WO2022196337A1 - Optical transmission apparatus - Google Patents

Optical transmission apparatus Download PDF

Info

Publication number
WO2022196337A1
WO2022196337A1 PCT/JP2022/008529 JP2022008529W WO2022196337A1 WO 2022196337 A1 WO2022196337 A1 WO 2022196337A1 JP 2022008529 W JP2022008529 W JP 2022008529W WO 2022196337 A1 WO2022196337 A1 WO 2022196337A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
optical
communication
receiving
Prior art date
Application number
PCT/JP2022/008529
Other languages
French (fr)
Japanese (ja)
Inventor
悠 宮島
雄一 富岡
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2022196337A1 publication Critical patent/WO2022196337A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range

Definitions

  • the present invention relates to an optical transmission device that is arranged at a distance and transmits and receives light to transmit information.
  • An optical transmission device consists of a light projecting part that transmits communication light and a light receiving part that receives communication light. In order to perform stable communication, it is necessary to align the optical axes of the optical system of the light-projecting section and the optical system of the light-receiving section.
  • Spatial optical transmission equipment (optical transmission equipment) has the problem that the direction of communication light changes due to vibrations at the installation location, atmospheric fluctuations, environmental temperature changes, etc., and communication becomes unstable.
  • Patent Document 1 the amount of positional deviation between a receiving telescope and a transmitting telescope is estimated from the amount of received light (received signal power), and an optical fiber, which is a light projecting part, is moved according to the estimated amount of positional deviation.
  • a technique is disclosed for uninterrupted communication by increasing the cross-sectional area of the transmitted beam incident on the receiving telescope.
  • the optical transmission device includes a light projecting section for transmitting communication light and a light receiving section for receiving communication light. In order to perform communication, it is necessary to correct the eccentricity of the communication light beam caused by disturbance. Therefore, especially in an optical transmission device, correcting the eccentricity of a communication light beam is a problem.
  • Patent Documents 2 and 3 disclose techniques for correcting eccentricity of communication light beams caused by vibration of a lens portion using a plurality of vibration isolation mechanisms.
  • An optical transmission device for achieving the above object is a light projecting section including emitting means for emitting communication light and a light projecting optical system, a light receiving optical system, and communication light receiving means for receiving the communication light. and an optical transmission device for performing optical communication between a light receiving unit including An adjusting optical system is provided, the light receiving unit includes detection light receiving means for receiving the detection light, and the optical transmission device controls the divergence of the adjusting optical system based on information from the detection light receiving means.
  • a control unit is provided.
  • An optical transmission device for performing optical communication between one light projecting unit and the first light receiving unit, and performing optical communication between the second light projecting unit and the second light receiving unit,
  • the first light projecting part has a detection light emitting part for emitting detection light
  • the second light projecting optical system has an adjusting optical system for changing the divergence of the light flux
  • the first light receiving part has detection light receiving means for receiving the detection light
  • the optical transmission device has a divergence control section for controlling the adjustment optical system based on information obtained by the detection light receiving means
  • An optical transmission apparatus for achieving the above object includes a first light emitting/receiving means for emitting a first communication light and receiving a second communication light, and a first optical system.
  • a second light projecting/receiving unit including one light projecting/receiving unit, second light emitting/receiving means for emitting the second communication light and receiving the first communication light, and a second optical system; and performing bidirectional optical communication between the first and second light projecting and receiving sections, wherein the first light projecting and receiving section includes a detection light emitting section for emitting detection light.
  • the second optical system has an adjusting optical system for changing the divergence of the light beam;
  • the second light projecting and receiving unit has detection light receiving means for receiving the detection light;
  • the transmission device is characterized by comprising a divergence control section for controlling the adjustment optical system based on information from the detection light receiving means.
  • FIG. 1 is a configuration diagram of an optical transmission device according to a first embodiment
  • FIG. FIG. 2 is a detailed configuration diagram of a light projecting unit according to the first embodiment
  • 4 is an enlarged view of a main portion of the light projecting section of Example 1.
  • FIG. 4 is a detailed configuration diagram of a light receiving unit of Example 1.
  • FIG. 4 is an enlarged view of a main portion of the light receiving portion of Example 1.
  • FIG. FIG. 4 is a longitudinal aberration diagram for a wavelength of 1550 nm during focusing at infinity in the light receiving optical system of Example 1; 4 is a lateral aberration diagram for a wavelength of 1550 nm during focusing at infinity of the light receiving optical system of Example 1.
  • FIG. 4 is an explanatory diagram of the amount of received light at the aperture diameter D of the light receiving optical system of Example 1.
  • FIG. 4 is an explanatory diagram of a method for calculating an additional divergence angle ⁇ in Example 1.
  • FIG. 4 is a diagram showing the relationship of required beam waist wn with respect to communication distance L in Example 1; 4 is a diagram showing the relationship of parallel light beam waist wp to communication distance L in Example 1.
  • FIG. 4 is a diagram showing the relationship of the divergent light beam waist wx to the communication distance L in Example 1.
  • FIG. FIG. 11 is a detailed configuration diagram of a light projecting unit according to the second embodiment;
  • FIG. 11 is a detailed configuration diagram of a light receiving unit of Example 2;
  • FIG. 10 is a view of the second embodiment in which the replaceable holding member of the light receiving unit is removed and the camera is attached;
  • FIG. 10 is a longitudinal aberration diagram for the e-line during focusing at infinity of the light receiving optical system of Example 2;
  • FIG. 10 is a lateral aberration diagram for the e-line during focusing at infinity of the light receiving optical system of Example 2; It is the intensity distribution of the luminous flux immediately after the opening of the light projecting part in Example 2. It is the intensity distribution of the luminous flux at the opening of the light-receiving part 2 km away from the light-projecting part in Example 2. It is the intensity distribution of the luminous flux at the opening of the light-receiving part which is 5 km away from the light-projecting part in Example 2.
  • FIG. 4 is a transmittance distribution of the light intensity conversion element of Example 2.
  • FIG. 10 shows the intensity distribution of the luminous flux immediately after the opening of the light projecting section in Example 3.
  • FIG. It is the intensity distribution of the luminous flux at the opening of the light-receiving part 2 km away from the light-projecting part of Example 3.
  • 10 shows the transmittance distribution of the light intensity conversion element of Example 3.
  • FIG. FIG. 11 is a detailed configuration diagram of a light projecting unit of Example 4;
  • FIG. 11 is a detailed configuration diagram of a light projecting unit of Example 5;
  • FIG. 1 is a schematic configuration diagram of an optical transmission device showing an embodiment of the present invention. Description is made from one direction (optical transmission device 1000 (light projecting unit, first light projecting unit, first light projecting/receiving unit) to optical transmission device 2000 (light receiving unit, first light receiving unit, second light projecting/receiving unit). )), the same applies to communication in the reverse direction (from the optical transmission device 2000 to the optical transmission device 1000).
  • the communication light transmitted from the optical transmission device 1000 on the transmission side is received by the optical transmission device 2000 on the reception side at a distance, and communication is performed.
  • An optical transmission device 1000 on the transmission side is configured by mounting a light projection unit 100 for emitting communication light on an angle adjustment base 101 .
  • the orientation of the light projecting unit 100 can be adjusted on two axes.
  • An optical transmission device 2000 on the receiving side is configured such that a light receiving section 200 for receiving communication light is mounted on an angle adjustment base (angle adjustment section) 201 .
  • the orientation of the light receiving section 200 can be adjusted on two axes.
  • the optical transmission devices 1000 and 2000 continue to be used as they are, atmospheric fluctuations, vibrations of members (not shown) holding the angle adjustment base 101 and the light receiving optical system 220, environmental temperature fluctuations, etc. , the optical path of communication light fluctuates, and communication is not stable. Therefore, fluctuations in the communication light are grasped by the transmission light detection unit of the light projection unit 100 and the reception light detection unit of the light reception unit 200 (composed of a transmission wedge prism 231 and a position detection sensor 232, which will be described later). and corrects the optical path of communication light to stabilize communication. Specifically, the transmission light control unit (divergence control unit) 140, the focus mechanism (correction optical system, both of which are not shown in FIG.
  • the angle adjustment base 201 in the projection optical system 120, the angle adjustment base 201, the reception light control unit ( A divergence control unit 240 and an image blur correction mechanism (correction optical system, both of which are not shown in FIG. 1) in the light receiving optical system 220 correct the optical path of communication light and stabilize communication.
  • the reception light control unit A divergence control unit 240 and an image blur correction mechanism (correction optical system, both of which are not shown in FIG. 1) in the light receiving optical system 220 correct the optical path of communication light and stabilize communication.
  • FIG. 1 The configuration of the optical transmission device of the present invention will be described in detail below with reference to FIGS. 2A to 21.
  • FIG. 2A The configuration of the optical transmission device of the present invention will be described in detail below with reference to FIGS. 2A to 21.
  • FIG. 2A is a detailed configuration diagram of the optical transmission device 1000 .
  • the light projecting section 100 has a communication light emitting means 110, a light projecting optical system 120 (first optical system), a transmission light detection section, a transmission light control section 140, and a holding section 150 (not shown).
  • a communication light emitting means (ejecting means, a detection light emitting part, a first emitting and receiving means) 110 emits communication light
  • a light projecting optical system 120 converts the communication light emitted from the communication light emitting means 110 into substantially parallel light.
  • the transmitted light detection section detects the state of the communication light transmitted from the projection optical system 120, and the transmitted light control section 140 controls the communication light.
  • the communication light emitting means 110 is an optical fiber, and emits communication light having a wavelength in the wavelength band of 1540 nm to 1560 nm, which is incident from the other end (not shown).
  • Communication light receiving means 210 (not shown in FIG. 2A), which will be described later, is also an optical fiber, and receives communication light at the other end (not shown).
  • the optical transmission device 1000 on the transmission side and the optical transmission device 2000 on the reception side have substantially the same structure, and if the direction of the communication light in the optical fiber is reversed, the relationship between transmission and reception is reversed. become. Thereby, two-way communication is established.
  • the light projecting optical system 120 includes a lens 121, a lens 122, a lens 123, a secondary mirror (reflective curved surface) 124, and a primary mirror (reflective curved surface) 125.
  • the lens 121 movable optical member, transmissive optical member, second adjustment optical system
  • has an image blur correction mechanism (correction optical system, double-lined frame in the drawing), and shifts in a direction perpendicular to the optical axis. This makes it possible to finely adjust the direction of the communication light (angle of incidence on the communication light receiving means 210).
  • the image blur correction mechanism (correction optical system) is composed of a lens 121 that is a single optical element.
  • the lens 123 (movable optical member, transmissive optical member) has a focus mechanism (correction optical system, double-lined frame in the figure), and by shifting in the optical axis direction, the degree of divergence of communication light can be minimized. can be adjusted.
  • the primary mirror 125 has an opening with a diameter of 30 mm at its center.
  • the transmitted light detector includes reflecting prisms 131a and 131b that return part of the transmitted communication light, and position detection sensors (second detection light receiving means) 132a and 132b that detect the condensing positions of the returned light beams. Consists of
  • FIG. 2B is an enlarged view of reflecting prisms 131a and 131b.
  • the communication light is shifted by 0.2° and folded back (180.2° with respect to the original direction).
  • the folded light beam enters the light projecting optical system 120 again and is shifted by 0.2° as described above. means) are focused on 132a and 132b.
  • the direction of the light beam can be calculated from the imaging positions (information) detected by the position detection sensors 132a and 132b.
  • the reflecting prisms 131a and 131b are installed so as to reflect the communication light within a range of 1 mm at each end of the communication light beam and within a range of 5 mm in the circumferential direction around the optical axis in one cross section including the optical axis. , the divergence of the communication light can be calculated from the directions (information) of the light rays at both ends.
  • the position detection sensors 132a and 132b have wavelength selection filters, and the light having the wavelength of the detection light emitted by the communication light emitting means 110 of the optical transmission device 1000 is transmitted therethrough. Light at the wavelength of the communication light or detection light coming from is blocked. Such a configuration reduces erroneous detection due to stray light.
  • the wavelength of the detection light is the same as the wavelength of the communication light.
  • the transmission light control unit 140 is connected to the position detection sensors 132a and 132b and performs the above calculations. Moreover, the calculation result is fed back to the focus mechanism of the projection optical system 120 .
  • the holding part 150 (not shown) has a replaceable holding member 151 and a fixed holding member 152 .
  • the communication light emitting means 110 , the position detection sensors 132 a and 132 b that are part of the transmission light detection section, and the transmission light control section 140 are held by a replaceable holding member 151 .
  • the projection optical system 120 and the reflecting prisms 131 a and 131 b that are part of the transmitted light detection section are held by a fixed holding member 152 together with a dustproof glass 153 .
  • the detachable portion 151a of the exchangeable holding member 151 and the detachable portion 152a of the fixed holding member 152 are detachable.
  • the control signal from the transmission light control unit 140 is transmitted to and received from the light projecting optical system 120 by a mechanism (electrical contact, optical coupling, etc.) capable of transmitting and receiving signals, which is configured in the detachable unit 151a and the detachable unit 152a. transmitted to the internal focus mechanism.
  • the fixed holding member 152 is held by the angle adjustment table 101 , and thus the light projecting section 100 is placed on the angle adjustment table 101 in the optical transmission device 1000 .
  • FIG. 3A is a detailed configuration diagram of the optical transmission device 2000 on the receiving side.
  • the light-receiving unit 200 includes a light-receiving optical system 220 (second optical system) that receives and condenses communication light, and communication light-receiving means 210 (second emission light) that receives the communication light condensed by the light-receiving optical system 220 .
  • a light receiving means a received light detection section for detecting the state of incoming communication light, a received light control section 240 for controlling the communication light, and a holding section.
  • the holding portion is composed of a replaceable holding member (light receiving means holding member) 251 and a fixed holding member (optical system holding member) 252 .
  • the light receiving optical system 220 has a primary mirror (reflective curved surface) 225 , a secondary mirror (reflective curved surface) 224 , a lens 223 , a lens 222 , and a lens 221 .
  • the lens 221 movable optical member, transmissive optical member
  • the image blur correction mechanism double frame in the figure
  • the image blur correction mechanism is composed of a lens 221 that is a single optical element.
  • the lens 223 (movable optical member, transmissive optical member) has a focus mechanism (double frame in the figure), and by shifting in the optical axis direction, it is possible to finely adjust the degree of divergence of the communication light.
  • the primary mirror 225 has an opening with a diameter of 30 mm at its center.
  • the communication light receiving means 210 is an optical fiber as described above, and receives communication light at the other end (not shown).
  • the spot diameter of the communication light condensed by the light receiving optical system 220 is 44 ⁇ m for the core diameter of the optical fiber of the communication light receiving means 210 of 50 ⁇ m. there is
  • the communication light receiving means 210 is arranged on the optical axis of the light receiving optical system 220 .
  • the received light detection unit includes a translucent wedge prism 231 that refracts a portion of the incoming communication light, and a position detection sensor (detection light receiving means) 232 that detects the condensing position of the refracted light beam.
  • FIG. 3B is an enlarged view of transmission wedge prism 231 .
  • the refracted light beam enters the light receiving optical system 220 and is condensed on the position detection sensor 232 located at a different position from the communication light receiving means 210 because of the 0.2° deviation described above.
  • the direction of the light beam can be calculated from the imaging position (information) detected by the position detection sensor 232 .
  • the transmission wedge prism 231 is installed so as to refract the communication light within a range of 3 mm at one end of the communication light and 5 mm in the circumferential direction around the optical axis in one cross section including the optical axis. From the ray orientation, the angle of arrival of the communication light can be calculated.
  • the position detection sensor 232 has a wavelength selection filter, and the light having the wavelength of the detection light emitted by the communication light emitting means 110 of the optical transmission device 1000 is transmitted therethrough. Alternatively, the light of the wavelength of the detection light is shielded. Such a configuration reduces erroneous detection due to stray light.
  • the wavelength of the detection light is the same as the wavelength of the communication light.
  • the received light controller 240 (optical characteristic controller) is connected to the position detection sensor 232 and performs the above calculations. Further, the calculation result is fed back to the image blur correction mechanism of the light receiving optical system 220 and the angle adjustment table 201 (the adjustment portion is indicated by a double-lined frame in the drawing). Specifically, when the fluctuation of the correction angle of the communication light is at a frequency of less than 10 Hz, correction is performed by the angle adjustment table 201, and when the frequency is from 10 to 50 Hz, the image blur correction mechanism of the light receiving optical system 220 is used. to correct.
  • a holding portion that holds the light receiving portion is composed of a replaceable holding member 251 and a fixed holding member 252 .
  • the communication light receiving means 210 and the position detection sensor 232 which is part of the received light detection section are held by a replaceable holding member 251 .
  • the light receiving optical system 220 , the transmission wedge prism 231 that is part of the received light detection section, and the received light control section 240 are held by a fixed holding member 252 together with a dustproof glass 253 .
  • the detachable portion 251a of the exchangeable holding member 251 and the detachable portion 252a of the fixed holding member 252 are detachably connected.
  • the control signal from the received light control unit 240 is transmitted to and received from the light receiving optical system 220 by signal transmission/reception by a mechanism (electrical contact, optical coupling, etc.) configured in the attachment/detachment portion 151a and the attachment/detachment portion 152a. is transmitted to the focus mechanism and the angle adjustment base 201 .
  • the fixed holding member 252 is held by the angle adjustment table 201 , and thus the light receiving section 200 is placed on the angle adjustment table 201 in the optical transmission device 2000 .
  • the communication light emitting means 110 also serves as a detection light emitting section. Also, for the sake of clarity, it should be noted that the "communication light” discussed thus far includes not only light that communicates, but also detection light.
  • optical detailed values of the light receiving optical system 220 are shown below.
  • the optical details of the projection optics 120 are also similar.
  • ri is the radius of curvature of the i-th surface from the object side
  • di is the i-th surface from the object side
  • It shows the distance (on the optical axis) from the (i+1)th surface.
  • ndi and ⁇ di represent the refractive index and Abbe number of the medium (optical member) between the i-th surface and the (i+1)-th surface.
  • the symbol * attached to the right of the surface number indicates that the surface is an aspherical surface.
  • the aspheric shape is expressed by the following equation, where the X axis is in the direction of the optical axis, the H axis is in the direction perpendicular to the optical axis, the traveling direction of light is positive, R is the paraxial radius of curvature, and K is the conic constant. Also, “eZ” means “ ⁇ 10 ⁇ Z ”.
  • Fig. 4 shows a lateral aberration diagram; A solid line and a dotted line in the astigmatism diagram of the longitudinal aberration diagram and the lateral aberration diagram show aberrations on the meridional image plane and the sagittal image plane, respectively.
  • spherical aberration is drawn on a scale of 0.4 mm
  • astigmatism is drawn on a scale of 0.4 mm
  • distortion is drawn on a scale of 5%.
  • FIG. 5 shows transverse aberration diagrams at an image height of 14.8000 mm, an image height of 11.1000 mm, an image height of 7.4000 mm, an image height of 3.7000 mm, and an image height of 0.0000 mm.
  • the aberration can be reduced at the central angle of view of the communication light receiving means 210 at the communication wavelength (1540 nm to 1560 nm).
  • the direction (arrival angle) of the communication light emitted from the projection optical system fluctuates due to environmental temperature changes, device vibrations, atmospheric fluctuations, and the like.
  • the fluctuation frequency depends on the cause of occurrence.
  • the effects of fluctuations in the optical performance of the light-receiving optical system and the light-projecting optical system and positional fluctuations of the optical transmission device due to environmental temperature changes result in arrival angle fluctuations with a fluctuation frequency of 10 Hz or less.
  • the influence of vibrations in the installation environment of the optical transmission device results in arrival angle fluctuations with a fluctuation frequency of less than 50 Hz.
  • the effect of atmospheric fluctuations is arrival angle fluctuation with a fluctuation frequency of 50 Hz or more.
  • the image blur correction mechanism can only correct image blur with a fluctuation frequency of less than 50 Hz due to limitations of the drive mechanism. Therefore, arrival angle fluctuations of 50 Hz or more, which are mainly caused by atmospheric fluctuations, cannot be corrected. If the amount of received light becomes unstable due to this influence, communication becomes unstable. Specifically, when the ratio of the amount of received light when there is variation in the arrival angle to the amount of received light when there is no variation in the angle of arrival (hereinafter referred to as the variation in the amount of received light) falls below a certain value, the received signal cannot be processed correctly. communication becomes unstable. It is an object of the present invention to reduce this.
  • communication instability is reduced by adjusting the degree of divergence for arrival angle fluctuations of fluctuation frequencies of 50 Hz or higher. Specifically, when the arrival angle variation is small, the divergence is decreased, and when the arrival angle variation is large, the divergence is increased, thereby reducing the variation in the amount of received light while securing the amount of received light as much as possible.
  • This is the principle idea of the present invention.
  • Equation (2) The intensity distribution I t of the Gaussian beam is represented by Equation (2).
  • r is the distance in the radial direction
  • w0 is the exit light beam waist (radius) immediately after exiting the projection optical system.
  • the parallel light beam waist wp when the Gaussian beam of parallel light reaches the light-receiving optical system separated by the communication distance L is expressed by Equation (3).
  • is the wavelength of communication light.
  • the divergent light beam waist w x when the divergence is adjusted in the projection optical system and changed by the additional divergence angle (half angle) ⁇ [rad] ( ⁇ 0) is given by Equation (4).
  • Equation (5) The intensity distribution Ir of the Gaussian beam that has reached the light receiving optical system is similarly expressed by Equation (5).
  • ⁇ [rad] ( ⁇ 0) (hereinafter referred to as a high-frequency arrival angle fluctuation amount) be an arrival angle fluctuation amount having a fluctuation frequency of 50 Hz or more that cannot be corrected by the image blur correction mechanism.
  • the amount of deviation ⁇ of the light arrival position above is represented by Equation (6) with respect to the communication distance L.
  • the amount of received light received at the aperture diameter D of the light receiving optical system is as shown in FIG.
  • a two-dot chain line indicates the intensity distribution when there is no shift in the light arrival position, and a broken line indicates the intensity distribution when there is a shift amount ⁇ in the light arrival position.
  • the amount of received light is obtained by multiplying these intensity distributions by the area integral of the aperture diameter D.
  • FIG. 6 shows the intensity distribution as the intensity in one dimension (one direction perpendicular to the traveling direction of the light ray), but the actual intensity distribution is two-dimensional (in the plane perpendicular to the traveling direction of the light ray). is the strength against
  • the received light amount variation ⁇ which is the ratio of the received light amount A ⁇ when the arrival angle varies by the high-frequency arrival angle variation ⁇ to the received light amount A0 when there is no arrival angle variation.
  • the variation ⁇ in the amount of received light changes depending on the relationship between the divergent light beam waist wx and the aperture diameter D, but it does not change much with the aperture diameter D. Therefore, considering the case where the aperture diameter D is extremely small, it is represented by the formula (7).
  • equation (10) the required beam waist w n is is defined as becomes. That is, the additional divergence angle ⁇ may be adjusted with respect to the parallel light beam waist wp so as to exceed the required beam waist wn .
  • equation (12) is expanded from equations (4) and (11) into equation (13).
  • the parallel light emitted with the emitted light beam waist w 0 through the projection optical system (represented as a single lens) located at a position separated by the focal length f of the projection optical system from the communication light emission part is indicated by a dashed line.
  • the two-dot chain line indicates the optical path when the communication light emitting portion is shifted by ⁇ Zf .
  • the optical path of the marginal ray at this time is the same as when the communication light emitting portion is not shifted and the light source is located at the angle of view ⁇ Y.
  • the additional divergence angle ⁇ when the communication light emitting portion is shifted by ⁇ Z f is given by equation (14). here, Than, so that becomes.
  • the communication light emitting portion is shifted, but it is the same even if it is understood as a shift of the focal plane of the projection optical system.
  • the additional divergence angle ⁇ can be calculated from the shift amount ⁇ Zf of the focal plane of the projection optical system.
  • the high-frequency arrival angle fluctuation amount ⁇ [rad] fluctuates depending on the weather, the communication distance L, and the like.
  • the high-frequency arrival angle fluctuation amount ⁇ is small when the wind is calm or the communication distance L is short, and the high-frequency arrival angle fluctuation amount ⁇ is large when the wind is strong or the communication distance L is long.
  • the received light control unit 240 calculates the arrival angle of the communication light and feeds it back to the image blur correction mechanism of the light receiving optical system 220 and the angle adjustment base 201 . However, even if these feedbacks are performed, the high-frequency arrival angle fluctuation amount ⁇ is calculated by the received light control section 240 as a correction remainder.
  • Information about the high-frequency arrival angle fluctuation amount ⁇ is transmitted to the transmission light control unit 140 via communication light. Based on the information on the high-frequency arrival angle fluctuation amount ⁇ , the transmission light control unit 140 calculates the additional divergence angle ⁇ and feeds it back to the focusing mechanism of the projection optical system 120 . This suppresses fluctuations in the amount of received light and ensures the stability of communication.
  • the focus mechanism that changes the degree of divergence also has limitations on the drive frequency.
  • the high-frequency arrival angle fluctuation amount ⁇ is the maximum value of the arrival angle fluctuation amount in the driving cycle of the focus mechanism. This makes it possible to set the optimum divergence, taking into consideration the limitation of the drive frequency of the focus mechanism.
  • the additional divergence angle ⁇ calculated by the transmission light control unit 140 may be increased or decreased depending on the purpose, such as suppressing fluctuations in the amount of received light or increasing the amount of received light.
  • Focal length f 1600mm
  • Output light beam waist w 0 50 mm Therefore, the focal plane shift amounts ⁇ Z required to secure the additional divergence angles ⁇ (3.4 ⁇ rad, 58.0 ⁇ rad, and 125 ⁇ rad) are 0.174 mm, 2.969 mm, and 6.411 mm, respectively.
  • the focusing mechanism of the projection optical system 120 has the sensitivity to shift the focal plane by 4 mm when the lens is shifted by 1 mm in the optical axis direction.
  • the lens shift amount is 1.6 mm, which is sufficient.
