WO2022180754A1 - Aircraft and rotor blade module - Google Patents

Aircraft and rotor blade module Download PDF

Info

Publication number
WO2022180754A1
WO2022180754A1 PCT/JP2021/007225 JP2021007225W WO2022180754A1 WO 2022180754 A1 WO2022180754 A1 WO 2022180754A1 JP 2021007225 W JP2021007225 W JP 2021007225W WO 2022180754 A1 WO2022180754 A1 WO 2022180754A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
fixed
pair
storage battery
wings
Prior art date
Application number
PCT/JP2021/007225
Other languages
French (fr)
Japanese (ja)
Inventor
航矢 桑村
佑 中井
Original Assignee
テトラ・アビエーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テトラ・アビエーション株式会社 filed Critical テトラ・アビエーション株式会社
Priority to PCT/JP2021/007225 priority Critical patent/WO2022180754A1/en
Priority to JP2023502078A priority patent/JP7442907B2/en
Priority to PCT/JP2021/043510 priority patent/WO2022180968A1/en
Publication of WO2022180754A1 publication Critical patent/WO2022180754A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to an aircraft and a rotor module.
  • Aircraft that perform vertical take-off and landing are known.
  • the aircraft described in Patent Document 1 includes a fuselage, a pair of fixed wings extending in the left-right direction from the fuselage, and being supported by and driven to rotate by the pair of fixed wings, so that the aircraft moves vertically upward.
  • a plurality of rotor blades that generate a thrust to propel the rotor blades
  • a plurality of rotary drive units that rotate and drive the plurality of rotor blades by electric power
  • a storage battery that is fixed to the fuselage and charges and discharges electric power.
  • the above aircraft is equipped with multiple cables that transmit power from the storage battery to multiple rotary drives.
  • the storage battery is fixed to the fuselage and each rotor wing is supported by the fixed wing. Therefore, the distance between the storage battery and each rotary drive is relatively long. For this reason, the total length of a plurality of cables provided in an aircraft tends to be long. As a result, there is a problem that the weight of the aircraft tends to increase.
  • One of the purposes of the present invention is to reduce the weight.
  • the aircraft performs vertical take-off and landing.
  • the aircraft includes a fuselage, at least one pair of fixed wings extending in the left-right direction from the fuselage, a plurality of first rotor blades, a plurality of first rotary drive units, a plurality of first storage batteries, and a plurality of a first cable;
  • the plurality of first rotor blades are supported by at least one pair of fixed wings and rotationally driven to generate thrust for propelling the aircraft vertically upward.
  • the plurality of first rotation drive units rotationally drive the plurality of first rotor blades by electric power.
  • a plurality of first storage batteries are fixed to at least one pair of fixed wings and charge and discharge electric power.
  • the plurality of first cables transmit power from the plurality of first storage batteries to the plurality of first rotary drive units.
  • the rotor module is secured to fixed wings extending laterally from the fuselage of the aircraft.
  • the rotor module comprises a support, a pair of first rotors, a pair of first rotary drives, at least one first battery, and a pair of first cables.
  • the support extends longitudinally forward of the fixed wing and aft of the fixed wing in the longitudinal direction of the aircraft.
  • a pair of first rotor blades are supported by a support and positioned in front of the fixed wing and behind the fixed wing in the longitudinal direction of the aircraft. occurs.
  • the pair of first rotary drive units are fixed to the support and rotate the pair of first rotor blades by electric power.
  • At least one first storage battery is fixed to the support and positioned between the pair of first rotor blades in the longitudinal direction of the aircraft and charges and discharges electric power.
  • a pair of first cables respectively transmit power from the at least one first storage battery to the pair of first rotary drives.
  • FIG. 1 is a perspective view showing the configuration of an aircraft according to a first embodiment
  • FIG. 1 is a top view showing a schematic configuration of an aircraft according to a first embodiment
  • FIG. It is a block diagram showing a schematic structure of the rotary blade module of the first embodiment.
  • It is a top view showing the schematic structure of the aircraft of 2nd Embodiment.
  • FIG. 11 is a top view showing a schematic configuration of an aircraft according to a third embodiment; It is a top view showing the schematic structure of the aircraft of 4th Embodiment.
  • FIG. 1 illustrates an exemplary embodiment of the aircraft and the rotor module of the present invention.
  • the aircraft of the first embodiment performs vertical takeoff and landing.
  • the aircraft includes a fuselage, at least one pair of fixed wings extending in the left-right direction from the fuselage, a plurality of first rotor blades, a plurality of first rotary drive units, a plurality of first storage batteries, and a plurality of a first cable;
  • the plurality of first rotor blades are supported by at least one pair of fixed wings and rotationally driven to generate thrust for propelling the aircraft vertically upward.
  • the plurality of first rotation drive units rotationally drive the plurality of first rotor blades by electric power.
  • a plurality of first storage batteries are fixed to at least one pair of fixed wings and charge and discharge electric power.
  • the plurality of first cables transmit power from the plurality of first storage batteries to the plurality of first rotary drive units.
  • the distance between the first storage battery and the first rotor can be shortened compared to the case where the first storage battery is fixed to the body.
  • the length of the first cable that transmits electric power from the first storage battery to the first rotary drive section can be shortened.
  • the weight of the aircraft can be reduced.
  • the aircraft 1 performs vertical takeoff and landing.
  • the aircraft 1 is an eVTOL (electric Vertical Take-Off and Landing) that flies the aircraft by electric power.
  • the aircraft 1 flies in a vertical direction (in other words, ascends or descends in a vertical direction) in a vertical flight state (in other words, takeoff and landing state), and flies in a horizontal direction (in other words, cruises).
  • the operating state is switched between a state of level flight (in other words, a cruising state).
  • each direction (for example, up-down direction, front-rear direction, or left-right direction) described below is the direction in the takeoff/landing state.
  • Each direction may be a direction in a cruising state.
  • the upward direction and the downward direction are the vertically upward direction and the vertically downward direction, respectively.
  • the aircraft 1 includes a fuselage 10, a pair of front fixed wings 20-1, 20-2, and a pair of rear fixed wings 20-3, 20-4.
  • the number of pairs of fixed wings included in the aircraft 1 may be one, or three or more.
  • each of the pair of front fixed wings 20-1, 20-2 and the pair of rear fixed wings 20-3, 20-4 are simply fixed wings 20-j (j is 1 to represents an integer of 4.).
  • the fuselage 10 extends in the front-rear direction of the aircraft 1 at the central portion in the left-right direction of the aircraft 1 .
  • the fuselage 10 is composed of two rod-shaped or columnar bodies whose positions in the vertical direction of the aircraft 1 and positions in the longitudinal direction of the aircraft 1 are different from each other. It has shapes that are connected to each other.
  • the fuselage 10 has a vertically downward end face of the forward end of the aircraft 1 located vertically below the vertically downward end face of the rearward end of the aircraft 1 .
  • the fuselage 10 has a vertically upward end face of the forward end of the aircraft 1 located vertically below the vertically upward end face of the rearward end of the aircraft 1 .
  • the fuselage 10 may be rod-shaped or column-shaped extending in the forward direction of the aircraft 1 .
  • the fuselage 10 may have a shape (in other words, a tapered shape) at each of both ends in the longitudinal direction of the aircraft 1 that tapers toward the tip.
  • the length of the torso 10 in the front-rear direction may be 1 m to 15 m.
  • a pair of front fixed wings 20-1 and 20-2 are plate-shaped and extend from the fuselage 10 to the left of the aircraft 1 and to the right of the aircraft 1, respectively.
  • Each of the pair of front fixed wings 20-1 and 20-2 has an airfoil shape in a cross section cut by a plane perpendicular to the left-right direction of the aircraft 1.
  • the pair of front fixed wings 20-1 and 20-2 are plane-symmetrical to each other with respect to a plane perpendicular to the left-right direction of the aircraft 1 and passing through the center of the fuselage 10 in the left-right direction.
  • each of the pair of front fixed wings 20-1 and 20-2 may have a length of 0.5 m to 10 m in the horizontal direction.
  • a pair of forward fixed wings 20-1 and 20-2 are located forward of the center of the fuselage 10 in the longitudinal direction of the aircraft 1.
  • a pair of forward fixed wings 20-1 and 20-2 are located at the ends of the fuselage 10 in the forward direction.
  • the pair of front fixed wings 20-1 and 20-2 are arranged in the longitudinal direction of the aircraft 1 from the front end of the fuselage 10 to the rear end of the pair of front fixed wings 20-1 and 20-2. has a position where the ratio of the distance to to the length of the fuselage 10 in the longitudinal direction of the aircraft 1 has a value between 0.01 and 0.4 (0.1 and 0.3 in this example).
  • a pair of forward fixed wings 20-1 and 20-2 are located below the center of the fuselage 10 in the vertical direction of the aircraft 1.
  • the pair of forward fixed wings 20-1 and 20-2 are located at the ends of the fuselage 10 in the downward direction.
  • the pair of front fixed wings 20-1 and 20-2 are arranged in the vertical direction of the aircraft 1 from the lower end of the fuselage 10 to the upper end of the pair of front fixed wings 20-1 and 20-2. to the height of the fuselage 10 in the vertical direction of the aircraft 1 (in this example, the maximum height of the fuselage 10 in the vertical direction of the aircraft 1 excluding tails 11-1 and 11-2 described later)
  • the ratio has positions with values between 0.01 and 0.4 (0.05 and 0.2 in this example).
  • a pair of rear fixed wings 20-3 and 20-4 are plate-shaped and extend from the fuselage 10 to the left of the aircraft 1 and to the right of the aircraft 1, respectively.
  • Each of the pair of fixed rear wings 20-3 and 20-4 has an airfoil shape in a cross section cut by a plane perpendicular to the left-right direction of the aircraft 1.
  • the pair of rear fixed wings 20-3 and 20-4 are symmetrical to each other with respect to a plane perpendicular to the left-right direction of the aircraft 1 and passing through the center of the fuselage 10 in the left-right direction.
  • the length in the left-right direction of each of the pair of rear fixed wings 20-3, 20-4 is substantially equal to the length in the left-right direction of each of the pair of front fixed wings 20-1, 20-2.
  • the length in the left-right direction of each of the pair of rear fixed wings 20-3 and 20-4 is slightly longer than the length in the left-right direction of each of the pair of front fixed wings 20-1 and 20-2. to long.
  • each of the pair of rear fixed wings 20-3 and 20-4 may have a length of 0.5 m to 10 m in the lateral direction.
  • a pair of rear fixed wings 20-3 and 20-4 are positioned rearward of the center of the fuselage 10 in the longitudinal direction of the aircraft 1.
  • the pair of rear fixed wings 20-3 and 20-4 are positioned at the rearward end of the fuselage 10.
  • the pair of fixed aft wings 20-3, 20-4 extend from the aft end of the fuselage 10 to the forward end of the pair of aft fixed wings 20-3, 20-4 in the longitudinal direction of the aircraft 1. has a position where the ratio of the distance to to the length of the fuselage 10 in the longitudinal direction of the aircraft 1 has a value between 0.01 and 0.4 (0.1 and 0.3 in this example).
  • a pair of rear fixed wings 20-3 and 20-4 are positioned above the center of the fuselage 10 in the vertical direction of the aircraft 1.
  • the pair of fixed rear wings 20-3 and 20-4 are positioned at the ends of the fuselage 10 in the upward direction.
  • the pair of fixed rear wings 20-3 and 20-4 are arranged in the vertical direction of the aircraft 1 from the upper end of the fuselage 10 to the lower end of the pair of fixed rear wings 20-3 and 20-4. has a position where the ratio of the distance to to the height of the fuselage 10 in the vertical direction of the aircraft 1 is a value between 0.01 and 0.4 (0.05 and 0.2 in this example).
  • the aircraft 1 has two pairs of fixed wings 20-1 to 20-4 whose positions in the longitudinal direction of the aircraft 1 are different from each other and whose positions in the vertical direction of the aircraft 1 are different from each other.
  • the aircraft 1 includes a pair of fixed front wings 20-1, 20-2 and a pair of fixed rear wings 20-3, 20-4, and a plurality of (16 in this example) rotor blades. It has modules 40-1 to 40-16. Note that the number of rotor modules included in the aircraft 1 may be 2 to 15, or may be 17 or more. For example, the aircraft 1 may have 8, 12, 16, 20 or 24 rotor modules.
  • a plurality of rotor modules 40-1 to 40-16 are detachable to a pair of front fixed wings 20-1, 20-2 and a pair of rear fixed wings 20-3, 20-4. fixed to In addition, the plurality of rotor blade modules 40-1 to 40-16 are irremovably fixed to the pair of front fixed wings 20-1, 20-2 and the pair of rear fixed wings 20-3, 20-4. (For example, integrally formed).
  • the four rotary wing modules 40-1 to 40-4 are fixed to the front fixed wing 20-1 located on the left side of the fuselage 10 out of the pair of front fixed wings 20-1.
  • the four rotary wing modules 40-5 to 40-8 are fixed to the front fixed wing 20-2 located on the right side of the fuselage 10 out of the pair of front fixed wings 20-1.
  • the four rotary wing modules 40-9 to 40-12 are fixed to the rear fixed wing 20-3 located on the left side of the fuselage 10 out of the pair of rear fixed wings 20-3 and 20-4.
  • the four rotary wing modules 40-13 to 40-16 are fixed to the rear fixed wing 20-4 located on the right side of the fuselage 10 out of the pair of rear fixed wings 20-3 and 20-4. .
  • Eight rotor modules 40-1 to 40-4, 40-9 to 40-12 positioned on the left side of the fuselage 10 and eight rotor modules 40-5 to 40 positioned on the right side of the fuselage 10 -8, 40-13 to 40-16 are symmetrical to each other with respect to a plane perpendicular to the left-right direction of the aircraft 1 and passing through the center of the fuselage 10 in the left-right direction.
  • a rotor module 40-i (i represents an integer from 1 to 16) fixed to the fixed wing 20-j rotates from the tip of the fixed wing 20-j in the lateral direction of the aircraft 1.
  • rotor blade modules 40-k to 40-l (where k is an integer of 1, 5, 9, or 13, l is an integer of k+3) are fixed to the stationary blade 20-j. ) are positioned at equal intervals in the horizontal direction of the aircraft 1 . Note that the four rotor modules 40-k to 40-l fixed to the fixed wing 20-j may have different intervals in the horizontal direction of the aircraft 1.
  • FIG. 1 illustrates that the four rotor blade modules 40-k to 40-l (where k is an integer of 1, 5, 9, or 13, l is an integer of k+3) are fixed to the stationary blade 20-j. ) are positioned at equal intervals in the horizontal direction of the aircraft 1 . Note that the four rotor modules 40-k to 40-l fixed to the fixed wing 20-j may have different intervals in the horizontal direction of the aircraft 1.
  • the four rotor modules 40-k to 40-l fixed to the fixed wing 20-j are the , the ratio of the distance between two rotor modules adjacent to each other to the length of the fixed wing 20-j in the lateral direction of the aircraft 1 is 0.1 to 0.4 (0.2 to 0.2 in this example). 0.3).
  • the distance between two adjacent rotor modules among the four rotor modules 40-1 to 40-4 fixed to the front fixed wing 20-1 in the left-right direction of the aircraft 1 is and the distance between two adjacent rotor modules among the four rotor modules 40-9 to 40-12 fixed to the rear stationary wing 20-3 are equal to each other. Note that the distances between the two may be different from each other.
  • the positions of the four rotor modules 40-1 to 40-4 fixed to the front fixed wing 20-1 and the positions of the four rotor modules 40-1 to 40-4 fixed to the rear fixed wing 20-3 , and the positions of the rotor blade modules 40-9 to 40-12 coincide with each other. Note that the positions of both may be different from each other.
  • the rotor module 40-i fixed to the stationary wing 20-j includes a support 401, a pair of first rotor blades 402-1 and 402-2, and a pair of Electric motors 403-1, 403-2, a pair of speed controllers 404-1, 404-2, a pair of first storage batteries 405-1, 405-2, a pair of first cables 406-1, 406-2, a pair of circuit protectors 407-1, 407-2, a pair of circuit switches 408-1, 408-2, a pair of controllers 409-1, 409-2, 1 a pair of first control signal lines 410-1, 410-2, a pair of second control signal lines 411-1, 411-2, a pair of third control signal lines 412-1, 412-2, Prepare.
  • the support 401 extends forwardly of the fixed wing 20-j and rearwardly of the fixed wing 20-j in the longitudinal direction of the aircraft 1 (in other words, when the aircraft 1 is viewed in the vertical direction). It is rod-shaped or column-shaped extending in the front-rear direction.
  • the support 401 is detachably fixed to the fixed wing 20-j at the central portion in the longitudinal direction of the aircraft 1. As shown in FIG.
  • the support 401 is positioned below the fixed wing 20-j. According to this, since the center of gravity of the aircraft 1 can be positioned downward, even if the attitude of the aircraft changes, the change can be quickly suppressed. Note that the support 401 may be positioned above the fixed wing 20-j.
  • Each of the pair of first rotor blades 402-1 and 402-2 is rotatably supported by support 401 so that the central axis of rotation extends in a direction whose main component is the vertical direction of aircraft 1. be.
  • the pair of first rotor blades 402-1 and 402-2 are rotationally driven by the pair of electric motors 403-1 and 403-2, respectively, to generate thrust for propelling the aircraft 1 upward.
  • the pair of first rotor blades 402-1 and 402-2 are positioned in front of the fixed wing 20-j and behind the fixed wing 20-j in the longitudinal direction of the aircraft 1, respectively.
  • the pair of first rotor blades 402-1 and 402-2 are located at both ends of the support 401 in the longitudinal direction of the aircraft 1, respectively.
  • the pair of first rotor blades 402-1, 402-2 are fixed wing 20 in the longitudinal direction of aircraft 1, the distance between the pair of first rotor blades 402-1, 402-2 in the longitudinal direction of aircraft 1. It may have positions where the ratio of -j to length is a value between 1.2 and 4.5 (2 and 3 in this example).
  • the pair of first rotor blades 402-1 and 402-2 rotate in different directions.
  • the two first rotor blades 402-1 adjacent in the left-right direction of the aircraft 1 have different rotational directions, and the two first rotor blades 402-1 adjacent in the left-right direction of the aircraft 1 2 differ from each other in the direction of rotation.
  • the two first rotor blades 402-1 and 402-2 that are adjacent in the vertical direction of the aircraft 1 rotate in different directions.
  • the first rotor blades 402-1, 402-2 may be referred to as rotors.
  • the configuration for rotationally driving the first rotor blade 402-1 (in this example, the electric motor 403-1, the speed controller 404-1, the first storage battery 405-1, the first cable 406-1, the circuit protector 407-1, circuit switch 408-1, controller 409-1, first control signal line 410-1, second control signal line 411-1, and third control signal line 412-1).
  • the configuration for rotationally driving the first rotor blade 402-2 (in this example, the electric motor 403-2, the speed controller 404-2, the first storage battery 405-2, the first cable 406-2, the circuit protector 407-2, circuit switch 408-2, controller 409-2, first control signal line 410-2, second control signal line 411-2, and third control signal line 412-2) are connected to the first Since it will be described in the same manner as the configuration for rotationally driving the rotor blade 402-1, the description will be omitted.
  • speed controller 404-1 first battery 405-1, first cable 406-1, circuit protector 407-1, circuit switch 408-1, and controller 409-1 are It is housed inside 401 . At least part of the electric motor 403-1 may also be housed inside the support 401. FIG.
  • the electric motor 403-1 rotates the first rotor blade 402-1 according to the power supplied from the speed controller 404-1.
  • Speed controller 404-1 rotates first rotor blade 402-1 rotationally driven by electric motor 403-1 according to a control signal transmitted from controller 409-1 through second control signal line 411-1.
  • the electric power supplied to the electric motor 403-1 is controlled so as to control the speed (in other words, the number of revolutions).
  • the speed controller 404-1 may be represented as an ESC (Electric Speed Controller).
  • the electric motor 403-1 and the speed controller 404-1 correspond to the first rotary drive section.
  • the first storage battery 405-1 charges and discharges power.
  • the first storage battery 405-1 includes a plurality of single cells (in other words, cells) connected in series.
  • the first battery 405-1 has a voltage between 24V and 120V.
  • the first storage battery 405-1 is fixed to the support 401.
  • the first storage battery 405-1 is positioned between the pair of first rotors 402-1 and 402-2 in the longitudinal direction of the aircraft 1.
  • the first storage battery 405-1 is located in the center of the support 401 in the longitudinal direction of the aircraft 1.
  • first battery 405-1 is located below fixed wing 20-j.
  • First storage battery 405-1 may be positioned between first rotor 402-1 and fixed wing 20-j in the longitudinal direction of aircraft 1.
  • the ratio of the total weight of all (thirty-two in this example) first storage batteries 405-1 and 405-2 included in the aircraft 1 to the maximum takeoff weight of the aircraft 1 is 0.05 to 0.18. (0.12 in this example).
  • the total weight of all (32 in this example) first storage batteries 405-1 and 405-2 provided in aircraft 1 may be 6 kg to 540 kg (53 kg in this example).
  • the first cable 406-1 transmits power from the first storage battery 405-1 to the speed controller 404-1.
  • a first cable 406 - 1 is fixed to the support 401 .
  • the first cable 406-1 has an allowable current of 20A to 250A (100A in this example).
  • the first cable 406-1 has a weight of 4.5 g to 450 g (50 g to 71 g in this example) per meter.
  • the circuit protector 407-1 is located between the speed controller 404-1 and the first storage battery 405-1 in the first cable 406-1. Circuit protector 407-1 interrupts the current flowing through first cable 406-1 when the current flowing through first cable 406-1 exceeds a predetermined threshold.
  • circuit protector 407-1 may be represented as a power fuse.
  • the circuit switch 408-1 is connected between the speed controller 404-1 and the first storage battery 405-1 in the first cable 406-1 (in this example, the circuit protector 407-1 and the speed controller 404 -1).
  • the circuit switch 408-1 is in an ON state allowing current to flow through the first cable 406-1 according to the control signal transmitted from the controller 409-1 through the third control signal line 412-1;
  • the operating state switches between an OFF state that prohibits current from flowing through first cable 406-1 (in other words, cuts off the current flowing through first cable 406-1).
  • circuit breaker 408-1 is a contactor.
