WO2022185236A1 - Device for measuring voltage and current in power transmission lines - Google Patents

Device for measuring voltage and current in power transmission lines Download PDF

Info

Publication number
WO2022185236A1
WO2022185236A1 PCT/IB2022/051856 IB2022051856W WO2022185236A1 WO 2022185236 A1 WO2022185236 A1 WO 2022185236A1 IB 2022051856 W IB2022051856 W IB 2022051856W WO 2022185236 A1 WO2022185236 A1 WO 2022185236A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
coil
electrical conductor
impedance
primary electrical
Prior art date
Application number
PCT/IB2022/051856
Other languages
Spanish (es)
French (fr)
Inventor
Guillermo León GALLO HERNÁNDEZ
Wilder HERRERA PORTILLA
Diana Marcela URIBE CORREA
Original Assignee
Rymel Ingenieria Electrica S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rymel Ingenieria Electrica S.A.S. filed Critical Rymel Ingenieria Electrica S.A.S.
Publication of WO2022185236A1 publication Critical patent/WO2022185236A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • G01R15/06Voltage dividers having reactive components, e.g. capacitive transformer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/34Combined voltage and current transformers

Definitions

  • the present invention is related to devices for measuring voltage and current in electric power transmission lines.
  • Such devices on power transmission lines may be non-conventional current and voltage measurement devices, such as those disclosed in US3932810A and US5252913A.
  • US3932810A discloses a current and voltage measuring device having a resin body, with a conductor inside it.
  • Said device includes current measurement elements comprising: a coreless coil for detecting the current in the conductor; an operational amplifier connected to the coreless coil; and, an iron core that has a winding wound on it. Said winding and the conductor together define a saturation current transformer, which allows a voltage to be supplied to the operational amplifier.
  • the voltage and current measurement device also includes a capacitive voltage divider with an amplifier connected to it.
  • document US5252913A discloses a current and voltage sensor that includes an air core coil spaced at a particular distance from a conductor, immersed in a dielectric medium.
  • Patent document US5252913A also discloses a variable compensation resistor connected between the output terminals of the coil and one of the coil terminals is connected to ground, a voltage divider consisting of a primary and secondary resistor is connected by a first terminal of the voltage divider to the coil terminal that is connected to ground.
  • the present invention relates to a built-in voltage and current measurement device in power transmission lines, which allows small currents of less than 200 amps to be measured. Additionally, said device avoids introducing phase shifts in the output signal.
  • the present invention comprises: a primary electrical conductor that forms a plurality of turns, connected in series with the power line, where an electrical current from the power line circulates through the primary electrical conductor.
  • Said device further comprises a coil with at least two terminals, surrounding the primary electrical conductor, where the coil is configured to induce a voltage proportional to the magnitude of the electrical current flowing through the primary electrical conductor, and a voltage divider connected to the primary electrical conductor and to ground.
  • Said voltage divider is configured to supply a voltage proportional to the voltage of the electrical conductor with respect to ground.
  • the voltage and current measurement device also includes an impedance connected to at least one of the at least two terminals of the coil and an impedance connected to the output terminal of the divider.
  • the present invention allows to reduce the electromagnetic node interference in the output signal.
  • the F1G. 1 illustrates a device for measuring voltage and current in power transmission lines that includes a primary electrical conductor that forms a loop, connected in series with the power line, and an air-core coil that surrounds the primary electrical conductor. , where the conductor connects to a voltage divider. Both said voltage divider and the coil are connected to an electronic circuit.
  • FIG. 2 illustrates the schematic design of a device for measuring voltage and current in power transmission lines that includes a primary electrical conductor that forms a plurality of turns, connected in series with the power line, and a coil magnetically coupled to the electrical conductor. primary that physically surrounds said conductor, where the conductor is connected to a voltage divider and both the voltage divider and the coil are connected to an electronic circuit.
  • FIG. 3 illustrates a device for measuring voltage and current in power transmission lines that includes a primary electrical conductor that forms a loop, connected in series with the power line, and a coil that surrounds the primary electrical conductor, where the electrical conductor The primary is connected to a voltage divider and both the voltage divider and the coil are connected to an electronic circuit.
  • FIG. 4 illustrates an isometric view of a device for measuring voltage and current in power transmission lines that includes a primary electrical conductor that forms a plurality of turns, and a coil that surrounds the primary electrical conductor, where the conductor also surrounds the coil.
  • FIG. 5 illustrates three voltage and current measurement devices connected on different power transmission lines, where each of said devices is connected to an electronic circuit.
  • the present invention relates to a voltage and current measurement device (100), which allows measurements to be made on power lines, where said device allows voltages and currents to be measured, obtaining linear measurements in a wide working range and allows very small currents to be measured, such as currents less than 200 amps.
  • the device of the present invention allows measuring currents with a wide range of values.
  • the current measurement range goes from one Ampere to hundreds or thousands of Ampere.
  • the voltage sensor it can operate in low, medium or high voltage.
  • the voltage and current measurement device (100) in power transmission lines comprising a primary electrical conductor (1) that forms a plurality of turns, connected in series with the voltage line, where by the electrical conductor
  • the primary conductor (1) circulates an electric current from the power line and a coil (2) with at least two terminals, which surrounds the primary electrical conductor (1), where a voltage proportional to the voltage is induced in the coil (2). magnitude of the electrical current flowing through the primary electrical conductor (1).
  • Said device also includes a voltage divider (3) connected to the primary electrical conductor (1) and to ground (9).
  • high voltage lines will be understood as lines through which electrical energy with a voltage greater than 52 kV circulates
  • medium voltage lines will be understood as lines through which electrical energy with a voltage greater than 52 kV circulates. between 1 kV and 52 kV.
  • low-voltage lines will be understood as those lines through which electrical energy circulates with a voltage of less than 1 kV.
  • the voltage divider (3) is configured to supply a voltage proportional to the voltage of the primary electrical conductor (1) with respect to ground (9).
  • the voltage and current measurement device also includes a first impedance (5) connected to at least one of the terminals (2a, 2b) of the coil (2).
  • the voltage and current measurement device (100) can include an electronic circuit (4).
  • Said electronic circuit (4) is connected to the first impedance (5), to the voltage divider (3) and to at least one of the terminals (2a) or (2b) of the coil (2), where the first impedance (5 ) adjusts the voltage that is induced in the coil (2); and the electronic circuit (4) reads said adjusted voltage and also reads the voltage delivered by the voltage divider (3).
  • the primary electrical conductor (1) can be formed by a conductive material such as copper, which must be covered by a dielectric material and can also be formed by a plurality of turns.
  • plurality of turns means more than one turn.
  • the coil (2) for its part can be formed by a wire or a thread of some conductive material such as copper, which can be a conductive thread and be covered by an insulating material (7) for example by means of of a dielectric varnish.
  • Said conductive thread can be wound around an air core, forming the coil (2) which has a center and a guideline. The turns of the primary electrical conductor pass through the guideline of the coil (2).
  • the current flowing through the primary electrical conductor (1) induces an output voltage proportional to the magnitude of the electrical current at the terminals of the coil (2).
  • the coil (2) is made of an air core allows the sensor to have a linear response guaranteeing accuracy in a wide working range that goes from 1 to 1000 A. Also, said linearity allows the sensor to be used in both measurement and protection applications.
  • the use of an air core, together with the electronic circuit (4) guarantees that there are no phase shifts in the output signal with respect to the input.
  • the plurality of turns in the primary electrical conductor (1) in combination with the turns of the coil (2), makes it possible to increase the mutual inductance, which allows that, given the circulation of a small current in the primary electrical conductor (1 ), an output voltage with magnitudes of the order of volts is obtained, facilitating the measurement of small currents less than 200 amps.
  • the safety of a user is increased in the event that the terminals of said coil are short-circuited in an installation or maintenance operation.
  • the output terminals of the coil (2) are connected to an impedance, which allows the output voltage to be adjusted to the exact expected value, in order to then send the signal to the electronic circuit.
  • the fact of using an air coil reduces manufacturing costs because it does not require a magnetic core, and furthermore, said air coil can be opened and arranged around the electrical conductor (1), without the need to split the core. driver.
  • the voltage measurement is performed using a voltage divider (3), which can be made up of two fixed impedances connected in series and in which one end is connected to the primary electrical conductor (1) and the other end is connected to a ground point.
  • a voltage is obtained with respect to ground, which is proportional to the voltage present in the primary electrical conductor (1) with respect to ground.
  • the use of a voltage divider (3) with fixed impedances allows the sensor to have a linear response, guaranteeing accuracy over a wide working range that can cover low, medium and high voltage. Also, said linearity allows the sensor of the present invention to be used both in applications of measurement of current and voltage j e as in protection.
  • the use of a voltage divider (3) guarantees that there are no phase shifts in the output signal with respect to the input.
  • the voltage divider (3) can be designed to deliver a small voltage of the order of ios volts. The low power of the output signal increases the safety of a user in case the splitter output terminals are short-circuited in an installation or maintenance operation.
  • the impedances that make up the voltage divider (3) can be resistive or capacitive.
  • the fact that the voltage divider (3) is resistive has some technical advantages; a resistive voltage divider has smaller radial dimensions compared to a capacitive one, which allows the measurement device of the present invention to be assembled in places with more difficult accessibility, and also facilitates its assembly.
  • the output terminals of the voltage divider (3) are connected to an impedance, which allows the output voltage to be adjusted to the exact expected value, in order to then send the signal to the electronic circuit.
  • an electrical current circulates through a power line (11), it circulates through the primary electrical conductor (1), and later in the coil (2) a voltage proportional to the magnitude of the electrical current that circulates through the conductor is induced.
  • primary electrical (1) The voltage divider (3) supplies a voltage to the electronic circuit (4), proportional to the voltage of the primary electrical conductor (1) with respect to ground, while, and as mentioned above, the first impedance (5) performs calibration adjustments of the measurement of the current, by means of an adjustment in the voltage induced in the coil (2). Then, the electronic circuit (4) obtains two voltage signals; one proportional to the current flowing through the conductor and the other proportional to the voltage between the primary electrical conductor (1) and ground.
  • the electronic circuit (4) receives the voltages sent both by the voltage divider (3) and by the coil (2) and performs a signal treatment on them.
  • treatment of a signal, or a voltage performing operations with said voltage or signal value in order to be able to measure the voltage and/or the current of the power line (11).
  • the electronic circuit (4) can comprise at least two operational amplifiers that can be of high precision, where said operational amplifiers are used for the impedance coupling of the signals coming from the coil (2) and the voltage divider (3) .
  • the output of each operational amplifier is connected to a low pass filter that can be first order or higher, which allows reducing the noise of a signal coming from the electrical conductor (1), and thus obtaining measurements of voltages and currents with a acceptable noise level according to the desired requirements.
  • Said electronic circuit (4) can also have other filters in later stages, which allow a better measurement to be obtained. Additionally, such filters prevent a phenomenon called aliasing.
  • the first filter is a first order filter that allows the voltage signals coming from the voltage divider (3) to be filtered.
  • the second filter is second order and allows filtering the voltage signals coming from the coil (2). This is due to the fact that air-core coils, such as Rogowski coils, have a response that depends on the frequency, therefore, it is necessary to filter out-of-band signals.
  • the filter configuration can be a set of anti-aliasing filters, which can be connected to a power quality monitoring circuit, which makes measurements of active, reactive and frequency, phase angle, voltage total harmonic distortion (VTHD), current total harmonic distortion (ITHD), power factor, and SWELL monitoring; in polyphase systems, variables can obtained in total, or by phase.
  • said electronic circuit (4) can be connected to a microcontroller.
  • the microcontroller allows the data coming from the electronic circuit (4) to be scaled by means of conversion constants. Said conversion constants they are relative to the voltage and current transformation ratios.
  • the current and voltage measuring device (100) includes a coil (2) which is an air-core coil having a toroid shape with a center and a directrix.
  • the primary electrical conductor (1) is introduced through the direction of the coil (2).
  • the primary electrical conductor (1) forms a loop around the coil (2) and has two ends, a first end and a second end, where each of the ends is connected to a power line (11) by where an electric current flows.
  • a power transmission line will be understood as a voltage line (11).
  • a voltage divider (3) is connected to the primary electrical conductor (1) which is made up of two impedances, a first impedance (Z1) connected to the primary electrical conductor (1) and a second impedance (Z2), where the second impedance is connected to ground (9).
  • Said voltage divider (3) is connected to an electronic circuit (4), and supplies a voltage proportional to the voltage of the primary electrical conductor (I) with respect to ground (9), thus taking it to the electronic circuit (4) for its treatment.
  • the coil (2) of the voltage and current measurement device (100) of FIG. 1 has two terminals which are connected to the electronic circuit (4), where, between said terminals, a first impedance Z4 (5) is connected. Where said first impedance Z4 (5) allows adjusting the output voltage of the coil (2).
  • the first impedance (Z1) can be a high voltage resistance while the second impedance (Z2) can be a low voltage resistance.
  • the values of Z1 and Z2 are selected in such a way that the output signal has a suitable level for its treatment.
  • FIG. 2 a diagram of the voltage and current measurement device (100) is illustrated, which is connected in series to a transmission line, which supplies various loads.
  • the primary electrical conductor (1) it is a coil with terminals (10).
  • FIG. 2 shows three ways in which the voltage divider (3) can be configured: a first configuration (3a), corresponding to two impedances connected in series, a first impedance (Z1) and a second impedance (Z2), as in the voltage and current measurement device (100) of FIG. 1.
