WO2022163848A1 - Array antenna - Google Patents

Array antenna Download PDF

Info

Publication number
WO2022163848A1
WO2022163848A1 PCT/JP2022/003543 JP2022003543W WO2022163848A1 WO 2022163848 A1 WO2022163848 A1 WO 2022163848A1 JP 2022003543 W JP2022003543 W JP 2022003543W WO 2022163848 A1 WO2022163848 A1 WO 2022163848A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
layer
adjacent
transmitting
array
Prior art date
Application number
PCT/JP2022/003543
Other languages
French (fr)
Japanese (ja)
Inventor
健一 岡田
篤史 白根
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2022163848A1 publication Critical patent/WO2022163848A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the present invention relates to an array antenna that enables wireless communication of 100 Ghz or higher.
  • 6G wireless communication in order to achieve higher speed and larger capacity than 5G wireless communication, it is expected to use radio waves in a frequency band higher than that used in 5G.
  • communication using a millimeter wave band or a frequency band of 100 GHz or higher may make it difficult to secure a communication distance. This is because the communicable distance with a single antenna becomes shorter in inverse proportion to the frequency used for communication, and the drop in the communicable distance becomes more pronounced as the carrier frequency increases.
  • antenna elements and transceivers that transmit and receive signals to the antenna elements are arranged in a matrix, and active transmission and reception are controlled.
  • type phased array antenna is used. According to the active type phased array antenna, it is possible to extend the communication distance as the number of antenna elements increases.
  • phased array antennas When phased array antennas are used in communication using high frequency bands such as the millimeter wave band and frequency bands of 100 GHz or higher, antenna elements and transceivers are arranged at high density according to the wavelength of the radio waves to be transmitted and received. Therefore, it has been difficult to realize a phased array antenna with a half-wave pitch in the frequency band of 200 GHz or higher. High-gain directional antennas are sometimes used as an alternative to conventional phased array antennas. Therefore, realization of a phased array antenna has been strongly demanded for practical use of millimeter wave band and frequency band wireless communication of 100 GHz or higher.
  • a phased array antenna has a plurality of antenna elements arranged in a matrix at half-wavelength intervals of radio waves transmitted and received on a radio wave radiation surface. Active phased array antennas have transceivers connected adjacent to each individual antenna element to increase communication range. When radiating radio waves in the 28 GHz band used in 5G, the interval between adjacent antenna elements 5 on the radio wave radiation surface is approximately 5.4 mm (see FIG. 16).
  • a plurality of antenna elements are arranged in a matrix on a printed circuit board, and an IC chip of a transceiver is arranged in the center of the four antenna elements arranged in a 2 ⁇ 2 matrix. It can be configured by
  • the distance between adjacent antenna elements 5 on the radio wave radiation surface is about 0.5 mm, requiring a very high-density arrangement ( See Figure 16).
  • the IC chip of the transceiver needs to have a width of about 1 mm or more. It becomes difficult to dispose at about 0.5 mm.
  • An object of the present invention is to provide an array antenna capable of arranging adjacent antenna elements at high density and supporting wireless communication in a frequency band of 100 GHz or higher.
  • two or more antenna layers each including a transmitting/receiving section that transmits and receives a signal and one or more antenna elements arranged adjacent to the transmitting/receiving section are stacked, and the antenna layer includes: An antenna section is provided on which a radio wave radiation surface is formed in which a plurality of the antenna elements are arranged in the stacking direction.
  • the interval between the antenna elements in the adjacent antenna layers can be narrowed corresponding to the wavelength of the signal in the frequency band of 100 GHz or higher. can.
  • the antenna element may be formed by patterning a metal thin film on the surface of the antenna layer.
  • the antenna element can be formed in a thin film on the surface of the antenna layer, and the lamination interval of the antenna layer can be narrowed corresponding to the wavelength of the signal in the frequency band of 100 GHz or higher.
  • the transmitting/receiving section may include a phase adjusting section that adjusts a phase of a signal transmitted/received by at least the antenna element.
  • one aspect of the present invention may be a Vivaldi antenna in which the antenna element has a first antenna member formed on one side of the antenna layer and a second antenna member formed on the other side of the antenna layer.
  • the thickness of the antenna element in the stacking direction of the antenna layers can be made thin, and the distance between adjacent antenna layers can be reduced to 100 GHz or higher. can be narrowed corresponding to the wavelength of
  • the antenna layer may be formed of a printed circuit board.
  • an array antenna can be manufactured using an existing manufacturing method by forming the antenna layer with a printed circuit board.
  • the antenna section includes an insulating layer provided between the pair of antenna layers adjacent in the stacking direction, and the thickness of the insulating layer determines the thickness of the pair of antenna layers adjacent in the stacking direction.
  • the spacing of the antenna elements may be adjusted.
  • the distance between adjacent antenna layers can be kept constant by the thickness of the insulating layer.
  • the antenna section includes the antenna layer in which two or more of the antenna elements are formed, and a pair of the antenna elements adjacent to each other in the antenna layer when viewed along the stacking direction.
  • the antenna element formed on the adjacent antenna layer is arranged between the .
  • the plurality of antenna elements when arranging two or more antenna elements in the antenna layer, can be arranged at intervals equal to or less than the interval between adjacent transmitting and receiving units.
  • an array antenna capable of coping with wireless communication in a frequency band of 100 GHz or higher by arranging adjacent antenna elements at high density.
  • FIG. 1 is a perspective view showing the configuration of an array antenna according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing an example of the configuration of a transmission/reception unit
  • FIG. It is a figure which shows the structure of the one surface side of an antenna layer. It is a figure which shows the structure of the other surface side of an antenna layer.
  • FIG. 4 is a cross-sectional view showing the configuration of an antenna section in which antenna layers are laminated;
  • FIG. 2 is a diagram conceptually showing electromagnetic waves radiated from an array antenna;
  • FIG. 4 is a diagram showing transmission/reception characteristics of an array antenna;
  • FIG. 4 is a diagram showing modulation accuracy of an array antenna;
  • FIG. 10 is a diagram showing a configuration of an antenna layer having a plurality of antenna elements according to a modification
  • FIG. 11 is a perspective view showing the configuration of an array antenna according to a modification
  • It is a figure which shows the structure of the antenna unit which concerns on a modification.
  • FIG. 10 is a cross-sectional view showing the configuration of an antenna unit according to a modification;
  • FIG. 10 is a cross-sectional view showing the configuration of an antenna unit according to a modification;
  • FIG. 10 is a diagram conceptually showing the configuration of an array antenna according to a modification;
  • FIG. 10 is a diagram conceptually showing the configuration of an array antenna according to a modification;
  • FIG. 4 is a diagram conceptually showing the relationship between the arrangement interval of antenna elements and the frequency;
  • the array antenna 1 includes an antenna section 2 in which two or more antenna layers 3 are laminated.
  • the antenna layer 3 is formed by, for example, an electronic circuit patterned on the printed circuit board 3A.
  • the printed circuit board 3A is made of, for example, an insulating and flexible resin film material.
  • the printed circuit board 3A is formed of, for example, a liquid crystal polymer substrate using a flexible liquid crystal polymer (LCP). Liquid crystal polymer substrates are a type of flexible printed circuit board material, have low loss at high frequencies, and are used for applications such as 5G.
  • the antenna layer 3 has, for example, a transmitting/receiving section 4 provided on one side of the printed circuit board 3A and an antenna element 5 arranged adjacent to the transmitting/receiving section.
  • One antenna element 5 is formed, for example, along one of the four sides of the rectangular printed circuit board 3A, which serves as a radio wave radiation surface.
  • the transmission/reception unit 4 is formed by an IC (Integrated Circuit) chip using CMOS (Complementary metal-oxide-semiconductor), for example.
  • the transmitting/receiving section 4 is formed, for example, to have a size of 1.7 mm ⁇ 2.45 mm along the surface direction of the printed circuit board 3A and a size of 50 to 300 ⁇ m in the thickness direction.
  • the transmitting/receiving section 4 is provided adjacent to the antenna element 5 on one surface side of the printed circuit board 3A, for example.
  • the transmitting/receiving unit 4 is, for example, a bidirectional circuit that can be used by switching between transmission and reception in the same circuit.
  • the transmitting/receiving unit 4 includes, for example, a phase adjusting unit 4A that adjusts the phase of a signal transmitted/received by the antenna element 5, an amplifier 4B that amplifies the transmitted/received signal, a frequency modulation unit 4C that modulates the frequency of the transmitted/received signal, and an input A multiplier 4D having a circuit that multiplies the frequency of the received signal by an integer (for example, four times) and outputs it, a mixer 4E that combines signals of different frequencies into one signal and outputs it, and a phase adjuster 4A. and a control unit 4F for controlling the direction of the beam of electromagnetic waves to be radiated.
  • a phase adjusting unit 4A that adjusts the phase of a signal transmitted/received by the antenna element 5
  • an amplifier 4B that amplifies the transmitted/received signal
  • a frequency modulation unit 4C that modulates the frequency of the transmitted/received signal
  • an input A multiplier 4D having
  • Patent Document 1 For detailed contents of each component of the transmission/reception unit 4, for example, Patent Document 1 can be referred to.
  • the transmitting/receiving unit 4 may employ not only the circuit configuration described above, but also another circuit configuration such as a direct conversion system (Zero-IF).