  • the controller 409-1 controls the speed controller 404-1 and the circuit switch 408-1 according to control signals transmitted through the first control signal line 410-1 from the controller 16, which will be described later. do.
  • the aircraft 1 can fly above the aircraft 1 from the pair of first rotor blades 402-1 and 402-2 provided in each of the plurality of rotor blade modules 40-1 to 40-16. Vertical take-off and landing are performed by the thrust that propels it in the direction.
  • the fuselage 10 has an internal space that accommodates objects to be transported.
  • the internal space is located between a pair of front fixed wings 20-1, 20-2 and a pair of rear fixed wings 20-3, 20-4 in the longitudinal direction of the aircraft 1.
  • the internal space is located in the center of the aircraft 1 in the longitudinal direction.
  • Transportation targets include at least one of people and objects.
  • a person included in a transport object may be designated as a passenger.
  • passengers may fly the aircraft 1 .
  • the aircraft 1 is configured to fly by autopilot, the passengers do not need to operate the aircraft 1 .
  • the objects included in the transport object are cargo or luggage.
  • the interior space of fuselage 10 may accommodate one to five passengers.
  • the interior space of the fuselage 10 can accommodate one or two passengers.
  • the maximum takeoff weight of the aircraft 1 may be between 120 kg and 3000 kg. In this example, the maximum takeoff weight of the aircraft 1 is between 150 kg and 460 kg.
  • the body 10 includes a door (cowl in this example) that can open and close the accommodation space.
  • the fuselage 10 includes a pair of tail wings 11-1 and 11-2, a second rotor 12, a second rotary drive unit 13, a second storage battery 14, and a second cable. 15 , a control device 16 , a third storage battery 17 , and a third cable 18 .
  • the number of tail wings included in the fuselage 10 may be one, or three or more.
  • a pair of tail wings 11-1 and 11-2 are located at the ends of the fuselage 10 in the rearward direction.
  • the pair of tails 11-1 and 11-2 have components in the upward direction of the aircraft 1 and in the left-right direction of the aircraft 1, and as they go upwards of the aircraft 1, they It has a plate shape extending from the body 10 in a direction in which the distance increases.
  • the pair of tails 11-1 and 11-2 are symmetrical to each other with respect to a plane perpendicular to the left-right direction of the aircraft 1 and passing through the center of the fuselage 10 in the left-right direction.
  • the second rotor blade 12 is rotatably supported by the fuselage 10 so that the central axis of rotation extends in a direction whose main component is the longitudinal direction of the aircraft 1 .
  • the second rotor blade 12 is rotationally driven by the second rotary drive section 13 to generate a thrust that propels the aircraft 1 forward.
  • the aircraft 1 has the thrust generated by the second rotor 12 that propels the aircraft 1 forward, the pair of front fixed wings 20-1 and 20-2, and the pair of rear It flies horizontally due to the lift generated by the fixed wings 20-3 and 20-4.
  • the second rotor blade 12 is located at the rearward end of the fuselage 10 .
  • the second rotor blade 12 may be positioned at a portion other than the rear end of the body 10 (for example, the front end of the body 10, or the center of the body 10 in the longitudinal direction). .
  • the number of the second rotor blades 12 included in the body 10 may be two or more.
  • the plurality of second rotor blades 12 may be positioned at both the forward end of the fuselage 10 and the rearward end of the fuselage 10, or may be positioned at only one of them. may be located.
  • the plurality of second rotor blades 12 are positioned on at least one of the pair of front fixed blades 20-1, 20-2 and the pair of rear fixed blades 20-3, 20-4. may In this example, the second rotor 12 may be represented as a propeller.
  • the second rotation driving section 13 rotates the second rotor blade 12 according to the electric power supplied from the second storage battery 14 .
  • the second rotary drive 13 comprises a speed controller and an electric motor, like the first rotary drive.
  • the second storage battery 14 charges and discharges power.
  • the second storage battery 14 includes a plurality of cells connected in series.
  • the second storage battery 14 has a higher voltage than the first storage batteries 405-1 and 405-2.
  • the second battery 14 has a voltage that is between 48V and 400V higher than the first batteries 405-1 and 405-2.
  • a second storage battery 14 is fixed to the body 10 .
  • the second storage battery 14 is located between the pair of front fixed wings 20-1, 20-2 and the pair of rear fixed wings 20-3, 20-4 in the longitudinal direction of the aircraft 1.
  • the second storage battery 14 is positioned in the central portion of the body 10 in the front-rear direction. Note that the number of second storage batteries 14 included in the body 10 may be two or more.
  • the ratio of the weight of the second storage battery 14 to the maximum takeoff weight of the aircraft 1 may be a value between 0.05 and 0.18 (0.12 in this example).
  • the weight of the second storage battery 14 may range from 6 kg to 540 kg (53 kg in this example).
  • the second cable 15 transmits power from the second storage battery 14 to the second rotation drive section 13 .
  • a second cable 15 is fixed to the body 10 .
  • the second cable 15 has an allowable current of 5A to 450A.
  • the second cable 15 has a larger allowable current than the first cables 406-1 and 406-2.
  • the second cable 15 has an allowable current of 200A.
  • the second cable 15 has a weight of 4.5 g to 450 g (180 g to 200 g in this example) per meter.
  • the control device 16 controls the aircraft 1 by operating with electric power.
  • the control device 16 includes electronic equipment that acquires information representing the state of the aircraft 1 (eg, altitude, longitude, latitude, speed, etc.).
  • controller 16 includes avionics (eg, communication equipment, navigation systems, flight management systems, etc.).
  • control device 16 generates control signals according to the maneuvers of the passenger, and based on the generated control signals, the first rotor blades 402-1, 402-1, and 402-1 of the plurality of rotor blade modules 40-1 to 40-16 are controlled. 402-2 and the rotation speed of each of the second rotor blades 12 are controlled.
  • the third storage battery 17 charges and discharges power.
  • the third storage battery 17 includes a plurality of cells connected in series.
  • the third battery 17 has the same voltage as the first batteries 405-1 and 405-2. Note that the third storage battery 17 may have a higher voltage than the first storage batteries 405-1 and 405-2.
  • the third storage battery 17 is fixed to the body 10.
  • the third storage battery 17 is located between the pair of front fixed wings 20-1, 20-2 and the pair of rear fixed wings 20-3, 20-4 in the longitudinal direction of the aircraft 1.
  • the third storage battery 17 is positioned in the central portion of the body 10 in the front-rear direction.
  • the ratio of the weight of the third storage battery 17 to the maximum takeoff weight of the aircraft 1 may be a value between 0.001 and 0.1 (0.015 in this example).
  • the third storage battery 17 may have a weight of 0.12 kg to 300 kg (6.6 kg in this example).
  • the third cable 18 transmits power from the third storage battery 17 to the control device 16 .
  • a third cable 18 is fixed to the fuselage 10 .
  • the third cable 18 has an allowable current of 5A to 95A.
  • the third cable 18 has a smaller allowable current than the first cables 406-1 and 406-2.
  • the third cable 18 has an allowable current of 7A.
  • the third cable 18 has a weight of 2 g to 160 g (3 g to 10 g in this example) per meter.
  • the aircraft 1 rotates each of the 16 pairs of first rotor blades 402-1 and 402-2 provided in the 16 rotor blade modules 40-1 to 40-16. This generates a thrust that propels the aircraft 1 upward. As a result, the aircraft 1 takes off by flying vertically upward (in other words, ascending).
  • the aircraft 1 drives the second rotor 12 to rotate. This generates a thrust that propels the aircraft 1 forward. As a result, the pair of front fixed wings 20-1, 20-2 and the pair of rear fixed wings 20-3, 20-4 generate lift. Next, the aircraft 1 stops rotating the 16 pairs of first rotor blades 402-1 and 402-2 provided in the 16 rotor blade modules 40-1 to 40-16, respectively. As a result, the aircraft 1 flies horizontally (in other words, cruises).
  • the aircraft 1 rotates each of the 16 pairs of first rotor blades 402-1 and 402-2 respectively provided in the 16 rotor blade modules 40-1 to 40-16. This generates a thrust that propels the aircraft 1 upward.
  • the aircraft 1 stops the rotational drive of the second rotor 12 . As a result, the aircraft 1 lands by flying vertically downward (in other words, descending).
  • the aircraft 1 of the first embodiment performs vertical takeoff and landing.
  • the aircraft 1 includes a fuselage 10, at least one pair of fixed wings 20-1 to 20-4 extending in the left-right direction from the fuselage 10, a plurality of first rotor blades 402-1 and 402-2, a plurality of of the first rotary drive unit (in this example, a plurality of electric motors 403-1, 403-2 and a plurality of speed controllers 404-1, 404-2) and a plurality of first storage batteries 405-1, 405- 2 and a plurality of first cables 406-1, 406-2.
  • the plurality of first rotor blades 402-1 and 402-2 are supported by at least one pair of fixed blades 20-1 to 20-4 and are rotationally driven to generate thrust for propelling the aircraft 1 vertically upward. do.
  • the plurality of first rotation drive units rotate and drive the plurality of first rotor blades 402-1 and 402-2 by electric power.
  • a plurality of first storage batteries 405-1, 405-2 are fixed to at least one pair of fixed wings 20-1 to 20-4 and charge and discharge electric power.
  • the plurality of first cables 406-1, 406-2 transmit power from the plurality of first storage batteries 405-1, 405-2 to the plurality of first rotary drive units.
  • the weight of the aircraft 1 can be distributed.
  • a change in the attitude of the aircraft 1 occurs due to a stoppage of some of the plurality of first rotor blades 402-1 and 402-2, a sudden change in wind direction, or a sudden change in wind speed.
  • the fluctuation can be quickly suppressed.
  • the aircraft 1 of the first embodiment includes a second rotor 12 that is rotationally driven to generate a thrust that propels the aircraft 1 forward, and a second rotor that rotationally drives the second rotor 12 by electric power.
  • a drive unit 13 a second storage battery 14 that is fixed to the body 10 and charges and discharges power, and a second cable 15 that transmits power from the second storage battery 14 to the second rotation drive unit 13 .
  • first rotor blades 402-1 and 402-2 and the second rotor blade 12 can be operated independently of each other. Therefore, even if one of the first rotor blades 402-1, 402-2 and the second rotor blade 12 does not operate normally, the other can be operated normally to ensure safe flight. can be done. Further, in aircraft 1, first storage batteries 405-1 and 405-2 are fixed to fixed wings 20-1 to 20-4, and second storage battery 14 is fixed to fuselage . Therefore, the weight of the aircraft 1 can be distributed in the horizontal direction. As a result, even if the attitude of the aircraft 1 fluctuates, the fluctuation can be quickly suppressed.
  • At least one pair of fixed wings 20-1 to 20-4 includes two pairs of fixed wings 20-1 to 20-4 whose positions in the longitudinal direction are different from each other.
  • a plurality of first storage batteries 405-1 and 405-2 are fixed to two pairs of fixed wings 20-1 to 20-4, respectively.
  • the second storage battery 14 is positioned between the two pairs of fixed wings 20-1 to 20-4 in the longitudinal direction.
  • the plurality of first storage batteries 405-1 and 405-2 are distributed over the four fixed wings 20-1 to 20-4. Therefore, weight can be distributed in the aircraft 1 . Furthermore, the first storage batteries 405-1 and 405-2 and the second storage battery 14 have different positions in the front-rear direction. Therefore, the weight in the longitudinal direction of the aircraft 1 can be distributed. As a result, even if the attitude of the aircraft 1 fluctuates, the fluctuation can be quickly suppressed.
  • the aircraft 1 of the first embodiment includes a control device 16 that controls the aircraft 1 by operating with electric power, a third storage battery 17 that is fixed to the fuselage 10 and charges and discharges power, and a third storage battery 17 that is controlled by the third storage battery 17. and a third cable 18 for transmitting power to the device 16 .
  • first rotor blades 402-1 and 402-2 and the control device 16 can be operated independently of each other. Therefore, even if the first rotor blades 402-1 and 402-2 do not operate normally, the control device 16 can be operated normally.
  • first storage batteries 405-1 and 405-2 are fixed to fixed wings 20-1 to 20-4, and third storage battery 17 is fixed to fuselage . Therefore, the weight of the aircraft 1 can be distributed in the horizontal direction. As a result, even if the attitude of the aircraft 1 fluctuates, the fluctuation can be quickly suppressed.
  • At least one pair of fixed wings 20-1 to 20-4 includes two pairs of fixed wings 20-1 to 20-4 whose positions in the longitudinal direction are different from each other.
  • a plurality of first storage batteries 405-1 and 405-2 are fixed to two pairs of fixed wings 20-1 to 20-4, respectively.
  • the third storage battery 17 is positioned between the two pairs of fixed wings 20-1 to 20-4 in the longitudinal direction of the aircraft 1. As shown in FIG.
  • the plurality of first storage batteries 405-1 and 405-2 are distributed over the four fixed wings 20-1 to 20-4. Therefore, weight can be distributed in the aircraft 1 . Furthermore, the first storage batteries 405-1 and 405-2 and the third storage battery 17 have different positions in the front-rear direction. Therefore, the weight in the longitudinal direction of the aircraft 1 can be distributed. As a result, even if the attitude of the aircraft 1 fluctuates, the fluctuation can be quickly suppressed.
  • the aircraft 1 of the first embodiment includes a plurality of rotor modules 40-1 to 40-16 fixed to at least one pair of fixed wings 20-1 to 20-4.
  • Each of the plurality of rotor blade modules 40-1 to 40-16 includes a support 401, a pair of first rotor blades 402-1 and 402-2, and a pair of first rotary drive units (in this example, A pair of electric motors 403-1, 403-2 and a pair of speed controllers 404-1, 404-2), at least one first storage battery 405-1, 405-2, and a pair of first and cables 406-1 and 406-2.
  • the support 401 extends in the longitudinal direction of the aircraft 1 from the front of the fixed wing 20-j to the rear of the fixed wing 20-j.
  • a pair of first rotor blades 402-1 and 402-2 are supported by a support 401 and positioned in front of the fixed wing 20-j and behind the fixed wing 20-j in the longitudinal direction of the aircraft 1, respectively.
  • a pair of first rotary drives are fixed to the support 401 .
  • At least one first battery 405-1, 405-2 is fixed to the support 401 and positioned between the pair of first rotors 402-1, 402-2 in the longitudinal direction of the aircraft 1.
  • a pair of first cables 406-1, 406-2 transmit power from at least one first storage battery 405-1, 405-2 to a pair of first rotary drives, respectively.
  • the thrust that propels the aircraft 1 vertically upward can be transmitted to the fixed wings 20-j while suppressing the torque in the yaw direction and the torque in the pitch direction. Furthermore, the position at which the thrust force acts on fixed wing 20-j and the position at which the weight of first storage batteries 405-1 and 405-2 act on fixed wing 20-j can be brought sufficiently close to each other. Therefore, the mechanical load on the fixed wings 20-j can be reduced.
  • the thrust force acts on the fixed blade 20-j.
  • a position where the weight of first storage batteries 405-1 and 405-2 acts on fixed wing 20-j can be kept sufficiently close to each other. Therefore, the mechanical load on the fixed wings 20-j can be easily reduced.
  • the aircraft 1 of the modified example of the first embodiment may be configured such that the second rotor blade 12 is rotationally driven by power generated by the internal combustion engine instead of or in addition to the electric power. good. Further, the aircraft 1 of the modified example of the first embodiment may have a jet engine instead of or in addition to the second rotor 12 .
  • At least one of the plurality of first rotors 402-1 and 402-2 section may generate thrust that propels the aircraft 1 forward.
  • at least some of the plurality of first rotor blades 402-1 and 402-2 may be configured to change the direction of the central axis of rotation.
  • the aircraft 1 of the modified example of the first embodiment includes a power generation device, and the power generated by the power generation device is stored in the first storage battery 405-1, 405-2, the second storage battery 14, and the third storage battery 17. It may be configured to charge at least one.
  • the number of first storage batteries included in the rotor module 40-i may be one. In this case, in rotor module 40-i, one first battery powers each of the pair of first rotary drives. Further, in the aircraft 1 of the modified example of the first embodiment, the number of first storage batteries included in the rotor module 40-i may be three or more.
  • the rotor module 40-i converts the speed controller 404-1 from the first storage battery 405-2 to the speed controller 404-1 when the power of the first storage battery 405-1 is insufficient. may be configured to supply power to the Even in this case, the length of the cable that transmits electric power from first storage battery 405-2 to speed controller 404-1 can be shortened. As a result, the weight of the aircraft 1 can be reduced.
  • the rotor module 40-i switches from the first storage battery 405-1 to the speed controller 404-i when the power of the first storage battery 405-2 is insufficient. 2 may be configured to be powered. Even in this case, the length of the cable that transmits electric power from first storage battery 405-1 to speed controller 404-2 can be shortened. As a result, the weight of the aircraft 1 can be reduced.
  • the power of the third storage battery 17 when the power of the third storage battery 17 is insufficient, the power is supplied from the second storage battery 14 to the control device 16 or the third storage battery 17. It may be configured as Further, in the aircraft 1 of the modified example of the first embodiment, when the power of the second storage battery 14 is insufficient, the power is supplied from the third storage battery 17 to the second rotation drive unit 13 or the second storage battery 14. may be configured to be supplied.
  • the aircraft of the second embodiment differs from the aircraft of the first embodiment in that a plurality of first storage batteries can be charged.
  • the following description focuses on the points of difference.
  • the same reference numerals as those used in the first embodiment designate the same or substantially similar components.
  • an aircraft 1A of the second embodiment includes a power connection section 31 and a plurality (16 in this example) of fourth a cable 32;
  • the power connector 31 is fixed to the body 10 .
  • the power connection 31 is located near the control device 16 .
  • a plurality of fourth cables 32 transmit electric power from the power connection section 31 to 16 pairs of first storage batteries 405-1 and 405-2 respectively provided in the 16 rotor blade modules 40-1 to 40-16.
  • Each of the multiple fourth cables 32 is fixed to the aircraft 1 .
  • Each of the multiple fourth cables 32 has a smaller allowable current than the first cables 406-1 and 406-2.
  • each of the plurality of fourth cables 32 has an allowable current of 5A to 95A.
  • the fourth cable 32 has a smaller allowable current than the first cables 406-1 and 406-2.
  • the fourth cable 32 has an allowable current of 40A.
  • each of the plurality of fourth cables 32 has a smaller weight per meter than the first cables 406-1 and 406-2.
  • each of the plurality of fourth cables 32 has a weight of 2 g to 160 g (25 g to 40 g in this example) per meter.
  • the aircraft 1A of the second embodiment can also achieve the same actions and effects as the aircraft 1 of the first embodiment. Furthermore, the aircraft 1A of the second embodiment has a power supply connection section 31 to which an external power supply is connected, and power is transmitted from the power supply connection section 31 to each of the plurality of first storage batteries 405-1 and 405-2. and a plurality of fourth cables 32 having a smaller allowable current than the single cables 406-1 and 406-2.
  • the plurality of first storage batteries 405-1 and 405-2 can be charged without being removed from the aircraft 1A. Therefore, it is possible to reduce the trouble of charging the plurality of first storage batteries 405-1 and 405-2.
  • the aircraft of the third embodiment differs from the aircraft of the first embodiment in that it is configured so that electric power can be supplied from the third storage battery to the first storage battery when the power of the first storage battery is insufficient.
  • the following description focuses on the points of difference.
  • the same or substantially similar parts are assigned the same reference numerals as those used in the first embodiment.
  • the aircraft 1B of the third embodiment includes a plurality of (16 in this example) fifth cables 33 in addition to the configuration of the aircraft 1 of the first embodiment.
  • a plurality of fifth cables 33 transmit power from the third storage battery 17 to 16 pairs of first storage batteries 405-1 and 405-2 respectively provided in the 16 rotor blade modules 40-1 to 40-16.
  • Each of the multiple fifth cables 33 is fixed to the aircraft 1 .
  • Each of the plurality of fifth cables 33 has the same allowable current as the first cables 406-1, 406-2 or the fourth cable 32. Also, each of the plurality of fifth cables 33 has the same weight per meter as the first cables 406-1 and 406-2 or the fourth cable 32. FIG.
  • the aircraft 1B of the third embodiment can also achieve the same actions and effects as the aircraft 1 of the first embodiment. Furthermore, according to the aircraft 1B of the third embodiment, when the power of the first storage batteries 405-1 and 405-2 is insufficient, power is supplied from the third storage battery 17 to the first storage batteries 405-1 and 405-2. By doing so, the first storage batteries 405-1 and 405-2 can be charged with electric power.
  • the aircraft 1B when the power of the third storage battery 17 is insufficient, the aircraft 1B supplies power from the second storage battery 14 to the control device 16 or the third storage battery 17. It may be configured as
  • the power of the second storage battery 14 when the power of the second storage battery 14 is insufficient, the power is supplied from the third storage battery 17 to the second rotation drive unit 13 or the second storage battery 14. may be configured to be supplied.
  • the aircraft 1B of the modified example of the third embodiment may further include the power connection section 31 and the plurality of fourth cables 32 provided in the aircraft 1A of the second embodiment.
  • the aircraft of the fourth embodiment differs from the aircraft of the first embodiment in the number of rotor modules that the aircraft comprises.
  • the following description focuses on the points of difference.
  • the same reference numerals as those used in the first embodiment designate the same or substantially similar components.
  • the aircraft 1C of the fourth embodiment has eight rotor blades instead of the 16 rotor blade modules 40-1 to 40-16 provided in the aircraft 1 of the first embodiment. It has modules 40-1 to 40-8.
  • the aircraft 1C of the fourth embodiment can also achieve the same actions and effects as the aircraft 1 of the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)