  • the first configuration (3a) preferably the first impedance (Z1) and the second impedance (Z2) have a sufficiently exact relationship.
  • a second configuration (3b) is a T configuration made up of a first impedance (Z1) connected to a second impedance (Z2) and a third impedance (Z3) connected between the first impedance (Z1) connected to a second impedance (Z2) .
  • the input impedance increases (the third impedance (Z3) is added) of the operational amplifier of the electronic circuit (4) that receives the signal.
  • the third configuration (3c) is a configuration made up of a first impedance (Z1) connected to a second impedance (Z2) and a third impedance (Z3) connected in parallel with a second impedance (Z2).
  • Z1 first impedance
  • Z2 second impedance
  • Z3 third impedance
  • the third impedance (Z3) were variable, it would allow an adequate adjustment of the relationship between the first impedance (Z1) and the second impedance (Z2), which would help to adjust the voltage and current measurement device accordingly. power transmission lines after assembly.
  • the first impedance (5) can be configured by: a first configuration (5a) corresponding to a first impedance (5) corresponding to an impedance (Z4) connected in series between a terminal (2a or 2b) of the coil (2) and the electronic circuit (4).
  • Said configuration (5a) allows measurements of the electrical current flowing through the voltage line (11), where said voltage line (11) is connected to a terminal (10) of the primary electrical conductor (1).
  • said configuration can be used in cases where current transformers are used, for example, the impedance (Z4) can be a resistance of a very small value (a shunt resistance).
  • the electronic circuit (4) perceives a small drop of tension in the impedance (Z4) and from there, it calculates the current. Furthermore, if the coil (2) were an air-core or Rogowski coil, the impedance (Z4) could increase the input impedance of the operational amplifier of the electronic circuit (4) receiving the signal.
  • Said configuration (5b) allows measurements to be made of the current flowing through the voltage line (11).
  • the impedance (Z4) is a variable resistor, it can help adjust the voltage induced in the coil (2) when it is an air core coil or a Rogowski coil.
  • the third configuration (5c) of the first impedance (5) corresponds to an impedance (Z4) connected in parallel to the coil (2) and the electronic circuit (4), and an impedance (Z5) connected to the coil (2) and to the electronic circuit (4).
  • Said configuration allows measurements to be made of the current flowing through the voltage line (11). Additionally, this configuration can be used in cases where current transformers are used, for example, the impedance (Z4) can be a resistance of a very small value (a shunt resistance),
  • the electronic circuit (4) perceives a small voltage drop in the impedance (Z4) and from there, calculates the current. Furthermore, if the coil (2) were an air-core or Rogowski coil, the impedance (Z4) can adjust the voltage induced in the coil (2). The role of the impedance (Z5) is to increase the input impedance of the operational amplifier of the electronic circuit (4) that receives the signal.
  • the coil (2), the primary electrical conductor (1) and the voltage divider (3) may be covered by a dielectric.
  • Said dielectric (6) is an insulating material that makes it possible to electrically insulate both the primary electrical conductor (1), the coil (2) and the voltage divider (3).
  • said dielectric (6) can be a material that is selected from the group consisting of dielectric liquids, dielectric gases (SF6), dielectric solid materials, equivalent materials known to a person of ordinary skill in the art, or a combination of the above.
  • the coil (2) can be covered by an insulating material (7), which allows electrically insulating the primary electrical conductor (1) from the coil (2).
  • the insulating material (7) that covers the coil (2) can be covered by a composite material (8), which can be selected from the group made up of conductive or semiconducting materials such as aluminium, gallium, silicon, paper with particles graphite, paper with carbon particles, brass, etc., and/or a combination of the above.
  • Said composite material (8) allows to reduce the electric field concentrations in the device (100), to avoid partial discharges and to reduce the effects of electromagnetic mido.
  • conductive materials these preferably do not form a closed loop around the coil (2), because currents can be produced that circulate through the conductive material, interfering with the safety and proper functioning of the sensor of the present invention.
  • the current and voltage measuring device (100) includes a coil (2) which is an air-core coil, having a toroid shape with a center and a directrix.
  • the primary electrical conductor (1) is introduced through the direction of the coil (2).
  • the primary electrical conductor (1) forms a plurality of turns around the coil (2) and has two ends, a first end and a second end, where each of the ends is connected to a voltage line (11). ) through which an electric current circulates.
  • a coil (2) which is an air-core coil, having a toroid shape with a center and a directrix.
  • the primary electrical conductor (1) is introduced through the direction of the coil (2).
  • the primary electrical conductor (1) forms a plurality of turns around the coil (2) and has two ends, a first end and a second end, where each of the ends is connected to a voltage line (11). ) through which an electric current circulates.
  • a voltage divider (3) is connected to the primary electrical conductor (1), which is made up of two impedances, a first impedance (Z1) connected to the primary electrical conductor (1) and a second impedance (Z2), in where the second impedance (Z2) is connected to ground (9).
  • Said voltage divider (3) is connected to an electronic circuit (4), and supplies a voltage proportional to the voltage of the primary electrical conductor (1) with respect to ground (9), thus taking it to the electronic circuit (4) for its treatment of voltage signal.
  • the first impedance (Z1) can have a value greater than the second impedance (Z2), which allows the voltage measured in the electronic circuit (4) in the voltage divider (3) is a fraction of the voltage of the power line, which allows obtaining voltage values that allow its treatment.
  • the coil (2) of the voltage and current measurement device (100) of FIG. 3 has two terminals which are connected to the electronic circuit (4), where, between said terminals (2a, 2b) a first impedance (5) is connected, where said first impedance Z4 (5) allows adjusting the output voltage of the coil (2).
  • Said voltage and current measurement device (100) also includes a second impedance connected between the connection of the voltage divider (3) and the electronic circuit (4), where said second impedance (Z6) is connected to ground (9).
  • said impedance (Zó) can be a variable impedance, which allows a suitable adjustment according to the output voltage requirements of the voltage divider.
  • said voltage and current measurement device (100) of FIG. 3 includes a dielectric (6) which covers the primary electrical conductor (1), the voltage divider (3), and the first impedance (5).
  • Said dielectric (6) is illustrated as a dotted line that encloses the voltage and current measurement device (100).
  • the primary electrical conductor (1) is inserted in the guideline of the coil (2), and between the coil (2) and the primary electrical conductor (1) there is a distance (DI) from the surface of the primary electrical conductor ( 1) and an internal surface of the coil (2).
  • the technical effect of the distance (DI) is to guarantee the insulation between the coil (2) and the primary electrical conductor (1).
  • Said distance (Di) is selected, depending on the voltage level under which the equipment will operate.
  • FIG. 4 an embodiment of the invention corresponding to the voltage and current measurement device (100) of FIG, 3 is illustrated, with the difference that the electrical conductor (1) passes through the center of the coil (2), and forms a plurality of turns around the directrix of said coil (2).
  • the electrical conductor (1) corresponding to a primary winding, for each turn that a turn of the electrical conductor (1) makes inside the coil (2), the generated magnetic field is amplified and with it a higher voltage is induced in the coil (2).
  • the device includes a support that allows the coil (2) to be kept in a single position.
  • FIG. 5 three voltage and current measurement devices (100) are illustrated, a first device (100a), a second device (100b) and a third device (100c), where each of said devices is like the devices of the modality of FIG. 3.
  • Said devices (100a, 100b, 100c) can be connected to three different power lines where each one sends signals to an electronic circuit (4) that allows measuring the voltage, current and other electrical variables of the power lines , over time such as power, energy, power factor, frequency, harmonic distortion in voltage and current, angles between voltages and currents, among others.
  • the electronic circuit (4) can be connected by wireless communication (12) to a user equipment (13), where in said user equipment (13) the signals of voltage, current and other variables of the power lines, remotely, obtained by each of the voltage and current measurement devices (100a, 100b, 100c), where said signals correspond to the signals conditioned by the electronic circuit ( 4),
  • Said wireless communication (12) can be carried out by means of communication modules that are selected from the group consisting of Bluetooth, WiFi, Radio Frequency RF (for the acronym in English of Radio Frequency), UWB (for the acronym in English of Ultra Wide Band) , GPRS, Konnex or KNX, DMX (Digital Multiple X), WiMax and equivalent wireless communication technologies that are known to a person of ordinary skill in the art and combinations of the above.
  • communication modules that are selected from the group consisting of Bluetooth, WiFi, Radio Frequency RF (for the acronym in English of Radio Frequency), UWB (for the acronym in English of Ultra Wide Band) , GPRS, Konnex or KNX, DMX (Digital Multiple X), WiMax and equivalent wireless communication technologies that are known to a person of ordinary skill in the art and combinations of the above.
  • the user equipment (13) can be a device that processes data, for example, microcontrollers, microprocessors, DSCs (Digital Signa! Controller for its acronym in English), FPGAs (Field Programmable Gate Array for its acronym in English) , CPLDs (Complex Programmable Logic Device), ASICs (Application Specific Integrated Circuit), SoCs (System on Chip), PSoCs (Programmable System on Chip) ), computers, servers, tablets, cell phones, smart phones, signal generators and user equipment (13) known to a person moderately versed in the matter and combinations of these.
  • DSCs Digital Signa! Controller for its acronym in English
  • FPGAs Field Programmable Gate Array for its acronym in English
  • CPLDs Complex Programmable Logic Device
  • ASICs Application Specific Integrated Circuit
  • SoCs System on Chip
  • PSoCs Programmable System on Chip
  • the information sent by the communications module can be sent to a server or to a web server, which allows storing the information coming from at least one voltage and current measurement device (100).
  • a voltage and current measuring device (100) was made comprising a coil (2) which is an air-core coil, having a toroid shape with a center and a directrix.
  • Said coil (2) had the following specifications: Air core coil formed from copper or aluminum wire.
  • a primary copper electrical conductor (1) is inside the guideline of the coil (2) with a plurality of turns.
  • a voltage divider (3) was connected to the primary electrical conductor (1) which is made up of two resistors, a first resistance (Z1), fixed, high voltage connected to the primary electrical conductor (1) and a second resistance (Z2), fixed, low voltage, where the second resistance is connected to ground (9).
  • Said voltage divider (3) is connected to an electronic circuit (4), with the following characteristics: Impedance coupling, anti-aliasing filters, digital analog converter and a signal analyzer.
  • the coil (2) has two terminals (2a, 2b) which are connected to the electronic circuit (4), where, between said terminals (2a, 2b), a first impedance (5) is connected. Where said first impedance (5) corresponds to a fourth resistance (Z4).
  • Said voltage and current measurement device (100) also includes a second impedance connected between the connection of the voltage divider (3) and the electronic circuit (4), where said second impedance is a resistance (Z6) that is connected to land ( 9).
  • said voltage and current measurement device (100) of FIG. 3 includes a dielectric (6) which covers the primary electrical conductor (1), the voltage divider (3), and the first impedance (5).
  • dielectric (6) is epoxy resin.
  • This device served to monitor electrical systems of a wide range of currents and voltages. Including low current systems, that is, between 1 and 5 Amps; and high voltages, that is, more than 1000 volts.
  • a voltage and current measuring device (100) was made comprising a coil (2) which is an air-core coil, having a toroid shape with a center and a directrix.
  • Said coil (2) had the following specifications: air core coil formed of copper wire forming a total of 1000 turns around the air core.
  • im copper primary electrical conductor (1) is inside the guideline of the coil (2) with a plurality of 10 turns.
  • the coil (2) induces a voltage greater than 0.225 Volts when a current of 20 Amps flows through the primary electrical conductor (1).
  • a voltage divider (3) was connected to the primary electrical conductor (1) which is made up of two resistors, a first resistor (Z1), with a value of 200 Mega Ohms, high voltage, connected to the primary electrical conductor (1) and a second resistance (Z2), with a value of 100 kilo Ohms, low voltage, where the second resistance is connected to ground (9) and to the first resistance (Z1).
  • a voltage greater than 1.88V with respect to ground (9) falls on the second resistance (Z2), when the voltage of the primary electrical conductor (1) with respect to ground (9) is 7621 V.
  • Said voltage divider (3) is connected to a filter to eliminate high-frequency noise and to an electronic circuit (4), with the following characteristics: an electronic circuit provided with impedance matching with high-precision operational amplifiers, two anti- aliasing with a cutoff frequency of 7 kHz, a digital analog converter with a sampling rate of 8000 samples per second, a signal analyzer, a microcontroller and a GPRS communication module.
  • the coil (2) has two terminals, which are connected to the electronic circuit (4), where, between said terminals, a first impedance (5) is connected.
  • Said first impedance (5) corresponds to a fourth resistance (Z4 )
  • said fourth resistance (Z4) can be variable or can be a potentiometer with a value of 500 Ohms.
  • Said fourth resistance (Z4) can be adjusted until the voltage induced in the coil (2) is equal to 0.225 V.
  • Said voltage and current inedition device (100) also includes a second impedance connected between the connection of the voltage divider (3) and the electronic circuit (4), where said second impedance is a resistance (Z6) that is connected to ground (9),
  • the resistance (Z6) can be variable or it can be a potentiometer with a value of one Mega Ohm.
  • the resistance (Zó) must be varied until the voltage that falls on the resistance (Z2) with respect to ground is equal to 1.88 V.
  • said voltage and current measurement device (100) includes a dielectric (6) which covers the primary electrical conductor (1), the voltage divider (3), and the first impedance (5).
  • dielectric (6) is epoxy resin.
  • the measurement range is wider compared to those sensors that have embedded magnetic cores.
  • the plurality of turns of the primary electrical conductor (1) made it possible to increase the mutual inductance of the sensor, which made it possible to measure low currents, for example 20 Amps.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

The present invention relates to a device for measuring voltage and current in power transmission lines, which comprises: a primary electrical conductor connected in series to a voltage line, wherein an electric current from the voltage line flows through the electrical conductor, the primary electrical conductor forming a plurality of turns; a coil with at least two terminals, which surrounds the primary electrical conductor, wherein the coil is designed to induce a voltage proportional to the magnitude of the electric current that flows through the electrical conductor; and a grounded voltage divider connected to the electrical conductor. The voltage divider is designed to supply a voltage proportional to the voltage of the electrical conductor relative to ground. In addition, the device for measuring voltage and current also includes an impedance connected to at least one of the at least two terminals of the coil.

