WO2022176897A1 - Device, chip, and substrate - Google Patents

Device, chip, and substrate Download PDF

Info

Publication number
WO2022176897A1
WO2022176897A1 PCT/JP2022/006125 JP2022006125W WO2022176897A1 WO 2022176897 A1 WO2022176897 A1 WO 2022176897A1 JP 2022006125 W JP2022006125 W JP 2022006125W WO 2022176897 A1 WO2022176897 A1 WO 2022176897A1
Authority
WO
WIPO (PCT)
Prior art keywords
pillars
gel
zone
substance
channel
Prior art date
Application number
PCT/JP2022/006125
Other languages
French (fr)
Japanese (ja)
Inventor
周平 青山
雄斗 秋山
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023500889A priority Critical patent/JPWO2022176897A1/ja
Publication of WO2022176897A1 publication Critical patent/WO2022176897A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to devices, chips and substrates.
  • Patent Documents 1 to 3 disclose techniques related to devices for detecting components in specimens.
  • Patent Document 1 discloses an immunoassay system having a channel in which at least a part of a fine structure in which fine beads having a primary antibody immobilized on the surface are uniformly dispersed and held in a photocured hydrophilic resin is arranged. A microchip is described.
  • Patent Document 2 discloses a microstructure in which one type of specific binding reagent or one type of specimen mixed in a photo-cured hydrophilic resin is held by cross-linking in individual channels provided on a substrate.
  • a microfluidic device is described in which a
  • U.S. Pat. No. 6,200,000 also discloses a diagnostic element comprising an inlet passageway; a retention port that embeds a diagnostic gel that includes a hole; and an outlet passageway, the inlet passageway and the outlet passageway being on either side of the retention port. Have been described.
  • the present invention provides a device that has excellent detection sensitivity and can be used simply without using an additional device for liquid transfer.
  • the device, chip and substrate shown below are provided.
  • a device for capturing and detecting a substance to be detected in a liquid sample a base material; a channel for transporting the liquid sample provided on one surface of the substrate; a sensing zone provided in a portion of the flow path; with The detection zone is provided with gel-like pillars made of a gel-like substance, a capture substance that specifically binds to the substance to be detected is held in the gel pillar;
  • the device, wherein the channel is formed by a plurality of channel-forming pillars or microgrooves upstream or downstream of the sensing zone.
  • an induction zone is provided upstream of the detection zone to guide the liquid sample to the detection zone by capillary action;
  • the shape of the flow path forming pillar is a cylinder, a cone, a truncated cone, a polygonal prism, a polygonal pyramid, or a truncated polygonal pyramid;
  • [4] The device according to any one of [1] to [3], wherein the substance to be detected is an antigen, and the capturing substance is an antibody against the antigen.
  • [5] The device according to any one of [1] to [3], wherein the substance to be detected is a first antibody and the capturing substance is a second antibody specific to the first antibody. .
  • [6] The device according to any one of [1] to [5], wherein the trapping substance is covalently bonded to the gel-like substance.
  • the detection zone is provided with a plurality of the gel-like pillars in a direction perpendicular to the transport direction of the liquid sample.
  • the material of the lid is selected from the group consisting of quartz glass, soda lime glass, borosilicate glass, poly(meth)acrylate, polyester, polyolefin, polystyrene, polycarbonate, fluororesin, polyvinyl chloride, polyamide and polyimide.
  • the device of [12], comprising one or more of [14] The device according to any one of [1] to [13], wherein a reservoir or a dam for the liquid sample is provided downstream of the detection zone.
  • an induction zone is provided upstream of the detection zone to guide the liquid sample to the detection zone by capillary action;
  • a device for capturing and detecting a substance to be detected in a liquid sample comprising a channel for transferring the liquid sample, the channel has a detection zone in a part of the direction in which the liquid sample is transferred;
  • the detection zone is provided with a gel-like first pillar that is made of a gel-like substance and holds a capture substance that specifically binds to the substance to be detected.
  • the downstream zone is provided with a plurality of second pillars different from said first pillars, or said zone is composed of micro-grooves.
  • the flow path has an induction zone upstream of the detection zone that guides the liquid sample to the detection zone by capillary action;
  • a substrate used in a device that captures and detects a substance to be detected in a liquid sample a channel for transferring the liquid sample provided on one surface of the substrate; a detection zone provided in a portion of the flow path; with The detection zone is provided with gel-like pillars made of a gel-like substance, a capture substance that specifically binds to the substance to be detected is held in the gel pillar;
  • the substrate, wherein the channel is formed by a plurality of channel-forming pillars or fine grooves on the upstream side or downstream side of the detection zone.
  • a long substrate a first zone provided in a part of the substrate in the longitudinal direction, made of a gel-like substance, and capable of arranging a gel-like first pillar holding a capture substance that specifically binds to a substance to be detected; a second zone located on at least one side of the first zone in the longitudinal direction of the substrate and provided with a plurality of second pillars different from the first pillars or composed of fine grooves; A substrate.
  • the present invention it is possible to provide a device that has excellent detection sensitivity and can be used easily even without using an additional device for liquid transfer.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a device according to an embodiment
  • FIG. FIG. 4 is a top view showing an example of arrangement of adjacent gel-like pillars in the embodiment
  • FIG. 4 is a top view showing an example of arrangement of adjacent gel-like pillars in the embodiment
  • FIG. 4 is a top view showing an arrangement example of adjacent channel forming pillars in the embodiment.
  • 1 is a cross-sectional view showing a configuration example of a device according to an embodiment
  • FIG. 1 is a top view showing an example of the configuration of a device according to an embodiment
  • FIG. It is a perspective view showing an example of the configuration of the device in the embodiment.
  • FIG. 10 is a diagram showing evaluation results of immunoassay.
  • FIG. 10 is a diagram showing evaluation results of immunoassay. It is a perspective view showing an example of the configuration of the device in the embodiment.
  • FIG. 1 is a perspective view showing an example of the configuration of the device according to this embodiment.
  • a device 100 shown in FIG. 1 is a device that captures and detects a substance to be detected in a liquid sample.
  • the device 100 includes a substrate 101, a channel 103 provided on one surface of the substrate 101 for transferring a liquid sample, a detection zone 110 (first zone) provided in a part of the channel 103, Prepare.
  • the detection zone 110 is provided with a gel pillar (first pillar) 105 made of a gel substance, and the gel pillar 105 holds a capture substance 107 that specifically binds to the substance to be detected.
  • the channel 103 is formed by a plurality of channel-forming pillars (a second pillar different from the first pillar) or fine grooves.
  • An example is shown in which 103 is formed by a plurality of channel-forming pillars.
  • the zone of the channel 103 upstream or downstream of the sensing zone 110 is provided with a plurality of channel-forming pillars, or such zone is composed of microgrooves.
  • the device 100 is provided with a guidance zone 120 upstream of the detection zone 110 to guide the liquid sample to the detection zone 110 by capillary action. formed by In other words, the guiding zone 120 of the channel 103 is provided with a plurality of channel-defining pillars 109 . Further, the device 100 is provided downstream of the detection zone 110 with a discharge zone 130 for discharging the liquid sample from the detection zone 110 by capillary action. It is formed by forming pillars 111 . In other words, the discharge zone 130 of the channel 103 is provided with a plurality of channel-defining pillars 111 .
  • the base material 101 is specifically a substrate used as the base material of the device 100 .
  • Examples of the shape of the base material 101 include a sheet shape and a plate shape.
  • FIG. 1 shows an example of a device 100 having a sheet-like base material 101 .
  • planar shape of the base material 101 include polygons such as squares, circles, and ellipses.
  • the vertical width (length in the lateral direction) of the base material 101 may be, for example, about 1 to 100 mm
  • the width (length in the longitudinal direction) of the base material 101 may be, for example, It may be about 2 to 100 mm.
  • the thickness of the base material 101 is, for example, 0.05 mm or more, preferably 0.1 mm or more.
  • the thickness of the substrate 101 is, for example, 5 mm or less, preferably 3 mm or less.
  • the base material 101 examples include glass such as quartz glass, soda lime glass, borosilicate glass; and poly(meth)acrylate such as polymethyl(meth)acrylate, polyester, polyolefin, polystyrene, polycarbonate, fluorine One or two or more selected from the group consisting of resin materials such as resin, polyvinyl chloride, polyamide, and polyimide can be used.
  • the material of the base material 101 is preferably a thermoplastic resin in that the base material 101 and the flow path forming pillars 109 can be integrally molded.
  • the thermoplastic resin specifically includes one or more selected from the group consisting of polyester, polyolefin, polystyrene, polycarbonate, fluororesin and (meth)acrylic resin, more specifically polyethylene terephthalate.
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PP polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PVDF polyvinylidene fluoride
  • PMMA polymethyl methacrylate
  • PE polyethylene 1 or 2 or more.
  • FIG. 13 is a perspective view showing a configuration example of a device using a substrate having recesses.
  • the basic configuration of the device 180 shown in FIG. 13 is similar to that of the device 100 shown in FIG. is formed.
  • the concave portion 129 constitutes a channel for moving the liquid sample.
  • the detection zone 110 may be provided in a part of the recess 129 in the longitudinal direction (transfer direction of the liquid sample). In the example shown in FIG.
  • a detection zone 110 and an ejection zone 130 are provided in that order.
  • the bottom surfaces of gel-like pillar 105, channel-forming pillar 109, and channel-forming pillar 111 are positioned on the bottom surface of recess 129 as shown in FIG. 13, for example.
  • the upper ends of the gel-like pillars 105, the channel-forming pillars 109, and the channel-forming pillars 111 may be positioned at the same level as the upper end of the side wall defining the recess 129, that is, the upper surface of the substrate 127, or at a different level. For example, it may be located below the upper surface of the base material 127 .
  • the width of the recesses 129 may be the same as shown in FIG. 13 or may be different.
  • the width of recesses 129 in sensing zone 110 may be greater than the width of recesses 129 in induction zone 120 and ejection zone 130 .
  • the gel pillar 105 is made of a gel substance.
  • a gel-like substance is specifically a substance comprising a polymeric material having a three-dimensional network structure, which becomes gel-like when a liquid is applied. Therefore, the gel-like pillars 105 may be in a liquid-swollen state or in a non-liquid-swollen state, i.e., in a gel state when the liquid is applied to the detection zone 110 at a desired timing. may be
  • polymeric materials include (meth)acrylates such as polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polyurethane (meth)acrylate, gelatin (meth)acrylate, collagen (meth)acrylate; poly(meth)acrylate; ) One or more selected from the group consisting of acrylamide and collagen.
  • (meth)acrylate is at least one of acrylate and methacrylate.
  • Examples of the shape of the gel-like pillar 105 include columnar bodies such as cylinders and polygonal columns; cones such as cones and polygonal pyramids; and truncated cones such as truncated cones and polygonal pyramids. These shapes do not need to be geometrically accurate shapes, and may be shapes with rounded corners, shapes with fine unevenness on the surface, and the like. From the viewpoint of improving moldability, the shape of the gel-like pillars 105 is preferably cylindrical or polygonal.
  • the diameter of the gel-like pillars 105 is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, from the viewpoint of improving moldability. Also, from the viewpoint of improving formability, the diameter of the gel-like pillars 105 is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less.
  • the diameter of the gel-like pillars 105 for example, arbitrary five gel-like pillars 105 are selected from the detection zone 110, and the average value of the diameters of the bottom surface or top surface of the selected five gel-like pillars 105 can be adopted. .
  • the height of the gel pillars 105 is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, from the viewpoint of improving moldability. Also, from the viewpoint of improving formability, the height of the gel pillars 105 is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less.
  • the height of the gel-like pillars 105 for example, arbitrary five gel-like pillars 105 are selected from the detection zone 110, and the average value of the heights of the selected five gel-like pillars 105 can be adopted.
  • the number of gel-like pillars 105 may be one or two or more.
  • one gel-like pillar 105 may be provided in a direction perpendicular to the transfer direction X of the liquid sample (w in FIG. 1: width direction of the channel 103), or two or more gel-like pillars 105 may be provided.
  • Shaped pillars 105 may be provided. From the viewpoint of improving the detection sensitivity and measurement accuracy of the substance to be detected, as shown in FIG. is provided. Also, in the detection zone 110, it is preferable that a plurality of gel-like pillars 105 are provided in the liquid sample transfer direction X (extending direction of the channel 103).
  • the planar arrangement of the plurality of gel-like pillars 105 may be regular or irregular. From the viewpoint of improving the detection sensitivity and measurement accuracy of the substance to be detected, the gel pillars 105 are preferably arranged in a lattice when the detection zone 110 is viewed from above. More specifically, the lattice-like arrangement includes a square lattice and an oblique lattice such as a hexagonal lattice.
  • the distance between adjacent gel-like pillars 105 in the detection zone 110 is 0 ⁇ m or more. It is set accordingly.
  • the closest distance is preferably greater than 0 ⁇ m, and when the gel-like pillars 105 are pyramidal or frustum-shaped, the closest distance is 0 ⁇ m or more. From the viewpoint of moving the liquid such as the liquid sample more efficiently in the detection zone 110, the closest distance is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more.
  • the contact area between the liquid sample and the gel-like pillars 105 is increased, which increases the capillary force, making it easier to move the liquid sample.
  • the distance is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less.
  • the "distance between adjacent gel-like pillars 105" is defined by the peripheral surfaces of the two closest gel-like pillars 105 on a line segment connecting the central points of the top view. Distance. Specifically, as the distance between adjacent gel-like pillars 105, five distances between arbitrary adjacent gel-like pillars 105 from the detection zone 110 are selected, and the average value of the selected five distances is adopted. can be done.
  • 3(a), 3(b) and 4 are top views showing an arrangement example of the gel-like pillars 105.
  • FIG. The planar shape of the gel-like pillar 105 is circular in FIGS. 3(a) and 4, and is rectangular in FIG. 3(b).
  • the nearest distance is the distance indicated by the arrow in FIG. be.
  • the contact area between the gel pillars 105 and the liquid sample can be increased, and the binding amount of the substance to be detected by the capture substance 107 can be increased.
  • the detection sensitivity of the substance to be detected can be enhanced.
  • the detection sensitivity more specifically, when the area of the detection zone 110 used for detecting the substance to be detected captured by the gel pillars 105 is larger than the size of the gel pillars 105 in plan view, By reducing the closest distance, the number of gel-like pillars 105 per unit area increases, and the intensity of the detection signal per unit area can be increased. Further, in a plan view, the greater the number of gel pillars 105 per unit area, the higher the probability of contact between the gel pillars 105 and the substance to be detected. Capturing becomes possible, and as a result, the strength of the detection signal per unit area can be increased. On the other hand, the greater the distance between adjacent gel-like pillars 105, the easier the molding.
  • Gel pillars 105 hold capture substances 107 .
  • the trapping substance 107 may be chemically or physically immobilized on the gel pillars 105 .
  • the trapping substance 107 may be included in the gel pillars 105 or may be carried on the surface of the gel pillars 105 .
  • trapping substance 107 is preferably covalently bonded to the gel substance in gel pillar 105 .
  • the trapping substance 107 may be directly bound to the gel pillars 105 or may be bound to intervening molecules such as spacer molecules that are bound to the gel pillars 105 .
  • Intervening molecules preferably include glycols such as polyethylene glycol, ethers, amines, esters, amides, alcohols, carboxylic acids, and the like.
  • Capture substance 107 is selected from substances that specifically bind to the substance to be detected.
  • the capture substance 107 may be an antibody against the antigen or an antigen-binding fragment thereof, preferably an antibody.
  • the antigen may be a substance having immunogenicity by itself, or may be a hapten.
  • the substance to be detected may be a first antibody, and the capture substance may be a second antibody specific to the first antibody.
  • the antibody may be a polyclonal antibody or a monoclonal antibody.
  • the substance to be detected may be a substance capable of antigen-antibody reaction with the antibody, such as various pathogens and various clinical markers. More specifically, the substances to be detected include virus antigens such as influenza virus, norovirus, adenovirus, respiratory syncytial virus, HAV, HBs, and HIV, and bacterial antigens such as MRSA, group A streptococcus, group B streptococcus, and Legionella spp.
  • virus antigens such as influenza virus, norovirus, adenovirus, respiratory syncytial virus, HAV, HBs, and HIV
  • bacterial antigens such as MRSA, group A streptococcus, group B streptococcus, and Legionella spp.
  • a substance to be detected is usually in a suspended or dissolved state in a liquid sample.
  • a liquid sample may be, for example, a sample in which a substance to be detected is suspended or dissolved in a buffer.
  • Substances to be detected are not limited to antigens, and may be selected from the group consisting of, for example, proteins and peptides such as enzymes and antibodies; nucleic acids; polysaccharides; and glycoproteins.
  • the capture substance 107 may be a substance having specificity for these substances to be detected.
  • capture substance 107 may be selected from the group consisting of proteins, nucleic acids, polysaccharides, glycoproteins.
  • the device 100 shows a configuration in which the bottom surface a of the detection zone 110 is at the same level as the bottom surface b of the induction zone 120. From the viewpoint of further increasing the detection sensitivity of the substance to be detected, the bottom surface a of the detection zone 110 may be at a level lower than the bottom surface b of the induction zone 120 . Also, the bottom surface a of the sensing zone 110 may be at a lower level than the bottom surface c of the ejection zone 130 .
  • the guidance zone (second zone) 120 is preferably provided with a plurality of channel-forming pillars 109 from the viewpoint of reliably guiding the liquid sample to the detection zone 110 by capillary action.
  • the planar arrangement of the plurality of flow path forming pillars 109 may be regular or irregular.
  • the channel forming pillars 109 are preferably arranged in a lattice when the guide zone 120 is viewed from above. More specifically, the lattice-like arrangement includes a square lattice and an oblique lattice such as a hexagonal lattice.