Abstract

An aircraft 1 that takes off and lands vertically. The aircraft 1 comprises a fuselage 10, at least one pair of fixed wings 20–1–20–4 that extend from the fuselage 10 in the left/right direction, a plurality of first rotor blades 402–1, 402–2, a plurality of first rotating drive units, a plurality of first storage cells 405–1, 405–2, and a plurality of first cables 406–1, 406–2. The plurality of first rotor blades 402–1, 402–2 are supported by at least one pair of fixed wings 20–1–20–4 and, by being rotated and driven, generate thrust that thrusts the aircraft 1 up vertically. The plurality of first rotating drive units use power and rotate and drive each of the plurality of first rotor blades 402–1, 402–2. The plurality of first storage cells 405–1, 405–2 are fixed to at least one pair of fixed wings 20–1–20–4 and charge and discharge power. The plurality of first cables 406-1, 406-2 transmit power from the plurality of first storage cells 405-1, 405-2 to the plurality of first rotating drive units.

Description

航空機、及び、回転翼モジュールAircraft and rotor modules
 本発明は、航空機、及び、回転翼モジュールに関する。 The present invention relates to an aircraft and a rotor module.
 垂直離着陸を行う航空機が知られている。例えば、特許文献1に記載の航空機は、胴体と、胴体から左右方向にて延在する1対の固定翼と、1対の固定翼に支持され且つ回転駆動されることにより航空機を鉛直上方向へ推進させる推力を発生する複数の回転翼と、電力によって複数の回転翼をそれぞれ回転駆動する複数の回転駆動部と、胴体に固定され且つ電力を充放電する蓄電池と、を備える。 Aircraft that perform vertical take-off and landing are known. For example, the aircraft described in Patent Document 1 includes a fuselage, a pair of fixed wings extending in the left-right direction from the fuselage, and being supported by and driven to rotate by the pair of fixed wings, so that the aircraft moves vertically upward. a plurality of rotor blades that generate a thrust to propel the rotor blades, a plurality of rotary drive units that rotate and drive the plurality of rotor blades by electric power, and a storage battery that is fixed to the fuselage and charges and discharges electric power.
国際公開第2018/075414号WO2018/075414
 上記航空機は、蓄電池から複数の回転駆動部へ電力を伝送する複数のケーブルを備える。上述のように、上記航空機においては、蓄電池が胴体に固定されるとともに、各回転翼が固定翼に支持される。従って、蓄電池と各回転駆動部との間の距離が比較的長い。このため、航空機が備える複数のケーブルの全長が長くなりやすい。この結果、航空機の重量が大きくなりやすい、という課題があった。 The above aircraft is equipped with multiple cables that transmit power from the storage battery to multiple rotary drives. As described above, in the above aircraft, the storage battery is fixed to the fuselage and each rotor wing is supported by the fixed wing. Therefore, the distance between the storage battery and each rotary drive is relatively long. For this reason, the total length of a plurality of cables provided in an aircraft tends to be long. As a result, there is a problem that the weight of the aircraft tends to increase.
 本発明の目的の一つは、重量を小さくすることである。 One of the purposes of the present invention is to reduce the weight.
 一つの側面では、航空機は、垂直離着陸を行う。
 航空機は、胴体と、胴体から左右方向にて延在する、少なくとも1対の固定翼と、複数の第1回転翼と、複数の第1回転駆動部と、複数の第1蓄電池と、複数の第1ケーブルと、を備える。
 複数の第1回転翼は、少なくとも1対の固定翼に支持され且つ回転駆動されることにより航空機を鉛直上方向へ推進させる推力を発生する。
 複数の第1回転駆動部は、電力によって複数の第1回転翼をそれぞれ回転駆動する。
 複数の第1蓄電池は、少なくとも1対の固定翼に固定され且つ電力を充放電する。
 複数の第1ケーブルは、複数の第1蓄電池から複数の第1回転駆動部へ電力を伝送する。
In one aspect, the aircraft performs vertical take-off and landing.
The aircraft includes a fuselage, at least one pair of fixed wings extending in the left-right direction from the fuselage, a plurality of first rotor blades, a plurality of first rotary drive units, a plurality of first storage batteries, and a plurality of a first cable;
The plurality of first rotor blades are supported by at least one pair of fixed wings and rotationally driven to generate thrust for propelling the aircraft vertically upward.
The plurality of first rotation drive units rotationally drive the plurality of first rotor blades by electric power.
A plurality of first storage batteries are fixed to at least one pair of fixed wings and charge and discharge electric power.
The plurality of first cables transmit power from the plurality of first storage batteries to the plurality of first rotary drive units.
 他の一つの側面では、回転翼モジュールは、航空機の胴体から左右方向にて延在する固定翼に固定される。
 回転翼モジュールは、支持体と、1対の第1回転翼と、1対の第1回転駆動部と、少なくとも1つの第1蓄電池と、1対の第1ケーブルと、を備える。
 支持体は、航空機の前後方向において、固定翼の前方と固定翼の後方とに亘って前後方向にて延在する。
 1対の第1回転翼は、支持体により支持され且つ航空機の前後方向において固定翼の前方と固定翼の後方とに位置するとともに、回転駆動されることにより航空機を鉛直上方向へ推進させる推力を発生する。
 1対の第1回転駆動部は、支持体に固定され且つ電力によって1対の第1回転翼をそれぞれ回転駆動する。
 少なくとも1つの第1蓄電池は、支持体に固定され且つ航空機の前後方向において1対の第1回転翼の間に位置するとともに、電力を充放電する。
 1対の第1ケーブルは、少なくとも1つの第1蓄電池から1対の第1回転駆動部へ電力をそれぞれ伝送する。
In another aspect, the rotor module is secured to fixed wings extending laterally from the fuselage of the aircraft.
The rotor module comprises a support, a pair of first rotors, a pair of first rotary drives, at least one first battery, and a pair of first cables.
The support extends longitudinally forward of the fixed wing and aft of the fixed wing in the longitudinal direction of the aircraft.
A pair of first rotor blades are supported by a support and positioned in front of the fixed wing and behind the fixed wing in the longitudinal direction of the aircraft. occurs.
The pair of first rotary drive units are fixed to the support and rotate the pair of first rotor blades by electric power.
At least one first storage battery is fixed to the support and positioned between the pair of first rotor blades in the longitudinal direction of the aircraft and charges and discharges electric power.
A pair of first cables respectively transmit power from the at least one first storage battery to the pair of first rotary drives.
 重量を小さくすることができる。 "The weight can be reduced."
第1実施形態の航空機の構成を表す斜視図である。1 is a perspective view showing the configuration of an aircraft according to a first embodiment; FIG. 第1実施形態の航空機の概略構成を表す上面図である。1 is a top view showing a schematic configuration of an aircraft according to a first embodiment; FIG. 第1実施形態の回転翼モジュールの概略構成を表すブロック図である。It is a block diagram showing a schematic structure of the rotary blade module of the first embodiment. 第2実施形態の航空機の概略構成を表す上面図である。It is a top view showing the schematic structure of the aircraft of 2nd Embodiment. 第3実施形態の航空機の概略構成を表す上面図である。FIG. 11 is a top view showing a schematic configuration of an aircraft according to a third embodiment; 第4実施形態の航空機の概略構成を表す上面図である。It is a top view showing the schematic structure of the aircraft of 4th Embodiment.
 以下、本発明の、航空機、及び、回転翼モジュールに関する各実施形態について図1乃至図6を参照しながら説明する。 Hereinafter, embodiments of the aircraft and the rotor module of the present invention will be described with reference to FIGS. 1 to 6. FIG.
<第1実施形態>
(概要)
 第1実施形態の航空機は、垂直離着陸を行う。
 航空機は、胴体と、胴体から左右方向にて延在する、少なくとも1対の固定翼と、複数の第1回転翼と、複数の第1回転駆動部と、複数の第1蓄電池と、複数の第1ケーブルと、を備える。
 複数の第1回転翼は、少なくとも1対の固定翼に支持され且つ回転駆動されることにより航空機を鉛直上方向へ推進させる推力を発生する。
 複数の第1回転駆動部は、電力によって複数の第1回転翼をそれぞれ回転駆動する。
 複数の第1蓄電池は、少なくとも1対の固定翼に固定され且つ電力を充放電する。
 複数の第1ケーブルは、複数の第1蓄電池から複数の第1回転駆動部へ電力を伝送する。
<First Embodiment>
(Overview)
The aircraft of the first embodiment performs vertical takeoff and landing.
The aircraft includes a fuselage, at least one pair of fixed wings extending in the left-right direction from the fuselage, a plurality of first rotor blades, a plurality of first rotary drive units, a plurality of first storage batteries, and a plurality of a first cable;
The plurality of first rotor blades are supported by at least one pair of fixed wings and rotationally driven to generate thrust for propelling the aircraft vertically upward.
The plurality of first rotation drive units rotationally drive the plurality of first rotor blades by electric power.
A plurality of first storage batteries are fixed to at least one pair of fixed wings and charge and discharge electric power.
The plurality of first cables transmit power from the plurality of first storage batteries to the plurality of first rotary drive units.
 これによれば、第1蓄電池が胴体に固定される場合と比較して、第1蓄電池と第1回転翼との間の距離を短くすることができる。これにより、第1蓄電池から第1回転駆動部へ電力を伝送する第1ケーブルの長さを短くすることができる。この結果、航空機の重量を小さくすることができる。
 次に、第1実施形態の航空機について、より詳細に説明する。
According to this, the distance between the first storage battery and the first rotor can be shortened compared to the case where the first storage battery is fixed to the body. Thereby, the length of the first cable that transmits electric power from the first storage battery to the first rotary drive section can be shortened. As a result, the weight of the aircraft can be reduced.
Next, the aircraft of the first embodiment will be described in more detail.
(構成)
 図1及び図2に表されるように、航空機1は、垂直離着陸を行う。本例では、航空機1は、電力によって航空機を飛行させるeVTOL(electric Vertical Take-Off and Landing)である。航空機1は、鉛直方向にて飛行する(換言すると、鉛直方向にて上昇又は下降する)鉛直飛行を行う状態(換言すると、離着陸状態)と、水平方向にて飛行する(換言すると、巡航する)水平飛行を行う状態(換言すると、巡航状態)と、の間で動作状態が切り替わる。
(Constitution)
As shown in FIGS. 1 and 2, the aircraft 1 performs vertical takeoff and landing. In this example, the aircraft 1 is an eVTOL (electric Vertical Take-Off and Landing) that flies the aircraft by electric power. The aircraft 1 flies in a vertical direction (in other words, ascends or descends in a vertical direction) in a vertical flight state (in other words, takeoff and landing state), and flies in a horizontal direction (in other words, cruises). The operating state is switched between a state of level flight (in other words, a cruising state).
 本例では、後述の各方向(例えば、上下方向、前後方向、又は、左右方向)は、離着陸状態における方向である。なお、各方向は、巡航状態における方向であってもよい。上方向、及び、下方向は、それぞれ、鉛直上方向、及び、鉛直下方向である。 In this example, each direction (for example, up-down direction, front-rear direction, or left-right direction) described below is the direction in the takeoff/landing state. Each direction may be a direction in a cruising state. The upward direction and the downward direction are the vertically upward direction and the vertically downward direction, respectively.
 航空機1は、胴体10と、1対の前方固定翼20-1,20-2と、1対の後方固定翼20-3,20-4と、を備える。なお、航空機1が備える固定翼の対の数は、1対、又は、3対以上であってもよい。本例では、1対の前方固定翼20-1,20-2、及び、1対の後方固定翼20-3,20-4のそれぞれは、単に、固定翼20-j(jは、1乃至4の整数を表す。)とも表される。 The aircraft 1 includes a fuselage 10, a pair of front fixed wings 20-1, 20-2, and a pair of rear fixed wings 20-3, 20-4. The number of pairs of fixed wings included in the aircraft 1 may be one, or three or more. In this example, each of the pair of front fixed wings 20-1, 20-2 and the pair of rear fixed wings 20-3, 20-4 are simply fixed wings 20-j (j is 1 to represents an integer of 4.).
 胴体10は、航空機1の左右方向における中央部において、航空機1の前後方向にて延在する。本例では、胴体10は、航空機1の上下方向における位置、及び、航空機1の前後方向における位置のそれぞれが互いに異なる2個の棒状体又は柱状体が、航空機1の前後方向における中央部にて互いに連結された形状を有する。 The fuselage 10 extends in the front-rear direction of the aircraft 1 at the central portion in the left-right direction of the aircraft 1 . In this example, the fuselage 10 is composed of two rod-shaped or columnar bodies whose positions in the vertical direction of the aircraft 1 and positions in the longitudinal direction of the aircraft 1 are different from each other. It has shapes that are connected to each other.
 本例では、胴体10は、航空機1の前方向における端部の鉛直下方向における端面が、航空機1の後方向における端部の鉛直下方向における端面よりも鉛直下方に位置する。本例では、胴体10は、航空機1の前方向における端部の鉛直上方向における端面が、航空機1の後方向における端部の鉛直上方向における端面よりも鉛直下方に位置する。 In this example, the fuselage 10 has a vertically downward end face of the forward end of the aircraft 1 located vertically below the vertically downward end face of the rearward end of the aircraft 1 . In this example, the fuselage 10 has a vertically upward end face of the forward end of the aircraft 1 located vertically below the vertically upward end face of the rearward end of the aircraft 1 .
 なお、胴体10は、航空機1の前方向にて延在する棒状又は柱状であってもよい。例えば、胴体10は、航空機1の前後方向における両端部のそれぞれにおいて、先端に近づくほど細くなる形状(換言すると、先細形状)を有してよい。
 例えば、胴体10の前後方向における長さは、1m乃至15mの長さであってよい。
Note that the fuselage 10 may be rod-shaped or column-shaped extending in the forward direction of the aircraft 1 . For example, the fuselage 10 may have a shape (in other words, a tapered shape) at each of both ends in the longitudinal direction of the aircraft 1 that tapers toward the tip.
For example, the length of the torso 10 in the front-rear direction may be 1 m to 15 m.
 1対の前方固定翼20-1,20-2は、航空機1の左方向、及び、航空機1の右方向へ、胴体10からそれぞれ延在する板状である。1対の前方固定翼20-1,20-2のそれぞれは、航空機1の左右方向に直交する平面によって切断された断面において、翼型形状を有する。 A pair of front fixed wings 20-1 and 20-2 are plate-shaped and extend from the fuselage 10 to the left of the aircraft 1 and to the right of the aircraft 1, respectively. Each of the pair of front fixed wings 20-1 and 20-2 has an airfoil shape in a cross section cut by a plane perpendicular to the left-right direction of the aircraft 1. FIG.
 1対の前方固定翼20-1,20-2は、航空機1の左右方向に直交し、且つ、胴体10の左右方向における中央を通る平面に対して、互いに面対称である。例えば、1対の前方固定翼20-1,20-2のそれぞれの左右方向における長さは、0.5m乃至10mの長さであってよい。 The pair of front fixed wings 20-1 and 20-2 are plane-symmetrical to each other with respect to a plane perpendicular to the left-right direction of the aircraft 1 and passing through the center of the fuselage 10 in the left-right direction. For example, each of the pair of front fixed wings 20-1 and 20-2 may have a length of 0.5 m to 10 m in the horizontal direction.
 1対の前方固定翼20-1,20-2は、航空機1の前後方向における胴体10の中央よりも前方に位置する。本例では、1対の前方固定翼20-1,20-2は、胴体10の前方向における端部に位置する。例えば、1対の前方固定翼20-1,20-2は、航空機1の前後方向において、胴体10の前方向における端から1対の前方固定翼20-1,20-2の後方向における端までの距離の、航空機1の前後方向における胴体10の長さに対する比が、0.01乃至0.4(本例では、0.1乃至0.3)の値である位置を有する。 A pair of forward fixed wings 20-1 and 20-2 are located forward of the center of the fuselage 10 in the longitudinal direction of the aircraft 1. In this example, a pair of forward fixed wings 20-1 and 20-2 are located at the ends of the fuselage 10 in the forward direction. For example, the pair of front fixed wings 20-1 and 20-2 are arranged in the longitudinal direction of the aircraft 1 from the front end of the fuselage 10 to the rear end of the pair of front fixed wings 20-1 and 20-2. has a position where the ratio of the distance to to the length of the fuselage 10 in the longitudinal direction of the aircraft 1 has a value between 0.01 and 0.4 (0.1 and 0.3 in this example).
 1対の前方固定翼20-1,20-2は、航空機1の上下方向における胴体10の中央よりも下方に位置する。本例では、1対の前方固定翼20-1,20-2は、胴体10の下方向における端部に位置する。例えば、1対の前方固定翼20-1,20-2は、航空機1の上下方向において、胴体10の下方向における端から1対の前方固定翼20-1,20-2の上方向における端までの距離の、航空機1の上下方向における胴体10の高さ(本例では、後述の尾翼11-1,11-2を除いた航空機1の上下方向における胴体10の高さの最大値)に対する比が、0.01乃至0.4(本例では、0.05乃至0.2)の値である位置を有する。 A pair of forward fixed wings 20-1 and 20-2 are located below the center of the fuselage 10 in the vertical direction of the aircraft 1. In this example, the pair of forward fixed wings 20-1 and 20-2 are located at the ends of the fuselage 10 in the downward direction. For example, the pair of front fixed wings 20-1 and 20-2 are arranged in the vertical direction of the aircraft 1 from the lower end of the fuselage 10 to the upper end of the pair of front fixed wings 20-1 and 20-2. to the height of the fuselage 10 in the vertical direction of the aircraft 1 (in this example, the maximum height of the fuselage 10 in the vertical direction of the aircraft 1 excluding tails 11-1 and 11-2 described later) The ratio has positions with values between 0.01 and 0.4 (0.05 and 0.2 in this example).