Description

DISPOSITIVO DE MEDICIÓN DE VOLTAJE Y CORRIENTE EN LÍNEAS DEDEVICE FOR MEASURING VOLTAGE AND CURRENT IN POWER LINES
TRANSMISIÓN DE ENERGÍA POWER TRANSMISSION
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención está relacionada con dispositivos para la medición de voltaje y corriente en líneas de transmisión de energía eléctrica. The present invention is related to devices for measuring voltage and current in electric power transmission lines.
DESCRIPCIÓN DEL ESTADO DE LA TÉCNICA DESCRIPTION OF THE STATE OF THE ART
En las líneas de transmisión y distribución de energía, se hace necesaria la medición de variables eléctricas tales como niveles de corrientes, niveles de tensión y desfases entre otros, para fines de medición, control o protección. Debido a que dichas mediciones se hacen en presencia de altos voltajes, como, por ejemplo, mayores a 1000 V, se requiere la utilización de dispositivos que permitan transformar los niveles de tensión y de corriente de la línea, a pequeñas señales con niveles de magnitud baja, no peligrosos y proporcionales, que pueden ser fácilmente procesadas por un dispositivo electrónico, por un instrumento o por un analizador de energía eléctrica. Por años las empresas de energía han utilizado transformadores inductivos, que permitan reducir los niveles elevados de tensión y corriente de la red eléctrica, a niveles bajos que pueden ser manejables por los equipos de medida. Dichos equipos son instalados en grupos de tres transformadores de tensión y de tres transformadores de comente individuales y trabajan utilizando un núcleo magnético saturable. Estos equipos presentan ciertas desventajas, como son la relativa complejidad de su instalación, debido a que son relativamente pesados, por lo que requieren de un soporte especial para su instalación. Además, debido a que utilizan un núcleo magnético cuyo comportamiento es no-lineal, no pueden garantizar la misma exactitud para todo el rango de medida. Adicionalmente, estos transformadores inductivos introducen un desfase en el secundario con respecto al primario, el cual debe ser tenido en cuenta para el proceso de medición. Actualmente, existen sensores para la medición no convencional de variables eléctricas, los cuales utilizan divisores de tensión y sensores de núcleo de aire y por lo tanto son elementos que presentan una mejor iinealidad en comparación a ios transformadores inductivos convencionales. Sin embargo, la desventa] a de los sensores con núcleos de aire radica en que entregan una pequeña señal de salida del orden de los mili-voltios, por lo cual no son adecuados para medir corrientes pequeñas (menores a 200 Amperios). In power transmission and distribution lines, it is necessary to measure electrical variables such as current levels, voltage levels and phase shifts, among others, for measurement, control or protection purposes. Due to the fact that these measurements are made in the presence of high voltages, such as, for example, greater than 1000 V, the use of devices that allow the voltage and current levels of the line to be transformed into small signals with magnitude levels is required. low, non-hazardous and proportional, which can be easily processed by an electronic device, by an instrument or by an electrical energy analyzer. For years, energy companies have used inductive transformers, which allow reducing the high levels of voltage and current of the electrical network, to low levels that can be managed by measurement equipment. These units are installed in groups of three voltage transformers and three individual current transformers and work using a saturable magnetic core. These devices have certain disadvantages, such as the relative complexity of their installation, due to the fact that they are relatively heavy, which is why they require a special support for their installation. Also, because they use a magnetic core whose behavior is non-linear, they cannot guarantee the same accuracy for the entire measurement range. Additionally, these inductive transformers introduce a phase shift in the secondary with respect to the primary, which must be taken into account for the measurement process. Currently, there are sensors for the non-conventional measurement of electrical variables, which use voltage dividers and air core sensors and therefore are elements that have better linearity compared to conventional inductive transformers. However, the disadvantage of air core sensors is that they deliver a small output signal of the order of millivolts, which is why they are not suitable for measuring small currents (less than 200 Amperes).
Por otro lado, la utilización de divisores de tensión y sensores de núcleo de aire, en presencia de altos voltajes, implica la aparición de altas concentraciones de campo eléctrico, que produce la aparición de descargas parciales, las cuales deben ser controladas adecuadamente, para evitar daños en el sistema de aislamiento. Adicionalmente, Las pequeñas señales provenientes de los sensores no convencionales, deben ser adecuadamente procesadas y deben ser protegidas de la interferencia generada por el ruido electromagnético. On the other hand, the use of voltage dividers and air core sensors, in the presence of high voltages, implies the appearance of high concentrations of electric field, which produces the appearance of partial discharges, which must be adequately controlled, to avoid damage to the insulation system. Additionally, the small signals coming from unconventional sensors must be adequately processed and must be protected from interference generated by electromagnetic noise.
Por lo tanto, dichos dispositivos en líneas de transmisión de energía pueden ser dispositivos de medición no convencional de corriente y voltaje, como los divulgados en los documentos US3932810A y US5252913A. Therefore, such devices on power transmission lines may be non-conventional current and voltage measurement devices, such as those disclosed in US3932810A and US5252913A.
El documento US3932810A divulga un dispositivo de medición de comente y voltaje que tiene un cuerpo de resina, con un conductor dentro de este. Dicho dispositivo incluye elementos de medición de comente que comprenden: una bobina sin núcleo para detectar la corriente en el conductor; un amplificador operacional conectado a la bobina sin núcleo; y, un núcleo de hierro que tiene un devanado enrollado sobre él. Dicho devanado y el conductor definen conjuntamente un transformador de corriente de saturación, que permite suministrar un voltaje al amplificador operacional. El dispositivo de medición de voltaje y corriente también incluye un divisor de voltaje capacitivo con un amplificador conectado al mismo. US3932810A discloses a current and voltage measuring device having a resin body, with a conductor inside it. Said device includes current measurement elements comprising: a coreless coil for detecting the current in the conductor; an operational amplifier connected to the coreless coil; and, an iron core that has a winding wound on it. Said winding and the conductor together define a saturation current transformer, which allows a voltage to be supplied to the operational amplifier. The voltage and current measurement device also includes a capacitive voltage divider with an amplifier connected to it.
Por su parte, el documento US5252913A divulga un sensor de comente y voltaje que incluye una bobina de núcleo de aire espaciada a una distancia particular de un conductor, inmersos en un medio dieléctrico. El documento de patente US5252913A también divulga una resistencia de compensación variable conectada entre las terminales de salida de la bobina y una de las terminales de la bobina está conectada a tierra, un divisor de tensión conformado por una resistencia primaria y secundaria está conectado por una primera terminal del divisor de tensión a la terminal de la bobina que está conectada a tierra. For its part, document US5252913A discloses a current and voltage sensor that includes an air core coil spaced at a particular distance from a conductor, immersed in a dielectric medium. Patent document US5252913A also discloses a variable compensation resistor connected between the output terminals of the coil and one of the coil terminals is connected to ground, a voltage divider consisting of a primary and secondary resistor is connected by a first terminal of the voltage divider to the coil terminal that is connected to ground.
Los anteriores documentos divulgan dispositivos que incorporan en un solo cuerpo la medición del voltaje y la corriente, utilizando sensores con núcleo de aire. La principal desventaja de dichos sensores es que las señales de salida son muy pequeñas, del orden de ios mili-voltios y por lo tanto la aplicación de dichos sensores, está delimitada a la medición de grandes corrientes, generalmente mayores a 200 Amperios, ya que estos niveles de corriente permiten la inducción de señales, con magnitudes suficientes para ser medidas por instrumentos o circuitos electrónicos. The above documents disclose devices that incorporate voltage and current measurement in a single body, using air-core sensors. The main disadvantage of these sensors is that the output signals are very small, in the order of 100 millivolts, and therefore the application of these sensors is limited to the measurement of large currents, generally greater than 200 Amperes, since these current levels allow the induction of signals, with magnitudes sufficient to be measured by instruments or electronic circuits.
Por otro lado, los anteriores documentos no divulgan un sistema que permita controlar las concentraciones de campo eléctrico, para evitar la aparición de descargas parciales y tampoco divulgan un sistema de ajuste y acople para el adecuado tratamiento de las señales de salida. On the other hand, the previous documents do not disclose a system that allows controlling the concentrations of the electric field, to avoid the appearance of partial discharges, nor do they disclose an adjustment and coupling system for the adequate treatment of the output signals.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La presente invención se refiere a un dispositivo de medición incorporada de voltaje y corriente en líneas de transmisión de energía, que permite medir corrientes pequeñas menores a 200 amperios. Adicionalmente, dicho dispositivo evita introducir desfases en la señal de salida. The present invention relates to a built-in voltage and current measurement device in power transmission lines, which allows small currents of less than 200 amps to be measured. Additionally, said device avoids introducing phase shifts in the output signal.
Por lo tanto, la presente invención comprende: un conductor eléctrico primario que forma una pluralidad de espiras, conectado en serie con la línea de tensión, donde por el conductor eléctrico primario circula una corriente eléctrica proveniente de la línea de tensión. Dicho dispositivo además comprende una bobina con al menos dos terminales, que rodea el conductor eléctrico primario, donde la bobina está configurada para inducir un voltaje proporcional a la magnitud de la comente eléctrica que circula por el conductor eléctrico primario, y un divisor de tensión conectado al conductor eléctrico primario y a tierra. Dicho divisor de tensión está configurado para suministrar un voltaje proporcional al voltaje del conductor eléctrico respecto a tierra. Adicionalmente, el dispositivo de medición de voltaje y corriente también incluye una impedancia conectada a al menos una de las al menos dos terminales de la bobina y una impedancia conectada al terminal de salida del divisor. Therefore, the present invention comprises: a primary electrical conductor that forms a plurality of turns, connected in series with the power line, where an electrical current from the power line circulates through the primary electrical conductor. Said device further comprises a coil with at least two terminals, surrounding the primary electrical conductor, where the coil is configured to induce a voltage proportional to the magnitude of the electrical current flowing through the primary electrical conductor, and a voltage divider connected to the primary electrical conductor and to ground. Said voltage divider is configured to supply a voltage proportional to the voltage of the electrical conductor with respect to ground. Additionally, the voltage and current measurement device also includes an impedance connected to at least one of the at least two terminals of the coil and an impedance connected to the output terminal of the divider.
Adicionalmente, la presente invención permite disminuir la interferencia de nudo electromagnético en la señal de salida. Additionally, the present invention allows to reduce the electromagnetic node interference in the output signal.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La F1G. 1 ilustra un dispositivo de medición de voltaje y corriente en líneas de transmisión de energía que incluye un conductor eléctrico primario que forma una espira, conectado en serie con la línea de tensión, y una bobina de núcleo de aire, que rodea el conductor eléctrico primario, donde el conductor se conecta a un divisor de tensión. Tanto dicho divisor de tensión como la bobina, se conectan a un circuito electrónico. The F1G. 1 illustrates a device for measuring voltage and current in power transmission lines that includes a primary electrical conductor that forms a loop, connected in series with the power line, and an air-core coil that surrounds the primary electrical conductor. , where the conductor connects to a voltage divider. Both said voltage divider and the coil are connected to an electronic circuit.
La FIG. 2 ilustra el diseño esquemático de un dispositivo de medición de voltaje y corriente en líneas de transmisión de energía que incluye un conductor eléctrico primario que forma una pluralidad de espiras, conectado en serie con la línea de tensión, y una bobina acoplada magnéticamente al conductor eléctrico primario que físicamente rodea dicho conductor, donde el conductor se conecta a un divisor de tensión y, tanto el divisor de tensión como la bobina se conectan aun circuito electrónico. FIG. 2 illustrates the schematic design of a device for measuring voltage and current in power transmission lines that includes a primary electrical conductor that forms a plurality of turns, connected in series with the power line, and a coil magnetically coupled to the electrical conductor. primary that physically surrounds said conductor, where the conductor is connected to a voltage divider and both the voltage divider and the coil are connected to an electronic circuit.
La FIG. 3 ilustra un dispositivo de medición de voltaje y corriente en líneas de transmisión de energía que incluye un conductor eléctrico primario que forma una espira, conectado en serie con la línea de tensión, y una bobina que rodea el conductor eléctrico primario, donde el conductor eléctrico primario se conecta a un divisor de tensión y tanto el divisor de tensión como la bobina, se conectan a un circuito electrónico. La FIG. 4 ilustra una vista en isométrico de un dispositivo de medición de voltaje y corriente en líneas de transmisión de energía que incluye un conductor eléctrico primario que forma una pluralidad de espiras, y una bobina, que rodea el conductor eléctrico primario, donde el conductor también rodea la bobina. FIG. 3 illustrates a device for measuring voltage and current in power transmission lines that includes a primary electrical conductor that forms a loop, connected in series with the power line, and a coil that surrounds the primary electrical conductor, where the electrical conductor The primary is connected to a voltage divider and both the voltage divider and the coil are connected to an electronic circuit. FIG. 4 illustrates an isometric view of a device for measuring voltage and current in power transmission lines that includes a primary electrical conductor that forms a plurality of turns, and a coil that surrounds the primary electrical conductor, where the conductor also surrounds the coil.