  • the transmitting/receiving section 4 in the array antenna 1 only has to include at least the phase adjusting section 4A.
  • the transmitter/receiver 4 is electrically connected to the antenna element 5 .
  • the antenna element 5 transmits the signal generated by the transmitting/receiving section 4 as an electromagnetic wave and receives the incoming electromagnetic wave.
  • the antenna element 5 is formed by patterning a metal thin film such as copper foil on the surface of the printed circuit board 3A (antenna layer 3) using an etching process or the like.
  • the antenna element 5 is formed, for example, as a planar horn antenna substantially parallel to the surface direction of the printed circuit board 3A.
  • the antenna element 5 is a Vivaldi antenna having a pair of first antenna member 5A and second antenna member 5B which are formed to face each other.
  • the first antenna member 5A is formed on one side of the printed circuit board 3A.
  • the first antenna member 5A is formed in a tapered shape in which the width of the edge side facing the second antenna member 5B in a plan view of one surface side of the printed circuit board 3A decreases toward the tip direction, which is the radio wave radiation direction. .
  • the tapered shape is, for example, parabolic.
  • the rear end of the first antenna member 5A is electrically connected to the transmitting/receiving section 4 provided on one side via a wiring layer.
  • a second antenna member 5B formed to face the first antenna member 5A is formed on the other surface side of the antenna layer 3 .
  • the width of the second antenna member 5B increases toward the distal end direction, which is the radio wave radiation direction, on the edge side facing the first antenna member 5A when the other surface of the antenna layer 3 is viewed in plan. It is formed in a decreasing taper shape.
  • the tapered shape is, for example, parabolic.
  • the rear end of the second antenna member 5B is electrically connected to the transmitting/receiving section 4 provided on one side via a wiring layer passing through the printed circuit board 3A.
  • a space 5S formed between the first antenna member 5A and the second antenna member 5B that are arranged to face each other has a potential between the first antenna member 5A and the second antenna member 5B. is applied, an electric field is generated, and a magnetic field is generated in a direction orthogonal to the generated electric field, thereby functioning as an electromagnetic wave radiation slot.
  • the antenna element 5 may be formed in any other shape than the Vivaldi type as long as it can similarly transmit and receive electromagnetic waves. It is desirable that the antenna element 5 and the transmitting/receiving section 4 be arranged as close as possible in order to reduce loss.
  • the transmitting/receiving section 4 and the antenna element 5 are formed along the planar direction of the antenna layer 3 .
  • the plurality of antenna layers 3 are stacked such that the positions of the antenna elements 5 are aligned in the stacking direction (y direction).
  • the antenna section 2 is formed by laminating a plurality of antenna layers 3 .
  • the antenna section 2 has a radio wave radiation surface on which a plurality of antenna elements 5 are arranged in the stacking direction of the antenna layers 3 when viewed along the radio wave radiation direction (x direction) of the antenna elements 5 .
  • the antenna section 2 is composed of, for example, four antenna layers 3 laminated.
  • the configuration of the antenna section 2 is one example, and the antenna layer 3 may be laminated in four layers or more and four layers or less depending on the intensity of the radio waves to be transmitted and received.
  • an insulating layer 6 is provided between a pair of antenna layers 3 adjacent in the stacking direction.
  • An insulating layer 6 for adjusting the separation distance is formed between the antenna layer 3 and the adjacent antenna layer 3 .
  • the insulating layer 6 is an intermediate layer made of a plate-like insulator.
  • the insulating layer 6 is, for example, a printed circuit board formed by laminating cloth-like glass fiber sheets, impregnating them with an epoxy resin, and thermally curing them (for example, FR4).
  • the insulating layer 6 is provided with a notch portion 6A (see FIGS. 3 and 4) for accommodating the antenna element 5 and the transmitting/receiving portion 4. As shown in FIG. By forming the notch 6A, the dielectric constant of the insulating layer 6 is prevented from affecting transmission and reception of electromagnetic waves of the antenna element 5.
  • FIG. The cutout portion 6A does not necessarily have to be formed in the insulating layer 6 . In this case, the design of the array pattern of the antenna elements 5 is adjusted in consideration of the dielectric constant of the insulating layer 6 .
  • An adhesive layer adheres between the insulating layer 6 and the printed circuit board 3A.
  • the adhesive layer is formed of, for example, a film-like thermosetting resin with a low melting point.
  • the adhesive layer is cured by heating after alternately laminating the printed circuit board 3A and the insulating layer 6 . Since the thickness of the adhesive layer changes during curing, the material is selected in consideration of the thickness after the change. As a result, the antenna section 2 in which the printed circuit board 3A and the insulating layer 6 are laminated is formed. A material is selected so that the dielectric constant of the adhesive layer is substantially the same as that of the insulating layer 6 .
  • the spacing between a pair of antenna elements 5 adjacent in the stacking direction is adjusted by the thickness of the insulating layer 6 and the adhesive layer after curing.
  • the thicknesses of the insulating layer 6 and the adhesive layer after curing are selected and adjusted according to, for example, the design intervals of the antenna elements 5 arranged in the stacking direction.
  • the distance between adjacent antenna elements 5 in the stacking direction of the plurality of antenna layers 3 is about 0.7 mm, which is half the wavelength of the radiated electromagnetic waves. placed in That is, in this case, the plurality of antenna layers 3 in the antenna section 2 are laminated at intervals of about 0.7 mm. The spacing between the plurality of antenna layers 3 in the stacking direction is adjusted by the thickness of the insulating layer 6 .
  • the thickness of the printed circuit board 3A is 50 ⁇ m
  • the thickness of the transmitting/receiving section 4 is 50 to 300 ⁇ m
  • the thickness of the first antenna member 5A and the second antenna member 5B is 15 ⁇ m.
  • the array antenna 1 can form a beam B having directivity from the radio wave radiation surface of the antenna section 2 by electromagnetic waves radiated from the plurality of antenna elements 5 .
  • the array antenna 1 can arbitrarily adjust the beam direction in a two-dimensional plane by sequentially delaying the phase of electromagnetic waves radiated from adjacent antenna elements 5 in the transmitting/receiving section 4 provided in each antenna layer 3. can.
  • Signals transmitted and received from the antenna unit 2 can use, for example, digital modulated waves such as QPSK (quadraphase-shift keying) and 16QAM (Quadrature Amplitude Modulation). Other modulation schemes may be used for the signals transmitted and received from the antenna unit 2, and QAM may be 16 values or more.
  • the following shows the measurement results of the transmission/reception characteristics of the array antenna 1 in which four antenna elements are stacked at intervals of 0.7 mm.
  • the array antenna 1 has given characteristics.
  • the modulation accuracy with respect to the power of the transmission mode on the horizontal axis is indicated by the transmission error vector magnitude (EVM).
  • the error vector is a vector that indicates the deviation between the symbol position of the ideal signal on the IQ plane and the symbol position of the signal demodulated by the transmitter/receiver 4 .
  • the error vector magnitude is the ratio of the magnitude of the error vector to the magnitude of the vector of ideal symbol locations. As shown in the figure, according to the array antenna 1, the modulation accuracy improved as the power of the transmission signal increased.
  • the antenna unit 2 may be configured by increasing the number of antenna elements 5 in order to cope with an increase in the transmission/reception strength of radio waves and a further increase in frequency, or may be configured to have a higher density.
  • n (n is an integer of 2 or more) transmitting/receiving units 4 and each transmitting/receiving unit 4 are arranged in the arrangement direction (z direction) on the printed circuit board 3A.
  • Corresponding n antenna elements 5 are formed.
  • four transmitting/receiving units 4 and four antenna elements 5 are formed in the antenna layer 3H in the arrangement direction of the printed circuit board 3A.
  • a plurality of antenna elements 5 are arranged in a row on the printed circuit board 3A in an arrangement direction perpendicular to the radio wave radiation direction.
  • the n transmitting/receiving units 4 in the antenna layer 3H may be integrally formed by one CMOS chip.
  • the antenna section 2H according to the modification is formed by stacking m (m is an integer equal to or greater than 2) antenna layers 3H in the stacking direction (y direction). That is, the antenna section 2H includes an antenna layer 3H in which a transmitting/receiving section 4 for transmitting and receiving signals and one or more antenna elements 5 arranged adjacent to the transmitting/receiving section 4 are formed. It is stacked above. be. In this example, four antenna layers 3H are stacked in the stacking direction in the antenna section 2H.
  • a radio wave radiation surface is formed in the antenna section 2H in the arrangement direction of the plurality of antenna elements 5 and the stacking direction of the plurality of antenna layers 3H.
  • a plurality of n ⁇ m antenna elements 5 are arranged in a matrix on the radio wave radiation surface of the antenna section 2H. In this example, 4 ⁇ 4 antenna elements 5 are arranged.
  • the antenna section 2H beams having directivity are radiated from the plurality of antenna elements 5.
  • the transmitting/receiving unit 4 by individually adjusting the phase of each antenna element 5 arranged in the arrangement direction of the plurality of antenna elements 5 and the lamination direction of the plurality of antenna layers 3H, not only the two-dimensional direction but also the three-dimensional An array antenna can be constructed to control the direction of the beam.