  • Examples of the shape of the flow path forming pillar 109 include columnar bodies such as cylinders and polygonal columns; cones such as cones and polygonal pyramids; and truncated cones such as truncated cones and polygonal pyramids. These shapes do not need to be geometrically accurate shapes, and may be shapes with rounded corners, shapes with fine unevenness on the surface, and the like. From the viewpoint of improving moldability, the shape of the flow path forming pillar 109 is preferably a cylinder, a cone, a truncated cone, a polygonal cylinder, a polygonal pyramid, or a truncated polygonal pyramid, more preferably a cylinder, a cone, or a truncated cone.
  • a truncated cone is preferred.
  • the shape of the plurality of channel forming pillars 109 may be the same or different. From the viewpoint of producing a desired fine uneven structure with good reproducibility, it is preferable that the plurality of flow path forming pillars 109 have the same shape.
  • the diameter of the bottom surface of the channel-forming pillar 109 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of improving formability.
  • the diameter of the bottom surface of the flow path forming pillar 109 is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less.
  • the diameter of the bottom surface of the channel-forming pillar 109 for example, arbitrary five channel-forming pillars 109 are selected from the guiding zone 120, and the average value of the diameters of the bottom surfaces of the selected five channel-forming pillars 109 is adopted. be able to.
  • the height of the channel-forming pillar 109 is preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, from the viewpoint of improving moldability. Moreover, from the viewpoint of improving formability, the height of the flow path forming pillar 109 is preferably 1000 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the height of the channel-forming pillars 109 for example, arbitrary five channel-forming pillars 109 are selected from the induction zone 120, and the average value of the heights of the selected five channel-forming pillars 109 can be adopted. can.
  • the distance between the adjacent flow path forming pillars 109 in the guiding zone 120 is appropriately set according to the shape of the flow path forming pillars 109, and is, for example, approximately 0 to 500 ⁇ m.
  • the closest distance is preferably greater than 0 ⁇ m
  • the closest distance is 0 ⁇ m or more.
  • the closest distance may be, for example, 0.1 ⁇ m or more, or may be, for example, 2 ⁇ m or more.
  • the upper limit of the closest distance is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the distance between the adjacent flow path forming pillars 109 is defined by the peripheral surfaces of the two closest flow path forming pillars 109 on the line segment connecting the center points of the top view.
  • distance As the distance between adjacent flow path forming pillars 109, specifically, five distances between any adjacent flow path forming pillars 109 from the induction zone 120 are selected, and the average value of the selected five distances is adopted. can do. For example, when the closest distance between conical or truncated conical channel-forming pillars arranged in a hexagonal lattice is 0 ⁇ m, the adjacent channel-forming pillars 109 are arranged without gaps, for example, as shown in FIG. . FIG.
  • FIG. 5 is a top view showing an arrangement example of the channel forming pillars 109. As shown in FIG. By arranging the channel-forming pillars 109 without gaps, the number of channel-forming pillars 109 per unit area is increased, and the capillary force is further increased, making it easier to transfer the liquid sample.
  • the material of the flow path forming pillar 109 include those described above as the material of the base material 101 .
  • the material of the channel forming pillars 109 may be the same as or different from the material of the substrate 101 . Further, for example, the channel forming pillar 109 and the base material 101 may be configured as a single member. That is, the device 100 does not have to have an interface between the base material 101 and the channel-forming pillars 109 .
  • the channel 103 is formed by a plurality of channel-forming pillars 111 .
  • the discharge zone 130 is provided with a plurality of channel forming pillars 111 .
  • the configuration of the discharge zone 130 and the channel-forming pillars 111 can be, for example, according to the induction zone 120 and the channel-forming pillars 109, respectively.
  • the discharge zone 130 of the device 100 may be discharged by overlapping an absorbent pad.
  • Materials for the absorbent pad include paper and porous bodies.
  • the arrangement of the absorbent pad for example, it may be arranged so as to overlap the base material 101 in at least a part of the discharge zone 130 or may be arranged adjacent to the base material 101 .
  • FIG. 2 is a cross-sectional view showing another configuration example of the device according to this embodiment.
  • the basic configuration of the device 150 shown in FIG. 2 is the same as the device 100 described above with reference to FIG. is different.
  • the lid portion 113 By providing the lid portion 113, drying of the gel-like pillars 105 in the detection zone 110 can be suppressed. Also.
  • the lid portion 113 may cover the entire substrate 101 or may cover a portion of the substrate 101 .
  • the thickness of the lid portion 113 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more. From the viewpoint of thinning the device 150, the thickness of the lid portion 113 is, for example, 1000 ⁇ m or less, preferably 200 ⁇ m or less.
  • the lid 113 is preferably made of a transparent material. More specifically, the material of the lid part 113 is glass such as quartz glass, soda lime glass, borosilicate glass; and poly(meth)acrylate, polyester, polyolefin, polystyrene, polycarbonate, fluororesin, polyvinyl chloride, polyamide , polyimide and other resins.
  • glass such as quartz glass, soda lime glass, borosilicate glass
  • the configuration in which the induction zone 120, the detection zone 110, and the discharge zone 130 are provided in this order from the upstream side of the device, that is, the liquid sample introduction side to the downstream side, was described as an example. At least one of the induction zone 120 and the ejection zone 130 need only be provided. Also, the device may be provided with regions other than the regions described above. For example, the device may be provided with a sample introduction upstream of the sensing zone 110 and more specifically upstream of the induction zone 120 .
  • 6(a) to 6(d) are cross-sectional views showing examples of arrangement of devices. As shown in FIG.
  • the device may be provided with a planar portion 115 between the sensing zone 110 and the ejection zone 130 without flow channel forming pillars.
  • the device may also include, downstream from the sensing zone 110, and more specifically upstream from the exhaust zone 130, a liquid A sample reservoir 119 or reservoir 121 or a damming portion 117 may be provided. None of the reservoir 119 or the reservoir 121 and the damming portion 117 is provided with flow path forming pillars.
  • the height (thickness of the substrate 101) gradually increases from the detection zone 110 toward the discharge zone 130, and there is a step at the boundary with the discharge zone 130. formed. Due to the presence of this step, the effect of preventing the liquid sample from flowing back from the discharge zone 130 to the detection zone 110, that is, the damming effect is exhibited.
  • 6(c) and the reservoir 121 of FIG. 6(d) are provided with areas where the bottom surface of the substrate 101 is located at a level lower than the bottom surface of the substrate 101 in the detection zone 110. ing. Thereby, the moving speed of the liquid in the detection zone 110 can be adjusted. 6(a) to 6(d) can be appropriately combined to form a desired device. The moving speed of the liquid can be made more suitable.
  • the channel 103 is configured by a plurality of channel-forming pillars 109 and a plurality of channel-forming pillars 111 (a plurality of flow channels in the channel 103).
  • the passage-forming pillar 109 and a plurality of passage-forming pillars 111 are provided has been shown, the passage 103 may be configured by fine grooves.
  • FIG. 7 is a top view showing a configuration example of a device having fine grooves.
  • Device 140 shown in FIG. 7 is an example in which the flow paths in induction zone 120 and discharge zone 130 shown in FIG.
  • the width of the fine grooves 123 and 125 in the direction perpendicular to the direction of transfer of the liquid sample increases the contact area between the liquid sample and the channel 103, which increases the capillary force, so that the liquid sample can be moved.
  • the thickness is preferably 2 ⁇ m or more, preferably 2000 ⁇ m or less, and more preferably 1000 ⁇ m or less.
  • the widths of microgrooves 123 and 125 may be the same or different.
  • the volume of fine grooves 123 and 125 is 1000 ⁇ m width ⁇ 20 mm length ⁇ 1000 ⁇ m depth, and the volume of detection zone 110 is 2000 ⁇ m width ⁇ length.
  • a shape having a size of 10 mm ⁇ 1000 ⁇ m in depth and having gel-like pillars 105 arranged in the detection zone 110 can be exemplified.
  • the detection zone 110 is a region wider than the fine grooves 123 and 125 in the direction perpendicular to the transfer direction of the liquid sample. gel-like pillars 105 are regularly arranged.
  • FIG. 8 and 9 are perspective views showing configuration examples of a device in which one gel-like pillar 105 is provided in the detection zone 110.
  • FIG. 8 and device 170 shown in FIG. 9 are both similar to the configuration of device 100 described above with reference to FIG.
  • a columnar gel pillar 105 and one rectangular parallelepiped gel pillar 105 are provided.
  • the area of the gel-like pillar 105 may be larger than the areas of the channel-forming pillars 109 and 111 in top view. .
  • the device can be obtained, for example, by forming gel-like pillars 105 and at least one of channel-forming pillars 109 and channel-forming pillars 111 on one surface of substrate 101 in a predetermined order.
  • Examples of the method for forming the channel-forming pillars 109 and the channel-forming pillars 111 include imprinting such as thermal imprinting and UV imprinting; injection molding; Pattern formation for UV curable resin by photolithography, soft lithography using UV curable resin patterned by photolithography as a template, pattern formation by etching using UV curable resin patterned by photolithography; machine cutting; and laser processing.
  • imprinting such as thermal imprinting and UV imprinting
  • injection molding Pattern formation for UV curable resin by photolithography, soft lithography using UV curable resin patterned by photolithography as a template, pattern formation by etching using UV curable resin patterned by photolithography; machine cutting; and laser processing.
  • thermal imprinting and injection molding for thermoplastic resins are suitable as techniques for performing precision processing at low cost.
  • Specific examples of the thermoplastic resin include those mentioned above as the material of the base material 101 .
  • the conical has a narrower top than the bottom.
  • the volume to be machined out at the time of manufacturing a mold is smaller than when manufacturing a columnar body with the same bottom surface, and the mold can be manufactured at a low cost. In this case, it becomes possible to detect the substance to be detected in the liquid sample at a lower cost.
  • a liquid containing a UV curable resin and a polymerization initiator is applied between a pair of transparent materials (for example, glass) facing each other with a spacer interposed therebetween, and then a gel is formed.
  • a photomask is provided in the region where the pillars 105 are formed, and UV light is applied to selectively cure the resin in the region provided with the photomask, thereby forming a pattern of the gel pillars 105 .
  • a device is obtained by arranging the obtained gel-like pillars 105 at predetermined positions of the substrate 101 provided with the channel-forming pillars 109 and the channel-forming pillars 111 .
  • a liquid containing a gelling agent is applied to a predetermined region of the surface of the base material 101 provided with at least one of the channel-forming pillars 109 and the channel-forming pillars 111, and then according to the procedure described above.
  • the gel pillars 105 may be formed directly on the substrate 101 .
  • the device can be suitably used for immunoassay.
  • the device in this embodiment is provided with a sensing zone 110 with gel pillars 105 and at least one of an induction zone 120 with channel-forming pillars 109 or an ejection zone 130 with channel-forming pillars 111. Therefore, the substance to be detected in the liquid sample can be stably detected with excellent sensitivity.
  • the device according to the present embodiment can be used without using an additional device such as a liquid-sending pump, so that the substance to be detected can be easily detected.
  • the detection method using the device can be performed, for example, by the sandwich method.
  • the detection method is, specifically, A liquid sample containing a substance to be detected is introduced into the upstream side of the detection zone 110, specifically, the induction zone 120 or the upstream side of the induction zone 120, and guided to the detection zone 110 by capillary action.
  • a step of capturing the substance to be detected in the gel-like pillars 105 by specific interaction with the capture substance 107 (step 11); After the capturing step, a step of introducing a liquid containing a labeled antibody that specifically binds to the substance to be detected into the detection zone 110 and capturing the labeled antibody on the gel pillars 105 in which the substance to be detected is captured (step 12 ); and detecting or quantifying the substance to be detected in the liquid sample by detecting the labeled antibody captured by the gel pillars 105 (step 13). including. Also, between steps 11 and 12 and/or between steps 12 and 13, a buffer solution or the like is introduced upstream of the detection zone 110, specifically, upstream of the induction zone 120. and a further step of flushing the sensing zone 110 (step 14) may be performed.
  • Labeled antibodies used in immunoassays such as enzyme-linked immunosorbent assay (ELISA) and fluorescence immunoassay can be used as the labeled antibody in step 12 .
  • Labeled antibodies include, for example, fluorescence-labeled antibodies and enzyme-labeled antibodies.
  • a detection method can be used according to the type of labeled antibody used in step 12. For example, when a fluorescence-labeled antibody is used in step 12 , the substance to be detected can be detected or quantified by measuring the presence or absence of fluorescence or fluorescence intensity in gel pillars 105 in step 13 .
  • step 12 when an enzyme-labeled antibody is used in step 12, in step 13, a substrate for the enzyme immobilized on the labeled antibody is introduced into the detection zone 110, and the presence or absence of color development based on the substrate, the absorbance, the presence or absence of fluorescence, and the presence or absence of fluorescence
  • the substance to be detected can be detected or quantified by measuring the intensity, the presence or absence of chemiluminescence, the chemiluminescence intensity, and the like.
  • the chip comprises the device in this embodiment described above.
  • a chip may consist of a device, and may further have other members.
  • a specific example of the other member is a housing that houses or holds the device.
  • the substrate is used in the device in this embodiment described above.
  • the structure described above for the base material 101 can be appropriately used for the substrate.
  • the substrate is elongated and has a first zone provided in a part of its longitudinal direction, and a second zone located on at least one side of the first zone (both sides in the substrate 101 shown in FIG. 1). 2 zones.
  • the gel-like pillars 105 By arranging the gel-like pillars 105 in the first zone, it can function as the detection zone 110 of the device 100 .
  • the second zone is provided with a plurality of channel-forming pillars (pillars different from the gel-like pillars 105) 109 and 111, or because the second zone is composed of fine grooves, the guiding zone of the device 100 120 and discharge zone 130 .
  • Example 1 In this example, a device in which an anti-CRP antibody was immobilized on gel-like pillars was produced, and CRP (C-reactive protein) in a liquid sample was detected.
  • CRP C-reactive protein
  • a device having the schematic structure shown in FIG. 2 was fabricated. 1. Preparation of Induction Zone 120 and Ejection Zone 130 The base material 101 having the channel-forming pillars 109 and the channel-forming pillars 111 was produced by the following procedure. The shape and arrangement of the channel-defining pillars in both the induction zone 120 and the discharge zone 130 were the same. A mold is pressed against a polymethyl methacrylate sheet (manufactured by Sumika Acrylic Co., Ltd., film thickness: about 200 ⁇ m), and thermal imprinting is performed under the conditions of a heating temperature of 160 ° C., a pressure of 5.5 MPa, and a pressing time of 3 minutes.
  • a polymethyl methacrylate sheet manufactured by Sumika Acrylic Co., Ltd., film thickness: about 200 ⁇ m
  • truncated cone-shaped holes with an entrance diameter of 60 ⁇ m and a depth of 90 ⁇ m are arranged in a hexagonal grid arrangement with an average distance between the centers of the holes of 62 ⁇ m.
  • FIGS. 10(a) and 10(b) are a top view showing an optical microscope and a perspective view showing an SEM image of the channel forming pillar 109 and the channel forming pillar 111 in the obtained base material 101, respectively.
  • the laterally adjacent channel-forming pillars are arranged without gaps
  • the diagonally adjacent channel-forming pillars are They are arranged almost seamlessly.
  • Example 1 A solution obtained by diluting polyethylene glycol diacrylate (PEGDA, number average molecular weight 575, manufactured by Aldrich) with phosphate buffer solution (PBS) was treated with 2-hydroxy-2-methylpropiophenone as a photocuring initiator and as an antibody.
  • PEGDA polyethylene glycol diacrylate
  • PBS phosphate buffer solution
  • a polymer solution (antibody concentration approximately 100 ⁇ g/mL, 20% PEGDA, 0.55% initiator) was prepared by adding anti-CRP antibody.
  • Example 2 A solution obtained by diluting polyethylene glycol diacrylate (PEGDA, number average molecular weight 575, manufactured by Aldrich) with phosphate buffer solution (PBS) was treated with 2-hydroxy-2-methylpropiophenone as a photocuring initiator and as an antibody.
  • PEGDA polyethylene glycol diacrylate
  • PBS phosphate buffer solution
  • an anti-CRP antibody PEG acrylated CRP antibody, Ac-PEG-Ab
  • PEG-Ac linker PEG: molecular weight 2000
  • a polymer solution antibody concentration of about 300 ⁇ g/mL, 20% PEGDA, 0.54% initiator
  • immunoassay was performed according to the following procedure. 1. 10 ⁇ L of an aqueous solution (CRP, concentration 10 ⁇ g/mL) obtained by diluting the antigen with 2% TritonX100/PBS was dropped onto the induction zone 120 on the substrate 101 and waited for 3 minutes. 2. 10 ⁇ L of an aqueous solution (FITC (fluorescein isothiocyanate)-labeled anti-CRP antibody, 20 ⁇ g/mL) obtained by diluting a fluorescence-labeled antibody with 2% Triton X100/PBS was dropped onto the induction zone 120 of the base material 101 and waited for 1 minute.
  • CRP aqueous solution
  • FITC fluorescein isothiocyanate
  • FIGS. 11(a) and 11(b) show fluorescence microscope images of the gel-like pillars 105.
  • FIG. 11(a) and 11(b) show fluorescence microscope images of the gel-like pillars 105.
  • Example 1 In Example 1, immunoassay 1. 1, except that 2% Triton X100/PBS was used instead of the aqueous solution diluted with the antigen. The results are shown in FIG. 12(a).
  • Example 2 In Example 2, immunoassay 1. 2, except that 2% Triton X100/PBS was used instead of the aqueous solution diluted with the antigen. The results are shown in FIG. 12(b).
  • CRP is captured by the gel pillars 105 by specific binding with the anti-CRP antibody. , can be stably detected.
  • Device 101 Base material 103 Channel 105 Gel-like pillar (first pillar) 107 capture substance 109 channel-forming pillar (second pillar) 110 detection zone (first zone) 111 flow path forming pillar 113 lid portion 115 flat portion 117 damming portion 119 reservoir portion 120 induction zone (second zone) 121 reservoir 123 microgroove 125 microgroove 127 substrate 129 recess 130 discharge zone 140 device 150 device 160 device 170 device 180 device

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

A device (100) according to the present invention captures and senses a detected substance in a liquid specimen, the device comprising: a base material (101); a flow path (103) which is provided to one surface of the base material (101) and along which the liquid specimen is fed; and a sensing zone (110) provided to one section of the flow path (103). A gel-like pillar (105) constituted by a gel-like substance is provided to the sensing zone (110), a captured substance (107) which specifically binds to the detected substance is held in the gel-like pillar (105), and the flow path (103) is formed by a plurality of flow path forming pillars (109) or microgrooves upstream or downstream of the sensing zone (110).