  • FIG. 8B it can be seen from FIG. 8B that the relationship of formula (20) is achieved over a wide range of communication distance L.
  • the lens 123 and the lens 223 are used as a focusing mechanism as means for adjusting the degree of divergence of communication light.
  • ⁇ Z fmax is the maximum focal plane shift amount that can be adjusted by the focus mechanism
  • the correction resolution of the focus mechanism is high.
  • the focus mechanism is configured with only one optical member, each of the lens 123 and the lens 223 .
  • the position detection sensors 132a and 132b detect the divergence of the communication light.
  • the divergence of the projection optical system may change due to environmental temperature changes, vibrations, and the like. With such a configuration, it is possible to improve the adjustment accuracy when adjusting the degree of divergence.
  • the divergence of the communication light is detected using the light beams folded back by the reflecting prisms 131a and 131b, but the method of detecting the divergence is not limited to this.
  • This embodiment has an angle adjustment table 201 and an image blur correction mechanism as means for correcting the direction of the communication light, and only the amount of arrival angle variation that cannot be corrected by these is dealt with by adjusting the degree of divergence. is doing.
  • the divergence can be suppressed to be small compared to the corresponding configuration only by adjusting the divergence, and the amount of received light can be ensured.
  • an image blur correction mechanism that can move the lenses 121 and 221 in the direction perpendicular to the optical axis is used. In this way, a low-cost configuration can be achieved by utilizing the technology that has been generalized in cameras and the like.
  • a mechanism for changing the position and angle of a reflecting member such as a MEMS mirror may be used.
  • a reflecting member such as a MEMS mirror
  • the MEMS mirror can be driven at a higher speed than the image blur correction mechanism.
  • the information of the high-frequency arrival angle fluctuation amount ⁇ calculated by the reception light control unit 240 is transmitted to the transmission light control unit 140 via the communication light, and the projection optical system It is fed back to the focusing mechanism of system 120 .
  • the present invention is not limited to this.
  • Information on the high-frequency arrival angle fluctuation amount ⁇ may be fed back to the focus mechanism of the light receiving optical system 220 . Since the optical transmission apparatus communicates bi-directionally and the arrival angle fluctuation amounts are relative deviations, the information of the high-frequency arrival angle fluctuation amount ⁇ of the communication light is substantially the same.
  • the optical transmission devices mutually detect the high-frequency arrival angle fluctuation amount ⁇ and feed it back to their own focusing mechanisms, thereby mutually optimizing the degree of divergence.
  • the intensity distribution of the communication light immediately after being emitted from the projection optical system 120 becomes a donut shape in the radial direction with the central part missing, and the intensity of the Gaussian beam is Different from distribution.
  • the intensity distribution of a substantially Gaussian beam is obtained when reaching the light receiving optical system due to diffraction of communication light.
  • part of the communication light emitted from the communication light emitting means 110 is used as the detection light, so the communication light emitting portion and the detection light emitting portion are the same. With such a configuration, the optical paths of the communication light and the detection light become closer, and the optical characteristics of the communication light can be detected more accurately.
  • the optical transmission device 2000 on the receiving side has been mainly discussed for the sake of explanation. It is the same.
  • both devices have a transmitted light detector and a received light detector, although only one side is shown.
  • the reflective prism and the transmissive wedge prism are installed so as to be rotated 90° about the optical axis (in FIGS. 2A and 3A, the front side of the paper surface).
  • the light projecting optical system and the light receiving optical system of the optical transmission device were basically optical systems having the same configuration, and the optical axes were substantially the same. is not limited to The light projecting optical system and the light receiving optical system of the optical transmission device may be optical systems having separate configurations, and the optical axes of both may not be coaxial.
  • the "optical axis" discussed in the present invention means the central optical path of the communication light beam emitted from the emitting means and passing through the light projecting optical system, and the light receiving means passing through the light receiving optical system. It refers to the central optical path of the luminous flux of the communication light heading. Note that the definition is different from the optical axis of a general coaxial optical system. In this embodiment, for the sake of clarity, the configuration is such that the emitting means exists on the optical axis of the coaxial light projecting optical system and the light receiving means exists on the optical axis of the coaxial light receiving optical system. I was explaining.
  • optical axis In cases such as when there are no emitting means and light receiving means on the optical axes of the light projecting optical system and the light receiving optical system, communication cannot be established even if the optical axes of a general coaxial optical system are aligned. Further, when the light projecting optical system and the light receiving optical system are decentered optical systems, it is difficult to clearly define the "optical axis". It should be appreciated that the definition of "optical axis" is different for the above reasons.
  • the detection light and the communication light similarly pass through all optical elements of the light projecting optical system 120 and the light receiving optical system 220, but are not limited to this.
  • the effect of the present invention can be obtained by passing through at least part of the light projecting optical system and the light receiving optical system in the same way.
  • it is preferable for the stability of communication that the number of optical elements that are similarly routed is as large as possible.
  • the detection light and the communication light may pass through different optical elements as the light projecting optical system and the light receiving optical system.
  • both the reflective optical element and the transmissive optical element are used for the light projecting optical system 120 and the light receiving optical system 220, but the present invention is not limited to this, and only the reflective optical element, only the transmissive optical element, etc. may consist of
  • part of the communication light emitted from the communication light emitting means 110 is used for detection, but it is not limited to this.
  • a dedicated detection light may be used, for example, a light having a different wavelength from the communication light may be incident from the other end (not shown) of the optical fiber of the communication light emitting means 110 and used as the detection light.
  • the communication light emitted from the optical fiber is received by the optical fiber, but the present invention is not limited to this.
  • the communication light emitted from the semiconductor laser may be received by the sensor.
  • the position detection sensor is used as the detection light receiving means, but it is not limited to this, and may be a two-dimensional sensor or light amount detection sensor, for example.
  • the optical transmission device 1000 and the optical transmission device 2000 which are spaced apart from each other, are capable of functioning as light projecting means and light receiving means, respectively. It has been described as a configuration in which communication is possible. However, the present invention is not premised on it.
  • a first light projecting unit including a first light emitting unit for emitting a first communication light and a first light projecting optical system; a first light receiving optical system; and a first light receiving unit for receiving the first communication light a first light receiving section including communication light receiving means; a second light projecting section including second emitting means for emitting the second communication light and a second light projecting optical system; and a second light receiving optical system.
  • the present invention can be similarly applied to an optical transmission device that performs optical communication between a second light projecting section and a second light receiving section, and can enjoy its effects.
  • the first light projecting section has a detection light emitting section for emitting detection light
  • the second light projecting optical system has an adjusting optical system for changing the degree of divergence of the light flux.
  • the first light receiving section has detection light receiving means for receiving the detection light
  • the optical transmission device has a divergence control section for controlling the adjustment optical system based on information obtained by the detection light receiving means. .
  • first light projecting section and the second light receiving section are arranged adjacent to each other, and the second light projecting section and the first light receiving section are arranged adjacent to each other.
  • arranged adjacent to each other means that the distance apart from each other is preferably 10 m or less, more preferably 2 m or less, and still more preferably 0.5 m or less.
  • Example 2 The configuration of the optical transmission device (spatial optical transmission device) according to the second embodiment of the present invention is the same as the configuration of the optical transmission device (spatial optical transmission device) of the first embodiment shown in FIG.
  • the description of the optical transmission apparatus according to the second embodiment is given for one-way communication, but the same applies to reverse-direction communication.
  • Embodiment 2 of the present invention provides an optical transmission device with small fluctuations in the amount of light due to disturbance for any communication distance.
  • FIG. 9 is a detailed configuration diagram of the light projection unit 100 (not shown) in the second embodiment of the optical transmission device 1000 shown in FIG.
  • the same reference numerals are given to the same configurations as those of the light projecting unit 1100 according to the first embodiment shown in FIG. 2A, and the description thereof is omitted.
  • the light projecting section 100 includes a communication light emitting section (projecting means) 110, a light projecting optical system 120, a transmission light detection section, a transmission light control section 140, and a holding section 150 (not shown).
  • the projection optical system 120 of the second embodiment includes a lens 121, a lens 122, a lens 123, a secondary mirror 124, a primary mirror 125, and a light intensity conversion element, which are arranged in the optical path in this order from the communication light output side. 160. It differs from the projection optical system 120 of the first embodiment in that a light intensity conversion element 160 is provided. The light intensity conversion element 160 will be described later.
  • FIG. 10 is a detailed configuration diagram of the light receiving unit 200 (not shown) in the second embodiment of the optical transmission device 2000 shown in FIG. 1 on the receiving side.
  • the same reference numerals are given to the same configurations as those of the light receiving unit 1200 in the first embodiment shown in FIG. 3A, and the description thereof is omitted.
  • the light-receiving optical system 220 of the second embodiment includes a light intensity conversion element 160, a primary mirror (reflecting curved surface) 225, a secondary mirror (reflecting curved surface) 224, a lens 223, a lens 222, a lens 223, a lens 222, a primary mirror (reflecting curved surface) 225, and a secondary mirror (reflecting curved surface) 224, which are arranged in the optical path in order from the communication light incident side. It has a lens 221 . It differs from the light receiving optical system 220 of the first embodiment in that a light intensity conversion element 160 is provided. The light intensity conversion element 160 will be described later.
  • the transmission wedge prism 231 is the same as the transmission wedge prism 231 of Example 1 shown in FIG.
  • the detachable portion 251a of the exchangeable holding member 251 and the detachable portion 252a of the fixed holding member 252 are detachably connected.
  • the detachable portion 251a is a C-mount female type
  • the detachable portion 252a is a C-mount male type. Therefore, it is possible to remove the above coupling and couple a camera device 351 having a C-mount female type 351a and an imaging element 352 capable of capturing a two-dimensional image as shown in FIG.
  • a solid line and a dotted line in the astigmatism diagram of the longitudinal aberration diagram and the lateral aberration diagram show aberrations on the meridional image plane and the sagittal image plane, respectively.
  • FIG. 13 shows lateral aberration diagrams at an image height of 14.8000 mm, an image height of 11.1000 mm, an image height of 7.4000 mm, an image height of 3.7000 mm, and an image height of 0.0000 mm.
  • the camera device 351 for visible light is attached in place of the replaceable holding member 251, and two images captured by the imaging element on the optical axis of the light receiving optical system 220 are obtained.
  • the angle of the light receiving optical system 220 can be adjusted while viewing the dimensional image.
  • the problem of the adjustment error due to the deviation between the optical axis of the camera and the optical axis of the light-receiving optical system as in Patent Document 2 is eliminated. be canceled.
  • Step 1 Confirm with GPS or the like, and adjust the angle adjusting table 101 and the angle adjusting table 201 so that the light projecting unit 100 of the optical transmission device 1000 and the light receiving unit 200 of the optical transmission device 2000 face each other.
  • Step 2 In the optical transmission device 2000, the exchangeable holding member 251 is removed from the fixed holding member 252 together with the communication light receiving unit 210 and the position detection sensor 232 which is part of the received light detection unit, and the camera for visible light is fixed to the holding member. 252 is attached to the attaching/detaching portion 252a.
  • Step 3 While confirming the two-dimensional image captured by the camera, adjust the angle adjustment table 201 again so that the optical transmission device 1000 is at the center of the captured image.
  • Step 4 Remove the camera for visible light from the attachment/detachment portion 252a of the fixed holding member 252, and attach the exchangeable holding member 251 to the attachment/detachment portion 252a.
  • the position of the sensor in the camera in the optical axis direction is the same as the tip of the fiber of the communication light receiving unit 210. Therefore, from the design point of view, focus adjustment is performed after performing step 4. No need.
  • the optical transmission device 2000 on the receiving side has been described, but the optical transmission device 1000 on the transmitting side can be similarly adjusted. As a result, the directions of the bidirectional optical axes are aligned, and communication is established.
  • the installation interval between the light-projecting unit and the light-receiving unit that is, the communication distance
  • the communication distance varies depending on the conditions of the installation area. For example, it must be installed with a communication range of 2 km in one area and with a communication range of 5 km in another area.
  • 14A, 14B, and 14C show the intensity distribution of the beam flux at each distance in Example 2.
  • FIG. 14A shows the light intensity distribution of the emitted light flux at the opening position of the light projecting section of this embodiment.
  • FIGS. 14A, 14B, and 14C show the light intensity distribution of the light flux emitted from the light-projecting part at the opening position of the light-receiving part when the light-receiving part of this embodiment is installed at a position 2 km away from the light-projecting part.
  • FIG. 14C shows the light intensity distribution of the light flux emitted from the light-projecting part at the opening position of the light-receiving part when the light-receiving part of this embodiment is installed at a position 5 km away from the light-projecting part.
  • the solid lines in FIGS. 14A, 14B, and 14C are the light intensity distributions of the luminous flux of this embodiment.
  • a dotted line is a comparative example for explaining the effect of the present invention, and shows the light intensity distribution when the light intensity conversion element (transmissive member) 160 of this embodiment is not used. Note that the light intensity was standardized by the maximum value.
  • a comparative example will be explained first.
  • the luminous flux that reaches the aperture is narrower than that of the light receiving aperture of ⁇ 100. Variation is small.
  • the luminous flux reaches a wider area than the aperture of the light receiving portion ⁇ 100, and the intensity distribution is steep near the edge of the aperture.
  • the amount of vignetting due to the opening of the light-receiving portion fluctuates greatly with respect to the deflection of the light beam due to the disturbance, resulting in large fluctuations in the amount of light.
  • optical transmission equipment with the same configuration is used for various communication distances in this way, there are cases where the light intensity distribution at the aperture position of the light receiving part is not optimal. There is a problem that cannot be solved.
  • FIG. 15 is a graph showing the transmittance distribution of the light intensity conversion element 160. As shown in FIG. As shown in FIG. 15, the transmittance is varied according to the position within the plane of the light intensity conversion element 160 . In this embodiment, by using such a light intensity conversion element 160, as shown in FIG. It reduces the light amount fluctuation when the light flux is swayed. In this embodiment, the transmittance of the light intensity conversion element 160 is set so as to decrease from the optical axis toward the end, thereby increasing the diameter of the light beam reaching the light receiving section aperture.
  • the beam diameter (diameter) at the position of the beam waist is w 0
  • the beam diameter (diameter) at an arbitrary position x away from the beam waist is w
  • the form of a Gaussian beam with a wavelength ⁇ is as follows.
  • the beam diameter w 0 at the position of the beam waist at the projection aperture is usually determined by the characteristic values of the light source and the projection optical system, it is changed to the optimum beam diameter w according to each installed communication distance. It is difficult to Therefore, in this embodiment, the intensity distribution is converted by the light intensity conversion element 160 , which is easy to change and remove the transmittance distribution. is doing. At this time, according to the above formula, the diameter of the light beam at the position of the opening of the light receiving portion that is x away can be made larger than in the case where the light intensity conversion element 160 is not provided.
  • the light intensity conversion element 160 is configured with a transmission flat plate having a distribution of transmittance in order to convert the intensity at low cost and with high precision, but the effect of the present invention is not limited to this configuration. Further, in this embodiment, the transmittance continuously decreases from the optical axis of the light intensity conversion element 160 to the end, but the effect of the present invention is not limited to this. Also, in this embodiment, since the inner region of ⁇ 30 is an unused region due to obscuration by the mirror, the transmittance distribution of only the necessary region is drawn in FIG. Therefore, in this embodiment, the transmittance of the inner ⁇ 30 region, which is not used, may be a simple mountain shape obtained by extending the transmittance curve or any other shape.
  • the light intensity conversion element 160 is arranged at a position where the beam width is the largest, the beam becomes a parallel beam, and the influence of the decentering on the intensity distribution is the lowest. That is, it is arranged further downstream (farther from the light source) than the curved mirror, ie, the secondary mirror 124, which is the farthest from the light source. Further, this position can be said to be the downstream side of the optical element farthest from the light source among the optical elements having power in the light projecting section.
  • Example 3 A third embodiment is a modification of the second embodiment. The difference from Example 2 is that the transmittance distribution of the light intensity conversion element 160 is changed.
  • 16A, 16B, and 16C show the intensity distributions of the light beams at respective distances of 0 km, 2 km, and 5 km in Example 3.
  • FIG. Solid lines in FIGS. 16A, 16B, and 16C are intensity distributions of this example.
  • a dotted line is a comparative example for explaining the effects of the present invention, and is a light intensity distribution when the light intensity conversion element 160 of Example 3 is not used.
  • FIG. 16B shows the intensity distribution when the light receiving unit is installed at a distance of 2 km. The incident light beam is vignetted from ⁇ 100, and the amount of received light fluctuates.
  • Example 3 as shown in FIG. 17, the transmittance of the light intensity conversion element 160 is set so as to increase from the optical axis toward the end, thereby reducing the divergence angle during space propagation. .
  • the luminous flux at the light receiving part opening position at the 2 km point can be made narrower, and the light amount fluctuation can be reduced even when used in an area where a larger disturbance occurs than in Example 2.
  • Embodiment 4 is a modification of Embodiments 2 and 3, and differs from Embodiments 2 and 3 in that the light intensity conversion element 160 is placed in a different position, thereby obtaining another effect.
  • FIG. 18 is a layout diagram of this embodiment. As shown in FIG. 18, in the third embodiment, a light intensity conversion element 160 is arranged between two curved mirrors, that is, a primary mirror 125 and a secondary mirror 124 . As a result, since the light beam passes through the light intensity conversion element 160 twice, a stronger intensity conversion effect can be obtained with an element having a similar transmittance distribution.
  • Example 5 is a modification of Examples 2, 3 and 4.
  • FIG. 19 is a layout diagram of the fifth embodiment. As shown in FIG. 19, in the fifth embodiment, the light intensity conversion element 160 is arranged on the light source side (upstream side) of the curved mirror closest to the light source, that is, the primary mirror 125 . Thereby, the size of the light intensity conversion element 160 can be reduced, and the cost can be reduced.
  • the lens 121 has an image blur correction mechanism (double-lined frame in the figure), and finely adjusts the direction of communication light by shifting (moving) in a direction perpendicular to the optical axis. be able to.
  • this adjustment value is large, the central axis of the intensity distribution of the luminous flux from the communication light emitting section 110 is greatly tilted after being emitted from the lens 121, and is then perpendicular to the optical axis of the projection optical system 120.
  • the light intensity conversion element 160 is arranged on the side away from the communication light emitting section 110 from the lens 121, the intensity distribution will be tilted and the intensity distribution will not be correctly converted. Therefore, in the fifth embodiment, the light intensity conversion element 160 is arranged between the lens 121 having an image blur correction mechanism and the light source, so that the intensity distribution can be satisfactorily converted even in a situation in which a large angular deviation due to disturbance is adjusted. It is possible to reduce fluctuations in the amount of light.
  • Embodiments 2 to 5 the projection optical system using the curved mirror has been described, but the present invention can naturally obtain the same effect even in the projection optical system that does not use the curved mirror.
  • 20 and 21 are examples of the transmittance distribution of the light intensity conversion element 160 used in the projection optical system. Even in the case of a general light projecting optical system without obscuration, if the light intensity conversion element 160 as shown in FIGS.
  • a fixed holding member 252 that holds the light receiving optical system 220 is fixed to the angle adjustment table 201, and a replaceable holding member 251 that holds the communication light receiving section 210 is fixed to the fixed holding member 252. It's becoming With such a configuration, the angle of the light receiving optical system 220 can be determined by the angle adjustment table 201, and the determined angle is prevented from changing due to attachment and detachment of the camera.
  • the optical transmission device does not necessarily have an angle adjustment table.
  • an angle adjustment table it is conceivable to use a tool for adjusting the angle only at the time of installation, perform the angle adjustment of the present invention, fix the position of the light receiving optical system, and then remove the angle adjustment table. Even in this case, the effects of the present invention can be obtained.
  • a C mount is used as the detachable portion 251a and the detachable portion 252a.
  • general-purpose technology a mount part with multiple bayonet claws
  • it is easy to attach and detach, making it easier to attach a commercially available camera, avoiding the risk of high costs and difficulty in procurement. .
  • the camera device is attached only when the optical transmission device 2000 is installed. Once the optical axis direction setting is completed and the communication state is established, the camera device needs to be connected all the time. and not. Such a configuration has the effect of reducing the cost of the optical transmission device.
  • the exchangeable holding member 251 when a visible light camera is attached, the exchangeable holding member 251 can be removed from the fixed holding member 252 together with the communication light receiving unit 210 and the position detection sensor 232 which is part of the received light detection unit. .
  • the exchangeable holding member 251 By adopting such a configuration, it is possible to obtain the effect of improving the attachment/detachment workability of the replaceable holding member 251 as compared with the configuration in which only the communication light receiving section 210 is replaced.
  • the relative positions of the communication light receiving unit 210 and the position detection sensor 232 are ensured, there is an effect of avoiding the adverse effect of deviation in the direction perpendicular to the optical axis due to attachment and detachment of the communication light receiving unit 210 described above. .
  • the position of the communication light receiving section 210 slightly shifts each time the communication light receiving section 210 is attached to or detached from the fixed holding member 252 .
  • the shift in the optical axis direction is detected as divergence of the communication light from the optical transmission device 2000 when the direction of the communication light is reversed, and is corrected by the focusing mechanism of the light receiving optical system 220 .
  • the focusing mechanism has the effect of correcting the shift.
  • the position of the communication light receiving section 210 slightly shifts each time the communication light receiving section 210 is attached to or detached from the fixed holding member 252 .
  • a deviation in the direction perpendicular to the optical axis is detected as an angular deviation of the communication light and corrected by the image blur correction mechanism of the light receiving optical system 220 .
  • the effect of correcting the shift is obtained by the image blur correction mechanism.
  • the optical system by reducing the chromatic aberration in the visible light region from the communication wavelength (1540 to 1560 nm) of the light receiving optical system 220, it is possible to adjust the optical axis by visual confirmation with a commercially available visible light camera, improving workability. I am letting Also, in order to reduce chromatic aberration over a wide range from infrared wavelengths to visible light wavelengths, the optical system has a reflecting surface. If a refractive system were to be used, the number of lenses would increase.
  • the optical transmission device 2000 on the receiving side has been mainly discussed for the sake of explanation. It is the same. In particular, only one side of the transmission light detection section and the reception light detection section is shown, but it should be noted that both the optical transmission apparatuses 1000 and 2000 have the transmission light detection section and the reception light detection section. .
  • the reflective prism and the transmissive wedge prism are installed at positions rotated by 90° around the optical axis (in FIGS. become).
  • the light projecting optical system and the light receiving optical system of the optical transmission device are basically optical systems having the same configuration, and the optical axes are also substantially the same, but the present invention is not limited to this. do not have.
  • the light-projecting optical system and the light-receiving optical system of the optical transmission device may be optical systems having separate configurations, and the optical axes of both may not be strictly coaxial.
  • optical axis means the central optical path of the communication light beam emitted from the emitting means and passing through the light projecting optical system, and the light receiving means passing through the light receiving optical system. It refers to the central optical path of the luminous flux of the communication light heading. Note that the definition is different from the optical axis of a general coaxial optical system.
  • the communication light emitted from the optical fiber is received by the optical fiber, but it is not limited to this.
  • the communication light emitted from the semiconductor laser may be received by the sensor.
  • the light receiving unit is composed only of optical fibers
  • the camera device for adjustment is composed only of sensors, but they are not limited to this, and each may have a lens.
  • a fiber with a collimator may be used as the receiver, and a camera with a lens may be used as the camera for adjustment.
  • the distance from the attachment/detachment portion 252a to the sensor surface of the camera device for adjustment and the distance from the attachment/detachment portion 252a to the tip of the fiber of the communication light receiving portion 210 are aligned. It doesn't matter if it's off.
  • the center of the angle of view of the communication light receiving unit 210 is aligned with the center of the sensor of the camera device for adjustment. , but not limited to.
  • adjustment was performed by a visible light camera device, but it is not limited to this, and the wavelength near the communication light (in the embodiment, the range of ⁇ 200 nm with respect to the wavelength of 1550 nm of the communication light It may be a camera device for wavelengths within the range). Adjustment with a camera device for visible light wavelengths has the advantage of being easy to recognize because it corresponds to visual observation. On the other hand, a camera device for wavelengths close to communication light has the advantage of easily reducing chromatic aberration in the design of the light receiving optical system 220 .
  • part of the communication light emitted from the communication light emitting section 110 is used as detection light for adjusting the device, and the detection light is detected, but it is not limited to this.
  • a dedicated detection light may be used, for example, a light having a different wavelength from that of the communication light may be incident from the other end (not shown) of the optical fiber of the communication light emitting section 110 and used as the detection light.
  • APS-C size is used as the sensor (imaging device).
  • the invention is not limited to this.
  • the light intensity distribution of the luminous flux is converted using the light intensity conversion element having different transmittance depending on the position in the plane of the element, but the present invention is not limited to this.
  • the effects of the present invention can be obtained similarly even if a reflecting member having a different reflectance depending on the position in the plane is used as the light intensity conversion element.