  • An array antenna having an antenna unit 2H is configured as one antenna unit, and an arbitrary number of antenna units are arranged in the arrangement direction and the stacking direction to configure an array antenna with improved transmission and reception antenna characteristics.
  • an array antenna can be constructed in which an arbitrary number of antenna units are arranged in the arrangement direction and the stacking direction according to the desired radio wave transmission intensity.
  • an antenna unit can be mounted according to design conditions such as the thickness of the main body.
  • the antenna element 5 when the antenna layer 3H is adapted for transmission and reception of higher frequency signals, the antenna element 5 is formed with a smaller size and the adjacent antenna elements are arranged with a narrower interval. good too. However, since the transmitting/receiving section 4 is adjacent to the antenna element 5, there is a limit to narrowing the distance between the adjacent antenna elements due to the width of the CMOS chip of the transmitting/receiving section 4 in the adjacent direction. Sometimes.
  • an antenna element 5 formed on an adjacent antenna layer is arranged between a pair of adjacent antenna elements 5 on the antenna layer 3H when viewed along the stacking direction. good too. That is, by arranging the adjacent antenna layers 3H offset in the arrangement direction of the antenna elements 5, the spacing between the adjacent antenna elements 5 may be narrowed in the arrangement direction of the plurality of antenna elements 5.
  • FIG. 11(2) an array antenna corresponding to higher frequencies can be configured.
  • the antenna elements 5 may be arranged on the opposing surfaces of the adjacent antenna layers 3H.
  • Adjacent antenna layers 3H may form an antenna unit 3U as in the above configuration, forming an array antenna in which a plurality of antenna elements 5 are arranged at high density in a planar direction.
  • an antenna section may be formed in which a plurality of antenna elements 5 are arranged two-dimensionally with high density on the radio wave radiation surface.
  • the antenna elements 5 can be arranged at half the interval L of the arrangement interval L of the transmitting/receiving section 4, and an array antenna corresponding to higher frequencies can be constructed.
  • the antenna unit 3U may be formed by arranging the antenna elements 5 on one printed circuit board 3A and providing the transmitting/receiving sections 4 on both sides. .
  • the antenna elements 5 can be arranged at a half interval of the arrangement interval L of the transmitting/receiving unit 4 in the arrangement direction of the plurality of antenna elements 5. You can narrow the gap.
  • the antenna layer 3H having the transmitting/receiving units 4 mounted on both sides may constitute the antenna unit 3U in which a plurality of antenna elements 5 are arranged at high density in the planar direction.
  • antenna element 5 formed in layer 3H may be arranged.
  • two or more antenna layers 3H adjacent in the stacking direction are used between a pair of adjacent antenna elements 5 in the antenna layer 3H when viewed along the stacking direction (y direction). In this way, two or more antenna elements 5 may be arranged.
  • an array antenna corresponding to higher frequencies can be configured.
  • Two or more adjacent antenna layers 3H arranged as described above constitute one antenna unit 3U, and an array antenna in which a plurality of antenna elements 5 are arranged at high density in a planar direction may be formed. Furthermore, by stacking the antenna units 3U, the antenna section 2 may be formed in which a plurality of antenna elements 5 are arranged two-dimensionally with high density on the radio wave radiation surface. In the antenna units 3U arranged as described above, the antenna layers 3H may be arranged at regular intervals.
  • a plurality of antenna elements 5 can be densely arranged on the radio wave radiation surface. According to the array antenna according to the above modified example, it is possible to support wireless communication in a frequency band of 100 GHz or more.
  • the plurality of antenna elements 5 in the antenna section 2 of the array antenna may be appropriately changed according to design conditions, and not only are they arranged in a grid pattern on the radio wave radiation plane, They may be arranged in a rhombus or the like.
  • the array antenna of the above-described embodiment by stacking antenna layers in which one or more antenna elements 5 are formed, adjacent antenna elements are arranged at high density, and wireless communication in a frequency band of 100 GHz or higher is possible.
  • a compatible antenna section can be formed.
  • one or more antenna elements are formed in the antenna layer, and the antenna section can be formed by a simple configuration in which the antenna layers are stacked.
  • the array antenna of the embodiment can be mass-produced at low cost by applying the existing semiconductor manufacturing technology.
  • the antenna layer 3 and the insulating layer 6 are separately formed in the antenna section 2, but the antenna layer 3 and the insulating layer 6 are integrally formed as a multilayer substrate.
  • the plurality of antenna layers 3 stacked in the antenna section 2 may be integrally formed as a multilayer substrate.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

An array antenna (1) according to the present invention comprises an antenna unit (2) in which two or more layers of antenna layers (3) are stacked, each antenna layer (3) having formed therein a transmit/receive unit (4) for transmitting and receiving a signal and one or more antenna elements (5) disposed adjacent to the transmit/receive unit, the antenna unit (2) having formed a radio wave emitting surface in which a plurality of the antenna elements are arrayed in a stacking direction of the antenna layers.

Description

アレーアンテナarray antenna
 本発明は、100Ghz以上の無線通信を可能とするアレーアンテナに関する。
 本願は、2021年2月1日に、日本に出願された特願2021-014348号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an array antenna that enables wireless communication of 100 Ghz or higher.
This application claims priority based on Japanese Patent Application No. 2021-014348 filed in Japan on February 1, 2021, the content of which is incorporated herein.
 近年、波長が1~10mm、周波数が30~300GHzのミリ波帯の電波を利用した第5世代移動通信システム(5G)の通信サービスが提供されている。5Gにおいては、高速且つ大容量の通信を利用した大規模な商用サービスを提供することができる。5Gにおけるミリ波帯無線通信に比して更に高速、大容量化した第6世代移動通信システム(6G)以降の無線通信に関する研究も既に活発に行われている。 In recent years, communication services of the fifth generation mobile communication system (5G) using millimeter wave band radio waves with a wavelength of 1 to 10 mm and a frequency of 30 to 300 GHz have been provided. In 5G, large-scale commercial services using high-speed and large-capacity communication can be provided. Active research has already been carried out on radio communications after the 6th generation mobile communication system (6G), which has higher speed and capacity than millimeter wave band radio communication in 5G.
 6Gの無線通信においては、5Gの無線通信に比して高速、大容量化を実現するために、5Gで用いる周波数よりも高い周波数帯の電波の利用が期待されている。しかしながら、ミリ波帯や100GHz以上の周波数帯を用いた通信は、通信距離の確保が困難となる場合がある。これは、単一のアンテナによる通信可能な距離は、通信に用いる周波数に反比例して短くなることに起因し、通信可能な距離の低下は、搬送波周波数が高くなるほどより顕著となるからである。  In 6G wireless communication, in order to achieve higher speed and larger capacity than 5G wireless communication, it is expected to use radio waves in a frequency band higher than that used in 5G. However, communication using a millimeter wave band or a frequency band of 100 GHz or higher may make it difficult to secure a communication distance. This is because the communicable distance with a single antenna becomes shorter in inverse proportion to the frequency used for communication, and the drop in the communicable distance becomes more pronounced as the carrier frequency increases.
 そのため、5Gの無線通信においては、数百メートル以上の通信距離を確保するために、アンテナ素子と、アンテナ素子に信号を送受信させる送受信機とをマトリクス状に配列し、アクティブに送受信を制御するアクティブ型のフェーズドアレーアンテナが用いられている。アクティブ型のフェーズドアレーアンテナによれば、アンテナ素子数の増加に伴って通信距離を伸ばすことが可能である。 Therefore, in 5G wireless communication, in order to ensure a communication distance of several hundred meters or more, antenna elements and transceivers that transmit and receive signals to the antenna elements are arranged in a matrix, and active transmission and reception are controlled. type phased array antenna is used. According to the active type phased array antenna, it is possible to extend the communication distance as the number of antenna elements increases.
 高い周波数帯であるミリ波帯や100GHz以上の周波数帯を用いた通信において、フェーズドアレイアンテナを適用する場合、送受信される電波の周波数の波長に応じて高密度にアンテナ素子と送受信機を配置する必要があり、従来200GHz以上の周波数帯では半波長ピッチでのフェーズドアレイアンテナの実現が困難であった。従来フェーズドアレーアンテナの代替として、高利得な指向性アンテナが用いられる場合もあるが、指向性アンテナは特定方向としか通信ができず、用途が限定されたものであった。従って、ミリ波帯・100GHz以上の周波数帯無線通信の実用化のために、フェーズドアレイアンテナの実現が強く求められていた。 When phased array antennas are used in communication using high frequency bands such as the millimeter wave band and frequency bands of 100 GHz or higher, antenna elements and transceivers are arranged at high density according to the wavelength of the radio waves to be transmitted and received. Therefore, it has been difficult to realize a phased array antenna with a half-wave pitch in the frequency band of 200 GHz or higher. High-gain directional antennas are sometimes used as an alternative to conventional phased array antennas. Therefore, realization of a phased array antenna has been strongly demanded for practical use of millimeter wave band and frequency band wireless communication of 100 GHz or higher.