Description

デバイス、チップおよび基板Devices, Chips and Substrates
 本発明は、デバイス、チップおよび基板に関する。 The present invention relates to devices, chips and substrates.
 検体中の成分を検出するデバイスに関する技術として、特許文献1~3に記載のものがある。
 特許文献1には、一次抗体が表面に固相化された微細ビーズが光硬化した親水性樹脂中に均質分散保持された微小構造物を少なくとも一部に配置した流路を備えた、免疫分析マイクロチップについて記載されている。
Patent Documents 1 to 3 disclose techniques related to devices for detecting components in specimens.
Patent Document 1 discloses an immunoassay system having a channel in which at least a part of a fine structure in which fine beads having a primary antibody immobilized on the surface are uniformly dispersed and held in a photocured hydrophilic resin is arranged. A microchip is described.
 特許文献2には、基板に設けられた個々の流路内に、光硬化した親水性樹脂中に混合された一種類の特異的結合試薬又は一種類の検体が架橋により保持された微小構造物が配置されているマイクロ流体デバイスについて記載されている。 Patent Document 2 discloses a microstructure in which one type of specific binding reagent or one type of specimen mixed in a photo-cured hydrophilic resin is held by cross-linking in individual channels provided on a substrate. A microfluidic device is described in which a
 また、特許文献3には、入口通路;孔を含む診断用ゲルを包埋する保持ポート;及び出口通路を含み、入口通路及び出口通路が保持ポートのいずれかの側にある、診断用素子について記載されている。 U.S. Pat. No. 6,200,000 also discloses a diagnostic element comprising an inlet passageway; a retention port that embeds a diagnostic gel that includes a hole; and an outlet passageway, the inlet passageway and the outlet passageway being on either side of the retention port. Have been described.
国際公開第2007/074756号WO2007/074756 国際公開第2016/152702号WO2016/152702 特表2013-515955号公報Japanese translation of PCT publication No. 2013-515955
 本発明は、検出感度に優れ、送液のための追加の装置を用いない場合であっても、簡便に使用することができるデバイスを提供するものである。 The present invention provides a device that has excellent detection sensitivity and can be used simply without using an additional device for liquid transfer.
 本発明によれば、以下に示すデバイス、チップおよび基板が提供される。 According to the present invention, the device, chip and substrate shown below are provided.
[1] 液体試料中の被検出物質を捕捉して検知するデバイスであって、
 基材と、
 該基材の一表面に設けられた、前記液体試料を移送する流路と、
 該流路の一部に設けられた検知ゾーンと、
 を備え、
 前記検知ゾーンには、ゲル状物質により構成されたゲル状ピラーが設けられているとともに、
 前記ゲル状ピラー中に、前記被検出物質と特異的に結合する捕捉物質が保持されており、
 前記検知ゾーンの上流側または下流側において、前記流路が、複数の流路形成ピラー、または、微細溝により形成されている、デバイス。
[2] 前記検知ゾーンの上流側に、前記液体試料を毛細管現象により前記検知ゾーンに導く誘導ゾーンが設けられており、
 前記誘導ゾーンにおいて、前記流路が、複数の前記流路形成ピラーまたは前記微細溝により形成されている、[1]に記載のデバイス。
[3] 前記流路形成ピラーの形状が円柱、円錐、円錐台、多角柱、多角錐または多角錐台であり、
 前記ゲル状ピラーの形状が円柱または多角柱である、[1]または[2]に記載のデバイス。
[4] 前記被検出物質が抗原であり、前記捕捉物質が前記抗原に対する抗体である、[1]乃至[3]いずれか1項に記載のデバイス。
[5] 前記被検出物質が第1の抗体であり、前記捕捉物質が前記第1の抗体に特異的な第2の抗体である、[1]乃至[3]いずれか1項に記載のデバイス。
[6] 前記捕捉物質が前記ゲル状物質と共有結合している、[1]乃至[5]いずれか1項に記載のデバイス。
[7] 前記検知ゾーンには、前記液体試料の移送方向に直交する方向に、複数の前記ゲル状ピラーが設けられている、[1]乃至[6]いずれか1項に記載のデバイス。
[8] 前記検知ゾーンには、前記流路の液体試料の移送方向に、複数の前記ゲル状ピラーが設けられている、[1]乃至[7]いずれか1項に記載のデバイス。
[9] 前記検知ゾーンを上面視したときに、前記ゲル状ピラーが格子状に配置されている、[1]乃至[8]いずれか1項に記載のデバイス。
[10] 前記ゲル状ピラーが、直径10μm以上1000μm以下の円柱状である、[1]乃至[9]いずれか1項に記載のデバイス。
[11] 前記ゲル状ピラーが、高さ10μm以上1000μm以下の円柱状である、[1]乃至[10]いずれか1項に記載のデバイス。
[12] 前記流路を覆う蓋部が設けられている、[1]乃至[11]いずれか1項に記載のデバイス。
[13] 前記蓋部の材料が、石英ガラス、ソーダ石灰ガラス、ホウケイ酸ガラス、ポリ(メタ)アクリレート、ポリエステル、ポリオレフィン、ポリスチレン、ポリカーボネート、フッ素樹脂、ポリ塩化ビニル、ポリアミドおよびポリイミドからなる群から選択される1種または2種以上を含む、[12]に記載のデバイス。
[14] 前記検知ゾーンの下流側に、前記液体試料の溜め部または堰き止め部が設けられている、[1]乃至[13]いずれか1項に記載のデバイス。
[15] 前記検知ゾーンの上流側に、前記液体試料を毛細管現象により前記検知ゾーンに導く誘導ゾーンが設けられており、
前記検知ゾーンの底面aが、前記誘導ゾーンの底面bよりも低い水準にある、[1]乃至[14]いずれか1項に記載のデバイス。
[16] 液体試料中の被検出物質を捕捉して検知するデバイスであって、
 前記液体試料を移送する流路を備え、
 該流路は、前記液体試料の移送方向の一部に検知ゾーンを有し、
 前記検知ゾーンには、ゲル状物質により構成され、前記被検出物質と特異的に結合する捕捉物質が保持されたゲル状の第1ピラーが設けられるとともに、前記流路の前記検知ゾーンの上流側または下流側のゾーンには、前記第1ピラーと異なる複数の第2ピラーが設けられるか、または、前記ゾーンが微細溝で構成されている、デバイス。
[17] 前記流路は、前記検知ゾーンの上流側に、前記液体試料を毛細管現象により前記検知ゾーンに導く誘導ゾーンを有し、
 前記誘導ゾーンには、前記複数の第2ピラーが設けられるか、または、前記誘導ゾーンが前記微細溝で構成されている、[16]に記載のデバイス。
[18] [1]乃至[17]いずれか1項に記載のデバイスを有する、チップ。
[19] 液体試料中の被検出物質を捕捉して検知するデバイスに用いられる基板であって、
 当該基板の一表面に設けられた、前記液体試料を移送する流路と、
 前記流路の一部に設けられた検知ゾーンと、
 を備え、
 前記検知ゾーンには、ゲル状物質により構成されたゲル状ピラーが設けられているとともに、
 前記ゲル状ピラー中に、前記被検出物質と特異的に結合する捕捉物質が保持されており、
 前記検知ゾーンの上流側または下流側において、前記流路が、複数の流路形成ピラー、または、微細溝により形成されている、基板。
[20] 長尺の基板であって、
 当該基板の長手方向の一部に設けられ、ゲル状物質により構成され、被検出物質と特異的に結合する捕捉物質が保持されたゲル状の第1ピラーを配置可能な第1ゾーンと、
 前記基板の長手方向の前記第1ゾーンの少なくとも一方の側に位置し、前記第1ピラーと異なる複数の第2ピラーが設けられるか、または、微細溝で構成された第2ゾーンと、
 を有する、基板。
[1] A device for capturing and detecting a substance to be detected in a liquid sample,
a base material;
a channel for transporting the liquid sample provided on one surface of the substrate;
a sensing zone provided in a portion of the flow path;
with
The detection zone is provided with gel-like pillars made of a gel-like substance,
a capture substance that specifically binds to the substance to be detected is held in the gel pillar;
The device, wherein the channel is formed by a plurality of channel-forming pillars or microgrooves upstream or downstream of the sensing zone.
[2] an induction zone is provided upstream of the detection zone to guide the liquid sample to the detection zone by capillary action;
The device according to [1], wherein in the guiding zone, the channel is formed by a plurality of the channel-forming pillars or the fine grooves.
[3] the shape of the flow path forming pillar is a cylinder, a cone, a truncated cone, a polygonal prism, a polygonal pyramid, or a truncated polygonal pyramid;
The device according to [1] or [2], wherein the shape of the gel-like pillars is cylindrical or polygonal.
[4] The device according to any one of [1] to [3], wherein the substance to be detected is an antigen, and the capturing substance is an antibody against the antigen.
[5] The device according to any one of [1] to [3], wherein the substance to be detected is a first antibody and the capturing substance is a second antibody specific to the first antibody. .
[6] The device according to any one of [1] to [5], wherein the trapping substance is covalently bonded to the gel-like substance.
[7] The device according to any one of [1] to [6], wherein the detection zone is provided with a plurality of the gel-like pillars in a direction perpendicular to the transport direction of the liquid sample.
[8] The device according to any one of [1] to [7], wherein the detection zone is provided with a plurality of the gel-like pillars in the liquid sample transfer direction of the channel.
[9] The device according to any one of [1] to [8], wherein the gel-like pillars are arranged in a lattice when the detection zone is viewed from above.
[10] The device according to any one of [1] to [9], wherein the gel-like pillars are cylindrical with a diameter of 10 μm or more and 1000 μm or less.
[11] The device according to any one of [1] to [10], wherein the gel-like pillars are cylindrical with a height of 10 μm or more and 1000 μm or less.
[12] The device according to any one of [1] to [11], further comprising a lid covering the channel.
[13] The material of the lid is selected from the group consisting of quartz glass, soda lime glass, borosilicate glass, poly(meth)acrylate, polyester, polyolefin, polystyrene, polycarbonate, fluororesin, polyvinyl chloride, polyamide and polyimide. The device of [12], comprising one or more of
[14] The device according to any one of [1] to [13], wherein a reservoir or a dam for the liquid sample is provided downstream of the detection zone.
[15] an induction zone is provided upstream of the detection zone to guide the liquid sample to the detection zone by capillary action;
The device of any one of [1] to [14], wherein the bottom surface a of the sensing zone is at a lower level than the bottom surface b of the induction zone.
[16] A device for capturing and detecting a substance to be detected in a liquid sample,
comprising a channel for transferring the liquid sample,
the channel has a detection zone in a part of the direction in which the liquid sample is transferred;
The detection zone is provided with a gel-like first pillar that is made of a gel-like substance and holds a capture substance that specifically binds to the substance to be detected. Or the device, wherein the downstream zone is provided with a plurality of second pillars different from said first pillars, or said zone is composed of micro-grooves.
[17] the flow path has an induction zone upstream of the detection zone that guides the liquid sample to the detection zone by capillary action;
The device of [16], wherein the induction zone is provided with the plurality of second pillars or the induction zone is composed of the microgrooves.
[18] A chip having the device according to any one of [1] to [17].
[19] A substrate used in a device that captures and detects a substance to be detected in a liquid sample,
a channel for transferring the liquid sample provided on one surface of the substrate;
a detection zone provided in a portion of the flow path;
with
The detection zone is provided with gel-like pillars made of a gel-like substance,
a capture substance that specifically binds to the substance to be detected is held in the gel pillar;
The substrate, wherein the channel is formed by a plurality of channel-forming pillars or fine grooves on the upstream side or downstream side of the detection zone.
[20] A long substrate,
a first zone provided in a part of the substrate in the longitudinal direction, made of a gel-like substance, and capable of arranging a gel-like first pillar holding a capture substance that specifically binds to a substance to be detected;
a second zone located on at least one side of the first zone in the longitudinal direction of the substrate and provided with a plurality of second pillars different from the first pillars or composed of fine grooves;
A substrate.
 本発明によれば、検出感度に優れ、送液のための追加の装置を用いない場合であっても、簡便に使用することができるデバイスを提供することができる。 According to the present invention, it is possible to provide a device that has excellent detection sensitivity and can be used easily even without using an additional device for liquid transfer.
実施形態におけるデバイスの構成の一例を示す斜視図である。It is a perspective view showing an example of the configuration of the device in the embodiment. 実施形態におけるデバイスの構成の一例を示す断面図である。1 is a cross-sectional view showing an example of the configuration of a device according to an embodiment; FIG. 実施形態において隣接するゲル状ピラーの配置例を示す上面図である。FIG. 4 is a top view showing an example of arrangement of adjacent gel-like pillars in the embodiment; 実施形態において隣接するゲル状ピラーの配置例を示す上面図である。FIG. 4 is a top view showing an example of arrangement of adjacent gel-like pillars in the embodiment; 実施形態において隣接する流路形成ピラーの配置例を示す上面図である。FIG. 4 is a top view showing an arrangement example of adjacent channel forming pillars in the embodiment. 実施形態におけるデバイスの構成例を示す断面図である。1 is a cross-sectional view showing a configuration example of a device according to an embodiment; FIG. 実施形態におけるデバイスの構成の一例を示す上面図である。1 is a top view showing an example of the configuration of a device according to an embodiment; FIG. 実施形態におけるデバイスの構成の一例を示す斜視図である。It is a perspective view showing an example of the configuration of the device in the embodiment. 実施形態におけるデバイスの構成の一例を示す斜視図である。It is a perspective view showing an example of the configuration of the device in the embodiment. 実施例における流路形成ピラーの構成を示す図である。It is a figure which shows the structure of the flow-path formation pillar in an Example. イムノアッセイの評価結果を示す図である。FIG. 10 is a diagram showing evaluation results of immunoassay. イムノアッセイの評価結果を示す図である。FIG. 10 is a diagram showing evaluation results of immunoassay. 実施形態におけるデバイスの構成の一例を示す斜視図である。It is a perspective view showing an example of the configuration of the device in the embodiment.
 以下、本発明の実施形態について、図面を用いて説明する。図は概略図であり、実際の寸法比率とは一致していない。本明細書において、数値範囲を示す「~」は、以上、以下を表し、両端の数値をいずれも含む。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The figures are schematic and do not correspond to actual dimensional proportions. In the present specification, "-" indicating a numerical range represents above and below, and includes both numerical values at both ends.
 (デバイス)
 図1は、本実施形態におけるデバイスの構成の一例を示す斜視図である。図1に示したデバイス100は、液体試料中の被検出物質を捕捉して検知するデバイスである。デバイス100は、基材101と、基材101の一表面に設けられた、液体試料を移送する流路103と、流路103の一部に設けられた検知ゾーン110(第1ゾーン)と、を備える。
 検知ゾーン110には、ゲル状物質により構成されたゲル状ピラー(第1ピラー)105が設けられているとともに、ゲル状ピラー105中に、被検出物質と特異的に結合する捕捉物質107が保持されている。
 検知ゾーン110の上流側または下流側において、流路103が、複数の流路形成ピラー(第1ピラーと異なる第2ピラー)、または、微細溝により形成されており、図1には、流路103が複数の流路形成ピラーにより形成されている例が示されている。換言すれば、流路103の検知ゾーン110の上流側または下流側のゾーンには、複数の流路形成ピラーが設けられるか、または、かかるゾーンが微細溝で構成されている。
(device)
FIG. 1 is a perspective view showing an example of the configuration of the device according to this embodiment. A device 100 shown in FIG. 1 is a device that captures and detects a substance to be detected in a liquid sample. The device 100 includes a substrate 101, a channel 103 provided on one surface of the substrate 101 for transferring a liquid sample, a detection zone 110 (first zone) provided in a part of the channel 103, Prepare.
The detection zone 110 is provided with a gel pillar (first pillar) 105 made of a gel substance, and the gel pillar 105 holds a capture substance 107 that specifically binds to the substance to be detected. It is
On the upstream side or downstream side of the detection zone 110, the channel 103 is formed by a plurality of channel-forming pillars (a second pillar different from the first pillar) or fine grooves. An example is shown in which 103 is formed by a plurality of channel-forming pillars. In other words, the zone of the channel 103 upstream or downstream of the sensing zone 110 is provided with a plurality of channel-forming pillars, or such zone is composed of microgrooves.
 デバイス100には、検知ゾーン110の上流側に、液体試料を毛細管現象により検知ゾーン110に導く誘導ゾーン120が設けられており、誘導ゾーン120において、流路103が、複数の流路形成ピラー109により形成されている。換言すれば、流路103の誘導ゾーン120には、複数の流路形成ピラー109が設けられている。
 また、デバイス100には、検知ゾーン110の下流側に、液体試料を毛細管現象により検知ゾーン110から排出する排出ゾーン130が設けられており、排出ゾーン130において、流路103が、複数の流路形成ピラー111により形成されている。換言すれば、流路103の排出ゾーン130には、複数の流路形成ピラー111が設けられている。
The device 100 is provided with a guidance zone 120 upstream of the detection zone 110 to guide the liquid sample to the detection zone 110 by capillary action. formed by In other words, the guiding zone 120 of the channel 103 is provided with a plurality of channel-defining pillars 109 .
Further, the device 100 is provided downstream of the detection zone 110 with a discharge zone 130 for discharging the liquid sample from the detection zone 110 by capillary action. It is formed by forming pillars 111 . In other words, the discharge zone 130 of the channel 103 is provided with a plurality of channel-defining pillars 111 .
(基材)
 基材101は、具体的には、デバイス100の基材として用いられる基板である。基材101の形状として、たとえば、シート状、板状が挙げられる。図1においては、シート状の基材101を有するデバイス100の例が示されている。
(Base material)
The base material 101 is specifically a substrate used as the base material of the device 100 . Examples of the shape of the base material 101 include a sheet shape and a plate shape. FIG. 1 shows an example of a device 100 having a sheet-like base material 101 .
 基材101の平面形状の具体例として、四角形等の多角形、円形、楕円形が挙げられる。基材101が四角形である場合、基材101の縦幅(短手方向の長さ)は、たとえば1~100mm程度であってよく、基材101の横幅(長手方向の長さ)は、たとえば2~100mm程度であってよい。 Specific examples of the planar shape of the base material 101 include polygons such as squares, circles, and ellipses. When the base material 101 is rectangular, the vertical width (length in the lateral direction) of the base material 101 may be, for example, about 1 to 100 mm, and the width (length in the longitudinal direction) of the base material 101 may be, for example, It may be about 2 to 100 mm.
 基材101の厚さは、デバイス100の強度向上の観点から、たとえば0.05mm以上であり、好ましくは0.1mm以上である。
 また、デバイス100の薄型化の観点から、基材101の厚さは、たとえば5mm以下であり、好ましくは3mm以下である。
From the viewpoint of improving the strength of the device 100, the thickness of the base material 101 is, for example, 0.05 mm or more, preferably 0.1 mm or more.
From the viewpoint of thinning the device 100, the thickness of the substrate 101 is, for example, 5 mm or less, preferably 3 mm or less.
 基材101の材料として、具体的には、石英ガラス、ソーダ石灰ガラス、ホウケイ酸ガラス等のガラス;および、ポリメチル(メタ)アクリレート等のポリ(メタ)アクリレート、ポリエステル、ポリオレフィン、ポリスチレン、ポリカーボネート、フッ素樹脂、ポリ塩化ビニル、ポリアミド、ポリイミド等の樹脂材料からなる群から選択される1種または2種以上が挙げられる。
 また、基材101と流路形成ピラー109とを一体成形できるという点では、基材101の材料が熱可塑性樹脂であることが好ましい。熱可塑性樹脂は、具体的には、ポリエステル、ポリオレフィン、ポリスチレン、ポリカーボネート、フッ素樹脂および(メタ)アクリル樹脂からなる群から選択される1種または2種以上が挙げられ、さらに具体的にはポリエチレンテレフタレート(PET)、シクロオレフィンポリマー(COP)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフッ化ビニリデン(PVDF)、ポリメチルメタクリレート(PMMA)、ポリエチレン(PE)からなる群から選択される1種または2種以上が挙げられる。
Specific examples of materials for the base material 101 include glass such as quartz glass, soda lime glass, borosilicate glass; and poly(meth)acrylate such as polymethyl(meth)acrylate, polyester, polyolefin, polystyrene, polycarbonate, fluorine One or two or more selected from the group consisting of resin materials such as resin, polyvinyl chloride, polyamide, and polyimide can be used.
Moreover, the material of the base material 101 is preferably a thermoplastic resin in that the base material 101 and the flow path forming pillars 109 can be integrally molded. The thermoplastic resin specifically includes one or more selected from the group consisting of polyester, polyolefin, polystyrene, polycarbonate, fluororesin and (meth)acrylic resin, more specifically polyethylene terephthalate. (PET), cycloolefin polymer (COP), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyvinylidene fluoride (PVDF), polymethyl methacrylate (PMMA), polyethylene (PE) 1 or 2 or more.
 図1に示したデバイス100では、基材101が平板であり、その表面にゲル状ピラー105、流路形成ピラー109および流路形成ピラー111が配置された例を示したが、基材101の形状はこれに限られない。
 図13は、凹部を有する基材を用いたデバイスの構成例を示す斜視図である。図13に示したデバイス180の基本構成は図1に示したデバイス100と同様であるが、デバイス180においては、基材127の表面に、長手方向の両端が開放されている溝状の凹部129が形成されている。
 図13に示した例では、凹部129が液体試料を移動させる流路を構成している。検知ゾーン110は、凹部129の長手方向(液体試料の移送方向)の一部に設けられていればよく、図13に示した例では、凹部129の一端から他端に向かって誘導ゾーン120、検知ゾーン110および排出ゾーン130がこの順に設けられている。
 このとき、ゲル状ピラー105、流路形成ピラー109および流路形成ピラー111の底面は、たとえば図13に示したように凹部129の底面に位置する。また、ゲル状ピラー105、流路形成ピラー109および流路形成ピラー111の上端はたとえば凹部129を規定する側壁の上端すなわち基材127の上面と同じ水準に位置してもよいし、異なる水準、たとえば基材127の上面よりも下方に位置してもよい。
 また、誘導ゾーン120、検知ゾーン110および排出ゾーン130において、凹部129の幅は、図13に示したように同じであってもよいし、また、異なってもよい。たとえば検知ゾーン110における凹部129の幅が誘導ゾーン120および排出ゾーン130における凹部129の幅よりも大きくてもよい。
In the device 100 shown in FIG. 1, the substrate 101 is a flat plate, and the gel-like pillars 105, the channel-forming pillars 109, and the channel-forming pillars 111 are arranged on the surface thereof. The shape is not limited to this.