Abstract

The purpose of the present invention is to provide an optical transmission apparatus that can be adjusted to a good divergence in order to ensure the stability of communication. The optical transmission apparatus performs optical communication between a light projection unit, which includes an emission means for emitting communication light and a light projection optical system, and a light reception unit, which includes a light reception optical system and a communication light reception means for receiving the communication light, the optical transmission apparatus being characterized in that: the light projection unit includes a detection light emission unit for emitting detection light; the light projection optical system has an adjustment optical system for changing the divergence of light flux; the light reception unit includes a detection light reception means for receiving the detection light; and the optical transmission apparatus includes a divergence control unit for controlling the adjustment optical system on the basis of information from the detection light reception means.

Description

光伝送装置optical transmission equipment
 本発明は、距離を隔てて配置され、光を送受信して情報伝送を行う光伝送装置に関する。 The present invention relates to an optical transmission device that is arranged at a distance and transmits and receives light to transmit information.
 光伝送装置は、通信光を送信する投光部と、通信光を受信する受光部とからなる。安定した通信を行うためには、投光部の光学系と、受光部の光学系の光軸同士を揃える必要がある。 An optical transmission device consists of a light projecting part that transmits communication light and a light receiving part that receives communication light. In order to perform stable communication, it is necessary to align the optical axes of the optical system of the light-projecting section and the optical system of the light-receiving section.
 空間光伝送装置(光伝送装置)は、設置場所の振動、大気の揺らぎ、環境温度変化などによって、通信光の向きが変化し、通信が安定しなくなるという課題がある。 Spatial optical transmission equipment (optical transmission equipment) has the problem that the direction of communication light changes due to vibrations at the installation location, atmospheric fluctuations, environmental temperature changes, etc., and communication becomes unstable.
 特許文献1には、受信光量(受信信号パワー)から受信テレスコープと送信テレスコープとの間の位置ずれ量を推測し、推測された位置ずれ量に応じて投光部である光ファイバを移動させて前記受信テレスコープに入射する送信されたビームの断面積を増大させることで、通信を途切れないようにする技術が開示されている。
 また、光伝送装置は、通信光を送信する投光部と、通信光を受信する受光部とからなる。通信を行うためには、外乱により発生する通信光線の偏心を補正する必要がある。
 そのため、特に光伝送装置において、通信光線の偏心を補正することが一つの課題となる。特許文献2や3には、複数の防振機構を用いてレンズ部の振動に起因する通信光線の偏心を補正する技術が開示されている。
In Patent Document 1, the amount of positional deviation between a receiving telescope and a transmitting telescope is estimated from the amount of received light (received signal power), and an optical fiber, which is a light projecting part, is moved according to the estimated amount of positional deviation. A technique is disclosed for uninterrupted communication by increasing the cross-sectional area of the transmitted beam incident on the receiving telescope.
The optical transmission device includes a light projecting section for transmitting communication light and a light receiving section for receiving communication light. In order to perform communication, it is necessary to correct the eccentricity of the communication light beam caused by disturbance.
Therefore, especially in an optical transmission device, correcting the eccentricity of a communication light beam is a problem. Patent Documents 2 and 3 disclose techniques for correcting eccentricity of communication light beams caused by vibration of a lens portion using a plurality of vibration isolation mechanisms.
特開2002-164853号公報JP-A-2002-164853 特開2017-161567号公報JP 2017-161567 A 特開平07-027978号公報JP-A-07-027978
 しかしながら、特許文献1に開示された先行技術においては、受信光量に基づいて位置ずれ量を推測すると、光ファイバのシフト方向がわかりにくく、調整に時間を要したり、調整しきれなかったりする。そのため、必要以上に通信光を発散させてしまい、受信光量を低下させてしまう虞がある。また、光ファイバのシフト駆動で振動させることが可能な周波数が明確になっておらず、光ファイバのシフトで補正可能な位置ずれ量と、補正しきれない位置ずれ量とが明確でない。
 特許文献2、3の従来技術のように防振機構を用いたとしても、光束の偏心を完全にゼロにすることは困難である。また光束内にも強度分布があるため受光部開口でケラレ量が変化することで光量が変動してしまう課題がある。このように光量変動が大きい場合や光量が不足した場合には、良好な通信品質が得られない。
However, in the prior art disclosed in Patent Document 1, if the amount of positional deviation is estimated based on the amount of received light, it is difficult to determine the shift direction of the optical fiber, and adjustment takes time or cannot be completely adjusted. Therefore, the communication light is diverged more than necessary, and there is a possibility that the amount of received light is reduced. Further, the frequency that can be vibrated by shifting the optical fiber is not clear, and the amount of positional deviation that can be corrected by shifting the optical fiber and the amount of positional deviation that cannot be corrected are not clear.
Even if an antivibration mechanism is used as in the prior arts of Patent Documents 2 and 3, it is difficult to completely eliminate the eccentricity of the light flux. In addition, since there is an intensity distribution in the light flux, there is a problem that the amount of light fluctuates due to a change in the amount of vignetting at the opening of the light receiving section. Good communication quality cannot be obtained when the amount of light fluctuates greatly or when the amount of light is insufficient.
 そこで本発明は、上記の問題点を解消し、通信の安定性を確保するために良好な発散度に調整可能な光伝送装置を提供することを目的とする。 Accordingly, it is an object of the present invention to solve the above problems and to provide an optical transmission device that can be adjusted to a good degree of divergence in order to ensure communication stability.
 上記目的を達成するための本発明に係る光伝送装置は、通信光を射出する射出手段と投光光学系とを含む投光部と、受光光学系と前記通信光を受光する通信光受光手段を含む受光部と、の間で光通信を行う光伝送装置であって、前記投光部は検出光を射出する検出光射出部を含み、前記投光光学系は光束の発散度を変化させる調整光学系を有し、前記受光部は前記検出光を受光する検出光受光手段を含み、前記光伝送装置は、前記検出光受光手段からの情報に基づいて前記調整光学系を制御する発散度制御部を備えることを特徴とする。
 上記目的を達成するための本発明に係る光伝送装置は、第1の通信光を射出する第1の射出手段と第1の投光光学系とを含む第1の投光部と、第1の受光光学系と前記第1の通信光を受光する第1の通信光受光手段を含む第1の受光部と、第2の通信光を射出する第2の射出手段と第2の投光光学系とを含む第2の投光部と、第2の受光光学系と前記第2の通信光を受光する第2の通信光受光手段を含む第2の受光部と、を有し、前記第1の投光部と前記第1の受光部の間で光通信を行い、前記第2の投光部と前記第2の受光部の間で光通信を行う光伝送装置であって、前記第1の投光部は、検出光を射出する検出光射出部を有し、前記第2の投光光学系は、光束の発散度を変化させる調整光学系を有し、前記第1の受光部は、前記検出光を受光する検出光受光手段を有し、前記光伝送装置は、前記検出光受光手段で得られた情報に基づき、前記調整光学系を制御する発散度制御部を有する、ことを特徴とする。
 上記目的を達成するための本発明に係る光伝送装置は、第1の通信光を射出し、第2の通信光を受光する第1の射出受光手段と、第1の光学系とを含む第1の投受光部と、前記第2の通信光を射出し、前記第1の通信光を受光する第2の射出受光手段と、第2の光学系とを含む第2の投受光部と、を有し、前記第1及び第2の投受光部の間で双方向の光通信を行う光伝送装置であって、前記第1の投受光部は、検出光を射出する検出光射出部を有し、前記第2の光学系は、光束の発散度を変化させる調整光学系を有し、前記第2の投受光部は、前記検出光を受光する検出光受光手段を有し、前記光伝送装置は、前記検出光受光手段からの情報に基づき、前記調整光学系を制御する発散度制御部を有する、ことを特徴とする。
An optical transmission device according to the present invention for achieving the above object is a light projecting section including emitting means for emitting communication light and a light projecting optical system, a light receiving optical system, and communication light receiving means for receiving the communication light. and an optical transmission device for performing optical communication between a light receiving unit including An adjusting optical system is provided, the light receiving unit includes detection light receiving means for receiving the detection light, and the optical transmission device controls the divergence of the adjusting optical system based on information from the detection light receiving means. A control unit is provided.
An optical transmission device according to the present invention for achieving the above object comprises a first light projecting section including first emitting means for emitting first communication light and a first light projecting optical system; a light receiving optical system, a first light receiving unit including a first communication light receiving means for receiving the first communication light, a second emitting means for emitting the second communication light, and a second light projecting optical system and a second light receiving unit including a second light receiving optical system and second communication light receiving means for receiving the second communication light, An optical transmission device for performing optical communication between one light projecting unit and the first light receiving unit, and performing optical communication between the second light projecting unit and the second light receiving unit, The first light projecting part has a detection light emitting part for emitting detection light, the second light projecting optical system has an adjusting optical system for changing the divergence of the light flux, and the first light receiving part has detection light receiving means for receiving the detection light, and the optical transmission device has a divergence control section for controlling the adjustment optical system based on information obtained by the detection light receiving means. characterized by
An optical transmission apparatus according to the present invention for achieving the above object includes a first light emitting/receiving means for emitting a first communication light and receiving a second communication light, and a first optical system. a second light projecting/receiving unit including one light projecting/receiving unit, second light emitting/receiving means for emitting the second communication light and receiving the first communication light, and a second optical system; and performing bidirectional optical communication between the first and second light projecting and receiving sections, wherein the first light projecting and receiving section includes a detection light emitting section for emitting detection light. the second optical system has an adjusting optical system for changing the divergence of the light beam; the second light projecting and receiving unit has detection light receiving means for receiving the detection light; The transmission device is characterized by comprising a divergence control section for controlling the adjustment optical system based on information from the detection light receiving means.
 以上の構成により、通信の安定性を確保するために良好な発散度に調整可能な光伝送装置を提供することができる。 With the above configuration, it is possible to provide an optical transmission device that can be adjusted to a good degree of divergence in order to ensure communication stability.
実施例1の光伝送装置の構成図である。1 is a configuration diagram of an optical transmission device according to a first embodiment; FIG. 実施例1の投光部の構成詳細図である。FIG. 2 is a detailed configuration diagram of a light projecting unit according to the first embodiment; 実施例1の投光部の要部拡大図である。4 is an enlarged view of a main portion of the light projecting section of Example 1. FIG. 実施例1の受光部の構成詳細図である。4 is a detailed configuration diagram of a light receiving unit of Example 1. FIG. 実施例1の受光部の要部拡大図である。4 is an enlarged view of a main portion of the light receiving portion of Example 1. FIG. 実施例1の受光光学系の無限遠合焦時の波長1550nmに対する縦収差図である。FIG. 4 is a longitudinal aberration diagram for a wavelength of 1550 nm during focusing at infinity in the light receiving optical system of Example 1; 実施例1の受光光学系の無限遠合焦時の波長1550nmに対する横収差図である。4 is a lateral aberration diagram for a wavelength of 1550 nm during focusing at infinity of the light receiving optical system of Example 1. FIG. 実施例1の受光光学系の開口径Dにおける受光光量の説明図である。4 is an explanatory diagram of the amount of received light at the aperture diameter D of the light receiving optical system of Example 1. FIG. 実施例1の追加発散角βの算出方法の説明図である。4 is an explanatory diagram of a method for calculating an additional divergence angle β in Example 1. FIG. 実施例1の通信距離Lに対する必要ビームウエストwの関係を示した図である。FIG. 4 is a diagram showing the relationship of required beam waist wn with respect to communication distance L in Example 1; 実施例1の通信距離Lに対する平行光ビームウエストwの関係を示した図である。4 is a diagram showing the relationship of parallel light beam waist wp to communication distance L in Example 1. FIG. 実施例1の通信距離Lに対する発散光ビームウエストwの関係を示した図である。4 is a diagram showing the relationship of the divergent light beam waist wx to the communication distance L in Example 1. FIG. 実施例2の投光部の構成詳細図である。FIG. 11 is a detailed configuration diagram of a light projecting unit according to the second embodiment; 実施例2の受光部の構成詳細図である。FIG. 11 is a detailed configuration diagram of a light receiving unit of Example 2; 実施例2の受光部の可換保持部材を取り外し、カメラを装着した図である。FIG. 10 is a view of the second embodiment in which the replaceable holding member of the light receiving unit is removed and the camera is attached; 実施例2の受光光学系の無限遠合焦時のe線に対する縦収差図である。FIG. 10 is a longitudinal aberration diagram for the e-line during focusing at infinity of the light receiving optical system of Example 2; 実施例2の受光光学系の無限遠合焦時のe線に対する横収差図である。FIG. 10 is a lateral aberration diagram for the e-line during focusing at infinity of the light receiving optical system of Example 2; 実施例2の投光部開口部直後の光束の強度分布である。It is the intensity distribution of the luminous flux immediately after the opening of the light projecting part in Example 2. 実施例2の投光部から2km離れた受光部開口部での光束の強度分布である。It is the intensity distribution of the luminous flux at the opening of the light-receiving part 2 km away from the light-projecting part in Example 2. 実施例2の投光部から5km離れた受光部開口部での光束の強度分布である。It is the intensity distribution of the luminous flux at the opening of the light-receiving part which is 5 km away from the light-projecting part in Example 2. 実施例2の光強度変換素子の透過率分布である。4 is a transmittance distribution of the light intensity conversion element of Example 2. FIG. 実施例3の投光部開口部直後の光束の強度分布である。10 shows the intensity distribution of the luminous flux immediately after the opening of the light projecting section in Example 3. FIG. 実施例3の投光部から2km離れた受光部開口部での光束の強度分布である。It is the intensity distribution of the luminous flux at the opening of the light-receiving part 2 km away from the light-projecting part of Example 3. 実施例3の投光部から5km離れた受光部開口部での光束の強度分布である。It is the intensity distribution of the luminous flux at the opening of the light-receiving part which is 5 km away from the light-projecting part in Example 3. 実施例3の光強度変換素子の透過率分布である。10 shows the transmittance distribution of the light intensity conversion element of Example 3. FIG. 実施例4の投光部の構成詳細図である。FIG. 11 is a detailed configuration diagram of a light projecting unit of Example 4; 実施例5の投光部の構成詳細図である。FIG. 11 is a detailed configuration diagram of a light projecting unit of Example 5; 変形例の光強度変換素子の透過率分布である。It is the transmittance distribution of the light intensity conversion element of the modification. 変形例の光強度変換素子の透過率分布である。It is the transmittance distribution of the light intensity conversion element of the modification.
 以下に、具体的な実施例を用いて、本発明について説明する。説明図においては、わかりやすさのため、実際の縮尺とは異なる場合がある。 The present invention will be described below using specific examples. In the explanatory diagrams, the scale may differ from the actual scale for the sake of clarity.
 図1は、本発明の実施例を示す光伝送装置の構成概要図である。説明は、一方向(光伝送装置1000(投光部、第1の投光部、第1の投受光部)から光伝送装置2000(受光部、第1の受光部、第2の投受光部))の通信について行うが、逆方向(光伝送装置2000から光伝送装置1000)の通信についても同様である。 FIG. 1 is a schematic configuration diagram of an optical transmission device showing an embodiment of the present invention. Description is made from one direction (optical transmission device 1000 (light projecting unit, first light projecting unit, first light projecting/receiving unit) to optical transmission device 2000 (light receiving unit, first light receiving unit, second light projecting/receiving unit). ))), the same applies to communication in the reverse direction (from the optical transmission device 2000 to the optical transmission device 1000).
 送信側の光伝送装置1000から送信された通信光は、距離を隔てた受信側の光伝送装置2000にて受信され、通信を行う。 The communication light transmitted from the optical transmission device 1000 on the transmission side is received by the optical transmission device 2000 on the reception side at a distance, and communication is performed.
 送信側の光伝送装置1000は、通信光を射出する投光部100が角度調整台101に積載されて構成されている。投光部100の向きは2軸で調整可能である。 An optical transmission device 1000 on the transmission side is configured by mounting a light projection unit 100 for emitting communication light on an angle adjustment base 101 . The orientation of the light projecting unit 100 can be adjusted on two axes.
 受信側の光伝送装置2000は、通信光を受信する受光部200が角度調整台(角度調整部)201に積載されて構成されている。受光部200の向きは2軸で調整可能である。 An optical transmission device 2000 on the receiving side is configured such that a light receiving section 200 for receiving communication light is mounted on an angle adjustment base (angle adjustment section) 201 . The orientation of the light receiving section 200 can be adjusted on two axes.
 設置時は、投光部100の有する投光光学系120(図1には記載なし)及び受光部200の有する受光光学系220(図1には記載なし)の光軸同士を同軸に揃えるために、角度調整台101及び角度調整台201にて角度を調整する。これにより、一旦は通信が確保される。 In order to align the optical axes of the light projecting optical system 120 (not shown in FIG. 1) of the light projecting unit 100 and the light receiving optical system 220 (not shown in FIG. 1) of the light receiving unit 200 at the time of installation. Then, the angle is adjusted by the angle adjustment table 101 and the angle adjustment table 201. FIG. This ensures communication once.
 しかし、そのままの状態で光伝送装置1000、2000を使用し続けると、大気の揺らぎや、角度調整台101及び受光光学系220を保持している部材(不図示)の振動、環境温度変動などにより、通信光の光路などが変動し、通信が安定しない。そこで、投光部100が有する送信光検出部及び受光部200が有する受信光検出部(後述する、透過ウェッジプリズム231と位置検出センサ232とから構成される)にて、通信光の変動を把握し、通信光の光路などを補正して、通信を安定させている。具体的には、送信光制御部(発散度制御部)140、投光光学系120内のフォーカス機構(補正光学系、共に図1には記載なし)、角度調整台201、受信光制御部(発散度制御部)240、受光光学系220内の像振れ補正機構(補正光学系、共に図1には記載なし)により、通信光の光路などを補正して、通信を安定させている。 However, if the optical transmission devices 1000 and 2000 continue to be used as they are, atmospheric fluctuations, vibrations of members (not shown) holding the angle adjustment base 101 and the light receiving optical system 220, environmental temperature fluctuations, etc. , the optical path of communication light fluctuates, and communication is not stable. Therefore, fluctuations in the communication light are grasped by the transmission light detection unit of the light projection unit 100 and the reception light detection unit of the light reception unit 200 (composed of a transmission wedge prism 231 and a position detection sensor 232, which will be described later). and corrects the optical path of communication light to stabilize communication. Specifically, the transmission light control unit (divergence control unit) 140, the focus mechanism (correction optical system, both of which are not shown in FIG. 1) in the projection optical system 120, the angle adjustment base 201, the reception light control unit ( A divergence control unit 240 and an image blur correction mechanism (correction optical system, both of which are not shown in FIG. 1) in the light receiving optical system 220 correct the optical path of communication light and stabilize communication.
 以下、図2A~21を参照しながら本発明の光伝送装置の構成を詳細に説明する。 The configuration of the optical transmission device of the present invention will be described in detail below with reference to FIGS. 2A to 21. FIG.
 (実施例1)
 図2Aは、光伝送装置1000の構成詳細図である。
 投光部100は、通信光射出手段110と、投光光学系120(第1の光学系)と、送信光検出部と、送信光制御部140と、保持部150(不図示)とを有する。通信光射出手段(射出手段、検出光射出部、第1の射出受光手段)110は通信光を射出し、投光光学系120は通信光射出手段110から出射した通信光を略平行光化して送信する。送信光検出部は投光光学系120から送信された通信光の状態を検出し、送信光制御部140は通信光の制御を行う。
(Example 1)
FIG. 2A is a detailed configuration diagram of the optical transmission device 1000 .
The light projecting section 100 has a communication light emitting means 110, a light projecting optical system 120 (first optical system), a transmission light detection section, a transmission light control section 140, and a holding section 150 (not shown). . A communication light emitting means (ejecting means, a detection light emitting part, a first emitting and receiving means) 110 emits communication light, and a light projecting optical system 120 converts the communication light emitted from the communication light emitting means 110 into substantially parallel light. Send. The transmitted light detection section detects the state of the communication light transmitted from the projection optical system 120, and the transmitted light control section 140 controls the communication light.
 実施例1において、通信光射出手段110は光ファイバであり、不図示の他端から入射した波長1540nm~1560nmの帯域における波長の通信光を射出している。また、後述する通信光受光手段210(図2Aには記載なし)も光ファイバであり、不図示の他端にて通信光を受信している。このように、送信側の光伝送装置1000と受信側の光伝送装置2000とは、構造が略同一であり、光ファイバ内の通信光の向きを反転すれば、送信と受信との関係が逆になる。これにより、双方向通信が成立する。 In Example 1, the communication light emitting means 110 is an optical fiber, and emits communication light having a wavelength in the wavelength band of 1540 nm to 1560 nm, which is incident from the other end (not shown). Communication light receiving means 210 (not shown in FIG. 2A), which will be described later, is also an optical fiber, and receives communication light at the other end (not shown). Thus, the optical transmission device 1000 on the transmission side and the optical transmission device 2000 on the reception side have substantially the same structure, and if the direction of the communication light in the optical fiber is reversed, the relationship between transmission and reception is reversed. become. Thereby, two-way communication is established.
 投光光学系120は、通信光射出部側(射出手段側)から順に光路に配置された、レンズ121と、レンズ122と、レンズ123と、副鏡(反射曲面)124と、主鏡(反射曲面)125とを有している。レンズ121(可動光学部材、透過光学部材、第2の調整光学系)は像振れ補正機構(補正光学系、図中二重線枠)を有しており、光軸に垂直な方向にシフトすることで通信光の向き(通信光受光手段210への入射角)を微調整することができる。本実施例においては、像振れ補正機構(補正光学系)は1枚の光学要素であるレンズ121で構成されている。また、レンズ123(可動光学部材、透過光学部材)はフォーカス機構(補正光学系、図中二重線枠)を有しており、光軸方向にシフトすることで、通信光の発散度を微調整することができる。主鏡125は、中心部に径30mmの開口を有している。 The light projecting optical system 120 includes a lens 121, a lens 122, a lens 123, a secondary mirror (reflective curved surface) 124, and a primary mirror (reflective curved surface) 125. The lens 121 (movable optical member, transmissive optical member, second adjustment optical system) has an image blur correction mechanism (correction optical system, double-lined frame in the drawing), and shifts in a direction perpendicular to the optical axis. This makes it possible to finely adjust the direction of the communication light (angle of incidence on the communication light receiving means 210). In this embodiment, the image blur correction mechanism (correction optical system) is composed of a lens 121 that is a single optical element. In addition, the lens 123 (movable optical member, transmissive optical member) has a focus mechanism (correction optical system, double-lined frame in the figure), and by shifting in the optical axis direction, the degree of divergence of communication light can be minimized. can be adjusted. The primary mirror 125 has an opening with a diameter of 30 mm at its center.
 送信光検出部は、送信された通信光の一部を折り返す、反射プリズム131a及び131bと、折り返された光束の集光位置を検出する位置検出センサ(第2の検出光受光手段)132a及び132bとから構成される。 The transmitted light detector includes reflecting prisms 131a and 131b that return part of the transmitted communication light, and position detection sensors (second detection light receiving means) 132a and 132b that detect the condensing positions of the returned light beams. Consists of
 図2Bは反射プリズム131a及び131bの拡大図である。頂角θα=89.9°のプリズムとすることで、通信光を0.2°だけずらして折り返している(元の向きに対し、180.2°の向きとなる)。折り返された光線は、再び投光光学系120に入射し、前述の0.2°だけずれているために、通信光射出手段110とは異なる位置にある位置検出センサ(第2の検出光受光手段)132a及び132b上に集光される。位置検出センサ132a及び132bにて検出された結像位置(情報)から、光線の向きを計算できる。反射プリズム131a及び131bは、光軸を含む1断面において、通信光の光束の両端1mmずつ、且つ、光軸を中心とする周方向に5mmの範囲の通信光を反射するように設置されており、両端の光線の向き(情報)から、通信光の発散度を計算することができる。 FIG. 2B is an enlarged view of reflecting prisms 131a and 131b. By using a prism with an apex angle of θ α =89.9°, the communication light is shifted by 0.2° and folded back (180.2° with respect to the original direction). The folded light beam enters the light projecting optical system 120 again and is shifted by 0.2° as described above. means) are focused on 132a and 132b. The direction of the light beam can be calculated from the imaging positions (information) detected by the position detection sensors 132a and 132b. The reflecting prisms 131a and 131b are installed so as to reflect the communication light within a range of 1 mm at each end of the communication light beam and within a range of 5 mm in the circumferential direction around the optical axis in one cross section including the optical axis. , the divergence of the communication light can be calculated from the directions (information) of the light rays at both ends.
 尚、位置検出センサ132a及び132bは、波長選択フィルターを有しており、光伝送装置1000の通信光射出手段110にて射出した検出光の波長の光が透過し、もう一方の光伝送装置2000から来る通信光或いは検出光の波長の光は遮光される。このような構成とすることで、迷光による誤検出を低減している。本実施例では、検出光の波長は通信光の波長と同じである。 The position detection sensors 132a and 132b have wavelength selection filters, and the light having the wavelength of the detection light emitted by the communication light emitting means 110 of the optical transmission device 1000 is transmitted therethrough. Light at the wavelength of the communication light or detection light coming from is blocked. Such a configuration reduces erroneous detection due to stray light. In this embodiment, the wavelength of the detection light is the same as the wavelength of the communication light.
 送信光制御部140は、位置検出センサ132a及び132bに接続され、上記の計算を行う。また、その計算結果を、投光光学系120のフォーカス機構にフィードバックしている。 The transmission light control unit 140 is connected to the position detection sensors 132a and 132b and performs the above calculations. Moreover, the calculation result is fed back to the focus mechanism of the projection optical system 120 .
 保持部150(不図示)は、可換保持部材151と固定保持部材152とを有する。通信光射出手段110と、送信光検出部の一部である位置検出センサ132a及び132bと送信光制御部140とは、可換保持部材151に保持されている。投光光学系120と送信光検出部の一部である反射プリズム131a及び131bとは、防塵ガラス153と共に、固定保持部材152に保持されている。可換保持部材151の着脱部151aと固定保持部材152の着脱部152aとが着脱可能な構成になっている。送信光制御部140からの制御信号は、着脱部151aと着脱部152aとに構成された信号の授受が可能な機構(電気接点、光学カップリングなど)による信号の授受によって、投光光学系120内のフォーカス機構に伝わる。固定保持部材152は角度調整台101に保持されており、これにより、光伝送装置1000において、投光部100が角度調整台101に積載されている状態となる。 The holding part 150 (not shown) has a replaceable holding member 151 and a fixed holding member 152 . The communication light emitting means 110 , the position detection sensors 132 a and 132 b that are part of the transmission light detection section, and the transmission light control section 140 are held by a replaceable holding member 151 . The projection optical system 120 and the reflecting prisms 131 a and 131 b that are part of the transmitted light detection section are held by a fixed holding member 152 together with a dustproof glass 153 . The detachable portion 151a of the exchangeable holding member 151 and the detachable portion 152a of the fixed holding member 152 are detachable. The control signal from the transmission light control unit 140 is transmitted to and received from the light projecting optical system 120 by a mechanism (electrical contact, optical coupling, etc.) capable of transmitting and receiving signals, which is configured in the detachable unit 151a and the detachable unit 152a. transmitted to the internal focus mechanism. The fixed holding member 152 is held by the angle adjustment table 101 , and thus the light projecting section 100 is placed on the angle adjustment table 101 in the optical transmission device 1000 .
 図3Aは、受信側の光伝送装置2000の構成詳細図である。
 受光部200は、通信光を取り込み、集光する受光光学系220(第2の光学系)と、受光光学系220により集光された通信光を受光する通信光受光手段210(第2の射出受光手段)と、到来した通信光の状態を検出する受信光検出部と、通信光の制御を行う受信光制御部240と、保持部とを有する。保持部は、可換保持部材(受光手段保持部材)251と固定保持部材(光学系保持部材)252とからなる。
FIG. 3A is a detailed configuration diagram of the optical transmission device 2000 on the receiving side.
The light-receiving unit 200 includes a light-receiving optical system 220 (second optical system) that receives and condenses communication light, and communication light-receiving means 210 (second emission light) that receives the communication light condensed by the light-receiving optical system 220 . a light receiving means), a received light detection section for detecting the state of incoming communication light, a received light control section 240 for controlling the communication light, and a holding section. The holding portion is composed of a replaceable holding member (light receiving means holding member) 251 and a fixed holding member (optical system holding member) 252 .
 受光光学系220は主鏡(反射曲面)225と副鏡(反射曲面)224と、レンズ223と、レンズ222と、レンズ221とを有している。レンズ221(可動光学部材、透過光学部材)は像振れ補正機構(図中二重枠)を有しており、光軸に垂直な方向にシフトすることで、通信光の向きを微調整することができる。本実施例においては、像振れ補正機構(補正光学系)は1枚の光学要素であるレンズ221で構成されている。また、レンズ223(可動光学部材、透過光学部材)はフォーカス機構(図中二重枠)を有しており、光軸方向にシフトすることで、通信光の発散度を微調整することができる。主鏡225は、中心部に径30mmの開口を有している。 The light receiving optical system 220 has a primary mirror (reflective curved surface) 225 , a secondary mirror (reflective curved surface) 224 , a lens 223 , a lens 222 , and a lens 221 . The lens 221 (movable optical member, transmissive optical member) has an image blur correction mechanism (double frame in the figure), and by shifting in a direction perpendicular to the optical axis, the direction of communication light can be finely adjusted. can be done. In this embodiment, the image blur correction mechanism (correction optical system) is composed of a lens 221 that is a single optical element. Also, the lens 223 (movable optical member, transmissive optical member) has a focus mechanism (double frame in the figure), and by shifting in the optical axis direction, it is possible to finely adjust the degree of divergence of the communication light. . The primary mirror 225 has an opening with a diameter of 30 mm at its center.
 通信光受光手段210は、前述の通り光ファイバであり、不図示の他端にて通信光を受信している。通信光受光手段210の光ファイバのコア径50μmに対し、受光光学系220により集光された通信光のスポット径は44μmであり、設計時性能として、通信光の取り込みロスが発生しないようにしている。尚、通信光受光手段210は受光光学系220の光軸上に配置している。 The communication light receiving means 210 is an optical fiber as described above, and receives communication light at the other end (not shown). The spot diameter of the communication light condensed by the light receiving optical system 220 is 44 μm for the core diameter of the optical fiber of the communication light receiving means 210 of 50 μm. there is The communication light receiving means 210 is arranged on the optical axis of the light receiving optical system 220 .
 受信光検出部は、到来した通信光の一部を屈折させる、透光性を有する透過ウェッジプリズム231と、屈折された光束の集光位置を検出する位置検出センサ(検出光受光手段)232とから構成される。 The received light detection unit includes a translucent wedge prism 231 that refracts a portion of the incoming communication light, and a position detection sensor (detection light receiving means) 232 that detects the condensing position of the refracted light beam. consists of
 図3Bは透過ウェッジプリズム231の拡大図である。材質s-bls7(ohara社製、波長1550nmにおける屈折率n=1.500252)、頂角θβ=0.40°のプリズム形状とすることで、通信光を0.2°だけ屈折させている。屈折された光線は、受光光学系220に入射し、前述の0.2°だけずれているために、通信光受光手段210とは異なる位置にある位置検出センサ232上に集光される。位置検出センサ232にて検出された結像位置(情報)から、光線の向きを計算できる。透過ウェッジプリズム231は、光軸を含む1断面において、通信光の光束の片端3mm、且つ、光軸を中心とする周方向に5mmの範囲の通信光を屈折するように設置されており、該光線の向きから、通信光の到来角度を計算することができる。 FIG. 3B is an enlarged view of transmission wedge prism 231 . Material s-bls7 (manufactured by Ohara, refractive index n=1.500252 at a wavelength of 1550 nm) and a prism shape with an apex angle θ β =0.40° refracts communication light by 0.2°. . The refracted light beam enters the light receiving optical system 220 and is condensed on the position detection sensor 232 located at a different position from the communication light receiving means 210 because of the 0.2° deviation described above. The direction of the light beam can be calculated from the imaging position (information) detected by the position detection sensor 232 . The transmission wedge prism 231 is installed so as to refract the communication light within a range of 3 mm at one end of the communication light and 5 mm in the circumferential direction around the optical axis in one cross section including the optical axis. From the ray orientation, the angle of arrival of the communication light can be calculated.
 尚、位置検出センサ232は、波長選択フィルターを有し、光伝送装置1000の通信光射出手段110にて射出した検出光の波長の光が透過し、もう一方の光伝送装置2000から来る通信光或いは検出光の波長の光は遮光される。このような構成とすることで、迷光による誤検出を低減している。本実施例では、検出光の波長は通信光の波長と同じである。 The position detection sensor 232 has a wavelength selection filter, and the light having the wavelength of the detection light emitted by the communication light emitting means 110 of the optical transmission device 1000 is transmitted therethrough. Alternatively, the light of the wavelength of the detection light is shielded. Such a configuration reduces erroneous detection due to stray light. In this embodiment, the wavelength of the detection light is the same as the wavelength of the communication light.
 受信光制御部240(光学特性制御部)は、位置検出センサ232に接続されており、上記の計算を行う。また、その計算結果を受光光学系220の像振れ補正機構と角度調整台201(調整部は図中二重線枠)とにフィードバックしている。具体的には、通信光の補正角度の変動が10Hz未満の周波数の場合は、角度調整台201にて補正を行い、10~50Hzの周波数の場合は、受光光学系220の像振れ補正機構にて補正を行う。 The received light controller 240 (optical characteristic controller) is connected to the position detection sensor 232 and performs the above calculations. Further, the calculation result is fed back to the image blur correction mechanism of the light receiving optical system 220 and the angle adjustment table 201 (the adjustment portion is indicated by a double-lined frame in the drawing). Specifically, when the fluctuation of the correction angle of the communication light is at a frequency of less than 10 Hz, correction is performed by the angle adjustment table 201, and when the frequency is from 10 to 50 Hz, the image blur correction mechanism of the light receiving optical system 220 is used. to correct.
 受光部を保持する保持部は、可換保持部材251と固定保持部材252とからなる。通信光受光手段210と、受信光検出部の一部である位置検出センサ232とは可換保持部材251に保持されている。受光光学系220と、受信光検出部の一部である透過ウェッジプリズム231と、受信光制御部240とは、防塵ガラス253と共に、固定保持部材252に保持されている。可換保持部材251の有する着脱部251aと固定保持部材252の着脱部252aとが着脱可能な状態で結合した構成になっている。受信光制御部240からの制御信号は、着脱部151aと着脱部152aとに構成された信号の授受が可能な機構(電気接点、光学カップリングなど)による信号の授受によって、受光光学系220内のフォーカス機構と角度調整台201とに伝わる。固定保持部材252は角度調整台201に保持されており、これにより、光伝送装置2000において、受光部200が角度調整台201に積載されている状態となる。 A holding portion that holds the light receiving portion is composed of a replaceable holding member 251 and a fixed holding member 252 . The communication light receiving means 210 and the position detection sensor 232 which is part of the received light detection section are held by a replaceable holding member 251 . The light receiving optical system 220 , the transmission wedge prism 231 that is part of the received light detection section, and the received light control section 240 are held by a fixed holding member 252 together with a dustproof glass 253 . The detachable portion 251a of the exchangeable holding member 251 and the detachable portion 252a of the fixed holding member 252 are detachably connected. The control signal from the received light control unit 240 is transmitted to and received from the light receiving optical system 220 by signal transmission/reception by a mechanism (electrical contact, optical coupling, etc.) configured in the attachment/detachment portion 151a and the attachment/detachment portion 152a. is transmitted to the focus mechanism and the angle adjustment base 201 . The fixed holding member 252 is held by the angle adjustment table 201 , and thus the light receiving section 200 is placed on the angle adjustment table 201 in the optical transmission device 2000 .
 上述の通り、本実施例では、送信光検出部及び受信光検出部にて検出される検出光として、通信光の一部を活用している。このため、通信光射出手段110は、検出光射出部も兼ねていることになる。また、わかりやすさのため、これまで説明してきた「通信光」が、通信を行う光のみならず、検出光を含んでいることに注意されたい。 As described above, in this embodiment, part of the communication light is utilized as the detected light detected by the transmitted light detector and the received light detector. Therefore, the communication light emitting means 110 also serves as a detection light emitting section. Also, for the sake of clarity, it should be noted that the "communication light" discussed thus far includes not only light that communicates, but also detection light.
 ここで、受光光学系220の光学詳細値を以下に示す。前述の通り、対称なので、投光光学系120の光学詳細値も同様である。数値実施例において、物体側からの面(光学面)の順序である面番号iに対して、riは物体側より第i番目の面の曲率半径、diは物体側より第i番目の面と第i+1番目の面との間隔(光軸上)を示している。また、ndi、νdiは、第i番目の面と第i+1番目の面との間の媒質(光学部材)の屈折率、アッベ数を表している。面番号の右に付した記号*はその面が非球面であることを示す。 Here, optical detailed values of the light receiving optical system 220 are shown below. As mentioned above, due to the symmetry, the optical details of the projection optics 120 are also similar. In numerical examples, for surface number i which is the order of surfaces (optical surfaces) from the object side, ri is the radius of curvature of the i-th surface from the object side, di is the i-th surface from the object side, and It shows the distance (on the optical axis) from the (i+1)th surface. Also, ndi and νdi represent the refractive index and Abbe number of the medium (optical member) between the i-th surface and the (i+1)-th surface. The symbol * attached to the right of the surface number indicates that the surface is an aspherical surface.
 非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、Rを近軸曲率半径、Kを円錐常数としたとき、次式で表している。また、「e-Z」は「×10-Z」を意味する。
Figure JPOXMLDOC01-appb-M000010

