WO2022168729A1 - Thermally conductive sheet laminate and electronic equipment using same - Google Patents

Thermally conductive sheet laminate and electronic equipment using same Download PDF

Info

Publication number
WO2022168729A1
WO2022168729A1 PCT/JP2022/003075 JP2022003075W WO2022168729A1 WO 2022168729 A1 WO2022168729 A1 WO 2022168729A1 JP 2022003075 W JP2022003075 W JP 2022003075W WO 2022168729 A1 WO2022168729 A1 WO 2022168729A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive sheet
adhesive film
sheet laminate
less
Prior art date
Application number
PCT/JP2022/003075
Other languages
French (fr)
Japanese (ja)
Inventor
大地 森
佑介 久保
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority claimed from JP2022010671A external-priority patent/JP2022119196A/en
Publication of WO2022168729A1 publication Critical patent/WO2022168729A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This technology relates to a thermally conductive sheet laminate and an electronic device using the same.
  • This application is Japanese Patent Application No. 2021-016137 filed on February 3, 2021 in Japan and Japanese Patent Application No. 2022-010671 filed on January 27, 2022 in Japan. Priority is claimed as a basis, and these applications are incorporated into this application by reference.
  • TIM Thermally conductive member directly applied to the silicon die
  • the TIM1 may be required to have the following characteristics.
  • the first characteristic required of TIM1 is low load mountability. Since the TIM 1 is mounted in a semiconductor packaging process, a low load (for example, about 20 psi or less) mounting condition may be desired for the purpose of protecting the shape of the microbumps of the semiconductor chip.
  • the second characteristic required for TIM1 is low BLT (Bond Line Thickness). From the viewpoint of the demand for a low-profile semiconductor package, it is preferable that the height of the region of the TIM1 after mounting, that is, the gap (minimum mounting gap) between the semiconductor chip and the heat spreader is as small as possible.
  • the mounting minimum gap is sometimes desired to be, for example, 100 ⁇ m or less.
  • TIM1 The third characteristic required of TIM1 is reliability similar to that of semiconductors. This is because TIM1, for example, is built into a semiconductor package in addition to directly acting on the silicon die interface, which is a heating element.
  • TIM1 that satisfies the above characteristics includes the grease type, which is a liquid product, the reactive type (adhesive type), and the solder (low-temperature solder) type, which is a solid product.
  • a thermally conductive sheet using a carbon material can be cited as a TIM1 that is compatible with next-generation packaging technology.
  • carbon fibers have anisotropic thermal conductivity properties. Therefore, a type of carbon fiber sheet (CFS: Carbo Fiber Sheet) in which the carbon fiber is oriented in a direction perpendicular to the surface direction of the sheet and whose shape is maintained by various binders, can withstand heat exceeding 40 W/m K. Those with conductivity have also been developed.
  • a carbon fiber sheet that satisfies the above-mentioned characteristics of TIM1 while taking advantage of the characteristics of carbon materials, for example, a carbon fiber sheet that has low thermal resistance and excellent handling and adhesiveness.
  • This technology has been proposed in view of such conventional circumstances, and provides a thermally conductive sheet laminate with low thermal resistance and excellent handleability and adhesiveness.
  • thermally conductive sheet laminated a thermally conductive sheet with an adhesive film
  • thermally conductive sheet laminate adhesive films are laminated on both sides of the thermally conductive sheet, and the thermally conductive sheet includes a binder resin made of silicone resin, carbon fiber, and heat
  • the adhesive film contains a film-forming component, a liquid epoxy resin, and a curing agent, has a thickness of less than 20 ⁇ m, and has a viscosity at 20° C. of 8.0E+05 Pa ⁇ . s and the viscosity at 130° C. is less than 40 Pa ⁇ s.
  • thermoly conductive sheet laminate with low thermal resistance and excellent handling and adhesiveness.
  • FIG. 1 is a cross-sectional view showing an example of a thermally conductive sheet laminate according to the present technology.
  • FIG. 2 is a perspective view showing an example of a thermally conductive sheet in the thermally conductive sheet laminate according to the present technology.
  • FIG. 3 is a perspective view showing an example of carbon fibers coated with an insulating coating.
  • FIG. 4 is a cross-sectional view showing an example of a semiconductor device.
  • FIG. 5 is a cross-sectional view schematically showing a test piece used in Examples.
  • the average particle size of the thermally conductive filler is defined as the cumulative curve of the particle size value from the small particle size side of the particle size distribution when the entire particle size distribution of the thermally conductive filler is 100%. It means the particle diameter when the cumulative value is 50% when obtained.
  • the particle size distribution (particle size distribution) in this specification is determined by volume. Examples of the method for measuring the particle size distribution include a method using a laser diffraction particle size distribution analyzer. Further, in the present specification, "ordinary temperature” refers to the range of 15 to 25°C defined in JIS K 0050:2005 (general rules for chemical analysis methods).
  • the thermally conductive sheet laminate includes a binder resin made of silicone resin, carbon fibers, and thermally conductive fillers other than carbon fibers.
  • the adhesive film contains a film-forming component, a liquid epoxy resin, and a curing agent.
  • the adhesive film has a thickness of less than 20 ⁇ m, a viscosity at 20° C. of greater than 8.0E+05 Pa ⁇ s, and a viscosity at 130° C. of less than 40 Pa ⁇ s.
  • the adhesive film that constitutes the thermally conductive sheet laminate according to the present technology is designed so as not to hinder the thermal conductivity of the thermally conductive sheet and to improve the function of bonding the heating element and the radiator. ing. Moreover, from the viewpoint of handling, it is preferable that the adhesive film has as low tackiness as possible at around room temperature, while being excluded from between the heating element and the radiator as much as possible during the bonding process. Thus, the adhesive film preferably exhibits a low-viscosity state that is easily expelled during the heating and pressurizing process until curing starts. Therefore, the adhesive film has a viscosity at 20°C of greater than 8.0E+05 Pa ⁇ s and a viscosity at 130°C of less than 40 Pa ⁇ s.
  • the thermally conductive sheet laminate according to this technology has low thermal resistance and excellent handling and adhesiveness (adhesion). Therefore, after mounting, the thermally conductive sheet laminate according to the present technology can achieve high thermal conductivity due to the thermally conductive sheet and excellent adhesiveness due to the adhesive film. In addition, the thermally conductive sheet laminate has adhesive films laminated on both sides of the thermally conductive sheet. can be prevented.
  • FIG. 1 is a cross-sectional view showing an example of a thermally conductive sheet laminate according to the present technology.
  • adhesive films 3 are laminated on both sides of a thermally conductive sheet 2. As shown in FIG.
  • the average thickness of the thermally conductive sheet laminate 1 can be appropriately selected according to the purpose.
  • the average thickness of the thermally conductive sheet laminate 1 can be, for example, greater than 0.1 mm, and may be 0.2 mm or more.
  • the upper limit of the average thickness of the thermally conductive sheet laminate 1 can be, for example, 0.52 mm or less, and may be 0.4 mm or less.
  • the average thickness of the thermally conductive sheet laminate 1 can be in the range of 0.15 to 0.3 mm.
  • the average thickness of the thermally conductive sheet laminate 1 can be obtained, for example, by measuring the thickness of the thermally conductive sheet laminate 1 at arbitrary five points and calculating the arithmetic mean value.
  • the thermal resistance of the thermally conductive sheet laminate 1 is preferably as low as possible.
  • the thermally conductive sheet laminate 1 has a thermal resistance of 0.40 cm 2 ⁇ K/W or less under a load of 1 kgf/cm 2 , and may be 0.35 cm 2 ⁇ K/W or less. It may be 30 cm 2 ⁇ K/W or less, may be 0.25 cm 2 ⁇ K/W or less, may be 0.20 cm 2 ⁇ K/W or less, or may be 0.15 cm 2 ⁇ K/W or less. It may be W or less, or may be 0.10 cm 2 ⁇ K/W or less.
  • the thermal resistance of the thermally conductive sheet laminate 1 can be measured by the method of Examples described later.
  • the thickness of the thermally conductive sheet 2 can be in the range of 0.1-0.5 mm.
  • the surface roughness Ra of the thermally conductive sheet 2 can be, for example, 25 ⁇ m or less, can be 20 ⁇ m or less, and can be in the range of 20 to 25 ⁇ m. You can also The surface roughness Ra of the thermally conductive sheet 2 can be measured by the method described later in Examples.
  • the thickness of the adhesive film 3 may be less than 20 ⁇ m, for example, 0.1 ⁇ m or more, 1 ⁇ m or more, 3 ⁇ m or more, 7 ⁇ m or more, It may be 15 ⁇ m or more, and may be in the range of 0.1 to 15 ⁇ m.
  • the thickness of the adhesive film 3 is less than 20 ⁇ m, the thermal conductivity of the thermally conductive sheet 2 can be prevented from being hindered, and the thermal resistance of the thermally conductive sheet laminate 1 can be reduced. contribute.
  • the heat-conducting sheet 2 generally has a low surface smoothness because the hard carbon fiber 5 and the soft binder resin 4 are cut at the same time.
  • the thermal resistance of the thermally conductive sheet 2 can be improved.
  • the adhesive film 3 has a low thermal conductivity as a bulk, and if the area of the adhesive film 3 expands too much in the thickness direction (thermal conduction path) of the thermal conductive sheet 2, the contribution as a thermal resistance component increases. Therefore, the thickness of the adhesive film 3 is preferably such that the surface roughness Ra of the heat conductive sheet 2 is filled.
  • the thickness of the adhesive film 3 can be selected according to the surface roughness Ra of the heat conductive sheet 2. If the two surfaces of the heat conductive sheet 2 have different surface roughnesses Ra, the thickness of the adhesive film 3 is reduced by heating. It is sufficient to correspond to the surface roughness Ra of the conductive sheet 2 .
  • the ratio of the thickness ( ⁇ m) of the adhesive film 3 to the surface roughness Ra ( ⁇ m) of the thermally conductive sheet 2 is 0.5. 003 to 0.7, more preferably 0.05 to 0.3. Even if the adhesive film 3 does not have a thickness that completely fills the surface roughness Ra of the thermally conductive sheet 2, the contact heat resistance can be improved by maintaining a close contact state due to the adhesive force.
  • thermally conductive sheet laminate 1 that is, the thermally conductive sheet 2 with the adhesive film 3 cannot be adhered to the adherend at an appropriate position or cannot be adhered uniformly, a rework operation is performed. Sometimes. Examples of failures in uniformly attaching the thermally conductive sheet laminate 1 include adhesion between the adhesive films 3 and inclusion of voids at the adherend interface.
  • the viscosity of the adhesive film 3 at 20° C. is greater than 8.0E+05 Pa ⁇ s, may be 9.0E+05 Pa ⁇ s or more, may be 1.0E+06 Pa ⁇ s or more, and may range from 9.0E+05 to 1.0E+05 Pa ⁇ s. It may be in the range of 0E+06 Pa ⁇ s.
  • the viscosity of the adhesive film 3 at 130° C. is less than 40 Pa ⁇ s, may be 30 Pa ⁇ s or less, may be 25 Pa ⁇ s or less, may be 20 Pa ⁇ s or less, or may be 15 Pa ⁇ s. It may be less than or equal to 10 Pa ⁇ s or less, or may be in the range of 10 to 30 Pa ⁇ s.
  • the viscosity of the adhesive film 3 can be measured by the method described later in Examples.
  • the thermal conductivity in the thickness direction of the thermally conductive sheet laminate 1 can be, for example, 1 W/m ⁇ K or more, 4 W/m ⁇ K or more, or 7 W/m ⁇ K or more at room temperature. It can also be set to 9 W/m ⁇ K or more.
  • FIG. 2 is a perspective view showing an example of the thermally conductive sheet 2 in the thermally conductive sheet laminate 1 according to the present technology.
  • the thermally conductive sheet 2 includes a binder resin 4 made of a silicone resin, carbon fibers 5, and a thermally conductive filler 6 other than the carbon fibers 5.
  • the carbon fibers 5 and a thermally conductive A filler 6 is dispersed in the binder resin 4 .
  • long axes of carbon fibers 5 having anisotropic thermally conductive properties are oriented in the thickness direction B of the thermally conductive sheet 2 .
  • thermally conductive sheet 2 in the thermally conductive sheet laminate 1 since the long axis of the carbon fibers 5 is oriented in the thickness direction B, heat conduction in the thickness direction of the thermally conductive sheet laminate 1 is achieved. It has good properties.
  • the binder resin 4 is for holding the carbon fibers 5 and the thermally conductive filler 6 within the thermally conductive sheet 2 .
  • a silicone resin is used in consideration of the adhesion between the heat generating surface of the electronic component and the heat sink surface.
  • the binder resin 4 may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the silicone resin for example, a two-component addition reaction type silicone resin composed of a silicone having an alkenyl group as a main component, a main agent containing a curing catalyst, and a curing agent having a hydrosilyl group (Si—H group).
  • a silicone having an alkenyl group as a main component a silicone having an alkenyl group as a main component
  • a main agent containing a curing catalyst a curing agent having a hydrosilyl group (Si—H group).
  • a curing agent having a hydrosilyl group Si—H group
  • the curing catalyst is a catalyst for promoting the addition reaction between the alkenyl group in the alkenyl group-containing silicone and the hydrosilyl group in the hydrosilyl group-containing curing agent.
  • the curing catalyst well-known catalysts used for hydrosilylation reaction can be used.
  • platinum group curing catalysts such as platinum group metals such as platinum, rhodium and palladium, and platinum chloride can be used.
  • the curing agent having hydrosilyl groups for example, polyorganosiloxane having hydrosilyl groups can be used.
  • the content of the binder resin 4 in the thermally conductive sheet 2 is not particularly limited, and can be appropriately selected according to the purpose.
  • the content of the binder resin 4 in the thermally conductive sheet 2 may be 20% by volume or more, may be 25% by volume or more, or may be 30% by volume or more.
  • the upper limit of the content of the binder resin 4 in the thermally conductive sheet 2 may be 70% by volume or less, may be 60% by volume or less, or may be 50% by volume or less. It may be 40% by volume or less. From the viewpoint of improving the flexibility of the thermally conductive sheet 2, the content of the binder resin 4 in the thermally conductive sheet 2 can be in the range of 25 to 60% by volume.
  • the carbon fiber 5 is, for example, a pitch-based carbon fiber, a PAN-based carbon fiber, a carbon fiber obtained by graphitizing PBO fiber, an arc discharge method, a laser evaporation method, a CVD method (chemical vapor deposition method), a CCVD method (catalytic chemical vapor deposition method).
  • a carbon fiber synthesized by a phase growth method) or the like can be used.
  • pitch-based carbon fibers are preferable from the viewpoint of thermal conductivity.
  • the average fiber length (average major axis length) of the carbon fibers 5 can be appropriately selected according to the purpose, and can be, for example, 50 to 250 ⁇ m, may be 75 to 200 ⁇ m, or can be 90 to 170 ⁇ m. may be
  • the average fiber diameter (average minor axis length) of the carbon fibers 5 can also be appropriately selected according to the purpose, and can be, for example, 4 to 20 ⁇ m, and may be 5 to 14 ⁇ m.
  • the aspect ratio (average major axis length/average minor axis length) of the carbon fibers 5 can be appropriately selected according to the purpose, and can be, for example, 9-30.
  • the average major axis length and average minor axis length of the carbon fibers 5 can be measured with a microscope or scanning electron microscope (SEM), for example.
  • FIG. 3 is a perspective view showing an example of carbon fibers coated with an insulating coating. From the viewpoint of enhancing the insulating properties of the thermally conductive sheet 2, the surfaces of the carbon fibers 5 may be covered with an insulating coating 7, as shown in FIG. Thus, the insulation-coated carbon fiber 8 can be used as the carbon fiber.
  • the insulation-coated carbon fiber 8 has the carbon fiber 5 and the insulation coating 7 on at least part of the surface of the carbon fiber 5, and may contain other components as necessary.
  • the insulating film 7 is made of an electrically insulating material, such as silicon oxide or a cured polymer material.
  • the polymerizable material is, for example, a radical polymerizable material such as a polymerizable organic compound and a polymerizable resin.
  • the radically polymerizable material can be appropriately selected according to the purpose as long as it is a material that undergoes radical polymerization using energy. Examples thereof include compounds having a radically polymerizable double bond. Examples of radically polymerizable double bonds include vinyl groups, acryloyl groups, and methacryloyl groups.
  • the number of radically polymerizable double bonds in the compound having radically polymerizable double bonds is preferably two or more from the viewpoint of strength including heat resistance and solvent resistance.
  • Examples of compounds having two or more radically polymerizable double bonds include divinylbenzene (DVB) and compounds having two or more (meth)acryloyl groups.
  • the radically polymerizable material may be used singly or in combination of two or more.
  • the molecular weight of the radically polymerizable material can be appropriately selected depending on the purpose, and can be in the range of 50-500, for example.
  • the content of structural units derived from the polymerizable material in the insulating coating 7 can be, for example, 50% by weight or more, and can be 90% by weight or more. can also be
  • the average thickness of the insulating film 7 can be appropriately selected according to the purpose, and from the viewpoint of realizing high insulation, it can be 50 nm or more, and may be 100 nm or more, or 200 nm or more. good.
  • the upper limit of the average thickness of the insulating coating 7 can be, for example, 1000 nm or less, and may be 500 nm or less.
  • the average thickness of the insulating coating 7 can be obtained by observation with a transmission electron microscope (TEM), for example.
  • Methods for coating the carbon fibers 5 with the insulating coating 7 include, for example, a sol-gel method, a liquid phase deposition method, a polysiloxane method, and polymerization of at least a portion of the surface of the carbon fibers 5 described in JP-A-2018-98515. a method of forming the insulating film 7 made of a cured material of a flexible material, and the like.
  • the thermally conductive filler 6 is a thermally conductive filler other than the carbon fibers 5.
  • Examples of the material of the thermally conductive filler 6 include nitrogen compounds, metal hydroxides, and metal oxides. Nitrogen compounds include aluminum nitride and boron nitride. Metal hydroxides include aluminum hydroxide. Examples of metal oxides include aluminum oxide (alumina, sapphire), magnesium oxide, and the like.
  • the thermally conductive fillers 6 may be used singly or in combination of two or more.
  • the shape of the thermally conductive filler 6 is not particularly limited, and examples thereof include spherical, powdery, granular, flattened, scaly, and fibrous.
  • the thermally conductive filler 6 it is preferable to use both aluminum nitride particles and alumina particles from the viewpoint of thermal conductivity.
  • the average particle size of the aluminum nitride particles is, for example, preferably in the range of 1 to 5 ⁇ m, may be in the range of 1 to 3 ⁇ m, or may be in the range of 1 to 2 ⁇ m.
  • the average particle diameter of the alumina particles is, for example, preferably in the range of 1 to 10 ⁇ m, may be in the range of 1 to 8 ⁇ m, and may be in the range of 4 to 6 ⁇ m.
  • the total amount of the carbon fibers 5 and the thermally conductive fillers 6 in the thermally conductive sheet 2 is preferably as large as possible from the viewpoint of improving thermal conductivity. good too.
  • the upper limit of the total amount of the carbon fibers 5 and the thermally conductive fillers 6 in the thermally conductive sheet 2 can be, for example, 90% by volume or less from the viewpoint of flexibility of the sheet.
  • the thermally conductive sheet 2 may contain more carbon fibers 5 than the thermally conductive fillers 6, may contain more thermally conductive fillers 6 than the carbon fibers 5, or may contain more carbon fibers 5 than the thermally conductive fillers 6. The same amount of filler 6 may be included.
  • the content of the carbon fibers 5 in the thermally conductive sheet 2 may be, for example, 5% by volume or more, may be 10% by volume or more, may be 15% by volume or more, or may be 20% by volume or more. It may be vol % or more, 22 vol % or more, or may be in the range of 10 to 25 vol %.
  • the content of the thermally conductive filler 6 in the thermally conductive sheet 2 may be, for example, 5% by volume or more, may be 10% by volume or more, or may be 15% by volume or more. , 20% by volume or more, 25% by volume or more, 30% by volume or more, 35% by volume or more, or 40% by volume or more may be present, may be 43% by volume or more, or may be in the range of 20 to 50% by volume.
  • the content of the alumina particles in the thermally conductive sheet 1 is preferably 10 to 25% by volume, and the content of the aluminum nitride particles is is preferably 10 to 25% by volume.
  • the thermally conductive sheet 2 may further contain other components than those mentioned above.