 1対の後方固定翼20-3,20-4は、航空機1の左方向、及び、航空機1の右方向へ、胴体10からそれぞれ延在する板状である。1対の後方固定翼20-3,20-4のそれぞれは、航空機1の左右方向に直交する平面によって切断された断面において、翼型形状を有する。 A pair of rear fixed wings 20-3 and 20-4 are plate-shaped and extend from the fuselage 10 to the left of the aircraft 1 and to the right of the aircraft 1, respectively. Each of the pair of fixed rear wings 20-3 and 20-4 has an airfoil shape in a cross section cut by a plane perpendicular to the left-right direction of the aircraft 1. FIG.
 1対の後方固定翼20-3,20-4は、航空機1の左右方向に直交し、且つ、胴体10の左右方向における中央を通る平面に対して、互いに面対称である。1対の後方固定翼20-3,20-4のそれぞれの左右方向における長さは、1対の前方固定翼20-1,20-2のそれぞれの左右方向における長さと略等しい。本例では、1対の後方固定翼20-3,20-4のそれぞれの左右方向における長さは、1対の前方固定翼20-1,20-2のそれぞれの左右方向における長さよりも僅かに長い。例えば、1対の後方固定翼20-3,20-4のそれぞれの左右方向における長さは、0.5m乃至10mの長さであってよい。 The pair of rear fixed wings 20-3 and 20-4 are symmetrical to each other with respect to a plane perpendicular to the left-right direction of the aircraft 1 and passing through the center of the fuselage 10 in the left-right direction. The length in the left-right direction of each of the pair of rear fixed wings 20-3, 20-4 is substantially equal to the length in the left-right direction of each of the pair of front fixed wings 20-1, 20-2. In this example, the length in the left-right direction of each of the pair of rear fixed wings 20-3 and 20-4 is slightly longer than the length in the left-right direction of each of the pair of front fixed wings 20-1 and 20-2. to long. For example, each of the pair of rear fixed wings 20-3 and 20-4 may have a length of 0.5 m to 10 m in the lateral direction.
 1対の後方固定翼20-3,20-4は、航空機1の前後方向における胴体10の中央よりも後方に位置する。本例では、1対の後方固定翼20-3,20-4は、胴体10の後方向における端部に位置する。例えば、1対の後方固定翼20-3,20-4は、航空機1の前後方向において、胴体10の後方向における端から1対の後方固定翼20-3,20-4の前方向における端までの距離の、航空機1の前後方向における胴体10の長さに対する比が、0.01乃至0.4(本例では、0.1乃至0.3)の値である位置を有する。 A pair of rear fixed wings 20-3 and 20-4 are positioned rearward of the center of the fuselage 10 in the longitudinal direction of the aircraft 1. In this example, the pair of rear fixed wings 20-3 and 20-4 are positioned at the rearward end of the fuselage 10. As shown in FIG. For example, the pair of fixed aft wings 20-3, 20-4 extend from the aft end of the fuselage 10 to the forward end of the pair of aft fixed wings 20-3, 20-4 in the longitudinal direction of the aircraft 1. has a position where the ratio of the distance to to the length of the fuselage 10 in the longitudinal direction of the aircraft 1 has a value between 0.01 and 0.4 (0.1 and 0.3 in this example).
 1対の後方固定翼20-3,20-4は、航空機1の上下方向における胴体10の中央よりも上方に位置する。本例では、1対の後方固定翼20-3,20-4は、胴体10の上方向における端部に位置する。例えば、1対の後方固定翼20-3,20-4は、航空機1の上下方向において、胴体10の上方向における端から1対の後方固定翼20-3,20-4の下方向における端までの距離の、航空機1の上下方向における胴体10の高さに対する比が、0.01乃至0.4(本例では、0.05乃至0.2)の値である位置を有する。 A pair of rear fixed wings 20-3 and 20-4 are positioned above the center of the fuselage 10 in the vertical direction of the aircraft 1. In this example, the pair of fixed rear wings 20-3 and 20-4 are positioned at the ends of the fuselage 10 in the upward direction. For example, the pair of fixed rear wings 20-3 and 20-4 are arranged in the vertical direction of the aircraft 1 from the upper end of the fuselage 10 to the lower end of the pair of fixed rear wings 20-3 and 20-4. has a position where the ratio of the distance to to the height of the fuselage 10 in the vertical direction of the aircraft 1 is a value between 0.01 and 0.4 (0.05 and 0.2 in this example).
 このように、本例では、航空機1は、航空機1の前後方向における位置が互いに異なるとともに、航空機1の上下方向における位置が互いに異なる2対の固定翼20-1~20-4を備える。 Thus, in this example, the aircraft 1 has two pairs of fixed wings 20-1 to 20-4 whose positions in the longitudinal direction of the aircraft 1 are different from each other and whose positions in the vertical direction of the aircraft 1 are different from each other.
 航空機1は、1対の前方固定翼20-1,20-2、及び、1対の後方固定翼20-3,20-4に固定される、複数(本例では、16個)の回転翼モジュール40-1~40-16を備える。なお、航空機1が備える回転翼モジュールの数は、2乃至15個であってもよく、17個以上であってもよい。例えば、航空機1が備える回転翼モジュールの数は、8個、12個、16個、20個、又は、24個である。 The aircraft 1 includes a pair of fixed front wings 20-1, 20-2 and a pair of fixed rear wings 20-3, 20-4, and a plurality of (16 in this example) rotor blades. It has modules 40-1 to 40-16. Note that the number of rotor modules included in the aircraft 1 may be 2 to 15, or may be 17 or more. For example, the aircraft 1 may have 8, 12, 16, 20 or 24 rotor modules.
 本例では、複数の回転翼モジュール40-1~40-16は、1対の前方固定翼20-1,20-2、及び、1対の後方固定翼20-3,20-4に取り外し可能に固定される。なお、複数の回転翼モジュール40-1~40-16は、1対の前方固定翼20-1,20-2、及び、1対の後方固定翼20-3,20-4に取り外し不能に固定(例えば、一体に形成)されていてもよい。 In this example, a plurality of rotor modules 40-1 to 40-16 are detachable to a pair of front fixed wings 20-1, 20-2 and a pair of rear fixed wings 20-3, 20-4. fixed to In addition, the plurality of rotor blade modules 40-1 to 40-16 are irremovably fixed to the pair of front fixed wings 20-1, 20-2 and the pair of rear fixed wings 20-3, 20-4. (For example, integrally formed).
 4個の回転翼モジュール40-1~40-4は、1対の前方固定翼20-1のうちの、胴体10の左方に位置する前方固定翼20-1に固定される。4個の回転翼モジュール40-5~40-8は、1対の前方固定翼20-1のうちの、胴体10の右方に位置する前方固定翼20-2に固定される。4個の回転翼モジュール40-9~40-12は、1対の後方固定翼20-3,20-4のうちの、胴体10の左方に位置する後方固定翼20-3に固定される。4個の回転翼モジュール40-13~40-16は、1対の後方固定翼20-3,20-4のうちの、胴体10の右方に位置する後方固定翼20-4に固定される。 The four rotary wing modules 40-1 to 40-4 are fixed to the front fixed wing 20-1 located on the left side of the fuselage 10 out of the pair of front fixed wings 20-1. The four rotary wing modules 40-5 to 40-8 are fixed to the front fixed wing 20-2 located on the right side of the fuselage 10 out of the pair of front fixed wings 20-1. The four rotary wing modules 40-9 to 40-12 are fixed to the rear fixed wing 20-3 located on the left side of the fuselage 10 out of the pair of rear fixed wings 20-3 and 20-4. . The four rotary wing modules 40-13 to 40-16 are fixed to the rear fixed wing 20-4 located on the right side of the fuselage 10 out of the pair of rear fixed wings 20-3 and 20-4. .
 胴体10の左方に位置する8個の回転翼モジュール40-1~40-4,40-9~40-12と、胴体10の右方に位置する8個の回転翼モジュール40-5~40-8,40-13~40-16と、は、航空機1の左右方向に直交し、且つ、胴体10の左右方向における中央を通る平面に対して、互いに面対称である。 Eight rotor modules 40-1 to 40-4, 40-9 to 40-12 positioned on the left side of the fuselage 10 and eight rotor modules 40-5 to 40 positioned on the right side of the fuselage 10 -8, 40-13 to 40-16 are symmetrical to each other with respect to a plane perpendicular to the left-right direction of the aircraft 1 and passing through the center of the fuselage 10 in the left-right direction.
 例えば、固定翼20-jに固定される回転翼モジュール40-i(iは、1乃至16の整数を表す。)は、航空機1の左右方向において、当該固定翼20-jの先端から当該回転翼モジュール40-iまでの距離の、航空機1の左右方向における当該固定翼20-jの長さに対する比が、0乃至0.9(本例では、0乃至0.8)の値である位置を有する。 For example, a rotor module 40-i (i represents an integer from 1 to 16) fixed to the fixed wing 20-j rotates from the tip of the fixed wing 20-j in the lateral direction of the aircraft 1. A position where the ratio of the distance to the wing module 40-i to the length of the fixed wing 20-j in the lateral direction of the aircraft 1 is a value of 0 to 0.9 (0 to 0.8 in this example) have
 本例では、固定翼20-jに固定される4個の回転翼モジュール40-k~40-l(kは、1、5、9、又は、13の整数を表す。lは、k+3の整数を表す。)は、航空機1の左右方向において、等間隔にて位置する。なお、固定翼20-jに固定される4個の回転翼モジュール40-k~40-lは、航空機1の左右方向において、異なる間隔を有していてもよい。 In this example, four rotor blade modules 40-k to 40-l (where k is an integer of 1, 5, 9, or 13, l is an integer of k+3) are fixed to the stationary blade 20-j. ) are positioned at equal intervals in the horizontal direction of the aircraft 1 . Note that the four rotor modules 40-k to 40-l fixed to the fixed wing 20-j may have different intervals in the horizontal direction of the aircraft 1. FIG.
 例えば、固定翼20-jに固定される4個の回転翼モジュール40-k~40-lは、航空機1の左右方向において、当該4個の回転翼モジュール40-k~40-lのうちの、互いに隣り合う2個の回転翼モジュール間の距離の、航空機1の左右方向における当該固定翼20-jの長さに対する比が、0.1乃至0.4(本例では、0.2乃至0.3)の値である位置を有してよい。 For example, the four rotor modules 40-k to 40-l fixed to the fixed wing 20-j are the , the ratio of the distance between two rotor modules adjacent to each other to the length of the fixed wing 20-j in the lateral direction of the aircraft 1 is 0.1 to 0.4 (0.2 to 0.2 in this example). 0.3).
 本例では、航空機1の左右方向において、前方固定翼20-1に固定される4個の回転翼モジュール40-1~40-4のうちの、互いに隣り合う2個の回転翼モジュール間の距離と、後方固定翼20-3に固定される4個の回転翼モジュール40-9~40-12のうちの、互いに隣り合う2個の回転翼モジュール間の距離と、は、互いに等しい。なお、両者の距離は、互いに異なっていてもよい。 In this example, the distance between two adjacent rotor modules among the four rotor modules 40-1 to 40-4 fixed to the front fixed wing 20-1 in the left-right direction of the aircraft 1 is and the distance between two adjacent rotor modules among the four rotor modules 40-9 to 40-12 fixed to the rear stationary wing 20-3 are equal to each other. Note that the distances between the two may be different from each other.
 本例では、航空機1の左右方向において、前方固定翼20-1に固定される4個の回転翼モジュール40-1~40-4の位置と、後方固定翼20-3に固定される4個の回転翼モジュール40-9~40-12の位置と、は、互いに一致する。なお、両者の位置は、互いに異なっていてもよい。 In this example, in the lateral direction of the aircraft 1, the positions of the four rotor modules 40-1 to 40-4 fixed to the front fixed wing 20-1 and the positions of the four rotor modules 40-1 to 40-4 fixed to the rear fixed wing 20-3 , and the positions of the rotor blade modules 40-9 to 40-12 coincide with each other. Note that the positions of both may be different from each other.
 図3に表されるように、固定翼20-jに固定される回転翼モジュール40-iは、支持体401と、1対の第1回転翼402-1,402-2と、1対の電動機403-1,403-2と、1対の速度制御器404-1,404-2と、1対の第1蓄電池405-1,405-2と、1対の第1ケーブル406-1,406-2と、1対の回路保護器407-1,407-2と、1対の回路開閉器408-1,408-2と、1対の制御器409-1,409-2と、1対の第1制御信号線410-1,410-2と、1対の第2制御信号線411-1,411-2と、1対の第3制御信号線412-1,412-2と、を備える。 As shown in FIG. 3, the rotor module 40-i fixed to the stationary wing 20-j includes a support 401, a pair of first rotor blades 402-1 and 402-2, and a pair of Electric motors 403-1, 403-2, a pair of speed controllers 404-1, 404-2, a pair of first storage batteries 405-1, 405-2, a pair of first cables 406-1, 406-2, a pair of circuit protectors 407-1, 407-2, a pair of circuit switches 408-1, 408-2, a pair of controllers 409-1, 409-2, 1 a pair of first control signal lines 410-1, 410-2, a pair of second control signal lines 411-1, 411-2, a pair of third control signal lines 412-1, 412-2, Prepare.
 支持体401は、航空機1の前後方向において(換言すると、航空機1を鉛直方向にて見た場合において)、固定翼20-jの前方と固定翼20-jの後方とに亘って、航空機1の前後方向にて延在する棒状又は柱状である。支持体401は、航空機1の前後方向における中央部が固定翼20-jに取り外し可能に固定される。 The support 401 extends forwardly of the fixed wing 20-j and rearwardly of the fixed wing 20-j in the longitudinal direction of the aircraft 1 (in other words, when the aircraft 1 is viewed in the vertical direction). It is rod-shaped or column-shaped extending in the front-rear direction. The support 401 is detachably fixed to the fixed wing 20-j at the central portion in the longitudinal direction of the aircraft 1. As shown in FIG.
 本例では、支持体401は、固定翼20-jの下方に位置する。これによれば、航空機1の重心を下方に位置させることができるので、航空機の姿勢の変動が生じた場合であっても、当該変動を迅速に抑制できる。なお、支持体401は、固定翼20-jの上方に位置していてもよい。 In this example, the support 401 is positioned below the fixed wing 20-j. According to this, since the center of gravity of the aircraft 1 can be positioned downward, even if the attitude of the aircraft changes, the change can be quickly suppressed. Note that the support 401 may be positioned above the fixed wing 20-j.
 1対の第1回転翼402-1,402-2のそれぞれは、回転の中心軸が航空機1の上下方向が主成分である方向にて延在するように回転可能に支持体401に支持される。1対の第1回転翼402-1,402-2は、1対の電動機403-1,403-2によってそれぞれ回転駆動されることにより航空機1を上方向へ推進させる推力を発生する。 Each of the pair of first rotor blades 402-1 and 402-2 is rotatably supported by support 401 so that the central axis of rotation extends in a direction whose main component is the vertical direction of aircraft 1. be. The pair of first rotor blades 402-1 and 402-2 are rotationally driven by the pair of electric motors 403-1 and 403-2, respectively, to generate thrust for propelling the aircraft 1 upward.
 1対の第1回転翼402-1,402-2は、航空機1の前後方向において、固定翼20-jの前方と固定翼20-jの後方とにそれぞれ位置する。本例では、1対の第1回転翼402-1,402-2は、航空機1の前後方向における支持体401の両端部にそれぞれ位置する。 The pair of first rotor blades 402-1 and 402-2 are positioned in front of the fixed wing 20-j and behind the fixed wing 20-j in the longitudinal direction of the aircraft 1, respectively. In this example, the pair of first rotor blades 402-1 and 402-2 are located at both ends of the support 401 in the longitudinal direction of the aircraft 1, respectively.
 1対の第1回転翼402-1,402-2は、航空機1の前後方向における1対の第1回転翼402-1,402-2間の距離の、航空機1の前後方向における固定翼20-jの長さに対する比が、1.2乃至4.5(本例では、2乃至3)の値である位置を有してよい。 The pair of first rotor blades 402-1, 402-2 are fixed wing 20 in the longitudinal direction of aircraft 1, the distance between the pair of first rotor blades 402-1, 402-2 in the longitudinal direction of aircraft 1. It may have positions where the ratio of -j to length is a value between 1.2 and 4.5 (2 and 3 in this example).
 本例では、1対の第1回転翼402-1,402-2は、回転方向が互いに異なる。
 本例では、航空機1の左右方向にて隣接する2個の第1回転翼402-1は、回転方向が互いに異なるとともに、航空機1の左右方向にて隣接する2個の第1回転翼402-2は、回転方向が互いに異なる。また、本例では、航空機1の上下方向にて隣接する2個の第1回転翼402-1,402-2は、回転方向が互いに異なる。
 本例では、第1回転翼402-1,402-2は、ロータと表されてもよい。
In this example, the pair of first rotor blades 402-1 and 402-2 rotate in different directions.
In this example, the two first rotor blades 402-1 adjacent in the left-right direction of the aircraft 1 have different rotational directions, and the two first rotor blades 402-1 adjacent in the left-right direction of the aircraft 1 2 differ from each other in the direction of rotation. Also, in this example, the two first rotor blades 402-1 and 402-2 that are adjacent in the vertical direction of the aircraft 1 rotate in different directions.
In this example, the first rotor blades 402-1, 402-2 may be referred to as rotors.
 以下、第1回転翼402-1を回転駆動するための構成(本例では、電動機403-1、速度制御器404-1、第1蓄電池405-1、第1ケーブル406-1、回路保護器407-1、回路開閉器408-1、制御器409-1、第1制御信号線410-1、第2制御信号線411-1、及び、第3制御信号線412-1)が説明される。なお、第1回転翼402-2を回転駆動するための構成(本例では、電動機403-2、速度制御器404-2、第1蓄電池405-2、第1ケーブル406-2、回路保護器407-2、回路開閉器408-2、制御器409-2、第1制御信号線410-2、第2制御信号線411-2、及び、第3制御信号線412-2)は、第1回転翼402-1を回転駆動するための構成と同様に説明されるため、当該説明が省略される。 Hereinafter, the configuration for rotationally driving the first rotor blade 402-1 (in this example, the electric motor 403-1, the speed controller 404-1, the first storage battery 405-1, the first cable 406-1, the circuit protector 407-1, circuit switch 408-1, controller 409-1, first control signal line 410-1, second control signal line 411-1, and third control signal line 412-1). . In addition, the configuration for rotationally driving the first rotor blade 402-2 (in this example, the electric motor 403-2, the speed controller 404-2, the first storage battery 405-2, the first cable 406-2, the circuit protector 407-2, circuit switch 408-2, controller 409-2, first control signal line 410-2, second control signal line 411-2, and third control signal line 412-2) are connected to the first Since it will be described in the same manner as the configuration for rotationally driving the rotor blade 402-1, the description will be omitted.
 本例では、速度制御器404-1、第1蓄電池405-1、第1ケーブル406-1、回路保護器407-1、回路開閉器408-1、及び、制御器409-1は、支持体401の内部に収容される。なお、電動機403-1の少なくとも一部も、支持体401の内部に収容されていてもよい。 In this example, speed controller 404-1, first battery 405-1, first cable 406-1, circuit protector 407-1, circuit switch 408-1, and controller 409-1 are It is housed inside 401 . At least part of the electric motor 403-1 may also be housed inside the support 401. FIG.