<数値データ>
単位 mm
面データ
面番号       r        d      nd          vd      硝材
 1(絞り)  ∞        1.10   1.51633     64.1    s-bsl7  (ohara)
 2          ∞      150.00                             
 3*      -385.051  -140.00                             
 4*      -133.630   155.00                             
 5       1644.588     2.00   1.56883     56.4    s-bal14 (ohara)
 6       -104.907    20.00                             
 7       -152.756     0.80   1.61800     63.3    s-phm52 (ohara)
 8         29.125    16.70                             
 9         38.931     2.50   1.56883     56.4    s-bal14 (ohara)
10        100.000   100.00                             
像面        ∞   

非球面データ
第3面
K =-1.00000e+000  
第4面
K =-2.32216e+000  

各種データ
焦点距離     1600.00  
Fナンバー      16.00  
半画角          0.53  
像高           14.80  
レンズ全長    308.10
The aspheric shape is expressed by the following equation, where the X axis is in the direction of the optical axis, the H axis is in the direction perpendicular to the optical axis, the traveling direction of light is positive, R is the paraxial radius of curvature, and K is the conic constant. Also, “eZ” means “×10 −Z ”.
Figure JPOXMLDOC01-appb-M000010

<Numeric data>
unit mm
Surface data Surface number r d nd vd Glass material 1 (Aperture) ∞ 1.10 1.51633 64.1 s-bsl7 (ohara)
2 ∞ 150.00
3* -385.051 -140.00
4* -133.630 155.00
5 1644.588 2.00 1.56883 56.4 s-bal14 (ohara)
6 -104.907 20.00
7 -152.756 0.80 1.61800 63.3 s-phm52 (ohara)
8 29.125 16.70
9 38.931 2.50 1.56883 56.4 s-bal14 (ohara)
10 100.000 100.00
Image plane ∞