FIG. 13 is a perspective view showing a configuration example of a device using a substrate having recesses. The basic configuration of the device 180 shown in FIG. 13 is similar to that of the device 100 shown in FIG. is formed.
In the example shown in FIG. 13, the concave portion 129 constitutes a channel for moving the liquid sample. The detection zone 110 may be provided in a part of the recess 129 in the longitudinal direction (transfer direction of the liquid sample). In the example shown in FIG. A detection zone 110 and an ejection zone 130 are provided in that order.
At this time, the bottom surfaces of gel-like pillar 105, channel-forming pillar 109, and channel-forming pillar 111 are positioned on the bottom surface of recess 129 as shown in FIG. 13, for example. In addition, the upper ends of the gel-like pillars 105, the channel-forming pillars 109, and the channel-forming pillars 111 may be positioned at the same level as the upper end of the side wall defining the recess 129, that is, the upper surface of the substrate 127, or at a different level. For example, it may be located below the upper surface of the base material 127 .
Also, in the induction zone 120, the detection zone 110 and the ejection zone 130, the width of the recesses 129 may be the same as shown in FIG. 13 or may be different. For example, the width of recesses 129 in sensing zone 110 may be greater than the width of recesses 129 in induction zone 120 and ejection zone 130 .
(検知ゾーン)
 検知ゾーン(第1ゾーン)110には、ゲル状ピラー105が設けられている。一方、図1に示したように、検知ゾーン110には、流路形成ピラーは設けられていないことが好ましい。
 ゲル状ピラー105は、ゲル状物質により構成されている。ゲル状物質は、具体的には、3次元網目構造を有する高分子材料を備え、液体が適用されたときにゲル状となる物質である。したがって、ゲル状ピラー105は、液体で膨潤している状態であってもよいし、液体で膨潤していない状態、すなわち、所望のタイミングで検知ゾーン110に液体が適用されてゲル状となる状態であってもよい。
(detection zone)
Gel-like pillars 105 are provided in the detection zone (first zone) 110 . On the other hand, as shown in FIG. 1, it is preferable that the detection zone 110 is not provided with flow path forming pillars.
The gel pillar 105 is made of a gel substance. A gel-like substance is specifically a substance comprising a polymeric material having a three-dimensional network structure, which becomes gel-like when a liquid is applied. Therefore, the gel-like pillars 105 may be in a liquid-swollen state or in a non-liquid-swollen state, i.e., in a gel state when the liquid is applied to the detection zone 110 at a desired timing. may be
 ゲル状ピラー105におけるゲル状物質の材料として、具体的には、ハイドロゲルを形成する高分子材料が挙げられる。高分子材料として、たとえば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリウレタン(メタ)アクリレート、ゼラチン(メタ)アクリレート、コラーゲン(メタ)アクリレート等の(メタ)アクリレート;ポリ(メタ)アクリルアミド、コラーゲンからなる群から選択される1種または2種以上が挙げられる。
 ここで、(メタ)アクリレートは、アクリレートおよびメタクリレートの少なくとも1つである。
Specific examples of the material of the gel substance in the gel pillar 105 include polymer materials that form hydrogel. Examples of polymeric materials include (meth)acrylates such as polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polyurethane (meth)acrylate, gelatin (meth)acrylate, collagen (meth)acrylate; poly(meth)acrylate; ) One or more selected from the group consisting of acrylamide and collagen.
Here, (meth)acrylate is at least one of acrylate and methacrylate.
 ゲル状ピラー105の形状として、たとえば、円柱、多角柱等の柱体;円錐、多角錐等の錐体;および円錐台、多角錐台等の錐台形が挙げられる。これらは幾何学的に正確な形状である必要はなく、角部が丸みを帯びている形状や表面に微細な凹凸が存在する形状等であってもよい。
 成形性向上の観点から、ゲル状ピラー105の形状は、好ましくは円柱または多角柱である。
Examples of the shape of the gel-like pillar 105 include columnar bodies such as cylinders and polygonal columns; cones such as cones and polygonal pyramids; and truncated cones such as truncated cones and polygonal pyramids. These shapes do not need to be geometrically accurate shapes, and may be shapes with rounded corners, shapes with fine unevenness on the surface, and the like.
From the viewpoint of improving moldability, the shape of the gel-like pillars 105 is preferably cylindrical or polygonal.
 ゲル状ピラー105が円柱状であるとき、ゲル状ピラー105の直径は、成形性向上の観点から、好ましくは10μm以上であり、より好ましくは50μm以上である。
 また、成形性向上の観点から、ゲル状ピラー105の直径は、好ましくは1000μm以下であり、より好ましくは500μm以下である。
 ゲル状ピラー105の直径は、たとえば、検知ゾーン110から任意のゲル状ピラー105を5個選択し、選択した5個のゲル状ピラー105の底面または上面の直径の平均値を採用することができる。
When the gel-like pillars 105 are cylindrical, the diameter of the gel-like pillars 105 is preferably 10 μm or more, more preferably 50 μm or more, from the viewpoint of improving moldability.
Also, from the viewpoint of improving formability, the diameter of the gel-like pillars 105 is preferably 1000 μm or less, more preferably 500 μm or less.
For the diameter of the gel-like pillars 105, for example, arbitrary five gel-like pillars 105 are selected from the detection zone 110, and the average value of the diameters of the bottom surface or top surface of the selected five gel-like pillars 105 can be adopted. .
 ゲル状ピラー105が円柱状であるとき、ゲル状ピラー105の高さは、成形性向上の観点から、好ましくは10μm以上であり、より好ましくは30μm以上である。
 また、成形性向上の観点から、ゲル状ピラー105の高さは、好ましくは1000μm以下であり、より好ましくは500μm以下である。
 ゲル状ピラー105の高さは、たとえば、検知ゾーン110から任意のゲル状ピラー105を5個選択し、選択した5個のゲル状ピラー105の高さの平均値を採用することができる。
When the gel pillars 105 are columnar, the height of the gel pillars 105 is preferably 10 μm or more, more preferably 30 μm or more, from the viewpoint of improving moldability.
Also, from the viewpoint of improving formability, the height of the gel pillars 105 is preferably 1000 μm or less, more preferably 500 μm or less.
For the height of the gel-like pillars 105, for example, arbitrary five gel-like pillars 105 are selected from the detection zone 110, and the average value of the heights of the selected five gel-like pillars 105 can be adopted.
 検知ゾーン110において、ゲル状ピラー105の数は1つであっても2つ以上であってもよい。
 検知ゾーン110において、液体試料の移送方向Xに直交する方向(図1のw:流路103の幅方向)に、1つのゲル状ピラー105が設けられていてもよいし、2つ以上のゲル状ピラー105が設けられていてもよい。被検出物質の検出感度および測定精度を向上する観点からは、図1に示したように、検知ゾーン110において、液体試料の移送方向Xに直交する方向に、好ましくは複数のゲル状ピラー105が設けられている。また、検知ゾーン110において、液体試料の移送方向X(流路103の延在方向)に複数のゲル状ピラー105が設けられていることが好ましい。
In the detection zone 110, the number of gel-like pillars 105 may be one or two or more.
In the detection zone 110, one gel-like pillar 105 may be provided in a direction perpendicular to the transfer direction X of the liquid sample (w in FIG. 1: width direction of the channel 103), or two or more gel-like pillars 105 may be provided. Shaped pillars 105 may be provided. From the viewpoint of improving the detection sensitivity and measurement accuracy of the substance to be detected, as shown in FIG. is provided. Also, in the detection zone 110, it is preferable that a plurality of gel-like pillars 105 are provided in the liquid sample transfer direction X (extending direction of the channel 103).
 複数のゲル状ピラー105の平面配置は規則的であってもよいし不規則であってもよい。
 被検出物質の検出感度および測定精度を向上する観点から、検知ゾーン110を上面視したときに、ゲル状ピラー105は、好ましくは格子状に配置されている。格子状の配置として、さらに具体的には、正方格子;六角格子等の斜格子が挙げられる。
The planar arrangement of the plurality of gel-like pillars 105 may be regular or irregular.
From the viewpoint of improving the detection sensitivity and measurement accuracy of the substance to be detected, the gel pillars 105 are preferably arranged in a lattice when the detection zone 110 is viewed from above. More specifically, the lattice-like arrangement includes a square lattice and an oblique lattice such as a hexagonal lattice.
 複数のゲル状ピラー105が設けられているとき、検知ゾーン110における隣接するゲル状ピラー105間の距離すなわちゲル状ピラー105同士の最近接距離は、0μm以上であり、ゲル状ピラー105の形状に応じて適宜設定される。たとえば、ゲル状ピラー105が柱体であるとき上記最近接距離は好ましくは0μm超であり、ゲル状ピラー105が錐体または錐台形であるとき上記最近接距離は0μm以上である。
 検知ゾーン110において液体試料等の液体をより効率良く移動させる観点から、上記最近接距離はたとえば5μm以上、好ましくは10μm以上である。
 また、液体試料とゲル状ピラー105との接触面積が増大し、これにより毛細管力が増大するため液体試料を移動させることがより容易になる観点および作製がより容易である観点から、上記最近接距離は好ましくは1000μm以下であり、より好ましくは500μm以下である。
When a plurality of gel-like pillars 105 are provided, the distance between adjacent gel-like pillars 105 in the detection zone 110, that is, the closest distance between the gel-like pillars 105 is 0 μm or more. It is set accordingly. For example, when the gel-like pillars 105 are pillars, the closest distance is preferably greater than 0 μm, and when the gel-like pillars 105 are pyramidal or frustum-shaped, the closest distance is 0 μm or more.
From the viewpoint of moving the liquid such as the liquid sample more efficiently in the detection zone 110, the closest distance is, for example, 5 μm or more, preferably 10 μm or more.
In addition, the contact area between the liquid sample and the gel-like pillars 105 is increased, which increases the capillary force, making it easier to move the liquid sample. The distance is preferably 1000 μm or less, more preferably 500 μm or less.
 ここで、「隣接するゲル状ピラー105間の距離」とは、最も近くに位置する2つのゲル状ピラー105の上面視における中心点を結ぶ線分上において、それらの周面同士で規定される距離である。隣接するゲル状ピラー105間の距離として、具体的には、検知ゾーン110から任意の隣接するゲル状ピラー105間の距離を5個選択し、選択した5個の距離の平均値を採用することができる。
 図3(a)、図3(b)および図4は、ゲル状ピラー105の配置例を示す上面図である。ゲル状ピラー105の平面形状は、図3(a)および図4においては円形であり、図3(b)においては矩形である。
 たとえば、円柱を正方格子配列した配列においては上記最近接距離は図3(a)の矢印の距離であり、円柱を六角格子配列した配列においては、上記最近接距離は図4の矢印の距離である。たとえば図3(a)に示すように、隣接するゲル状ピラー105間の距離が小さいほど、隣り合うゲル状ピラー105の隙間が小さくなり、上面視における単位面積当たりのゲル状ピラー105の数が増加し、ゲル状ピラー105と液状試料との接触面積を増大させ、捕捉物質107による被検出物質の結合量を増やすことができる。その結果、被検出物質の検出感度を高めることができる。
 上記検出感度に関し、さらに具体的には、ゲル状ピラー105に捕捉された被検出物質の検出に用いる検知ゾーン110の面積が、平面視において、ゲル状ピラー105の大きさと比較して大きい場合、上記最近接距離を小さくすることにより、単位面積あたりのゲル状ピラー105の数が多くなり、単位面積あたりの検出信号の強度を高めることができる。
 また、平面視において、単位面積あたりのゲル状ピラー105の数が多いほど、ゲル状ピラー105と被検出物質とが接触する確率が高くなり、より効率的に被検出物質をゲル状ピラー105に捕捉できるようになり、結果として単位面積あたりの検出信号の強度を高めることができる。
 一方で、隣接するゲル状ピラー105間の距離が大きいほど、成形の容易性が向上する。
Here, the "distance between adjacent gel-like pillars 105" is defined by the peripheral surfaces of the two closest gel-like pillars 105 on a line segment connecting the central points of the top view. Distance. Specifically, as the distance between adjacent gel-like pillars 105, five distances between arbitrary adjacent gel-like pillars 105 from the detection zone 110 are selected, and the average value of the selected five distances is adopted. can be done.
3(a), 3(b) and 4 are top views showing an arrangement example of the gel-like pillars 105. FIG. The planar shape of the gel-like pillar 105 is circular in FIGS. 3(a) and 4, and is rectangular in FIG. 3(b).
For example, in the arrangement of the cylinders arranged in a square lattice, the nearest distance is the distance indicated by the arrow in FIG. be. For example, as shown in FIG. 3A, the smaller the distance between the adjacent gel pillars 105, the smaller the gap between the adjacent gel pillars 105, and the greater the number of gel pillars 105 per unit area in top view. As a result, the contact area between the gel pillars 105 and the liquid sample can be increased, and the binding amount of the substance to be detected by the capture substance 107 can be increased. As a result, the detection sensitivity of the substance to be detected can be enhanced.
Regarding the detection sensitivity, more specifically, when the area of the detection zone 110 used for detecting the substance to be detected captured by the gel pillars 105 is larger than the size of the gel pillars 105 in plan view, By reducing the closest distance, the number of gel-like pillars 105 per unit area increases, and the intensity of the detection signal per unit area can be increased.
Further, in a plan view, the greater the number of gel pillars 105 per unit area, the higher the probability of contact between the gel pillars 105 and the substance to be detected. Capturing becomes possible, and as a result, the strength of the detection signal per unit area can be increased.
On the other hand, the greater the distance between adjacent gel-like pillars 105, the easier the molding.
 ゲル状ピラー105には、捕捉物質107が保持されている。捕捉物質107は、ゲル状ピラー105に化学的に固定化されていてもよいし、物理的に固定化されていてもよい。また、捕捉物質107は、ゲル状ピラー105に内包されていてもよいし、ゲル状ピラー105の表面に担持されていてもよい。
 ゲル状ピラー105に捕捉物質107をより安定的に保持する観点から、捕捉物質107は、好ましくはゲル状ピラー105におけるゲル状物質と共有結合している。このとき、捕捉物質107はゲル状ピラー105に直接結合していてもよいし、ゲル状ピラー105に結合しているスペーサー分子等の介在分子に結合していてもよい。介在分子は、ポリエチレングリコール等のグリコール、エーテル、アミン、エステル、アミド、アルコール、カルボン酸等を含むことが好ましい。
Gel pillars 105 hold capture substances 107 . The trapping substance 107 may be chemically or physically immobilized on the gel pillars 105 . Also, the trapping substance 107 may be included in the gel pillars 105 or may be carried on the surface of the gel pillars 105 .
From the viewpoint of more stably holding trapping substance 107 in gel pillar 105 , trapping substance 107 is preferably covalently bonded to the gel substance in gel pillar 105 . At this time, the trapping substance 107 may be directly bound to the gel pillars 105 or may be bound to intervening molecules such as spacer molecules that are bound to the gel pillars 105 . Intervening molecules preferably include glycols such as polyethylene glycol, ethers, amines, esters, amides, alcohols, carboxylic acids, and the like.
 捕捉物質107は、被検出物質と特異的に結合する物質から選択される。たとえば、被検出物質が抗原であるとき、捕捉物質107は、抗原に対する抗体またはその抗原結合性フラグメントであってよく、好ましくは抗体である。ここで、抗原は単独で免疫原性を有する物質であってもよいし、ハプテンであってもよい。
 また、被検出物質が第1の抗体であり、捕捉物質が第1の抗体に特異的な第2の抗体であってもよい。
 捕捉物質107が抗体またはその抗原結合性フラグメントであるとき、抗体はポリクローナル抗体であってもよいし、モノクローナル抗体であってもよい。
 捕捉物質107が抗体またはその抗原結合性フラグメントであるとき、被検出物質は、抗体と抗原抗体反応することが可能な物質であってよく、たとえば、各種病原体、各種臨床マーカーが挙げられる。被検出物質としては、さらに具体的には、インフルエンザウイルス、ノロウイルス、アデノウイルス、RSウイルス、HAV、HBs、HIV等のウイルス抗原、MRSA、A群溶連菌、B群溶連菌、レジオネラ属菌等の細菌抗原、細菌等が産生する毒素、マイコプラズマ、クラミジア・トラコマティス、ヒト絨毛性ゴナドトロピン等のホルモン、C反応性タンパク質、ミオグロビン、心筋トロポニン、各種腫瘍マーカー、農薬及び環境ホルモンが挙げられる。被検出物質が、インフルエンザウイルス、ノロウイルス、C反応性タンパク質、ミオグロビン及び心筋トロポニンのような検出と治療措置に急を要する項目の場合にはその有用性がよりいっそう大きい。被検出物質は、通常、液体試料中で浮遊または溶解した状態にある。液体試料は、たとえば、被検出物質を緩衝液に浮遊または溶解させた試料であってよい。
Capture substance 107 is selected from substances that specifically bind to the substance to be detected. For example, when the substance to be detected is an antigen, the capture substance 107 may be an antibody against the antigen or an antigen-binding fragment thereof, preferably an antibody. Here, the antigen may be a substance having immunogenicity by itself, or may be a hapten.
Alternatively, the substance to be detected may be a first antibody, and the capture substance may be a second antibody specific to the first antibody.
When capture substance 107 is an antibody or antigen-binding fragment thereof, the antibody may be a polyclonal antibody or a monoclonal antibody.
When the capture substance 107 is an antibody or an antigen-binding fragment thereof, the substance to be detected may be a substance capable of antigen-antibody reaction with the antibody, such as various pathogens and various clinical markers. More specifically, the substances to be detected include virus antigens such as influenza virus, norovirus, adenovirus, respiratory syncytial virus, HAV, HBs, and HIV, and bacterial antigens such as MRSA, group A streptococcus, group B streptococcus, and Legionella spp. , toxins produced by bacteria, mycoplasma, chlamydia trachomatis, hormones such as human chorionic gonadotropin, C-reactive protein, myoglobin, cardiac troponin, various tumor markers, pesticides and environmental hormones. Its usefulness is even greater when the substance to be detected is an item requiring urgent detection and therapeutic measures, such as influenza virus, norovirus, C-reactive protein, myoglobin, and cardiac troponin. A substance to be detected is usually in a suspended or dissolved state in a liquid sample. A liquid sample may be, for example, a sample in which a substance to be detected is suspended or dissolved in a buffer.
 被検出物質は抗原には限られず、たとえば、酵素、抗体等のタンパク質やペプチド;核酸;多糖類;糖タンパク質からなる群から選択されてもよい。そして、捕捉物質107は、これらの被検出物質に対する特異性を有する物質であればよい。たとえば、捕捉物質107が、タンパク質、核酸、多糖類、糖タンパク質からなる群から選択されてもよい。 Substances to be detected are not limited to antigens, and may be selected from the group consisting of, for example, proteins and peptides such as enzymes and antibodies; nucleic acids; polysaccharides; and glycoproteins. The capture substance 107 may be a substance having specificity for these substances to be detected. For example, capture substance 107 may be selected from the group consisting of proteins, nucleic acids, polysaccharides, glycoproteins.
 デバイス100には、検知ゾーン110の底面aが、誘導ゾーン120の底面bと同じ水準にある構成が示されているが、被検出物質の検出感度をより高める観点から、検知ゾーン110の底面aが誘導ゾーン120の底面bよりも低い水準にあってもよい。
 また、検知ゾーン110の底面aは排出ゾーン130の底面cよりも低い水準にあってもよい。
The device 100 shows a configuration in which the bottom surface a of the detection zone 110 is at the same level as the bottom surface b of the induction zone 120. From the viewpoint of further increasing the detection sensitivity of the substance to be detected, the bottom surface a of the detection zone 110 may be at a level lower than the bottom surface b of the induction zone 120 .
Also, the bottom surface a of the sensing zone 110 may be at a lower level than the bottom surface c of the ejection zone 130 .
(誘導ゾーン)
 誘導ゾーン(第2ゾーン)120には、液体試料を毛細管現象により検知ゾーン110により確実に導く観点から、好ましくは複数の流路形成ピラー109が設けられている。複数の流路形成ピラー109の平面配置は規則的であってもよいし不規則であってもよい。
 同様の観点から、誘導ゾーン120を上面視したときに、流路形成ピラー109は、好ましくは格子状に配置されている。格子状の配置として、さらに具体的には、正方格子;六角格子等の斜格子が挙げられる。
(induction zone)
The guidance zone (second zone) 120 is preferably provided with a plurality of channel-forming pillars 109 from the viewpoint of reliably guiding the liquid sample to the detection zone 110 by capillary action. The planar arrangement of the plurality of flow path forming pillars 109 may be regular or irregular.
From a similar point of view, the channel forming pillars 109 are preferably arranged in a lattice when the guide zone 120 is viewed from above. More specifically, the lattice-like arrangement includes a square lattice and an oblique lattice such as a hexagonal lattice.
 流路形成ピラー109の形状として、たとえば、円柱、多角柱等の柱体;円錐、多角錐等の錐体;および円錐台、多角錐台等の錐台形が挙げられる。これらは幾何学的に正確な形状である必要はなく、角部が丸みを帯びている形状や表面に微細な凹凸が存在する形状等であってもよい。
 成形性向上の観点から、流路形成ピラー109の形状は、好ましくは円柱、円錐、円錐台、多角柱、多角錐または多角錐台であり、より好ましくは円柱、円錐または円錐台であり、より好ましくは円錐台である。
 複数の流路形成ピラー109の形状は同じであっても異なっていてもよい。所望の微細凹凸構造をより再現性良く作製する観点から、複数の流路形成ピラー109の形状は同じであることが好ましい。
Examples of the shape of the flow path forming pillar 109 include columnar bodies such as cylinders and polygonal columns; cones such as cones and polygonal pyramids; and truncated cones such as truncated cones and polygonal pyramids. These shapes do not need to be geometrically accurate shapes, and may be shapes with rounded corners, shapes with fine unevenness on the surface, and the like.