La FIG. 5 ilustra tres dispositivos de medición de voltaje y corriente conectados en diferentes líneas de transmisión de energía, donde cada uno de dichos dispositivos está conectado a un circuito electrónico. FIG. 5 illustrates three voltage and current measurement devices connected on different power transmission lines, where each of said devices is connected to an electronic circuit.
DESCRIPCIÓN DETALLADA DETAILED DESCRIPTION
La presente invención se refiere aun dispositivo de medición de voltaje y corriente (100), que permite realizar mediciones en líneas de tensión, donde dicho dispositivo permite medir voltajes y corrientes obteniendo mediciones lineales en un rango amplio de trabajo y permite medir corrientes muy pequeñas, como por ejemplo, comentes menores a 200 amperios. The present invention relates to a voltage and current measurement device (100), which allows measurements to be made on power lines, where said device allows voltages and currents to be measured, obtaining linear measurements in a wide working range and allows very small currents to be measured, such as currents less than 200 amps.
El dispositivo de la presente invención permite medir corrientes con un amplio rango de valores. El rango de medida de corriente va desde un Amperio hasta los cientos o miles de Amperios. Respecto al sensor de tensión, este puede operar en baja, media o alta tensión. The device of the present invention allows measuring currents with a wide range of values. The current measurement range goes from one Ampere to hundreds or thousands of Ampere. Regarding the voltage sensor, it can operate in low, medium or high voltage.
Particularmente, el dispositivo de medición de voltaje y corriente (100) en líneas de transmisión de energía, que comprende un conductor eléctrico primario (1) que forma una pluralidad de espiras, conectado en serie con la linea de tensión, donde por el conductor eléctrico primario (1) circula una corriente eléctrica proveniente de la línea de tensión y una bobina (2) con al menos dos terminales, que rodea el conductor eléctrico primario (1), donde en la bobina (2) se induce un voltaje proporcional a la magnitud de la comente eléctrica que circula por el conductor eléctrico primario (1), Dicho dispositivo también incluye un divisor de tensión (3) conectado al conductor eléctrico primario (1) y a tierra (9). Para el entendimiento de la presente invención, se entenderá por líneas de alta tensión, a líneas por donde circula energía eléctrica con un voltaje superior a 52 kV, y por líneas de media tensión, se entenderán las líneas por donde circula energía eléctrica con un voltaje entre 1 kV y 52 kV, Finalmente, por líneas de baja tensión, se entenderán aquellas líneas por donde circula energía eléctrica con un voltaje inferior a 1 kV. Particularly, the voltage and current measurement device (100) in power transmission lines, comprising a primary electrical conductor (1) that forms a plurality of turns, connected in series with the voltage line, where by the electrical conductor The primary conductor (1) circulates an electric current from the power line and a coil (2) with at least two terminals, which surrounds the primary electrical conductor (1), where a voltage proportional to the voltage is induced in the coil (2). magnitude of the electrical current flowing through the primary electrical conductor (1). Said device also includes a voltage divider (3) connected to the primary electrical conductor (1) and to ground (9). For the understanding of the present invention, high voltage lines will be understood as lines through which electrical energy with a voltage greater than 52 kV circulates, and medium voltage lines will be understood as lines through which electrical energy with a voltage greater than 52 kV circulates. between 1 kV and 52 kV. Finally, low-voltage lines will be understood as those lines through which electrical energy circulates with a voltage of less than 1 kV.
Particularmente, el divisor de tensión (3) está configurado para suministrar un voltaje proporcional al voltaje del conductor eléctrico primario (1) respecto a tierra (9). Además, el dispositivo de medición de voltaje y corriente, también incluye una primera impedancia (5) conectada al menos a uno de ios terminales (2a, 2b) de la bobina (2). In particular, the voltage divider (3) is configured to supply a voltage proportional to the voltage of the primary electrical conductor (1) with respect to ground (9). In addition, the voltage and current measurement device also includes a first impedance (5) connected to at least one of the terminals (2a, 2b) of the coil (2).
Por otro lado, el dispositivo de medición de voltaje y corriente (100) puede incluir un circuito electrónico (4). Dicho circuito electrónico (4) se conecta a la primera impedancia (5), al divisor de tensión (3) y a al menos uno de los terminales (2a) o (2b) de la bobina (2), donde la primera impedancia (5) ajusta el voltaje que es inducido en la bobina (2); y el circuito electrónico (4) lee dicho voltaje ajustado y también lee el voltaje entregado por el divisor de tensión (3). On the other hand, the voltage and current measurement device (100) can include an electronic circuit (4). Said electronic circuit (4) is connected to the first impedance (5), to the voltage divider (3) and to at least one of the terminals (2a) or (2b) of the coil (2), where the first impedance (5 ) adjusts the voltage that is induced in the coil (2); and the electronic circuit (4) reads said adjusted voltage and also reads the voltage delivered by the voltage divider (3).
El conductor eléctrico primario (1), puede estar formado por un material conductor como el cobre, el cual debe estar recubierto por un material dieléctrico y además puede estar formado por una pluralidad de espiras. Para el entendimiento de la presente invención, se entenderá por pluralidad de espiras a más de una espira. Por otro lado, la bobina (2) por su parte puede estar formada por un alambre o un hilo de algún material conductor como el cobre, el cual puede ser un hilo conductor y estar recubierto por un material aislante (7) por ejemplo por medio de un barniz dieléctrico. Dicho hilo conductor puede ser enrollado alrededor de un núcleo de aíre, formando la bobina (2) la cual tiene un centro y una directriz. Las espiras del conductor eléctrico primario pasan a través de la directriz de la bobina (2). The primary electrical conductor (1), can be formed by a conductive material such as copper, which must be covered by a dielectric material and can also be formed by a plurality of turns. For the understanding of the present invention, plurality of turns means more than one turn. On the other hand, the coil (2) for its part can be formed by a wire or a thread of some conductive material such as copper, which can be a conductive thread and be covered by an insulating material (7) for example by means of of a dielectric varnish. Said conductive thread can be wound around an air core, forming the coil (2) which has a center and a guideline. The turns of the primary electrical conductor pass through the guideline of the coil (2).
La corriente que circula por el conductor eléctrico primario (1), induce en los terminales de la bobina (2) un voltaje de salida proporcional a la magnitud de la corriente eléctrica. En la presente invención, que la bobina (2) sea de un núcleo de aire permite que el sensor tenga una respuesta lineal garantizando la exactitud en un rango amplio de trabajo que va desde 1 a 1000 A. También, dicha linealidad permite que el sensor pueda ser utilizado tanto en aplicaciones de medida como en protección. Además, la utilización de un núcleo de aire, en conjunto con el circuito electrónico (4) garantiza que no se produzcan desfases en la señal de salida con respecto a la entrada. The current flowing through the primary electrical conductor (1) induces an output voltage proportional to the magnitude of the electrical current at the terminals of the coil (2). In the present invention, the fact that the coil (2) is made of an air core allows the sensor to have a linear response guaranteeing accuracy in a wide working range that goes from 1 to 1000 A. Also, said linearity allows the sensor to be used in both measurement and protection applications. In addition, the use of an air core, together with the electronic circuit (4) guarantees that there are no phase shifts in the output signal with respect to the input.
Adicionalmente, la pluralidad de espiras en el conductor eléctrico primario (1), en combinación con las espiras de la bobina (2) posibilita aumentar la inductancia mutua, lo que permite que ante la circulación de una corriente pequeña en el conductor eléctrico primario (1), se obtenga un voltaje de salida con magnitudes del orden de los voltios, facilitando la medición de corrientes pequeñas menores a 200 amperios. Additionally, the plurality of turns in the primary electrical conductor (1), in combination with the turns of the coil (2), makes it possible to increase the mutual inductance, which allows that, given the circulation of a small current in the primary electrical conductor (1 ), an output voltage with magnitudes of the order of volts is obtained, facilitating the measurement of small currents less than 200 amps.
Además, dada la baja potencia de la señal de salida, se aumenta la seguridad de un usuario en caso de que los terminales de dicha bobina sean cortocircuitados en una operación de instalación o mantenimiento. Los terminales de salida de la bobina (2) se conectan a una impedancia, que permite ajustar el voltaje de salida al valor exacto esperado, para luego enviar la señal al circuito electrónico. Furthermore, given the low power of the output signal, the safety of a user is increased in the event that the terminals of said coil are short-circuited in an installation or maintenance operation. The output terminals of the coil (2) are connected to an impedance, which allows the output voltage to be adjusted to the exact expected value, in order to then send the signal to the electronic circuit.
Adicionalmente, el hecho de usar una bobina de aire, reduce los costos de manufactura debido a que no requiere un núcleo magnético, y además, dicha bobina de aire se puede abrir y disponer alrededor del conductor eléctrico (1), sin necesidad de partir el conductor. Haciendo referencia a la FIG. 1, la medición del voltaje se realiza utilizando un divisor de tensión (3), que puede estar compuesto de dos impedancias fijas conectadas en serie y en el cual uno de los extremos está conectado al conductor eléctrico primario (1) y el otro extremo está conectado a un punto de tierra. Additionally, the fact of using an air coil reduces manufacturing costs because it does not require a magnetic core, and furthermore, said air coil can be opened and arranged around the electrical conductor (1), without the need to split the core. driver. Referring to FIG. 1, the voltage measurement is performed using a voltage divider (3), which can be made up of two fixed impedances connected in series and in which one end is connected to the primary electrical conductor (1) and the other end is connected to a ground point.
En el punto de unión de las dos impedancias fijas se obtiene un voltaje con respecto a tierra, que es proporcional al voltaje presente en el conductor eléctrico primario (1) con respecto a tierra. La utilización de un divisor de tensión (3) con impedancias fijas, permite que el sensor tenga una respuesta lineal garantizando la exactitud en un rango amplio de trabajo que puede abarcar la baja, la media y la alta tensión. También, dicha linealidad pemiite que el sensor de la presente invención pueda ser utilizado tanto en aplicaciones de medida de comente y voltaje como en protección. Además, la utilización de un divisor de tensión (3), garantiza que no se produzcan desfases en la señal de salida con respecto a la entrada. Adicionalmente, el divisor de tensión (3) puede estar diseñado para que entregue un voltaje pequeño del orden de ios voltios. La baja potencia de la señal de salida, aumenta la seguridad de un usuario en caso de que los terminales de salida del divisor sean cortocircuitados en una operación de instalación o mantenimiento. At the junction point of the two fixed impedances, a voltage is obtained with respect to ground, which is proportional to the voltage present in the primary electrical conductor (1) with respect to ground. The use of a voltage divider (3) with fixed impedances allows the sensor to have a linear response, guaranteeing accuracy over a wide working range that can cover low, medium and high voltage. Also, said linearity allows the sensor of the present invention to be used both in applications of measurement of current and voltage j e as in protection. In addition, the use of a voltage divider (3) guarantees that there are no phase shifts in the output signal with respect to the input. Additionally, the voltage divider (3) can be designed to deliver a small voltage of the order of ios volts. The low power of the output signal increases the safety of a user in case the splitter output terminals are short-circuited in an installation or maintenance operation.
Las impedancias que componen el divisor de tensión (3) pueden ser resistivas o capacitivas. El hecho de que el divisor de tensión (3) sea resistivo presenta algunas ventajas técnicas; un divisor de tensión resistivo tiene menores dimensiones radiales en comparación con uno capacitivo, lo que permite acopiar el dispositivo de medición de la presente invención en lugares con más difícil accesibilidad, y además, facilita su ensamble. The impedances that make up the voltage divider (3) can be resistive or capacitive. The fact that the voltage divider (3) is resistive has some technical advantages; a resistive voltage divider has smaller radial dimensions compared to a capacitive one, which allows the measurement device of the present invention to be assembled in places with more difficult accessibility, and also facilitates its assembly.
Los terminales de salida del divisor de tensión (3) se conectan a una impedancia, que permite ajustar el voltaje de salida al valor exacto esperado, para luego enviar la señal al circuito electrónico. The output terminals of the voltage divider (3) are connected to an impedance, which allows the output voltage to be adjusted to the exact expected value, in order to then send the signal to the electronic circuit.
Cuando una comente eléctrica circula por una línea de tensión (11), esta circula por el conductor eléctrico primario (1), y posteriormente en la bobina (2) se induce un voltaje proporcional a la magnitud de la corriente eléctrica que circula por el conductor eléctrico primario (1). El divisor de tensión (3) suministra un voltaje al circuito electrónico (4), proporcional al voltaje del conductor eléctrico primario (1) respecto a tierra, mientras que, y como se mencionó anteriormente, la primera impedancia (5) realiza ajustes de calibración de la medición de la comente, por medio de un ajuste en el voltaje inducido en la bobina (2). Luego, el circuito electrónico (4) obtiene dos señales de voltaje; una proporcional a la corriente que fluye por el conductor y la otra proporcional al voltaje entre el conductor eléctrico primario (1) y tierra. When an electrical current circulates through a power line (11), it circulates through the primary electrical conductor (1), and later in the coil (2) a voltage proportional to the magnitude of the electrical current that circulates through the conductor is induced. primary electrical (1). The voltage divider (3) supplies a voltage to the electronic circuit (4), proportional to the voltage of the primary electrical conductor (1) with respect to ground, while, and as mentioned above, the first impedance (5) performs calibration adjustments of the measurement of the current, by means of an adjustment in the voltage induced in the coil (2). Then, the electronic circuit (4) obtains two voltage signals; one proportional to the current flowing through the conductor and the other proportional to the voltage between the primary electrical conductor (1) and ground.