Aspheric data 3rd surface
K=-1.00000e+000
4th side
K=-2.32216e+000

Various data Focal length 1600.00
F number 16.00
Half angle of view 0.53
Image height 14.80
Lens length 308.10
 受光光学系220の無限遠合焦時の光学性能値(投光光学系120も同様)として、図4、5に通信波長(1540nm~1560nm)、焦点距離f=1599.999mmにおける縦収差図、横収差図を示す。縦収差図の非点収差図及び横収差図における実線と点線とは、各々メリディオナル像面と、サジタル像面とにおける収差を示す。縦収差図では、球面収差は0.4mm、非点収差は0.4mm、歪曲は5%のスケールで描かれている。図5に、に像高14.8000mm、像高11.1000mm、像高7.4000mm、像高3.7000mm、像高0.0000mmにおける横収差図を示す。 4 and 5 are longitudinal aberration diagrams at a communication wavelength (1540 nm to 1560 nm) and a focal length f = 1599.999 mm as optical performance values of the light receiving optical system 220 when focused on infinity (the same applies to the light projecting optical system 120). Fig. 4 shows a lateral aberration diagram; A solid line and a dotted line in the astigmatism diagram of the longitudinal aberration diagram and the lateral aberration diagram show aberrations on the meridional image plane and the sagittal image plane, respectively. In the longitudinal aberration diagram, spherical aberration is drawn on a scale of 0.4 mm, astigmatism is drawn on a scale of 0.4 mm, and distortion is drawn on a scale of 5%. FIG. 5 shows transverse aberration diagrams at an image height of 14.8000 mm, an image height of 11.1000 mm, an image height of 7.4000 mm, an image height of 3.7000 mm, and an image height of 0.0000 mm.
 図4、5に示すように、通信波長(1540nm~1560nm)における、通信光受光手段210のある中心画角にて収差を低減できている。 As shown in FIGS. 4 and 5, the aberration can be reduced at the central angle of view of the communication light receiving means 210 at the communication wavelength (1540 nm to 1560 nm).
 以下、本発明の構成の特徴について説明する。
 まず、本発明の課題と原理を説明する。
 前述の通り、投光光学系から出射された通信光の向き(到来角)は、環境温度変化や、装置の振動、大気の揺らぎなどによって、変動する。概して、その変動周波数は、発生の原因によって異なる。
The features of the configuration of the present invention will be described below.
First, the subject and principle of the present invention will be explained.
As described above, the direction (arrival angle) of the communication light emitted from the projection optical system fluctuates due to environmental temperature changes, device vibrations, atmospheric fluctuations, and the like. In general, the fluctuation frequency depends on the cause of occurrence.
 環境温度変化に起因する、受光光学系や投光光学系の光学性能の変動、及び、光伝送装置の位置変動の影響は、変動周波数が10Hz以下の到来角変動となる。光伝送装置の設置環境の振動(人や車の往来などに起因する振動)の影響は、変動周波数が50Hz未満の到来角変動となる。大気の揺らぎによる影響は、変動周波数が50Hz以上の到来角変動となる。 The effects of fluctuations in the optical performance of the light-receiving optical system and the light-projecting optical system and positional fluctuations of the optical transmission device due to environmental temperature changes result in arrival angle fluctuations with a fluctuation frequency of 10 Hz or less. The influence of vibrations in the installation environment of the optical transmission device (vibrations caused by the traffic of people and vehicles) results in arrival angle fluctuations with a fluctuation frequency of less than 50 Hz. The effect of atmospheric fluctuations is arrival angle fluctuation with a fluctuation frequency of 50 Hz or more.
 本実施例において、像振れ補正機構は、駆動機構の制約上、50Hz未満の変動周波数の像振れしか補正できない。故に、主として大気の揺らぎに起因する50Hz以上の到来角変動は補正できない。この影響で、受光光量が不安定になると、通信が不安定になってしまう。具体的には、到来角変動がないときの受光光量に対する、到来角変動があるときの受光光量の比(以下、受光光量変動とする)が、一定値を下回ると、受信信号を正しく処理できず、通信が不安定になる。これを低減することが、本発明の課題である。 In this embodiment, the image blur correction mechanism can only correct image blur with a fluctuation frequency of less than 50 Hz due to limitations of the drive mechanism. Therefore, arrival angle fluctuations of 50 Hz or more, which are mainly caused by atmospheric fluctuations, cannot be corrected. If the amount of received light becomes unstable due to this influence, communication becomes unstable. Specifically, when the ratio of the amount of received light when there is variation in the arrival angle to the amount of received light when there is no variation in the angle of arrival (hereinafter referred to as the variation in the amount of received light) falls below a certain value, the received signal cannot be processed correctly. communication becomes unstable. It is an object of the present invention to reduce this.
 本発明では、前記課題の解決策として、50Hz以上の変動周波数の到来角変動について、発散度を調整することで、通信の不安定を低減する。具体的には、到来角変動量が小さいときには、発散度を下げ、到来角変動量が大きいときには、発散度を上げることで、なるべく受光光量を確保しつつ、受光光量変動を低減するようにしている。これが、本発明の原理思想である。 In the present invention, as a solution to the above problem, communication instability is reduced by adjusting the degree of divergence for arrival angle fluctuations of fluctuation frequencies of 50 Hz or higher. Specifically, when the arrival angle variation is small, the divergence is decreased, and when the arrival angle variation is large, the divergence is increased, thereby reducing the variation in the amount of received light while securing the amount of received light as much as possible. there is This is the principle idea of the present invention.
 以下、詳細を説明する。
 まず、投光光学系から出射した平行光のガウシアンビームを考える。ガウシアンビームの強度分布Iは、式(2)で表される。ここで、rは動径方向の距離、wは投光光学系を出射した直後の出射光ビームウエスト(半径)である。
Figure JPOXMLDOC01-appb-M000011
 上記平行光のガウシアンビームが、通信距離Lだけ離間した受光光学系にて到達する際の平行光ビームウエストwは式(3)で表される。ここで、λは通信光の波長である。
Figure JPOXMLDOC01-appb-M000012
 更に、投光光学系にて、発散度を調整し、追加発散角(半角)β[rad](≧0)だけ変化した場合の発散光ビームウエストwは、式(4)となる。
Figure JPOXMLDOC01-appb-M000013
 受光光学系に到達したガウシアンビームの強度分布Iは、同様に、式(5)で表される。
Figure JPOXMLDOC01-appb-M000014
 ここで、像振れ補正機構で補正しきれない、50Hz以上の変動周波数を持つ到来角変動量をα[rad](≧0)(以下、高周波到来角変動量とする)とすると、受光光学系上の光線到達位置のずれ量Δは、通信距離Lに対して式(6)で表される。
Figure JPOXMLDOC01-appb-M000015
Details will be described below.
First, consider a parallel Gaussian beam emitted from the projection optical system. The intensity distribution I t of the Gaussian beam is represented by Equation (2). Here, r is the distance in the radial direction, and w0 is the exit light beam waist (radius) immediately after exiting the projection optical system.
Figure JPOXMLDOC01-appb-M000011
The parallel light beam waist wp when the Gaussian beam of parallel light reaches the light-receiving optical system separated by the communication distance L is expressed by Equation (3). Here, λ is the wavelength of communication light.
Figure JPOXMLDOC01-appb-M000012
Further, the divergent light beam waist w x when the divergence is adjusted in the projection optical system and changed by the additional divergence angle (half angle) β [rad] (≧0) is given by Equation (4).
Figure JPOXMLDOC01-appb-M000013
The intensity distribution Ir of the Gaussian beam that has reached the light receiving optical system is similarly expressed by Equation (5).
Figure JPOXMLDOC01-appb-M000014
Let α [rad] (≧0) (hereinafter referred to as a high-frequency arrival angle fluctuation amount) be an arrival angle fluctuation amount having a fluctuation frequency of 50 Hz or more that cannot be corrected by the image blur correction mechanism. The amount of deviation Δ of the light arrival position above is represented by Equation (6) with respect to the communication distance L.
Figure JPOXMLDOC01-appb-M000015
 受光光学系の開口径Dにおいて受信される受光光量は、図6のようになる。光線到達位置にずれがないときの強度分布を二点鎖線、光線到達位置にずれ量Δが存在するときの強度分布を破線で示している。これらの強度分布に対し、開口径Dの面積分をしたものが、受光光量となる。説明のため、図6では強度分布を一次元(光線の進行方向に垂直な一方向)に対する強度として表示しているが、実際の強度分布は二次元(光線の進行方向に垂直な面内)に対する強度である。 The amount of received light received at the aperture diameter D of the light receiving optical system is as shown in FIG. A two-dot chain line indicates the intensity distribution when there is no shift in the light arrival position, and a broken line indicates the intensity distribution when there is a shift amount Δ in the light arrival position. The amount of received light is obtained by multiplying these intensity distributions by the area integral of the aperture diameter D. FIG. For the sake of explanation, FIG. 6 shows the intensity distribution as the intensity in one dimension (one direction perpendicular to the traveling direction of the light ray), but the actual intensity distribution is two-dimensional (in the plane perpendicular to the traveling direction of the light ray). is the strength against
 ここで、到来角変動がない場合の受光光量A0に対する、高周波到来角変動量αだけ到来角変動があるときの受光光量AΔの比である、受光光量変動γを考える。受光光量変動γは、厳密には、発散光ビームウエストwと、開口径Dとの関係によっても変わるが、開口径Dによってあまり変化しない。そのため、開口径Dが極小の場合を考慮し、式(7)で表される。
Figure JPOXMLDOC01-appb-M000016
 一般に、受光光量変動γが5dB(=31.6%)を下回ると、通信が不安定になりやすく、好ましくない。換言すると、通信が安定するための条件は、式(8)となる。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 k=1/0.759=1.32として、式(10)を得る。
Figure JPOXMLDOC01-appb-M000019
 ここで、必要ビームウエストw
Figure JPOXMLDOC01-appb-M000020
 と定義すると、
Figure JPOXMLDOC01-appb-M000021
 となる。即ち、必要ビームウエストwを超えるよう、平行光ビームウエストwに対し、追加発散角βを調整すれば良い。
 尚、計算のため、式(12)を式(4)及び(11)より式(13)のように展開しておく。
Figure JPOXMLDOC01-appb-M000022
Here, let us consider the received light amount variation γ, which is the ratio of the received light amount AΔ when the arrival angle varies by the high-frequency arrival angle variation α to the received light amount A0 when there is no arrival angle variation. Strictly speaking, the variation γ in the amount of received light changes depending on the relationship between the divergent light beam waist wx and the aperture diameter D, but it does not change much with the aperture diameter D. Therefore, considering the case where the aperture diameter D is extremely small, it is represented by the formula (7).
Figure JPOXMLDOC01-appb-M000016
In general, if the received light amount variation γ is less than 5 dB (=31.6%), communication tends to become unstable, which is not preferable. In other words, the condition for stable communication is given by equation (8).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
With k=1/0.759=1.32, we obtain equation (10).
Figure JPOXMLDOC01-appb-M000019
Here, the required beam waist w n is
Figure JPOXMLDOC01-appb-M000020
is defined as
Figure JPOXMLDOC01-appb-M000021
becomes. That is, the additional divergence angle β may be adjusted with respect to the parallel light beam waist wp so as to exceed the required beam waist wn .
For calculation purposes, equation (12) is expanded from equations (4) and (11) into equation (13).
Figure JPOXMLDOC01-appb-M000022
 ここで、図7を用いて、追加発散角βの算出方法を説明する。
 まず、通信光出射部から投光光学系の焦点距離fだけ離れた位置にある投光光学系(一枚のレンズとして表記)を介して、出射光ビームウエストwで出射している平行光の光路を、破線で示す。更に、通信光出射部が、ΔZだけシフトした場合の光路を二点鎖線で示す。図を見てわかる通り、この時のマージナル光線の光路は、通信光出射部がシフトせず、画角ΔYの位置に光源がある場合と同じになる。この場合のマージナル光線の向きと、主光線の向きとは互いに平行であるため、通信光出射部がΔZだけシフトした場合の追加発散角βは、式(14)になる。
Figure JPOXMLDOC01-appb-M000023
ここで、
Figure JPOXMLDOC01-appb-M000024
より、
Figure JPOXMLDOC01-appb-M000025
となるので、
Figure JPOXMLDOC01-appb-M000026
 となる。
 説明のわかりやすさのため、通信光出射部をシフトさせたが、投光光学系の焦点面のシフトとして捉えても同様である。これにより、投光光学系の焦点面のシフト量ΔZから、追加発散角βが算出できる。
 以下、本実施例の具体的な構成で説明する。
Here, a method for calculating the additional divergence angle β will be described with reference to FIG.
First, the parallel light emitted with the emitted light beam waist w 0 through the projection optical system (represented as a single lens) located at a position separated by the focal length f of the projection optical system from the communication light emission part is indicated by a dashed line. Further, the two-dot chain line indicates the optical path when the communication light emitting portion is shifted by ΔZf . As can be seen from the figure, the optical path of the marginal ray at this time is the same as when the communication light emitting portion is not shifted and the light source is located at the angle of view ΔY. Since the direction of the marginal ray and the direction of the principal ray in this case are parallel to each other, the additional divergence angle β when the communication light emitting portion is shifted by ΔZ f is given by equation (14).
Figure JPOXMLDOC01-appb-M000023
here,
Figure JPOXMLDOC01-appb-M000024
Than,
Figure JPOXMLDOC01-appb-M000025
so that
Figure JPOXMLDOC01-appb-M000026
becomes.
For the sake of clarity of explanation, the communication light emitting portion is shifted, but it is the same even if it is understood as a shift of the focal plane of the projection optical system. Thus, the additional divergence angle β can be calculated from the shift amount ΔZf of the focal plane of the projection optical system.
A specific configuration of this embodiment will be described below.
 先の説明と重複するが、高周波到来角変動量α[rad]は、天候や通信距離Lなどによって変動する。風の穏やかな時間帯や通信距離Lが短い場合などは、高周波到来角変動量αが小さく、風の強い時間帯や通信距離Lが長い場合などでは、高周波到来角変動量αが大きくなる。 Although it overlaps with the previous explanation, the high-frequency arrival angle fluctuation amount α [rad] fluctuates depending on the weather, the communication distance L, and the like. The high-frequency arrival angle fluctuation amount α is small when the wind is calm or the communication distance L is short, and the high-frequency arrival angle fluctuation amount α is large when the wind is strong or the communication distance L is long.
 受信光制御部240にて、通信光の到来角度を計算し、受光光学系220の像振れ補正機構と角度調整台201とにフィードバックしている。しかし、これらのフィードバックを実施しても、高周波到来角変動量αが、補正残りとして、受信光制御部240にて計算される。 The received light control unit 240 calculates the arrival angle of the communication light and feeds it back to the image blur correction mechanism of the light receiving optical system 220 and the angle adjustment base 201 . However, even if these feedbacks are performed, the high-frequency arrival angle fluctuation amount α is calculated by the received light control section 240 as a correction remainder.
 この高周波到来角変動量αの情報を、通信光を介して、送信光制御部140に伝達している。送信光制御部140では、高周波到来角変動量αの情報を元に、追加発散角βを計算し、投光光学系120の有するフォーカス機構にフィードバックしている。これにより、受光光量変動を抑制し、通信の安定性を確保している。 Information about the high-frequency arrival angle fluctuation amount α is transmitted to the transmission light control unit 140 via communication light. Based on the information on the high-frequency arrival angle fluctuation amount α, the transmission light control unit 140 calculates the additional divergence angle β and feeds it back to the focusing mechanism of the projection optical system 120 . This suppresses fluctuations in the amount of received light and ensures the stability of communication.
 ここで、発散度を変化させるフォーカス機構にも、駆動周波数の制限がある。高周波到来角変動量αは、フォーカス機構の駆動周期における、到来角変動量の最大値としている。これにより、フォーカス機構の駆動周波数の制限も考慮して、最適な発散度を設定できる。尚、送信光制御部140で計算される追加発散角βは、受光光量変動の抑制や受光光量の増加など、目的に応じて増減させても構わない。
 本発明で議論している光伝送装置では、下記のような仕様を想定している。
  通信距離L≦30km
  高周波到来角変動量α≦100μrad
  また、本実施例において、
  出射光ビームウエストw=50mm
 である。
Here, the focus mechanism that changes the degree of divergence also has limitations on the drive frequency. The high-frequency arrival angle fluctuation amount α is the maximum value of the arrival angle fluctuation amount in the driving cycle of the focus mechanism. This makes it possible to set the optimum divergence, taking into consideration the limitation of the drive frequency of the focus mechanism. Note that the additional divergence angle β calculated by the transmission light control unit 140 may be increased or decreased depending on the purpose, such as suppressing fluctuations in the amount of received light or increasing the amount of received light.
The optical transmission device discussed in the present invention assumes the following specifications.
Communication distance L≤30km
High-frequency arrival angle fluctuation amount α≦100 μrad
Also, in this embodiment,
Output light beam waist w 0 = 50 mm
is.
 図8A、8B、8Cそれぞれに、高周波到来角変動量α=10μrad、50μrad、100μrad時の、通信距離Lに対する、必要ビームウエストwと、平行光ビームウエストwと、追加発散角β=3.4μrad、58.0μrad、125μrad時の発散光ビームウエストwとを示す。
 追加発散角βにより、w≧wを達成し、通信の安定性を確保出来ている。
 式(16)を変形して、以下の式(18)を得る。
Figure JPOXMLDOC01-appb-M000027
 本実施例において、
  焦点距離f=1600mm
  出射光ビームウエストw=50mm
 であるため、上記追加発散角β(3.4μrad、58.0μrad、125μrad)を確保するために必要な焦点面のシフト量ΔZはそれぞれ、0.174mm、2.969mm、6.411mmとなる。
8A, 8B, and 8C respectively show the required beam waist wn , the parallel light beam waist wp , and the additional divergence angle β=3 for the communication distance L when the high-frequency arrival angle variation α=10 μrad, 50 μrad, and 100 μrad. Diverging light beam waists wx at .4 μrad, 58.0 μrad and 125 μrad are shown.
With the additional divergence angle β, w x ≧w n is achieved, and the stability of communication can be secured.
By transforming the equation (16), the following equation (18) is obtained.
Figure JPOXMLDOC01-appb-M000027
In this example,
Focal length f=1600mm
Output light beam waist w 0 = 50 mm
Therefore, the focal plane shift amounts ΔZ required to secure the additional divergence angles β (3.4 μrad, 58.0 μrad, and 125 μrad) are 0.174 mm, 2.969 mm, and 6.411 mm, respectively.
 また、投光光学系120の有するフォーカス機構は、レンズを光軸方向に1mmシフトさせたときに、焦点面を4mmシフトさせる敏感度を有しているため、高周波到来角変動量α=100μrad時でもレンズのシフト量は1.6mmであり、十分対応できる。
 以上の構成により、本発明の効果が得られる。
Further, the focusing mechanism of the projection optical system 120 has the sensitivity to shift the focal plane by 4 mm when the lens is shifted by 1 mm in the optical axis direction. However, the lens shift amount is 1.6 mm, which is sufficient.
With the above configuration, the effects of the present invention can be obtained.
 環境に依るが、概して、高周波到来角変動量αが50μradを超える場合は少ない。そのため、高周波到来角変動量α=50μrad時に、
 wn<wp  (19)
 を達成している場合、発散度を変化させる必要性が低く、本発明の効果が小さいと言える。
 そのため、本発明の効果を十分に得るための条件式は、式(19)の逆で、
Figure JPOXMLDOC01-appb-M000028
 即ち、
Figure JPOXMLDOC01-appb-M000029
 にk=1.32と、α=50μradを代入して、
Figure JPOXMLDOC01-appb-M000030
 を満たす場合に本発明の効果を十分に得ることができる。
Although it depends on the environment, there are generally few cases where the high-frequency arrival angle fluctuation amount α exceeds 50 μrad. Therefore, when the high-frequency arrival angle fluctuation amount α=50 μrad,
w n <w p (19)
is achieved, it can be said that the need to change the divergence is low and the effect of the present invention is small.
Therefore, the conditional expression for sufficiently obtaining the effect of the present invention is the inverse of the expression (19),
Figure JPOXMLDOC01-appb-M000028
Namely
Figure JPOXMLDOC01-appb-M000029
Substitute k = 1.32 and α = 50 μrad into
Figure JPOXMLDOC01-appb-M000030
The effect of the present invention can be sufficiently obtained when the following conditions are satisfied.
 本実施例では、図8Bより、広範囲の通信距離Lにて、式(20)の関係が達成されていることがわかる。
 本実施例では、通信光の発散度を調整する手段として、レンズ123及びレンズ223をフォーカス機構として利用している。このように、カメラなどで汎用化されている技術を活用することで安価な構成とすることができる。
 また、高周波到来角変動量α=50μradまでは、フォーカス機構にて発散度を調整できるようにしたい。
Figure JPOXMLDOC01-appb-M000031
 より、少なくとも、
Figure JPOXMLDOC01-appb-M000032
 であれば、
Figure JPOXMLDOC01-appb-M000033
 が達成される。
 上記を加味し、
Figure JPOXMLDOC01-appb-M000034
 を変形して、
Figure JPOXMLDOC01-appb-M000035
 k=1.32と、α=50μradを式(25)に代入すると、
Figure JPOXMLDOC01-appb-M000036
 となる。ΔZfmaxをフォーカス機構で調整できる最大の焦点面のシフト量だとすると、
Figure JPOXMLDOC01-appb-M000037
 を達成できるフォーカス機構が好ましい。
In this embodiment, it can be seen from FIG. 8B that the relationship of formula (20) is achieved over a wide range of communication distance L. FIG.
In this embodiment, the lens 123 and the lens 223 are used as a focusing mechanism as means for adjusting the degree of divergence of communication light. In this way, a low-cost configuration can be achieved by utilizing the technology that has been generalized in cameras and the like.
Further, it is desired that the divergence can be adjusted by the focus mechanism up to the high-frequency arrival angle fluctuation amount α=50 μrad.
Figure JPOXMLDOC01-appb-M000031
than, at least
Figure JPOXMLDOC01-appb-M000032
If,
Figure JPOXMLDOC01-appb-M000033
is achieved.
Considering the above,
Figure JPOXMLDOC01-appb-M000034
by transforming the
Figure JPOXMLDOC01-appb-M000035
Substituting k = 1.32 and α = 50 µrad into equation (25) yields
Figure JPOXMLDOC01-appb-M000036
becomes. Assuming that ΔZ fmax is the maximum focal plane shift amount that can be adjusted by the focus mechanism,
Figure JPOXMLDOC01-appb-M000037
A focusing mechanism that can achieve
 また、フォーカス機構の補正分解能は高い方が好ましい。具体的には、フォーカス機構の有するレンズが0.01mm移動(シフト)したときの、高周波到来角変動量αの補正量が、1μrad以下であることが好ましい。
 フォーカス機構の有するレンズが0.01mm移動(シフト)したときの、焦点面のシフト量をΔZfγとすると
Figure JPOXMLDOC01-appb-M000038
 であればよい。即ち、
Figure JPOXMLDOC01-appb-M000039
 に、k=1.32と、α=1μradを代入して、
Figure JPOXMLDOC01-appb-M000040
 を満足するフォーカス機構の補正分解能があればよい。
Further, it is preferable that the correction resolution of the focus mechanism is high. Specifically, when the lens of the focus mechanism is moved (shifted) by 0.01 mm, the correction amount of the high-frequency arrival angle fluctuation amount α is preferably 1 μrad or less.
If the shift amount of the focal plane when the lens of the focus mechanism is moved (shifted) by 0.01 mm is ΔZ
Figure JPOXMLDOC01-appb-M000038
If it is Namely
Figure JPOXMLDOC01-appb-M000039
, substituting k = 1.32 and α = 1 μrad,
Figure JPOXMLDOC01-appb-M000040
It suffices if there is a correction resolution of the focusing mechanism that satisfies the above.
 本実施例においては、投光光学系120の有するフォーカス機構は、レンズを光軸方向に1mmシフトさせたときに、焦点面を4mmシフトさせる敏感度を有している。
 即ち、ΔZfγ=0.04mmに対し、
  焦点距離f=1600mm
  出射光ビームウエストw=50mm
 より、式(30)の右辺の値は0.068mmであるため、式(30)を満足している。
In this embodiment, the focus mechanism of the projection optical system 120 has the sensitivity to shift the focal plane by 4 mm when the lens is shifted by 1 mm in the optical axis direction.
That is, for ΔZ =0.04 mm,
Focal length f=1600mm
Output light beam waist w 0 = 50 mm
Therefore, the value of the right side of equation (30) is 0.068 mm, which satisfies equation (30).
 本実施例においては、フォーカス機構として、レンズ123及びレンズ223のそれぞれ1枚のみの光学部材の構成としている。このような構成とすることで、複数の光学部材を有する構成と比して、簡易で安価、且つ、発散度調整時の調整精度も向上させることが出来る。 In this embodiment, the focus mechanism is configured with only one optical member, each of the lens 123 and the lens 223 . By adopting such a configuration, compared with a configuration having a plurality of optical members, it is simpler and cheaper, and the adjustment accuracy when adjusting the degree of divergence can be improved.
 本実施例においては、位置検出センサ132a及び132bにて、通信光の発散度を検知している。これまで議論していなかったが、環境温度変化や振動などにより投光光学系の発散度は変化する場合がある。このような構成とすることで、発散度調整時の調整精度を向上させることが出来る。 In this embodiment, the position detection sensors 132a and 132b detect the divergence of the communication light. Although not discussed so far, the divergence of the projection optical system may change due to environmental temperature changes, vibrations, and the like. With such a configuration, it is possible to improve the adjustment accuracy when adjusting the degree of divergence.
 尚、本実施例では、反射プリズム131a及び131bにて折り返した光線を用いて通信光の発散度を検知しているが、発散度を検知する方式はこれに限られない。
 本実施例においては、通信光の向きを補正する手段として、角度調整台201及び、像振れ補正機構を有しており、これらで補正できない到来角変動量のみを、発散度を調整して対応している。このような構成とすることで、発散度を調整することのみで対応する構成と比して、発散度を小さく抑えることができ、受光光量を確保することが出来る。
In this embodiment, the divergence of the communication light is detected using the light beams folded back by the reflecting prisms 131a and 131b, but the method of detecting the divergence is not limited to this.
This embodiment has an angle adjustment table 201 and an image blur correction mechanism as means for correcting the direction of the communication light, and only the amount of arrival angle variation that cannot be corrected by these is dealt with by adjusting the degree of divergence. is doing. By adopting such a configuration, the divergence can be suppressed to be small compared to the corresponding configuration only by adjusting the divergence, and the amount of received light can be ensured.
 本実施例では、通信光の向きを調整する手段として、レンズ121及びレンズ221を光軸に垂直な方向に可動な像振れ補正機構を利用している。このように、カメラなどで汎用化されている技術を活用することで安価な構成とすることができる。 In this embodiment, as a means for adjusting the direction of communication light, an image blur correction mechanism that can move the lenses 121 and 221 in the direction perpendicular to the optical axis is used. In this way, a low-cost configuration can be achieved by utilizing the technology that has been generalized in cameras and the like.
 通信光の向きを調整する手段として、MEMSミラーのような反射部材の位置や角度を変更する機構を用いても良い。この場合、透過部材を使用した場合と比して、レンズの内部反射による不要光が発生しない効果を得ることができる。また、一般には、MEMSミラーの方が、像振れ補正機構よりも高速で駆動できる効果もある。 As a means for adjusting the direction of communication light, a mechanism for changing the position and angle of a reflecting member such as a MEMS mirror may be used. In this case, it is possible to obtain the effect of not generating unnecessary light due to internal reflection of the lens, as compared with the case of using the transmissive member. Also, in general, the MEMS mirror can be driven at a higher speed than the image blur correction mechanism.
 本実施例では、受信光制御部240(発散度制御部)にて計算される、高周波到来角変動量αの情報を、通信光を介して、送信光制御部140に伝達し、投光光学系120の有するフォーカス機構にフィードバックしている。しかし、本発明はこれに限られることはない。高周波到来角変動量αの情報を受光光学系220の有するフォーカス機構にフィードバックしても良い。光伝送装置は双方向で通信しており、到来角変動量は、相対的なずれであるため、通信光の高周波到来角変動量αの情報は互いに略同一となる。光伝送装置同士が、互いに高周波到来角変動量αを検知し、自身のフォーカス機構にフィードバックすることで、互いに発散度を最適化することになる。 In this embodiment, the information of the high-frequency arrival angle fluctuation amount α calculated by the reception light control unit 240 (divergence control unit) is transmitted to the transmission light control unit 140 via the communication light, and the projection optical system It is fed back to the focusing mechanism of system 120 . However, the present invention is not limited to this. Information on the high-frequency arrival angle fluctuation amount α may be fed back to the focus mechanism of the light receiving optical system 220 . Since the optical transmission apparatus communicates bi-directionally and the arrival angle fluctuation amounts are relative deviations, the information of the high-frequency arrival angle fluctuation amount α of the communication light is substantially the same. The optical transmission devices mutually detect the high-frequency arrival angle fluctuation amount α and feed it back to their own focusing mechanisms, thereby mutually optimizing the degree of divergence.