From the viewpoint of improving moldability, the shape of the flow path forming pillar 109 is preferably a cylinder, a cone, a truncated cone, a polygonal cylinder, a polygonal pyramid, or a truncated polygonal pyramid, more preferably a cylinder, a cone, or a truncated cone. A truncated cone is preferred.
The shape of the plurality of channel forming pillars 109 may be the same or different. From the viewpoint of producing a desired fine uneven structure with good reproducibility, it is preferable that the plurality of flow path forming pillars 109 have the same shape.
 流路形成ピラー109が円錐台であるとき、流路形成ピラー109の底面の直径は、成形性向上の観点から、好ましくは5μm以上であり、より好ましくは10μm以上である。
 また、成形性向上の観点から、流路形成ピラー109の底面の直径は、好ましくは1000μm以下であり、より好ましくは500μm以下である。
 流路形成ピラー109の底面の直径は、たとえば、誘導ゾーン120から任意の流路形成ピラー109を5個選択し、選択した5個の流路形成ピラー109の底面の直径の平均値を採用することができる。
When the channel-forming pillar 109 is a truncated cone, the diameter of the bottom surface of the channel-forming pillar 109 is preferably 5 μm or more, more preferably 10 μm or more, from the viewpoint of improving formability.
In addition, from the viewpoint of improving formability, the diameter of the bottom surface of the flow path forming pillar 109 is preferably 1000 μm or less, more preferably 500 μm or less.
For the diameter of the bottom surface of the channel-forming pillar 109, for example, arbitrary five channel-forming pillars 109 are selected from the guiding zone 120, and the average value of the diameters of the bottom surfaces of the selected five channel-forming pillars 109 is adopted. be able to.
 流路形成ピラー109が円錐台であるとき、流路形成ピラー109の高さは、成形性向上の観点から、好ましくは10μm以上であり、より好ましくは25μm以上である。
 また、成形性向上の観点から、流路形成ピラー109の高さは、好ましくは1000μm以下であり、より好ましくは300μm以下である。
 流路形成ピラー109の高さは、たとえば、誘導ゾーン120から任意の流路形成ピラー109を5個選択し、選択した5個の流路形成ピラー109の高さの平均値を採用することができる。
When the channel-forming pillar 109 is a truncated cone, the height of the channel-forming pillar 109 is preferably 10 μm or more, more preferably 25 μm or more, from the viewpoint of improving moldability.
Moreover, from the viewpoint of improving formability, the height of the flow path forming pillar 109 is preferably 1000 μm or less, more preferably 300 μm or less.
For the height of the channel-forming pillars 109, for example, arbitrary five channel-forming pillars 109 are selected from the induction zone 120, and the average value of the heights of the selected five channel-forming pillars 109 can be adopted. can.
 誘導ゾーン120における隣接する流路形成ピラー109間の距離すなわち流路形成ピラー109同士の最近接距離は、流路形成ピラー109の形状に応じて適宜設定され、たとえば0~500μm程度である。
 たとえば、流路形成ピラー109が柱体であるとき上記最近接距離は好ましくは0μm超であり、流路形成ピラー109が錐体または錐台形であるとき上記最近接距離は0μm以上である。また、上記最近接距離はたとえば0.1μm以上であってもよく、また、たとえば2μm以上であってもよい。
 最近接距離の上限は、好ましくは500μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下である。これにより、液体試料と基材101および流路形成ピラー109との接触面積が増大して毛細管力が増大するため液体試料を移動させることが容易になる。
The distance between the adjacent flow path forming pillars 109 in the guiding zone 120, that is, the closest distance between the flow path forming pillars 109 is appropriately set according to the shape of the flow path forming pillars 109, and is, for example, approximately 0 to 500 μm.
For example, when the channel-forming pillars 109 are cylindrical, the closest distance is preferably greater than 0 μm, and when the channel-forming pillars 109 are conical or frustoconical, the closest distance is 0 μm or more. Also, the closest distance may be, for example, 0.1 μm or more, or may be, for example, 2 μm or more.
The upper limit of the closest distance is preferably 500 μm or less, more preferably 100 μm or less, and even more preferably 50 μm or less. As a result, the contact area between the liquid sample and the substrate 101 and the channel-forming pillars 109 increases, increasing the capillary force and facilitating the movement of the liquid sample.
 ここで、「隣接する流路形成ピラー109間の距離」とは、最も近くに位置する2つの流路形成ピラー109の上面視における中心点を結ぶ線分上において、それらの周面同士で規定される距離である。隣接する流路形成ピラー109間の距離として、具体的には、誘導ゾーン120から任意の隣接する流路形成ピラー109間の距離を5個選択し、選択した5個の距離の平均値を採用することができる。
 たとえば、六角格子配列した円錐体または円錐台形の流路形成ピラー同士の最近接距離が0μmであるとき、隣り合う流路形成ピラー109は、たとえば、図5に示したように、隙間なく並べられる。図5は、流路形成ピラー109の配置例を示す上面図である。流路形成ピラー109を隙間なく並べることにより、単位面積当たりの流路形成ピラー109の数が増加し、より一層毛細管力が増大するため液体試料を移送することがより容易になる。
Here, the "distance between the adjacent flow path forming pillars 109" is defined by the peripheral surfaces of the two closest flow path forming pillars 109 on the line segment connecting the center points of the top view. distance As the distance between adjacent flow path forming pillars 109, specifically, five distances between any adjacent flow path forming pillars 109 from the induction zone 120 are selected, and the average value of the selected five distances is adopted. can do.
For example, when the closest distance between conical or truncated conical channel-forming pillars arranged in a hexagonal lattice is 0 μm, the adjacent channel-forming pillars 109 are arranged without gaps, for example, as shown in FIG. . FIG. 5 is a top view showing an arrangement example of the channel forming pillars 109. As shown in FIG. By arranging the channel-forming pillars 109 without gaps, the number of channel-forming pillars 109 per unit area is increased, and the capillary force is further increased, making it easier to transfer the liquid sample.
 流路形成ピラー109の材料の具体例としては、基材101の材料として前述したものが挙げられる。流路形成ピラー109の材料は基材101の材料と同じであってもよいし異なっていてもよい。
 また、たとえば流路形成ピラー109と基材101とは単一の部材で構成されていてもよい。すなわち、デバイス100は、基材101と流路形成ピラー109との界面を有していなくてもよい。
Specific examples of the material of the flow path forming pillar 109 include those described above as the material of the base material 101 . The material of the channel forming pillars 109 may be the same as or different from the material of the substrate 101 .
Further, for example, the channel forming pillar 109 and the base material 101 may be configured as a single member. That is, the device 100 does not have to have an interface between the base material 101 and the channel-forming pillars 109 .
(排出ゾーン)
 排出ゾーン(第2ゾーン)130においては、流路103が、複数の流路形成ピラー111により形成されている。換言すれば、排出ゾーン130には、複数の流路形成ピラー111が設けられている。排出ゾーン130および流路形成ピラー111の構成は、それぞれ、たとえば、誘導ゾーン120および流路形成ピラー109に準じたものとすることができる。
(emission zone)
In the discharge zone (second zone) 130 , the channel 103 is formed by a plurality of channel-forming pillars 111 . In other words, the discharge zone 130 is provided with a plurality of channel forming pillars 111 . The configuration of the discharge zone 130 and the channel-forming pillars 111 can be, for example, according to the induction zone 120 and the channel-forming pillars 109, respectively.
 図1中には示していないが、排出ゾーン130における排出を促進する観点から、デバイス100の排出ゾーン130に、吸収パッドを重ねることで、排出してもよい。吸収パッドの材料として、紙や多孔質体が挙げられる。また、吸収パッドの配置については、たとえば排出ゾーン130の少なくとも一部において基材101に重ねて配置してもよいし、基材101に隣接して配置してもよい。 Although not shown in FIG. 1, from the viewpoint of promoting discharge in the discharge zone 130, the discharge zone 130 of the device 100 may be discharged by overlapping an absorbent pad. Materials for the absorbent pad include paper and porous bodies. As for the arrangement of the absorbent pad, for example, it may be arranged so as to overlap the base material 101 in at least a part of the discharge zone 130 or may be arranged adjacent to the base material 101 .
 図1に示したデバイス100には、蓋部が設けられていないが、デバイスには、流路を覆う蓋部が設けられていてもよい。
 図2は、本実施形態におけるデバイスの他の構成の例を示す断面図である。図2に示したデバイス150の基本構成は、図1を参照して前述したデバイス100と同様であるが、基材101に対向する蓋部113が流路103を覆うように設けられている点が異なる。
 蓋部113を設けることにより、検知ゾーン110におけるゲル状ピラー105の乾燥を抑制することができる。また。流路形成ピラー109が設けられた誘導ゾーン120および流路形成ピラー111が設けられた排出ゾーン130において、毛細管現象による液体試料の流れをより安定的なものとすることができる。
 蓋部113は、基材101の全体を覆っていてもよいし、基材101の一部を覆っていてもよい。
Although the device 100 shown in FIG. 1 is not provided with a lid, the device may be provided with a lid that covers the channel.
FIG. 2 is a cross-sectional view showing another configuration example of the device according to this embodiment. The basic configuration of the device 150 shown in FIG. 2 is the same as the device 100 described above with reference to FIG. is different.
By providing the lid portion 113, drying of the gel-like pillars 105 in the detection zone 110 can be suppressed. Also. In the induction zone 120 provided with the channel-forming pillars 109 and the discharge zone 130 provided with the channel-forming pillars 111, the flow of the liquid sample by capillary action can be made more stable.
The lid portion 113 may cover the entire substrate 101 or may cover a portion of the substrate 101 .
 蓋部113の厚さは、デバイス150の強度向上の観点から、たとえば5μm以上であり、好ましくは10μm以上である。
 また、デバイス150の薄型化の観点から、蓋部113の厚さは、たとえば1000μm以下であり、好ましくは200μm以下である。
From the viewpoint of improving the strength of the device 150, the thickness of the lid portion 113 is, for example, 5 μm or more, preferably 10 μm or more.
From the viewpoint of thinning the device 150, the thickness of the lid portion 113 is, for example, 1000 μm or less, preferably 200 μm or less.
 デバイス150の上部からの視認性を向上する観点から、蓋部113は、好ましくは透明材料により構成される。蓋部113の材料は、さらに具体的には、石英ガラス、ソーダ石灰ガラス、ホウケイ酸ガラス等のガラス;およびポリ(メタ)アクリレート、ポリエステル、ポリオレフィン、ポリスチレン、ポリカーボネート、フッ素樹脂、ポリ塩化ビニル、ポリアミド、ポリイミド等の樹脂からなる群から選択される1種または2種以上を含む。 From the viewpoint of improving visibility from above the device 150, the lid 113 is preferably made of a transparent material. More specifically, the material of the lid part 113 is glass such as quartz glass, soda lime glass, borosilicate glass; and poly(meth)acrylate, polyester, polyolefin, polystyrene, polycarbonate, fluororesin, polyvinyl chloride, polyamide , polyimide and other resins.
 以上の例では、デバイスの上流側すなわち液体試料導入側から下流側に向かって、誘導ゾーン120、検知ゾーン110および排出ゾーン130がこの順に設けられた構成を例に説明したが、デバイスには、誘導ゾーン120および排出ゾーン130の少なくとも一方が設けられていればよい。
 また、デバイスには、上述の領域以外の領域が設けられていてもよい。
 たとえば、デバイスには、検知ゾーン110より上流側、さらに具体的には誘導ゾーン120より上流側に、試料導入部が設けられていてもよい。
 また、図6(a)~図6(d)は、デバイスの配置例を示す断面図である。
 図6(a)に示したように、デバイスには、検知ゾーン110と排出ゾーン130との間に、流路形成ピラーが設けられていない平面部115が設けられていてもよい。
 また、図6(c)、図6(d)または図6(b)に示したように、デバイスには、検知ゾーン110より下流側、さらに具体的には排出ゾーン130より上流側に、液体試料の溜め部119または溜め部121あるいは堰き止め部117が設けられていてもよい。溜め部119または溜め部121および堰き止め部117には、いずれも、流路形成ピラーが設けられていない。
In the above example, the configuration in which the induction zone 120, the detection zone 110, and the discharge zone 130 are provided in this order from the upstream side of the device, that is, the liquid sample introduction side to the downstream side, was described as an example. At least one of the induction zone 120 and the ejection zone 130 need only be provided.
Also, the device may be provided with regions other than the regions described above.
For example, the device may be provided with a sample introduction upstream of the sensing zone 110 and more specifically upstream of the induction zone 120 .
6(a) to 6(d) are cross-sectional views showing examples of arrangement of devices.
As shown in FIG. 6( a ), the device may be provided with a planar portion 115 between the sensing zone 110 and the ejection zone 130 without flow channel forming pillars.
6(c), 6(d) or 6(b), the device may also include, downstream from the sensing zone 110, and more specifically upstream from the exhaust zone 130, a liquid A sample reservoir 119 or reservoir 121 or a damming portion 117 may be provided. None of the reservoir 119 or the reservoir 121 and the damming portion 117 is provided with flow path forming pillars.
 図6(b)においては、堰き止め部117では、その高さ(基材101の厚さ)が検知ゾーン110から排出ゾーン130に向かって漸増しており、排出ゾーン130との境界に段差が形成されている。この段差の存在により、液体試料の排出ゾーン130から検知ゾーン110への逆流を防止する効果、すなわち、堰き止め効果が発揮される。
 また、図6(c)の溜め部119および図6(d)の溜め部121には、基材101の底面が検知ゾーン110における基材101の底面よりも低い水準に位置する領域が設けられている。これにより、検知ゾーン110における液体の移動速度を調整することができる。
 また、図6(a)~図6(d)の構成を適宜組み合わせて所望のデバイスとすることができ、流路103に導入される液体の種類や量に応じてより好ましい流路構成とし、液体の移動速度をより好適なものとすることができる。
In FIG. 6B, in the damming portion 117, the height (thickness of the substrate 101) gradually increases from the detection zone 110 toward the discharge zone 130, and there is a step at the boundary with the discharge zone 130. formed. Due to the presence of this step, the effect of preventing the liquid sample from flowing back from the discharge zone 130 to the detection zone 110, that is, the damming effect is exhibited.
6(c) and the reservoir 121 of FIG. 6(d) are provided with areas where the bottom surface of the substrate 101 is located at a level lower than the bottom surface of the substrate 101 in the detection zone 110. ing. Thereby, the moving speed of the liquid in the detection zone 110 can be adjusted.
6(a) to 6(d) can be appropriately combined to form a desired device. The moving speed of the liquid can be made more suitable.
 また、以上の例では、誘導ゾーン120および排出ゾーン130において、流路103がそれぞれ複数の流路形成ピラー109および複数の流路形成ピラー111により構成されている例(流路103に複数の流路形成ピラー109および複数の流路形成ピラー111が設けられている例)を示したが、流路103は、微細溝により構成されていてもよい。
 図7は、微細溝を有するデバイスの構成例を示す上面図である。図7に示したデバイス140においては、図1に示した誘導ゾーン120および排出ゾーン130における流路がそれぞれ微細溝123および微細溝125により構成されている例である。
 液体試料の移送方向に直交する方向における微細溝123および微細溝125の幅は、液体試料と流路103との接触面積が増大し、これにより毛細管力が増大するため液体試料を移動させることがより容易になる観点から、好ましくは2μm以上であり、また、好ましくは2000μm以下であり、より好ましくは1000μm以下である。微細溝123および微細溝125の幅は、同じであっても異なってもよい。
 また、微細溝を有するデバイスとして、たとえば、微細溝123および微細溝125の体積が、幅1000μm×長さ20mm×深さ1000μmとなっており、また検知ゾーン110の体積が、幅2000μm×長さ10mm×深さ1000μmであり、その検知ゾーン110にゲル状ピラー105が配置されている形状が挙げられる。
 図7の例では、検知ゾーン110は、液体試料の移送方向に直交する方向に微細溝123および微細溝125よりも幅広の領域となっており、検知ゾーン110には複数(図中4つ)のゲル状ピラー105が規則的に配置されている。
Further, in the above example, in the induction zone 120 and the discharge zone 130, the channel 103 is configured by a plurality of channel-forming pillars 109 and a plurality of channel-forming pillars 111 (a plurality of flow channels in the channel 103). Although an example in which the passage-forming pillar 109 and a plurality of passage-forming pillars 111 are provided has been shown, the passage 103 may be configured by fine grooves.
FIG. 7 is a top view showing a configuration example of a device having fine grooves. Device 140 shown in FIG. 7 is an example in which the flow paths in induction zone 120 and discharge zone 130 shown in FIG.
The width of the fine grooves 123 and 125 in the direction perpendicular to the direction of transfer of the liquid sample increases the contact area between the liquid sample and the channel 103, which increases the capillary force, so that the liquid sample can be moved. From the viewpoint of facilitating it, the thickness is preferably 2 μm or more, preferably 2000 μm or less, and more preferably 1000 μm or less. The widths of microgrooves 123 and 125 may be the same or different.
Further, as a device having fine grooves, for example, the volume of fine grooves 123 and 125 is 1000 μm width×20 mm length×1000 μm depth, and the volume of detection zone 110 is 2000 μm width×length. A shape having a size of 10 mm×1000 μm in depth and having gel-like pillars 105 arranged in the detection zone 110 can be exemplified.
In the example of FIG. 7, the detection zone 110 is a region wider than the fine grooves 123 and 125 in the direction perpendicular to the transfer direction of the liquid sample. gel-like pillars 105 are regularly arranged.
 また、以上の例では、検知ゾーン110に複数のゲル状ピラー105が設けられた例を中心に説明したが、検知ゾーン110に1つのゲル状ピラー105が設けられていてもよい。また、作製がより容易である観点、検出系をより単純にできる観点、および、液体の流動性を向上する観点では、検知ゾーン110に1つのゲル状ピラー105を設けることが好ましい。図8および図9は、検知ゾーン110に1つのゲル状ピラー105が設けられたデバイスの構成例を示す斜視図である。
 図8に示したデバイス160および図9に示したデバイス170の基本構成は、いずれも、図1を参照して前述したデバイス100の構成と同様であるが、検知ゾーン110に、それぞれ、1つの円柱状の、および、1つの直方体状のゲル状ピラー105が設けられている点が異なる。
 検知ゾーン110に1つのゲル状ピラー105が設けられているとき、上面視において、たとえばゲル状ピラー105の面積が、流路形成ピラー109および流路形成ピラー111の面積よりも大きい構成としてもよい。
Further, in the above example, an example in which a plurality of gel-like pillars 105 are provided in the detection zone 110 has been mainly described, but one gel-like pillar 105 may be provided in the detection zone 110 . In addition, it is preferable to provide one gel-like pillar 105 in the detection zone 110 from the viewpoints of easier fabrication, simpler detection system, and improved liquid fluidity. 8 and 9 are perspective views showing configuration examples of a device in which one gel-like pillar 105 is provided in the detection zone 110. FIG.
The basic configuration of device 160 shown in FIG. 8 and device 170 shown in FIG. 9 are both similar to the configuration of device 100 described above with reference to FIG. The difference is that a columnar gel pillar 105 and one rectangular parallelepiped gel pillar 105 are provided.
When one gel-like pillar 105 is provided in the detection zone 110, for example, the area of the gel-like pillar 105 may be larger than the areas of the channel-forming pillars 109 and 111 in top view. .
 次に、流路形成ピラー109および流路形成ピラー111を有するデバイスを例に、デバイスの製造方法を説明する。
 デバイスは、たとえば、基材101の一表面に、ゲル状ピラー105と、流路形成ピラー109および流路形成ピラー111の少なくとも一方と、を所定の順序で形成することにより得ることができる。
Next, a method of manufacturing a device will be described by taking a device having the channel-forming pillar 109 and the channel-forming pillar 111 as an example.
The device can be obtained, for example, by forming gel-like pillars 105 and at least one of channel-forming pillars 109 and channel-forming pillars 111 on one surface of substrate 101 in a predetermined order.
 流路形成ピラー109および流路形成ピラー111の形成方法としては、たとえば、熱インプリント、UVインプリント等のインプリント;
射出成形;
フォトリソグラフィーによるUV硬化樹脂に対するパターン形成、フォトリソグラフィーによりパターン形成したUV硬化樹脂を鋳型としたソフトリソグラフィー、フォトリソグラフィーによるパターン形成したUV硬化樹脂を利用したエッチング等によるパターン形成;
機械切削;および
レーザー加工等が挙げられる。これらの中でも安価に精密な加工を施す手法として、熱可塑性樹脂に対する熱インプリント、射出成形が適している。熱可塑性樹脂の具体例としては、基材101の材料として前述したものが挙げられる。
 流路形成ピラー109および流路形成ピラー111の形状が錐体である場合、インプリントや射出成形といった金型を用いた加工方法の場合、錐体は、底面に比べ上部が細くなっているため、同底面の柱体を作製するよりも金型作製時に削り出す体積は少なくて済み、金型を安価に作製することができる。この場合、液体試料中の被検出物質の検出をより安価に行うことが可能となる。
Examples of the method for forming the channel-forming pillars 109 and the channel-forming pillars 111 include imprinting such as thermal imprinting and UV imprinting;
injection molding;
Pattern formation for UV curable resin by photolithography, soft lithography using UV curable resin patterned by photolithography as a template, pattern formation by etching using UV curable resin patterned by photolithography;
machine cutting; and laser processing. Among these methods, thermal imprinting and injection molding for thermoplastic resins are suitable as techniques for performing precision processing at low cost. Specific examples of the thermoplastic resin include those mentioned above as the material of the base material 101 .