  • Other components include, for example, silane coupling agents, dispersants, curing accelerators, retarders, tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants and the like.
  • the thermally conductive sheet 2 is treated with a silane coupling agent from the viewpoint of further improving the dispersibility of the carbon fibers 5 and the thermally conductive filler 6 and further improving the flexibility of the thermally conductive sheet 2 .
  • a conductive filler 6 may be used.
  • the thermally conductive sheet 2 is obtained by a manufacturing method including steps A, B, and C below.
  • a resin composition for forming a thermally conductive sheet is prepared by dispersing carbon fibers 5 and thermally conductive fillers 6 in a binder resin 4 .
  • the resin composition for forming the thermally conductive sheet contains the carbon fibers 5, the thermally conductive filler 6, the binder resin 4, and, if necessary, various additives and volatile solvents. It can be prepared by mixing to
  • a molded block is formed from the prepared resin composition for forming a thermally conductive sheet.
  • methods for forming the molded block include an extrusion molding method and a mold molding method.
  • the extrusion molding method and the mold molding method are not particularly limited, and various known extrusion molding methods and mold molding methods are selected according to the viscosity of the resin composition for forming the thermally conductive sheet and the thermally conductive sheet. It can be appropriately adopted according to the characteristics to be used.
  • a binder resin flows, and the carbon fibers 5 are oriented along the flow direction.
  • the size and shape of the molded block can be determined according to the required size of the heat conductive sheet 2.
  • a rectangular parallelepiped having a cross-sectional length of 0.5 to 15 cm and a width of 0.5 to 15 cm can be used.
  • the length of the rectangular parallelepiped may be determined as required.
  • step C the molded block is sliced into sheets to obtain thermally conductive sheets 2 in which the long axes of carbon fibers 5 are oriented in the thickness direction B. As shown in FIG. The carbon fibers 5 are exposed on the surface (slice surface) of the sheet obtained by slicing.
  • the slicing method is not particularly limited, and can be appropriately selected from among known slicing devices according to the size and mechanical strength of the compact block.
  • the slicing direction of the molded block is preferably 60 to 120 degrees with respect to the extrusion direction because some carbon fibers 5 are oriented in the extrusion direction. A 70-100 degree orientation is more preferred, and a 90 degree (perpendicular) orientation is even more preferred.
  • the binder resin 4, the carbon fiber 5, and the thermally conductive filler 6 are contained, and the carbon fiber 5 and the thermally conductive filler 6 are is dispersed in the binder resin 4, and the thermally conductive sheet 2 in which the major axes of the carbon fibers 5 are selectively oriented in the thickness direction B can be obtained.
  • the method for manufacturing the thermally conductive sheet 2 is not limited to the above example, and for example, after the process C, the process D for pressing the sliced surface may be further included.
  • Step D of pressing in the method for producing a thermally conductive sheet, the surface of the sheet obtained in Step C is made smoother, and adhesion to other members can be further improved.
  • a pair of pressing devices comprising a flat plate and a press head having a flat surface can be used.
  • the pressure for pressing can be, for example, 0.1 to 100 MPa.
  • the pressing temperature can be from 0 to 180.degree. C., can be within the temperature range of room temperature (eg, 25.degree. C.) to 100.degree.
  • the adhesive film 3 contains a film-forming component, a liquid epoxy resin, and a curing agent, as described above.
  • the adhesive film 3 contains a film-forming component (binder component) that functions as a film-forming resin.
  • the weight-average molecular weight of the film-forming component may be, for example, 200,000 or more, may be 220,000 or more, or may be 300,000 or more. Well, it may be 350,000 or more, or it may be 400,000 or more.
  • the upper limit of the weight average molecular weight of the film-forming component can be, for example, 1,000,000 or less, may be 900,000 or less, or 800,000, from the viewpoint of the viscosity of the adhesive film 3. It may be less than or equal to 700,000 or less, or it may be less than or equal to 600,000.
  • the glass transition temperature of the film-forming component can be, for example, less than 30° C., may be 10° C. or less, or ⁇ 10° C. or less, from the viewpoint of the reaction characteristics (for example, melt viscosity) of the adhesive film 3.
  • the lower limit of the glass transition temperature of the film-forming component is not particularly limited, it can be -30°C or higher, for example.
  • a method for measuring the glass transition temperature of the film-forming component a known method can be used. For example, it can be measured using a thermomechanical analyzer at a temperature elevation rate of 10° C./min.
  • an acrylic polymer (acrylic rubber) can be used as the film-forming component.
  • acrylic polymers having at least one selected from carboxyl groups, hydroxyl groups, epoxy groups and amide groups as functional groups can be used.
  • a copolymer of ethyl acrylate (EA), acrylonitrile (AN), glycidyl methacrylate (GMA), and dimethylacrylamide (DMAA) can be used as the acrylic polymer.
  • EA ethyl acrylate
  • AN acrylonitrile
  • GMA glycidyl methacrylate
  • DMAA dimethylacrylamide
  • Specific examples of the film-forming component include Teisan resin series, SG-80H (Tg; 12° C.), SG-P3 (Tg; 12° C.) manufactured by Nagasemtex Co., Ltd., and the like.
  • the film-forming component may be used singly or in combination of two or more.
  • the content of the film-forming component in the adhesive film 3 may be, for example, 1 part by weight or more, may be 3 parts by weight or more, or may be 5 parts by weight or more with respect to 100 parts by weight of the epoxy resin. It may be 8 parts by weight or more. Further, the upper limit of the content of the film-forming component in the adhesive film 3 can be, for example, 15 parts by weight or less with respect to 100 parts by weight of the epoxy resin, and may be 13 parts by weight or less, or 10 parts by weight. It may be less than part.
  • the epoxy resin used for the adhesive film 3 is a liquid epoxy resin at room temperature.
  • the epoxy resin may be a monofunctional epoxy resin, a bifunctional epoxy resin, or a polyfunctional epoxy resin. Resins are preferred.
  • the viscosity of the epoxy resin can be, for example, 25000 mPa ⁇ s or less at room temperature, and may be 20000 mPa ⁇ s or less.
  • the lower limit of the viscosity of the epoxy resin can be, for example, 150 mPa ⁇ s or more, and may be 200 mPa ⁇ s or more.
  • the epoxy equivalent of the epoxy resin can be, for example, in the range of 100-300 g/eq, and may be in the range of 100-200 g/eq.
  • epoxy resin a polyfunctional aliphatic epoxy resin or a polyfunctional aromatic epoxy resin can be used.
  • a specific example of the epoxy resin is BATG (an epoxidation reaction product of 2,2'-diallylbisphenol A diallyl ether with hydrogen peroxide) manufactured by Showa Denko.
  • An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • the content of the epoxy resin in the adhesive film 3 can be, for example, in the range of 10 to 65% by weight, can be in the range of 20 to 60% by weight, and can be in the range of 30 to 55% by weight. can also
  • the adhesive film 3 contains a curing agent.
  • the curing agent is the curing agent for epoxy resins described above. Amine-based, phosphorus-based, phenol-based, or a combination thereof can be used as the curing agent.
  • As the curing agent it is preferable to use a latent curing agent from the viewpoint of more effectively exhibiting the above-described viscosity characteristics of the adhesive film 3 .
  • the curing agent may be used singly or in combination of two or more. For example, it is preferable to use an amine-based curing agent and a phenol-based curing agent together.
  • Amine curing agents include imidazoles such as 1-cyanoethyl-2-phenylimidazole, 2,4-diamino-6-(2′-methylimidazolyl-(1′))-ethyl-s-triazine, 2 -phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl-2-phenylimidazole in which position 1 of imidazole is protected with a cyanoethyl group, and 2-phenyl-4,5-dihydroxymethylimidazole.
  • a specific example of the amine-based curing agent is Fujicure 7004 manufactured by T&K TOKA.
  • the content of the amine-based curing agent in the adhesive film 3 may be 0.1 parts by weight or more with respect to 100 parts by weight of the epoxy resin. It may be 0.2 parts by weight or more, may be 0.5 parts by weight or more, may be 1 part by weight or more, may be 1.5 parts by weight or more, or may be 2 parts by weight. It may be more than part.
  • the upper limit of the content of the amine-based curing agent in the adhesive film 3 may be, for example, 5 parts by weight or less, may be 3 parts by weight or less, or may be 2.5 parts by weight or less. It may be 2.0 parts by weight or less.
  • Phenolic curing agents include phenol novolac compounds, cresol novolak compounds, aromatic hydrocarbon formaldehyde resin-modified phenol compounds, dicyclopentadiene phenol addition type compounds, and phenol aralkyl compounds.
  • a specific example of the phenolic curing agent is TD-2131 manufactured by DIC.
  • the content of the phenolic curing agent is determined according to the epoxy equivalent of the epoxy resin.
  • the content of the phenol-based curing agent in the adhesive film 3 is preferably 65 parts by weight or more, more preferably 70 parts by weight or more, with respect to 100 parts by weight of the epoxy resin having an epoxy equivalent of 120.
  • the upper limit of the content of the phenol-based curing agent in the adhesive film 3 is preferably 90 parts by weight or less, more preferably 85 parts by weight or less, more preferably 80 parts by weight with respect to 100 parts by weight of the epoxy resin having an epoxy equivalent of 120. It is also possible to make it less than a part.
  • the content of the phenol-based curing agent in the adhesive film 3 may be in the range of 65 to 90 parts by weight, or in the range of 70 to 85 parts by weight, with respect to 100 parts by weight of the epoxy resin having an epoxy equivalent of 120. can also
  • the adhesive film 3 may further contain a filler, for example, for the purpose of adjusting the fluidity of the adhesive film 3 during pressure bonding.
  • a filler for example, for the purpose of adjusting the fluidity of the adhesive film 3 during pressure bonding.
  • the strength of the adhesive film 3 can be further improved, and the material breakage of the adhesive film 3 can be prevented more effectively during rework work, especially when the adhesive films 3 are adhered to each other.
  • Examples of fillers that can be used include inorganic fillers such as silica, talc, titanium oxide, calcium carbonate, and magnesium oxide, with silica being preferred.
  • a specific example of the filler is SO-C1 manufactured by Admatechs.
  • a filler may be used individually by 1 type, and may use 2 or more types together.
  • the total content of the filler in the adhesive film 3 can be, for example, 26 to 50 parts by weight, and can also be 26 to 45 parts by weight, with respect to 100 parts by weight of the epoxy resin.
  • a mixed solution is prepared by dissolving the adhesive film composition containing the above-described film-forming component, liquid epoxy resin, and curing agent in a solvent.
  • a solvent As the solvent, toluene, ethyl acetate, etc., or a mixed solvent thereof can be used.
  • the mixed solution is prepared, it is applied onto a release substrate using a bar coater, a coating device, or the like.
  • the release base material has a laminate structure in which a release agent such as silicone is applied to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), or the like. , to prevent the mixed liquid from drying and to maintain the shape of the mixed liquid. Then, the mixed solution applied on the release base material is dried using a heat oven, a heat drying device, or the like. Thereby, an adhesive film 3 having a predetermined thickness is obtained.
  • a release agent such as silicone is applied to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), or the like.
  • the thermally conductive sheet laminate 1 is, for example, placed on both sides of the thermally conductive sheet 2 while the adhesive film 3 is heated on a heated stage, and the thermally conductive sheet 2 and the adhesive film are pressed under a predetermined pressure. 3 can be produced by bonding together.
  • the thermally conductive sheet laminate 1 is, for example, an electronic device ( heat dissipation structure).
  • An electronic device to which the thermally conductive sheet laminate 1 is applied includes a heating element, a radiator, and the thermally conductive sheet laminate 1 disposed between the heating element and the radiator. are bonded with the thermally conductive sheet laminate 1 .
  • the heating element and the radiator are adhered via the adhesive film 3 of the thermally conductive sheet laminate 1, so the thermally conductive sheet 2
  • the adhesive film 3 provides good adhesion while achieving high thermal conductivity.
  • the heating element is not particularly limited. and electronic components that generate heat in.
  • the heating element also includes components for receiving optical signals, such as optical transceivers in communication equipment.
  • the radiator is not particularly limited, and examples include those used in combination with integrated circuit elements, transistors, optical transceiver housings, such as heat sinks and heat spreaders.
  • the radiator in addition to the heat spreader and the heat sink, any material can be used as long as it conducts the heat generated from the heat source and dissipates it to the outside.
  • a heat pipe, a metal cover, a housing, and the like can be mentioned.
  • An electronic device has at least a heating element, a radiator, and a thermally conductive sheet laminate 1, and may further have other members as necessary.
  • FIG. 4 is a cross-sectional view showing an example of a semiconductor device 50 to which the thermally conductive sheet laminate 1 according to the present technology is applied.
  • the thermally conductive sheet laminate 1 is mounted on a semiconductor device 50 incorporated in various electronic devices, and sandwiched between a heat generator and a radiator.
  • a semiconductor device 50 shown in FIG. 4 includes an electronic component 51 , a heat spreader 52 , and a thermally conductive sheet laminate 1 . .
  • a heat dissipation member for dissipating heat from the electronic component 51 is formed.
  • the mounting location of the thermally conductive sheet laminate 1 is not limited to between the heat spreader 52 and the electronic component 51, but may be between the heat spreader 52 and the heat sink 53, or may be depending on the configuration of the electronic device or semiconductor device. can be selected as appropriate.
  • thermally conductive sheet > 23% by volume of aluminum nitride particles with an average particle size of 1 ⁇ m and 20% by volume of alumina particles with an average particle size of 5 ⁇ m, which are coupled with a silane coupling agent, in a two-liquid addition reaction type liquid silicone, and an average of fibrous fillers 22% by volume of pitch-based carbon fibers having a fiber length of 150 ⁇ m were mixed to prepare a silicone composition.
  • the two-liquid addition reaction type liquid silicone resin is mainly composed of organopolysiloxane, and the mixing ratio of the silicone agent A and agent B is 17.5 vol%:17.5 vol%. compounded.
  • the resulting silicone composition is extruded into a hollow square prism-shaped mold (50 mm x 50 mm) with a release-treated film pasted along the inner wall to form a 50 mm square silicone molded body, which is then placed in an oven. was heated at 100° C. for 6 hours to obtain a silicone cured product. After the cured silicone product was removed from the hollow square prism-shaped mold, the release-treated film was peeled off and cut with a slicer to a thickness of 0.5 mm. The surface roughness Ra of the cut surface of the cured silicone product (thermally conductive sheet) was 25 ⁇ m. The surface roughness Ra of the cut surface of the silicone cured product (thermally conductive sheet) was measured using a three-dimensional profiler (manufactured by ZYGO).
  • Acrylic polymer A (monomer composition: EA-AN-GMA-DMAA, Mw 350,000)
  • Acrylic polymer B (monomer composition: EA-AN-GMA-DMAA, Mw 220,000)
  • BATG Tetrafunctional epoxy resin (manufactured by Showa Denko), viscosity 15,000 mPa s, epoxy equivalent 120 g/eq TD-2131: phenolic curing agent (manufactured by DIC, hydroxyl equivalent 104 g/eq)
  • Fujicure 7004 latent curing agent (manufactured by T&K TOKA)
  • SO-C1 Filler (manufactured by Admatechs)
  • Each component was weighed so that the blending amount (parts by weight) shown in Table 1 was obtained, and the mixed solution mixed with a solvent was applied on a PET film whose surface had been subjected to mold release treatment in advance, and then formed into a film. , the solvent was volatilized to prepare an adhesive film.
  • Thermal conductive sheet laminate While the adhesive film is heated on a stage heated to 80° C., it is placed on both sides of the thermally conductive sheet, and the thermally conductive sheet and the adhesive film are bonded together at a pressure of 10 kPa for 10 seconds. 1, a thermally conductive sheet laminate 1 in which adhesive films 3 are laminated on both sides of a thermally conductive sheet 2 was produced.
  • FIG. 5 is a cross-sectional view schematically showing a test piece used in Examples.
  • the thermally conductive sheet laminate 1 is placed on a bare silicon die 62 (size: 20 mm ⁇ 20 mm, thickness 750 ⁇ m) that is adhered to a PCB 61 (size: 50 mm ⁇ 50 mm).
  • Ni-plated Cu (thickness 1.0 mm) material IHS (Integrated heat spreader) 64 (size: 40 mm ⁇ 40 mm) is attached, and heated and pressed at 150 ° C. and 10 kPa for 1 hour, as shown in FIG.
  • a test piece 60 having a package structure was prepared.
  • thermo resistance value (cm 2 ⁇ K/W) of the thermally conductive sheet laminate 1 was measured with a load of 1 kgf/cm 2 applied. Table 1 shows the results.
  • the handleability of the thermally conductive sheet laminate 1 was evaluated at room temperature (25° C.) by releasability from a carrier (hand) during pick-and-place. Specifically, when there is no tackiness of the adhesive film 3 (good releasability), it is evaluated as A, and when there is tackiness of the adhesive film 3 (slightly good releasability), it is evaluated as B. C when there is tack (when any of mold release failure, peeling occurs between the adhesive film 3 and the heat conductive sheet 2, cohesive failure of the adhesive film 3, or material breakage of the heat conductive sheet 2) evaluated. Practically, it is preferable that the evaluation result of handling property is A or B, and A is more preferable. Table 1 shows the results.
  • ⁇ Initial Mounting Adhesion> The adhesiveness of the thermally conductive sheet laminate 1 at the initial stage of mounting was observed using an ultrasonic imaging device (SAT: Scanning Acoustic Tomograph). When the thermally conductive sheet laminate 1 was partially adhered (when there was a non-bonded portion of the thermally conductive sheet laminate 1), it was evaluated as ⁇ (NG). evaluated. In the SAT, glued areas are generally displayed in gray and non-glued areas in white. Table 1 shows the results.
  • ⁇ Reflow resistance (adhesion reliability)>
  • the test piece 60 was subjected to moisture absorption for 24 hours under conditions of a temperature of 85° C. and a relative humidity of 85%, and then heated in a reflow oven at a maximum temperature of 260° C. for 3 cycles (hygroscopic reflow).
  • the presence or absence of delamination between the bare silicon die 62 and the IHS 64 in the test piece 60 after moisture absorption reflow was observed with an ultrasonic imaging device (SAT).
  • SAT ultrasonic imaging device
  • thermo resistance reliability The test piece 60 was subjected to moisture absorption for 24 hours under conditions of a temperature of 85° C. and a relative humidity of 85%, and then heated in a reflow oven at a maximum temperature of 260° C. for 3 cycles (hygroscopic reflow).
  • Thermal resistance cm 2 K/W
  • TCT Temperature cycle test
  • the test piece 60 was subjected to a temperature cycle test of -55°C (30 min) ⁇ 125°C (30 min) for 1000 cycles.
  • the test piece 60 was observed with an ultrasonic imaging device (SAT) for the presence or absence of positional changes in the constituent members of the test piece 60 .
  • SAT ultrasonic imaging device
  • the test piece 60 was arranged so that the direction of the arrow in FIG. It was confirmed whether or not there was a change in the position of the adhesive sheet laminate 1 with respect to each adhesive interface.
  • OK
  • NG when there was a positional change, it was evaluated as x (NG). Table 1 shows the results.
  • the thickness of the adhesive film was 20 ⁇ m or more, so it was found that the thermal resistance was high.
  • the thickness of the adhesive film is less than 20 ⁇ m
  • the viscosity of the adhesive film is greater than 8.0E+05 Pa s at 20° C., and less than 40 Pa s at 130° C. Therefore, it was found that the heat resistance could be reduced, the handling property and reworkability were good, and the adhesiveness was also excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is a thermally conductive sheet laminate having low thermal resistance and excellent handling and adhesion properties. In this thermally conductive sheet laminate 1, an adhesive film 3 is laminated onto both surfaces of a thermally conductive sheet 2. The thermally conductive sheet 2 includes: a binder resin 4 comprising a silicone resin; carbon fibers 5; and a thermally conductive filler 6 other than the carbon fibers 5. The adhesive film 2 includes a film formation component, a liquid epoxy resin, and a curing agent. The adhesive film 2 has a thickness of less than 20 μm, a viscosity at 20 °C of greater than 8.0E+05 Pa·s, and a viscosity at 130 °C of less than 40 Pa·s.