国際公開第2019/082866号WO2019/082866
 フェーズドアレイアンテナは、電波放射面において送受信される電波の半波長間隔でマトリクス状に配置された複数のアンテナ素子を備えている。アクティブ型のフェーズドアレイアンテナは、個々のアンテナ素子にそれぞれ隣接して接続された送受信機を有し、通信距離を伸ばすことができる。5Gで用いられる28GHz帯の電波を放射する場合、電波放射面において隣接するアンテナ素子5の間隔は、5.4mm程度である(図16参照)。このようなフェーズドアレイアンテナは、プリント基板上に複数のアンテナ素子をマトリクス状に配置し、2×2のマトリクス状に配置された4個のアンテナ素子の中央部に送受信機のICチップを配置することで構成することができる。 A phased array antenna has a plurality of antenna elements arranged in a matrix at half-wavelength intervals of radio waves transmitted and received on a radio wave radiation surface. Active phased array antennas have transceivers connected adjacent to each individual antenna element to increase communication range. When radiating radio waves in the 28 GHz band used in 5G, the interval between adjacent antenna elements 5 on the radio wave radiation surface is approximately 5.4 mm (see FIG. 16). In such a phased array antenna, a plurality of antenna elements are arranged in a matrix on a printed circuit board, and an IC chip of a transceiver is arranged in the center of the four antenna elements arranged in a 2×2 matrix. It can be configured by
 アクティブ型のフェーズドアレイアンテナを用いて300GHz帯の周波数の電波を放射する場合、電波放射面において隣接するアンテナ素子5の間隔は、0.5mm程度であり非常に高密度な配置が必要である(図16参照)。しかしながら、送受信機のICチップは、幅が1mm程度以上必要であり、2×2のマトリクス状に配置された4個のアンテナ素子の中央部に配置する場合、隣接するアンテナ素子同士の間隔を0.5mm程度に配置することが困難となる。 When an active phased array antenna is used to radiate radio waves with a frequency in the 300 GHz band, the distance between adjacent antenna elements 5 on the radio wave radiation surface is about 0.5 mm, requiring a very high-density arrangement ( See Figure 16). However, the IC chip of the transceiver needs to have a width of about 1 mm or more. It becomes difficult to dispose at about 0.5 mm.
 送受信機用のICチップを小型化する場合、CMOSチップにアンテナを内蔵して形成するものが存在している。しかしながら、このような一体型のCMOSチップにおいては、シリコン基板による損失が大きく、且つ、配線層が薄すぎるため、十分なアンテナ利得を確保できないという課題がある。従って、従来手法のようにプリント基板上に複数のアンテナ素子をマトリクス状に配置し、隣接するアンテナ素子の間隔を狭めて配置する場合に限界があり、100GHz以上の周波数帯でのアクティブ型のフェーズドアレイアンテナの実現が困難であるという課題があった。 When miniaturizing an IC chip for a transmitter/receiver, there is a CMOS chip with a built-in antenna. However, in such an integrated CMOS chip, there is a problem that sufficient antenna gain cannot be ensured because the loss due to the silicon substrate is large and the wiring layer is too thin. Therefore, there is a limit to arranging a plurality of antenna elements in a matrix on a printed circuit board as in the conventional method, and arranging adjacent antenna elements with narrow intervals. There was a problem that realization of an array antenna was difficult.
 本発明は、隣接するアンテナ素子同士を高密度に配置し100GHz以上の周波数帯の無線通信に対応可能なアレーアンテナを提供することを目的とする。 An object of the present invention is to provide an array antenna capable of arranging adjacent antenna elements at high density and supporting wireless communication in a frequency band of 100 GHz or higher.
 本発明の一態様は、信号を送受信する送受信部と、前記送受信部に隣接して配置された1つ以上のアンテナ素子とが形成されたアンテナ層が2層以上に積層され、前記アンテナ層の積層方向において複数の前記アンテナ素子が配列された電波放射面が形成されているアンテナ部を備える。 In one aspect of the present invention, two or more antenna layers each including a transmitting/receiving section that transmits and receives a signal and one or more antenna elements arranged adjacent to the transmitting/receiving section are stacked, and the antenna layer includes: An antenna section is provided on which a radio wave radiation surface is formed in which a plurality of the antenna elements are arranged in the stacking direction.
 本発明によれば、送受信部とアンテナ素子が形成されたアンテナ層を積層することにより、隣接するアンテナ層におけるアンテナ素子同士の間隔を100GHz以上の周波数帯の信号の波長に対応して狭めることができる。 According to the present invention, by stacking the antenna layers on which the transmitting/receiving section and the antenna elements are formed, the interval between the antenna elements in the adjacent antenna layers can be narrowed corresponding to the wavelength of the signal in the frequency band of 100 GHz or higher. can.
 また、本発明の一態様は、前記アンテナ素子が前記アンテナ層の表面上に金属薄膜によりパターン化されて形成されていてもよい。 In one aspect of the present invention, the antenna element may be formed by patterning a metal thin film on the surface of the antenna layer.
 本発明によれば、アンテナ素子をアンテナ層の表面上に薄膜状に形成することができ、アンテナ層の積層間隔を100GHz以上の周波数帯の信号の波長に対応して狭めることができる。 According to the present invention, the antenna element can be formed in a thin film on the surface of the antenna layer, and the lamination interval of the antenna layer can be narrowed corresponding to the wavelength of the signal in the frequency band of 100 GHz or higher.
 また、本発明の一態様は、前記送受信部が少なくとも前記アンテナ素子において送受信される信号の位相を調整する位相調整部を備えていてもよい。 Further, according to one aspect of the present invention, the transmitting/receiving section may include a phase adjusting section that adjusts a phase of a signal transmitted/received by at least the antenna element.
 本発明によれば、アレーアンテナとして機能する送受信部の構成を提供することができる。 According to the present invention, it is possible to provide a configuration of a transmitting/receiving section that functions as an array antenna.
 また、本発明の一態様は、前記アンテナ素子が前記アンテナ層の一面側に形成された第1アンテナ部材と他面側に形成された第2アンテナ部材とを有するビバルディアンテナであってもよい。 Further, one aspect of the present invention may be a Vivaldi antenna in which the antenna element has a first antenna member formed on one side of the antenna layer and a second antenna member formed on the other side of the antenna layer.
 本発明によれば、アンテナ素子をビバルディ型とすることで、アンテナ層の積層方向におけるアンテナ素子の厚さを薄く形成することができ、隣接するアンテナ層同士の間隔を100GHz以上の周波数帯の信号の波長に対応して狭めることができる。 According to the present invention, since the antenna element is of the Vivaldi type, the thickness of the antenna element in the stacking direction of the antenna layers can be made thin, and the distance between adjacent antenna layers can be reduced to 100 GHz or higher. can be narrowed corresponding to the wavelength of
 また、本発明の一態様は、前記アンテナ層がプリント基板により形成されていてもよい。 In one aspect of the present invention, the antenna layer may be formed of a printed circuit board.
 本発明によれば、アンテナ層がプリント基板により形成されることにより、既存の製造方法を用いてアレーアンテナを製造することができる。 According to the present invention, an array antenna can be manufactured using an existing manufacturing method by forming the antenna layer with a printed circuit board.
 また、本発明の一態様は、前記アンテナ部が前記積層方向に隣接する一対の前記アンテナ層の間に設けられた絶縁層を備え、前記絶縁層の厚みにより前記積層方向に隣接する一対の前記アンテナ素子の間隔が調整されていいてもよい。 In one aspect of the present invention, the antenna section includes an insulating layer provided between the pair of antenna layers adjacent in the stacking direction, and the thickness of the insulating layer determines the thickness of the pair of antenna layers adjacent in the stacking direction. The spacing of the antenna elements may be adjusted.
 本発明によれば、隣接するアンテナ層同士の間隔を絶縁層の厚みにより一定に保持することができる。 According to the present invention, the distance between adjacent antenna layers can be kept constant by the thickness of the insulating layer.
 また、本発明の一態様は、前記アンテナ部が2個以上の前記アンテナ素子が形成された前記アンテナ層を有し、前記積層方向に沿って見て前記アンテナ層において隣接する一対の前記アンテナ素子の間に、隣接する前記アンテナ層に形成された前記アンテナ素子が配置されている。 In one aspect of the present invention, the antenna section includes the antenna layer in which two or more of the antenna elements are formed, and a pair of the antenna elements adjacent to each other in the antenna layer when viewed along the stacking direction. The antenna element formed on the adjacent antenna layer is arranged between the .
 本発明によれば、アンテナ層において2個以上のアンテナ素子を配列する場合において、隣接する送受信部の間隔以下の間隔により複数のアンテナ素子を配列することができる。 According to the present invention, when arranging two or more antenna elements in the antenna layer, the plurality of antenna elements can be arranged at intervals equal to or less than the interval between adjacent transmitting and receiving units.
 本発明によれば、隣接するアンテナ素子同士を高密度に配置し100GHz以上の周波数帯の無線通信に対応可能なアレーアンテナを構成することができる。 According to the present invention, it is possible to configure an array antenna capable of coping with wireless communication in a frequency band of 100 GHz or higher by arranging adjacent antenna elements at high density.