When the shape of the flow path forming pillar 109 and the flow path forming pillar 111 is conical, in the case of a processing method using a mold such as imprinting or injection molding, the conical has a narrower top than the bottom. , the volume to be machined out at the time of manufacturing a mold is smaller than when manufacturing a columnar body with the same bottom surface, and the mold can be manufactured at a low cost. In this case, it becomes possible to detect the substance to be detected in the liquid sample at a lower cost.
 ゲル状ピラー105の形成方法としては、所定の間隔のスペーサーを介して対向させた一対の透明材料(たとえば、ガラス)間に、UV硬化性樹脂および重合開始剤を含む液体を適用した後、ゲル状ピラー105の形成領域にフォトマスクを設け、UV光を照射することにより、フォトマスクが設けられた領域において選択的に樹脂を硬化して、ゲル状ピラー105のパターンを形成することができる。得られたゲル状ピラー105を、流路形成ピラー109および流路形成ピラー111が設けられた基材101の所定の位置に配置することにより、デバイスが得られる。
 また、このとき、流路形成ピラー109および流路形成ピラー111の少なくとも一方が設けられた基材101の表面の所定の領域にゲル化剤を含む液体を適用して、その後上述の手順にしたがってゲル状ピラー105を形成することにより、基材101上に直接ゲル状ピラー105を形成してもよい。
As a method for forming the gel-like pillars 105, a liquid containing a UV curable resin and a polymerization initiator is applied between a pair of transparent materials (for example, glass) facing each other with a spacer interposed therebetween, and then a gel is formed. A photomask is provided in the region where the pillars 105 are formed, and UV light is applied to selectively cure the resin in the region provided with the photomask, thereby forming a pattern of the gel pillars 105 . A device is obtained by arranging the obtained gel-like pillars 105 at predetermined positions of the substrate 101 provided with the channel-forming pillars 109 and the channel-forming pillars 111 .
Also, at this time, a liquid containing a gelling agent is applied to a predetermined region of the surface of the base material 101 provided with at least one of the channel-forming pillars 109 and the channel-forming pillars 111, and then according to the procedure described above. By forming the gel pillars 105 , the gel pillars 105 may be formed directly on the substrate 101 .
 (検出方法)
 本実施形態において、デバイスは、イムノアッセイに好適に用いることができる。本実施形態におけるデバイスには、ゲル状ピラー105を有する検知ゾーン110と、流路形成ピラー109を有する誘導ゾーン120または流路形成ピラー111を有する排出ゾーン130の少なくとも一方と、が設けられているため、液体試料中の被検出物質を優れた感度で安定的に検出することができる。また、本実施形態におけるデバイスは、送液ポンプ等の追加の装置を用いない場合にも使用することができるため、被検出物質を簡便に検出することができる。
(Detection method)
In this embodiment, the device can be suitably used for immunoassay. The device in this embodiment is provided with a sensing zone 110 with gel pillars 105 and at least one of an induction zone 120 with channel-forming pillars 109 or an ejection zone 130 with channel-forming pillars 111. Therefore, the substance to be detected in the liquid sample can be stably detected with excellent sensitivity. In addition, the device according to the present embodiment can be used without using an additional device such as a liquid-sending pump, so that the substance to be detected can be easily detected.
 本実施形態において、デバイスを用いた検出方法は、たとえばサンドイッチ法により行うことができる。このとき、検出方法は、具体的には、
検知ゾーン110の上流側、具体的には誘導ゾーン120上または、誘導ゾーン120の上流側に、被検出物質を含む液体試料を導入し、毛細管現象により検知ゾーン110に導くとともに、被検出物質と捕捉物質107との特異的相互作用により被検出物質をゲル状ピラー105に捕捉するステップ(ステップ11);
捕捉するステップの後、被検出物質に特異的に結合する標識抗体を含む液体を検知ゾーン110に導入し、被検出物質が捕捉されているゲル状ピラー105に標識抗体を捕捉するステップ(ステップ12);ならびに
ゲル状ピラー105に捕捉されている標識抗体を検出することにより、液体試料中の被検出物質を検出または定量するステップ(ステップ13)
を含む。
 また、ステップ11とステップ12との間、および、ステップ12とステップ13との間の少なくとも一方において、検知ゾーン110の上流側、具体的には誘導ゾーン120の上流側に、緩衝液等を導入し、検知ゾーン110を洗い流すステップ(ステップ14)をさらにおこなってもよい。
In this embodiment, the detection method using the device can be performed, for example, by the sandwich method. At this time, the detection method is, specifically,
A liquid sample containing a substance to be detected is introduced into the upstream side of the detection zone 110, specifically, the induction zone 120 or the upstream side of the induction zone 120, and guided to the detection zone 110 by capillary action. a step of capturing the substance to be detected in the gel-like pillars 105 by specific interaction with the capture substance 107 (step 11);
After the capturing step, a step of introducing a liquid containing a labeled antibody that specifically binds to the substance to be detected into the detection zone 110 and capturing the labeled antibody on the gel pillars 105 in which the substance to be detected is captured (step 12 ); and detecting or quantifying the substance to be detected in the liquid sample by detecting the labeled antibody captured by the gel pillars 105 (step 13).
including.
Also, between steps 11 and 12 and/or between steps 12 and 13, a buffer solution or the like is introduced upstream of the detection zone 110, specifically, upstream of the induction zone 120. and a further step of flushing the sensing zone 110 (step 14) may be performed.
 ステップ12における標識抗体には、酵素結合免疫吸着測定法(ELISA)や蛍光免疫測定法等のイムノアッセイに用いられる標識抗体を用いることができる。標識抗体として、たとえば、蛍光標識抗体、酵素標識抗体が挙げられる。
 また、ステップ13においては、ステップ12で用いる標識抗体の種類に応じた検出方法を用いることができる。
 たとえばステップ12において蛍光標識抗体を用いる場合、ステップ13において、ゲル状ピラー105における蛍光の有無または蛍光強度を測定することにより、被検出物質を検出または定量することができる。
 また、ステップ12において酵素標識抗体を用いる場合には、ステップ13において、検知ゾーン110に標識抗体に固定化された酵素に対する基質を導入し、基質に基づく発色の有無、吸光度、蛍光の有無、蛍光強度、化学発光の有無、化学発光強度等を測定することにより、被検出物質を検出または定量することができる。
Labeled antibodies used in immunoassays such as enzyme-linked immunosorbent assay (ELISA) and fluorescence immunoassay can be used as the labeled antibody in step 12 . Labeled antibodies include, for example, fluorescence-labeled antibodies and enzyme-labeled antibodies.
Moreover, in step 13, a detection method can be used according to the type of labeled antibody used in step 12.
For example, when a fluorescence-labeled antibody is used in step 12 , the substance to be detected can be detected or quantified by measuring the presence or absence of fluorescence or fluorescence intensity in gel pillars 105 in step 13 .
Further, when an enzyme-labeled antibody is used in step 12, in step 13, a substrate for the enzyme immobilized on the labeled antibody is introduced into the detection zone 110, and the presence or absence of color development based on the substrate, the absorbance, the presence or absence of fluorescence, and the presence or absence of fluorescence The substance to be detected can be detected or quantified by measuring the intensity, the presence or absence of chemiluminescence, the chemiluminescence intensity, and the like.
 (チップ)
 本実施形態において、チップは上述した本実施形態におけるデバイスを有する。チップはデバイスから構成されていてもよいし、他の部材をさらに有していてもよい。他の部材の具体例として、デバイスを収容または保持する筐体が挙げられる。
(chip)
In this embodiment, the chip comprises the device in this embodiment described above. A chip may consist of a device, and may further have other members. A specific example of the other member is a housing that houses or holds the device.
 (基板)
 本実施形態において、基板は、上述した本実施形態におけるデバイスに用いられる。基板には、基材101について前述した構成を適宜用いることができる。
 基板は、長尺であり、その長手方向の一部に設けられた第1ゾーンと、第1ゾーンの少なくとも一方の側(図1に示した基材101では、両方の側)に位置する第2ゾーンとを有する。
 第1ゾーンに、上記ゲル状ピラー105を配置することにより、デバイス100の検知ゾーン110として機能させることができる。一方、第2ゾーンには複数の流路形成ピラー(ゲル状ピラー105と異なるピラー)109および111が設けられるか、または、第2ゾーンが微細溝で構成されているので、デバイス100の誘導ゾーン120および排出ゾーン130として機能させることができる。
(substrate)
In this embodiment, the substrate is used in the device in this embodiment described above. The structure described above for the base material 101 can be appropriately used for the substrate.
The substrate is elongated and has a first zone provided in a part of its longitudinal direction, and a second zone located on at least one side of the first zone (both sides in the substrate 101 shown in FIG. 1). 2 zones.
By arranging the gel-like pillars 105 in the first zone, it can function as the detection zone 110 of the device 100 . On the other hand, the second zone is provided with a plurality of channel-forming pillars (pillars different from the gel-like pillars 105) 109 and 111, or because the second zone is composed of fine grooves, the guiding zone of the device 100 120 and discharge zone 130 .
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above with reference to the drawings, these are examples of the present invention, and various configurations other than those described above can be adopted.
 以下、実施例および比較例を挙げて本実施形態を具体的に説明するが、本実施形態はこれらの実施例に限定されるものではない。 The present embodiment will be specifically described below with reference to examples and comparative examples, but the present embodiment is not limited to these examples.
 (実施例1、2)
 本例においては、ゲル状ピラーに抗CRP抗体が固定化されたデバイスを作製し、液体試料中のCRP(C反応性タンパク質)の検出をおこなった。
(Examples 1 and 2)
In this example, a device in which an anti-CRP antibody was immobilized on gel-like pillars was produced, and CRP (C-reactive protein) in a liquid sample was detected.
(デバイスの作製)
 図2に示した概略構造を有するデバイスを作製した。
1.誘導ゾーン120および排出ゾーン130の作製
 以下の手順で流路形成ピラー109および流路形成ピラー111を有する基材101を作製した。誘導ゾーン120および排出ゾーン130における流路形成ピラーの形状および配置をいずれも同じものとした。
 ポリメチルメタクリレートシート(住化アクリル販売社製、膜厚約200μm)に、金型を押し当て加熱温度160℃、圧力5.5MPa、加圧時間3分の条件で、熱インプリントを施し、ピラーの底面の直径(以下、「径」ということもある。)60μm、ピラーの高さ(以下、「高さ」ということもある。)90μmの円錐台型の突起部が、突起部の中心間の平均距離を62μmとして図10(a)および図10(b)に示す六角格子配列形式で並んでおり、誘導ゾーン120と排出ゾーン130の間の隙間が、4.5mmである基材101を作製した。
 ここで熱インプリントを施す際の金型には、穴の入り口の直径60μm、深さ90μmの円錐台型の穴が、穴の中心間の平均距離を62μmとして六角格子配列方式で並んでおり、基材101の誘導ゾーン120と排出ゾーン130の間に対応する隙間が、4.5mmであるニッケル金型を用いた。穴は、機械切削加工によって作製した。基材101の平面形状を幅5mm×長さ30mmとし、誘導ゾーン120の平面形状を幅5mm×長さ4.5mmとし、排出ゾーン130の平面形状を幅5mm×長さ21mmとした。図10(a)および図10(b)は、それぞれ、得られた基材101における流路形成ピラー109および流路形成ピラー111の光学顕微鏡を示す上面図およびSEM像を示す斜視図である。図10(a)および図10(b)では、横方向に隣り合う流路形成ピラーが隙間なく並べられ、図10(a)および図10(b)において斜め方向に隣り合う流路形成ピラーがほぼ隙間なく並べられている。
(Fabrication of device)
A device having the schematic structure shown in FIG. 2 was fabricated.
1. Preparation of Induction Zone 120 and Ejection Zone 130 The base material 101 having the channel-forming pillars 109 and the channel-forming pillars 111 was produced by the following procedure. The shape and arrangement of the channel-defining pillars in both the induction zone 120 and the discharge zone 130 were the same.
A mold is pressed against a polymethyl methacrylate sheet (manufactured by Sumika Acrylic Co., Ltd., film thickness: about 200 μm), and thermal imprinting is performed under the conditions of a heating temperature of 160 ° C., a pressure of 5.5 MPa, and a pressing time of 3 minutes. The diameter of the bottom surface (hereinafter also referred to as "diameter") of 60 μm, the height of the pillar (hereinafter also referred to as "height") of 90 μm. 10(a) and 10(b) with an average distance of 62 μm, and the gap between the induction zone 120 and the discharge zone 130 is 4.5 mm. made.
Here, in the mold for thermal imprinting, truncated cone-shaped holes with an entrance diameter of 60 μm and a depth of 90 μm are arranged in a hexagonal grid arrangement with an average distance between the centers of the holes of 62 μm. , a nickel mold with a corresponding gap between the induction zone 120 and the ejection zone 130 of the substrate 101 of 4.5 mm. The holes were made by machining. The planar shape of the substrate 101 was 5 mm wide×30 mm long, the planar shape of the induction zone 120 was 5 mm wide×4.5 mm long, and the planar shape of the discharge zone 130 was 5 mm wide×21 mm long. 10(a) and 10(b) are a top view showing an optical microscope and a perspective view showing an SEM image of the channel forming pillar 109 and the channel forming pillar 111 in the obtained base material 101, respectively. In FIGS. 10(a) and 10(b), the laterally adjacent channel-forming pillars are arranged without gaps, and in FIGS. 10(a) and 10(b), the diagonally adjacent channel-forming pillars are They are arranged almost seamlessly.
2.ゲル状ピラー105の作製
 1.で得られた基材101上に以下の手順でゲル状ピラー105を形成した。検知ゾーン110の平面形状を幅5mm×長さ4.5mmとした。
2.1 高分子溶液の調製
 実施例1および2について、それぞれ、以下の高分子溶液を準備した。
(a)実施例1
 ポリエチレングリコールジアクリレート(PEGDA、数平均分子量575、アルドリッチ社製)をリン酸緩衝液(PBS)によって希釈した溶液に対して、光硬化開始剤として2-ヒドロキシ-2-メチルプロピオフェノン、抗体として抗CRP抗体を添加することによって、高分子溶液(抗体濃度約100μg/mL、20%PEGDA、0.55%開始剤)を調製した。
(b)実施例2
 ポリエチレングリコールジアクリレート(PEGDA、数平均分子量575、アルドリッチ社製)をリン酸緩衝液(PBS)によって希釈した溶液に対して、光硬化開始剤として2-ヒドロキシ-2-メチルプロピオフェノン、抗体としてPEG-Acリンカー(PEG:分子量2000)を修飾した抗CRP抗体(PEGアクリル化CRP抗体、Ac-PEG-Ab)を添加することによって、高分子溶液(抗体濃度約300μg/mL、20%PEGDA、0.54%開始剤)を調製した。
Ac:アクリル基
PEG:ポリエチレングリコール基
Ab:抗体分子
2. Preparation of Gel Pillar 105 1 . Gel-like pillars 105 were formed on the substrate 101 obtained in 1. by the following procedure. The planar shape of the detection zone 110 was 5 mm wide×4.5 mm long.
2.1 Preparation of Polymer Solution For each of Examples 1 and 2, the following polymer solutions were prepared.
(a) Example 1
A solution obtained by diluting polyethylene glycol diacrylate (PEGDA, number average molecular weight 575, manufactured by Aldrich) with phosphate buffer solution (PBS) was treated with 2-hydroxy-2-methylpropiophenone as a photocuring initiator and as an antibody. A polymer solution (antibody concentration approximately 100 μg/mL, 20% PEGDA, 0.55% initiator) was prepared by adding anti-CRP antibody.
(b) Example 2
A solution obtained by diluting polyethylene glycol diacrylate (PEGDA, number average molecular weight 575, manufactured by Aldrich) with phosphate buffer solution (PBS) was treated with 2-hydroxy-2-methylpropiophenone as a photocuring initiator and as an antibody. By adding an anti-CRP antibody (PEG acrylated CRP antibody, Ac-PEG-Ab) modified with a PEG-Ac linker (PEG: molecular weight 2000), a polymer solution (antibody concentration of about 300 μg/mL, 20% PEGDA, 0.54% initiator) was prepared.
Ac: acrylic group PEG: polyethylene glycol group Ab: antibody molecule
2.2 ゲル化
 1.で得られた基材101における誘導ゾーン120と排出ゾーン130の間の隙間に各例の高分子溶液を供給し、カバーガラス(厚さ約0.15mm)を載せた後、カバーガラス上にフォトマスク(直径400μmの円形の穴が、中心間距離800μmで正方格子配列)を被せ、露光装置(UIV270、ウシオ電機社製)を用いて、実施例1の高分子溶液を用いた場合90秒間、実施例2の高分子溶液を用いた場合60秒間、光照射しゲル状ピラー105を作製した。その後、2%Triton x-100/PBSを用いて、未硬化の高分子溶液を洗い流した。
2.2 Gelling 1. The polymer solution of each example was supplied to the gap between the induction zone 120 and the discharge zone 130 in the substrate 101 obtained in 1., and a cover glass (thickness of about 0.15 mm) was placed thereon. A mask (circular holes with a diameter of 400 μm arranged in a square lattice with a center-to-center distance of 800 μm) was covered, and an exposure apparatus (UIV270, manufactured by Ushio Inc.) was used. When the polymer solution of Example 2 was used, the gel-like pillars 105 were produced by light irradiation for 60 seconds. 2% Triton x-100/PBS was then used to wash away the uncured polymer solution.
3.吸収パッドの配設
 ゲル状ピラー105が形成された基材101における流路形成ピラー111の形成領域(排出ゾーン130)の端部から10mmの位置に、幅5mm×長さ40mmの大きさに裁断した吸収パッド(PVAスポンジ、A-3150HP、アイオン社製、厚さ約0.6mm)を重ね合わせ、テープで固定した。
3. Arrangement of Absorbent Pad Cut into a size of 5 mm in width and 40 mm in length at a position 10 mm from the end of the formation area (discharge zone 130) of the flow path forming pillar 111 in the substrate 101 on which the gel pillars 105 are formed. Absorbent pads (PVA sponge, A-3150HP, manufactured by Aion Co., Ltd., thickness of about 0.6 mm) were overlapped and fixed with tape.
(イムノアッセイ)
 各例で得られたデバイスを用いて以下の手順でイムノアッセイをおこなった。
1.基材101における誘導ゾーン120に、抗原を2% TritonX100/PBSで希釈した水溶液(CRP、濃度10μg/mL)を10μL滴下し、3分待った。
2.基材101における誘導ゾーン120に、蛍光標識抗体を2% TritonX100/PBSで希釈した水溶液(FITC(フルオレセインイソチオシアネート)標識抗CRP抗体、 20μg/mL)を10μL滴下し、1分待った。この操作を、さらに2回(計3回)繰り返した。
3.基材101における誘導ゾーン120に、2% TritonX100/PBSを10μL滴下し、1分待った。この操作を、さらに1回(計2回)繰り返した。
4.水溶液が基材101上を概ね流れ切り、吸収パッドにて吸収されたことを確認し、吸収パッドを外した後、基材101におけるゲル状ピラー105が形成された領域を、蛍光顕微鏡(IX71、オリンパス社製)を用いて観察した。
 実施例1および2の評価結果をそれぞれ図11(a)および図11(b)に示す。図11(a)および図11(b)、ならびに、後述の図12(a)および図12(b)は、ゲル状ピラー105の蛍光顕微鏡像を示している。
(immunoassay)
Using the device obtained in each example, immunoassay was performed according to the following procedure.
1. 10 μL of an aqueous solution (CRP, concentration 10 μg/mL) obtained by diluting the antigen with 2% TritonX100/PBS was dropped onto the induction zone 120 on the substrate 101 and waited for 3 minutes.
2. 10 μL of an aqueous solution (FITC (fluorescein isothiocyanate)-labeled anti-CRP antibody, 20 μg/mL) obtained by diluting a fluorescence-labeled antibody with 2% Triton X100/PBS was dropped onto the induction zone 120 of the base material 101 and waited for 1 minute. This operation was repeated two more times (three times in total).
3. 10 μL of 2% Triton X100/PBS was dropped onto the induction zone 120 on the substrate 101 and waited for 1 minute. This operation was repeated once more (2 times in total).
4. It was confirmed that the aqueous solution had run off on the substrate 101 and was absorbed by the absorbent pad. (manufactured by Olympus Corporation).
The evaluation results of Examples 1 and 2 are shown in FIGS. 11(a) and 11(b), respectively. FIGS. 11(a) and 11(b), and FIGS. 12(a) and 12(b), which will be described later, show fluorescence microscope images of the gel-like pillars 105. FIG.
(比較例1)
 実施例1において、イムノアッセイの1.の手順において、抗原を希釈した水溶液にかえて、2% TritonX100/PBSを用いた他は、実施例1に準じて評価した。結果を図12(a)に示す。
(Comparative example 1)
In Example 1, immunoassay 1. 1, except that 2% Triton X100/PBS was used instead of the aqueous solution diluted with the antigen. The results are shown in FIG. 12(a).
 (比較例2)
 実施例2において、イムノアッセイの1.の手順において、抗原を希釈した水溶液にかえて2% TritonX100/PBSを用いた他は、実施例2に準じて評価した。結果を図12(b)に示す。
(Comparative example 2)
In Example 2, immunoassay 1. 2, except that 2% Triton X100/PBS was used instead of the aqueous solution diluted with the antigen. The results are shown in FIG. 12(b).
 図11(a)、図11(b)、図12(a)および図12(b)より、各実施例においては、CRPが、抗CRP抗体との特異的結合によりゲル状ピラー105に捕捉され、これを安定的に検出できていることがわかる。 From FIGS. 11(a), 11(b), 12(a) and 12(b), in each example, CRP is captured by the gel pillars 105 by specific binding with the anti-CRP antibody. , can be stably detected.
 この出願は、2021年2月19日に出願された日本出願特願2021-025325号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-025325 filed on February 19, 2021, and the entire disclosure thereof is incorporated herein.
100 デバイス
101 基材
103 流路
105 ゲル状ピラー(第1ピラー)
107 捕捉物質
109 流路形成ピラー(第2ピラー)
110 検知ゾーン(第1ゾーン)
111 流路形成ピラー
113 蓋部
115 平面部
117 堰き止め部
119 溜め部
120 誘導ゾーン(第2ゾーン)
121 溜め部
123 微細溝
125 微細溝
127 基材
129 凹部
130 排出ゾーン
140 デバイス
150 デバイス
160 デバイス
170 デバイス
180 デバイス
100 Device 101 Base material 103 Channel 105 Gel-like pillar (first pillar)
107 capture substance 109 channel-forming pillar (second pillar)
110 detection zone (first zone)
111 flow path forming pillar 113 lid portion 115 flat portion 117 damming portion 119 reservoir portion 120 induction zone (second zone)
121 reservoir 123 microgroove 125 microgroove 127 substrate 129 recess 130 discharge zone 140 device 150 device 160 device 170 device 180 device