 尚、これまで、理想的なガウシアンビームで議論してきたが、実際の強度分布は、厳密にはガウシアンビームではない。本実施例で言えば、副鏡124での遮光により、投光光学系120を出射した直後の通信光の強度分布は、動径方向に、中央部が欠けたドーナツ状となり、ガウシアンビームの強度分布とは異なる。しかし、概ね500m以上の長距離を伝搬する光伝送装置の使用においては、通信光の回折により、受光光学系に到達する際には、略ガウシアンビームの強度分布となる。また、通信光が伝搬する空気中の屈折率分布や透過率分布などによっても、強度分布は大きく変わってしまうため、厳密な強度分布を考慮する必要性は低い。これらのことから、理想的なガウシアンビームを考慮したこれまでの議論で十分であり、本発明の構成とすることで、通信の安定性を確保できる。 Although the discussion has so far been based on an ideal Gaussian beam, the actual intensity distribution is not strictly a Gaussian beam. In this embodiment, due to the light shielding by the secondary mirror 124, the intensity distribution of the communication light immediately after being emitted from the projection optical system 120 becomes a donut shape in the radial direction with the central part missing, and the intensity of the Gaussian beam is Different from distribution. However, in the use of an optical transmission device that propagates over a long distance of approximately 500 m or more, the intensity distribution of a substantially Gaussian beam is obtained when reaching the light receiving optical system due to diffraction of communication light. In addition, since the intensity distribution changes greatly depending on the refractive index distribution and transmittance distribution in the air through which the communication light propagates, there is little need to consider the strict intensity distribution. For these reasons, the above discussion considering the ideal Gaussian beam is sufficient, and the configuration of the present invention can ensure the stability of communication.
 上記議論と同様に、理想的なガウシアンビームでない場合、出射光ビームウエストwを定義することが難しい場合がある。その場合は、強度分布のピークから13.5%までの動径方向の距離を、出射光ビームウエストwとして議論して問題ない。 Similar to the discussion above, for non-ideal Gaussian beams, it may be difficult to define the exit light beam waist w 0 . In that case, there is no problem in discussing the radial distance from the peak of the intensity distribution to 13.5% as the emitted light beam waist w0 .
 本実施例では、通信光射出手段110から出射した通信光の一部を検出光として活用しているため、通信光の出射部と検出光の出射部とが同一となる。このような構成とすることで、通信光と検出光との光路がより近くなり、通信光の光学特性をより正確に検出しやすくなるという効果を得ている。  In this embodiment, part of the communication light emitted from the communication light emitting means 110 is used as the detection light, so the communication light emitting portion and the detection light emitting portion are the same. With such a configuration, the optical paths of the communication light and the detection light become closer, and the optical characteristics of the communication light can be detected more accurately. 
 これまで、説明のため、受信側の光伝送装置2000について主に議論してきたが、前述の通り、通信光の向きを逆転しても成り立つ構成であるため、送信側の光伝送装置1000についても同様である。特に、送信光検出部と受信光検出部とは、片側ずつしか図示していないが、両装置とも有していることに注意されたい。本実施例では、反射プリズムと透過ウェッジプリズムとを、互いに光軸周りに90°回転させて設置している(図2A及び図3Aで言えば、紙面奥手前方向になる)。 Up to this point, the optical transmission device 2000 on the receiving side has been mainly discussed for the sake of explanation. It is the same. In particular, it should be noted that both devices have a transmitted light detector and a received light detector, although only one side is shown. In this embodiment, the reflective prism and the transmissive wedge prism are installed so as to be rotated 90° about the optical axis (in FIGS. 2A and 3A, the front side of the paper surface).
 例示した実施例では、光伝送装置の投光光学系と受光光学系とが基本的には同様の構成の光学系であり、光軸も略同一となる構成であったが、本発明はこれに限られることはない。光伝送装置の投光光学系と受光光学系とが別々の構成を有する光学系であってもよく、両者の光軸が同軸でなくても構わない。 In the exemplified embodiment, the light projecting optical system and the light receiving optical system of the optical transmission device were basically optical systems having the same configuration, and the optical axes were substantially the same. is not limited to The light projecting optical system and the light receiving optical system of the optical transmission device may be optical systems having separate configurations, and the optical axes of both may not be coaxial.
 ここで、本発明で議論している「光軸」とは、射出手段から射出して投光光学系を通過する通信光の光束の中心光路、及び、受光光学系を通過して受光手段に向かう通信光の光束の中心光路を指す。一般的な共軸光学系の光軸とは定義が異なることに注意されたい。
 本実施例では、わかりやすさのために、共軸系の投光光学系の光軸上に射出手段が存在し、共軸系の受光光学系の光軸上に受光手段が存在する形態とし、これまで説明をしていた。しかし、投光光学系、及び、受光光学系の光軸上に射出手段及び受光手段が存在しない場合などは、一般的な共軸光学系の光軸同士を揃えても、通信は確立されない。また、投光光学系、及び、受光光学系が偏芯光学系の場合などは、「光軸」の明確な定義が難しい。上記の理由から、「光軸」の定義を異ならせていることを理解されたい。
Here, the "optical axis" discussed in the present invention means the central optical path of the communication light beam emitted from the emitting means and passing through the light projecting optical system, and the light receiving means passing through the light receiving optical system. It refers to the central optical path of the luminous flux of the communication light heading. Note that the definition is different from the optical axis of a general coaxial optical system.
In this embodiment, for the sake of clarity, the configuration is such that the emitting means exists on the optical axis of the coaxial light projecting optical system and the light receiving means exists on the optical axis of the coaxial light receiving optical system. I was explaining. However, in cases such as when there are no emitting means and light receiving means on the optical axes of the light projecting optical system and the light receiving optical system, communication cannot be established even if the optical axes of a general coaxial optical system are aligned. Further, when the light projecting optical system and the light receiving optical system are decentered optical systems, it is difficult to clearly define the "optical axis". It should be appreciated that the definition of "optical axis" is different for the above reasons.
 本実施形態では、検出光と通信光とが投光光学系120及び受光光学系220の全ての光学素子を同様に経由しているが、これに限られることはない。投光光学系及び受光光学系の少なくとも一部を同様に経由していれば、本発明の効果を得られる。但し、前述の通り、なるべく、同様に経由する光学素子が多い方が、通信の安定性に好ましい。また、同様に、検出光と通信光とで、投光光学系及び受光光学系として、異なる光学素子を経由しても構わない。 In this embodiment, the detection light and the communication light similarly pass through all optical elements of the light projecting optical system 120 and the light receiving optical system 220, but are not limited to this. The effect of the present invention can be obtained by passing through at least part of the light projecting optical system and the light receiving optical system in the same way. However, as described above, it is preferable for the stability of communication that the number of optical elements that are similarly routed is as large as possible. Similarly, the detection light and the communication light may pass through different optical elements as the light projecting optical system and the light receiving optical system.
 本実施形態では、投光光学系120及び受光光学系220に反射光学素子と透過光学素子との両方を用いているが、これに限られることはなく、反射光学素子のみ、透過光学素子のみなどで構成されてもよい。 In this embodiment, both the reflective optical element and the transmissive optical element are used for the light projecting optical system 120 and the light receiving optical system 220, but the present invention is not limited to this, and only the reflective optical element, only the transmissive optical element, etc. may consist of
 ここで、本実施例では、通信光射出手段110から出射した通信光の一部を活用し、検出を行っているが、これに限られることはない。例えば、通信光射出手段110の光ファイバの不図示の他端から通信光と別の波長の光を入射させ、それを検出光として用いるなど、専用の検出光を用いても良い。 Here, in the present embodiment, part of the communication light emitted from the communication light emitting means 110 is used for detection, but it is not limited to this. For example, a dedicated detection light may be used, for example, a light having a different wavelength from the communication light may be incident from the other end (not shown) of the optical fiber of the communication light emitting means 110 and used as the detection light.
 本実施例では、光ファイバから出射した通信光を光ファイバで受信する構成としたが、これに限られることはなく、例えば半導体レーザから出射した通信光をセンサで受信する構成としても構わない。 In this embodiment, the communication light emitted from the optical fiber is received by the optical fiber, but the present invention is not limited to this. For example, the communication light emitted from the semiconductor laser may be received by the sensor.
 本実施形態では、検出光受光手段として、位置検出センサを用いていたが、これに限られることはなく、例えば2次元センサや光量検出センサなどであっても構わない。 In the present embodiment, the position detection sensor is used as the detection light receiving means, but it is not limited to this, and may be a two-dimensional sensor or light amount detection sensor, for example.
 例示した実施例では、光伝送装置は、互いに離間して配置された光伝送装置1000と光伝送装置2000とが、それぞれが投光手段及び受光手段として機能することが可能であり、双方向の通信が可能である構成として説明した。しかし、本発明はそれに前提されることはない。
 第1の通信光を射出する第1の射出手段と第1の投光光学系とを含む第1の投光部と、第1の受光光学系と第1の通信光を受光する第1の通信光受光手段を含む第1の受光部と、第2の通信光を射出する第2の射出手段と第2の投光光学系とを含む第2の投光部と、第2の受光光学系と第2の通信光を受光する第2の通信光受光手段を含む第2の受光部と、を有し、第1の投光部と第1の受光部の間で光通信を行い、第2の投光部と第2の受光部の間で光通信を行う光伝送装置においても、本発明は同様に適用可能であり、効果を享受することができる。その構成の光伝送装置においては、第1の投光部は検出光を射出する検出光射出部を有し、第2の投光光学系は光束の発散度を変化させる調整光学系を有する。第1の受光部は、前記検出光を受光する検出光受光手段を有し、光伝送装置は、検出光受光手段で得られた情報に基づき、調整光学系を制御する発散度制御部を有する。この構成においては、第1の投光部と第2の受光部とは互いに隣接して配置され、第2の投光部と第1の受光部とは互いに隣接して配置される。ここで、「互いに隣接して配置される」とは、互いに離間する距離が10m以下、より好ましくは2m以下、さらに好ましくは、0.5m以下であることが好ましい。
In the illustrated embodiment, the optical transmission device 1000 and the optical transmission device 2000, which are spaced apart from each other, are capable of functioning as light projecting means and light receiving means, respectively. It has been described as a configuration in which communication is possible. However, the present invention is not premised on it.
a first light projecting unit including a first light emitting unit for emitting a first communication light and a first light projecting optical system; a first light receiving optical system; and a first light receiving unit for receiving the first communication light a first light receiving section including communication light receiving means; a second light projecting section including second emitting means for emitting the second communication light and a second light projecting optical system; and a second light receiving optical system. a system and a second light receiving section including second communication light receiving means for receiving the second communication light, wherein optical communication is performed between the first light projecting section and the first light receiving section; The present invention can be similarly applied to an optical transmission device that performs optical communication between a second light projecting section and a second light receiving section, and can enjoy its effects. In the optical transmission device having such a configuration, the first light projecting section has a detection light emitting section for emitting detection light, and the second light projecting optical system has an adjusting optical system for changing the degree of divergence of the light flux. The first light receiving section has detection light receiving means for receiving the detection light, and the optical transmission device has a divergence control section for controlling the adjustment optical system based on information obtained by the detection light receiving means. . In this configuration, the first light projecting section and the second light receiving section are arranged adjacent to each other, and the second light projecting section and the first light receiving section are arranged adjacent to each other. Here, "arranged adjacent to each other" means that the distance apart from each other is preferably 10 m or less, more preferably 2 m or less, and still more preferably 0.5 m or less.
 (実施例2)
 本発明の実施例2に係る光伝送装置(空間光伝送装置)の構成は図1に示した実施例1の光伝送装置(空間光伝送装置)の構成と同様である。ここで、実施例2に係る光伝送装置の説明は、一方向の通信について行うが、逆方向の通信についても同様である。
(Example 2)
The configuration of the optical transmission device (spatial optical transmission device) according to the second embodiment of the present invention is the same as the configuration of the optical transmission device (spatial optical transmission device) of the first embodiment shown in FIG. Here, the description of the optical transmission apparatus according to the second embodiment is given for one-way communication, but the same applies to reverse-direction communication.
 本発明の実施例2では、どのような通信距離に対しても外乱による光量変動の小さい光伝送装置を提供する。 Embodiment 2 of the present invention provides an optical transmission device with small fluctuations in the amount of light due to disturbance for any communication distance.
 以下、図9~13を参照しながら光伝送装置(空間光伝送装置)の構成を詳細に説明する。
 図9は、図1に示した光伝送装置1000の実施例2における投光部100(不図示)の構成詳細図である。図2Aに示した実施例1における投光部1100の構成と同じ構成については、同じ参照符号を付し、説明を省略する。
 投光部100は、通信光射出部(射出手段)110と、投光光学系120と、送信光検出部と、送信光制御部140と、保持部150(不図示)とを有する。
The configuration of the optical transmission device (spatial optical transmission device) will be described in detail below with reference to FIGS.
FIG. 9 is a detailed configuration diagram of the light projection unit 100 (not shown) in the second embodiment of the optical transmission device 1000 shown in FIG. The same reference numerals are given to the same configurations as those of the light projecting unit 1100 according to the first embodiment shown in FIG. 2A, and the description thereof is omitted.
The light projecting section 100 includes a communication light emitting section (projecting means) 110, a light projecting optical system 120, a transmission light detection section, a transmission light control section 140, and a holding section 150 (not shown).
 実施例2の投光光学系120は、通信光射出部側から順に光路に配置された、レンズ121と、レンズ122と、レンズ123と、副鏡124と、主鏡125と、光強度変換素子160を有している。実施例1の投光光学系120に対して光強度変換素子160を備えることが異なる。光強度変換素子160については後述する。 The projection optical system 120 of the second embodiment includes a lens 121, a lens 122, a lens 123, a secondary mirror 124, a primary mirror 125, and a light intensity conversion element, which are arranged in the optical path in this order from the communication light output side. 160. It differs from the projection optical system 120 of the first embodiment in that a light intensity conversion element 160 is provided. The light intensity conversion element 160 will be described later.
 図10は、受信側の図1に示した光伝送装置2000の実施例2における受光部200(不図示)の構成詳細図である。図3Aに示した実施例1における受光部1200の構成と同じ構成については、同じ参照符号を付し、説明を省略する。 FIG. 10 is a detailed configuration diagram of the light receiving unit 200 (not shown) in the second embodiment of the optical transmission device 2000 shown in FIG. 1 on the receiving side. The same reference numerals are given to the same configurations as those of the light receiving unit 1200 in the first embodiment shown in FIG. 3A, and the description thereof is omitted.
 実施例2の受光光学系220は、通信光入射側から順に光路に配置された、光強度変換素子160、主鏡(反射曲面)225と副鏡(反射曲面)224、レンズ223、レンズ222、レンズ221を有している。実施例1の受光光学系220に対して光強度変換素子160を備えることが異なる。光強度変換素子160については後述する。 The light-receiving optical system 220 of the second embodiment includes a light intensity conversion element 160, a primary mirror (reflecting curved surface) 225, a secondary mirror (reflecting curved surface) 224, a lens 223, a lens 222, a lens 223, a lens 222, a primary mirror (reflecting curved surface) 225, and a secondary mirror (reflecting curved surface) 224, which are arranged in the optical path in order from the communication light incident side. It has a lens 221 . It differs from the light receiving optical system 220 of the first embodiment in that a light intensity conversion element 160 is provided. The light intensity conversion element 160 will be described later.
 透過ウェッジプリズム231は、図3Bに拡大図で示した実施例1の透過ウェッジプリズム231と同じであるので説明を省略する。 The transmission wedge prism 231 is the same as the transmission wedge prism 231 of Example 1 shown in FIG.
 前述の通り、可換保持部材251の有する着脱部251aと固定保持部材252の有する着脱部252aが取り外し可能な状態で結合した構成になっている。具体的には、着脱部251aはCマウントのメス型、着脱部252aはCマウントのオス型になっている。そのため、上記の結合を外し、図11に示すようにCマウントのメス型351aを有し、2次元画像の撮像が可能な撮像素子352を有するカメラ装置351を結合させることが可能である。 As described above, the detachable portion 251a of the exchangeable holding member 251 and the detachable portion 252a of the fixed holding member 252 are detachably connected. Specifically, the detachable portion 251a is a C-mount female type, and the detachable portion 252a is a C-mount male type. Therefore, it is possible to remove the above coupling and couple a camera device 351 having a C-mount female type 351a and an imaging element 352 capable of capturing a two-dimensional image as shown in FIG.
 受光光学系220の無限遠合焦時の光学性能値(投光光学系120も同様)として、図4、5に通信波長(1540nm~1560nm)、焦点距離f=1599.999mmにおける縦収差図、横収差図を示す(実施例1と同様の光学性能値を示す)。また,図12、13に可視光波長(e線:波長546nm)、焦点距離f=1602.968mmにおける縦収差図、横収差図を示す。縦収差図の非点収差図及び横収差図における実線と点線とは、各々メリディオナル像面とサジタル像面とにおける収差を示す。縦収差図では、球面収差は0.4mm、非点収差は0.4mm、歪曲は5%のスケールで描かれている。図13に、像高14.8000mm、像高11.1000mm、像高7.4000mm、像高3.7000mm、像高0.0000mmにおける横収差図を示す。 4 and 5 are longitudinal aberration diagrams at a communication wavelength (1540 nm to 1560 nm) and a focal length f = 1599.999 mm as optical performance values of the light receiving optical system 220 when focused on infinity (the same applies to the light projecting optical system 120). Fig. 4 shows lateral aberration diagrams (showing the same optical performance values as in Example 1); 12 and 13 show longitudinal and lateral aberration diagrams at a visible light wavelength (e-line: wavelength 546 nm) and focal length f=1602.968 mm. A solid line and a dotted line in the astigmatism diagram of the longitudinal aberration diagram and the lateral aberration diagram show aberrations on the meridional image plane and the sagittal image plane, respectively. In the longitudinal aberration diagram, spherical aberration is drawn on a scale of 0.4 mm, astigmatism is drawn on a scale of 0.4 mm, and distortion is drawn on a scale of 5%. FIG. 13 shows lateral aberration diagrams at an image height of 14.8000 mm, an image height of 11.1000 mm, an image height of 7.4000 mm, an image height of 3.7000 mm, and an image height of 0.0000 mm.
 図4、5より、通信波長(1540nm~1560nm)における、通信光受光部210が位置する中心画角にて収差を低減できていることが分かる。また、図12、13より、APS-Cセンサ(撮像素子、二次元画像取得手段)352の画角(23.4×16.7mm=対角±14.2mm)において、可視光波長においても、十分に収差が取れていることが分かる。 From FIGS. 4 and 5, it can be seen that the aberration can be reduced at the central angle of view where the communication light receiving section 210 is located at the communication wavelength (1540 nm to 1560 nm). 12 and 13, at the angle of view (23.4 × 16.7 mm = diagonal ± 14.2 mm) of the APS-C sensor (imaging element, two-dimensional image acquisition means) 352, even at visible light wavelengths, It can be seen that sufficient aberration is obtained.
 つまり、実施例2では、光伝送装置1000の設置時において、可換保持部材251に代えて可視光用のカメラ装置351を取り付け、受光光学系220の光軸上にある撮像素子で捉えられる二次元画像を見ながら受光光学系220の角度の調整ができる。この場合、カメラの光軸と受光光学系220の光軸とが同一となるため、特許文献2のようにカメラの光軸と受光光学系の光軸とのずれに起因する調整誤差の課題は解消される。 That is, in the second embodiment, when the optical transmission device 1000 is installed, the camera device 351 for visible light is attached in place of the replaceable holding member 251, and two images captured by the imaging element on the optical axis of the light receiving optical system 220 are obtained. The angle of the light receiving optical system 220 can be adjusted while viewing the dimensional image. In this case, since the optical axis of the camera and the optical axis of the light-receiving optical system 220 are the same, the problem of the adjustment error due to the deviation between the optical axis of the camera and the optical axis of the light-receiving optical system as in Patent Document 2 is eliminated. be canceled.
 具体的には、下記のような設置時の調整手順となる。
 ステップ1 GPS等で確認し、光伝送装置1000の投光部100及び光伝送装置2000の受光部200が凡そ向かい合うように、角度調整台101と角度調整台201を調整する。
Specifically, the adjustment procedure at the time of installation is as follows.
Step 1 Confirm with GPS or the like, and adjust the angle adjusting table 101 and the angle adjusting table 201 so that the light projecting unit 100 of the optical transmission device 1000 and the light receiving unit 200 of the optical transmission device 2000 face each other.
 ステップ2 光伝送装置2000において、通信光受光部210と受信光検出部の一部である位置検出センサ232ごと可換保持部材251を固定保持部材252から取り外し、可視光用のカメラを固定保持部材252の着脱部252aに取り付ける。 Step 2 In the optical transmission device 2000, the exchangeable holding member 251 is removed from the fixed holding member 252 together with the communication light receiving unit 210 and the position detection sensor 232 which is part of the received light detection unit, and the camera for visible light is fixed to the holding member. 252 is attached to the attaching/detaching portion 252a.
 ステップ3 カメラで撮像された2次元画像を確認しながら、光伝送装置1000が撮像画像の中心に来るように角度調整台201を再度調整する。 Step 3 While confirming the two-dimensional image captured by the camera, adjust the angle adjustment table 201 again so that the optical transmission device 1000 is at the center of the captured image.
 ステップ4 可視光用のカメラを固定保持部材252の着脱部252aから取り外し、可換保持部材251を着脱部252aに取り付ける。 Step 4 Remove the camera for visible light from the attachment/detachment portion 252a of the fixed holding member 252, and attach the exchangeable holding member 251 to the attachment/detachment portion 252a.
 実施例2では、カメラのセンサの光軸方向の位置は、通信光受光部210のファイバの先端と同じ位置になるようにしているため、設計上は、ステップ4を実施した後にフォーカス調整を行う必要がない。 In the second embodiment, the position of the sensor in the camera in the optical axis direction is the same as the tip of the fiber of the communication light receiving unit 210. Therefore, from the design point of view, focus adjustment is performed after performing step 4. No need.
 ここで、受信側の光伝送装置2000の説明をしたが、送信側の光伝送装置1000に対しても同様に調整を実施することができる。これにより、双方向の光軸の向きが揃い、通信が確立する。 Here, the optical transmission device 2000 on the receiving side has been described, but the optical transmission device 1000 on the transmitting side can be similarly adjusted. As a result, the directions of the bidirectional optical axes are aligned, and communication is established.
 以下、本実施例の特徴的構成について説明する。
 実施例2の光伝送装置を光通信に用いる場合、投光部と受光部との設置間隔すなわち通信距離は、設置地域の与件に依り各々異なる。例えば、ある地域では通信距離2kmで、別の地域では通信距離5kmで設置しなければならない。実施例2での各距離におけるビーム光束の強度分布を図14A、14B、14Cに示す。図14Aは、本実施例の投光部の開口位置での出射光束の光強度分布である。図14Bは、本実施例の受光部を投光部から2km離れた位置に設置した際の、受光部の開口位置での投光部からの出射光束の光強度分布である。図14Cは、本実施例の受光部を投光部から5km離れた位置に設置した際の、受光部の開口位置での投光部からの出射光束の光強度分布である。図14A、14B、14C中の実線は本実施例の光束の光強度分布である。また、点線は本発明の効果を説明するための比較例であり、本実施例の光強度変換素子(透過部材)160を用いない場合の光強度分布である。なお、光強度については最大値で規格化した。
The characteristic configuration of this embodiment will be described below.
When the optical transmission device of the second embodiment is used for optical communication, the installation interval between the light-projecting unit and the light-receiving unit, that is, the communication distance, varies depending on the conditions of the installation area. For example, it must be installed with a communication range of 2 km in one area and with a communication range of 5 km in another area. 14A, 14B, and 14C show the intensity distribution of the beam flux at each distance in Example 2. FIG. FIG. 14A shows the light intensity distribution of the emitted light flux at the opening position of the light projecting section of this embodiment. FIG. 14B shows the light intensity distribution of the light flux emitted from the light-projecting part at the opening position of the light-receiving part when the light-receiving part of this embodiment is installed at a position 2 km away from the light-projecting part. FIG. 14C shows the light intensity distribution of the light flux emitted from the light-projecting part at the opening position of the light-receiving part when the light-receiving part of this embodiment is installed at a position 5 km away from the light-projecting part. The solid lines in FIGS. 14A, 14B, and 14C are the light intensity distributions of the luminous flux of this embodiment. A dotted line is a comparative example for explaining the effect of the present invention, and shows the light intensity distribution when the light intensity conversion element (transmissive member) 160 of this embodiment is not used. Note that the light intensity was standardized by the maximum value.
 ここで本発明の効果を説明するために、まず比較例について説明する。図14Bの点線から分かるように、比較例の距離2km地点に設置時は、受光部開口φ100より到達光束が狭く、外乱による光線の振れに対して受光部開口によるケラレ量の変動は小さく、光量変動は小さい。一方、図14Cの点線から分かるように、比較例の距離5km地点に設置時は、受光部開口φ100より到達光束が広く、かつ開口端付近で強度分布も急峻である。このため、外乱による光線の振れに対して受光部開口によるケラレ量の変動が大きく、光量変動が大きくなってしまう。このように同一構成の光伝送装置を様々な通信距離で用いる際、受光部開口位置での光束強度分布が最適ではないケースが生じるため、外乱による光量変動が発生し、良好な通信品質が得られなくなる課題がある。 In order to explain the effects of the present invention, a comparative example will be explained first. As can be seen from the dotted line in FIG. 14B, when the comparative example is installed at a distance of 2 km, the luminous flux that reaches the aperture is narrower than that of the light receiving aperture of φ100. Variation is small. On the other hand, as can be seen from the dotted line in FIG. 14C, when the comparative example is installed at a distance of 5 km, the luminous flux reaches a wider area than the aperture of the light receiving portion φ100, and the intensity distribution is steep near the edge of the aperture. Therefore, the amount of vignetting due to the opening of the light-receiving portion fluctuates greatly with respect to the deflection of the light beam due to the disturbance, resulting in large fluctuations in the amount of light. When optical transmission equipment with the same configuration is used for various communication distances in this way, there are cases where the light intensity distribution at the aperture position of the light receiving part is not optimal. There is a problem that cannot be solved.