 電動機403-1は、速度制御器404-1から供給される電力に従って、第1回転翼402-1を回転駆動する。 The electric motor 403-1 rotates the first rotor blade 402-1 according to the power supplied from the speed controller 404-1.
 速度制御器404-1は、制御器409-1から第2制御信号線411-1を通って伝送される制御信号に従って、電動機403-1によって回転駆動される第1回転翼402-1の回転速度(換言すると、回転数)を制御するように、電動機403-1へ供給する電力を制御する。 Speed controller 404-1 rotates first rotor blade 402-1 rotationally driven by electric motor 403-1 according to a control signal transmitted from controller 409-1 through second control signal line 411-1. The electric power supplied to the electric motor 403-1 is controlled so as to control the speed (in other words, the number of revolutions).
 本例では、速度制御器404-1は、ESC(Electric Speed Controller)と表されてもよい。
 本例では、電動機403-1、及び、速度制御器404-1は、第1回転駆動部に対応する。
In this example, the speed controller 404-1 may be represented as an ESC (Electric Speed Controller).
In this example, the electric motor 403-1 and the speed controller 404-1 correspond to the first rotary drive section.
 第1蓄電池405-1は、電力を充放電する。本例では、第1蓄電池405-1は、直列に接続された複数の単電池(換言すると、セル)を含む。本例では、第1蓄電池405-1は、24V乃至120Vの電圧を有する。 The first storage battery 405-1 charges and discharges power. In this example, the first storage battery 405-1 includes a plurality of single cells (in other words, cells) connected in series. In this example, the first battery 405-1 has a voltage between 24V and 120V.
 第1蓄電池405-1は、支持体401に固定される。本例では、第1蓄電池405-1は、航空機1の前後方向において、1対の第1回転翼402-1,402-2の間に位置する。例えば、第1蓄電池405-1は、航空機1の前後方向における支持体401の中央部に位置する。本例では、第1蓄電池405-1は、固定翼20-jの下方に位置する。なお、第1蓄電池405-1は、航空機1の前後方向において、第1回転翼402-1と固定翼20-jとの間に位置していてもよい。 The first storage battery 405-1 is fixed to the support 401. In this example, the first storage battery 405-1 is positioned between the pair of first rotors 402-1 and 402-2 in the longitudinal direction of the aircraft 1. FIG. For example, the first storage battery 405-1 is located in the center of the support 401 in the longitudinal direction of the aircraft 1. FIG. In this example, first battery 405-1 is located below fixed wing 20-j. First storage battery 405-1 may be positioned between first rotor 402-1 and fixed wing 20-j in the longitudinal direction of aircraft 1. FIG.
 例えば、航空機1の最大離陸重量に対する、航空機1が備える、すべて(本例では、32個)の第1蓄電池405-1,405-2の重量の総和の比は、0.05乃至0.18の値(本例では、0.12)であってよい。例えば、航空機1が備える、すべて(本例では、32個)の第1蓄電池405-1,405-2の重量の総和は、6kg乃至540kg(本例では、53kg)であってよい。 For example, the ratio of the total weight of all (thirty-two in this example) first storage batteries 405-1 and 405-2 included in the aircraft 1 to the maximum takeoff weight of the aircraft 1 is 0.05 to 0.18. (0.12 in this example). For example, the total weight of all (32 in this example) first storage batteries 405-1 and 405-2 provided in aircraft 1 may be 6 kg to 540 kg (53 kg in this example).
 第1ケーブル406-1は、第1蓄電池405-1から速度制御器404-1へ電力を伝送する。第1ケーブル406-1は、支持体401に固定される。例えば、第1ケーブル406-1は、許容電流が20A乃至250A(本例では、100A)の電流である。また、例えば、第1ケーブル406-1は、1mあたりの重量が4.5g乃至450gの重量(本例では、50g乃至71gの重量)である。 The first cable 406-1 transmits power from the first storage battery 405-1 to the speed controller 404-1. A first cable 406 - 1 is fixed to the support 401 . For example, the first cable 406-1 has an allowable current of 20A to 250A (100A in this example). Also, for example, the first cable 406-1 has a weight of 4.5 g to 450 g (50 g to 71 g in this example) per meter.
 回路保護器407-1は、第1ケーブル406-1のうちの、速度制御器404-1と第1蓄電池405-1との間に位置する。回路保護器407-1は、第1ケーブル406-1を流れる電流が所定の閾値を超えた場合、第1ケーブル406-1を流れる電流を遮断する。本例では、回路保護器407-1は、電力ヒューズと表されてもよい。 The circuit protector 407-1 is located between the speed controller 404-1 and the first storage battery 405-1 in the first cable 406-1. Circuit protector 407-1 interrupts the current flowing through first cable 406-1 when the current flowing through first cable 406-1 exceeds a predetermined threshold. In this example, circuit protector 407-1 may be represented as a power fuse.
 回路開閉器408-1は、第1ケーブル406-1のうちの、速度制御器404-1と第1蓄電池405-1との間(本例では、回路保護器407-1と速度制御器404-1との間)に位置する。回路開閉器408-1は、制御器409-1から第3制御信号線412-1を通って伝送される制御信号に従って、第1ケーブル406-1を電流が流れることを許可するオン状態と、第1ケーブル406-1を電流が流れることを禁止する(換言すると、第1ケーブル406-1を流れる電流を遮断する)オフ状態と、の間で動作状態が切り替わる。本例では、回路開閉器408-1は、接触器である。 The circuit switch 408-1 is connected between the speed controller 404-1 and the first storage battery 405-1 in the first cable 406-1 (in this example, the circuit protector 407-1 and the speed controller 404 -1). The circuit switch 408-1 is in an ON state allowing current to flow through the first cable 406-1 according to the control signal transmitted from the controller 409-1 through the third control signal line 412-1; The operating state switches between an OFF state that prohibits current from flowing through first cable 406-1 (in other words, cuts off the current flowing through first cable 406-1). In this example, circuit breaker 408-1 is a contactor.
 制御器409-1は、後述の制御装置16から第1制御信号線410-1を通って伝送される制御信号に従って、速度制御器404-1、及び、回路開閉器408-1のそれぞれを制御する。 The controller 409-1 controls the speed controller 404-1 and the circuit switch 408-1 according to control signals transmitted through the first control signal line 410-1 from the controller 16, which will be described later. do.
 このような構成により、航空機1は、複数の回転翼モジュール40-1~40-16のそれぞれが備える1対の第1回転翼402-1,402-2のそれぞれが発生する、航空機1を上方向へ推進させる推力によって、垂直離着陸を行う。 With such a configuration, the aircraft 1 can fly above the aircraft 1 from the pair of first rotor blades 402-1 and 402-2 provided in each of the plurality of rotor blade modules 40-1 to 40-16. Vertical take-off and landing are performed by the thrust that propels it in the direction.
 胴体10は、輸送対象を収容する内部空間を有する。本例では、内部空間は、航空機1の前後方向において、1対の前方固定翼20-1,20-2と、1対の後方固定翼20-3,20-4と、の間に位置する。例えば、内部空間は、航空機1の前後方向における中央部に位置する。 The fuselage 10 has an internal space that accommodates objects to be transported. In this example, the internal space is located between a pair of front fixed wings 20-1, 20-2 and a pair of rear fixed wings 20-3, 20-4 in the longitudinal direction of the aircraft 1. . For example, the internal space is located in the center of the aircraft 1 in the longitudinal direction.
 輸送対象は、人、及び、物体のうちの、少なくとも1つを含む。例えば、輸送対象に含まれる人は、搭乗者と表されてもよい。例えば、搭乗者は、航空機1を操縦してよい。また、航空機1が自動操縦により飛行するように構成されている場合、搭乗者は、航空機1を操縦しなくてもよい。例えば、輸送対象に含まれる物体は、貨物又は荷物である。 Transportation targets include at least one of people and objects. For example, a person included in a transport object may be designated as a passenger. For example, passengers may fly the aircraft 1 . Also, when the aircraft 1 is configured to fly by autopilot, the passengers do not need to operate the aircraft 1 . For example, the objects included in the transport object are cargo or luggage.
 例えば、胴体10が有する内部空間は、1人乃至5人の搭乗者を収容可能であってよい。本例では、胴体10が有する内部空間は、1人又は2人の搭乗者を収容可能である。
 例えば、航空機1の最大離陸重量は、120kg乃至3000kgの重量であってよい。本例では、航空機1の最大離陸重量は、150kg乃至460kgの重量である。胴体10は、収容空間を開閉可能な扉(本例では、カウル)を備える。
For example, the interior space of fuselage 10 may accommodate one to five passengers. In this example, the interior space of the fuselage 10 can accommodate one or two passengers.
For example, the maximum takeoff weight of the aircraft 1 may be between 120 kg and 3000 kg. In this example, the maximum takeoff weight of the aircraft 1 is between 150 kg and 460 kg. The body 10 includes a door (cowl in this example) that can open and close the accommodation space.
 図2に表されるように、胴体10は、1対の尾翼11-1,11-2と、第2回転翼12と、第2回転駆動部13と、第2蓄電池14と、第2ケーブル15と、制御装置16と、第3蓄電池17と、第3ケーブル18と、を備える。なお、胴体10が備える尾翼の数は、1個、又は、3個以上であってもよい。 As shown in FIG. 2, the fuselage 10 includes a pair of tail wings 11-1 and 11-2, a second rotor 12, a second rotary drive unit 13, a second storage battery 14, and a second cable. 15 , a control device 16 , a third storage battery 17 , and a third cable 18 . The number of tail wings included in the fuselage 10 may be one, or three or more.
 1対の尾翼11-1,11-2は、胴体10の後方向における端部に位置する。1対の尾翼11-1,11-2は、航空機1の上方向、及び、航空機1の左右方向の成分を有し、且つ、航空機1の上方向へ向かうにつれて航空機1の左右方向における互いの距離が長くなる方向へ胴体10から延在する板状である。1対の尾翼11-1,11-2は、航空機1の左右方向に直交し、且つ、胴体10の左右方向における中央を通る平面に対して、互いに面対称である。 A pair of tail wings 11-1 and 11-2 are located at the ends of the fuselage 10 in the rearward direction. The pair of tails 11-1 and 11-2 have components in the upward direction of the aircraft 1 and in the left-right direction of the aircraft 1, and as they go upwards of the aircraft 1, they It has a plate shape extending from the body 10 in a direction in which the distance increases. The pair of tails 11-1 and 11-2 are symmetrical to each other with respect to a plane perpendicular to the left-right direction of the aircraft 1 and passing through the center of the fuselage 10 in the left-right direction.
 第2回転翼12は、回転の中心軸が航空機1の前後方向が主成分である方向にて延在するように回転可能に胴体10に支持される。第2回転翼12は、第2回転駆動部13によって回転駆動されることにより航空機1を前方向へ推進させる推力を発生する。 The second rotor blade 12 is rotatably supported by the fuselage 10 so that the central axis of rotation extends in a direction whose main component is the longitudinal direction of the aircraft 1 . The second rotor blade 12 is rotationally driven by the second rotary drive section 13 to generate a thrust that propels the aircraft 1 forward.
 このような構成により、航空機1は、第2回転翼12が発生する、航空機1を前方向へ推進させる推力と、1対の前方固定翼20-1,20-2、及び、1対の後方固定翼20-3,20-4が発生する揚力と、によって、水平方向にて飛行する。 With such a configuration, the aircraft 1 has the thrust generated by the second rotor 12 that propels the aircraft 1 forward, the pair of front fixed wings 20-1 and 20-2, and the pair of rear It flies horizontally due to the lift generated by the fixed wings 20-3 and 20-4.
 本例では、第2回転翼12は、胴体10の後方向における端部に位置する。なお、第2回転翼12は、胴体10の後方向における端部以外の部分(例えば、胴体10の前方向における端部、又は、胴体10の前後方向における中央部等)に位置してもよい。 In this example, the second rotor blade 12 is located at the rearward end of the fuselage 10 . Note that the second rotor blade 12 may be positioned at a portion other than the rear end of the body 10 (for example, the front end of the body 10, or the center of the body 10 in the longitudinal direction). .
 なお、胴体10が備える第2回転翼12の数は、2個以上であってもよい。この場合、例えば、複数の第2回転翼12は、胴体10の前方向における端部、及び、胴体10の後方向における端部の両方にそれぞれ位置していてもよいし、いずれか一方のみに位置していてもよい。また、例えば、複数の第2回転翼12は、1対の前方固定翼20-1,20-2、及び、1対の後方固定翼20-3,20-4の少なくとも1つに位置していてもよい。
 本例では、第2回転翼12は、プロペラと表されてもよい。
Note that the number of the second rotor blades 12 included in the body 10 may be two or more. In this case, for example, the plurality of second rotor blades 12 may be positioned at both the forward end of the fuselage 10 and the rearward end of the fuselage 10, or may be positioned at only one of them. may be located. Also, for example, the plurality of second rotor blades 12 are positioned on at least one of the pair of front fixed blades 20-1, 20-2 and the pair of rear fixed blades 20-3, 20-4. may
In this example, the second rotor 12 may be represented as a propeller.
 第2回転駆動部13は、第2蓄電池14から供給される電力に従って、第2回転翼12を回転駆動する。本例では、第2回転駆動部13は、第1回転駆動部と同様に、速度制御器と、電動機と、を備える。 The second rotation driving section 13 rotates the second rotor blade 12 according to the electric power supplied from the second storage battery 14 . In this example, the second rotary drive 13 comprises a speed controller and an electric motor, like the first rotary drive.
 第2蓄電池14は、電力を充放電する。本例では、第2蓄電池14は、直列に接続された複数の単電池を含む。第2蓄電池14は、第1蓄電池405-1,405-2よりも高い電圧を有する。本例では、第2蓄電池14は、第1蓄電池405-1,405-2よりも48V乃至400Vの電圧だけ高い電圧を有する。 The second storage battery 14 charges and discharges power. In this example, the second storage battery 14 includes a plurality of cells connected in series. The second storage battery 14 has a higher voltage than the first storage batteries 405-1 and 405-2. In this example, the second battery 14 has a voltage that is between 48V and 400V higher than the first batteries 405-1 and 405-2.
 第2蓄電池14は、胴体10に固定される。本例では、第2蓄電池14は、航空機1の前後方向において、1対の前方固定翼20-1,20-2と、1対の後方固定翼20-3,20-4と、の間に位置する。例えば、第2蓄電池14は、胴体10の前後方向における中央部に位置する。
 なお、胴体10が備える第2蓄電池14の数は、2個以上であってもよい。
A second storage battery 14 is fixed to the body 10 . In this example, the second storage battery 14 is located between the pair of front fixed wings 20-1, 20-2 and the pair of rear fixed wings 20-3, 20-4 in the longitudinal direction of the aircraft 1. To position. For example, the second storage battery 14 is positioned in the central portion of the body 10 in the front-rear direction.
Note that the number of second storage batteries 14 included in the body 10 may be two or more.
 例えば、航空機1の最大離陸重量に対する、第2蓄電池14の重量の比は、0.05乃至0.18の値(本例では、0.12)であってよい。例えば、第2蓄電池14の重量は、6kg乃至540kg(本例では、53kg)であってよい。 For example, the ratio of the weight of the second storage battery 14 to the maximum takeoff weight of the aircraft 1 may be a value between 0.05 and 0.18 (0.12 in this example). For example, the weight of the second storage battery 14 may range from 6 kg to 540 kg (53 kg in this example).
 第2ケーブル15は、第2蓄電池14から第2回転駆動部13へ電力を伝送する。第2ケーブル15は、胴体10に固定される。例えば、第2ケーブル15は、許容電流が5A乃至450Aの電流である。本例では、第2ケーブル15は、許容電流が第1ケーブル406-1,406-2よりも大きい。例えば、第2ケーブル15は、許容電流が200Aの電流である。また、例えば、第2ケーブル15は、1mあたりの重量が4.5g乃至450gの重量(本例では、180g乃至200gの重量)である。 The second cable 15 transmits power from the second storage battery 14 to the second rotation drive section 13 . A second cable 15 is fixed to the body 10 . For example, the second cable 15 has an allowable current of 5A to 450A. In this example, the second cable 15 has a larger allowable current than the first cables 406-1 and 406-2. For example, the second cable 15 has an allowable current of 200A. Further, for example, the second cable 15 has a weight of 4.5 g to 450 g (180 g to 200 g in this example) per meter.
 制御装置16は、電力によって動作することにより航空機1を制御する。制御装置16は、航空機1の状態を表す情報(例えば、高度、経度、緯度、及び、速度等)を取得する電子機器を含む。本例では、制御装置16は、アビオニクス(例えば、通信機器、航法システム、又は、飛行管理システム等)を含む。 The control device 16 controls the aircraft 1 by operating with electric power. The control device 16 includes electronic equipment that acquires information representing the state of the aircraft 1 (eg, altitude, longitude, latitude, speed, etc.). In this example, controller 16 includes avionics (eg, communication equipment, navigation systems, flight management systems, etc.).
 本例では、制御装置16は、搭乗者の操縦に従って制御信号を生成し、生成された制御信号に基づいて、複数の回転翼モジュール40-1~40-16の第1回転翼402-1,402-2、及び、第2回転翼12のそれぞれの回転数を制御する。 In this example, the control device 16 generates control signals according to the maneuvers of the passenger, and based on the generated control signals, the first rotor blades 402-1, 402-1, and 402-1 of the plurality of rotor blade modules 40-1 to 40-16 are controlled. 402-2 and the rotation speed of each of the second rotor blades 12 are controlled.
 第3蓄電池17は、電力を充放電する。本例では、第3蓄電池17は、直列に接続された複数の単電池を含む。本例では、第3蓄電池17は、第1蓄電池405-1,405-2と等しい電圧を有する。なお、第3蓄電池17は、第1蓄電池405-1,405-2よりも高い電圧を有していてもよい。 The third storage battery 17 charges and discharges power. In this example, the third storage battery 17 includes a plurality of cells connected in series. In this example, the third battery 17 has the same voltage as the first batteries 405-1 and 405-2. Note that the third storage battery 17 may have a higher voltage than the first storage batteries 405-1 and 405-2.