Description

熱伝導性シート積層体及びこれを用いた電子機器Thermally conductive sheet laminate and electronic equipment using the same
 本技術は、熱伝導性シート積層体及びこれを用いた電子機器に関する。本出願は、日本国において2021年2月3日に出願された日本特許出願番号特願2021-016137及び日本国において2022年1月27日に出願された日本特許出願番号特願2022-010671を基礎として優先権を主張するものであり、これらの出願は参照されることにより、本出願に援用される。 This technology relates to a thermally conductive sheet laminate and an electronic device using the same. This application is Japanese Patent Application No. 2021-016137 filed on February 3, 2021 in Japan and Japanese Patent Application No. 2022-010671 filed on January 27, 2022 in Japan. Priority is claimed as a basis, and these applications are incorporated into this application by reference.
 半導体パッケージの熱対策としては、各種の熱伝導部品が検討されている。例えば、各種のシリコンダイ(ICチップ)から生じる熱は、電子機器から生じる様々な熱源の最上流に位置する。以下、シリコンダイに直接適用される熱伝導部材を「TIM(Thermal Interface Material)1」と称する。TIM1には、以下のような特性が求められることがある。 Various heat-conducting parts are being considered as heat countermeasures for semiconductor packages. For example, heat generated from various silicon dies (IC chips) is upstream of various heat sources generated from electronic equipment. Hereinafter, the thermally conductive member directly applied to the silicon die will be referred to as "TIM (Thermal Interface Material) 1". The TIM1 may be required to have the following characteristics.
 TIM1に求められる1つ目の特性として、低荷重実装性が挙げられる。TIM1は、半導体パッケージ化の工程において実装されるため、半導体チップのマイクロバンプの形状保護を目的として、低荷重(例えば20psi以下程度)での実装条件が望まれることがある。 The first characteristic required of TIM1 is low load mountability. Since the TIM 1 is mounted in a semiconductor packaging process, a low load (for example, about 20 psi or less) mounting condition may be desired for the purpose of protecting the shape of the microbumps of the semiconductor chip.
 TIM1に求められる2つ目の特性として、低BLT(Bond Line Thickness)が挙げられる。半導体パッケージの低背化要求の観点では、実装後のTIM1の領域高さ、すなわち、半導体チップとヒートスプレッダとの間隙(実装最小Gap)が、小さいほど好ましい。実装最小Gapは、例えば100μm以下が望まれることがある。 The second characteristic required for TIM1 is low BLT (Bond Line Thickness). From the viewpoint of the demand for a low-profile semiconductor package, it is preferable that the height of the region of the TIM1 after mounting, that is, the gap (minimum mounting gap) between the semiconductor chip and the heat spreader is as small as possible. The mounting minimum gap is sometimes desired to be, for example, 100 μm or less.
 TIM1に求められる3つ目の特性として、半導体と同様の信頼性が挙げられる。TIM1は、例えば、発熱体であるシリコンダイ界面に直接作用することに加えて、半導体パッケージ内に組み込まれるためである。 The third characteristic required of TIM1 is reliability similar to that of semiconductors. This is because TIM1, for example, is built into a semiconductor package in addition to directly acting on the silicon die interface, which is a heating element.
 以上の特性を満たすTIM1としては、液状の製品であるグリースタイプや、反応性タイプ(接着剤タイプ)、固体状の製品であるはんだ(低温はんだ)タイプが挙げられる。 TIM1 that satisfies the above characteristics includes the grease type, which is a liquid product, the reactive type (adhesive type), and the solder (low-temperature solder) type, which is a solid product.
 近年、電子機器の更なる高性能化に伴って、半導体素子の高密度化、高実装化が進んでいる。従来の単一シリコンダイをパッケージ化したものの他に、2.5Dや3Dに代表されるインターポーザを介した大型のチップパッケージ(SiP(System in Package))なども導入されている。このように、電子機器を構成する各種シリコンダイや半導体パッケージから生じる熱を効率的に放熱することは、電子機器の性能を発現するためには極めて重要である。また、上述のような大型のチップパッケージを含む次世代のパッケージ技術に対応可能な、より低熱抵抗のTIM1が求められている。 In recent years, as electronic devices have become more sophisticated, the density and mounting of semiconductor devices have increased. In addition to the conventional packaging of a single silicon die, a large chip package (SiP (System in Package)) through an interposer typified by 2.5D and 3D has been introduced. In this way, it is extremely important to efficiently dissipate heat generated from various silicon dies and semiconductor packages that constitute an electronic device in order to develop the performance of the electronic device. There is also a demand for a TIM 1 with lower thermal resistance that is compatible with next-generation packaging technology including large chip packages as described above.
 次世代のパッケージ技術に対応可能なTIM1として、炭素材料を用いた熱伝導性シートが挙げられる。特に、炭素繊維は、異方性の熱伝導性特性を有する。そのため、炭素繊維をシートの面方向に対して垂直な方向に配向させて、各種バインダによって形状を維持させたタイプの炭素繊維シート(CFS:Carbo Fiber Sheet)は、40W/m・Kを超える熱伝導率を有するものも開発されている。 A thermally conductive sheet using a carbon material can be cited as a TIM1 that is compatible with next-generation packaging technology. In particular, carbon fibers have anisotropic thermal conductivity properties. Therefore, a type of carbon fiber sheet (CFS: Carbo Fiber Sheet) in which the carbon fiber is oriented in a direction perpendicular to the surface direction of the sheet and whose shape is maintained by various binders, can withstand heat exceeding 40 W/m K. Those with conductivity have also been developed.
 このような背景から、炭素材料の特徴を生かしつつ、上述したTIM1の特性を満たすもの、例えば、熱抵抗が小さく、ハンドリング性と接着性に優れた炭素繊維シートが望まれている。 Against this background, what is desired is a carbon fiber sheet that satisfies the above-mentioned characteristics of TIM1 while taking advantage of the characteristics of carbon materials, for example, a carbon fiber sheet that has low thermal resistance and excellent handling and adhesiveness.
特開2012-201106号公報Japanese Unexamined Patent Application Publication No. 2012-201106
 本技術は、このような従来の実情に鑑みて提案されたものであり、熱抵抗が小さく、ハンドリング性と接着性に優れた熱伝導性シート積層体を提供する。 This technology has been proposed in view of such conventional circumstances, and provides a thermally conductive sheet laminate with low thermal resistance and excellent handleability and adhesiveness.
 本件発明者らが鋭意検討したところ、炭素繊維を含む熱伝導性シートの両面に、特定の厚みと粘度を有する接着フィルムを積層させた接着フィルム付き熱伝導性シート(以下、熱伝導性シート積層体という。)を用いることで、上記課題を解決できることを見出した。 As a result of extensive studies by the inventors of the present invention, a thermally conductive sheet with an adhesive film (hereinafter referred to as a thermally conductive sheet laminated The inventors have found that the above problem can be solved by using the body.
 本技術に係る熱伝導性シート積層体は、熱伝導性シートの両面に接着フィルムが積層されており、熱伝導性シートは、シリコーン樹脂からなるバインダ樹脂と、炭素繊維と、炭素繊維以外の熱伝導性フィラーとを含み、接着フィルムは、造膜成分と、液状のエポキシ樹脂と、硬化剤とを含み、接着フィルムの厚みが20μm未満であり、接着フィルムは20℃における粘度が8.0E+05Pa・sより大きく、130℃における粘度が40Pa・s未満である。 In the thermally conductive sheet laminate according to the present technology, adhesive films are laminated on both sides of the thermally conductive sheet, and the thermally conductive sheet includes a binder resin made of silicone resin, carbon fiber, and heat The adhesive film contains a film-forming component, a liquid epoxy resin, and a curing agent, has a thickness of less than 20 μm, and has a viscosity at 20° C. of 8.0E+05 Pa·. s and the viscosity at 130° C. is less than 40 Pa·s.
 本技術によれば、熱抵抗が小さく、ハンドリング性と接着性に優れた熱伝導性シート積層体を提供できる。 According to this technology, it is possible to provide a thermally conductive sheet laminate with low thermal resistance and excellent handling and adhesiveness.
図1は、本技術に係る熱伝導性シート積層体の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a thermally conductive sheet laminate according to the present technology. 図2は、本技術に係る熱伝導性シート積層体における熱伝導性シートの一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a thermally conductive sheet in the thermally conductive sheet laminate according to the present technology. 図3は、絶縁被膜によって被覆された炭素繊維の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of carbon fibers coated with an insulating coating. 図4は、半導体装置の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a semiconductor device. 図5は、実施例で用いた試験片を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a test piece used in Examples.
 本明細書において、熱伝導性フィラーの平均粒径とは、熱伝導性フィラーの粒子径分布全体を100%とした場合に、粒子径分布の小粒子径側から粒子径の値の累積カーブを求めたとき、その累積値が50%となるときの粒子径をいう。なお、本明細書における粒度分布(粒子径分布)は、体積基準によって求められたものである。粒度分布の測定方法としては、例えば、レーザー回折型粒度分布測定機を用いる方法が挙げられる。また、本明細書において、「常温」とは、JIS K 0050:2005(化学分析方法通則)に規定される15~25℃の範囲をいう。 In this specification, the average particle size of the thermally conductive filler is defined as the cumulative curve of the particle size value from the small particle size side of the particle size distribution when the entire particle size distribution of the thermally conductive filler is 100%. It means the particle diameter when the cumulative value is 50% when obtained. In addition, the particle size distribution (particle size distribution) in this specification is determined by volume. Examples of the method for measuring the particle size distribution include a method using a laser diffraction particle size distribution analyzer. Further, in the present specification, "ordinary temperature" refers to the range of 15 to 25°C defined in JIS K 0050:2005 (general rules for chemical analysis methods).
 <熱伝導性シート積層体>
 本技術に係る熱伝導性シート積層体は、熱伝導性シートの両面に接着フィルムが積層されている。熱伝導性シートは、シリコーン樹脂からなるバインダ樹脂と、炭素繊維と、炭素繊維以外の熱伝導性フィラーとを含む。接着フィルムは、造膜成分と、液状のエポキシ樹脂と、硬化剤とを含む。接着フィルムは、厚みが20μm未満であり、20℃における粘度が8.0E+05Pa・sより大きく、130℃における粘度が40Pa・s未満である。
<Thermal conductive sheet laminate>
In the thermally conductive sheet laminate according to the present technology, adhesive films are laminated on both sides of the thermally conductive sheet. The thermally conductive sheet includes a binder resin made of silicone resin, carbon fibers, and thermally conductive fillers other than carbon fibers. The adhesive film contains a film-forming component, a liquid epoxy resin, and a curing agent. The adhesive film has a thickness of less than 20 μm, a viscosity at 20° C. of greater than 8.0E+05 Pa·s, and a viscosity at 130° C. of less than 40 Pa·s.
 本技術に係る熱伝導性シート積層体を構成する接着フィルムは、熱伝導性シートの熱伝導性を阻害せず、かつ、発熱体と放熱体とを接着する機能が良好となるように設計されている。また、接着フィルムは、ハンドリング性の観点から、常温付近ではタック性ができるだけ低く、一方、接着プロセスでは可能な限り発熱体と放熱体との間から排斥されることが好ましい。このように、接着フィルムは、硬化が開始するまでの昇温・加圧過程で排斥が容易な低粘度状態を示すことが好ましい。そのため、接着フィルムは、20℃における粘度が8.0E+05Pa・sより大きく、130℃における粘度が40Pa・s未満である。 The adhesive film that constitutes the thermally conductive sheet laminate according to the present technology is designed so as not to hinder the thermal conductivity of the thermally conductive sheet and to improve the function of bonding the heating element and the radiator. ing. Moreover, from the viewpoint of handling, it is preferable that the adhesive film has as low tackiness as possible at around room temperature, while being excluded from between the heating element and the radiator as much as possible during the bonding process. Thus, the adhesive film preferably exhibits a low-viscosity state that is easily expelled during the heating and pressurizing process until curing starts. Therefore, the adhesive film has a viscosity at 20°C of greater than 8.0E+05 Pa·s and a viscosity at 130°C of less than 40 Pa·s.
 本技術に係る熱伝導性シート積層体は、熱抵抗が小さく、ハンドリング性と接着性(密着性)に優れている。そのため、本技術に係る熱伝導性シート積層体は、実装後においては、熱伝導性シートにより高熱伝導性を実現しつつ、接着フィルムにより優れた接着性を実現できる。また、熱伝導性シート積層体は、熱伝導性シートの両面に接着フィルムが積層されているため、炭素繊維を含む熱伝導性シートに生じることがある、表面粗さに起因した接触抵抗の不良を防止できる。 The thermally conductive sheet laminate according to this technology has low thermal resistance and excellent handling and adhesiveness (adhesion). Therefore, after mounting, the thermally conductive sheet laminate according to the present technology can achieve high thermal conductivity due to the thermally conductive sheet and excellent adhesiveness due to the adhesive film. In addition, the thermally conductive sheet laminate has adhesive films laminated on both sides of the thermally conductive sheet. can be prevented.
 図1は、本技術に係る熱伝導性シート積層体の一例を示す断面図である。熱伝導性シート積層体1は、熱伝導性シート2の両面に接着フィルム3が積層されている。 FIG. 1 is a cross-sectional view showing an example of a thermally conductive sheet laminate according to the present technology. In the thermally conductive sheet laminate 1, adhesive films 3 are laminated on both sides of a thermally conductive sheet 2. As shown in FIG.
 熱伝導性シート積層体1の平均厚みは、目的に応じて適宜選択することができる。例えば、熱伝導性シート積層体1の平均厚みは、例えば、0.1mm超とすることができ、0.2mm以上であってもよい。また、熱伝導性シート積層体1の平均厚みの上限値は、例えば、0.52mm以下とすることができ、0.4mm以下であってもよい。また、熱伝導性シート積層体1の平均厚みは、0.15~0.3mmの範囲とすることもできる。熱伝導性シート積層体1の平均厚みは、例えば、熱伝導性シート積層体1の厚みを任意の5箇所で測定し、その算術平均値から求めることができる。 The average thickness of the thermally conductive sheet laminate 1 can be appropriately selected according to the purpose. For example, the average thickness of the thermally conductive sheet laminate 1 can be, for example, greater than 0.1 mm, and may be 0.2 mm or more. Also, the upper limit of the average thickness of the thermally conductive sheet laminate 1 can be, for example, 0.52 mm or less, and may be 0.4 mm or less. Also, the average thickness of the thermally conductive sheet laminate 1 can be in the range of 0.15 to 0.3 mm. The average thickness of the thermally conductive sheet laminate 1 can be obtained, for example, by measuring the thickness of the thermally conductive sheet laminate 1 at arbitrary five points and calculating the arithmetic mean value.
 熱伝導性シート積層体1の熱抵抗は、可能な限り小さいことが好ましい。例えば、熱伝導性シート積層体1は、1kgf/cm荷重下における熱抵抗が0.40cm・K/W以下であり、0.35cm・K/W以下であってもよく、0.30cm・K/W以下であってもよく、0.25cm・K/W以下であってもよく、0.20cm・K/W以下であってもよく、0.15cm・K/W以下であってもよく、0.10cm・K/W以下であってもよい。熱伝導性シート積層体1の熱抵抗は、後述する実施例の方法で測定することができる。 The thermal resistance of the thermally conductive sheet laminate 1 is preferably as low as possible. For example, the thermally conductive sheet laminate 1 has a thermal resistance of 0.40 cm 2 ·K/W or less under a load of 1 kgf/cm 2 , and may be 0.35 cm 2 ·K/W or less. It may be 30 cm 2 ·K/W or less, may be 0.25 cm 2 ·K/W or less, may be 0.20 cm 2 ·K/W or less, or may be 0.15 cm 2 ·K/W or less. It may be W or less, or may be 0.10 cm 2 ·K/W or less. The thermal resistance of the thermally conductive sheet laminate 1 can be measured by the method of Examples described later.
 熱伝導性シート2の厚みは、0.1~0.5mmの範囲とすることができる。また、熱伝導性シート2の表面粗さRaは、熱伝導性シート2の熱特性の観点から、例えば、25μm以下とすることができ、20μm以下とすることもでき、20~25μmの範囲とすることもできる。熱伝導性シート2の表面粗さRaは、後述する実施例の方法で測定できる。 The thickness of the thermally conductive sheet 2 can be in the range of 0.1-0.5 mm. From the viewpoint of the thermal properties of the thermally conductive sheet 2, the surface roughness Ra of the thermally conductive sheet 2 can be, for example, 25 μm or less, can be 20 μm or less, and can be in the range of 20 to 25 μm. You can also The surface roughness Ra of the thermally conductive sheet 2 can be measured by the method described later in Examples.
 接着フィルム3の厚みは、20μm未満であればよく、例えば、0.1μm以上とすることができ、1μm以上であってもよく、3μm以上であってもよく、7μm以上であってもよく、15μm以上であってもよく、0.1~15μmの範囲とすることもできる。接着フィルム3の厚みが20μm未満であることにより、熱伝導性シート2による熱伝導性を阻害しないようにすることができ、また、熱伝導性シート積層体1の熱抵抗を小さくすることにも寄与する。 The thickness of the adhesive film 3 may be less than 20 μm, for example, 0.1 μm or more, 1 μm or more, 3 μm or more, 7 μm or more, It may be 15 μm or more, and may be in the range of 0.1 to 15 μm. When the thickness of the adhesive film 3 is less than 20 μm, the thermal conductivity of the thermally conductive sheet 2 can be prevented from being hindered, and the thermal resistance of the thermally conductive sheet laminate 1 can be reduced. contribute.
 熱伝導シート2は、一般的に、硬質である炭素繊維5と軟質であるバインダ樹脂4とが同時に切断されてなるため、表面平滑性が低い状態にある。このように表面平滑性が低い表面(粗化表面)を接着フィルム3で充填し、発熱体と放熱体の界面に対する密着性を改善することで熱伝導シート2の熱抵抗を改善できる。一方、接着フィルム3は、バルクとしての熱伝導率が低く、熱伝導シート2の厚み方向(熱伝導経路)に接着フィルム3の領域が拡大しすぎると、熱抵抗成分としての寄与が大きくなる。したがって、接着フィルム3の厚みは、熱伝導シート2の表面粗さRaを充填する程度の厚みであることが好ましい。接着フィルム3の厚みは、熱伝導シート2の表面粗さRaに応じて選択することができ、仮に、熱伝導シート2の両表面の表面粗さRaが異なる場合、接着フィルム3の厚みを熱伝導シート2の表面粗さRaに対応させればよい。例えば、接着フィルム3の厚み(μm)と、熱伝導性シート2の表面粗さRa(μm)との比(接着フィルム3の厚み/熱伝導性シート2の表面粗さRa)は、0.003~0.7の範囲であることが好ましく、0.05~0.3の範囲であることがより好ましい。なお、接着フィルム3は、熱伝導シート2の表面粗さRaを完全に充填する厚みでなくても、接着力による密着状態の保持によって、接触熱抵抗を改善できる。 The heat-conducting sheet 2 generally has a low surface smoothness because the hard carbon fiber 5 and the soft binder resin 4 are cut at the same time. By filling the surface with low surface smoothness (roughened surface) with the adhesive film 3 and improving the adhesion to the interface between the heating element and the radiator, the thermal resistance of the thermally conductive sheet 2 can be improved. On the other hand, the adhesive film 3 has a low thermal conductivity as a bulk, and if the area of the adhesive film 3 expands too much in the thickness direction (thermal conduction path) of the thermal conductive sheet 2, the contribution as a thermal resistance component increases. Therefore, the thickness of the adhesive film 3 is preferably such that the surface roughness Ra of the heat conductive sheet 2 is filled. The thickness of the adhesive film 3 can be selected according to the surface roughness Ra of the heat conductive sheet 2. If the two surfaces of the heat conductive sheet 2 have different surface roughnesses Ra, the thickness of the adhesive film 3 is reduced by heating. It is sufficient to correspond to the surface roughness Ra of the conductive sheet 2 . For example, the ratio of the thickness (μm) of the adhesive film 3 to the surface roughness Ra (μm) of the thermally conductive sheet 2 (thickness of the adhesive film 3/surface roughness Ra of the thermally conductive sheet 2) is 0.5. 003 to 0.7, more preferably 0.05 to 0.3. Even if the adhesive film 3 does not have a thickness that completely fills the surface roughness Ra of the thermally conductive sheet 2, the contact heat resistance can be improved by maintaining a close contact state due to the adhesive force.