本発明の実施形態に係るアレーアンテナの構成を示す斜視図である。1 is a perspective view showing the configuration of an array antenna according to an embodiment of the present invention; FIG. 送受信部の構成の一例を示すブロック図である。3 is a block diagram showing an example of the configuration of a transmission/reception unit; FIG. アンテナ層の一面側の構成を示す図である。It is a figure which shows the structure of the one surface side of an antenna layer. アンテナ層の他面側の構成を示す図である。It is a figure which shows the structure of the other surface side of an antenna layer. アンテナ層が積層されたアンテナ部の構成を示す断面図である。FIG. 4 is a cross-sectional view showing the configuration of an antenna section in which antenna layers are laminated; アレーアンテナから放射される電磁波を概念的に示す図である。FIG. 2 is a diagram conceptually showing electromagnetic waves radiated from an array antenna; アレーアンテナの送受信特性を示す図である。FIG. 4 is a diagram showing transmission/reception characteristics of an array antenna; アレーアンテナの変調精度を示す図である。FIG. 4 is a diagram showing modulation accuracy of an array antenna; 変形例に係る複数のアンテナ素子を有するアンテナ層の構成を示す図である。FIG. 10 is a diagram showing a configuration of an antenna layer having a plurality of antenna elements according to a modification; 変形例に係るアレーアンテナの構成を示す斜視図である。FIG. 11 is a perspective view showing the configuration of an array antenna according to a modification; 変形例に係るアンテナユニットの構成を示す図である。It is a figure which shows the structure of the antenna unit which concerns on a modification. 変形例に係るアンテナユニットの構成を示す断面図である。FIG. 10 is a cross-sectional view showing the configuration of an antenna unit according to a modification; 変形例に係るアンテナユニットの構成を示す断面図である。FIG. 10 is a cross-sectional view showing the configuration of an antenna unit according to a modification; 変形例に係るアレーアンテナの構成を概念的に示す図である。FIG. 10 is a diagram conceptually showing the configuration of an array antenna according to a modification; 変形例に係るアレーアンテナの構成を概念的に示す図である。FIG. 10 is a diagram conceptually showing the configuration of an array antenna according to a modification; アンテナ素子の配列間隔と周波数との関係を概念的に示す図である。FIG. 4 is a diagram conceptually showing the relationship between the arrangement interval of antenna elements and the frequency;
 図1及び図2に示されるように、アレーアンテナ1は、アンテナ層3が2層以上に積層されたアンテナ部2を備える。アンテナ層3は、例えば、プリント基板3A上にパターン化された電子回路により形成されている。プリント基板3Aは、例えば、絶縁性及び可撓性を有する樹脂製のフィルム状材料により形成されている。プリント基板3Aは、例えば、フレキシブル液晶ポリマー(Liquid Crystal Polymer:LCP)を用いた液晶ポリマー基板により形成されている。液晶ポリマー基板は、フレキシブルプリント基板材料の一種であり、高周波での損失が少なく、5G向け等の用途に利用されている。プリント基板3Aは、例えば、50μmの厚さに形成され、所定の誘電率(εr=3)を有する。 As shown in FIGS. 1 and 2, the array antenna 1 includes an antenna section 2 in which two or more antenna layers 3 are laminated. The antenna layer 3 is formed by, for example, an electronic circuit patterned on the printed circuit board 3A. The printed circuit board 3A is made of, for example, an insulating and flexible resin film material. The printed circuit board 3A is formed of, for example, a liquid crystal polymer substrate using a flexible liquid crystal polymer (LCP). Liquid crystal polymer substrates are a type of flexible printed circuit board material, have low loss at high frequencies, and are used for applications such as 5G. The printed circuit board 3A is formed with a thickness of 50 μm, for example, and has a predetermined dielectric constant (εr=3).
 アンテナ層3は、例えば、プリント基板3Aの一面側に設けられた送受信部4と、送受信部に隣接して配置されたアンテナ素子5とを有する。アンテナ素子5は、例えば、矩形のプリント基板3Aの4辺のうち、電波放射面となる1辺側に沿って1つ形成されている。 The antenna layer 3 has, for example, a transmitting/receiving section 4 provided on one side of the printed circuit board 3A and an antenna element 5 arranged adjacent to the transmitting/receiving section. One antenna element 5 is formed, for example, along one of the four sides of the rectangular printed circuit board 3A, which serves as a radio wave radiation surface.
 送受信部4は、例えば、CMOS(Complementary metal-oxide-semiconductor)を用いたIC(Integrated Circuit)チップにより形成されている。送受信部4は、例えば、プリント基板3Aの面方向に沿って1.7mm×2.45mm、厚さ方向に50~300μmのサイズに形成されている。送受信部4は、例えば、プリント基板3Aの一面側において、アンテナ素子5に隣接して設けられている。送受信部4は、例えば、同じ回路において送信と受信とを切り替えて利用可能な双方向回路に形成されている。 The transmission/reception unit 4 is formed by an IC (Integrated Circuit) chip using CMOS (Complementary metal-oxide-semiconductor), for example. The transmitting/receiving section 4 is formed, for example, to have a size of 1.7 mm×2.45 mm along the surface direction of the printed circuit board 3A and a size of 50 to 300 μm in the thickness direction. The transmitting/receiving section 4 is provided adjacent to the antenna element 5 on one surface side of the printed circuit board 3A, for example. The transmitting/receiving unit 4 is, for example, a bidirectional circuit that can be used by switching between transmission and reception in the same circuit.
 送受信部4は、例えば、アンテナ素子5において送受信される信号の位相を調整する位相調整部4Aと、送受信信号を増幅するアンプ4Bと、送受信する信号の周波数を変調する周波数変調部4Cと、入力された信号の周波数を整数倍(例えば、4倍)して出力する回路を有する逓倍部4Dと、異なる周波数の信号を1つの信号に合成して出力する混合部4Eと、位相調整部4Aを制御して放射される電磁波のビームの方向を制御する制御部4Fとを備える。 The transmitting/receiving unit 4 includes, for example, a phase adjusting unit 4A that adjusts the phase of a signal transmitted/received by the antenna element 5, an amplifier 4B that amplifies the transmitted/received signal, a frequency modulation unit 4C that modulates the frequency of the transmitted/received signal, and an input A multiplier 4D having a circuit that multiplies the frequency of the received signal by an integer (for example, four times) and outputs it, a mixer 4E that combines signals of different frequencies into one signal and outputs it, and a phase adjuster 4A. and a control unit 4F for controlling the direction of the beam of electromagnetic waves to be radiated.
 送受信部4の各構成要素の詳細な内容は、例えば、特許文献1を参照することができる。送受信部4は、上記の回路構成だけでなく、例えば、ダイレクトコンバージョン方式(Zero-IF)等の他の回路構成が採用されてもよい。アレーアンテナ1におい送受信部4は、少なくとも位相調整部4Aを備えていればよい。送受信部4は、アンテナ素子5に電気的に接続されている。 For detailed contents of each component of the transmission/reception unit 4, for example, Patent Document 1 can be referred to. The transmitting/receiving unit 4 may employ not only the circuit configuration described above, but also another circuit configuration such as a direct conversion system (Zero-IF). The transmitting/receiving section 4 in the array antenna 1 only has to include at least the phase adjusting section 4A. The transmitter/receiver 4 is electrically connected to the antenna element 5 .
 アンテナ素子5は、送受信部4において生成された信号を電磁波として送信し、到来した電磁波を受信する。アンテナ素子5は、プリント基板3A(アンテナ層3)の表面上にエッチング処理等を用いて銅箔等の金属薄膜によりパターン化されて形成されている。アンテナ素子5は、例えば、プリント基板3Aの面方向に略平行な平板状のホーンアンテナに形成されている。アンテナ素子5は、対向して形成された一対の第1アンテナ部材5Aと第2アンテナ部材5Bとを有するビバルディアンテナである。 The antenna element 5 transmits the signal generated by the transmitting/receiving section 4 as an electromagnetic wave and receives the incoming electromagnetic wave. The antenna element 5 is formed by patterning a metal thin film such as copper foil on the surface of the printed circuit board 3A (antenna layer 3) using an etching process or the like. The antenna element 5 is formed, for example, as a planar horn antenna substantially parallel to the surface direction of the printed circuit board 3A. The antenna element 5 is a Vivaldi antenna having a pair of first antenna member 5A and second antenna member 5B which are formed to face each other.
 図3に示されるように、第1アンテナ部材5Aは、プリント基板3Aの一面側に形成されている。第1アンテナ部材5Aは、プリント基板3Aの一面側を平面視して、第2アンテナ部材5Bに対向する縁側において電波放射方向となる先端方向に向かうほど幅が減少するテーパ形状に形成されている。テーパ形状は、例えば、放物線状に形成されている。第1アンテナ部材5Aの後端は、配線層を介して一面側に設けられた送受信部4に電気的に接続されている。第1アンテナ部材5Aに対向して形成された第2アンテナ部材5Bは、アンテナ層3の他面側に形成されている。 As shown in FIG. 3, the first antenna member 5A is formed on one side of the printed circuit board 3A. The first antenna member 5A is formed in a tapered shape in which the width of the edge side facing the second antenna member 5B in a plan view of one surface side of the printed circuit board 3A decreases toward the tip direction, which is the radio wave radiation direction. . The tapered shape is, for example, parabolic. The rear end of the first antenna member 5A is electrically connected to the transmitting/receiving section 4 provided on one side via a wiring layer. A second antenna member 5B formed to face the first antenna member 5A is formed on the other surface side of the antenna layer 3 .