Particularmente, el circuito electrónico (4) recibe los voltajes enviados tanto por el divisor de tensión (3), como por la bobina (2) y les realiza un tratamiento de señal. Para el entendimiento de la presente in vención se entenderá por tratamiento de una señal, o de un voltaje, el realizar operaciones con dicho valor de voltaje o de señal para asi poder medir el voltaje y/o la comente de la línea de tensión (11). In particular, the electronic circuit (4) receives the voltages sent both by the voltage divider (3) and by the coil (2) and performs a signal treatment on them. For the understanding of the present invention, treatment of a signal, or a voltage, performing operations with said voltage or signal value in order to be able to measure the voltage and/or the current of the power line (11).
El circuito electrónico (4) puede comprender al menos dos amplificadores operacionales que pueden ser de alta precisión, en donde dichos amplificadores operacionales se usan para el acople de impedancia de las señales provenientes de la bobina (2) y el divisor de tensión (3). La salida de cada amplificador operacional está conectada con un filtro pasa bajas que puede ser de primer orden o superior, lo que permite reducir el ruido de una señal proveniente del conductor eléctrico (1), y asi obtener mediciones de los voltajes y corrientes con un nivel de ruido aceptable según los requerimientos deseados. Dicho circuito electrónico (4) también puede tener otros filtros en etapas posteriores, los cuales permiten obtener una mejor medición. Adicionalmente, dichos filtros evitan un fenómeno llamado aliasing. The electronic circuit (4) can comprise at least two operational amplifiers that can be of high precision, where said operational amplifiers are used for the impedance coupling of the signals coming from the coil (2) and the voltage divider (3) . The output of each operational amplifier is connected to a low pass filter that can be first order or higher, which allows reducing the noise of a signal coming from the electrical conductor (1), and thus obtaining measurements of voltages and currents with a acceptable noise level according to the desired requirements. Said electronic circuit (4) can also have other filters in later stages, which allow a better measurement to be obtained. Additionally, such filters prevent a phenomenon called aliasing.
Específicamente, el primer filtro es un filtro de primer orden que permite filtrar las señales de voltaje que viene del divisor de tensión (3). El segundo filtro es de segundo orden y permite filtrar las señales de voltaje que provienen de la bobina (2). Lo anterior se debe a que las bobinas de núcleo aire, como por ejemplo, las bobinas de Rogowski tienen una respuesta que depende de la frecuencia, por lo tanto, es debido filtrar las señales fuera de banda. Specifically, the first filter is a first order filter that allows the voltage signals coming from the voltage divider (3) to be filtered. The second filter is second order and allows filtering the voltage signals coming from the coil (2). This is due to the fact that air-core coils, such as Rogowski coils, have a response that depends on the frequency, therefore, it is necessary to filter out-of-band signals.
En otra modalidad de la invención, la configuración de filtros puede ser un conjunto de filtros anti-aliasing, los cuales pueden estar conectados a un un circuito de monitoreo de calidad de la energía eléctrica, el cual hace mediciones de la energía activa, reactiva y aparente, frecuencia, ángulo de fase, distorsión armónica total de voltaje ( voltage total harmonio distortion (VTHD), distorsión armónica total de corriente (current total harmonio distortion ( ITHD ), factor de potencia y SWELL monitoring; en sistemas polifásicos, las variables pueden ser obtenidas de manera total, o por fase. Adicionalmente, dicho circuito electrónico (4) puede estar conectado a un microcontrolador. El microcontrolador permite escalar los datos provenientes del circuito electrónico (4) por medio de unas constantes de conversión. Dichas constantes de conversión son relativas a las relaciones de transformación del voltaje y la corriente. Haciendo referencia a la FIG. 1, el dispositivo de medición de voltaje y corriente (100) incluye una bobina (2) la cual es una bobina de núcleo de aire que tiene una forma de toroide con un centro y una directriz. Por su parte, el conductor eléctrico primario (1) se introduce por la directriz de la bobina (2). En dicha FIG. 1, el conductor eléctrico primario (1) forma una espira alrededor de la bobina (2) y tiene dos extremos, un primer extremo y un segundo extremo, en donde cada uno de los extremos se conectan con una línea de tensión (11) por donde circula una corriente eléctrica. Para el entendimiento de la presente invención, se entenderá por una línea de transmisión de energía a una línea de tensión ( 11). In another embodiment of the invention, the filter configuration can be a set of anti-aliasing filters, which can be connected to a power quality monitoring circuit, which makes measurements of active, reactive and frequency, phase angle, voltage total harmonic distortion (VTHD), current total harmonic distortion (ITHD), power factor, and SWELL monitoring; in polyphase systems, variables can obtained in total, or by phase. Additionally, said electronic circuit (4) can be connected to a microcontroller. The microcontroller allows the data coming from the electronic circuit (4) to be scaled by means of conversion constants. Said conversion constants they are relative to the voltage and current transformation ratios. Referring to FIG. 1, the current and voltage measuring device (100) includes a coil (2) which is an air-core coil having a toroid shape with a center and a directrix. For its part, the primary electrical conductor (1) is introduced through the direction of the coil (2). In said FIG. 1, the primary electrical conductor (1) forms a loop around the coil (2) and has two ends, a first end and a second end, where each of the ends is connected to a power line (11) by where an electric current flows. For the understanding of the present invention, a power transmission line will be understood as a voltage line (11).
En dicha FIG. 1, al conductor eléctrico primario (1) se conecta un divisor de tensión (3) el cual está conformado por dos impedancias, una primera impedancia (Z1) conectada al conductor eléctrico primario (1) y una segunda impedancia (Z2), en donde la segunda impedancia está conectada a tierra (9). Dicho divisor de tensión (3) está conectado a un circuito electrónico (4), y suministra un voltaje proporcional al voltaje del conductor eléctrico primario (I) respecto a tierra (9), llevándolo así al circuito electrónico (4) para su tratamiento. In said FIG. 1, a voltage divider (3) is connected to the primary electrical conductor (1) which is made up of two impedances, a first impedance (Z1) connected to the primary electrical conductor (1) and a second impedance (Z2), where the second impedance is connected to ground (9). Said voltage divider (3) is connected to an electronic circuit (4), and supplies a voltage proportional to the voltage of the primary electrical conductor (I) with respect to ground (9), thus taking it to the electronic circuit (4) for its treatment.
Adicionalmente, 1a bobina (2) del dispositivo de medición de voltaje y comente (100) de la FIG. 1 tiene dos terminales las cuales se conectan al circuito electrónico (4), en donde, entre dichas terminales se conecta una primera impedancia Z4 (5). Donde dicha primera impedancia Z4 (5) permite ajustar el voltaje de salida de la bobina (2). Additionally, the coil (2) of the voltage and current measurement device (100) of FIG. 1 has two terminals which are connected to the electronic circuit (4), where, between said terminals, a first impedance Z4 (5) is connected. Where said first impedance Z4 (5) allows adjusting the output voltage of the coil (2).
Cuando el divisor de tensión (3) está conformado por dos impedancias (Z1 y Z2), la primera impedancia (Z1) puede ser una resistencia de alta tensión mientras que la segunda impedancia (Z2) puede ser una resistencia de baja tensión. Los valores de Z1 y Z2 se seleccionan de tal forma que la señal de salida tenga un nivel adecuado para su tratamiento. When the voltage divider (3) is made up of two impedances (Z1 and Z2), the first impedance (Z1) can be a high voltage resistance while the second impedance (Z2) can be a low voltage resistance. The values of Z1 and Z2 are selected in such a way that the output signal has a suitable level for its treatment.
Por otro lado, y haciendo referencia a la FIG, 2, se ilustra un diagrama del dispositivo de medición de voltaje y corriente (100), el cual está conectado en serie a una linea de transmisión, que alimenta diversas cargas. Además, el conductor eléctrico primario (1) es una bobina con unas terminales (10). Por otro lado, en dicha FIG. 2 se muestran tres formas en las que el divisor de tensión (3) puede estar configurado: una primera configuración (3a), correspondiente a dos impedancias conectadas en serie, una primera impedancia (Z1) y una segunda impedancia (Z2), como en el dispositivo de medición de voltaje y corriente (100) de la FIG. 1. En dicha primera configuración (3a), preferiblemente la primera impedancia (Z1) y la segunda impedancia (Z2) tienen una relación suficientemente exacta. On the other hand, and referring to FIG. 2, a diagram of the voltage and current measurement device (100) is illustrated, which is connected in series to a transmission line, which supplies various loads. In addition, the primary electrical conductor (1) it is a coil with terminals (10). On the other hand, in said FIG. 2 shows three ways in which the voltage divider (3) can be configured: a first configuration (3a), corresponding to two impedances connected in series, a first impedance (Z1) and a second impedance (Z2), as in the voltage and current measurement device (100) of FIG. 1. In said first configuration (3a), preferably the first impedance (Z1) and the second impedance (Z2) have a sufficiently exact relationship.
Una segunda configuración (3b), es una configuración T conformada por una primera impedancia (Z1) conectada a una segunda impedancia (Z2) y una tercera impedancia (Z3) conectada entre la primera impedancia (Z1) conectada a una segunda impedancia (Z2). En dicha configuración aumenta la impedancia de entrada (la tercera impedancia (Z3) se suma ) del amplificador operacional del circuito electrónico (4) que recibe la señal. A second configuration (3b) is a T configuration made up of a first impedance (Z1) connected to a second impedance (Z2) and a third impedance (Z3) connected between the first impedance (Z1) connected to a second impedance (Z2) . In said configuration, the input impedance increases (the third impedance (Z3) is added) of the operational amplifier of the electronic circuit (4) that receives the signal.
Por otro lado, la tercera configuración (3c) es una configuración conformada por una primera impedancia (Z1) conectada a una segunda impedancia (Z2) y una tercera impedancia (Z3) conectada en paralelo con una segunda impedancia (Z2). En dicha configuración, si la tercera impedancia (Z3) fuese variable, permitiría un ajuste adecuado de la relación entre la primera impedancia (Z1) y la segunda impedancia (Z2), lo cual ayudaría a ajustar el dispositivo de medición de voltaje y corriente en líneas de transmisión de energía después de su ensamble. On the other hand, the third configuration (3c) is a configuration made up of a first impedance (Z1) connected to a second impedance (Z2) and a third impedance (Z3) connected in parallel with a second impedance (Z2). In this configuration, if the third impedance (Z3) were variable, it would allow an adequate adjustment of the relationship between the first impedance (Z1) and the second impedance (Z2), which would help to adjust the voltage and current measurement device accordingly. power transmission lines after assembly.
Por su parte, en dicha FIG. 2 también se muestran tres formas en las que la primera impedancia (5) puede estar configurada por: una primera configuración (5a) correspondiente a una primera impedancia (5) correspondiente a una impedancia (Z4) conectada en serie entre una terminal (2a o 2b) de la bobina (2) y el circuito electrónico (4). Dicha configuración (5a) permite realizar mediciones de la comente eléctrica que circula por la línea de tensión (11), donde dicha línea de tensión (11) está conectada con una terminal (10) del conductor eléctrico primario (1). Adicionalmente, dicha configuración puede señar en los casos en que se usan transformadores de comente, por ejemplo, la impedancia (Z4) puede ser una resistencia de un valor muy pequeño (una resistencia Shunt). En dicho caso, el circuito electrónico (4) percibe una pequeña caída de tensión en la impedancia (Z4) y a partir de allí, calcula la corriente. Además, si la bobina (2) fuese una bobina de núcleo de aire o Rogowski, la impedancia (Z4) puede aumentar la impedancia de la entrada del amplificador operacional del circuito electrónico (4) que recibe la señal. For its part, in said FIG. 2 also shows three ways in which the first impedance (5) can be configured by: a first configuration (5a) corresponding to a first impedance (5) corresponding to an impedance (Z4) connected in series between a terminal (2a or 2b) of the coil (2) and the electronic circuit (4). Said configuration (5a) allows measurements of the electrical current flowing through the voltage line (11), where said voltage line (11) is connected to a terminal (10) of the primary electrical conductor (1). Additionally, said configuration can be used in cases where current transformers are used, for example, the impedance (Z4) can be a resistance of a very small value (a shunt resistance). In this case, the electronic circuit (4) perceives a small drop of tension in the impedance (Z4) and from there, it calculates the current. Furthermore, if the coil (2) were an air-core or Rogowski coil, the impedance (Z4) could increase the input impedance of the operational amplifier of the electronic circuit (4) receiving the signal.
Una segunda configuración (5b) de primera impedancia (5) resistiva correspondiente a una impedancia (Z4) conectada en paralelo a la bobina (2) y conectada al circuito electrónico (4). Dicha configuración (5b) permite realizar mediciones de la corriente que circula por la línea de tensión (11). Además, si en esta configuración la impedancia (Z4) es una resistencia variable, esta puede ayudar a aj ustar la tensión inducida en la bobina (2) cuando esta es una bobina de núcleo de aire o una bobina de Rogowski. A second configuration (5b) of first resistive impedance (5) corresponding to an impedance (Z4) connected in parallel to the coil (2) and connected to the electronic circuit (4). Said configuration (5b) allows measurements to be made of the current flowing through the voltage line (11). Also, if in this configuration the impedance (Z4) is a variable resistor, it can help adjust the voltage induced in the coil (2) when it is an air core coil or a Rogowski coil.