 熱伝導性シート積層体1、すなわち、接着フィルム3付き熱伝導シート2が被着体に対して適切な位置に貼付できなかった場合や、均一に貼付できなかった際に、リワーク作業を実施することがある。熱伝導性シート積層体1を均一に貼付できなかった例として、接着フィルム3同士の接着、被着体界面でのボイド巻き込みなどが挙げられる。接着フィルム3の常温付近における粘度が低い場合、接着フィルム3と被着体との接着力が高くなりすぎ、リワーク作業の際に、接着フィルム3と被着体との離型不良、接着フィルム3と熱伝導シート2との間の剥がれ、接着フィルム3の凝集破壊、熱伝導シート2の材破などが起こるおそれがあり、また、熱伝導性シート積層体1のハンドリング性が悪くなる傾向にある。そこで、接着フィルム3の20℃における粘度は、8.0E+05Pa・sより大きく、9.0E+05Pa・s以上であってもよく、1.0E+06Pa・s以上であってもよく、9.0E+05~1.0E+06Pa・sの範囲であってもよい。 When the thermally conductive sheet laminate 1, that is, the thermally conductive sheet 2 with the adhesive film 3 cannot be adhered to the adherend at an appropriate position or cannot be adhered uniformly, a rework operation is performed. Sometimes. Examples of failures in uniformly attaching the thermally conductive sheet laminate 1 include adhesion between the adhesive films 3 and inclusion of voids at the adherend interface. If the viscosity of the adhesive film 3 is low near room temperature, the adhesive strength between the adhesive film 3 and the adherend becomes too high, and during rework, the adhesive film 3 and the adherend are not easily released from each other, and the adhesive film 3 and the heat conductive sheet 2, cohesive failure of the adhesive film 3, material breakage of the heat conductive sheet 2, etc., and the handleability of the heat conductive sheet laminate 1 tends to deteriorate. . Therefore, the viscosity of the adhesive film 3 at 20° C. is greater than 8.0E+05 Pa·s, may be 9.0E+05 Pa·s or more, may be 1.0E+06 Pa·s or more, and may range from 9.0E+05 to 1.0E+05 Pa·s. It may be in the range of 0E+06 Pa·s.
 接着フィルム3の130℃における粘度は、40Pa・s未満であり、30Pa・s以下であってもよく、25Pa・s以下であってもよく、20Pa・s以下であってもよく、15Pa・s以下であってもよく、10Pa・s以下であってもよく、10~30Pa・sの範囲であってもよい。接着フィルム3の130℃における粘度が40Pa・s未満であることにより、接着プロセスにおいて、発熱体と放熱体との間から接着フィルム3が排斥されやすくなる。接着フィルム3の粘度は、後述する実施例の方法で測定することができる。 The viscosity of the adhesive film 3 at 130° C. is less than 40 Pa·s, may be 30 Pa·s or less, may be 25 Pa·s or less, may be 20 Pa·s or less, or may be 15 Pa·s. It may be less than or equal to 10 Pa·s or less, or may be in the range of 10 to 30 Pa·s. When the viscosity of the adhesive film 3 at 130° C. is less than 40 Pa·s, the adhesive film 3 is easily expelled from between the heating element and the radiator in the bonding process. The viscosity of the adhesive film 3 can be measured by the method described later in Examples.
 熱伝導性シート積層体1の厚み方向の熱伝導率は、例えば、常温において1W/m・K以上とすることができ、4W/m・K以上とすることもでき、7W/m・K以上とすることもでき、9W/m・K以上とすることもできる。 The thermal conductivity in the thickness direction of the thermally conductive sheet laminate 1 can be, for example, 1 W/m·K or more, 4 W/m·K or more, or 7 W/m·K or more at room temperature. It can also be set to 9 W/m·K or more.
 次に、熱伝導性シート2と接着フィルム3の構成例について説明する。 Next, configuration examples of the thermally conductive sheet 2 and the adhesive film 3 will be described.
 <熱伝導性シート>
 図2は、本技術に係る熱伝導性シート積層体1における熱伝導性シート2の一例を示す斜視図である。図2に示すように、熱伝導性シート2は、シリコーン樹脂からなるバインダ樹脂4と、炭素繊維5と、炭素繊維5以外の熱伝導性フィラー6とを含み、炭素繊維5と、熱伝導性フィラー6とがバインダ樹脂4に分散している。また、熱伝導性シート2は、熱伝導性シート2の厚み方向Bに、異方性の熱伝導性特性を有する炭素繊維5の長軸が配向している。このように、熱伝導性シート積層体1中の熱伝導性シート2は、厚み方向Bに炭素繊維5の長軸が配向しているため、熱伝導性シート積層体1の厚み方向の熱伝導性が良好である。
<Heat conductive sheet>
FIG. 2 is a perspective view showing an example of the thermally conductive sheet 2 in the thermally conductive sheet laminate 1 according to the present technology. As shown in FIG. 2, the thermally conductive sheet 2 includes a binder resin 4 made of a silicone resin, carbon fibers 5, and a thermally conductive filler 6 other than the carbon fibers 5. The carbon fibers 5 and a thermally conductive A filler 6 is dispersed in the binder resin 4 . In the thermally conductive sheet 2 , long axes of carbon fibers 5 having anisotropic thermally conductive properties are oriented in the thickness direction B of the thermally conductive sheet 2 . Thus, in the thermally conductive sheet 2 in the thermally conductive sheet laminate 1, since the long axis of the carbon fibers 5 is oriented in the thickness direction B, heat conduction in the thickness direction of the thermally conductive sheet laminate 1 is achieved. It has good properties.
 [バインダ樹脂]
 バインダ樹脂4は、炭素繊維5と熱伝導性フィラー6とを熱伝導性シート2内に保持するためのものである。バインダ樹脂4としては、例えば、電子部品の発熱面とヒートシンク面との密着性を考慮してシリコーン樹脂が用いられる。バインダ樹脂4は、1種単独で用いてもよいし、2種以上を併用してもよい。
[Binder resin]
The binder resin 4 is for holding the carbon fibers 5 and the thermally conductive filler 6 within the thermally conductive sheet 2 . As the binder resin 4, for example, a silicone resin is used in consideration of the adhesion between the heat generating surface of the electronic component and the heat sink surface. The binder resin 4 may be used individually by 1 type, and may be used in combination of 2 or more types.
 シリコーン樹脂としては、例えば、アルケニル基を有するシリコーンを主成分とし、硬化触媒を含有する主剤と、ヒドロシリル基(Si-H基)を有する硬化剤とからなる、2液型の付加反応型シリコーン樹脂を用いることができる。アルケニル基を有するシリコーンとしては、例えば、ビニル基を有するポリオルガノシロキサンを用いることができる。硬化触媒は、アルケニル基を有するシリコーン中のアルケニル基と、ヒドロシリル基を有する硬化剤中のヒドロシリル基との付加反応を促進するための触媒である。硬化触媒としては、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられ、例えば、白金族系硬化触媒、例えば白金、ロジウム、パラジウムなどの白金族金属単体や塩化白金などを用いることができる。ヒドロシリル基を有する硬化剤としては、例えば、ヒドロシリル基を有するポリオルガノシロキサンを用いることができる。 As the silicone resin, for example, a two-component addition reaction type silicone resin composed of a silicone having an alkenyl group as a main component, a main agent containing a curing catalyst, and a curing agent having a hydrosilyl group (Si—H group). can be used. As the alkenyl group-containing silicone, for example, a vinyl group-containing polyorganosiloxane can be used. The curing catalyst is a catalyst for promoting the addition reaction between the alkenyl group in the alkenyl group-containing silicone and the hydrosilyl group in the hydrosilyl group-containing curing agent. As the curing catalyst, well-known catalysts used for hydrosilylation reaction can be used. For example, platinum group curing catalysts, such as platinum group metals such as platinum, rhodium and palladium, and platinum chloride can be used. As the curing agent having hydrosilyl groups, for example, polyorganosiloxane having hydrosilyl groups can be used.
 熱伝導性シート2中のバインダ樹脂4の含有量は、特に限定されず、目的に応じて適宜選択することができる。例えば、熱伝導性シート2中のバインダ樹脂4の含有量は、20体積%以上とすることができ、25体積%以上であってもよく、30体積%以上であってもよい。また、熱伝導性シート2中のバインダ樹脂4の含有量の上限値は、70体積%以下とすることができ、60体積%以下であってもよく、50体積%以下であってもよく、40体積%以下であってもよい。熱伝導性シート2の柔軟性を良好にする観点では、熱伝導性シート2中のバインダ樹脂4の含有量は、25~60体積%の範囲とすることができる。 The content of the binder resin 4 in the thermally conductive sheet 2 is not particularly limited, and can be appropriately selected according to the purpose. For example, the content of the binder resin 4 in the thermally conductive sheet 2 may be 20% by volume or more, may be 25% by volume or more, or may be 30% by volume or more. The upper limit of the content of the binder resin 4 in the thermally conductive sheet 2 may be 70% by volume or less, may be 60% by volume or less, or may be 50% by volume or less. It may be 40% by volume or less. From the viewpoint of improving the flexibility of the thermally conductive sheet 2, the content of the binder resin 4 in the thermally conductive sheet 2 can be in the range of 25 to 60% by volume.
 炭素繊維5は、例えば、ピッチ系炭素繊維、PAN系炭素繊維、PBO繊維を黒鉛化した炭素繊維、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成された炭素繊維を用いることができる。これらの中でも、熱伝導性の観点では、ピッチ系炭素繊維が好ましい。 The carbon fiber 5 is, for example, a pitch-based carbon fiber, a PAN-based carbon fiber, a carbon fiber obtained by graphitizing PBO fiber, an arc discharge method, a laser evaporation method, a CVD method (chemical vapor deposition method), a CCVD method (catalytic chemical vapor deposition method). A carbon fiber synthesized by a phase growth method) or the like can be used. Among these, pitch-based carbon fibers are preferable from the viewpoint of thermal conductivity.
 炭素繊維5の平均繊維長(平均長軸長さ)は、目的に応じて適宜選択することができ、例えば、50~250μmとすることができ、75~200μmであってもよく、90~170μmであってもよい。また、炭素繊維5の平均繊維径(平均短軸長さ)も、目的に応じて適宜選択することができ、例えば、4~20μmとすることができ、5~14μmであってもよい。炭素繊維5のアスペクト比(平均長軸長さ/平均短軸長さ)は、目的に応じて適宜選択することができ、例えば、9~30とすることができる。炭素繊維5の平均長軸長さ及び平均短軸長さは、例えば、マイクロスコープや走査型電子顕微鏡(SEM)で測定することができる。 The average fiber length (average major axis length) of the carbon fibers 5 can be appropriately selected according to the purpose, and can be, for example, 50 to 250 μm, may be 75 to 200 μm, or can be 90 to 170 μm. may be The average fiber diameter (average minor axis length) of the carbon fibers 5 can also be appropriately selected according to the purpose, and can be, for example, 4 to 20 μm, and may be 5 to 14 μm. The aspect ratio (average major axis length/average minor axis length) of the carbon fibers 5 can be appropriately selected according to the purpose, and can be, for example, 9-30. The average major axis length and average minor axis length of the carbon fibers 5 can be measured with a microscope or scanning electron microscope (SEM), for example.
 図3は、絶縁被膜によって被覆された炭素繊維の一例を示す斜視図である。熱伝導性シート2の絶縁性を高める観点では、図3に示すように、炭素繊維5は、表面が絶縁被膜7によって被覆されていてもよい。このように、炭素繊維として、絶縁被覆炭素繊維8を用いることができる。絶縁被覆炭素繊維8は、炭素繊維5と、炭素繊維5の表面の少なくとも一部に絶縁皮膜7とを有し、必要に応じて、その他の成分を含んでいてもよい。 FIG. 3 is a perspective view showing an example of carbon fibers coated with an insulating coating. From the viewpoint of enhancing the insulating properties of the thermally conductive sheet 2, the surfaces of the carbon fibers 5 may be covered with an insulating coating 7, as shown in FIG. Thus, the insulation-coated carbon fiber 8 can be used as the carbon fiber. The insulation-coated carbon fiber 8 has the carbon fiber 5 and the insulation coating 7 on at least part of the surface of the carbon fiber 5, and may contain other components as necessary.
 絶縁皮膜7は、電気絶縁性を有する材料からなり、例えば、酸化ケイ素や、重合性材料の硬化物で形成されている。重合性材料は、例えばラジカル重合性材料であり、重合性を有する有機化合物、重合性を有する樹脂などが挙げられる。ラジカル重合性材料は、エネルギーを利用してラジカル重合する材料であれば、目的に応じて適宜選択することができ、例えば、ラジカル重合性2重結合を有する化合物が挙げられる。ラジカル重合性2重結合としては、例えば、ビニル基、アクリロイル基、メタクリロイル基などが挙げられる。ラジカル重合性2重結合を有する化合物におけるラジカル重合性2重結合の個数は、耐熱性や、耐溶剤性を含む強度の観点では、2つ以上が好ましい。ラジカル重合性2重結合を2つ以上有する化合物は、例えば、ジビニルベンゼン(Divinylbenzene:DVB)、(メタ)アクリロイル基を2つ以上有する化合物が挙げられる。ラジカル重合性材料は、1種単独で用いてもよいし、2種以上を併用してもよい。ラジカル重合性材料の分子量は、目的に応じて適宜選択することができ、例えば、50~500の範囲とすることができる。絶縁皮膜5が重合性材料の硬化物で形成されている場合、絶縁被膜7における重合性材料に由来する構成単位の含有量は、例えば、50重量%以上とすることができ、90重量%以上とすることもできる。 The insulating film 7 is made of an electrically insulating material, such as silicon oxide or a cured polymer material. The polymerizable material is, for example, a radical polymerizable material such as a polymerizable organic compound and a polymerizable resin. The radically polymerizable material can be appropriately selected according to the purpose as long as it is a material that undergoes radical polymerization using energy. Examples thereof include compounds having a radically polymerizable double bond. Examples of radically polymerizable double bonds include vinyl groups, acryloyl groups, and methacryloyl groups. The number of radically polymerizable double bonds in the compound having radically polymerizable double bonds is preferably two or more from the viewpoint of strength including heat resistance and solvent resistance. Examples of compounds having two or more radically polymerizable double bonds include divinylbenzene (DVB) and compounds having two or more (meth)acryloyl groups. The radically polymerizable material may be used singly or in combination of two or more. The molecular weight of the radically polymerizable material can be appropriately selected depending on the purpose, and can be in the range of 50-500, for example. When the insulating coating 5 is formed of a cured product of a polymerizable material, the content of structural units derived from the polymerizable material in the insulating coating 7 can be, for example, 50% by weight or more, and can be 90% by weight or more. can also be
 絶縁皮膜7の平均厚みは、目的に応じて適宜選択することができ、高い絶縁性を実現する観点では、50nm以上とすることができ、100nm以上であってもよく、200nm以上であってもよい。絶縁被膜7の平均厚みの上限値は、例えば、1000nm以下とすることができ、500nm以下であってもよい。絶縁被膜7の平均厚みは、例えば、透過型電子顕微鏡(TEM)観察により求めることができる。 The average thickness of the insulating film 7 can be appropriately selected according to the purpose, and from the viewpoint of realizing high insulation, it can be 50 nm or more, and may be 100 nm or more, or 200 nm or more. good. The upper limit of the average thickness of the insulating coating 7 can be, for example, 1000 nm or less, and may be 500 nm or less. The average thickness of the insulating coating 7 can be obtained by observation with a transmission electron microscope (TEM), for example.
 絶縁皮膜7により炭素繊維5を被覆する方法としては、例えば、ゾルゲル法、液相堆積法、ポリシロキサン法、特開2018-98515号公報に記載された炭素繊維5の表面の少なくとも一部に重合性材料の硬化物からなる絶縁皮膜7を形成する方法等が挙げられる。 Methods for coating the carbon fibers 5 with the insulating coating 7 include, for example, a sol-gel method, a liquid phase deposition method, a polysiloxane method, and polymerization of at least a portion of the surface of the carbon fibers 5 described in JP-A-2018-98515. a method of forming the insulating film 7 made of a cured material of a flexible material, and the like.
 熱伝導性フィラー6は、炭素繊維5以外の熱伝導性フィラーである。熱伝導性フィラー6の材質は、例えば、窒素化合物、金属水酸化物、金属酸化物などが挙げられる。窒素化合物としては、窒化アルミニウム、窒化ホウ素などが挙げられる。金属水酸化物としては、水酸化アルミニウムが挙げられる。金属酸化物としては、酸化アルミニウム(アルミナ、サファイア)、酸化マグネシウムなどが挙げられる。熱伝導性フィラー6は、1種単独で用いてもよいし、2種以上を併用してもよい。熱伝導性フィラー6の形状は、特に限定されず、例えば、球状、粉末状、顆粒状、扁平状、鱗片状、繊維状などが挙げられる。 The thermally conductive filler 6 is a thermally conductive filler other than the carbon fibers 5. Examples of the material of the thermally conductive filler 6 include nitrogen compounds, metal hydroxides, and metal oxides. Nitrogen compounds include aluminum nitride and boron nitride. Metal hydroxides include aluminum hydroxide. Examples of metal oxides include aluminum oxide (alumina, sapphire), magnesium oxide, and the like. The thermally conductive fillers 6 may be used singly or in combination of two or more. The shape of the thermally conductive filler 6 is not particularly limited, and examples thereof include spherical, powdery, granular, flattened, scaly, and fibrous.
 特に、熱伝導性フィラー6としては、熱伝導性の観点から、窒化アルミニウム粒子と、アルミナ粒子とを併用することが好ましい。窒化アルミニウム粒子の平均粒径は、例えば、1~5μmの範囲とすることが好ましく、1~3μmの範囲であってもよく、1~2μmの範囲であってもよい。また、アルミナ粒子の平均粒径は、例えば、1~10μmの範囲とすることが好ましく、1~8μmの範囲とすることもでき、4~6μmの範囲とすることもできる。 In particular, as the thermally conductive filler 6, it is preferable to use both aluminum nitride particles and alumina particles from the viewpoint of thermal conductivity. The average particle size of the aluminum nitride particles is, for example, preferably in the range of 1 to 5 μm, may be in the range of 1 to 3 μm, or may be in the range of 1 to 2 μm. Further, the average particle diameter of the alumina particles is, for example, preferably in the range of 1 to 10 μm, may be in the range of 1 to 8 μm, and may be in the range of 4 to 6 μm.
 熱伝導性シート2中、炭素繊維5と熱伝導性フィラー6の合計量は、熱伝導性を高める観点では多いほど好ましく、例えば、60体積%以上とすることができ、65体積%であってもよい。熱伝導性シート2中、炭素繊維5と熱伝導性フィラー6の合計量の上限値は、シートの柔軟性の観点では、例えば、90体積%以下とすることができる。 The total amount of the carbon fibers 5 and the thermally conductive fillers 6 in the thermally conductive sheet 2 is preferably as large as possible from the viewpoint of improving thermal conductivity. good too. The upper limit of the total amount of the carbon fibers 5 and the thermally conductive fillers 6 in the thermally conductive sheet 2 can be, for example, 90% by volume or less from the viewpoint of flexibility of the sheet.
 熱伝導性シート2は、炭素繊維5を熱伝導性フィラー6よりも多く含んでもよいし、熱伝導性フィラー6を炭素繊維5よりも多く含んでいてもよいし、炭素繊維5と熱伝導性フィラー6を同量で含んでいてもよい。 The thermally conductive sheet 2 may contain more carbon fibers 5 than the thermally conductive fillers 6, may contain more thermally conductive fillers 6 than the carbon fibers 5, or may contain more carbon fibers 5 than the thermally conductive fillers 6. The same amount of filler 6 may be included.
 熱伝導性シート2中、炭素繊維5の含有量は、例えば、5体積%以上とすることができ、10体積%以上であってもよいし、15体積%以上であってもよいし、20体積%以上であってもよいし、22体積%以上であってもよいし、10~25体積%の範囲であってもよい。 The content of the carbon fibers 5 in the thermally conductive sheet 2 may be, for example, 5% by volume or more, may be 10% by volume or more, may be 15% by volume or more, or may be 20% by volume or more. It may be vol % or more, 22 vol % or more, or may be in the range of 10 to 25 vol %.
 熱伝導性シート2中、熱伝導性フィラー6の含有量は、例えば、5体積%以上とすることができ、10体積%以上であってもよいし、15体積%以上であってもよいし、20体積%以上であってもよいし、25体積%以上であってもよいし、30体積%以上であってもよいし、35体積%以上であってもよいし、40体積%以上であってもよいし、43体積%以上であってもよいし、20~50体積%の範囲であってもよい。熱伝導性フィラー6として、窒化アルミニウム粒子と、アルミナ粒子とを併用する場合、熱伝導性シート1中、アルミナ粒子の含有量は10~25体積%とすることが好ましく、窒化アルミニウム粒子の含有量は10~25体積%とすることが好ましい。 The content of the thermally conductive filler 6 in the thermally conductive sheet 2 may be, for example, 5% by volume or more, may be 10% by volume or more, or may be 15% by volume or more. , 20% by volume or more, 25% by volume or more, 30% by volume or more, 35% by volume or more, or 40% by volume or more may be present, may be 43% by volume or more, or may be in the range of 20 to 50% by volume. When aluminum nitride particles and alumina particles are used together as the thermally conductive filler 6, the content of the alumina particles in the thermally conductive sheet 1 is preferably 10 to 25% by volume, and the content of the aluminum nitride particles is is preferably 10 to 25% by volume.
 熱伝導性シート2は、上述した成分以外の他の成分をさらに含有してもよい。他の成分としては、例えば、シランカップリング剤、分散剤、硬化促進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤などが挙げられる。例えば、熱伝導性シート2は、炭素繊維5や熱伝導性フィラー6の分散性をより向上させて、熱伝導性シート2の柔軟性をより向上させる観点で、シランカップリング剤で処理した熱伝導性フィラー6を用いてもよい。 The thermally conductive sheet 2 may further contain other components than those mentioned above. Other components include, for example, silane coupling agents, dispersants, curing accelerators, retarders, tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants and the like. For example, the thermally conductive sheet 2 is treated with a silane coupling agent from the viewpoint of further improving the dispersibility of the carbon fibers 5 and the thermally conductive filler 6 and further improving the flexibility of the thermally conductive sheet 2 . A conductive filler 6 may be used.
 次に熱伝導性シート2の製造方法について説明する。熱伝導性シート2は、下記工程Aと、工程Bと、工程Cとを有する製造方法で得られる。 Next, a method for manufacturing the thermally conductive sheet 2 will be described. The thermally conductive sheet 2 is obtained by a manufacturing method including steps A, B, and C below.
 <工程A>
 工程Aでは、炭素繊維5と熱伝導性フィラー6とをバインダ樹脂4に分散させることにより熱伝導性シート形成用の樹脂組成物を調製する。熱伝導性シート形成用の樹脂組成物は、炭素繊維5と、熱伝導性フィラー6と、バインダ樹脂4との他に、必要に応じて各種添加剤や揮発性溶剤とを公知の手法により均一に混合することにより調製できる。