 そこで本実施例では、通信距離に応じて図9に示すように光強度変換素子160を投光部に配設し、受光部開口位置で最適な光強度分布にすることで外乱による光量変動を低減している。図15は、光強度変換素子160の透過率分布を表したグラフである。図15に示すように光強度変換素子160面内の位置に応じて透過率を異ならせている。本実施例ではこのような光強度変換素子160を用いることで、図14Cに示すように通信距離5kmで設置する際の受光部開口位置での光束の強度分布を広くなだらかに変換し、外乱で光束が振れた際の光量変動を低減している。本実施例では、光強度変換素子160の透過率を光軸から端部に向かうに連れて低下するように設定することで、受光部開口に到達する光束の径を大きくしている。 Therefore, in this embodiment, as shown in FIG. 9, the light intensity conversion element 160 is arranged in the light projecting part according to the communication distance, and the light intensity distribution is optimized at the opening position of the light receiving part. is decreasing. FIG. 15 is a graph showing the transmittance distribution of the light intensity conversion element 160. As shown in FIG. As shown in FIG. 15, the transmittance is varied according to the position within the plane of the light intensity conversion element 160 . In this embodiment, by using such a light intensity conversion element 160, as shown in FIG. It reduces the light amount fluctuation when the light flux is swayed. In this embodiment, the transmittance of the light intensity conversion element 160 is set so as to decrease from the optical axis toward the end, thereby increasing the diameter of the light beam reaching the light receiving section aperture.
 この原理については以下に簡単に説明する。物理光学空間伝播においてビームウエストの位置でのビーム径(直径)をw0、ビームウエストからx離れた任意の位置でのビーム径(直径)をw、波長λのガウスビームの形態に関して、次のような関係式が成立する。
Figure JPOXMLDOC01-appb-M000041
 本実施例では、理想のガウシアンビームではないため、w0は定義できず、wも上記式と完全には一致しないものの、投光部開口をビームウエストの位置と仮定したとき、上記式の定性的な関係性は成り立つ。例えば、w0相当の投光部開口での強度分布をより狭くすると、x離れた位置でのビーム径wを広くすることができる。投光部開口でのビームウエストの位置でのビーム径w0は通常光源の特性値と投光光学系とによって決定されるため、設置される各通信距離に応じて最適なビーム径wに変更することは困難である。そこで本実施例では、透過率分布の変更及び取り外しが容易な光強度変換素子160にて強度分布を変換し、疑似的に投光部開口でのビームウエストの位置でのビーム径w0を狭くしている。このとき上記の式の通り、x離れた受光部開口位置での光束径は光強度変換素子160が無い場合に比べて大きくすることができる。
This principle is briefly explained below. In physical optics space propagation, the beam diameter (diameter) at the position of the beam waist is w 0 , the beam diameter (diameter) at an arbitrary position x away from the beam waist is w, and the form of a Gaussian beam with a wavelength λ is as follows. A relational expression such as
Figure JPOXMLDOC01-appb-M000041
In this example, since the beam is not an ideal Gaussian beam, w 0 cannot be defined, and w does not completely match the above equation. relationship is established. For example, by narrowing the intensity distribution at the opening of the projection part corresponding to w 0 , it is possible to widen the beam diameter w at a position x apart. Since the beam diameter w 0 at the position of the beam waist at the projection aperture is usually determined by the characteristic values of the light source and the projection optical system, it is changed to the optimum beam diameter w according to each installed communication distance. It is difficult to Therefore, in this embodiment, the intensity distribution is converted by the light intensity conversion element 160 , which is easy to change and remove the transmittance distribution. is doing. At this time, according to the above formula, the diameter of the light beam at the position of the opening of the light receiving portion that is x away can be made larger than in the case where the light intensity conversion element 160 is not provided.
 本実施例では、安価で高精度に強度変換するために透過率に分布を持たせた透過平板で光強度変換素子160を構成したが、本発明の効果はこの構成に限定されない。また、本実施例では、光強度変換素子160の光軸から端部にかけて連続的に透過率が低下する構成としたが、本発明の効果はこれに限定されない。また本実施例は内側φ30の領域はミラーによるオブスキュレーションのため使用しない領域であるので、図15には必要領域のみの透過率の分布を描画している。よって本実施例においては使用しない内側φ30領域の透過率はそのまま透過率曲線を延長した素直な山形でもその他の形状でもよい。 In this embodiment, the light intensity conversion element 160 is configured with a transmission flat plate having a distribution of transmittance in order to convert the intensity at low cost and with high precision, but the effect of the present invention is not limited to this configuration. Further, in this embodiment, the transmittance continuously decreases from the optical axis of the light intensity conversion element 160 to the end, but the effect of the present invention is not limited to this. Also, in this embodiment, since the inner region of φ30 is an unused region due to obscuration by the mirror, the transmittance distribution of only the necessary region is drawn in FIG. Therefore, in this embodiment, the transmittance of the inner φ30 region, which is not used, may be a simple mountain shape obtained by extending the transmittance curve or any other shape.
 また光強度変換素子160と光束との垂直な方向に対する相対位置がずれた場合、変換後の強度分布が傾くなどして良好な強度分布が得られなくなる傾向がある。このため本実施例では、光束幅が最も大きく、平行光束となり、偏心に対する強度分布への影響が最も低い位置に光強度変換素子160を配置している。即ち、光源から最も遠い曲面ミラー即ち副鏡124のさらに下流側(光源から遠い側)に配置している。またこの位置は投光部内のパワーを有する光学素子の内で最も光源から遠い光学素子よりも下流側ともいえる。 Also, if the relative positions of the light intensity conversion element 160 and the light beam are shifted in the perpendicular direction, the intensity distribution after conversion tends to be tilted, making it impossible to obtain a good intensity distribution. For this reason, in this embodiment, the light intensity conversion element 160 is arranged at a position where the beam width is the largest, the beam becomes a parallel beam, and the influence of the decentering on the intensity distribution is the lowest. That is, it is arranged further downstream (farther from the light source) than the curved mirror, ie, the secondary mirror 124, which is the farthest from the light source. Further, this position can be said to be the downstream side of the optical element farthest from the light source among the optical elements having power in the light projecting section.
 (実施例3)
 実施例3は実施例2の変形例である。実施例2との違いは、光強度変換素子160の透過率分布を異ならせた点である。実施例3での各距離0km、2km、5kmにおけるビーム光束の強度分布を図16A、16B、16Cに示す。図16A、16B、16C中の実線は本実施例の強度分布である。また、点線は本発明の効果を説明するための比較例であり、実施例3の光強度変換素子160を用いない場合の光強度分布である。ここで、図16Bは距離2km地点に受光部設置時の強度分布であるが、設置場所の振動や空気の揺らぎなどの外乱による光線の振れが大きい地域の場合、比較例の点線では受光部開口φ100より到達光束がケラレて、受光光量が変動してしまう。
(Example 3)
A third embodiment is a modification of the second embodiment. The difference from Example 2 is that the transmittance distribution of the light intensity conversion element 160 is changed. 16A, 16B, and 16C show the intensity distributions of the light beams at respective distances of 0 km, 2 km, and 5 km in Example 3. FIG. Solid lines in FIGS. 16A, 16B, and 16C are intensity distributions of this example. A dotted line is a comparative example for explaining the effects of the present invention, and is a light intensity distribution when the light intensity conversion element 160 of Example 3 is not used. Here, FIG. 16B shows the intensity distribution when the light receiving unit is installed at a distance of 2 km. The incident light beam is vignetted from φ100, and the amount of received light fluctuates.
 そこで実施例3では、図17に示すように光強度変換素子160の透過率を光軸から端部に向かうに連れて高くなるように設定し、空間伝播する際の発散角を小さくしている。結果、図16Bの実線で示すように2km地点の受光部開口位置での光束をより狭くし、実施例2よりもさらに大きな外乱が生じる地域で用いても光量変動を低減することができる。 Therefore, in Example 3, as shown in FIG. 17, the transmittance of the light intensity conversion element 160 is set so as to increase from the optical axis toward the end, thereby reducing the divergence angle during space propagation. . As a result, as shown by the solid line in FIG. 16B, the luminous flux at the light receiving part opening position at the 2 km point can be made narrower, and the light amount fluctuation can be reduced even when used in an area where a larger disturbance occurs than in Example 2.
 (実施例4)
 実施例4は実施例2,3の変形例であり、実施例2,3との違いは、光強度変換素子160の置き位置を異ならせた点であり、これにより別の効果を得ている。図18は、本実施例の配置図である。図18に示す通り、本施例3では、2つの曲面ミラー即ち主鏡125と副鏡124との間に光強度変換素子160を配置している。これにより、光強度変換素子160を2回光線が通過するため、同様な透過率分布の素子でより強い強度変換効果を得られる。
(Example 4)
Embodiment 4 is a modification of Embodiments 2 and 3, and differs from Embodiments 2 and 3 in that the light intensity conversion element 160 is placed in a different position, thereby obtaining another effect. . FIG. 18 is a layout diagram of this embodiment. As shown in FIG. 18, in the third embodiment, a light intensity conversion element 160 is arranged between two curved mirrors, that is, a primary mirror 125 and a secondary mirror 124 . As a result, since the light beam passes through the light intensity conversion element 160 twice, a stronger intensity conversion effect can be obtained with an element having a similar transmittance distribution.
 (実施例5)
 実施例5は実施例2、3、4の変形例である。実施例5の実施例2、3、4との違いは、光強度変換素子160の置き位置を異ならせた点であり、これにより別の効果を得ている。図19は、実施例5の配置図である。図19に示す通り、実施例5では、最も光源に近い曲面ミラー即ち主鏡125よりも光源側(上流側)に光強度変換素子160を配置している。これにより、光強度変換素子160のサイズを小さくでき、コストを低減できる。一方で小さくなった分取り付け誤差による敏感度も上がるデメリットもあるが、十分に取り付け精度が保証できる装置においては本発明の効果を得つつコストを抑えることが可能となる。
 また本実施例においては、レンズ121は像振れ補正機構(図中二重線枠)を有しており、光軸に垂直な方向にシフト(可動)することで通信光の向きを微調整することができる。この調整値が大きい場合、通信光射出部110からの光束の強度分布の中心軸がレンズ121から出射した後に大きく傾き、その後の投光光学系120の光軸に対して光軸に垂直な方向に大きくシフトする。その場合、レンズ121より通信光射出部110から離れる側に光強度変換素子160を配置すると、強度分布が傾くなど正しく強度分布変換がなされなくなってしまう。そこで、実施例5では、像振れ補正機構を有するレンズ121と光源との間に光強度変換素子160を配置することで、外乱による角度ずれを大きく調整する状況においても、良好に強度分布を変換でき、光量変動を低減できる。
(Example 5)
Example 5 is a modification of Examples 2, 3 and 4. FIG. The difference of the fifth embodiment from the second, third, and fourth embodiments is that the light intensity conversion element 160 is placed in a different position, thereby obtaining another effect. FIG. 19 is a layout diagram of the fifth embodiment. As shown in FIG. 19, in the fifth embodiment, the light intensity conversion element 160 is arranged on the light source side (upstream side) of the curved mirror closest to the light source, that is, the primary mirror 125 . Thereby, the size of the light intensity conversion element 160 can be reduced, and the cost can be reduced. On the other hand, there is a demerit that sensitivity to mounting errors increases due to the smaller size, but in a device that can sufficiently guarantee mounting accuracy, it is possible to obtain the effects of the present invention and reduce costs.
Also, in this embodiment, the lens 121 has an image blur correction mechanism (double-lined frame in the figure), and finely adjusts the direction of communication light by shifting (moving) in a direction perpendicular to the optical axis. be able to. When this adjustment value is large, the central axis of the intensity distribution of the luminous flux from the communication light emitting section 110 is greatly tilted after being emitted from the lens 121, and is then perpendicular to the optical axis of the projection optical system 120. shift sharply to In that case, if the light intensity conversion element 160 is arranged on the side away from the communication light emitting section 110 from the lens 121, the intensity distribution will be tilted and the intensity distribution will not be correctly converted. Therefore, in the fifth embodiment, the light intensity conversion element 160 is arranged between the lens 121 having an image blur correction mechanism and the light source, so that the intensity distribution can be satisfactorily converted even in a situation in which a large angular deviation due to disturbance is adjusted. It is possible to reduce fluctuations in the amount of light.
 (変形例)
 実施例2~5において、曲面ミラーを用いた投光光学系で説明してきたが、本発明は曲面ミラーを用いない投光光学系においても当然同様の効果が得られる。
 図20、図21は、投光光学系に用いる光強度変換素子160の透過率分布の一例である。オブスキュレーションの無い一般的な投光光学系の場合においても図20、図21のような光強度変換素子160を用いれば、実施例2~5と同様に本発明の効果は得られる。
(Modification)
In Embodiments 2 to 5, the projection optical system using the curved mirror has been described, but the present invention can naturally obtain the same effect even in the projection optical system that does not use the curved mirror.
20 and 21 are examples of the transmittance distribution of the light intensity conversion element 160 used in the projection optical system. Even in the case of a general light projecting optical system without obscuration, if the light intensity conversion element 160 as shown in FIGS.
 以上の構成により、本発明の効果が得られる。
 実施例では、角度調整台201に対し受光光学系220を保持する固定保持部材252を固定し、固定保持部材252に対し、通信光受光部210を保持する可換保持部材251を固定する構成となっている。このような構成とすることで、角度調整台201で受光光学系220の角度を定めることができ、且つ、カメラの着脱によりその定めた角度が変化しにくいようにしている。
With the above configuration, the effects of the present invention can be obtained.
In the embodiment, a fixed holding member 252 that holds the light receiving optical system 220 is fixed to the angle adjustment table 201, and a replaceable holding member 251 that holds the communication light receiving section 210 is fixed to the fixed holding member 252. It's becoming With such a configuration, the angle of the light receiving optical system 220 can be determined by the angle adjustment table 201, and the determined angle is prevented from changing due to attachment and detachment of the camera.
 ここで、本発明において、光伝送装置は、必ずしも角度調整台を有する必要はないことに注意されたい。例えば、設置時のみ角度を調整する工具を使用し、本発明の角度調整を行って受光光学系の位置を固定した後に、角度調整台を取り外すことも考えられる。この場合であっても、本発明の効果は得られる。但し、角度調整台を有していた方が、角度調整台の取り付け、取り外しの工数を低減でき、好ましい。 Here, it should be noted that in the present invention, the optical transmission device does not necessarily have an angle adjustment table. For example, it is conceivable to use a tool for adjusting the angle only at the time of installation, perform the angle adjustment of the present invention, fix the position of the light receiving optical system, and then remove the angle adjustment table. Even in this case, the effects of the present invention can be obtained. However, it is preferable to have an angle adjusting base because the man-hours for attaching and removing the angle adjusting base can be reduced.
 実施例では、着脱部251a及び着脱部252aとしてCマウントを活用している。このように、汎用化している技術(複数のバヨネット爪部を備えるマウント部)を用いることで、着脱が容易で、市販品のカメラが装着しやすくなり、コスト高や調達難のリスクを回避できる。 In the embodiment, a C mount is used as the detachable portion 251a and the detachable portion 252a. In this way, by using general-purpose technology (a mount part with multiple bayonet claws), it is easy to attach and detach, making it easier to attach a commercially available camera, avoiding the risk of high costs and difficulty in procurement. .
 実施例は、光伝送装置2000の設置時のみ、カメラ装置を装着する構成であり、一度光軸方向の設定が完了して通信状態が確立すれば、常時カメラ装置が接続されていることを必要としない。このような構成により、光伝送装置のコストを低減できる効果を得ている。 In the embodiment, the camera device is attached only when the optical transmission device 2000 is installed. Once the optical axis direction setting is completed and the communication state is established, the camera device needs to be connected all the time. and not. Such a configuration has the effect of reducing the cost of the optical transmission device.
 実施例では、可視光用のカメラを取り付ける際に、通信光受光部210と受信光検出部の一部である位置検出センサ232ごと、可換保持部材251を固定保持部材252から取り外せる構成としている。このような構成とすることで、通信光受光部210のみを取り換える構成と比して、可換保持部材251の着脱作業性が向上する効果を得ている。また、通信光受光部210と位置検出センサ232の相対位置が担保されるため、前述の通信光受光部210の着脱に伴う光軸に垂直な方向のずれの悪影響を回避できる効果を得ている。 In the embodiment, when a visible light camera is attached, the exchangeable holding member 251 can be removed from the fixed holding member 252 together with the communication light receiving unit 210 and the position detection sensor 232 which is part of the received light detection unit. . By adopting such a configuration, it is possible to obtain the effect of improving the attachment/detachment workability of the replaceable holding member 251 as compared with the configuration in which only the communication light receiving section 210 is replaced. In addition, since the relative positions of the communication light receiving unit 210 and the position detection sensor 232 are ensured, there is an effect of avoiding the adverse effect of deviation in the direction perpendicular to the optical axis due to attachment and detachment of the communication light receiving unit 210 described above. .
 実施例では、通信光受光部210を固定保持部材252から着脱する度に通信光受光部210の位置がわずかにずれる可能性がある。光軸方向のずれに関しては、通信光の向きを逆に考えた時の、光伝送装置2000からの通信光の発散として検出され、受光光学系220の有するフォーカス機構にて補正される。つまり、フォーカス機構により、該ずれを補正できる効果を得ている。 In the embodiment, there is a possibility that the position of the communication light receiving section 210 slightly shifts each time the communication light receiving section 210 is attached to or detached from the fixed holding member 252 . The shift in the optical axis direction is detected as divergence of the communication light from the optical transmission device 2000 when the direction of the communication light is reversed, and is corrected by the focusing mechanism of the light receiving optical system 220 . In other words, the focusing mechanism has the effect of correcting the shift.
 実施例では、通信光受光部210を固定保持部材252から着脱する度に通信光受光部210の位置がわずかにずれる可能性がある。光軸に垂直な方向のずれに関しては、通信光の角度ずれとして検出され、受光光学系220の有する像振れ補正機構にて補正される。つまり、像振れ補正機構により、該ずれを補正できる効果を得ている。 In the embodiment, there is a possibility that the position of the communication light receiving section 210 slightly shifts each time the communication light receiving section 210 is attached to or detached from the fixed holding member 252 . A deviation in the direction perpendicular to the optical axis is detected as an angular deviation of the communication light and corrected by the image blur correction mechanism of the light receiving optical system 220 . In other words, the effect of correcting the shift is obtained by the image blur correction mechanism.
 実施例では、受光光学系220の通信波長(1540~1560nm)から可視光領域における色収差を低減することにより、市販品の可視光カメラでの視認による光軸を揃える調整を可能として作業性を向上させている。また、赤外波長から可視光波長まで広域の色収差を低減するために、反射面を有する光学系としている。仮に屈折系で実施しようとすると、レンズの枚数が多くなってしまう。 In the embodiment, by reducing the chromatic aberration in the visible light region from the communication wavelength (1540 to 1560 nm) of the light receiving optical system 220, it is possible to adjust the optical axis by visual confirmation with a commercially available visible light camera, improving workability. I am letting Also, in order to reduce chromatic aberration over a wide range from infrared wavelengths to visible light wavelengths, the optical system has a reflecting surface. If a refractive system were to be used, the number of lenses would increase.
 これまで、説明のため、受信側の光伝送装置2000について主に議論してきたが、前述の通り、通信光の向きを逆転しても成り立つ構成であるため、送信側の光伝送装置1000についても同様である。特に、送信光検出部と受信光検出部とは、片側ずつしか図示していないが、光伝送装置1000、2000ともに送信光検出部と受信光検出部とを有していることに注意されたい。実施例では、反射プリズムと透過ウェッジプリズムとを、互いに光軸周りに90°回転させた位置に設置している(図2A、図3A、図9、及び図10で言えば、紙面奥手前方向になる)。 Up to this point, the optical transmission device 2000 on the receiving side has been mainly discussed for the sake of explanation. It is the same. In particular, only one side of the transmission light detection section and the reception light detection section is shown, but it should be noted that both the optical transmission apparatuses 1000 and 2000 have the transmission light detection section and the reception light detection section. . In the embodiment, the reflective prism and the transmissive wedge prism are installed at positions rotated by 90° around the optical axis (in FIGS. become).
 実施例では、光伝送装置の投光光学系と受光光学系とが基本的には同様の構成の光学系であり、光軸も略同一となる構成であったが、これに限られることはない。光伝送装置の投光光学系と受光光学系とが、別々の構成を有する光学系であってもよく、両者の光軸が厳密な同軸ではなくても構わない。 In the embodiment, the light projecting optical system and the light receiving optical system of the optical transmission device are basically optical systems having the same configuration, and the optical axes are also substantially the same, but the present invention is not limited to this. do not have. The light-projecting optical system and the light-receiving optical system of the optical transmission device may be optical systems having separate configurations, and the optical axes of both may not be strictly coaxial.
 ここで、本発明で議論している「光軸」とは、射出手段から射出して投光光学系を通過する通信光の光束の中心光路、及び、受光光学系を通過して受光手段に向かう通信光の光束の中心光路を指す。一般的な共軸光学系の光軸とは定義が異なることに注意されたい。 Here, the "optical axis" discussed in the present invention means the central optical path of the communication light beam emitted from the emitting means and passing through the light projecting optical system, and the light receiving means passing through the light receiving optical system. It refers to the central optical path of the luminous flux of the communication light heading. Note that the definition is different from the optical axis of a general coaxial optical system.
 実施例では、わかりやすさのために、共軸系の投光光学系の光軸上に射出手段が存在し、共軸系の受光光学系の光軸上に受光手段が存在する形態とし、これまで説明をしていた。しかし、投光光学系及び受光光学系の光軸上に射出手段及び受光手段が存在しない場合などは、一般的な共軸光学系の光軸同士を揃えても通信は確立されない。また、投光光学系及び受光光学系が偏芯光学系の場合などは、「光軸」の明確な定義が難しい。上記の理由から、「光軸」の定義を異ならせていることを理解されたい。 In the embodiments, for the sake of clarity, a form in which the emitting means exists on the optical axis of the coaxial light-projecting optical system and the light receiving means exists on the optical axis of the coaxial light-receiving optical system is used. was explaining. However, in cases such as when there is no emitting means or light receiving means on the optical axes of the light projecting optical system and the light receiving optical system, communication cannot be established even if the optical axes of a general coaxial optical system are aligned. Further, when the light projecting optical system and the light receiving optical system are decentered optical systems, it is difficult to clearly define the "optical axis". It should be appreciated that the definition of "optical axis" is different for the above reasons.
 実施例では、光ファイバから出射した通信光を光ファイバで受信する構成としたが、これに限られることはなく、例えば半導体レーザから出射した通信光をセンサで受信する構成としても構わない。 In the embodiment, the communication light emitted from the optical fiber is received by the optical fiber, but it is not limited to this. For example, the communication light emitted from the semiconductor laser may be received by the sensor.
 実施例では、受光部は光ファイバのみで構成され、調整用のカメラ装置はセンサのみで構成されるものとしていたが、これに限られることはなく、それぞれがレンズを有していても良い。例えば、受信部としてコリメータ付きファイバの構成にし、調整用のカメラ装置として、レンズ付きのカメラ装置の構成としても構わない。 In the embodiment, the light receiving unit is composed only of optical fibers, and the camera device for adjustment is composed only of sensors, but they are not limited to this, and each may have a lens. For example, a fiber with a collimator may be used as the receiver, and a camera with a lens may be used as the camera for adjustment.
 実施例では、着脱部252aから調整用のカメラ装置のセンサ面までの距離と、着脱部252aから通信光受光部210ファイバの先端までの距離を揃えているが、これに限られることはなく、ずれていても構わない。 In the embodiment, the distance from the attachment/detachment portion 252a to the sensor surface of the camera device for adjustment and the distance from the attachment/detachment portion 252a to the tip of the fiber of the communication light receiving portion 210 are aligned. It doesn't matter if it's off.
 実施例では、通信光受光部210の画角の中心を、調整用のカメラ装置のセンサの中心に合わせているが、通信光受光部210の画角がセンサ面に収まるように配置されれば、それに限られることはない。 In the embodiment, the center of the angle of view of the communication light receiving unit 210 is aligned with the center of the sensor of the camera device for adjustment. , but not limited to.
 実施例では、可視光のカメラ装置にて調整を行っていたが、これに限られることはなく、通信光近傍の波長(実施例で言えば通信光の1550nmの波長に対して±200nmの範囲内にある波長)用のカメラ装置であっても構わない。可視光の波長用のカメラ装置で調整すると、目視と対応するため、認識しやすいメリットがある。一方、通信光近傍の波長用のカメラ装置であれば、受光光学系220の設計において、より容易に色収差を低減しやすいメリットがある。 In the embodiment, adjustment was performed by a visible light camera device, but it is not limited to this, and the wavelength near the communication light (in the embodiment, the range of ±200 nm with respect to the wavelength of 1550 nm of the communication light It may be a camera device for wavelengths within the range). Adjustment with a camera device for visible light wavelengths has the advantage of being easy to recognize because it corresponds to visual observation. On the other hand, a camera device for wavelengths close to communication light has the advantage of easily reducing chromatic aberration in the design of the light receiving optical system 220 .
 実施例では、通信光射出部110から出射した通信光の一部を装置の調整のために検出光として活用し、検出光の検出を行っているが、これに限られることはない。例えば、通信光射出部110の光ファイバの不図示の他端から通信光と別の波長の光を入射させ、それを検出光として用いる等、専用の検出光を用いても良い。 In the embodiment, part of the communication light emitted from the communication light emitting section 110 is used as detection light for adjusting the device, and the detection light is detected, but it is not limited to this. For example, a dedicated detection light may be used, for example, a light having a different wavelength from that of the communication light may be incident from the other end (not shown) of the optical fiber of the communication light emitting section 110 and used as the detection light.
 実施例では、センサ(撮像素子)としてAPS-Cサイズのものを活用している。センササイズはなるべく大きい方が視野を広く取れるため調整が有利になる。しかし、本発明はこれに限定されることはない。 In the embodiment, APS-C size is used as the sensor (imaging device). The larger the sensor size, the wider the field of view, which is advantageous for adjustment. However, the invention is not limited to this.
 実施例では、素子の面内の位置に応じて透過率を異ならせた光強度変換素子を用いて光束の光強度分布を変換したが、本発明はこれに限定されることはない。面内の位置に応じて反射率が異なる反射部材を光強度変換素子として用いても、本発明の効果を同様に享受することができる。 In the embodiment, the light intensity distribution of the luminous flux is converted using the light intensity conversion element having different transmittance depending on the position in the plane of the element, but the present invention is not limited to this. The effects of the present invention can be obtained similarly even if a reflecting member having a different reflectance depending on the position in the plane is used as the light intensity conversion element.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiments, and various changes and modifications are possible without departing from the spirit and scope of the present invention. Accordingly, the following claims are included to publicize the scope of the invention.
 本願は、2021年3月16日提出の日本国特許出願特願2021-042625及び2021年3月16日提出の日本国特許出願特願2021-042700を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2021-042625 submitted on March 16, 2021 and Japanese Patent Application No. 2021-042700 submitted on March 16, 2021, The entire contents of that description are incorporated herein.