Claims (20)

  1.  液体試料中の被検出物質を捕捉して検知するデバイスであって、
     基材と、
     該基材の一表面に設けられた、前記液体試料を移送する流路と、
     該流路の一部に設けられた検知ゾーンと、
     を備え、
     前記検知ゾーンには、ゲル状物質により構成されたゲル状ピラーが設けられているとともに、
     前記ゲル状ピラー中に、前記被検出物質と特異的に結合する捕捉物質が保持されており、
     前記検知ゾーンの上流側または下流側において、前記流路が、複数の流路形成ピラー、または、微細溝により形成されている、デバイス。
    A device for capturing and detecting a substance to be detected in a liquid sample,
    a substrate;
    a channel for transporting the liquid sample provided on one surface of the substrate;
    a sensing zone provided in a portion of the flow path;
    with
    The detection zone is provided with gel-like pillars made of a gel-like substance,
    a capture substance that specifically binds to the substance to be detected is held in the gel pillar;
    The device, wherein the channel is formed by a plurality of channel-forming pillars or microgrooves upstream or downstream of the sensing zone.
  2.  前記検知ゾーンの上流側に、前記液体試料を毛細管現象により前記検知ゾーンに導く誘導ゾーンが設けられており、
     前記誘導ゾーンにおいて、前記流路が、複数の前記流路形成ピラーまたは前記微細溝により形成されている、請求項1に記載のデバイス。
    an induction zone is provided upstream of the detection zone to guide the liquid sample to the detection zone by capillary action;
    2. The device according to claim 1, wherein in said guiding zone, said channel is formed by a plurality of said channel-forming pillars or said microgrooves.
  3.  前記流路形成ピラーの形状が円柱、円錐、円錐台、多角柱、多角錐または多角錐台であり、
     前記ゲル状ピラーの形状が円柱または多角柱である、請求項1または2に記載のデバイス。
    The shape of the flow path forming pillar is a cylinder, a cone, a truncated cone, a polygonal prism, a polygonal pyramid, or a truncated polygonal pyramid,
    3. The device according to claim 1 or 2, wherein the shape of said gel-like pillars is cylindrical or polygonal.
  4.  前記被検出物質が抗原であり、前記捕捉物質が前記抗原に対する抗体である、請求項1乃至3いずれか1項に記載のデバイス。 The device according to any one of claims 1 to 3, wherein the substance to be detected is an antigen, and the capture substance is an antibody against the antigen.
  5.  前記被検出物質が第1の抗体であり、前記捕捉物質が前記第1の抗体に特異的な第2の抗体である、請求項1乃至3いずれか1項に記載のデバイス。 The device according to any one of claims 1 to 3, wherein the substance to be detected is a first antibody and the capture substance is a second antibody specific to the first antibody.
  6.  前記捕捉物質が前記ゲル状物質と共有結合している、請求項1乃至5いずれか1項に記載のデバイス。 The device according to any one of claims 1 to 5, wherein said capture substance is covalently bound to said gel-like substance.
  7.  前記検知ゾーンには、前記液体試料の移送方向に直交する方向に、複数の前記ゲル状ピラーが設けられている、請求項1乃至6いずれか1項に記載のデバイス。 The device according to any one of claims 1 to 6, wherein the detection zone is provided with a plurality of the gel-like pillars in a direction orthogonal to the transfer direction of the liquid sample.
  8.  前記検知ゾーンには、前記流路の液体試料の移送方向に、複数の前記ゲル状ピラーが設けられている、請求項1乃至7いずれか1項に記載のデバイス。 The device according to any one of claims 1 to 7, wherein the detection zone is provided with a plurality of the gel-like pillars in the liquid sample transfer direction of the channel.
  9.  前記検知ゾーンを上面視したときに、前記ゲル状ピラーが格子状に配置されている、請求項1乃至8いずれか1項に記載のデバイス。 The device according to any one of claims 1 to 8, wherein the gel-like pillars are arranged in a lattice when the detection zone is viewed from above.
  10.  前記ゲル状ピラーが、直径10μm以上1000μm以下の円柱状である、請求項1乃至9いずれか1項に記載のデバイス。 The device according to any one of claims 1 to 9, wherein the gel-like pillar has a cylindrical shape with a diameter of 10 µm or more and 1000 µm or less.
  11.  前記ゲル状ピラーが、高さ10μm以上1000μm以下の円柱状である、請求項1乃至10いずれか1項に記載のデバイス。 The device according to any one of claims 1 to 10, wherein the gel-like pillars are cylindrical with a height of 10 µm or more and 1000 µm or less.
  12.  前記流路を覆う蓋部が設けられている、請求項1乃至11いずれか1項に記載のデバイス。 The device according to any one of claims 1 to 11, further comprising a lid covering the channel.
  13.  前記蓋部の材料が、石英ガラス、ソーダ石灰ガラス、ホウケイ酸ガラス、ポリ(メタ)アクリレート、ポリエステル、ポリオレフィン、ポリスチレン、ポリカーボネート、フッ素樹脂、ポリ塩化ビニル、ポリアミドおよびポリイミドからなる群から選択される1種または2種以上を含む、請求項12に記載のデバイス。 1, wherein the material of the lid is selected from the group consisting of quartz glass, soda lime glass, borosilicate glass, poly(meth)acrylate, polyester, polyolefin, polystyrene, polycarbonate, fluororesin, polyvinyl chloride, polyamide and polyimide; 13. The device of claim 12, comprising a species or two or more species.
  14.  前記検知ゾーンの下流側に、前記液体試料の溜め部または堰き止め部が設けられている、請求項1乃至13いずれか1項に記載のデバイス。 The device according to any one of claims 1 to 13, wherein a reservoir or a dam for the liquid sample is provided downstream of the detection zone.
  15.  前記検知ゾーンの上流側に、前記液体試料を毛細管現象により前記検知ゾーンに導く誘導ゾーンが設けられており、
     前記検知ゾーンの底面aが、前記誘導ゾーンの底面bよりも低い水準にある、請求項1乃至14いずれか1項に記載のデバイス。
    an induction zone is provided upstream of the detection zone to guide the liquid sample to the detection zone by capillary action;
    15. A device according to any one of the preceding claims, wherein the bottom surface a of the sensing zone is at a lower level than the bottom surface b of the induction zone.
  16.  液体試料中の被検出物質を捕捉して検知するデバイスであって、
     前記液体試料を移送する流路を備え、
     該流路は、前記液体試料の移送方向の一部に検知ゾーンを有し、
     前記検知ゾーンには、ゲル状物質により構成され、前記被検出物質と特異的に結合する捕捉物質が保持されたゲル状の第1ピラーが設けられるとともに、前記流路の前記検知ゾーンの上流側または下流側のゾーンには、前記第1ピラーと異なる複数の第2ピラーが設けられるか、または、前記ゾーンが微細溝で構成されている、デバイス。
    A device for capturing and detecting a substance to be detected in a liquid sample,
    comprising a channel for transferring the liquid sample,
    the channel has a detection zone in a part of the direction in which the liquid sample is transferred;
    The detection zone is provided with a gel-like first pillar that is made of a gel-like substance and holds a capture substance that specifically binds to the substance to be detected. Or the device, wherein the downstream zone is provided with a plurality of second pillars different from said first pillars, or said zone is composed of micro-grooves.
  17.  前記流路は、前記検知ゾーンの上流側に、前記液体試料を毛細管現象により前記検知ゾーンに導く誘導ゾーンを有し、
     前記誘導ゾーンには、前記複数の第2ピラーが設けられるか、または、前記誘導ゾーンが前記微細溝で構成されている、請求項16に記載のデバイス。
    the flow path has an induction zone upstream of the detection zone that guides the liquid sample to the detection zone by capillary action;
    17. The device of claim 16, wherein the induction zone is provided with the plurality of second pillars or is composed of the microgrooves.
  18.  請求項1乃至17いずれか1項に記載のデバイスを有する、チップ。 A chip comprising the device according to any one of claims 1 to 17.
  19.  液体試料中の被検出物質を捕捉して検知するデバイスに用いられる基板であって、
     当該基板の一表面に設けられた、前記液体試料を移送する流路と、
     前記流路の一部に設けられた検知ゾーンと、
     を備え、
     前記検知ゾーンには、ゲル状物質により構成されたゲル状ピラーが設けられているとともに、
     前記ゲル状ピラー中に、前記被検出物質と特異的に結合する捕捉物質が保持されており、
     前記検知ゾーンの上流側または下流側において、前記流路が、複数の流路形成ピラー、または、微細溝により形成されている、基板。
    A substrate used in a device that captures and detects a substance to be detected in a liquid sample,
    a channel for transferring the liquid sample provided on one surface of the substrate;
    a detection zone provided in a portion of the flow path;
    with
    The detection zone is provided with gel-like pillars made of a gel-like substance,
    a capture substance that specifically binds to the substance to be detected is held in the gel pillar;
    The substrate, wherein the channel is formed by a plurality of channel-forming pillars or fine grooves on the upstream side or downstream side of the detection zone.
  20.  長尺の基板であって、
     当該基板の長手方向の一部に設けられ、ゲル状物質により構成され、被検出物質と特異的に結合する捕捉物質が保持されたゲル状の第1ピラーを配置可能な第1ゾーンと、
     前記基板の長手方向の前記第1ゾーンの少なくとも一方の側に位置し、前記第1ピラーと異なる複数の第2ピラーが設けられるか、または、微細溝で構成された第2ゾーンと、
     を有する、基板。
    A long board,
    a first zone provided in a part of the substrate in the longitudinal direction, made of a gel-like substance, and capable of arranging a gel-like first pillar holding a capture substance that specifically binds to a substance to be detected;
    a second zone located on at least one side of the first zone in the longitudinal direction of the substrate and provided with a plurality of second pillars different from the first pillars or composed of fine grooves;
    A substrate.
PCT/JP2022/006125 2021-02-19 2022-02-16 Device, chip, and substrate WO2022176897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023500889A JPWO2022176897A1 (en) 2021-02-19 2022-02-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-025325 2021-02-19
JP2021025325 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176897A1 true WO2022176897A1 (en) 2022-08-25