 図4に示されるように、第2アンテナ部材5Bは、アンテナ層3の他面側を平面視して、第1アンテナ部材5Aに対向する縁側において電波放射方向となる先端方向に向かうほど幅が減少するテーパ形状に形成されている。テーパ形状は、例えば、放物線状に形成されている。第2アンテナ部材5Bの後端は、プリント基板3Aを貫通した配線層を介して一面側に設けられた送受信部4に電気的に接続されている。 As shown in FIG. 4, the width of the second antenna member 5B increases toward the distal end direction, which is the radio wave radiation direction, on the edge side facing the first antenna member 5A when the other surface of the antenna layer 3 is viewed in plan. It is formed in a decreasing taper shape. The tapered shape is, for example, parabolic. The rear end of the second antenna member 5B is electrically connected to the transmitting/receiving section 4 provided on one side via a wiring layer passing through the printed circuit board 3A.
 アンテナ素子5において、対向して配置された第1アンテナ部材5Aと第2アンテナ部材5Bとの間に形成された空間5Sには、第1アンテナ部材5Aと第2アンテナ部材5Bとの間に電位が加えられた際に電界が発生し、発生した電界の直交方向に磁界が発生することで電磁波の放射スロットとして機能する。アンテナ素子5は、ビバルディ型の他、同様に電磁波を送受信することができるのであれば他の形状に形成されていてもよい。アンテナ素子5と送受信部4とは、損失を低減するため、なるべく接近して配置されていることが望ましい。 In the antenna element 5, a space 5S formed between the first antenna member 5A and the second antenna member 5B that are arranged to face each other has a potential between the first antenna member 5A and the second antenna member 5B. is applied, an electric field is generated, and a magnetic field is generated in a direction orthogonal to the generated electric field, thereby functioning as an electromagnetic wave radiation slot. The antenna element 5 may be formed in any other shape than the Vivaldi type as long as it can similarly transmit and receive electromagnetic waves. It is desirable that the antenna element 5 and the transmitting/receiving section 4 be arranged as close as possible in order to reduce loss.
 上記構成により、アンテナ層3の面方向に沿って送受信部4とアンテナ素子5とが形成されている。複数のアンテナ層3は、アンテナ素子5の位置が積層方向(y方向)に揃えられて積層される。これにより、複数のアンテナ層3が積層されたアンテナ部2が構成される。アンテナ部2は、アンテナ素子5の電波放射方向(x方向)に沿って見てアンテナ層3の積層方向において複数のアンテナ素子5が配列された電波放射面が形成される。 With the above configuration, the transmitting/receiving section 4 and the antenna element 5 are formed along the planar direction of the antenna layer 3 . The plurality of antenna layers 3 are stacked such that the positions of the antenna elements 5 are aligned in the stacking direction (y direction). Thus, the antenna section 2 is formed by laminating a plurality of antenna layers 3 . The antenna section 2 has a radio wave radiation surface on which a plurality of antenna elements 5 are arranged in the stacking direction of the antenna layers 3 when viewed along the radio wave radiation direction (x direction) of the antenna elements 5 .
 図5に示されるように、アンテナ部2は、例えば、4層に積層されたアンテナ層3により構成されている。上記アンテナ部2の構成は1例であり、アンテナ層3は、送受信する電波強度に応じて4層以上、4層以下に積層されていてもよい。アンテナ部2において、積層方向に隣接する一対のアンテナ層3の間には、絶縁層6が設けられている。アンテナ層3と、隣接するアンテナ層3との間には、離間する距離を調整する絶縁層6が形成されている。 As shown in FIG. 5, the antenna section 2 is composed of, for example, four antenna layers 3 laminated. The configuration of the antenna section 2 is one example, and the antenna layer 3 may be laminated in four layers or more and four layers or less depending on the intensity of the radio waves to be transmitted and received. In the antenna section 2, an insulating layer 6 is provided between a pair of antenna layers 3 adjacent in the stacking direction. An insulating layer 6 for adjusting the separation distance is formed between the antenna layer 3 and the adjacent antenna layer 3 .
 絶縁層6は、板状の絶縁体により形成されている中間層である。絶縁層6は、例えば、布状のガラス繊維のシート体を積層し、エポキシ樹脂を含侵させて熱硬化させて形成されるプリント基板である(例えば、FR4)。絶縁層6には、アンテナ素子5及び送受信部4を収容するための切欠き部6A(図3及び図4参照)が設けられている。切欠き部6Aが形成されていることにより、絶縁層6の誘電率がアンテナ素子5の電磁波の送受信に影響を与えることが防止される。絶縁層6において切欠き部6Aは必ずしも形成しなくてもよい。この場合、絶縁層6の誘電率を考慮してアンテナ素子5の配列パターンの設計が調整される。 The insulating layer 6 is an intermediate layer made of a plate-like insulator. The insulating layer 6 is, for example, a printed circuit board formed by laminating cloth-like glass fiber sheets, impregnating them with an epoxy resin, and thermally curing them (for example, FR4). The insulating layer 6 is provided with a notch portion 6A (see FIGS. 3 and 4) for accommodating the antenna element 5 and the transmitting/receiving portion 4. As shown in FIG. By forming the notch 6A, the dielectric constant of the insulating layer 6 is prevented from affecting transmission and reception of electromagnetic waves of the antenna element 5. FIG. The cutout portion 6A does not necessarily have to be formed in the insulating layer 6 . In this case, the design of the array pattern of the antenna elements 5 is adjusted in consideration of the dielectric constant of the insulating layer 6 .
 絶縁層6とプリント基板3Aとの間は、接着層(不図示)により接着されている。接着層は、例えば、融点が低いフィルム状の熱硬化性樹脂により形成されている。接着層は、プリント基板3Aと絶縁層6とを交互に積層した後、加熱することにより硬化する。接着層は、硬化時に厚みが変化するので、変化後の厚みを考慮して材料が選択される。これにより、プリント基板3Aと絶縁層6とが積層されたアンテナ部2が形成される。接着層の誘電率は、絶縁層6の誘電率と略同一となるように材料が選択される。 An adhesive layer (not shown) adheres between the insulating layer 6 and the printed circuit board 3A. The adhesive layer is formed of, for example, a film-like thermosetting resin with a low melting point. The adhesive layer is cured by heating after alternately laminating the printed circuit board 3A and the insulating layer 6 . Since the thickness of the adhesive layer changes during curing, the material is selected in consideration of the thickness after the change. As a result, the antenna section 2 in which the printed circuit board 3A and the insulating layer 6 are laminated is formed. A material is selected so that the dielectric constant of the adhesive layer is substantially the same as that of the insulating layer 6 .
 アンテナ部2は、絶縁層6及び硬化後の接着層の厚みにより積層方向に隣接する一対のアンテナ素子5の間隔が調整されている。絶縁層6及び硬化後の接着層の厚さは、例えば、積層方向に配列されたアンテナ素子5の設計上の間隔に応じて選択、調整される。 In the antenna section 2, the spacing between a pair of antenna elements 5 adjacent in the stacking direction is adjusted by the thickness of the insulating layer 6 and the adhesive layer after curing. The thicknesses of the insulating layer 6 and the adhesive layer after curing are selected and adjusted according to, for example, the design intervals of the antenna elements 5 arranged in the stacking direction.
 アンテナ部2において例えば、260GHz帯の周波数の電波が放射される場合、複数のアンテナ層3の積層方向において隣接するアンテナ素子5の間隔は、放射する電磁波の1/2波長分の0.7mm程度に配置される。即ち、この場合アンテナ部2において複数のアンテナ層3は、0.7mm程度の間隔において積層される。複数のアンテナ層3の積層方向の間隔は、絶縁層6の厚さにより調整される。 For example, when radio waves with a frequency in the 260 GHz band are radiated from the antenna section 2, the distance between adjacent antenna elements 5 in the stacking direction of the plurality of antenna layers 3 is about 0.7 mm, which is half the wavelength of the radiated electromagnetic waves. placed in That is, in this case, the plurality of antenna layers 3 in the antenna section 2 are laminated at intervals of about 0.7 mm. The spacing between the plurality of antenna layers 3 in the stacking direction is adjusted by the thickness of the insulating layer 6 .
 実装例において、アンテナ部2の積層方向において、プリント基板3Aの厚さが50μm、送受信部4の厚さが50~300μm、第1アンテナ部材5A及び第2アンテナ部材5Bの厚さが15μmに形成されている。 In the mounting example, in the stacking direction of the antenna section 2, the thickness of the printed circuit board 3A is 50 μm, the thickness of the transmitting/receiving section 4 is 50 to 300 μm, and the thickness of the first antenna member 5A and the second antenna member 5B is 15 μm. It is
 図6に示されるように、アレーアンテナ1は、複数のアンテナ素子5から放射される電磁波によりアンテナ部2の電波放射面から指向性を有するビームBを形成することができる。アレーアンテナ1は、各アンテナ層3に設けられた送受信部4において隣接するアンテナ素子5から放射される電磁波の位相を順次遅延することにより、ビームの方向を2次元平面において任意に調整することができる。アンテナ部2から送受信される信号は、例えば、QPSK(quadraphase-shift keying)、16QAM(Quadrature Amplitude Modulation)等のデジタル変調波を用いることができる。アンテナ部2から送受信される信号は、他の変調方式が用いられてもよく、QAMは、16値以上であってもよい。 As shown in FIG. 6, the array antenna 1 can form a beam B having directivity from the radio wave radiation surface of the antenna section 2 by electromagnetic waves radiated from the plurality of antenna elements 5 . The array antenna 1 can arbitrarily adjust the beam direction in a two-dimensional plane by sequentially delaying the phase of electromagnetic waves radiated from adjacent antenna elements 5 in the transmitting/receiving section 4 provided in each antenna layer 3. can. Signals transmitted and received from the antenna unit 2 can use, for example, digital modulated waves such as QPSK (quadraphase-shift keying) and 16QAM (Quadrature Amplitude Modulation). Other modulation schemes may be used for the signals transmitted and received from the antenna unit 2, and QAM may be 16 values or more.