 第3蓄電池17は、胴体10に固定される。本例では、第3蓄電池17は、航空機1の前後方向において、1対の前方固定翼20-1,20-2と、1対の後方固定翼20-3,20-4と、の間に位置する。例えば、第3蓄電池17は、胴体10の前後方向における中央部に位置する。 The third storage battery 17 is fixed to the body 10. In this example, the third storage battery 17 is located between the pair of front fixed wings 20-1, 20-2 and the pair of rear fixed wings 20-3, 20-4 in the longitudinal direction of the aircraft 1. To position. For example, the third storage battery 17 is positioned in the central portion of the body 10 in the front-rear direction.
 例えば、航空機1の最大離陸重量に対する、第3蓄電池17の重量の比は、0.001乃至0.1の値(本例では、0.015)であってよい。例えば、第3蓄電池17は、0.12kg乃至300kg(本例では、6.6kg)の重量を有してよい。 For example, the ratio of the weight of the third storage battery 17 to the maximum takeoff weight of the aircraft 1 may be a value between 0.001 and 0.1 (0.015 in this example). For example, the third storage battery 17 may have a weight of 0.12 kg to 300 kg (6.6 kg in this example).
 第3ケーブル18は、第3蓄電池17から制御装置16へ電力を伝送する。第3ケーブル18は、胴体10に固定される。例えば、第3ケーブル18は、許容電流が5A乃至95Aの電流である。本例では、第3ケーブル18は、許容電流が第1ケーブル406-1,406-2よりも小さい。例えば、第3ケーブル18は、許容電流が7Aの電流である。また、例えば、第3ケーブル18は、1mあたりの重量が2g乃至160gの重量(本例では、3g乃至10gの重量)である。 The third cable 18 transmits power from the third storage battery 17 to the control device 16 . A third cable 18 is fixed to the fuselage 10 . For example, the third cable 18 has an allowable current of 5A to 95A. In this example, the third cable 18 has a smaller allowable current than the first cables 406-1 and 406-2. For example, the third cable 18 has an allowable current of 7A. Further, for example, the third cable 18 has a weight of 2 g to 160 g (3 g to 10 g in this example) per meter.
(動作)
 次に、航空機1の動作について説明する。
 先ず、搭乗者は、航空機1の左方の位置から、前方固定翼20-1と後方固定翼20-3との間を通って、胴体10の内部空間に搭乗する。なお、搭乗者は、航空機1の右方の位置から、前方固定翼20-2と後方固定翼20-4との間を通って、胴体10の内部空間に搭乗してもよい。
(motion)
Next, operation of the aircraft 1 will be described.
First, passengers board the interior space of the fuselage 10 from the left side of the aircraft 1 through between the front fixed wing 20-1 and the rear fixed wing 20-3. Passengers may board the interior space of the fuselage 10 from the right side of the aircraft 1 through between the front fixed wing 20-2 and the rear fixed wing 20-4.
 次いで、航空機1は、16個の回転翼モジュール40-1~40-16がそれぞれ備える16対の第1回転翼402-1,402-2のそれぞれを回転駆動する。これにより、航空機1を上方向へ推進させる推力が発生する。この結果、航空機1は、鉛直上方向へ飛行(換言すると、上昇)することにより離陸する。 Next, the aircraft 1 rotates each of the 16 pairs of first rotor blades 402-1 and 402-2 provided in the 16 rotor blade modules 40-1 to 40-16. This generates a thrust that propels the aircraft 1 upward. As a result, the aircraft 1 takes off by flying vertically upward (in other words, ascending).
 その後、航空機1は、第2回転翼12を回転駆動する。これにより、航空機1を前方向へ推進させる推力が発生する。この結果、1対の前方固定翼20-1,20-2、及び、1対の後方固定翼20-3,20-4は、揚力を発生する。次いで、航空機1は、16個の回転翼モジュール40-1~40-16がそれぞれ備える16対の第1回転翼402-1,402-2のそれぞれの回転駆動を停止する。この結果、航空機1は、水平方向へ飛行(換言すると、巡航)する。 After that, the aircraft 1 drives the second rotor 12 to rotate. This generates a thrust that propels the aircraft 1 forward. As a result, the pair of front fixed wings 20-1, 20-2 and the pair of rear fixed wings 20-3, 20-4 generate lift. Next, the aircraft 1 stops rotating the 16 pairs of first rotor blades 402-1 and 402-2 provided in the 16 rotor blade modules 40-1 to 40-16, respectively. As a result, the aircraft 1 flies horizontally (in other words, cruises).
 その後、航空機1は、16個の回転翼モジュール40-1~40-16がそれぞれ備える16対の第1回転翼402-1,402-2のそれぞれを回転駆動する。これにより、航空機1を上方向へ推進させる推力が発生する。次いで、航空機1は、第2回転翼12の回転駆動を停止する。この結果、航空機1は、鉛直下方向へ飛行(換言すると、下降)することにより着陸する。 After that, the aircraft 1 rotates each of the 16 pairs of first rotor blades 402-1 and 402-2 respectively provided in the 16 rotor blade modules 40-1 to 40-16. This generates a thrust that propels the aircraft 1 upward. Next, the aircraft 1 stops the rotational drive of the second rotor 12 . As a result, the aircraft 1 lands by flying vertically downward (in other words, descending).
 以上、説明したように、第1実施形態の航空機1は、垂直離着陸を行う。航空機1は、胴体10と、胴体10から左右方向にて延在する、少なくとも1対の固定翼20-1~20-4と、複数の第1回転翼402-1,402-2と、複数の第1回転駆動部(本例では、複数の電動機403-1,403-2、及び、複数の速度制御器404-1,404-2)と、複数の第1蓄電池405-1,405-2と、複数の第1ケーブル406-1,406-2と、を備える。 As described above, the aircraft 1 of the first embodiment performs vertical takeoff and landing. The aircraft 1 includes a fuselage 10, at least one pair of fixed wings 20-1 to 20-4 extending in the left-right direction from the fuselage 10, a plurality of first rotor blades 402-1 and 402-2, a plurality of of the first rotary drive unit (in this example, a plurality of electric motors 403-1, 403-2 and a plurality of speed controllers 404-1, 404-2) and a plurality of first storage batteries 405-1, 405- 2 and a plurality of first cables 406-1, 406-2.
 複数の第1回転翼402-1,402-2は、少なくとも1対の固定翼20-1~20-4に支持され且つ回転駆動されることにより航空機1を鉛直上方向へ推進させる推力を発生する。
 複数の第1回転駆動部は、電力によって複数の第1回転翼402-1,402-2をそれぞれ回転駆動する。
 複数の第1蓄電池405-1,405-2は、少なくとも1対の固定翼20-1~20-4に固定され且つ電力を充放電する。
 複数の第1ケーブル406-1,406-2は、複数の第1蓄電池405-1,405-2から複数の第1回転駆動部へ電力を伝送する。
The plurality of first rotor blades 402-1 and 402-2 are supported by at least one pair of fixed blades 20-1 to 20-4 and are rotationally driven to generate thrust for propelling the aircraft 1 vertically upward. do.
The plurality of first rotation drive units rotate and drive the plurality of first rotor blades 402-1 and 402-2 by electric power.
A plurality of first storage batteries 405-1, 405-2 are fixed to at least one pair of fixed wings 20-1 to 20-4 and charge and discharge electric power.
The plurality of first cables 406-1, 406-2 transmit power from the plurality of first storage batteries 405-1, 405-2 to the plurality of first rotary drive units.
 これによれば、第1蓄電池が胴体10に固定される場合と比較して、第1蓄電池405-1,405-2と第1回転翼402-1,402-2との間の距離を短くすることができる。これにより、第1蓄電池405-1,405-2から第1回転駆動部へ電力を伝送する第1ケーブル406-1,406-2の長さを短くすることができる。この結果、航空機1の重量を小さくすることができる。 According to this, compared to the case where the first storage battery is fixed to the fuselage 10, the distance between the first storage battery 405-1, 405-2 and the first rotor 402-1, 402-2 is shortened. can do. This makes it possible to shorten the length of the first cables 406-1, 406-2 that transmit electric power from the first storage batteries 405-1, 405-2 to the first rotary drive unit. As a result, the weight of the aircraft 1 can be reduced.
 また、第1蓄電池が胴体10に固定される場合と比較して、航空機1において重量を分散できる。これにより、例えば、複数の第1回転翼402-1,402-2のうちの一部の停止、風向の急変、又は、風速の急変等により、航空機1の姿勢の変動が生じた場合であっても、当該変動を迅速に抑制できる。 Also, compared to the case where the first storage battery is fixed to the fuselage 10, the weight of the aircraft 1 can be distributed. As a result, for example, a change in the attitude of the aircraft 1 occurs due to a stoppage of some of the plurality of first rotor blades 402-1 and 402-2, a sudden change in wind direction, or a sudden change in wind speed. However, the fluctuation can be quickly suppressed.
 ところで、垂直離着陸を行う航空機において、航空機を鉛直上方向へ推進させる推力を発生する回転翼が固定翼に支持される場合、離着陸状態において、固定翼を鉛直上方向へ曲げようとする応力と、回転翼の回転に伴う反力と、が固定翼に加えられる。このため、固定翼の機械的負荷が大きくなりやすい。これに対し、航空機1においては、重量が分散されるので、離着陸状態において、固定翼20-1~20-4を鉛直上方向へ曲げようとする応力を抑制できる。この結果、固定翼20-1~20-4の機械的負荷を抑制できる。 By the way, in an aircraft that performs vertical take-off and landing, when the rotor blades that generate the thrust that propels the aircraft vertically upward are supported by the fixed wings, in the take-off and landing state, the stress that tends to bend the fixed wings vertically upward, A reaction force due to the rotation of the rotor blade is applied to the fixed blade. Therefore, the mechanical load on the fixed wing tends to increase. On the other hand, in the aircraft 1, since the weight is distributed, it is possible to suppress the stress that tends to bend the fixed wings 20-1 to 20-4 in the vertical upward direction during takeoff and landing. As a result, the mechanical load on the fixed wings 20-1 to 20-4 can be suppressed.
 更に、第1実施形態の航空機1は、回転駆動されることにより航空機1を前方向へ推進させる推力を発生する第2回転翼12と、電力によって第2回転翼12を回転駆動する第2回転駆動部13と、胴体10に固定され且つ電力を充放電する第2蓄電池14と、第2蓄電池14から第2回転駆動部13へ電力を伝送する第2ケーブル15と、を備える。 Furthermore, the aircraft 1 of the first embodiment includes a second rotor 12 that is rotationally driven to generate a thrust that propels the aircraft 1 forward, and a second rotor that rotationally drives the second rotor 12 by electric power. A drive unit 13 , a second storage battery 14 that is fixed to the body 10 and charges and discharges power, and a second cable 15 that transmits power from the second storage battery 14 to the second rotation drive unit 13 .
 これによれば、第1回転翼402-1,402-2と第2回転翼12とを、互いに独立して動作させることができる。従って、第1回転翼402-1,402-2、及び、第2回転翼12のうちの一方が正常に動作しない場合であっても、他方を正常に動作させることにより、安全に飛行することができる。
 また、航空機1においては、第1蓄電池405-1,405-2が固定翼20-1~20-4に固定されるとともに第2蓄電池14が胴体10に固定される。従って、航空機1において左右方向における重量を分散できる。これにより、航空機1の姿勢の変動が生じた場合であっても、当該変動を迅速に抑制できる。
According to this, the first rotor blades 402-1 and 402-2 and the second rotor blade 12 can be operated independently of each other. Therefore, even if one of the first rotor blades 402-1, 402-2 and the second rotor blade 12 does not operate normally, the other can be operated normally to ensure safe flight. can be done.
Further, in aircraft 1, first storage batteries 405-1 and 405-2 are fixed to fixed wings 20-1 to 20-4, and second storage battery 14 is fixed to fuselage . Therefore, the weight of the aircraft 1 can be distributed in the horizontal direction. As a result, even if the attitude of the aircraft 1 fluctuates, the fluctuation can be quickly suppressed.
 更に、第1実施形態の航空機1において、少なくとも1対の固定翼20-1~20-4は、前後方向における位置が互いに異なる2対の固定翼20-1~20-4を備える。複数の第1蓄電池405-1,405-2は、2対の固定翼20-1~20-4にそれぞれ固定される。第2蓄電池14は、前後方向において2対の固定翼20-1~20-4の間に位置する。 Furthermore, in the aircraft 1 of the first embodiment, at least one pair of fixed wings 20-1 to 20-4 includes two pairs of fixed wings 20-1 to 20-4 whose positions in the longitudinal direction are different from each other. A plurality of first storage batteries 405-1 and 405-2 are fixed to two pairs of fixed wings 20-1 to 20-4, respectively. The second storage battery 14 is positioned between the two pairs of fixed wings 20-1 to 20-4 in the longitudinal direction.
 これによれば、複数の第1蓄電池405-1,405-2は、4個の固定翼20-1~20-4に分散される。従って、航空機1において重量を分散できる。更に、第1蓄電池405-1,405-2と、第2蓄電池14と、が前後方向において互いに異なる位置を有する。従って、航空機1において前後方向における重量を分散できる。これにより、航空機1の姿勢の変動が生じた場合であっても、当該変動を迅速に抑制できる。 According to this, the plurality of first storage batteries 405-1 and 405-2 are distributed over the four fixed wings 20-1 to 20-4. Therefore, weight can be distributed in the aircraft 1 . Furthermore, the first storage batteries 405-1 and 405-2 and the second storage battery 14 have different positions in the front-rear direction. Therefore, the weight in the longitudinal direction of the aircraft 1 can be distributed. As a result, even if the attitude of the aircraft 1 fluctuates, the fluctuation can be quickly suppressed.
 更に、第1実施形態の航空機1は、電力によって動作することにより航空機1を制御する制御装置16と、胴体10に固定され且つ電力を充放電する第3蓄電池17と、第3蓄電池17から制御装置16へ電力を伝送する第3ケーブル18と、を備える。 Furthermore, the aircraft 1 of the first embodiment includes a control device 16 that controls the aircraft 1 by operating with electric power, a third storage battery 17 that is fixed to the fuselage 10 and charges and discharges power, and a third storage battery 17 that is controlled by the third storage battery 17. and a third cable 18 for transmitting power to the device 16 .
 これによれば、第1回転翼402-1,402-2と制御装置16とを、互いに独立して動作させることができる。従って、第1回転翼402-1,402-2が正常に動作しない場合であっても、制御装置16を正常に動作させることができる。
 また、航空機1においては、第1蓄電池405-1,405-2が固定翼20-1~20-4に固定されるとともに第3蓄電池17が胴体10に固定される。従って、航空機1において左右方向における重量を分散できる。これにより、航空機1の姿勢の変動が生じた場合であっても、当該変動を迅速に抑制できる。
According to this, the first rotor blades 402-1 and 402-2 and the control device 16 can be operated independently of each other. Therefore, even if the first rotor blades 402-1 and 402-2 do not operate normally, the control device 16 can be operated normally.
In aircraft 1, first storage batteries 405-1 and 405-2 are fixed to fixed wings 20-1 to 20-4, and third storage battery 17 is fixed to fuselage . Therefore, the weight of the aircraft 1 can be distributed in the horizontal direction. As a result, even if the attitude of the aircraft 1 fluctuates, the fluctuation can be quickly suppressed.
 更に、第1実施形態の航空機1において、少なくとも1対の固定翼20-1~20-4は、前後方向における位置が互いに異なる2対の固定翼20-1~20-4を備える。複数の第1蓄電池405-1,405-2は、2対の固定翼20-1~20-4にそれぞれ固定される。第3蓄電池17は、航空機1の前後方向において2対の固定翼20-1~20-4の間に位置する。 Furthermore, in the aircraft 1 of the first embodiment, at least one pair of fixed wings 20-1 to 20-4 includes two pairs of fixed wings 20-1 to 20-4 whose positions in the longitudinal direction are different from each other. A plurality of first storage batteries 405-1 and 405-2 are fixed to two pairs of fixed wings 20-1 to 20-4, respectively. The third storage battery 17 is positioned between the two pairs of fixed wings 20-1 to 20-4 in the longitudinal direction of the aircraft 1. As shown in FIG.
 これによれば、複数の第1蓄電池405-1,405-2は、4個の固定翼20-1~20-4に分散される。従って、航空機1において重量を分散できる。更に、第1蓄電池405-1,405-2と、第3蓄電池17と、が前後方向において互いに異なる位置を有する。従って、航空機1において前後方向における重量を分散できる。これにより、航空機1の姿勢の変動が生じた場合であっても、当該変動を迅速に抑制できる。 According to this, the plurality of first storage batteries 405-1 and 405-2 are distributed over the four fixed wings 20-1 to 20-4. Therefore, weight can be distributed in the aircraft 1 . Furthermore, the first storage batteries 405-1 and 405-2 and the third storage battery 17 have different positions in the front-rear direction. Therefore, the weight in the longitudinal direction of the aircraft 1 can be distributed. As a result, even if the attitude of the aircraft 1 fluctuates, the fluctuation can be quickly suppressed.
 更に、第1実施形態の航空機1は、少なくとも1対の固定翼20-1~20-4に固定される、複数の回転翼モジュール40-1~40-16を備える。複数の回転翼モジュール40-1~40-16のそれぞれは、支持体401と、1対の第1回転翼402-1,402-2と、1対の第1回転駆動部(本例では、1対の電動機403-1,403-2、及び、1対の速度制御器404-1,404-2)と、少なくとも1つの第1蓄電池405-1,405-2と、1対の第1ケーブル406-1,406-2と、を備える。 Furthermore, the aircraft 1 of the first embodiment includes a plurality of rotor modules 40-1 to 40-16 fixed to at least one pair of fixed wings 20-1 to 20-4. Each of the plurality of rotor blade modules 40-1 to 40-16 includes a support 401, a pair of first rotor blades 402-1 and 402-2, and a pair of first rotary drive units (in this example, A pair of electric motors 403-1, 403-2 and a pair of speed controllers 404-1, 404-2), at least one first storage battery 405-1, 405-2, and a pair of first and cables 406-1 and 406-2.
 支持体401は、航空機1の前後方向において、固定翼20-jの前方と固定翼20-jの後方とに亘って前後方向にて延在する。
 1対の第1回転翼402-1,402-2は、支持体401により支持され且つ航空機1の前後方向において固定翼20-jの前方と固定翼20-jの後方とにそれぞれ位置する。
 1対の第1回転駆動部は、支持体401に固定される。
 少なくとも1つの第1蓄電池405-1,405-2は、支持体401に固定され且つ航空機1の前後方向において1対の第1回転翼402-1,402-2の間に位置する。
 1対の第1ケーブル406-1,406-2は、少なくとも1つの第1蓄電池405-1,405-2から1対の第1回転駆動部へ電力をそれぞれ伝送する。
The support 401 extends in the longitudinal direction of the aircraft 1 from the front of the fixed wing 20-j to the rear of the fixed wing 20-j.
A pair of first rotor blades 402-1 and 402-2 are supported by a support 401 and positioned in front of the fixed wing 20-j and behind the fixed wing 20-j in the longitudinal direction of the aircraft 1, respectively.
A pair of first rotary drives are fixed to the support 401 .