<Step A>
In step A, a resin composition for forming a thermally conductive sheet is prepared by dispersing carbon fibers 5 and thermally conductive fillers 6 in a binder resin 4 . The resin composition for forming the thermally conductive sheet contains the carbon fibers 5, the thermally conductive filler 6, the binder resin 4, and, if necessary, various additives and volatile solvents. It can be prepared by mixing to
 <工程B>
 工程Bでは、調製された熱伝導性シート形成用の樹脂組成物から成形体ブロックを形成する。成形体ブロックの形成方法としては、押出成形法、金型成形法などが挙げられる。押出成形法、金型成形法としては、特に制限されず、公知の各種押出成形法、金型成形法の中から、熱伝導性シート形成用の樹脂組成物の粘度や熱伝導性シートに要求される特性等に応じて適宜採用することができる。
<Process B>
In step B, a molded block is formed from the prepared resin composition for forming a thermally conductive sheet. Examples of methods for forming the molded block include an extrusion molding method and a mold molding method. The extrusion molding method and the mold molding method are not particularly limited, and various known extrusion molding methods and mold molding methods are selected according to the viscosity of the resin composition for forming the thermally conductive sheet and the thermally conductive sheet. It can be appropriately adopted according to the characteristics to be used.
 例えば、押出成形法において、熱伝導性シート形成用の樹脂組成物をダイより押し出す際、あるいは金型成形法において、熱伝導性シート形成用の樹脂組成物を金型へ圧入する際、バインダ樹脂が流動し、その流動方向に沿って炭素繊維5が配向する。 For example, when extruding a resin composition for forming a thermally conductive sheet from a die in an extrusion molding method, or when pressing a resin composition for forming a thermally conductive sheet into a mold in a mold molding method, a binder resin flows, and the carbon fibers 5 are oriented along the flow direction.
 成形体ブロックの大きさ・形状は、求められる熱伝導性シート2の大きさに応じて決めることができる。例えば、断面の縦の大きさが0.5~15cmで横の大きさが0.5~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。 The size and shape of the molded block can be determined according to the required size of the heat conductive sheet 2. For example, a rectangular parallelepiped having a cross-sectional length of 0.5 to 15 cm and a width of 0.5 to 15 cm can be used. The length of the rectangular parallelepiped may be determined as required.
 <工程C>
 工程Cでは、成形体ブロックをシート状にスライスして、厚み方向Bに炭素繊維5の長軸が配向した熱伝導性シート2を得る。スライスにより得られるシートの表面(スライス面)には、炭素繊維5が露出する。スライスする方法としては特に制限はなく、成形体ブロックの大きさや機械的強度により公知のスライス装置の中から適宜選択することができる。成形体ブロックのスライス方向としては、成形方法が押出成形法である場合、押出し方向に炭素繊維5が配向しているものもあるため、押出し方向に対して60~120度であることが好ましく、70~100度の方向であることがより好ましく、90度(垂直)の方向であることがさらに好ましい。
<Process C>
In step C, the molded block is sliced into sheets to obtain thermally conductive sheets 2 in which the long axes of carbon fibers 5 are oriented in the thickness direction B. As shown in FIG. The carbon fibers 5 are exposed on the surface (slice surface) of the sheet obtained by slicing. The slicing method is not particularly limited, and can be appropriately selected from among known slicing devices according to the size and mechanical strength of the compact block. When the molding method is extrusion molding, the slicing direction of the molded block is preferably 60 to 120 degrees with respect to the extrusion direction because some carbon fibers 5 are oriented in the extrusion direction. A 70-100 degree orientation is more preferred, and a 90 degree (perpendicular) orientation is even more preferred.
 このように、工程Aと、工程Bと、工程Cとを有する製造方法では、バインダ樹脂4と、炭素繊維5と、熱伝導性フィラー6とを含有し、炭素繊維5と熱伝導性フィラー6とがバインダ樹脂4に分散しており、厚み方向Bに炭素繊維5の長軸が選択的に配向した熱伝導性シート2を得ることができる。 Thus, in the manufacturing method including Step A, Step B, and Step C, the binder resin 4, the carbon fiber 5, and the thermally conductive filler 6 are contained, and the carbon fiber 5 and the thermally conductive filler 6 are is dispersed in the binder resin 4, and the thermally conductive sheet 2 in which the major axes of the carbon fibers 5 are selectively oriented in the thickness direction B can be obtained.
 熱伝導性シート2の製造方法は、上述した例に限定されず、例えば、工程Cの後に、スライス面をプレスする工程Dをさらに有していてもよい。熱伝導性シートの製造方法がプレスする工程Dを有することで、工程Cで得られるシートの表面がより平滑化され、他の部材との密着性をより向上できる。プレスの方法としては、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用することができる。また、ピンチロールでプレスしてもよい。プレスの際の圧力としては、例えば、0.1~100MPaとすることができる。プレスの効果をより高め、プレス時間を短縮するために、プレスは、バインダ樹脂4のガラス転移温度(Tg)以上で行うことが好ましい。例えば、プレス温度は、0~180℃とすることができ、室温(例えば25℃)~100℃の温度範囲内であってもよく、30~100℃であってもよい。 The method for manufacturing the thermally conductive sheet 2 is not limited to the above example, and for example, after the process C, the process D for pressing the sliced surface may be further included. By including Step D of pressing in the method for producing a thermally conductive sheet, the surface of the sheet obtained in Step C is made smoother, and adhesion to other members can be further improved. As a method of pressing, a pair of pressing devices comprising a flat plate and a press head having a flat surface can be used. Moreover, you may press with a pinch roll. The pressure for pressing can be, for example, 0.1 to 100 MPa. In order to further enhance the effect of pressing and shorten the pressing time, it is preferable to perform pressing at a temperature higher than the glass transition temperature (Tg) of the binder resin 4 . For example, the pressing temperature can be from 0 to 180.degree. C., can be within the temperature range of room temperature (eg, 25.degree. C.) to 100.degree.
 <接着フィルム>
 接着フィルム3は、上述のように、造膜成分と、液状のエポキシ樹脂と、硬化剤とを含む。
<Adhesive film>
The adhesive film 3 contains a film-forming component, a liquid epoxy resin, and a curing agent, as described above.
 [造膜成分]
 接着フィルム3は、膜形成樹脂として機能する造膜成分(バインダ成分)を含む。造膜成分の重量平均分子量は、接着フィルム3のフィルム形成性の観点から、例えば、200,000以上とすることができ、220,000以上であってもよく、300,000以上であってもよく、350,000以上であってもよく、400,000以上であってもよい。また、造膜成分の重量平均分子量の上限値は、接着フィルム3の粘度の観点から、例えば、1,000,000以下とすることができ、900,000以下であってもよく、800,000以下であってもよく、700,000以下であってもよく、600,000以下であってもよい。
[Film-forming component]
The adhesive film 3 contains a film-forming component (binder component) that functions as a film-forming resin. From the viewpoint of the film formability of the adhesive film 3, the weight-average molecular weight of the film-forming component may be, for example, 200,000 or more, may be 220,000 or more, or may be 300,000 or more. Well, it may be 350,000 or more, or it may be 400,000 or more. In addition, the upper limit of the weight average molecular weight of the film-forming component can be, for example, 1,000,000 or less, may be 900,000 or less, or 800,000, from the viewpoint of the viscosity of the adhesive film 3. It may be less than or equal to 700,000 or less, or it may be less than or equal to 600,000.
 造膜成分のガラス転移温度は、接着フィルム3の反応特性(例えば溶融粘度)の観点では、例えば、30℃未満とすることができ、10℃以下であってもよく、-10℃以下であってもよい。造膜成分のガラス転移温度の下限値は、特に限定されないが、例えば-30℃以上とすることができる。造膜成分のガラス転移温度の測定方法としては、公知の方法を用いることができ、例えば、熱機械分析装置を用いて昇温速度10℃/分の条件で測定できる。 The glass transition temperature of the film-forming component can be, for example, less than 30° C., may be 10° C. or less, or −10° C. or less, from the viewpoint of the reaction characteristics (for example, melt viscosity) of the adhesive film 3. may Although the lower limit of the glass transition temperature of the film-forming component is not particularly limited, it can be -30°C or higher, for example. As a method for measuring the glass transition temperature of the film-forming component, a known method can be used. For example, it can be measured using a thermomechanical analyzer at a temperature elevation rate of 10° C./min.
 造膜成分としては、例えば、アクリルポリマー(アクリルゴム)を用いることができる。例えば、官能基としてカルボキシル基、ヒドロキシル基、エポキシ基及びアミド基から選択される少なくとも1種を有するアクリルポリマーを用いることができる。また、アクリルポリマーは、アクリル酸エチル(EA)と、アクリロニトリル(AN)と、グリシジルメタクリレート(GMA)と、ジメチルアクリルアミド(DMAA)との共重合体を用いることができる。造膜成分の具体例としては、ナガセムテックス社製のテイサンレジンシリーズ、SG-80H(Tg;12℃)、SG-P3(Tg;12℃)などが挙げられる。造膜成分は、1種単独で用いてもよいし、2種以上を併用してもよい。 For example, an acrylic polymer (acrylic rubber) can be used as the film-forming component. For example, acrylic polymers having at least one selected from carboxyl groups, hydroxyl groups, epoxy groups and amide groups as functional groups can be used. A copolymer of ethyl acrylate (EA), acrylonitrile (AN), glycidyl methacrylate (GMA), and dimethylacrylamide (DMAA) can be used as the acrylic polymer. Specific examples of the film-forming component include Teisan resin series, SG-80H (Tg; 12° C.), SG-P3 (Tg; 12° C.) manufactured by Nagasemtex Co., Ltd., and the like. The film-forming component may be used singly or in combination of two or more.
 接着フィルム3中の造膜成分の含有量は、例えば、エポキシ樹脂100重量部に対して1重量部以上とすることができ、3重量部以上であってもよく、5重量部以上であってもよく、8重量部以上であってもよい。また、接着フィルム3中の造膜成分の含有量の上限値は、例えば、エポキシ樹脂100重量部に対して15重量部以下とすることができ、13重量部以下であってもよく、10重量部以下であってもよい。 The content of the film-forming component in the adhesive film 3 may be, for example, 1 part by weight or more, may be 3 parts by weight or more, or may be 5 parts by weight or more with respect to 100 parts by weight of the epoxy resin. It may be 8 parts by weight or more. Further, the upper limit of the content of the film-forming component in the adhesive film 3 can be, for example, 15 parts by weight or less with respect to 100 parts by weight of the epoxy resin, and may be 13 parts by weight or less, or 10 parts by weight. It may be less than part.
 [エポキシ樹脂]
 接着フィルム3に用いられるエポキシ樹脂は、室温で液状のエポキシ樹脂である。エポキシ樹脂は、単官能エポキシ樹脂であってもよいし、2官能のエポキシ樹脂であってもよいし、多官能のエポキシ樹脂であってもよいが、多官能のエポキシ樹脂、例えば4官能のエポキシ樹脂が好ましい。
[Epoxy resin]
The epoxy resin used for the adhesive film 3 is a liquid epoxy resin at room temperature. The epoxy resin may be a monofunctional epoxy resin, a bifunctional epoxy resin, or a polyfunctional epoxy resin. Resins are preferred.
 エポキシ樹脂の粘度は、例えば、室温において25000mPa・s以下とすることができ、20000mPa・s以下であってもよい。エポキシ樹脂の粘度の下限値は、例えば、150mPa・s以上とすることができ、200mPa・s以上であってもよい。 The viscosity of the epoxy resin can be, for example, 25000 mPa·s or less at room temperature, and may be 20000 mPa·s or less. The lower limit of the viscosity of the epoxy resin can be, for example, 150 mPa·s or more, and may be 200 mPa·s or more.
 エポキシ樹脂のエポキシ当量は、例えば、100~300g/eqの範囲とすることができ、100~200g/eqの範囲であってもよい。 The epoxy equivalent of the epoxy resin can be, for example, in the range of 100-300 g/eq, and may be in the range of 100-200 g/eq.
 エポキシ樹脂としては、多官能脂肪族エポキシ樹脂や、多官能芳香族エポキシ樹脂を用いることができる。エポキシ樹脂の具体例としては、昭和電工社製のBATG(2,2’-ジアリルビスフェノールAジアリルエーテルの過酸化水素によるエポキシ化反応生成物)が挙げられる。エポキシ樹脂は、1種単独で用いてもよいし、2種以上を併用してもよい。 As the epoxy resin, a polyfunctional aliphatic epoxy resin or a polyfunctional aromatic epoxy resin can be used. A specific example of the epoxy resin is BATG (an epoxidation reaction product of 2,2'-diallylbisphenol A diallyl ether with hydrogen peroxide) manufactured by Showa Denko. An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
 接着フィルム3中のエポキシ樹脂の含有量は、例えば、10~65重量%の範囲とすることができ、20~60重量%の範囲とすることもでき、30~55重量%の範囲とすることもできる。 The content of the epoxy resin in the adhesive film 3 can be, for example, in the range of 10 to 65% by weight, can be in the range of 20 to 60% by weight, and can be in the range of 30 to 55% by weight. can also
 [硬化剤]
 接着フィルム3は、硬化剤を含む。硬化剤は、上述したエポキシ樹脂用の硬化剤である。硬化剤は、アミン系、リン系、フェノール系またはその組み合わせからなるものを用いることができる。硬化剤としては、接着フィルム3の上述した粘度特性をより効果的に発現させる観点では、潜在性硬化剤を用いることが好ましい。また、硬化剤は、1種単独で用いてもよいし、2種以上を併用してもよく、例えば、アミン系の硬化剤とフェノール系の硬化剤を併用することが好ましい。
[Curing agent]
The adhesive film 3 contains a curing agent. The curing agent is the curing agent for epoxy resins described above. Amine-based, phosphorus-based, phenol-based, or a combination thereof can be used as the curing agent. As the curing agent, it is preferable to use a latent curing agent from the viewpoint of more effectively exhibiting the above-described viscosity characteristics of the adhesive film 3 . The curing agent may be used singly or in combination of two or more. For example, it is preferable to use an amine-based curing agent and a phenol-based curing agent together.
 アミン系の硬化剤としては、イミダゾール類、例えば、1-シアノエチル-2-フェニルイミダゾール、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、イミダゾールの1位をシアノエチル基で保護した1-シアノエチル-2-フェニルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾールが挙げられる。アミン系の硬化剤の具体例としては、T&K TOKA社製のフジキュアー7004が挙げられる。 Amine curing agents include imidazoles such as 1-cyanoethyl-2-phenylimidazole, 2,4-diamino-6-(2′-methylimidazolyl-(1′))-ethyl-s-triazine, 2 -phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl-2-phenylimidazole in which position 1 of imidazole is protected with a cyanoethyl group, and 2-phenyl-4,5-dihydroxymethylimidazole. A specific example of the amine-based curing agent is Fujicure 7004 manufactured by T&K TOKA.
 接着フィルム3が硬化剤としてアミン系の硬化剤を含む場合、接着フィルム3中、アミン系の硬化剤の含有量は、エポキシ樹脂100重量部に対して、0.1重量部以上とすることができ、0.2重量部以上であってもよく、0.5重量部以上であってもよく、1重量部以上であってもよく、1.5重量部以上であってもよく、2重量部以上であってもよい。また、接着フィルム3中、アミン系の硬化剤の含有量の上限値は、例えば、5重量部以下とすることができ、3重量部以下であってもよく、2.5重量部以下であってもよく、2.0重量部以下であってもよい。 When the adhesive film 3 contains an amine-based curing agent as a curing agent, the content of the amine-based curing agent in the adhesive film 3 may be 0.1 parts by weight or more with respect to 100 parts by weight of the epoxy resin. It may be 0.2 parts by weight or more, may be 0.5 parts by weight or more, may be 1 part by weight or more, may be 1.5 parts by weight or more, or may be 2 parts by weight. It may be more than part. The upper limit of the content of the amine-based curing agent in the adhesive film 3 may be, for example, 5 parts by weight or less, may be 3 parts by weight or less, or may be 2.5 parts by weight or less. It may be 2.0 parts by weight or less.
 フェノール系の硬化剤としては、フェノールノボラック化合物、クレゾールノボラック化合物、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール化合物、ジシクロペンタジエンフェノール付加型化合物、フェノールアラルキル化合物などが挙げられる。フェノール系の硬化剤の具体例としては、DIC社製のTD-2131が挙げられる。 Phenolic curing agents include phenol novolac compounds, cresol novolak compounds, aromatic hydrocarbon formaldehyde resin-modified phenol compounds, dicyclopentadiene phenol addition type compounds, and phenol aralkyl compounds. A specific example of the phenolic curing agent is TD-2131 manufactured by DIC.
 接着フィルム3が硬化剤としてフェノール系の硬化剤を含む場合、フェノール系の硬化剤の含有量は、エポキシ樹脂のエポキシ当量に応じて決定される。接着フィルム3中、フェノール系の硬化剤の含有量は、エポキシ当量120のエポキシ樹脂100重量部に対して、65重量部以上が好ましく、70重量部以上がより好ましい。また、接着フィルム3中、フェノール系の硬化剤の含有量の上限値は、エポキシ当量120のエポキシ樹脂100重量部に対して、90重量部以下が好ましく、85重量部以下がより好ましく、80重量部以下とすることもできる。接着フィルム3中、フェノール系の硬化剤の含有量は、エポキシ当量120のエポキシ樹脂100重量部に対して、65~90重量部の範囲とすることもでき、70~85重量部の範囲とすることもできる。 When the adhesive film 3 contains a phenolic curing agent as a curing agent, the content of the phenolic curing agent is determined according to the epoxy equivalent of the epoxy resin. The content of the phenol-based curing agent in the adhesive film 3 is preferably 65 parts by weight or more, more preferably 70 parts by weight or more, with respect to 100 parts by weight of the epoxy resin having an epoxy equivalent of 120. The upper limit of the content of the phenol-based curing agent in the adhesive film 3 is preferably 90 parts by weight or less, more preferably 85 parts by weight or less, more preferably 80 parts by weight with respect to 100 parts by weight of the epoxy resin having an epoxy equivalent of 120. It is also possible to make it less than a part. The content of the phenol-based curing agent in the adhesive film 3 may be in the range of 65 to 90 parts by weight, or in the range of 70 to 85 parts by weight, with respect to 100 parts by weight of the epoxy resin having an epoxy equivalent of 120. can also
 [フィラー]
 接着フィルム3は、例えば圧着時の接着フィルム3の流動性を調整する目的で、フィラーをさらに含んでいてもよい。また、接着フィルム3がフィラーを含むことにより、接着フィルム3の強度をより向上させることができ、リワーク作業、特に接着フィルム3同士が接着した際に接着フィルム3の材破をより効果的に防止できる。フィラーとしては、例えば、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等の無機フィラーを用いることができ、シリカが好ましい。フィラーの具体例としては、アドマテックス社製のSO-C1が挙げられる。フィラーは、1種単独で用いてもよいし、2種以上を併用してもよい。接着フィルム3の中のフィラーの含有量の合計は、例えば、エポキシ樹脂100重量部に対して26~50重量部とすることができ、26~45重量部とすることもできる。
[Filler]
The adhesive film 3 may further contain a filler, for example, for the purpose of adjusting the fluidity of the adhesive film 3 during pressure bonding. In addition, since the adhesive film 3 contains a filler, the strength of the adhesive film 3 can be further improved, and the material breakage of the adhesive film 3 can be prevented more effectively during rework work, especially when the adhesive films 3 are adhered to each other. can. Examples of fillers that can be used include inorganic fillers such as silica, talc, titanium oxide, calcium carbonate, and magnesium oxide, with silica being preferred. A specific example of the filler is SO-C1 manufactured by Admatechs. A filler may be used individually by 1 type, and may use 2 or more types together. The total content of the filler in the adhesive film 3 can be, for example, 26 to 50 parts by weight, and can also be 26 to 45 parts by weight, with respect to 100 parts by weight of the epoxy resin.
 次に、接着フィルム3の製造方法について説明する。まず、上述した造膜成分と、液状のエポキシ樹脂と、硬化剤とを含む接着フィルム用の組成物を溶剤に溶解させた混合液を準備する。溶剤としては、トルエン、酢酸エチルなど、又はこれらの混合溶剤を用いることができる。混合液を調製後、バーコーター、塗布装置などを用いて剥離基材上に塗布する。剥離基材は、例えば、シリコーンなどの剥離剤を、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)などに塗布した積層構造からなり、混合液の乾燥を防ぐとともに、混合液の形状を維持する。そして、剥離基材上に塗布された混合液を熱オーブン、加熱乾燥装置などを用いて乾燥させる。これにより、所定の厚みの接着フィルム3が得られる。 Next, a method for manufacturing the adhesive film 3 will be described. First, a mixed solution is prepared by dissolving the adhesive film composition containing the above-described film-forming component, liquid epoxy resin, and curing agent in a solvent. As the solvent, toluene, ethyl acetate, etc., or a mixed solvent thereof can be used. After the mixed solution is prepared, it is applied onto a release substrate using a bar coater, a coating device, or the like. The release base material has a laminate structure in which a release agent such as silicone is applied to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), or the like. , to prevent the mixed liquid from drying and to maintain the shape of the mixed liquid. Then, the mixed solution applied on the release base material is dried using a heat oven, a heat drying device, or the like. Thereby, an adhesive film 3 having a predetermined thickness is obtained.