La tercera configuración (5c) de primera impedancia (5), corresponde a una impedancia (Z4) conectada en paralelo a la bobina (2) y el circuito electrónico (4), y una impedancia (Z5) conectada a la bobina (2) y al circuito electrónico (4). Dicha configuración permite realizar mediciones de la corriente que circula por 1a línea de tensión (11). Adicionalmente, dicha configuración puede servir en los casos en que se usan transformadores de corriente, por ejemplo, la impedancia (Z4) puede ser una resistencia de un valor muy pequeño (una resistencia Shunt), The third configuration (5c) of the first impedance (5), corresponds to an impedance (Z4) connected in parallel to the coil (2) and the electronic circuit (4), and an impedance (Z5) connected to the coil (2) and to the electronic circuit (4). Said configuration allows measurements to be made of the current flowing through the voltage line (11). Additionally, this configuration can be used in cases where current transformers are used, for example, the impedance (Z4) can be a resistance of a very small value (a shunt resistance),
En dicho caso, el circuito electrónico (4) percibe una pequeña caída de tensión en la impedancia (Z4) y a partir de allí, calcula la corriente. Además, si la bobina (2) fuese una bobina de núcleo de aire o Rogowski, la impedancia (Z4) puede ajustar el voltaje inducido en la bobina (2). El papel de la impedancia (Z5) es aumentar la impedancia de entrada del amplificador operacional del circuito electrónico (4) que recibe la señal. In this case, the electronic circuit (4) perceives a small voltage drop in the impedance (Z4) and from there, calculates the current. Furthermore, if the coil (2) were an air-core or Rogowski coil, the impedance (Z4) can adjust the voltage induced in the coil (2). The role of the impedance (Z5) is to increase the input impedance of the operational amplifier of the electronic circuit (4) that receives the signal.
Para el entendimiento de la presente invención, se entenderá por ruido eléctrico a todas aquellas señales de interferencias eléctricas no deseadas, y que se unen a la señal principal, o útil, de tal manera que pueden alterar dicha señal principal produciendo efectos que pueden ser más o menos perjudiciales o alterando el valor de 1a señal. Por otro lado, y en una modalidad de la invención, la bobina (2), el conductor eléctrico primario (1) y el divisor de tensión (3) pueden estar recubiertos por un dieléctrico. Dicho dieléctrico (6) es un material aislante que permite aislar eléctricamente tanto el conductor eléctrico primario (1), la bobina (2) y el divisor de tensión (3). Además, dicho dieléctrico (6) puede ser un material que se selecciona del grupo conformado por líquidos dieléctricos, gases dieléctricos (SF6), materiales sólidos dieléctricos, materiales equivalentes conocidos por una persona medianamente versada en la materia o combinación de las anteriores. Adicionalmente, la bobina (2) puede estar recubierta por un material aislante (7), lo que permite aislar eléctricamente el conductor eléctrico primario (1) de la bobina (2). For the understanding of the present invention, electrical noise will be understood as all those signals of unwanted electrical interference, and which join the main signal, or useful, in such a way that they can alter said main signal producing effects that can be more or less harmful or altering the value of the signal. On the other hand, and in one embodiment of the invention, the coil (2), the primary electrical conductor (1) and the voltage divider (3) may be covered by a dielectric. Said dielectric (6) is an insulating material that makes it possible to electrically insulate both the primary electrical conductor (1), the coil (2) and the voltage divider (3). In addition, said dielectric (6) can be a material that is selected from the group consisting of dielectric liquids, dielectric gases (SF6), dielectric solid materials, equivalent materials known to a person of ordinary skill in the art, or a combination of the above. Additionally, the coil (2) can be covered by an insulating material (7), which allows electrically insulating the primary electrical conductor (1) from the coil (2).
Además, el material aislante (7) que recubre la bobina (2) puede estar recubierto por un material compuesto (8), el cual se puede seleccionar del grupo conformado por materiales conductores o semiconductores como el aluminio, galio, silicio, papel con partículas de grafito, papel con partículas de carbón, latón, etc., y/o combinación de las anteriores. Dicho material compuesto (8) permite reducir las concentraciones de campo eléctrico en el dispositivo (100), para evitar descargas parciales y para reducir los efectos de mido electromagnético. En caso que se utilicen materiales conductores, estos preferiblemente no forman una espira cerrada alrededor de la bobina (2), porque se pueden producir corrientes que circulen por el material conductor, interfiriendo con la seguridad y el adecuado funcionamiento del sensor de la presente invención. In addition, the insulating material (7) that covers the coil (2) can be covered by a composite material (8), which can be selected from the group made up of conductive or semiconducting materials such as aluminium, gallium, silicon, paper with particles graphite, paper with carbon particles, brass, etc., and/or a combination of the above. Said composite material (8) allows to reduce the electric field concentrations in the device (100), to avoid partial discharges and to reduce the effects of electromagnetic mido. In the event that conductive materials are used, these preferably do not form a closed loop around the coil (2), because currents can be produced that circulate through the conductive material, interfering with the safety and proper functioning of the sensor of the present invention.
Haciendo referencia a la FIG. 3, el dispositivo de medición de voltaje y corriente (100) incluye una bobina (2) la cual es una bobina de núcleo de aire, que tiene una forma de toroide con un centro y una directriz. Por su parte, el conductor eléctrico primario (1) se introduce por la directriz de la bobina (2). Fin dicha FIG. 3, el conductor eléctrico primario (1) forma una pluralidad de espiras alrededor de la bobina (2) y tiene dos extremos, un primer extremo y un segundo extremo, en donde cada uno de los extremos es conectado a una linea de tensión (11) por donde circula una comente eléctrica. En dicha FIG. 3, al conductor eléctrico primario (1) se conecta un divisor de tensión (3), el cual está conformado por dos impedaneias, una primera impedancia (Z1) conectada al conductor eléctrico primario (1) y a una segunda impedancia (Z2), en donde la segunda impedancia (Z2) está conectada a tierra (9). Dicho divisor de tensión (3) está conectado a un circuito electrónico (4), y suministra un voltaje proporcional al voltaje del conductor eléctrico primario (1) respecto a tierra (9), llevándolo así al circuito electrónico (4) para su tratamiento de señal de voltaje. Adicionalmente, en dicho divisor de tensión (3) la primera impedancia (Z1) puede tener un valor mayor a la segunda impedancia (Z2), lo que permite que el voltaje que se mide en el circuito electrónico (4) en el divisor de tensión (3) sea una fracción del voltaje de la línea de tensión, lo cual permite obtener valores de voltaje que permitan su tratamiento. Referring to FIG. 3, the current and voltage measuring device (100) includes a coil (2) which is an air-core coil, having a toroid shape with a center and a directrix. For its part, the primary electrical conductor (1) is introduced through the direction of the coil (2). End said FIG. 3, the primary electrical conductor (1) forms a plurality of turns around the coil (2) and has two ends, a first end and a second end, where each of the ends is connected to a voltage line (11). ) through which an electric current circulates. In said FIG. 3, a voltage divider (3) is connected to the primary electrical conductor (1), which is made up of two impedances, a first impedance (Z1) connected to the primary electrical conductor (1) and a second impedance (Z2), in where the second impedance (Z2) is connected to ground (9). Said voltage divider (3) is connected to an electronic circuit (4), and supplies a voltage proportional to the voltage of the primary electrical conductor (1) with respect to ground (9), thus taking it to the electronic circuit (4) for its treatment of voltage signal. Additionally, in said voltage divider (3) the first impedance (Z1) can have a value greater than the second impedance (Z2), which allows the voltage measured in the electronic circuit (4) in the voltage divider (3) is a fraction of the voltage of the power line, which allows obtaining voltage values that allow its treatment.
Adicionalmente, la bobina (2) del dispositivo de medición de voltaje y corriente (100) de la FIG. 3 tiene dos terminales las cuales se conectan al circuito electrónico (4), en donde, entre dichas terminales (2a, 2b) se conecta una primera impedancia (5), Donde dicha primera impedancia Z4 (5) permite ajustar el voltaje de salida de la bobina (2). Dicho dispositivo de medición de voltaje y comente (100) incluye además, una segunda impedancia conectada entre la conexión del divisor de tensión (3) y el circuito electrónico (4), donde dicha segunda impedancia (Z6) se conecta, a tierra (9). Particularmente, dicha impedancia (Zó) puede ser una impedancia variable, la cual permite un ajuste adecuado según los requerimientos del voltaje de salida del divisor de voltaje. Additionally, the coil (2) of the voltage and current measurement device (100) of FIG. 3 has two terminals which are connected to the electronic circuit (4), where, between said terminals (2a, 2b) a first impedance (5) is connected, where said first impedance Z4 (5) allows adjusting the output voltage of the coil (2). Said voltage and current measurement device (100) also includes a second impedance connected between the connection of the voltage divider (3) and the electronic circuit (4), where said second impedance (Z6) is connected to ground (9). ). Particularly, said impedance (Zó) can be a variable impedance, which allows a suitable adjustment according to the output voltage requirements of the voltage divider.
Adicionalmente, dicho dispositivo de medición de voltaje y corriente (100) de 1a FIG. 3 incluye un dieléctrico (6) el cual recubre el conductor eléctrico primario (1), el divisor de tensión (3), y la primera impedancia (5). Dicho dieléctrico (6) está ilustrado como una línea punteada que encierra al dispositivo de medición de voltaje y corriente (100). Additionally, said voltage and current measurement device (100) of FIG. 3 includes a dielectric (6) which covers the primary electrical conductor (1), the voltage divider (3), and the first impedance (5). Said dielectric (6) is illustrated as a dotted line that encloses the voltage and current measurement device (100).
Por otro lado, y según la FIG. 3, el conductor eléctrico primario (1) está insertado en la directriz de la bobina (2), y entre la bobina (2) y el conductor eléctrico primario (1) hay una distancia (DI) desde la superficie del conductor eléctrico primario (1) y una superficie intema de la bobina (2). El efecto técnico de la distancia (DI) es garantizar el aislamiento entre la bobina (2) y el conductor eléctrico primario (1). Dicha distancia (Di) se selecciona, dependiendo del nivel de tensión bajo el cual operará el equipo. On the other hand, and according to FIG. 3, the primary electrical conductor (1) is inserted in the guideline of the coil (2), and between the coil (2) and the primary electrical conductor (1) there is a distance (DI) from the surface of the primary electrical conductor ( 1) and an internal surface of the coil (2). The technical effect of the distance (DI) is to guarantee the insulation between the coil (2) and the primary electrical conductor (1). Said distance (Di) is selected, depending on the voltage level under which the equipment will operate.
Haciendo referencia a la FIG. 4, se ilustra una modalidad de la invención correspondiente al dispositivo de medición de voltaje y corriente (100) de la FIG, 3, con la diferencia que el conductor eléctrico ( 1) pasa por el centro de la bobina (2), y forma una pluralidad de espiras alrededor de la directriz de dicha bobina (2). En dicha FIG. 4, el conductor eléctrico (1) correspondiente a un devanado primario, por cada vuelta que da una espira del conductor eléctrico (1) dentro de la bobina (2), se amplifica el campo magnético generado y con ello se induce un mayor voltaje en la bobina (2). Referring to FIG. 4, an embodiment of the invention corresponding to the voltage and current measurement device (100) of FIG, 3 is illustrated, with the difference that the electrical conductor (1) passes through the center of the coil (2), and forms a plurality of turns around the directrix of said coil (2). In said FIG. 4, the electrical conductor (1) corresponding to a primary winding, for each turn that a turn of the electrical conductor (1) makes inside the coil (2), the generated magnetic field is amplified and with it a higher voltage is induced in the coil (2).
Es decir, en la bobina (2) se induce un voltaje proporcional a la magnitud de la corriente eléctrica que circula por el conductor eléctrico (1), donde cada espira del conductor eléctrico (1) aumenta el voltaje inducido; es decir, entre mayor sea la cantidad de espiras: mayor será la inductancia mutua entre la bobina (2) y el conductor (1) aumentando a su vez el voltaje inducido. Lo anterior, resulta útil para la medición de corrientes pequeñas, particularmente, corrientes inferiores a 200 A. Adicionalmente, dicha FIG. 4 el dispositivo incluye un soporte que permite mantener en una sola posición a la bobina (2). That is, in the coil (2) a voltage proportional to the magnitude of the electrical current circulating through the electrical conductor (1) is induced, where each turn of the electrical conductor (1) increases the induced voltage; that is, the greater the number of turns: the greater the mutual inductance between the coil (2) and the conductor (1), in turn increasing the induced voltage. This is useful for measuring small currents, particularly currents less than 200 A. Additionally, said FIG. 4 the device includes a support that allows the coil (2) to be kept in a single position.
Por otro lado, y haciendo referencia a la FIG. 5 se ilustran tres dispositivos de medición de voltaje y corriente (100), un primer dispositivo (100a), un segundo dispositivo (100b) y un tercer dispositivo (100c), en donde cada uno de dichos dispositivos es como los dispositivos de la modalidad de la FIG. 3. Dichos dispositivos (100a, 100b, 100c) pueden estar conectados a tres diferentes líneas de tensión en donde cada una envía señales a un circuito electrónico (4) que permite medir el voltaje, la corriente y otras variables eléctricas de las líneas de tensión, en el tiempo como por ejemplo potencia, energía, factor de potencia, frecuencia, distorsión armónica en voltaje y corriente, ángulos entre voltajes y corrientes, entre otras. On the other hand, and referring to FIG. 5 three voltage and current measurement devices (100) are illustrated, a first device (100a), a second device (100b) and a third device (100c), where each of said devices is like the devices of the modality of FIG. 3. Said devices (100a, 100b, 100c) can be connected to three different power lines where each one sends signals to an electronic circuit (4) that allows measuring the voltage, current and other electrical variables of the power lines , over time such as power, energy, power factor, frequency, harmonic distortion in voltage and current, angles between voltages and currents, among others.