At least one first battery 405-1, 405-2 is fixed to the support 401 and positioned between the pair of first rotors 402-1, 402-2 in the longitudinal direction of the aircraft 1. As shown in FIG.
A pair of first cables 406-1, 406-2 transmit power from at least one first storage battery 405-1, 405-2 to a pair of first rotary drives, respectively.
 これによれば、ヨー方向におけるトルク、及び、ピッチ方向におけるトルクを抑制しながら、航空機1を鉛直上方向へ推進させる推力を固定翼20-jに伝達できる。更に、固定翼20-jに推力が作用する位置と、固定翼20-jに第1蓄電池405-1,405-2の重量が作用する位置と、を互いに十分に近づけることができる。従って、固定翼20-jの機械的負荷を低減できる。 According to this, the thrust that propels the aircraft 1 vertically upward can be transmitted to the fixed wings 20-j while suppressing the torque in the yaw direction and the torque in the pitch direction. Furthermore, the position at which the thrust force acts on fixed wing 20-j and the position at which the weight of first storage batteries 405-1 and 405-2 act on fixed wing 20-j can be brought sufficiently close to each other. Therefore, the mechanical load on the fixed wings 20-j can be reduced.
 また、回転翼モジュール40-1~40-16によれば、回転翼モジュール40-1~40-16が固定される位置が変更された場合であっても、固定翼20-jに推力が作用する位置と、固定翼20-jに第1蓄電池405-1,405-2の重量が作用する位置と、が互いに十分に近い状態を維持できる。従って、固定翼20-jの機械的負荷を容易に低減できる。 Further, according to the rotary blade modules 40-1 to 40-16, even if the fixed positions of the rotary blade modules 40-1 to 40-16 are changed, the thrust force acts on the fixed blade 20-j. A position where the weight of first storage batteries 405-1 and 405-2 acts on fixed wing 20-j can be kept sufficiently close to each other. Therefore, the mechanical load on the fixed wings 20-j can be easily reduced.
 なお、第1実施形態の変形例の航空機1は、電力に代えて、又は、電力に加えて、内燃機関が生成する動力によって第2回転翼12が回転駆動されるように構成されていてもよい。また、第1実施形態の変形例の航空機1は、第2回転翼12に代えて、又は、第2回転翼12に加えて、ジェットエンジンを備えていてもよい。 Note that the aircraft 1 of the modified example of the first embodiment may be configured such that the second rotor blade 12 is rotationally driven by power generated by the internal combustion engine instead of or in addition to the electric power. good. Further, the aircraft 1 of the modified example of the first embodiment may have a jet engine instead of or in addition to the second rotor 12 .
 また、第1実施形態の変形例の航空機1は、第2回転翼12に代えて、又は、第2回転翼12に加えて、複数の第1回転翼402-1,402-2の少なくとも一部が、航空機1を前方向へ推進させる推力を発生してもよい。この場合、複数の第1回転翼402-1,402-2の少なくとも一部は、回転の中心軸の方向を変更可能に構成されていてもよい。 Further, in the aircraft 1 of the modified example of the first embodiment, instead of or in addition to the second rotor 12, at least one of the plurality of first rotors 402-1 and 402-2 section may generate thrust that propels the aircraft 1 forward. In this case, at least some of the plurality of first rotor blades 402-1 and 402-2 may be configured to change the direction of the central axis of rotation.
 また、第1実施形態の変形例の航空機1は、発電装置を備え、発電装置が生成した電力を、第1蓄電池405-1,405-2、第2蓄電池14、及び、第3蓄電池17の少なくとも1つに充電するように構成されていてもよい。 Further, the aircraft 1 of the modified example of the first embodiment includes a power generation device, and the power generated by the power generation device is stored in the first storage battery 405-1, 405-2, the second storage battery 14, and the third storage battery 17. It may be configured to charge at least one.
 また、第1実施形態の変形例の航空機1において、回転翼モジュール40-iが備える第1蓄電池の数は、1個であってもよい。この場合、回転翼モジュール40-iは、1個の第1蓄電池が、1対の第1回転駆動部のそれぞれへ電力を供給する。
 また、第1実施形態の変形例の航空機1において、回転翼モジュール40-iが備える第1蓄電池の数は、3個以上であってもよい。
Further, in the aircraft 1 of the modified example of the first embodiment, the number of first storage batteries included in the rotor module 40-i may be one. In this case, in rotor module 40-i, one first battery powers each of the pair of first rotary drives.
Further, in the aircraft 1 of the modified example of the first embodiment, the number of first storage batteries included in the rotor module 40-i may be three or more.
 また、第1実施形態の変形例の航空機1において、回転翼モジュール40-iは、第1蓄電池405-1が有する電力が不足した場合に、第1蓄電池405-2から速度制御器404-1へ電力が供給されるように構成されていてもよい。この場合であっても、第1蓄電池405-2から速度制御器404-1へ電力を伝送するケーブルの長さを短くすることができる。この結果、航空機1の重量を小さくすることができる。 Further, in the aircraft 1 of the modified example of the first embodiment, the rotor module 40-i converts the speed controller 404-1 from the first storage battery 405-2 to the speed controller 404-1 when the power of the first storage battery 405-1 is insufficient. may be configured to supply power to the Even in this case, the length of the cable that transmits electric power from first storage battery 405-2 to speed controller 404-1 can be shortened. As a result, the weight of the aircraft 1 can be reduced.
 同様に、第1実施形態の変形例の航空機1において、回転翼モジュール40-iは、第1蓄電池405-2が有する電力が不足した場合に、第1蓄電池405-1から速度制御器404-2へ電力が供給されるように構成されていてもよい。この場合であっても、第1蓄電池405-1から速度制御器404-2へ電力を伝送するケーブルの長さを短くすることができる。この結果、航空機1の重量を小さくすることができる。 Similarly, in the aircraft 1 of the modified example of the first embodiment, the rotor module 40-i switches from the first storage battery 405-1 to the speed controller 404-i when the power of the first storage battery 405-2 is insufficient. 2 may be configured to be powered. Even in this case, the length of the cable that transmits electric power from first storage battery 405-1 to speed controller 404-2 can be shortened. As a result, the weight of the aircraft 1 can be reduced.
 また、第1実施形態の変形例の航空機1において、航空機1は、第3蓄電池17が有する電力が不足した場合に、第2蓄電池14から制御装置16又は第3蓄電池17へ電力が供給されるように構成されていてもよい。
 また、第1実施形態の変形例の航空機1において、航空機1は、第2蓄電池14が有する電力が不足した場合に、第3蓄電池17から第2回転駆動部13又は第2蓄電池14へ電力が供給されるように構成されていてもよい。
Further, in the aircraft 1 of the modified example of the first embodiment, when the power of the third storage battery 17 is insufficient, the power is supplied from the second storage battery 14 to the control device 16 or the third storage battery 17. It may be configured as
Further, in the aircraft 1 of the modified example of the first embodiment, when the power of the second storage battery 14 is insufficient, the power is supplied from the third storage battery 17 to the second rotation drive unit 13 or the second storage battery 14. may be configured to be supplied.
<第2実施形態>
 次に、第2実施形態の航空機について説明する。第2実施形態の航空機は、第1実施形態の航空機に対して、複数の第1蓄電池を充電可能に構成される点において相違している。以下、相違点を中心として説明する。なお、第2実施形態の説明において、第1実施形態にて使用した符号と同じ符号を付したものは、同一又は略同様のものである。
<Second embodiment>
Next, the aircraft of the second embodiment will be explained. The aircraft of the second embodiment differs from the aircraft of the first embodiment in that a plurality of first storage batteries can be charged. The following description focuses on the points of difference. In addition, in the description of the second embodiment, the same reference numerals as those used in the first embodiment designate the same or substantially similar components.
 図4に表されるように、第2実施形態の航空機1Aは、第1実施形態の航空機1が備える構成に加えて、電源接続部31と、複数(本例では、16本)の第4ケーブル32と、を備える。 As shown in FIG. 4 , an aircraft 1A of the second embodiment includes a power connection section 31 and a plurality (16 in this example) of fourth a cable 32;
 電源接続部31は、外部の電源が接続される。電源接続部31は、胴体10に固定される。本例では、電源接続部31は、制御装置16の近傍に位置する。 An external power supply is connected to the power supply connection unit 31 . The power connector 31 is fixed to the body 10 . In this example, the power connection 31 is located near the control device 16 .
 複数の第4ケーブル32は、電源接続部31から、16個の回転翼モジュール40-1~40-16がそれぞれ備える16対の第1蓄電池405-1,405-2へ電力をそれぞれ伝送する。複数の第4ケーブル32のそれぞれは、航空機1に固定される。 A plurality of fourth cables 32 transmit electric power from the power connection section 31 to 16 pairs of first storage batteries 405-1 and 405-2 respectively provided in the 16 rotor blade modules 40-1 to 40-16. Each of the multiple fourth cables 32 is fixed to the aircraft 1 .
 複数の第4ケーブル32のそれぞれは、第1ケーブル406-1,406-2よりも許容電流が小さい。例えば、複数の第4ケーブル32のそれぞれは、許容電流が5A乃至95Aの電流である。本例では、第4ケーブル32は、許容電流が第1ケーブル406-1,406-2よりも小さい。例えば、第4ケーブル32は、許容電流が40Aの電流である。 Each of the multiple fourth cables 32 has a smaller allowable current than the first cables 406-1 and 406-2. For example, each of the plurality of fourth cables 32 has an allowable current of 5A to 95A. In this example, the fourth cable 32 has a smaller allowable current than the first cables 406-1 and 406-2. For example, the fourth cable 32 has an allowable current of 40A.
 また、複数の第4ケーブル32のそれぞれは、第1ケーブル406-1,406-2よりも1mあたりの重量が小さい。例えば、複数の第4ケーブル32のそれぞれは、1mあたりの重量が2g乃至160gの重量(本例では、25g乃至40gの重量)である。 Also, each of the plurality of fourth cables 32 has a smaller weight per meter than the first cables 406-1 and 406-2. For example, each of the plurality of fourth cables 32 has a weight of 2 g to 160 g (25 g to 40 g in this example) per meter.
 第2実施形態の航空機1Aによっても、第1実施形態の航空機1と同様の作用及び効果を奏することができる。
 更に、第2実施形態の航空機1Aは、外部の電源が接続される電源接続部31と、電源接続部31から複数の第1蓄電池405-1,405-2のそれぞれへ電力を伝送し且つ第1ケーブル406-1,406-2よりも許容電流が小さい、複数の第4ケーブル32と、を備える。
The aircraft 1A of the second embodiment can also achieve the same actions and effects as the aircraft 1 of the first embodiment.
Furthermore, the aircraft 1A of the second embodiment has a power supply connection section 31 to which an external power supply is connected, and power is transmitted from the power supply connection section 31 to each of the plurality of first storage batteries 405-1 and 405-2. and a plurality of fourth cables 32 having a smaller allowable current than the single cables 406-1 and 406-2.
 これによれば、複数の第1蓄電池405-1,405-2を、航空機1Aから取り外すことなく充電できる。従って、複数の第1蓄電池405-1,405-2を充電する手間を軽減できる。 According to this, the plurality of first storage batteries 405-1 and 405-2 can be charged without being removed from the aircraft 1A. Therefore, it is possible to reduce the trouble of charging the plurality of first storage batteries 405-1 and 405-2.
<第3実施形態>
 次に、第3実施形態の航空機について説明する。第3実施形態の航空機は、第1実施形態の航空機に対して、第1蓄電池の電力が不足した場合に、第3蓄電池から第1蓄電池へ電力を供給可能に構成される点において相違している。以下、相違点を中心として説明する。なお、第3実施形態の説明において、第1実施形態にて使用した符号と同じ符号を付したものは、同一又は略同様のものである。
<Third Embodiment>
Next, the aircraft of the third embodiment will be explained. The aircraft of the third embodiment differs from the aircraft of the first embodiment in that it is configured so that electric power can be supplied from the third storage battery to the first storage battery when the power of the first storage battery is insufficient. there is The following description focuses on the points of difference. In addition, in the description of the third embodiment, the same or substantially similar parts are assigned the same reference numerals as those used in the first embodiment.
 図5に表されるように、第3実施形態の航空機1Bは、第1実施形態の航空機1が備える構成に加えて、複数(本例では、16本)の第5ケーブル33を備える。 As shown in FIG. 5, the aircraft 1B of the third embodiment includes a plurality of (16 in this example) fifth cables 33 in addition to the configuration of the aircraft 1 of the first embodiment.
 複数の第5ケーブル33は、第3蓄電池17から、16個の回転翼モジュール40-1~40-16がそれぞれ備える16対の第1蓄電池405-1,405-2へ電力をそれぞれ伝送する。複数の第5ケーブル33のそれぞれは、航空機1に固定される。 A plurality of fifth cables 33 transmit power from the third storage battery 17 to 16 pairs of first storage batteries 405-1 and 405-2 respectively provided in the 16 rotor blade modules 40-1 to 40-16. Each of the multiple fifth cables 33 is fixed to the aircraft 1 .
 複数の第5ケーブル33のそれぞれは、許容電流が第1ケーブル406-1,406-2、又は、第4ケーブル32と等しい。また、複数の第5ケーブル33のそれぞれは、1mあたりの重量が第1ケーブル406-1,406-2、又は、第4ケーブル32と等しい。 Each of the plurality of fifth cables 33 has the same allowable current as the first cables 406-1, 406-2 or the fourth cable 32. Also, each of the plurality of fifth cables 33 has the same weight per meter as the first cables 406-1 and 406-2 or the fourth cable 32. FIG.
 第3実施形態の航空機1Bによっても、第1実施形態の航空機1と同様の作用及び効果を奏することができる。
 更に、第3実施形態の航空機1Bによれば、第1蓄電池405-1,405-2の電力が不足した場合に、第3蓄電池17から第1蓄電池405-1,405-2へ電力を供給することにより、第1蓄電池405-1,405-2に電力を充電できる。
The aircraft 1B of the third embodiment can also achieve the same actions and effects as the aircraft 1 of the first embodiment.
Furthermore, according to the aircraft 1B of the third embodiment, when the power of the first storage batteries 405-1 and 405-2 is insufficient, power is supplied from the third storage battery 17 to the first storage batteries 405-1 and 405-2. By doing so, the first storage batteries 405-1 and 405-2 can be charged with electric power.
 なお、第3実施形態の変形例の航空機1Bにおいて、航空機1Bは、第3蓄電池17が有する電力が不足した場合に、第2蓄電池14から制御装置16又は第3蓄電池17へ電力が供給されるように構成されていてもよい。 In the aircraft 1B of the modified example of the third embodiment, when the power of the third storage battery 17 is insufficient, the aircraft 1B supplies power from the second storage battery 14 to the control device 16 or the third storage battery 17. It may be configured as
 また、第3実施形態の変形例の航空機1Bにおいて、航空機1Bは、第2蓄電池14が有する電力が不足した場合に、第3蓄電池17から第2回転駆動部13又は第2蓄電池14へ電力が供給されるように構成されていてもよい。 Further, in the aircraft 1B of the modified example of the third embodiment, when the power of the second storage battery 14 is insufficient, the power is supplied from the third storage battery 17 to the second rotation drive unit 13 or the second storage battery 14. may be configured to be supplied.
 また、第3実施形態の変形例の航空機1Bにおいて、航空機1Bは、第2実施形態の航空機1Aが備える、電源接続部31、及び、複数の第4ケーブル32を更に備えていてもよい。 Further, in the aircraft 1B of the modified example of the third embodiment, the aircraft 1B may further include the power connection section 31 and the plurality of fourth cables 32 provided in the aircraft 1A of the second embodiment.
<第4実施形態>
 次に、第4実施形態の航空機について説明する。第4実施形態の航空機は、第1実施形態の航空機に対して、航空機が備える回転翼モジュールの数において相違している。以下、相違点を中心として説明する。なお、第4実施形態の説明において、第1実施形態にて使用した符号と同じ符号を付したものは、同一又は略同様のものである。
<Fourth Embodiment>
Next, the aircraft of the fourth embodiment will be explained. The aircraft of the fourth embodiment differs from the aircraft of the first embodiment in the number of rotor modules that the aircraft comprises. The following description focuses on the points of difference. In addition, in the description of the fourth embodiment, the same reference numerals as those used in the first embodiment designate the same or substantially similar components.
 図6に表されるように、第4実施形態の航空機1Cは、第1実施形態の航空機1が備える、16個の回転翼モジュール40-1~40-16に代えて、8個の回転翼モジュール40-1~40-8を備える。 As shown in FIG. 6, the aircraft 1C of the fourth embodiment has eight rotor blades instead of the 16 rotor blade modules 40-1 to 40-16 provided in the aircraft 1 of the first embodiment. It has modules 40-1 to 40-8.
 第4実施形態の航空機1Cによっても、第1実施形態の航空機1と同様の作用及び効果を奏することができる。 The aircraft 1C of the fourth embodiment can also achieve the same actions and effects as the aircraft 1 of the first embodiment.
 なお、本発明は、上述した実施形態に限定されない。例えば、上述した実施形態に、本発明の趣旨を逸脱しない範囲内において当業者が理解し得る様々な変更が加えられてよい。 It should be noted that the present invention is not limited to the above-described embodiments. For example, various modifications that can be understood by those skilled in the art may be added to the above-described embodiments without departing from the scope of the present invention.
1,1A,1B,1C 航空機
10  胴体
11-1,11-2  尾翼
12  第2回転翼
13  第2回転駆動部
14  第2蓄電池
15  第2ケーブル
16  制御装置
17  第3蓄電池
18  第3ケーブル
20-1,20-2 前方固定翼
20-3,20-4 後方固定翼
40-1~40-16 回転翼モジュール
401 支持体
402-1,402-2 第1回転翼
403-1,403-2 電動機
404-1,404-2 速度制御器
405-1,405-2 第1蓄電池
406-1,406-2 第1ケーブル
407-1,407-2 回路保護器
408-1,408-2 回路開閉器
409-1,409-2 制御器
410-1,410-2 第1制御信号線
411-1,411-2 第2制御信号線
412-2,412-2 第3制御信号線
31  電源接続部
32  第4ケーブル
33  第5ケーブル