 以下、4個のアンテナ素子が0.7mm間隔で積層されたアレーアンテナ1の送受信に関する特性の測定結果を示す。 The following shows the measurement results of the transmission/reception characteristics of the array antenna 1 in which four antenna elements are stacked at intervals of 0.7 mm.
 図7には、横軸のIF(Intermediate Frequency:中間周波数)周波数に対する送信モードの電力、受信モードの変換ゲインが示されている。図示するように、アレーアンテナ1によれば、所定の特性が得られている。 In FIG. 7, the power in the transmission mode and the conversion gain in the reception mode with respect to the IF (Intermediate Frequency) frequency on the horizontal axis are shown. As shown in the figure, the array antenna 1 has given characteristics.
 図8には、横軸の送信モードの電力に対する変調精度が送信のエラーベクトル振幅(Error Vector Magnitude:EVM)により示されている。エラーベクトルは、理想的な信号のIQ平面におけるシンボル位置と、送受信部4において復調された信号のシンボル位置とのずれをベクトルにより示すものである。エラーベクトル振幅は、エラーベクトルの大きさと理想的なシンボル位置のベクトルとの大きさとの比である。図示するように、アレーアンテナ1によれば、送信信号の電力の増加に従って変調精度が向上した。 In FIG. 8, the modulation accuracy with respect to the power of the transmission mode on the horizontal axis is indicated by the transmission error vector magnitude (EVM). The error vector is a vector that indicates the deviation between the symbol position of the ideal signal on the IQ plane and the symbol position of the signal demodulated by the transmitter/receiver 4 . The error vector magnitude is the ratio of the magnitude of the error vector to the magnitude of the vector of ideal symbol locations. As shown in the figure, according to the array antenna 1, the modulation accuracy improved as the power of the transmission signal increased.
[変形例]
 以下、変形例にかかるアレーアンテナについて説明する。以下の説明では、上記の構成要素と同一の構成要素については同一の名称、符号を用い重複する説明については適宜省略する。アンテナ部2は、電波の送受信強度の増加や、更なる高周波化に対応するためにアンテナ素子5を増加して構成されてもよいし、高密度化するように構成されてもよい。
[Modification]
An array antenna according to a modified example will be described below. In the following description, the same names and symbols will be used for the same components as those described above, and duplicate descriptions will be omitted as appropriate. The antenna unit 2 may be configured by increasing the number of antenna elements 5 in order to cope with an increase in the transmission/reception strength of radio waves and a further increase in frequency, or may be configured to have a higher density.
 図9に示されるように、変形例に係るアンテナ層3Hには、プリント基板3A上の配列方向(z方向)においてn個(nは2以上の整数)の送受信部4と各送受信部4に対応したn個のアンテナ素子5が形成されている。本事例では、アンテナ層3Hにおいて送受信部4及びアンテナ素子5は、プリント基板3Aの配列方向にそれぞれ4個形成されている。プリント基板3Aにおいて複数のアンテナ素子5は、電波放射方向に対して直交する配列方向に列状に配列されている。アンテナ層3Hにおいてn個の送受信部4は、1個のCMOSチップにより一体に形成されていてもよい。 As shown in FIG. 9, in the antenna layer 3H according to the modification, n (n is an integer of 2 or more) transmitting/receiving units 4 and each transmitting/receiving unit 4 are arranged in the arrangement direction (z direction) on the printed circuit board 3A. Corresponding n antenna elements 5 are formed. In this example, four transmitting/receiving units 4 and four antenna elements 5 are formed in the antenna layer 3H in the arrangement direction of the printed circuit board 3A. A plurality of antenna elements 5 are arranged in a row on the printed circuit board 3A in an arrangement direction perpendicular to the radio wave radiation direction. The n transmitting/receiving units 4 in the antenna layer 3H may be integrally formed by one CMOS chip.
 図10に示されるように、変形例に係るアンテナ部2Hは、m個(mは2以上の整数)のアンテナ層3Hが積層方向(y方向)に積層されて形成されている。即ち、アンテナ部2Hは、信号を送受信する送受信部4と送受信部4に隣接して配置された1つ以上のアンテナ素子5とが形成されたアンテナ層3Hを備え、アンテナ層3Hは、2層以上に積層されている。る。本事例では、アンテナ部2Hにおいてアンテナ層3Hは、積層方向に4つ積層されている。 As shown in FIG. 10, the antenna section 2H according to the modification is formed by stacking m (m is an integer equal to or greater than 2) antenna layers 3H in the stacking direction (y direction). That is, the antenna section 2H includes an antenna layer 3H in which a transmitting/receiving section 4 for transmitting and receiving signals and one or more antenna elements 5 arranged adjacent to the transmitting/receiving section 4 are formed. It is stacked above. be. In this example, four antenna layers 3H are stacked in the stacking direction in the antenna section 2H.
 アンテナ部2Hには、複数のアンテナ素子5の配列方向と複数のアンテナ層3Hの積層方向において電波放射面が形成されている。アンテナ部2Hの電波放射面には、n×m個の複数のアンテナ素子5がマトリクス状に配置されている。本事例では、4×4個のアンテナ素子5が配置されている。 A radio wave radiation surface is formed in the antenna section 2H in the arrangement direction of the plurality of antenna elements 5 and the stacking direction of the plurality of antenna layers 3H. A plurality of n×m antenna elements 5 are arranged in a matrix on the radio wave radiation surface of the antenna section 2H. In this example, 4×4 antenna elements 5 are arranged.
 アンテナ部2Hによれば、複数のアンテナ素子5から指向性を有するビームが放射される。送受信部4において、複数のアンテナ素子5の配列方向と複数のアンテナ層3Hの積層方向において配列されている各アンテナ素子5の位相を個別に調整することにより、2次元方向だけでなく、3次元方向にビームの方向を制御するアレーアンテナを構成することができる。 According to the antenna section 2H, beams having directivity are radiated from the plurality of antenna elements 5. In the transmitting/receiving unit 4, by individually adjusting the phase of each antenna element 5 arranged in the arrangement direction of the plurality of antenna elements 5 and the lamination direction of the plurality of antenna layers 3H, not only the two-dimensional direction but also the three-dimensional An array antenna can be constructed to control the direction of the beam.
 アンテナ部2Hを有するアレーアンテナを一つのアンテナユニットとして構成し、アンテナユニットを更に配列方向及び積層方向に任意の個数を配列することで、送受信のアンテナ特性を向上させたアレーアンテナを構成することができる。例えば、基地局においては、所望の電波送信強度に応じて任意の個数のアンテナユニットを配列方向及び積層方向に配置したアレーアンテナを構成することができる。スマートフォン等の移動局においては、本体部の厚み等の設計条件に応じたアンテナユニットを実装することができる。 An array antenna having an antenna unit 2H is configured as one antenna unit, and an arbitrary number of antenna units are arranged in the arrangement direction and the stacking direction to configure an array antenna with improved transmission and reception antenna characteristics. can. For example, in a base station, an array antenna can be constructed in which an arbitrary number of antenna units are arranged in the arrangement direction and the stacking direction according to the desired radio wave transmission intensity. In a mobile station such as a smart phone, an antenna unit can be mounted according to design conditions such as the thickness of the main body.
 図11(1)に示されるように、アンテナ層3Hは、より高周波の信号の送受信に対応する場合、アンテナ素子5を小型化して形成し、隣接するアンテナ素子同士の間隔を狭めて配置してもよい。しかし、送受信部4は、アンテナ素子5に隣接されているため、送受信部4のCMOSチップの隣接する方向の幅の大きさに起因し、隣接するアンテナ素子同士の間隔を狭められる限界が存在する場合がある。 As shown in FIG. 11(1), when the antenna layer 3H is adapted for transmission and reception of higher frequency signals, the antenna element 5 is formed with a smaller size and the adjacent antenna elements are arranged with a narrower interval. good too. However, since the transmitting/receiving section 4 is adjacent to the antenna element 5, there is a limit to narrowing the distance between the adjacent antenna elements due to the width of the CMOS chip of the transmitting/receiving section 4 in the adjacent direction. Sometimes.
 図11(2)に示されるように、積層方向に沿って見て、アンテナ層3Hにおいて隣接する一対のアンテナ素子5の間には、隣接するアンテナ層に形成されたアンテナ素子5を配置してもよい。即ち、隣接するアンテナ層3Hをアンテナ素子5の配列方向にオフセットして配置することで、複数のアンテナ素子5の配列方向において、隣接するアンテナ素子5同士の間隔を狭めてもよい。上記構成により、更なる高周波化に対応したアレーアンテナを構成することができる。 As shown in FIG. 11(2), an antenna element 5 formed on an adjacent antenna layer is arranged between a pair of adjacent antenna elements 5 on the antenna layer 3H when viewed along the stacking direction. good too. That is, by arranging the adjacent antenna layers 3H offset in the arrangement direction of the antenna elements 5, the spacing between the adjacent antenna elements 5 may be narrowed in the arrangement direction of the plurality of antenna elements 5. FIG. With the above configuration, an array antenna corresponding to higher frequencies can be configured.