Adicionalmente, y haciendo referencia a dicha FIG. 5, el circuito electrónico (4) puede estar conectado mediante una comunicación inalámbrica (12) aun equipo de usuario (13), donde en dicho equipo de usuario (13) se pueden obtener y almacenar las señales de voltaje, comente y demás variables de las líneas de tensión, de forma remota, obtenidos por cada uno de los dispositivos de medición de voltaje y corriente (100a, 100b, 100c), donde dichas señales corresponden a las señales acondicionadas por el circuito electrónico (4), Additionally, and referring to said FIG. 5, the electronic circuit (4) can be connected by wireless communication (12) to a user equipment (13), where in said user equipment (13) the signals of voltage, current and other variables of the power lines, remotely, obtained by each of the voltage and current measurement devices (100a, 100b, 100c), where said signals correspond to the signals conditioned by the electronic circuit ( 4),
Dicha comunicación inalámbrica (12) se puede realizar mediante módulos de comunicaciones que se seleccionan del grupo conformado por Bluetooth, WiFi, Radio Frecuencia RF (por las siglas en inglés de Radio Frequency), UWB (por las siglas en inglés de Ultra Wide Band), GPRS, Konnex o KNX, DMX (por sus siglas en inglés. Digital Múltiple X), WiMax y tecnologías de comunicación inalámbricas equivalentes que sean conocidas por una persona medianamente versada en la materia y combinaciones de las anteriores. Said wireless communication (12) can be carried out by means of communication modules that are selected from the group consisting of Bluetooth, WiFi, Radio Frequency RF (for the acronym in English of Radio Frequency), UWB (for the acronym in English of Ultra Wide Band) , GPRS, Konnex or KNX, DMX (Digital Multiple X), WiMax and equivalent wireless communication technologies that are known to a person of ordinary skill in the art and combinations of the above.
Adicionalmente, el equipo de usuario (13) puede ser un dispositivo que procesa datos, por ejemplo, microcontroladores, micro procesadores, DSCs (Digital Signa! Controller por sus siglas en inglés), FPGAs (Field Programmable Gate Array por sus siglas en inglés), CPLDs (Complex Programmable Logic Device por sus siglas en inglés), ASICs (Application Specific Integrated Circuit por sus siglas en inglés), SoCs (System on Chip por sus siglas en inglés), PSoCs (Programmable System on Chip por sus siglas en inglés), computadores, servidores, tabletas, celulares, celulares inteligentes, generadores de señales y equipo de usuario (13) conocidos por una persona medianamente versada en la materia y combinaciones de estas. Additionally, the user equipment (13) can be a device that processes data, for example, microcontrollers, microprocessors, DSCs (Digital Signa! Controller for its acronym in English), FPGAs (Field Programmable Gate Array for its acronym in English) , CPLDs (Complex Programmable Logic Device), ASICs (Application Specific Integrated Circuit), SoCs (System on Chip), PSoCs (Programmable System on Chip) ), computers, servers, tablets, cell phones, smart phones, signal generators and user equipment (13) known to a person moderately versed in the matter and combinations of these.
Además, la información enviada por el módulo de comunicaciones, se puede enviar a un servidor o a un servidor web, el cual permite almacenar la información proveniente de, al menos un dispositivo, de medición de voltaje y corriente (100). In addition, the information sent by the communications module can be sent to a server or to a web server, which allows storing the information coming from at least one voltage and current measurement device (100).
EJEMPLO 1 EXAMPLE 1
Haciendo referencia a la FIG. 3, se realizó un dispositivo de medición de voltaje y corriente (100) que comprende una bobina (2) la cual es una bobina de núcleo de aire, que tiene una forma de toroide con un centro y una directriz. Dicha bobina (2) tenia las siguientes especificaciones: bobina de núcleo de aire formada de alambre de cobre o aluminio. Referring to FIG. 3, a voltage and current measuring device (100) was made comprising a coil (2) which is an air-core coil, having a toroid shape with a center and a directrix. Said coil (2) had the following specifications: Air core coil formed from copper or aluminum wire.
Por su parte, un conductor eléctrico primario de cobre (1) está dentro de la directriz de la bobina (2) con una pluralidad de espiras. For its part, a primary copper electrical conductor (1) is inside the guideline of the coil (2) with a plurality of turns.
En dicho EJEMPLO 1, al conductor eléctrico primario (1) se le conectó un divisor de tensión (3) el cual está conformado por dos resistencias, una primera resistencia (Z1), fija, de alta tensión conectada al conductor eléctrico primario (1) y una segunda resistencia (Z2), fija, de baja tensión, en donde la segunda resistencia está conectada a tierra (9). Dicho divisor de tensión (3) está conectado a un circuito electrónico (4), con las siguientes características: Acople de impedancias, filtros anti-aliasing, conversor analógico digital y un analizador de señales. In said EXAMPLE 1, a voltage divider (3) was connected to the primary electrical conductor (1) which is made up of two resistors, a first resistance (Z1), fixed, high voltage connected to the primary electrical conductor (1) and a second resistance (Z2), fixed, low voltage, where the second resistance is connected to ground (9). Said voltage divider (3) is connected to an electronic circuit (4), with the following characteristics: Impedance coupling, anti-aliasing filters, digital analog converter and a signal analyzer.
Adicionalmente, la bobina (2) tiene dos terminales (2a, 2b) las cuales se conectan al circuito electrónico (4), en donde, entre dichas terminales (2a, 2b) se conecta una primera impedancia (5). Donde dicha primera impedancia (5) corresponde a una cuarta resistencia (Z4). Dicho dispositivo de medición de voltaje y comente (100) incluye además, una segunda impedancia conectada entre la conexión del divisor de tensión (3) y el circuito electrónico (4), donde dicha segunda impedancia es una resistencia (Z6) que se conecta a tierra ( 9). Additionally, the coil (2) has two terminals (2a, 2b) which are connected to the electronic circuit (4), where, between said terminals (2a, 2b), a first impedance (5) is connected. Where said first impedance (5) corresponds to a fourth resistance (Z4). Said voltage and current measurement device (100) also includes a second impedance connected between the connection of the voltage divider (3) and the electronic circuit (4), where said second impedance is a resistance (Z6) that is connected to land ( 9).
Adicionalmente, dicho dispositivo de medición de voltaje y corriente (100) de la FIG. 3 incluye un dieléctrico (6) el cual recubre el conductor eléctrico primario ( 1), el divisor de tensión (3), y la primera impedancia (5). Dicho, dieléctrico (6) es resina epóxica. Additionally, said voltage and current measurement device (100) of FIG. 3 includes a dielectric (6) which covers the primary electrical conductor (1), the voltage divider (3), and the first impedance (5). Said, dielectric (6) is epoxy resin.
Con el dispositivo se logró medir variables eléctricas como: voltaje, corriente, potencia, energía, frecuencia, factor de potencia, ángulos de desfase, factores de distorsión armónica, etc. Este dispositivo sirvió para monitorear sistemas eléctricos de una amplia gama de corrientes y voltajes. Inclusive sistemas de corrientes bajas, es decir, entre 1 y 5 Amperios; y voltajes altos, es decir, de más de 1000 voltios. With the device it was possible to measure electrical variables such as: voltage, current, power, energy, frequency, power factor, phase angles, harmonic distortion factors, etc. This device served to monitor electrical systems of a wide range of currents and voltages. Including low current systems, that is, between 1 and 5 Amps; and high voltages, that is, more than 1000 volts.
EJEMPLO 2 Haciendo referencia a la FIG. 3, se realizó un dispositivo de medición de voltaje y corriente (100) que comprende una bobina (2) la cual es una bobina de núcleo de aire, que tiene una forma de toroide con un centro y una directriz. Dicha bobina (2) tenía las siguientes especificaciones: bobina de núcleo de aire formada de alambre de cobre que forma una totalidad de 1000 espiras alrededor del núcleo de aire. EXAMPLE 2 Referring to FIG. 3, a voltage and current measuring device (100) was made comprising a coil (2) which is an air-core coil, having a toroid shape with a center and a directrix. Said coil (2) had the following specifications: air core coil formed of copper wire forming a total of 1000 turns around the air core.
Por su parte, im conductor eléctrico primario de cobre (1) está dentro de la directriz de la bobina (2) con una pluralidad de 10 espiras. En dicho ejemplo, la bobina (2) induce un voltaje superior a los 0.225 Voltios cuando por el conductor eléctrico primario (1) fluye una corriente de 20 Amperios. For its part, im copper primary electrical conductor (1) is inside the guideline of the coil (2) with a plurality of 10 turns. In said example, the coil (2) induces a voltage greater than 0.225 Volts when a current of 20 Amps flows through the primary electrical conductor (1).
En dicho EJEMPLO 1, al conductor eléctrico primario (1) se le conectó un divisor de tensión (3) el cual está conformado por dos resistencias, una primera resistencia (Z1 ), con im valor de 200 Mega Ohmios, de alta tensión, conectada al conductor eléctrico primario (1) y una segunda resistencia (Z2), con un valor de 100 kilo Ohmios, de baja tensión, en donde la segunda resistencia está conectada a tierra (9) y a la primera resistencia (Z1). Sobre la segunda resistencia (Z2) recae un voltaje superior a los 1.88V respecto a tierra (9), cuando el voltaje del conductor eléctrico primario (1) respecto a tierra (9) es de 7621 V. In said EXAMPLE 1, a voltage divider (3) was connected to the primary electrical conductor (1) which is made up of two resistors, a first resistor (Z1), with a value of 200 Mega Ohms, high voltage, connected to the primary electrical conductor (1) and a second resistance (Z2), with a value of 100 kilo Ohms, low voltage, where the second resistance is connected to ground (9) and to the first resistance (Z1). A voltage greater than 1.88V with respect to ground (9) falls on the second resistance (Z2), when the voltage of the primary electrical conductor (1) with respect to ground (9) is 7621 V.
Dicho divisor de tensión (3) está conectado a un filtro para eliminar ruidos de alta frecuencia y a un circuito electrónico (4), con las siguientes características: un circuito electrónico provisto de acople de impedancias con amplificadores operacionales de alta precisión, dos filtros anti-aliasing con frecuencia de corte en los 7 kHz, un conversor analógico digital con una tasa de muestreo de 8000 muestras por segundo, un analizador de señales un microcontrolador y un módulo de comunicación GPRS. Said voltage divider (3) is connected to a filter to eliminate high-frequency noise and to an electronic circuit (4), with the following characteristics: an electronic circuit provided with impedance matching with high-precision operational amplifiers, two anti- aliasing with a cutoff frequency of 7 kHz, a digital analog converter with a sampling rate of 8000 samples per second, a signal analyzer, a microcontroller and a GPRS communication module.
Adicionalmente, la bobina (2) tiene dos terminales, los cuales se conectan al circuito electrónico (4), en donde, entre dichas terminales se conecta una primera impedancia (5), Dicha primera impedancia (5) corresponde a una cuarta resistencia (Z4), Dicha cuarta resistencia (Z4) puede ser variable o puede ser un potenciómetro con un valor de 500 Ohmios. Dicha cuarta resistencia (Z4) se puede ajustar hasta que el voltaje inducido en la bobina (2) sea igual 0.225 V. Dicho dispositivo de inedición de voltaje y corriente ( 100) incluye, además, una segunda impedancia conectada entre la conexión del divisor de tensión (3) y el circuito electrónico (4), donde dicha segunda impedancia es una resistencia (Z6) que se conecta a tierra (9), La resistencia (Z6) puede ser variable o puede ser un potenciómetro con un valor de un Mega Ohmio . La resistencia (Zó) se debe variar hasta que el voltaje que recae en la resistencia (Z2) respecto a tierra sea igual 1.88 V. Additionally, the coil (2) has two terminals, which are connected to the electronic circuit (4), where, between said terminals, a first impedance (5) is connected. Said first impedance (5) corresponds to a fourth resistance (Z4 ), said fourth resistance (Z4) can be variable or can be a potentiometer with a value of 500 Ohms. Said fourth resistance (Z4) can be adjusted until the voltage induced in the coil (2) is equal to 0.225 V. Said voltage and current inedition device (100) also includes a second impedance connected between the connection of the voltage divider (3) and the electronic circuit (4), where said second impedance is a resistance (Z6) that is connected to ground (9), The resistance (Z6) can be variable or it can be a potentiometer with a value of one Mega Ohm. The resistance (Zó) must be varied until the voltage that falls on the resistance (Z2) with respect to ground is equal to 1.88 V.
Adicionalmente, haciendo referencia a la FIG. 3, dicho dispositivo de medición de voltaje y corriente (100) incluye un dieléctrico (6) el cual recubre el conductor eléctrico primario (1), el divisor de tensión (3), y la primera impedancia (5). Dicho, dieléctrico (6) es resina epóxica. Additionally, referring to FIG. 3, said voltage and current measurement device (100) includes a dielectric (6) which covers the primary electrical conductor (1), the voltage divider (3), and the first impedance (5). Said, dielectric (6) is epoxy resin.
Con dicho dispositivo se logró medir variables eléctricas en una línea de media tensión como voltaje, comente, potencia, energía, frecuencia, factor de potencia, etc. Dada la linealidad del divisor resistivo y la bobina (2) de núcleo de aire, el rango de medida es más amplio en comparación con aquellos sensores que tienen núcleos magnéticos embebidos. Además, la pluralidad de espiras del conductor eléctrico primario (1) permitió aumentar la inductancia mutua del sensor, lo cual permitió medir corrientes bajas, por ejemplo 20 Amperios. With this device it was possible to measure electrical variables in a medium voltage line such as voltage, current, power, energy, frequency, power factor, etc. Given the linearity of the resistive divider and the air core coil (2), the measurement range is wider compared to those sensors that have embedded magnetic cores. In addition, the plurality of turns of the primary electrical conductor (1) made it possible to increase the mutual inductance of the sensor, which made it possible to measure low currents, for example 20 Amps.
Se debe entender que la presente invención no se halla limitada a las modalidades descritas e ilustradas, pues como será evidente para una persona versada en el arte, existen variaciones y modificaciones posibles que no se apartan del espíritu de la invención, el cual solo se encuentra definido por las siguientes reivindicaciones. It should be understood that the present invention is not limited to the modalities described and illustrated, since as will be evident to a person versed in the art, there are possible variations and modifications that do not deviate from the spirit of the invention, which is only found defined by the following claims.