 <熱伝導性シート積層体の製造方法>
 熱伝導性シート積層体1は、例えば、加熱したステージ上で接着フィルム3を加温した状態で、熱伝導性シート2の両面に配置し、所定の圧力で、熱伝導性シート2と接着フィルム3とを貼り合わせることで作製することができる。
<Method for producing thermally conductive sheet laminate>
The thermally conductive sheet laminate 1 is, for example, placed on both sides of the thermally conductive sheet 2 while the adhesive film 3 is heated on a heated stage, and the thermally conductive sheet 2 and the adhesive film are pressed under a predetermined pressure. 3 can be produced by bonding together.
 <電子機器>
 熱伝導性シート積層体1は、例えば、発熱体と放熱体との間に配置することにより、発熱体で生じた熱を放熱体に逃がすためにそれらの間に配された構造の電子機器(放熱構造)とすることができる。熱伝導性シート積層体1を適用した電子機器は、発熱体と、放熱体と、発熱体と放熱体との間に配置された熱伝導性シート積層体1とを備え、発熱体と放熱体とが熱伝導性シート積層体1で接着されている。このように、熱伝導性シート積層体1を適用した電子機器は、発熱体と放熱体とが熱伝導性シート積層体1の接着フィルム3を介して接着されているため、熱伝導性シート2により高熱伝導性を実現しつつ、接着フィルム3により接着性が良好である。
<Electronic equipment>
The thermally conductive sheet laminate 1 is, for example, an electronic device ( heat dissipation structure). An electronic device to which the thermally conductive sheet laminate 1 is applied includes a heating element, a radiator, and the thermally conductive sheet laminate 1 disposed between the heating element and the radiator. are bonded with the thermally conductive sheet laminate 1 . As described above, in the electronic device to which the thermally conductive sheet laminate 1 is applied, the heating element and the radiator are adhered via the adhesive film 3 of the thermally conductive sheet laminate 1, so the thermally conductive sheet 2 The adhesive film 3 provides good adhesion while achieving high thermal conductivity.
 発熱体としては、特に限定されず、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DRAM(Dynamic Random Access Memory)、フラッシュメモリなどの集積回路素子、トランジスタ、抵抗器など、電気回路において発熱する電子部品等が挙げられる。また、発熱体には、通信機器における光トランシーバ等の光信号を受信する部品も含まれる。 The heating element is not particularly limited. and electronic components that generate heat in. The heating element also includes components for receiving optical signals, such as optical transceivers in communication equipment.
 放熱体としては、特に限定されず、例えば、ヒートシンクやヒートスプレッダなど、集積回路素子やトランジスタ、光トランシーバ筐体などと組み合わされて用いられるものが挙げられる。放熱体としては、ヒートスプレッダやヒートシンク以外にも、熱源から発生する熱を伝導して外部に放散させるものであればよく、例えば、放熱器、冷却器、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、金属カバー、筐体等が挙げられる。 The radiator is not particularly limited, and examples include those used in combination with integrated circuit elements, transistors, optical transceiver housings, such as heat sinks and heat spreaders. As the radiator, in addition to the heat spreader and the heat sink, any material can be used as long as it conducts the heat generated from the heat source and dissipates it to the outside. A heat pipe, a metal cover, a housing, and the like can be mentioned.
 電子機器は、発熱体と放熱体と熱伝導性シート積層体1とを少なくとも有し、必要に応じて、その他の部材をさらに有していてもよい。 An electronic device has at least a heating element, a radiator, and a thermally conductive sheet laminate 1, and may further have other members as necessary.
 図4は、本技術に係る熱伝導性シート積層体1を適用した半導体装置50の一例を示す断面図である。熱伝導性シート積層体1は、図4に示すように、各種電子機器に内蔵される半導体装置50に実装され、発熱体と放熱体との間に挟持される。図4に示す半導体装置50は、電子部品51と、ヒートスプレッダ52と、熱伝導性シート積層体1とを備え、熱伝導性シート積層体1がヒートスプレッダ52と電子部品51との間に挟持される。熱伝導性シート積層体1が、ヒートスプレッダ52とヒートシンク53との間に挟持されることにより、ヒートスプレッダ52とともに、電子部品51の熱を放熱する放熱部材を構成する。熱伝導性シート積層体1の実装場所は、ヒートスプレッダ52と電子部品51との間に限定されず、ヒートスプレッダ52とヒートシンク53との間であってもよいし、電子機器や半導体装置の構成に応じて、適宜選択できる。 FIG. 4 is a cross-sectional view showing an example of a semiconductor device 50 to which the thermally conductive sheet laminate 1 according to the present technology is applied. As shown in FIG. 4, the thermally conductive sheet laminate 1 is mounted on a semiconductor device 50 incorporated in various electronic devices, and sandwiched between a heat generator and a radiator. A semiconductor device 50 shown in FIG. 4 includes an electronic component 51 , a heat spreader 52 , and a thermally conductive sheet laminate 1 . . By sandwiching the thermally conductive sheet laminate 1 between the heat spreader 52 and the heat sink 53 , together with the heat spreader 52 , a heat dissipation member for dissipating heat from the electronic component 51 is formed. The mounting location of the thermally conductive sheet laminate 1 is not limited to between the heat spreader 52 and the electronic component 51, but may be between the heat spreader 52 and the heat sink 53, or may be depending on the configuration of the electronic device or semiconductor device. can be selected as appropriate.
 以下、本技術の実施例について説明する。なお、本技術は、これらの実施例に限定されるものではない。 An example of this technology will be described below. Note that the present technology is not limited to these examples.
 <熱伝導性シートの作製>
 2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径1μmの窒化アルミニウム粒子23体積%と、平均粒径5μmのアルミナ粒子20体積%と、繊維状フィラーとして平均繊維長150μmのピッチ系炭素繊維22体積%とを混合し、シリコーン組成物を調製した。2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、シリコーンA剤とB剤との配合比が、17.5vol%:17.5vol%となるように配合した。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の内壁に沿うように剥離処理されたフィルムを貼った中に押出成形し、50mm□のシリコーン成型体を成型した後にオーブンにて100℃で6時間加熱してシリコーン硬化物とした。中空四角柱状の金型からシリコーン硬化物を取り出した後に剥離処理されたフィルムを剥がして厚みが0.5mmとなるようにスライサーで切断した。シリコーン硬化物(熱伝導性シート)の切断面の表面粗さRaは、25μmであった。シリコーン硬化物(熱伝導性シート)の切断面の表面粗さRaは、3次元プロファイラー(ZYGO社製)を用いて測定した。
<Preparation of thermally conductive sheet>
23% by volume of aluminum nitride particles with an average particle size of 1 μm and 20% by volume of alumina particles with an average particle size of 5 μm, which are coupled with a silane coupling agent, in a two-liquid addition reaction type liquid silicone, and an average of fibrous fillers 22% by volume of pitch-based carbon fibers having a fiber length of 150 μm were mixed to prepare a silicone composition. The two-liquid addition reaction type liquid silicone resin is mainly composed of organopolysiloxane, and the mixing ratio of the silicone agent A and agent B is 17.5 vol%:17.5 vol%. compounded. The resulting silicone composition is extruded into a hollow square prism-shaped mold (50 mm x 50 mm) with a release-treated film pasted along the inner wall to form a 50 mm square silicone molded body, which is then placed in an oven. was heated at 100° C. for 6 hours to obtain a silicone cured product. After the cured silicone product was removed from the hollow square prism-shaped mold, the release-treated film was peeled off and cut with a slicer to a thickness of 0.5 mm. The surface roughness Ra of the cut surface of the cured silicone product (thermally conductive sheet) was 25 μm. The surface roughness Ra of the cut surface of the silicone cured product (thermally conductive sheet) was measured using a three-dimensional profiler (manufactured by ZYGO).
 <接着フィルムの作製>
 接着フィルムには、下記成分を用いた。
アクリルポリマーA(モノマー構成:EA-AN-GMA-DMAA、Mw35万)
アクリルポリマーB(モノマー構成:EA-AN-GMA-DMAA、Mw22万)
BATG:4官能のエポキシ樹脂(昭和電工社製)、粘度15,000mPa・s、エポキシ当量120g/eq
TD-2131:フェノール系硬化剤(DIC社製、水酸基当量104g/eq)
フジキュアー7004:潜在性硬化剤(T&K TOKA社製)
SO-C1:フィラー(アドマテックス社製)
<Production of adhesive film>
The following components were used for the adhesive film.
Acrylic polymer A (monomer composition: EA-AN-GMA-DMAA, Mw 350,000)
Acrylic polymer B (monomer composition: EA-AN-GMA-DMAA, Mw 220,000)
BATG: Tetrafunctional epoxy resin (manufactured by Showa Denko), viscosity 15,000 mPa s, epoxy equivalent 120 g/eq
TD-2131: phenolic curing agent (manufactured by DIC, hydroxyl equivalent 104 g/eq)
Fujicure 7004: latent curing agent (manufactured by T&K TOKA)
SO-C1: Filler (manufactured by Admatechs)
 表1に示す配合量(重量部)となるように各成分を秤量し、溶剤と共に混合した混合液を、予め表面に離型処理を施したPETフィルム上に塗布し、フィルム状に成形した後、溶剤を揮発させて、接着フィルムを作製した。 Each component was weighed so that the blending amount (parts by weight) shown in Table 1 was obtained, and the mixed solution mixed with a solvent was applied on a PET film whose surface had been subjected to mold release treatment in advance, and then formed into a film. , the solvent was volatilized to prepare an adhesive film.
 <熱伝導性シート積層体>
 80℃に加熱したステージ上で接着フィルムを加温した状態で、熱伝導性シートの両面に配置し、10kPaの圧力で10秒間、熱伝導性シートと接着フィルムとを貼り合わせることで、図1に示すように、熱伝導性シート2の両面に接着フィルム3が積層された熱伝導性シート積層体1を作製した。
<Thermal conductive sheet laminate>
While the adhesive film is heated on a stage heated to 80° C., it is placed on both sides of the thermally conductive sheet, and the thermally conductive sheet and the adhesive film are bonded together at a pressure of 10 kPa for 10 seconds. 1, a thermally conductive sheet laminate 1 in which adhesive films 3 are laminated on both sides of a thermally conductive sheet 2 was produced.
 <試験片の作製>
 図5は、実施例で用いた試験片を模式的に示す断面図である。PCB61(サイズ:50mm×50mm)上に接着させたベアシリコンダイ62(サイズ:20mm×20mm、厚み750μm)上に、熱伝導性シート積層体1を配置し、熱伝導性シート積層体1上に、NiメッキしたCu(厚み1.0mm)素材のIHS(Integrated heat spreader)64(サイズ:40mm×40mm)を貼り合わせ、150℃、10kPaで1時間加熱加圧することで、図5に示すようなパッケージ構造の試験片60を準備した。
<Preparation of test piece>
FIG. 5 is a cross-sectional view schematically showing a test piece used in Examples. The thermally conductive sheet laminate 1 is placed on a bare silicon die 62 (size: 20 mm×20 mm, thickness 750 μm) that is adhered to a PCB 61 (size: 50 mm×50 mm). , Ni-plated Cu (thickness 1.0 mm) material IHS (Integrated heat spreader) 64 (size: 40 mm × 40 mm) is attached, and heated and pressed at 150 ° C. and 10 kPa for 1 hour, as shown in FIG. A test piece 60 having a package structure was prepared.
 <熱抵抗>
 ASTM-D5470に準拠した熱抵抗測定装置を用いて、荷重1kgf/cmをかけて、熱伝導性シート積層体1の熱抵抗値(cm・K/W)を測定した。結果を表1に示す。
<Thermal resistance>
Using a thermal resistance measuring device conforming to ASTM-D5470, the thermal resistance value (cm 2 ·K/W) of the thermally conductive sheet laminate 1 was measured with a load of 1 kgf/cm 2 applied. Table 1 shows the results.
 <ハンドリング性>
 熱伝導性シート積層体1のハンドリング性について、室温(25℃)において、ピックアンドプレイス時、搬送機(手)からの離型性による評価を行った。具体的には、接着フィルム3のタックが無いとき(離型性良好)をAと評価し、接着フィルム3のタックが有るとき(離型性がやや良好)をBと評価し、接着フィルム3のタックが有るとき(離型不良、接着フィルム3と熱伝導シート2との間に剥がれが発生、接着フィルム3の凝集破壊、熱伝導シート2の材破のいずれかが発生したとき)をCと評価した。実用上、ハンドリング性の評価結果がA又はBであることが好ましく、Aであることがより好ましい。結果を表1に示す。
<Handleability>
The handleability of the thermally conductive sheet laminate 1 was evaluated at room temperature (25° C.) by releasability from a carrier (hand) during pick-and-place. Specifically, when there is no tackiness of the adhesive film 3 (good releasability), it is evaluated as A, and when there is tackiness of the adhesive film 3 (slightly good releasability), it is evaluated as B. C when there is tack (when any of mold release failure, peeling occurs between the adhesive film 3 and the heat conductive sheet 2, cohesive failure of the adhesive film 3, or material breakage of the heat conductive sheet 2) evaluated. Practically, it is preferable that the evaluation result of handling property is A or B, and A is more preferable. Table 1 shows the results.
 <リワーク性>
 熱伝導性シート積層体1のリワーク性について、室温(25℃)において、熱伝導性シート積層体1をベアシリコンダイ62上に搭載した直後に、熱伝導性シート積層体1の位置直しが可能であったときを○(OK)と評価し、熱伝導性シート積層体1の位置直しが不可能であったときを×(NG)と評価した。結果を表1に示す。
<Reworkability>
Regarding the reworkability of the thermally conductive sheet laminate 1, it is possible to reposition the thermally conductive sheet laminate 1 immediately after mounting the thermally conductive sheet laminate 1 on the bare silicon die 62 at room temperature (25°C). When the thermal conductive sheet laminate 1 could not be repositioned, it was evaluated as × (NG). Table 1 shows the results.
 <実装初期接着性>
 熱伝導性シート積層体1の実装初期の接着性について、超音波映像装置(SAT:Scanning Acoustic Tomograph)を用いて観察し、作製した試験片60において熱伝導性シート積層体1が全面接着されていたときを○(OK)と評価し、熱伝導性シート積層体1が部分的に接着されていたとき(熱伝導性シート積層体1の非接着箇所があったとき)を×(NG)と評価した。SATでは、一般的に、接着領域が灰色で表示され、非接着領域が白色で表示される。結果を表1に示す。
<Initial Mounting Adhesion>
The adhesiveness of the thermally conductive sheet laminate 1 at the initial stage of mounting was observed using an ultrasonic imaging device (SAT: Scanning Acoustic Tomograph). When the thermally conductive sheet laminate 1 was partially adhered (when there was a non-bonded portion of the thermally conductive sheet laminate 1), it was evaluated as × (NG). evaluated. In the SAT, glued areas are generally displayed in gray and non-glued areas in white. Table 1 shows the results.
 <耐リフロー性(接着信頼性)>
 試験片60を、温度85℃、相対湿度85%の条件で24時間吸湿させ、最大260℃のリフロー炉で3サイクル加熱(吸湿リフロー)させた。吸湿リフロー後の試験片60におけるベアシリコンダイ62とIHS64との間の剥離の有無を、超音波映像装置(SAT)で観察した。吸湿リフローさせる前後で、剥離起因の変化がなかったときを〇(OK)と評価し、変化があったとき(吸湿リフロー後に剥がれがあったとき)を×(NG)と評価した。結果を表1に示す。
<Reflow resistance (adhesion reliability)>
The test piece 60 was subjected to moisture absorption for 24 hours under conditions of a temperature of 85° C. and a relative humidity of 85%, and then heated in a reflow oven at a maximum temperature of 260° C. for 3 cycles (hygroscopic reflow). The presence or absence of delamination between the bare silicon die 62 and the IHS 64 in the test piece 60 after moisture absorption reflow was observed with an ultrasonic imaging device (SAT). Before and after moisture absorption reflow, when there was no change due to peeling, it was evaluated as ◯ (OK), and when there was a change (when there was peeling after moisture absorption reflow), it was evaluated as × (NG). Table 1 shows the results.
 <耐リフロー性(熱抵抗性信頼性)>
 試験片60を、温度85℃、相対湿度85%の条件で24時間吸湿させ、最大260℃のリフロー炉で3サイクル加熱(吸湿リフロー)させた。吸湿リフロー後の試験片60における熱伝導性シート積層体1について、ASTM-D5470に準拠した熱抵抗測定装置を用いて、荷重1kgf/cmをかけて熱抵抗(cm・K/W)を測定した。吸湿リフロー前後で熱抵抗値上昇が10%以内であったときを○(OK)と評価し、吸湿リフロー前後で熱抵抗値上昇が10%超であったときを×(NG)と評価した。結果を表1に示す。
<Reflow resistance (thermal resistance reliability)>
The test piece 60 was subjected to moisture absorption for 24 hours under conditions of a temperature of 85° C. and a relative humidity of 85%, and then heated in a reflow oven at a maximum temperature of 260° C. for 3 cycles (hygroscopic reflow). Thermal resistance (cm 2 K/W) was measured by applying a load of 1 kgf/cm 2 to the thermally conductive sheet laminate 1 in the test piece 60 after moisture absorption reflow using a thermal resistance measuring device conforming to ASTM-D5470. It was measured. When the thermal resistance value increase was within 10% before and after moisture absorption reflow, it was evaluated as ◯ (OK), and when the thermal resistance value increase was more than 10% before and after moisture absorption reflow, it was evaluated as × (NG). Table 1 shows the results.
 <温度サイクル(TCT)試験>
 試験片60について、-55℃(30min)⇔125℃(30min)の温度サイクル試験を1000サイクル行った。温度サイクル試験後の試験片60について、試験片60の構成部材の位置変化の有無を、超音波映像装置(SAT)で観察した。具体的には、図5中の矢印の方向が水平方向となるように、すなわち、接着面が垂直方向となるように試験片60を配置してTCT試験を実施し、試験片60における熱伝導性シート積層体1がそれぞれの接着界面に対して位置変化があるかどうかを確認した。温度サイクル試験の前後で、試験片60の構成部材に位置変化がなかったときを○(OK)と評価し、位置変化があったときを×(NG)と評価した。結果を表1に示す。
<Temperature cycle (TCT) test>
The test piece 60 was subjected to a temperature cycle test of -55°C (30 min) ⇔ 125°C (30 min) for 1000 cycles. After the temperature cycle test, the test piece 60 was observed with an ultrasonic imaging device (SAT) for the presence or absence of positional changes in the constituent members of the test piece 60 . Specifically, the test piece 60 was arranged so that the direction of the arrow in FIG. It was confirmed whether or not there was a change in the position of the adhesive sheet laminate 1 with respect to each adhesive interface. Before and after the temperature cycle test, when there was no positional change in the constituent members of the test piece 60, it was evaluated as ◯ (OK), and when there was a positional change, it was evaluated as x (NG). Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1では、熱伝導シートの両面に接着フィルムが積層されていないもの、すなわち、熱伝導性シートを用いたため、リワーク性、実装初期の接着性、耐リフロー性、TCTの評価結果が良好ではないことが分かった。 In Comparative Example 1, no adhesive film was laminated on both sides of the thermally conductive sheet, that is, the thermally conductive sheet was used. I found out not.
 比較例2では、接着フィルムの厚みが20μm以上であったため、熱抵抗が高いことが分かった。 In Comparative Example 2, the thickness of the adhesive film was 20 μm or more, so it was found that the thermal resistance was high.
 比較例3では、接着フィルムの粘度が20℃において8.0E+05Pa・s以下であったため、ハンドリング性が良好ではないことが分かった。 In Comparative Example 3, the viscosity of the adhesive film was 8.0E+05 Pa·s or less at 20°C, so it was found that the handleability was not good.
 比較例4では、接着フィルムの粘度が130℃において40Pa・s以上であったため、熱抵抗が高いことが分かった。 In Comparative Example 4, the viscosity of the adhesive film was 40 Pa·s or more at 130°C, so it was found that the thermal resistance was high.
 比較例5では、接着フィルムの粘度が20℃において8.0E+05Pa・s以下であったため、リワーク性と耐リフロー性が良好ではないことが分かった。 In Comparative Example 5, the viscosity of the adhesive film was 8.0E+05 Pa·s or less at 20°C, so it was found that the reworkability and reflow resistance were not good.
 一方、実施例で用いた熱伝導性シート積層体は、接着フィルムの厚みが20μm未満であり、接着フィルムの粘度が20℃において8.0E+05Pa・sより大きく、かつ、130℃において40Pa・s未満であったため、熱抵抗を小さくでき、ハンドリング性とリワーク性が良好であり、接着性も優れていることが分かった。 On the other hand, in the thermally conductive sheet laminates used in the examples, the thickness of the adhesive film is less than 20 μm, the viscosity of the adhesive film is greater than 8.0E+05 Pa s at 20° C., and less than 40 Pa s at 130° C. Therefore, it was found that the heat resistance could be reduced, the handling property and reworkability were good, and the adhesiveness was also excellent.
1 熱伝導性シート積層体、2 熱伝導性シート、3 接着フィルム、4 バインダ樹脂、5 炭素繊維、6 熱伝導性フィラー、7 絶縁被膜、8 絶縁被覆炭素繊維、50 半導体装置、51 電子部品、52 ヒートスプレッダ、53 ヒートシンク、60 試験片、61 PCB、62 ベアシリコンダイ、64 IHS 1 Thermally conductive sheet laminate, 2 Thermally conductive sheet, 3 Adhesive film, 4 Binder resin, 5 Carbon fiber, 6 Thermally conductive filler, 7 Insulating coating, 8 Insulating coated carbon fiber, 50 Semiconductor device, 51 Electronic component, 52 heat spreader, 53 heat sink, 60 test piece, 61 PCB, 62 bare silicon die, 64 IHS