Family

ID=82932228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006125 WO2022176897A1 (en) 2021-02-19 2022-02-16 Device, chip, and substrate

Country Status (2)

Country Link
JP (1) JPWO2022176897A1 (en)
WO (1) WO2022176897A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055743A (en) * 1991-01-31 1993-01-14 Wakunaga Pharmaceut Co Ltd Measuring apparatus
JP2005532151A (en) * 2002-06-07 2005-10-27 オーミック・アクチボラゲット Microfluidic structure
JP2008039541A (en) * 2006-08-04 2008-02-21 National Institute For Materials Science Microflow channel chip and biological polymer treatment method using it
JP2009541738A (en) * 2006-06-20 2009-11-26 オーミック・アクチボラゲット Assay device
JP4717081B2 (en) * 2005-12-26 2011-07-06 マイクロ化学技研株式会社 Immunoassay microchip, immunoassay kit and immunoassay method
JP2011133470A (en) * 2009-11-25 2011-07-07 Mitsubishi Rayon Co Ltd Biomolecule immobilization array having biomolecule immobilization carrier consisting of hydrophilic gel
KR20130139445A (en) * 2012-06-07 2013-12-23 한국전기연구원 Biochip having passive-pump implementated in microchannel by using hydrophile pillars and manufacturing method of the same
WO2016098740A1 (en) * 2014-12-15 2016-06-23 デンカ株式会社 Membrane support for liquid sample test kit, liquid sample test kit, and method for producing liquid sample test kit
WO2016152702A1 (en) * 2015-03-24 2016-09-29 国立大学法人名古屋大学 Analytical device
WO2019117102A1 (en) * 2017-12-11 2019-06-20 デンカ株式会社 Membrane carrier for liquid sample test kit, liquid sample test kit, production method for liquid sample test kit, test method for liquid samples, and membrane carrier

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055743A (en) * 1991-01-31 1993-01-14 Wakunaga Pharmaceut Co Ltd Measuring apparatus
JP2005532151A (en) * 2002-06-07 2005-10-27 オーミック・アクチボラゲット Microfluidic structure
JP4717081B2 (en) * 2005-12-26 2011-07-06 マイクロ化学技研株式会社 Immunoassay microchip, immunoassay kit and immunoassay method
JP2009541738A (en) * 2006-06-20 2009-11-26 オーミック・アクチボラゲット Assay device
JP2008039541A (en) * 2006-08-04 2008-02-21 National Institute For Materials Science Microflow channel chip and biological polymer treatment method using it
JP2011133470A (en) * 2009-11-25 2011-07-07 Mitsubishi Rayon Co Ltd Biomolecule immobilization array having biomolecule immobilization carrier consisting of hydrophilic gel
KR20130139445A (en) * 2012-06-07 2013-12-23 한국전기연구원 Biochip having passive-pump implementated in microchannel by using hydrophile pillars and manufacturing method of the same
WO2016098740A1 (en) * 2014-12-15 2016-06-23 デンカ株式会社 Membrane support for liquid sample test kit, liquid sample test kit, and method for producing liquid sample test kit
WO2016152702A1 (en) * 2015-03-24 2016-09-29 国立大学法人名古屋大学 Analytical device
WO2019117102A1 (en) * 2017-12-11 2019-06-20 デンカ株式会社 Membrane carrier for liquid sample test kit, liquid sample test kit, production method for liquid sample test kit, test method for liquid samples, and membrane carrier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAI IKAMI, AYAKO KAWAKAMI, MASAYA KAKUTA, YUKIHIRO OKAMOTO, NORITADA KAJI, MANABU TOKESHI, YOSHINOBU BABA: "Immuno-pillar chip: a new platform for rapid and easy-to-use immunoassay", LAB ON A CHIP, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 10, no. 24, 1 December 2010 (2010-12-01), UK , pages 3335 - 3340, XP055317751, ISSN: 1473-0197, DOI: 10.1039/c0lc00241k *

Also Published As

Publication number Publication date
JPWO2022176897A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
US9827564B2 (en) Fluidic systems and methods for analyses
US7670772B2 (en) Microfluidic chip for multiple bioassay and method of manufacturing the same
KR102394394B1 (en) Membrane carrier for liquid sample test kit, liquid sample test kit and manufacturing method of liquid sample test kit
JP7306998B2 (en) MEMBRANE CARRIER FOR LIQUID SAMPLE INSPECTION KIT, LIQUID SAMPLE INSPECTION KIT, METHOD OF MANUFACTURING LIQUID SAMPLE INSPECTION KIT, LIQUID SAMPLE INSPECTION METHOD, AND MEMBRANE CARRIER
JP2016011943A (en) Analysis device
JP6978489B2 (en) Membrane carrier, liquid sample inspection kit using it, and its manufacturing method
WO2022176897A1 (en) Device, chip, and substrate
US20190086404A1 (en) Analysis membranes for microfluidic devices, said membranes being made of a fiberglass material
JP7016152B2 (en) Assay device
KR102133986B1 (en) Hybrid sensor
JP7108634B2 (en) Membrane carrier for liquid sample test kit, liquid sample test kit and membrane carrier
KR20210142702A (en) Membrane Carriers and Test Kits
WO2022203025A1 (en) Inspection device and inspection method
WO2022118727A1 (en) Detection device
EP4242654A1 (en) A method for rapid immunoassays using a three-dimensional microfluidic capillary system
WO2021220956A1 (en) Detection device and detection method
US20230137571A1 (en) Microfluidic chip
JP2022001835A (en) Method for detecting test substance using flow path and colloidal particle
QINGDI Microparticle Array on Gel Microstructure Chip for Multiplexed Biochemical Assays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756215

Country of ref document: EP

Kind code of ref document: A1