Claims

REIVINDICACIONES
1. Un dispositivo de medición de voltaje y comente en líneas de transmisión de energía, que comprende: un conductor eléctrico primario (1) conectado en serie con la línea de transmisión de energía, donde por el conductor eléctrico primario (1) circula una corriente eléctrica proveniente de la línea de transmisión de energía, el conductor eléctrico primario (1) forma una espira; una bobina (2) con al menos dos terminales, que rodea el conductor eléctrico primario (1), donde en la bobina (2) se induce un voltaje proporcional a la magnitud de la corriente eléctrica que circula por el conductor eléctrico primario1. A device for measuring voltage and current in power transmission lines, comprising: a primary electrical conductor (1) connected in series with the power transmission line, where a current flows through the primary electrical conductor (1) electricity from the power transmission line, the primary electrical conductor (1) forms a loop; a coil (2) with at least two terminals, surrounding the primary electrical conductor (1), where a voltage proportional to the magnitude of the electrical current flowing through the primary electrical conductor is induced in the coil (2)
(i); un divisor de tensión (3) conectado al conductor eléctrico primario (1) y a tierra (9), dicho divisor de tensión (3) suministra un voltaje proporcional al voltaje del conductor eléctrico primario (1) respecto a tierra; y una primera irnpedancia (5) conectada a al menos una de las al menos dos terminales de la bobina (2), la cual ajusta el voltaje que es inducido en la bobina (2). (Yo); a voltage divider (3) connected to the primary electrical conductor (1) and to ground (9), said voltage divider (3) supplies a voltage proportional to the voltage of the primary electrical conductor (1) with respect to ground; and a first impedance (5) connected to at least one of the at least two terminals of the coil (2), which adjusts the voltage that is induced in the coil (2).
2. El dispositivo de la Reivindicación i, en donde la bobina (2) es una bobina de núcleo de aire la cual tiene un centro y una directriz. 2. The device of Claim i, wherein the coil (2) is an air-core coil which has a center and a leader.
3. El dispositivo de la Reivindicación 1, en donde la bobina (2) es una bobina de Rogowski la cual tiene un centro y una directriz. 3. The device of Claim 1, wherein the coil (2) is a Rogowski coil which has a center and a directrix.
4. El dispositivo de la Reivindicación 1 o la Reivindicación 2, en donde el conductor eléctrico (1) pasa por el centro de la bobina (2), y forma una pluralidad de espiras alrededor de la directriz de dicha bobina (2). 4. The device of Claim 1 or Claim 2, wherein the electrical conductor (1) passes through the center of the coil (2), and forms a plurality of turns around the directrix of said coil (2).
5. El dispositivo de la Reivindicación 1 o la Reivindicación 2, en donde entre la bobina (2) y el conductor eléctrico primario (1) hay una distancia que dependerá de la tensión máxima del dispositivo. 5. The device of Claim 1 or Claim 2, wherein between the coil (2) and the primary electrical conductor (1) there is a distance that will depend on the maximum voltage of the device.
6. El dispositivo de la Reivindicación 1 o la Reivindicación 2 , en donde la bobina (2) está recubierta por un material aislante (7). 6. The device of Claim 1 or Claim 2, wherein the coil (2) is covered by an insulating material (7).
7. El dispositivo de la Reivindicación 6, en donde el material aislante (7) que recubre la bobina (2) está recubierto por un material compuesto (8). 7. The device of Claim 6, wherein the insulating material (7) that covers the coil (2) is covered by a composite material (8).
8. El dispositivo de la Reivindicación 7, en donde el material compuesto se selecciona del grupo conformado por aluminio, cobre, bronce, galio, silicio, papel con partículas de grafito, papel con partículas de carbón, latón, entre otros y combinaciones de las anteriores. 8. The device of Claim 7, wherein the composite material is selected from the group consisting of aluminum, copper, bronze, gallium, silicon, paper with graphite particles, paper with carbon particles, brass, among others and combinations of the previous.
9. El dispositivo de la Reivindicación 1 o la Reivindicación 2, en donde el divisor de tensión (3) es un divisor de tensión conformado por al menos una primera impedancia (Z1) conectada al conductor eléctrico primario (1) y una segunda impedancia (Z2), en donde la segunda impedancia está conectada a tierra (9). 9. The device of Claim 1 or Claim 2, wherein the voltage divider (3) is a voltage divider made up of at least one first impedance (Z1) connected to the primary electrical conductor (1) and a second impedance ( Z2), where the second impedance is connected to ground (9).
10. El dispositivo de la Reivindicación 9, en donde un circuito electrónico (4) se conecta a la primera impedancia (5), al divisor de tensión (3) y a al menos una de las al menos dos terminales de la bobina (2), donde la primera impedancia (5) ajusta el voltaje que es inducido en la bobina (2), y el circuito electrónico (4) obtiene dicho voltaje ajustado y el voltaje entregado por el divisor de tensión (3). 10. The device of Claim 9, wherein an electronic circuit (4) is connected to the first impedance (5), to the voltage divider (3) and to at least one of the at least two terminals of the coil (2) , where the first impedance (5) adjusts the voltage that is induced in the coil (2), and the electronic circuit (4) obtains said adjusted voltage and the voltage delivered by the voltage divider (3).
11. El dispositivo de la Reivindicación 10, en donde entre la conexión del divisor de tensión (3) y el circuito electrónico (4) se conecta una segunda impedancia (Z6) que se conecta a tierra (9). 11. The device of Claim 10, wherein between the connection of the voltage divider (3) and the electronic circuit (4) a second impedance (Z6) that is connected to ground (9) is connected.
12. El dispositivo de 1a Reivindicación 1 o la Reivindicación 2, en donde un dieléctrico (6) recubre la bobina (2), el conductor eléctrico primario (1) y el divisor de tensión (3). 12. The device of Claim 1 or Claim 2, wherein a dielectric (6) covers the coil (2), the primary electrical conductor (1) and the voltage divider (3).
PCT/IB2022/051856 2021-03-02 2022-03-02 Device for measuring voltage and current in power transmission lines WO2022185236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2021/0002884A CO2021002884A1 (en) 2021-03-02 2021-03-02 Voltage and current measurement device in power transmission lines
CONC2021/0002884 2021-03-02

Publications (1)

Publication Number Publication Date
WO2022185236A1 true WO2022185236A1 (en) 2022-09-09

Family

ID=83148952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/051856 WO2022185236A1 (en) 2021-03-02 2022-03-02 Device for measuring voltage and current in power transmission lines

Country Status (2)

Country Link
CO (1) CO2021002884A1 (en)
WO (1) WO2022185236A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616176A (en) * 1983-02-08 1986-10-07 Hydro Quebec Dynamic current transducer
US6437554B1 (en) * 1999-11-19 2002-08-20 The United States Of America As Represented By The Secretary Of The Interior High current measurement system incorporating an air-core transducer
US8000912B2 (en) * 2007-12-13 2011-08-16 Ls Industrial Systems Co., Ltd. Instrument transformer and apparatus for detecting an amount of power using the same
US9664710B2 (en) * 2013-01-24 2017-05-30 Cleaveland/Price Inc. Sensory assembly system and method
US10794934B2 (en) * 2017-12-30 2020-10-06 Abb Schweiz Ag Instrument transformer for measuring at least one electricity property in a conductor of a power grid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616176A (en) * 1983-02-08 1986-10-07 Hydro Quebec Dynamic current transducer
US6437554B1 (en) * 1999-11-19 2002-08-20 The United States Of America As Represented By The Secretary Of The Interior High current measurement system incorporating an air-core transducer
US8000912B2 (en) * 2007-12-13 2011-08-16 Ls Industrial Systems Co., Ltd. Instrument transformer and apparatus for detecting an amount of power using the same
US9664710B2 (en) * 2013-01-24 2017-05-30 Cleaveland/Price Inc. Sensory assembly system and method
US10794934B2 (en) * 2017-12-30 2020-10-06 Abb Schweiz Ag Instrument transformer for measuring at least one electricity property in a conductor of a power grid

Also Published As

Publication number Publication date
CO2021002884A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
US7061370B2 (en) High current inductive coupler and current transformer for power lines
MX2007012144A (en) Precision printed circuit board based rogowski coil and method for manufacturing same.
CA2885445C (en) Methods and devices for ac current sources, precision current transducers and detectors
CN105572451A (en) Self-correcting current transformer system
US6633169B1 (en) Monitoring leakage currents from high-voltage devices
RU2320045C1 (en) Transformer
KR20060034222A (en) System and method for acquiring voltages and measuring voltage into an electrical service using a non-active current transformer
WO2022185236A1 (en) Device for measuring voltage and current in power transmission lines
EP3116001A1 (en) Impedance-compensated current transformer
Oates The design and use of Rogowski coils
West et al. An improved two-stage current transformer
Zhang et al. A non-contact broad bandwidth current sensor
US10365336B2 (en) Continuously digitally adjustable phase actuator
US20110012691A1 (en) 1:9 broadband transmission line transformer
Zhou et al. 1000V Self-calibrating Inductive Voltage Divider with coaxial-cable winding
Rautio $ N $-port T-networks and topologically symmetric circuit theory
Peretto et al. Sensors for PMUs
Shackelton A shielded bridge for inductive impedance measurements at speech and carrier frequencies
JP6412104B2 (en) Efficient broadband passive gyrator
CN110945784A (en) Inductance-capacitance filter and associated systems and methods
Egawa et al. Study of a shunt reactor with transformer function
McLean Topology for Maintaining Symmetry in Hybrid LPDA-Broadband-Dipole Antennas
Kojovic Split-core PCB Rogowski coil designs and applications for protective relaying
US20040004799A1 (en) Non-ferrous surge biasing coil having multiple pairs of coils positioned at angles to one another
PL227150B1 (en) Current transformer with Rogowski coil, with distributed resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762707

Country of ref document: EP

Kind code of ref document: A1