Claims (26)

  1.  通信光を射出する射出手段と投光光学系とを含む投光部と、受光光学系と前記通信光を受光する通信光受光手段を含む受光部と、の間で光通信を行う光伝送装置であって、
     前記投光部は検出光を射出する検出光射出部を含み、
     前記投光光学系は光束の発散度を変化させる調整光学系を有し、
     前記受光部は前記検出光を受光する検出光受光手段を含み、
     前記光伝送装置は、前記検出光受光手段からの情報に基づいて前記調整光学系を制御する発散度制御部を備えることを特徴とする光伝送装置。
    An optical transmission device for performing optical communication between a light projecting section including emitting means for emitting communication light and a light projecting optical system, and a light receiving section including a light receiving optical system and communication light receiving means for receiving the communication light. and
    The light projecting unit includes a detection light emitting unit that emits detection light,
    The projection optical system has an adjustment optical system that changes the divergence of the light flux,
    The light receiving unit includes detection light receiving means for receiving the detection light,
    The optical transmission device according to claim 1, further comprising a divergence control section for controlling the adjustment optical system based on information from the detection light receiving means.
  2.  第1の通信光を射出する第1の射出手段と第1の投光光学系とを含む第1の投光部と、
     第1の受光光学系と前記第1の通信光を受光する第1の通信光受光手段を含む第1の受光部と、
     第2の通信光を射出する第2の射出手段と第2の投光光学系とを含む第2の投光部と、
     第2の受光光学系と前記第2の通信光を受光する第2の通信光受光手段を含む第2の受光部と、
    を有し、前記第1の投光部と前記第1の受光部の間で光通信を行い、前記第2の投光部と前記第2の受光部の間で光通信を行う光伝送装置であって、
     前記第1の投光部は、検出光を射出する検出光射出部を有し、
     前記第2の投光光学系は、光束の発散度を変化させる調整光学系を有し、
     前記第1の受光部は、前記検出光を受光する検出光受光手段を有し、
     前記光伝送装置は、前記検出光受光手段で得られた情報に基づき、前記調整光学系を制御する発散度制御部を有する、
    ことを特徴とする光伝送装置。
    a first light projecting unit including first emitting means for emitting the first communication light and a first light projecting optical system;
    a first light receiving unit including a first light receiving optical system and a first communication light receiving means for receiving the first communication light;
    a second light projecting section including a second projecting means for projecting the second communication light and a second projecting optical system;
    a second light receiving unit including a second light receiving optical system and second communication light receiving means for receiving the second communication light;
    wherein optical communication is performed between the first light projecting section and the first light receiving section, and optical communication is performed between the second light projecting section and the second light receiving section. and
    The first light projecting section has a detection light emitting section for emitting detection light,
    The second light projecting optical system has an adjusting optical system that changes the divergence of the luminous flux,
    The first light receiving section has detection light receiving means for receiving the detection light,
    The optical transmission device has a divergence control unit that controls the adjustment optical system based on information obtained by the detection light receiving means.
    An optical transmission device characterized by:
  3.  第1の通信光を射出し、第2の通信光を受光する第1の射出受光手段と、第1の光学系とを含む第1の投受光部と、
     前記第2の通信光を射出し、前記第1の通信光を受光する第2の射出受光手段と、第2の光学系とを含む第2の投受光部と、
    を有し、前記第1及び第2の投受光部の間で双方向の光通信を行う光伝送装置であって、
     前記第1の投受光部は、検出光を射出する検出光射出部を有し、
     前記第2の光学系は、光束の発散度を変化させる調整光学系を有し、
     前記第2の投受光部は、前記検出光を受光する検出光受光手段を有し、
     前記光伝送装置は、前記検出光受光手段からの情報に基づき、前記調整光学系を制御する発散度制御部を有する、
    ことを特徴とする光伝送装置。
    a first light projecting/receiving section including a first light emitting/receiving means for emitting a first communication light and receiving a second communication light; and a first optical system;
    a second light emitting/receiving unit including a second emitting/receiving means for emitting the second communication light and receiving the first communication light, and a second optical system;
    and performing bidirectional optical communication between the first and second light projecting and receiving units,
    The first light projecting/receiving unit has a detection light emitting unit for emitting detection light,
    The second optical system has an adjustment optical system that changes the divergence of the luminous flux,
    The second light projecting and receiving unit has detection light receiving means for receiving the detection light,
    The optical transmission device has a divergence control unit that controls the adjustment optical system based on information from the detection light receiving means.
    An optical transmission device characterized by:
  4.  前記投光部から出射した直後の前記通信光のビームウエストをw(mm)、前記通信光の波長をλ(mm)、前記投光部と前記受光部との間隔をL(mm)、としたとき、
    Figure JPOXMLDOC01-appb-M000001
    なる条件式を満足することを特徴とする請求項1に記載の光伝送装置。
    w 0 (mm) is the beam waist of the communication light immediately after being emitted from the light projecting section, λ (mm) is the wavelength of the communication light, L (mm) is the distance between the light projecting section and the light receiving section, When
    Figure JPOXMLDOC01-appb-M000001
    2. The optical transmission device according to claim 1, wherein the following conditional expression is satisfied.
  5.  前記第2の投光部から出射した直後の前記第2の通信光のビームウエストをw(mm)、前記第2の通信光の波長をλ(mm)、前記第2の投光部と前記第2の受光部との間隔をL(mm)、としたとき、
    Figure JPOXMLDOC01-appb-M000002
    なる条件式を満足することを特徴とする請求項2に記載の光伝送装置。
    The beam waist of the second communication light immediately after being emitted from the second light projecting section is w 0 (mm), the wavelength of the second communication light is λ (mm), and the second light projecting section and When the distance from the second light receiving part is L (mm),
    Figure JPOXMLDOC01-appb-M000002
    3. The optical transmission device according to claim 2, wherein the following conditional expression is satisfied.
  6.  前記第2の投受光部から出射した直後の前記第2の通信光のビームウエストをw(mm)、前記第2の通信光の波長をλ(mm)、前記第1の投受光部と前記第2の投受光部との間隔をL(mm)、としたとき、
    Figure JPOXMLDOC01-appb-M000003
    なる条件式を満足することを特徴とする請求項3に記載の光伝送装置。
    The beam waist of the second communication light immediately after being emitted from the second light projecting and receiving unit is w 0 (mm), the wavelength of the second communication light is λ (mm), and the first light projecting and receiving unit When the distance from the second light projecting and receiving part is L (mm),
    Figure JPOXMLDOC01-appb-M000003
    4. The optical transmission device according to claim 3, wherein the following conditional expression is satisfied.
  7.  前記投光部を出射した直後の前記通信光のビームウエストをw(mm)、前記投光光学系の焦点距離をf(mm)、前記調整光学系で発散度を調整した際の前記投光光学系の焦点面のシフト量の最大値をΔZfmax(mm)、としたとき、
    Figure JPOXMLDOC01-appb-M000004
    なる条件式を満足することを特徴とする請求項1又は4に記載の光伝送装置。
    The beam waist of the communication light immediately after being emitted from the light projection unit is w 0 (mm), the focal length of the projection optical system is f (mm), and the projection when the divergence is adjusted by the adjustment optical system When the maximum shift amount of the focal plane of the optical system is ΔZ fmax (mm),
    Figure JPOXMLDOC01-appb-M000004
    5. The optical transmission device according to claim 1, wherein the following conditional expression is satisfied.
  8.  前記第2の投光部を出射した直後の前記第2の通信光のビームウエストをw(mm)、前記第2の投光光学系の焦点距離をf(mm)、前記調整光学系で発散度を調整した際の前記第2の投光光学系の焦点面のシフト量の最大値をΔZfmax(mm)、としたとき、
    Figure JPOXMLDOC01-appb-M000005
    なる条件式を満足することを特徴とする請求項2又は5に記載の光伝送装置。
    The beam waist of the second communication light immediately after being emitted from the second light projecting unit is w 0 (mm), the focal length of the second light projecting optical system is f (mm), and the adjusting optical system When the maximum value of the shift amount of the focal plane of the second projection optical system when the divergence is adjusted is ΔZ fmax (mm),
    Figure JPOXMLDOC01-appb-M000005
    6. The optical transmission device according to claim 2, wherein the following conditional expression is satisfied.
  9.  前記第2の投受光部を出射した直後の前記第2の通信光のビームウエストをw(mm)、前記第2の光学系の焦点距離をf(mm)、前記調整光学系で発散度を調整した際の前記第2の光学系の焦点面のシフト量の最大値をΔZfmax(mm)、としたとき、
    Figure JPOXMLDOC01-appb-M000006
    なる条件式を満足することを特徴とする請求項3又は6に記載の光伝送装置。
    The beam waist of the second communication light immediately after being emitted from the second light projecting and receiving unit is w 0 (mm), the focal length of the second optical system is f (mm), and the divergence of the adjusting optical system is When the maximum value of the shift amount of the focal plane of the second optical system when adjusting is ΔZ fmax (mm),
    Figure JPOXMLDOC01-appb-M000006
    7. The optical transmission device according to claim 3, wherein the following conditional expression is satisfied.
  10.  前記調整光学系は可動光学部材を有し、
     前記可動光学部材が0.01mm移動したときの焦点面のシフト量をΔZfγ(mm)、前記投光部を出射した直後の前記通信光のビームウエストをw(mm)、前記投光光学系の焦点距離をf(mm)、としたとき、
    Figure JPOXMLDOC01-appb-M000007
    なる条件式を満足することを特徴とする請求項1、4、7の何れか一項に記載の光伝送装置。
    The adjustment optical system has a movable optical member,
    ΔZ (mm) is the shift amount of the focal plane when the movable optical member moves by 0.01 mm, w 0 (mm) is the beam waist of the communication light immediately after being emitted from the light projecting unit, and the projection optics When the focal length of the system is f (mm),
    Figure JPOXMLDOC01-appb-M000007
    8. The optical transmission device according to claim 1, wherein the following conditional expression is satisfied.
  11.  前記調整光学系は可動光学部材を有し、
     前記可動光学部材が0.01mm移動したときの焦点面のシフト量をΔZfγ(mm)、前記第2の投光部を出射した直後の前記第2の通信光のビームウエストをw(mm)、前記第2の投光光学系の焦点距離をf(mm)、としたとき、
    Figure JPOXMLDOC01-appb-M000008
    なる条件式を満足することを特徴とする請求項2、5、8の何れか一項に記載の光伝送装置。
    The adjustment optical system has a movable optical member,
    The shift amount of the focal plane when the movable optical member moves by 0.01 mm is ΔZ (mm), and the beam waist of the second communication light immediately after being emitted from the second light projecting section is w 0 (mm ), and the focal length of the second projection optical system is f (mm),
    Figure JPOXMLDOC01-appb-M000008
    9. The optical transmission device according to claim 2, wherein the following conditional expression is satisfied.
  12.  前記調整光学系は可動光学部材を有し、
     前記可動光学部材が0.01mm移動したときの焦点面のシフト量をΔZfγ(mm)、前記第2の投受光部を出射した直後の前記第2の通信光のビームウエストをw(mm)、前記第2の光学系の焦点距離をf(mm)、としたとき、
    Figure JPOXMLDOC01-appb-M000009
    なる条件式を満足することを特徴とする請求項3、6、9の何れか一項に記載の光伝送装置。
    The adjustment optical system has a movable optical member,
    The shift amount of the focal plane when the movable optical member moves by 0.01 mm is ΔZ (mm), and the beam waist of the second communication light immediately after being emitted from the second light projecting/receiving unit is w 0 (mm ), and the focal length of the second optical system is f (mm),
    Figure JPOXMLDOC01-appb-M000009
    10. The optical transmission device according to claim 3, wherein the following conditional expression is satisfied.
  13.  前記調整光学系は位置や傾きを変化させる透過光学部材を含むことを特徴とする請求項1から12までの何れか一項に記載の光伝送装置。 The optical transmission device according to any one of claims 1 to 12, wherein the adjustment optical system includes a transmissive optical member that changes its position and inclination.
  14.  前記調整光学系の可動光学部材は1つの光学要素で構成されることを特徴とする請求項1から13までの何れか一項に記載の光伝送装置。 The optical transmission device according to any one of claims 1 to 13, wherein the movable optical member of said adjustment optical system is composed of one optical element.
  15.  前記調整光学系を含む前記投光光学系を有する前記投光部は、前記投光部からの前記検出光を受光する第2の検出光受光手段を有し、
     前記発散度制御部は、前記第2の検出光受光手段で得られた情報に基づき、前記調整光学系を制御する、ことを特徴とする請求項1、4、7、10の何れか一項に記載の光伝送装置。
    The light projecting unit having the light projecting optical system including the adjusting optical system has second detection light receiving means for receiving the detection light from the light projecting unit,
    11. The divergence controller according to any one of claims 1, 4, 7, and 10, wherein the divergence controller controls the adjustment optical system based on information obtained by the second detection light receiving means. The optical transmission device according to .
  16.  前記第1の投光光学系は、光束の発散度を変化させる第2の調整光学系を有し、
     前記第2の調整光学系を含む前記第1の投光光学系を有する前記第1の投光部は、前記第1の投光部からの前記検出光を受光する第2の検出光受光手段を有し、
     前記発散度制御部は、前記第2の検出光受光手段で得られた情報に基づき、前記第2の調整光学系を制御する、ことを特徴とする請求項2、5、8、11の何れか一項に記載の光伝送装置。
    The first projection optical system has a second adjustment optical system that changes the divergence of the luminous flux,
    The first light projecting section having the first light projecting optical system including the second adjusting optical system includes second detection light receiving means for receiving the detection light from the first light projecting section. has
    12. Any one of claims 2, 5, 8 and 11, wherein said divergence control section controls said second adjustment optical system based on information obtained by said second detection light receiving means. 1. The optical transmission device according to claim 1.
  17.  前記第1の光学系は、光束の発散度を変化させる第2の調整光学系を有し、
     前記第2の調整光学系を含む前記第1の光学系を有する前記第1の投受光部は、前記第1の投受光部からの前記検出光を受光する第2の検出光受光手段を有し、
     前記発散度制御部は、前記第2の検出光受光手段で得られた情報に基づき、前記第2の調整光学系を制御する、ことを特徴とする請求項3、6、9、12の何れか一項に記載の光伝送装置。
    The first optical system has a second adjustment optical system that changes the divergence of the luminous flux,
    The first light projecting/receiving section having the first optical system including the second adjustment optical system has second detection light receiving means for receiving the detection light from the first light projecting/receiving section. death,
    13. The divergence controller according to any one of claims 3, 6, 9 and 12, wherein the divergence controller controls the second adjustment optical system based on information obtained by the second detection light receiving means. 1. The optical transmission device according to claim 1.
  18.  前記受光部は、前記受光光学系の光学特性を変化させる補正機構を有し、
     前記光伝送装置は、前記検出光受光手段で得られた情報に基づき、前記補正機構を制御する光学特性制御部を有する、
    ことを特徴とする請求項1、4、7、10、15の何れか一項に記載の光伝送装置。
    The light-receiving unit has a correction mechanism that changes the optical characteristics of the light-receiving optical system,
    The optical transmission device has an optical characteristic control unit that controls the correction mechanism based on information obtained by the detection light receiving means.
    16. The optical transmission device according to any one of claims 1, 4, 7, 10 and 15, characterized by:
  19.  前記第1の受光部は、前記第1の受光光学系の光学特性を変化させる補正機構を有し、
     前記光伝送装置は、前記検出光受光手段で得られた情報に基づき、前記補正機構を制御する光学特性制御部を有する、
    ことを特徴とする請求項2、5、8、11、16の何れか一項に記載の光伝送装置。
    The first light-receiving unit has a correction mechanism that changes optical characteristics of the first light-receiving optical system,
    The optical transmission device has an optical characteristic control unit that controls the correction mechanism based on information obtained by the detection light receiving means.
    17. The optical transmission device according to any one of claims 2, 5, 8, 11, and 16, characterized by:
  20.  前記第2の投受光部は、前記第2の光学系の光学特性を変化させる補正機構を有し、
     前記光伝送装置は、前記検出光受光手段で得られた情報に基づき、前記補正機構を制御する光学特性制御部を有する、
    ことを特徴とする請求項3、6、9、12、17の何れか一項に記載の光伝送装置。
    The second light projecting and receiving unit has a correction mechanism that changes the optical characteristics of the second optical system,
    The optical transmission device has an optical characteristic control unit that controls the correction mechanism based on information obtained by the detection light receiving means.
    18. The optical transmission device according to any one of claims 3, 6, 9, 12, and 17, characterized by:
  21.  前記補正機構は、前記通信光受光手段に対する前記通信光の入射角を変化させるために、位置や傾きを変化させる、透過光学部材を含むことを特徴とする請求項18に記載の光伝送装置。 19. The optical transmission device according to claim 18, wherein the correction mechanism includes a transmissive optical member that changes position and inclination in order to change the incident angle of the communication light with respect to the communication light receiving means.
  22.  前記補正機構は、前記第1の通信光受光手段に対する前記第1の通信光の入射角を変化させるために、位置や傾きを変化させる、透過光学部材を含むことを特徴とする請求項19に記載の光伝送装置。 20. The correction mechanism according to claim 19, wherein the correcting mechanism includes a transmissive optical member that changes position and inclination in order to change the incident angle of the first communication light with respect to the first communication light receiving means. An optical transmission device as described.
  23.  前記補正機構は、前記第2の射出受光手段に対する前記第1の通信光の入射角を変化させるために、位置や傾きを変化させる、透過光学部材を含むことを特徴とする請求項20に記載の光伝送装置。 21. The correcting mechanism according to claim 20, wherein the correcting mechanism includes a transmissive optical member that changes position and inclination in order to change the incident angle of the first communication light with respect to the second emitting and receiving means. optical transmission equipment.
  24.  前記補正機構は、前記受光光学系の向きを変化させる機構を含むことを特徴とする請求項18又は21に記載の光伝送装置。 The optical transmission device according to claim 18 or 21, wherein the correction mechanism includes a mechanism for changing the orientation of the light receiving optical system.
  25.  前記補正機構は、前記第1の受光光学系の向きを変化させる機構を含むことを特徴とする請求項19又は22に記載の光伝送装置。 The optical transmission device according to claim 19 or 22, wherein the correction mechanism includes a mechanism for changing the orientation of the first light receiving optical system.
  26.  前記補正機構は、前記第2の光学系の向きを変化させる機構を含むことを特徴とする請求項20又は23に記載の光伝送装置。 The optical transmission device according to claim 20 or 23, wherein the correction mechanism includes a mechanism for changing the orientation of the second optical system.
PCT/JP2022/008529 2021-03-16 2022-03-01 Optical transmission apparatus WO2022196337A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021042700 2021-03-16
JP2021-042625 2021-03-16
JP2021042625 2021-03-16
JP2021-042700 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022196337A1 true WO2022196337A1 (en) 2022-09-22

Family

ID=83321472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008529 WO2022196337A1 (en) 2021-03-16 2022-03-01 Optical transmission apparatus

Country Status (1)

Country Link
WO (1) WO2022196337A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645126A (en) * 1987-06-27 1989-01-10 Nec Corp Optical communication equipment
WO1999020002A1 (en) * 1997-10-09 1999-04-22 Seiko Epson Corporation Space optical transmission apparatus and space optical transmission method
JPH11205235A (en) * 1998-01-14 1999-07-30 Canon Inc Space optical communication system
JP2000171293A (en) * 1998-12-03 2000-06-23 Canon Inc Light emitting and receiving apparatus
WO2002073835A1 (en) * 2001-03-13 2002-09-19 Optical Crossing, Inc. Transceiver for free-space optical communication system
JP2005229253A (en) * 2004-02-12 2005-08-25 Olympus Corp Spatial light transmission apparatus
JP2009504110A (en) * 2005-08-02 2009-01-29 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Acquisition, indication, and tracking architecture for laser communications
WO2014181871A1 (en) * 2013-05-10 2014-11-13 三菱電機株式会社 Communication device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645126A (en) * 1987-06-27 1989-01-10 Nec Corp Optical communication equipment
WO1999020002A1 (en) * 1997-10-09 1999-04-22 Seiko Epson Corporation Space optical transmission apparatus and space optical transmission method
JPH11205235A (en) * 1998-01-14 1999-07-30 Canon Inc Space optical communication system
JP2000171293A (en) * 1998-12-03 2000-06-23 Canon Inc Light emitting and receiving apparatus
WO2002073835A1 (en) * 2001-03-13 2002-09-19 Optical Crossing, Inc. Transceiver for free-space optical communication system
JP2005229253A (en) * 2004-02-12 2005-08-25 Olympus Corp Spatial light transmission apparatus
JP2009504110A (en) * 2005-08-02 2009-01-29 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Acquisition, indication, and tracking architecture for laser communications
WO2014181871A1 (en) * 2013-05-10 2014-11-13 三菱電機株式会社 Communication device

Similar Documents

Publication Publication Date Title
US20220082805A1 (en) Optical system, image projection apparatus, and imaging apparatus
US6771427B1 (en) Image-forming optical system
WO2017150493A1 (en) Imaging device and projection device
JP2006065234A (en) Eccentric optical system and optical system using the same
RU2699312C1 (en) Optical system having a refracting surface and a reflecting surface, and an image capturing device and a projection device, which include it
US20150070496A1 (en) Reflecting telescope
US20220113535A1 (en) Optical apparatus, onboard system having the same, and mobile device
US10908402B2 (en) Image pickup apparatus including optical system having refractive surface and reflection surface, and on-board system and moving device provided with same
US6441957B1 (en) Directionally adjustable telescope arrangement
US11822096B2 (en) Optical system and optical apparatus
US11805983B2 (en) Optical path deflecting prism for endoscope, oblique-viewing endoscope optical system having the same and endoscope
WO2022196337A1 (en) Optical transmission apparatus
JP2007109923A (en) Photodetector and optical communication system using same
US7403343B2 (en) Panoramic attachment optical system, and panoramic optical system
WO2014136287A1 (en) Coupling optical system
WO2022186113A1 (en) Optical transmission device and method for adjusting optical transmission device
JP5904532B2 (en) Optical antenna for optical wireless communication device using infrared laser beam
WO2022186114A1 (en) Optical transmission device
JP2007052366A (en) Catoptric system and optical system using the same
JP2005003804A (en) Eccentric optical system, light transmitting device, light receiving device and optical system
WO2020158399A1 (en) Optical device, and on-vehicle system and mobile device including optical device
JP2006113248A (en) Eccentric reflection optical system and optical system using the same
US20190033566A1 (en) Optical system including refractive surface and reflective surface, and imaging apparatus and projection apparatus including the same
US20220229156A1 (en) Optical apparatus, and in-vehicle system and moving apparatus each including the same
JP7379112B2 (en) Optical system and imaging device equipped with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771091

Country of ref document: EP

Kind code of ref document: A1