPWO2011062152A1 (en) Austenitic stainless steel sheet and manufacturing method thereof
TWI499465B (en) High-toughness and high-corrosion resistance hot rolled ferritic stainless steel sheet
JP2010215954A (en) Steel sheet for hot press, method for producing the same and method for producing steel sheet member for hot press
JP4465057B2 (en) High carbon steel sheet for precision punching
EP3239335B1 (en) Ferritic stainless steel having excellent ductility and method for manufacturing same
KR101834996B1 (en) High hardness martensitic stainless steel with excellent hardenability and method of manufacturing the same
WO2022202507A1 (en) Stainless steel material and method for manufacturing same, and antibacterial/antiviral member
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JP2003155543A (en) Ferrite stainless steel having excellent deep drawability and reduced plane anisotropy, and production method therefor
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP2022151128A (en) Ferritic stainless steel, manufacturing method thereof, and antibacterial and antivirus member
JP2022151130A (en) Austenitic stainless steel, manufacturing method thereof, and antibacterial and antivirus member
KR101940427B1 (en) Ferritic stainless steel sheet
JP2019081916A (en) Ferritic stainless steel sheet and method for producing the same
JP4161090B2 (en) High carbon steel plate with excellent punchability
JPH0633195A (en) Precipitation hardening martensitic stainless steel and its production
KR101587699B1 (en) Martensitic stainless steel and method of manufacturing the same
JP2023138343A (en) Martensitic stainless steel material and production method thereof
JP2023517158A (en) Non-magnetic austenitic stainless steel
JP2023502232A (en) Ferritic stainless steel with improved magnetization properties and method for producing the same
JP5900717B1 (en) Stainless steel sheet and manufacturing method thereof
JP2021123751A (en) Ferritic stainless steel material for roll molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237014019

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18260513

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/011015

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2301005961

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022775296

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775296

Country of ref document: EP

Effective date: 20231026