Claims (8)

  1.  熱伝導性シートの両面に接着フィルムが積層された、熱伝導性シート積層体であって、
     上記熱伝導性シートは、シリコーン樹脂からなるバインダ樹脂と、炭素繊維と、炭素繊維以外の熱伝導性フィラーとを含み、
     上記接着フィルムは、造膜成分と、液状のエポキシ樹脂と、硬化剤とを含み、
     上記接着フィルムの厚みが20μm未満であり、
     上記接着フィルムは、20℃における粘度が8.0E+05Pa・sより大きく、130℃における粘度が40Pa・s未満である、熱伝導性シート積層体。
    A thermally conductive sheet laminate in which adhesive films are laminated on both sides of a thermally conductive sheet,
    The thermally conductive sheet contains a binder resin made of silicone resin, carbon fibers, and a thermally conductive filler other than carbon fibers,
    The adhesive film contains a film-forming component, a liquid epoxy resin, and a curing agent,
    The thickness of the adhesive film is less than 20 μm,
    The thermally conductive sheet laminate, wherein the adhesive film has a viscosity at 20°C of greater than 8.0E+05 Pa·s and a viscosity at 130°C of less than 40 Pa·s.
  2.  上記接着フィルムがフィラーをさらに含む、請求項1に記載の熱伝導性シート積層体。 The thermally conductive sheet laminate according to claim 1, wherein the adhesive film further contains a filler.
  3.  1kgf/cm荷重下における熱抵抗が0.4cmK/W以下である、請求項1又は2に記載の熱伝導性シート積層体。 3. The thermally conductive sheet laminate according to claim 1, having a thermal resistance of 0.4 cm 2 K/W or less under a load of 1 kgf/cm 2 .
  4.  上記接着フィルムの厚みが0.1μm以上15μm以下である、請求項1~3のいずれか1項に記載の熱伝導性シート積層体。 The thermally conductive sheet laminate according to any one of claims 1 to 3, wherein the adhesive film has a thickness of 0.1 µm or more and 15 µm or less.
  5.  上記接着フィルムの粘度が20℃において9.0E+05Pa・s以上である、請求項1~4のいずれか1項に記載の熱伝導性シート積層体。 The thermally conductive sheet laminate according to any one of claims 1 to 4, wherein the adhesive film has a viscosity of 9.0E+05 Pa·s or more at 20°C.
  6.  上記接着フィルムの粘度が130℃において10Pa・s以上30Pa・s以下である、請求項1~5のいずれか1項に記載の熱伝導性シート積層体。 The thermally conductive sheet laminate according to any one of claims 1 to 5, wherein the adhesive film has a viscosity of 10 Pa·s or more and 30 Pa·s or less at 130°C.
  7.  上記接着フィルムの厚み(μm)と、上記熱伝導性シートの表面粗さRa(μm)との比(上記接着フィルムの厚み/上記熱伝導性シートの表面粗さRa)が0.003~0.7である、請求項1~6のいずれか1項に記載の熱伝導性シート積層体。 The ratio of the thickness (μm) of the adhesive film to the surface roughness Ra (μm) of the thermally conductive sheet (thickness of the adhesive film/surface roughness Ra of the thermally conductive sheet) is 0.003 to 0. The thermally conductive sheet laminate according to any one of claims 1 to 6, which is .7.
  8.  発熱体と、
     放熱体とを備え、
     上記発熱体と上記放熱体とが、請求項1~7のいずれか1項に記載の熱伝導性シート積層体で接着されてなる、電子機器。
     