 
1, 1A, 1B, 1C Aircraft 10 Fuselage 11-1, 11-2 Tail 12 Second rotor 13 Second rotary drive unit 14 Second storage battery 15 Second cable 16 Control device 17 Third storage battery 18 Third cable 20- 1, 20-2 front fixed wing 20-3, 20-4 rear fixed wing 40-1 to 40-16 rotor module 401 support 402-1, 402-2 first rotor 403-1, 403-2 electric motor 404-1, 404-2 Speed controller 405-1, 405-2 First storage battery 406-1, 406-2 First cable 407-1, 407-2 Circuit protector 408-1, 408-2 Circuit switch 409-1, 409-2 Controllers 410-1, 410-2 First control signal lines 411-1, 411-2 Second control signal lines 412-2, 412-2 Third control signal lines 31 Power connection section 32 4th cable 33 5th cable

Claims (8)

  1.  垂直離着陸を行う航空機であって、
     胴体と、
     前記胴体から左右方向にて延在する、少なくとも1対の固定翼と、
     前記少なくとも1対の固定翼に支持され且つ回転駆動されることにより前記航空機を鉛直上方向へ推進させる推力を発生する、複数の第1回転翼と、
     電力によって前記複数の第1回転翼をそれぞれ回転駆動する複数の第1回転駆動部と、
     前記少なくとも1対の固定翼に固定され且つ電力を充放電する複数の第1蓄電池と、
     前記複数の第1蓄電池から前記複数の第1回転駆動部へ前記電力を伝送する複数の第1ケーブルと、
     を備える、航空機。
    An aircraft that performs vertical take-off and landing,
    torso and
    at least one pair of fixed wings extending laterally from the fuselage;
    a plurality of first rotor blades that are supported by and rotationally driven by the at least one pair of fixed wings to generate a thrust that propels the aircraft vertically upward;
    a plurality of first rotation drive units that rotate and drive the plurality of first rotor blades by electric power;
    a plurality of first storage batteries fixed to the at least one pair of fixed wings and charging and discharging electric power;
    a plurality of first cables that transmit the electric power from the plurality of first storage batteries to the plurality of first rotary drive units;
    an aircraft.
  2.  請求項1に記載の航空機であって、
     回転駆動されることにより前記航空機を前方向へ推進させる推力を発生する第2回転翼と、
     電力によって前記第2回転翼を回転駆動する第2回転駆動部と、
     前記胴体に固定され且つ電力を充放電する第2蓄電池と、
     前記第2蓄電池から前記第2回転駆動部へ前記電力を伝送する第2ケーブルと、
     を備える、航空機。
    An aircraft according to claim 1, wherein
    a second rotor that is rotationally driven to generate a thrust that propels the aircraft forward;
    a second rotary drive unit that rotates the second rotary blade by electric power;
    a second storage battery fixed to the body and charging and discharging electric power;
    a second cable that transmits the electric power from the second storage battery to the second rotary drive unit;
    an aircraft.
  3.  請求項2に記載の航空機であって、
     前記少なくとも1対の固定翼は、前後方向における位置が互いに異なる2対の固定翼を備え、
     前記複数の第1蓄電池は、前記2対の固定翼にそれぞれ固定され、
     前記第2蓄電池は、前後方向において前記2対の固定翼の間に位置する、航空機。
    An aircraft according to claim 2, wherein
    The at least one pair of fixed wings includes two pairs of fixed wings whose positions in the front-rear direction are different from each other,
    The plurality of first storage batteries are respectively fixed to the two pairs of fixed wings,
    The aircraft, wherein the second storage battery is positioned between the two pairs of fixed wings in the longitudinal direction.
  4.  請求項1乃至請求項3のいずれか一項に記載の航空機であって、
     電力によって動作することにより前記航空機を制御する制御装置と、
     前記胴体に固定され且つ電力を充放電する第3蓄電池と、
     前記第3蓄電池から前記制御装置へ前記電力を伝送する第3ケーブルと、
     を備える、航空機。
    An aircraft according to any one of claims 1 to 3,
    a controller that controls the aircraft by operating with electric power;
    a third storage battery fixed to the body and charging and discharging electric power;
    a third cable that transmits the power from the third storage battery to the control device;
    an aircraft.
  5.  請求項4に記載の航空機であって、
     前記少なくとも1対の固定翼は、前後方向における位置が互いに異なる2対の固定翼を備え、
     前記複数の第1蓄電池は、前記2対の固定翼にそれぞれ固定され、
     前記第3蓄電池は、前後方向において前記2対の固定翼の間に位置する、航空機。
    An aircraft according to claim 4,
    The at least one pair of fixed wings includes two pairs of fixed wings whose positions in the front-rear direction are different from each other,
    The plurality of first storage batteries are respectively fixed to the two pairs of fixed wings,
    The aircraft, wherein the third storage battery is positioned between the two pairs of fixed wings in the longitudinal direction.
  6.  請求項1乃至請求項5のいずれか一項に記載の航空機であって、
     前記少なくとも1対の固定翼に固定される、複数の回転翼モジュールを備え、
     前記複数の回転翼モジュールのそれぞれは、
     前記航空機の前後方向において、前記固定翼の前方と前記固定翼の後方とに亘って前後方向にて延在する支持体と、
     前記支持体により支持され且つ前記航空機の前後方向において前記固定翼の前方と前記固定翼の後方とにそれぞれ位置する1対の前記第1回転翼と、
     前記支持体に固定される1対の前記第1回転駆動部と、
     前記支持体に固定され且つ前後方向において前記1対の第1回転翼の間に位置する少なくとも1つの前記第1蓄電池と、
     前記少なくとも1つの第1蓄電池から前記1対の第1回転駆動部へ前記電力をそれぞれ伝送する1対の前記第1ケーブルと、
     を備える、航空機。
    An aircraft according to any one of claims 1 to 5,
    a plurality of rotor modules secured to the at least one pair of stator wings;
    each of the plurality of rotor modules,
    a support extending longitudinally from the front of the fixed wing to the rear of the fixed wing in the longitudinal direction of the aircraft;
    a pair of said first rotors supported by said support and positioned respectively forwardly of said fixed wing and rearwardly of said fixed wing in the longitudinal direction of said aircraft;
    a pair of the first rotary drive units fixed to the support;
    at least one first storage battery fixed to the support and positioned between the pair of first rotor blades in the front-rear direction;
    a pair of first cables respectively transmitting the power from the at least one first storage battery to the pair of first rotary drives;
    an aircraft.
  7.  請求項1乃至請求項6のいずれか一項に記載の航空機であって、
     外部の電源が接続される電源接続部と、
     前記電源接続部から前記複数の第1蓄電池のそれぞれへ電力を伝送し且つ前記第1ケーブルよりも許容電流が小さい、複数の第4ケーブルと、
     を備える、航空機。
    An aircraft according to any one of claims 1 to 6,
    a power connection to which an external power source is connected;
    a plurality of fourth cables that transmit power from the power supply connection portion to each of the plurality of first storage batteries and have a smaller allowable current than the first cables;
    an aircraft.
  8.  航空機の胴体から左右方向にて延在する固定翼に固定される回転翼モジュールであって、
     前記航空機の前後方向において、前記固定翼の前方と前記固定翼の後方とに亘って前後方向にて延在する支持体と、
     前記支持体により支持され且つ前記航空機の前後方向において前記固定翼の前方と前記固定翼の後方とに位置するとともに、回転駆動されることにより前記航空機を鉛直上方向へ推進させる推力を発生する1対の第1回転翼と、
     前記支持体に固定され且つ電力によって前記1対の第1回転翼をそれぞれ回転駆動する1対の第1回転駆動部と、
     前記支持体に固定され且つ前記航空機の前後方向において前記1対の第1回転翼の間に位置するとともに、電力を充放電する少なくとも1つの第1蓄電池と、
     前記少なくとも1つの第1蓄電池から前記1対の第1回転駆動部へ前記電力をそれぞれ伝送する1対の第1ケーブルと、
     を備える、回転翼モジュール。
    A rotary wing module fixed to fixed wings extending laterally from an aircraft fuselage,
    a support extending longitudinally from the front of the fixed wing to the rear of the fixed wing in the longitudinal direction of the aircraft;
    1 which is supported by the support, is located in front of the fixed wing and behind the fixed wing in the longitudinal direction of the aircraft, and is rotationally driven to generate thrust for propelling the aircraft vertically upward; a pair of first rotor blades;
    a pair of first rotary drive units fixed to the support and configured to rotate the pair of first rotary blades by electric power;
    at least one first storage battery fixed to the support and positioned between the pair of first rotor blades in the longitudinal direction of the aircraft for charging and discharging electric power;
    a pair of first cables respectively transmitting the power from the at least one first storage battery to the pair of first rotary drives;
    a rotor module.
PCT/JP2021/007225 2021-02-25 2021-02-25 Aircraft and rotor blade module WO2022180754A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/007225 WO2022180754A1 (en) 2021-02-25 2021-02-25 Aircraft and rotor blade module
JP2023502078A JP7442907B2 (en) 2021-02-25 2021-11-28 aircraft
PCT/JP2021/043510 WO2022180968A1 (en) 2021-02-25 2021-11-28 Aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007225 WO2022180754A1 (en) 2021-02-25 2021-02-25 Aircraft and rotor blade module

Publications (1)

Publication Number Publication Date
WO2022180754A1 true WO2022180754A1 (en) 2022-09-01

Family

ID=83047939

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/007225 WO2022180754A1 (en) 2021-02-25 2021-02-25 Aircraft and rotor blade module
PCT/JP2021/043510 WO2022180968A1 (en) 2021-02-25 2021-11-28 Aircraft

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043510 WO2022180968A1 (en) 2021-02-25 2021-11-28 Aircraft

Country Status (2)

Country Link
JP (1) JP7442907B2 (en)
WO (2) WO2022180754A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231253A (en) * 2013-05-28 2014-12-11 独立行政法人 宇宙航空研究開発機構 Flight control system of qtw craft
US9085354B1 (en) * 2013-04-23 2015-07-21 Google Inc. Systems and methods for vertical takeoff and/or landing
JP2017532256A (en) * 2014-11-11 2017-11-02 アマゾン テクノロジーズ インコーポレイテッド Unmanned aerial vehicle configuration for long-term flight
US20180215465A1 (en) * 2017-01-31 2018-08-02 Joseph Raymond RENTERIA Rotatable thruster aircraft with separate lift thrusters
US20180312251A1 (en) * 2017-04-27 2018-11-01 Val Petrov Vertical takeoff and landing airframe
CN209382254U (en) * 2018-11-20 2019-09-13 西安爱生无人机技术有限公司 A kind of wing of vertical take-off and landing drone

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8616492B2 (en) * 2009-10-09 2013-12-31 Oliver Vtol, Llc Three wing, six tilt-propulsion units, VTOL aircraft
US10377488B1 (en) 2016-05-02 2019-08-13 Draganfly Innovations Inc. Tandem-wing aircraft system with shrouded propeller
CN109476373A (en) 2016-05-18 2019-03-15 空中客车A^3有限责任公司 For passenger or the auto-navigation aircraft of cargo transport
CN205819564U (en) 2016-07-17 2016-12-21 龙川 Modified model level of approximation rotates propeller wing flap lift-rising and connects wing aircraft
US10479496B2 (en) 2016-10-31 2019-11-19 Lockheed Martin Corporation Magnetic orientation detent with motor assist
CN206511121U (en) 2016-12-14 2017-09-22 深圳市大疆创新科技有限公司 Unmanned vehicle
US10597152B2 (en) 2017-07-27 2020-03-24 Textron Innovations Inc. Dual tiltwing aircraft having a quadrilateral linkage
FR3086641B1 (en) 2018-09-28 2020-09-04 Airbus Helicopters ELECTRIC OR HYBRID MOTORIZED MULTIROTOR AIRCRAFT WITH OPTIMIZED ENERGY CONSUMPTION

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085354B1 (en) * 2013-04-23 2015-07-21 Google Inc. Systems and methods for vertical takeoff and/or landing
JP2014231253A (en) * 2013-05-28 2014-12-11 独立行政法人 宇宙航空研究開発機構 Flight control system of qtw craft
JP2017532256A (en) * 2014-11-11 2017-11-02 アマゾン テクノロジーズ インコーポレイテッド Unmanned aerial vehicle configuration for long-term flight
US20180215465A1 (en) * 2017-01-31 2018-08-02 Joseph Raymond RENTERIA Rotatable thruster aircraft with separate lift thrusters
US20180312251A1 (en) * 2017-04-27 2018-11-01 Val Petrov Vertical takeoff and landing airframe
CN209382254U (en) * 2018-11-20 2019-09-13 西安爱生无人机技术有限公司 A kind of wing of vertical take-off and landing drone

Also Published As

Publication number Publication date
WO2022180968A1 (en) 2022-09-01
JPWO2022180968A1 (en) 2022-09-01
JP7442907B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
US11208207B2 (en) Vertical takeoff and landing (VTOL) aircraft
US11052998B2 (en) Multirotor electric aircraft with redundant security architecture
US20200115045A1 (en) Electrically or hybrid powered multirotor aircraft with optimized energy consumption
US11673676B2 (en) Hybrid VTOL aerial vehicle
US6293491B1 (en) Vertical take-off and landing aircraft
ES2531843T3 (en) Tilt-Wing Plane
CN110641693A (en) Vertical take-off and landing unmanned aerial vehicle
WO2019211875A1 (en) Hybrid vertical takeoff and landing (vtol) aircraft with vehicle assist
US11661180B2 (en) Systems and methods for power distribution in electric aircraft
US20170305548A1 (en) Helicopter
US11745883B2 (en) Systems and methods for power distribution in electric aircraft
US20230382528A1 (en) Vehicle, system, and method for vertical take-off and landing
GB2576250A (en) Aircraft
RU147731U1 (en) AIRCRAFT
WO2022180754A1 (en) Aircraft and rotor blade module
EP4049930B1 (en) An electrically powered rotary-wing aircraft
WO2023157189A1 (en) Aircraft and rotor blade module
CN117460667A (en) Series of hoverable convertible aircraft and method for constructing a hoverable convertible aircraft
RU189830U1 (en) Vertical take-off and landing aircraft
WO2022180755A1 (en) Aircraft
EP4105125B1 (en) Series of convertible aircrafts capable of hovering and method for configuring a convertible aircraft capable of hovering
TW202241759A (en) Dual-mode hybrid power unmanned aerial vehicle can vertically take-off in narrow space without runways and provide long hovering power demand via petrol engine and brushless motor generator as hybrid power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927856

Country of ref document: EP

Kind code of ref document: A1