    a heating element;
    and a radiator,
    An electronic device comprising the heat-generating body and the heat-dissipating body bonded with the thermally conductive sheet laminate according to any one of claims 1 to 7.
PCT/JP2022/003075 2021-02-03 2022-01-27 Thermally conductive sheet laminate and electronic equipment using same WO2022168729A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021016137 2021-02-03
JP2021-016137 2021-02-03
JP2022010671A JP2022119196A (en) 2021-02-03 2022-01-27 Thermally conductive sheet laminate and electronic equipment using the same
JP2022-010671 2022-01-27

Publications (1)

Publication Number Publication Date
WO2022168729A1 true WO2022168729A1 (en) 2022-08-11

Family

ID=82741559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003075 WO2022168729A1 (en) 2021-02-03 2022-01-27 Thermally conductive sheet laminate and electronic equipment using same

Country Status (1)

Country Link
WO (1) WO2022168729A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132691A1 (en) * 2011-03-28 2012-10-04 日立化成工業株式会社 Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
WO2017130755A1 (en) * 2016-01-26 2017-08-03 デクセリアルズ株式会社 Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device
JP2020023672A (en) * 2018-07-27 2020-02-13 日東電工株式会社 Heat-conductive sheet
US20210009867A1 (en) * 2018-11-14 2021-01-14 Lg Chem, Ltd. Resin composition for bonding semiconductors, adhesive film for semiconductor using the same, dicing die bonding film, and method for dicing semiconductor wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132691A1 (en) * 2011-03-28 2012-10-04 日立化成工業株式会社 Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
WO2017130755A1 (en) * 2016-01-26 2017-08-03 デクセリアルズ株式会社 Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device
JP2020023672A (en) * 2018-07-27 2020-02-13 日東電工株式会社 Heat-conductive sheet
US20210009867A1 (en) * 2018-11-14 2021-01-14 Lg Chem, Ltd. Resin composition for bonding semiconductors, adhesive film for semiconductor using the same, dicing die bonding film, and method for dicing semiconductor wafer

Similar Documents

Publication Publication Date Title
JP6402763B2 (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing the same, multilayer resin sheet with metal foil, and semiconductor device
CN110023444B (en) Film-like adhesive and method for manufacturing semiconductor package using same
JP5573842B2 (en) MULTILAYER RESIN SHEET AND ITS MANUFACTURING METHOD, MULTILAYER RESIN SHEET CURED MANUFACTURING METHOD, AND HIGHLY HEAT CONDUCTIVE RESIN SHEET LAMINATE
EP1797155A2 (en) Thermally conductive composition and method for preparing the same
JP5560630B2 (en) HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP2013006893A (en) High thermal conductivity resin composition, high thermal conductivity cured product, adhesive film, sealing film, and semiconductor device using them
JP7160101B2 (en) Method for manufacturing semiconductor device, heat conductive sheet, and method for manufacturing heat conductive sheet
KR20210105952A (en) Method for manufacturing thermally conductive sheet
JP2013216038A (en) Multi-layer resin sheet, multi-layer resin sheet cured material using the same, resin sheet laminate, semiconductor device
JP2017092345A (en) Heat conduction sheet and method of manufacturing the same, and semiconductor device
WO2014069353A1 (en) Semiconductor device
JP5821856B2 (en) Multilayer resin sheet and resin sheet laminate
CA2433637A1 (en) Interface materials and methods of production and use thereof
US7608324B2 (en) Interface materials and methods of production and use thereof
JP2007284670A (en) Adhesive film and semiconductor device by using the same
WO2022168729A1 (en) Thermally conductive sheet laminate and electronic equipment using same
TW201942325A (en) Heat dissipation sheet, heat dissipation member and semiconductor device
JP2022119196A (en) Thermally conductive sheet laminate and electronic equipment using the same
JPWO2020039561A1 (en) Semiconductor device manufacturing method and heat conductive sheet
JP6768188B2 (en) Adhesive composition for adhesive film and its manufacturing method
JP2018101768A (en) Composite member
JP7338738B2 (en) Method for manufacturing semiconductor device, heat conductive sheet, and method for manufacturing heat conductive sheet
JP6757787B2 (en) Hollow structure electronic components
JP2022116587A (en) Thermally conductive composition and electronic apparatus including the same
KR20210109563A (en) Thermally conductive sheet, manufacturing method of thermally conductive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749603

Country of ref document: EP

Kind code of ref document: A1