 図12に示されるように、アレーアンテナ1Aにおいては、隣接するアンテナ層3Hの対向する面同士にアンテナ素子5を配置してもよい。上記構成のように隣接するアンテナ層3Hによりアンテナユニット3Uを構成し、平面方向に高密度に複数のアンテナ素子5が配置されたアレーアンテナを形成してもよい。更に、このアンテナユニット3Uを積層することで複数のアンテナ素子5が電波放射面において高密度に2次元に配置されたアンテナ部を形成してもよい。上記構成により、送受信部4の配置間隔Lに比して半分の間隔においてアンテナ素子5を配置することができ、更なる高周波化に対応したアレーアンテナを構成することができる。 As shown in FIG. 12, in the array antenna 1A, the antenna elements 5 may be arranged on the opposing surfaces of the adjacent antenna layers 3H. Adjacent antenna layers 3H may form an antenna unit 3U as in the above configuration, forming an array antenna in which a plurality of antenna elements 5 are arranged at high density in a planar direction. Furthermore, by stacking the antenna units 3U, an antenna section may be formed in which a plurality of antenna elements 5 are arranged two-dimensionally with high density on the radio wave radiation surface. With the above configuration, the antenna elements 5 can be arranged at half the interval L of the arrangement interval L of the transmitting/receiving section 4, and an array antenna corresponding to higher frequencies can be constructed.
 図13に示されるように、上述のアンテナユニット3Uの構成だけでなく、1つのプリント基板3Aにアンテナ素子5を配列し、両面側に送受信部4を設けてアンテナユニット3Uを形成してもよい。これにより、アンテナ層3Hは、複数のアンテナ素子5の配列方向において、送受信部4の配置間隔Lに比して半分の間隔においてアンテナ素子5を配置することができ、隣接するアンテナ素子5同士の間隔を狭めることができる。上記の通り両面に送受信部4が実装されたアンテナ層3Hにより、平面方向に高密度に複数のアンテナ素子5が配置されたアンテナユニット3Uを構成してもよい。 As shown in FIG. 13, in addition to the configuration of the antenna unit 3U described above, the antenna unit 3U may be formed by arranging the antenna elements 5 on one printed circuit board 3A and providing the transmitting/receiving sections 4 on both sides. . As a result, in the antenna layer 3H, the antenna elements 5 can be arranged at a half interval of the arrangement interval L of the transmitting/receiving unit 4 in the arrangement direction of the plurality of antenna elements 5. You can narrow the gap. As described above, the antenna layer 3H having the transmitting/receiving units 4 mounted on both sides may constitute the antenna unit 3U in which a plurality of antenna elements 5 are arranged at high density in the planar direction.
 上述したアンテナユニット3Uを複数個積層することで、複数のアンテナ素子5が電波放射面において高密度に2次元に配置されたアンテナ部を形成することができる。そして、このアンテナ部を用いて、更なる高周波化に対応したアレーアンテナを構成することができる。 By stacking a plurality of the antenna units 3U described above, it is possible to form an antenna section in which a plurality of antenna elements 5 are arranged two-dimensionally at high density on the radio wave radiation surface. By using this antenna section, an array antenna corresponding to higher frequencies can be constructed.
 アンテナ層3Hにおいて隣接する一対のアンテナ素子5の間には、積層方向に沿って見て、隣接するアンテナ層3Hに形成されたアンテナ素子5だけでなく、隣接するアンテナ層3Hに更に隣接するアンテナ層3Hに形成されたアンテナ素子5を配置してもよい。 Between a pair of adjacent antenna elements 5 in the antenna layer 3H, when viewed along the stacking direction, not only the antenna element 5 formed in the adjacent antenna layer 3H but also the antenna further adjacent to the adjacent antenna layer 3H An antenna element 5 formed in layer 3H may be arranged.
 図14に示されるように、積層方向(y方向)に沿って見て、アンテナ層3Hにおいて隣接する一対のアンテナ素子5の間には、積層方向に隣接する2個以上のアンテナ層3Hを利用して2個以上のアンテナ素子5を配置するようにしてもよい。上記構成により、更なる高周波化に対応したアレーアンテナを構成することができる。 As shown in FIG. 14, two or more antenna layers 3H adjacent in the stacking direction are used between a pair of adjacent antenna elements 5 in the antenna layer 3H when viewed along the stacking direction (y direction). In this way, two or more antenna elements 5 may be arranged. With the above configuration, an array antenna corresponding to higher frequencies can be configured.
 上記のように配置された隣接する2個以上のアンテナ層3Hにより1つのアンテナユニット3Uを構成し、平面方向に高密度に複数のアンテナ素子5が配置されたアレーアンテナを形成してもよい。更に、このアンテナユニット3Uを積層することで複数のアンテナ素子5が電波放射面において高密度に2次元に配置されたアンテナ部2を形成してもよい。上記のように配置されたアンテナユニット3Uは、各アンテナ層3Hが等間隔に配置されていてもよい。 Two or more adjacent antenna layers 3H arranged as described above constitute one antenna unit 3U, and an array antenna in which a plurality of antenna elements 5 are arranged at high density in a planar direction may be formed. Furthermore, by stacking the antenna units 3U, the antenna section 2 may be formed in which a plurality of antenna elements 5 are arranged two-dimensionally with high density on the radio wave radiation surface. In the antenna units 3U arranged as described above, the antenna layers 3H may be arranged at regular intervals.
 上記の変形例によれば、送受信部4のCMOSチップの大きさに起因し、隣接するアンテナ素子同士の間隔に限界が存在する場合でも、隣接するアンテナ層3Hをオフセットして配置することにより、複数のアンテナ素子5を電波放射面において高密度に配置することができる。上記の変形例に係るアレーアンテナよれば、100GHz以上の周波数帯の無線通信に対応することができる。 According to the above modification, even if there is a limit to the distance between adjacent antenna elements due to the size of the CMOS chip of the transmitting/receiving section 4, by arranging the adjacent antenna layers 3H with an offset, A plurality of antenna elements 5 can be densely arranged on the radio wave radiation surface. According to the array antenna according to the above modified example, it is possible to support wireless communication in a frequency band of 100 GHz or more.
 図15に示されるように、アレーアンテナのアンテナ部2において複数のアンテナ素子5は、設計上の条件に応じて適宜変更されてもよく、電波放射面において格子状に配置されるだけでなく、菱形等に配置されてもよい。 As shown in FIG. 15, the plurality of antenna elements 5 in the antenna section 2 of the array antenna may be appropriately changed according to design conditions, and not only are they arranged in a grid pattern on the radio wave radiation plane, They may be arranged in a rhombus or the like.
 上述した実施形態のアレーアンテナによれば、1つ以上のアンテナ素子5が形成されたアンテナ層を積層することにより、隣接するアンテナ素子同士を高密度に配置し100GHz以上の周波数帯の無線通信に対応可能なアンテナ部を形成することができる。実施形態のアレーアンテナによれば、アンテナ層に1つ以上のアンテナ素子を形成し、アンテナ層を積層する簡便な構成によりアンテナ部を形成することができる。実施形態のアレーアンテナによれば、既存の半導体の製造技術を適用して安価に大量に製造できる。 According to the array antenna of the above-described embodiment, by stacking antenna layers in which one or more antenna elements 5 are formed, adjacent antenna elements are arranged at high density, and wireless communication in a frequency band of 100 GHz or higher is possible. A compatible antenna section can be formed. According to the array antenna of the embodiment, one or more antenna elements are formed in the antenna layer, and the antenna section can be formed by a simple configuration in which the antenna layers are stacked. The array antenna of the embodiment can be mass-produced at low cost by applying the existing semiconductor manufacturing technology.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。例えば、上記実施形態においては、アンテナ部2においてアンテナ層3と絶縁層6とを別体に形成するものを例示しているが、アンテナ層3と絶縁層6とを多層基板として一体に形成してもよい。また、アンテナ部2において積層された複数のアンテナ層3は、多層基板として一体に形成してもよい。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof. For example, in the above embodiment, the antenna layer 3 and the insulating layer 6 are separately formed in the antenna section 2, but the antenna layer 3 and the insulating layer 6 are integrally formed as a multilayer substrate. may Also, the plurality of antenna layers 3 stacked in the antenna section 2 may be integrally formed as a multilayer substrate.
1、1A アレーアンテナ
2、2H アンテナ部
3、3H アンテナ層
3A プリント基板
3U アンテナユニット
4 送受信部
4A 位相調整部
4B アンプ
4C 周波数変調部
4D 逓倍部
4E 混合部
4F 制御部
5 アンテナ素子
5A 第1アンテナ部材
5B 第2アンテナ部材
5S 空間
6 絶縁層
6A 切欠き部
1, 1A Array antennas 2, 2H Antenna units 3, 3H Antenna layer 3A Printed circuit board 3U Antenna unit 4 Transmission/reception unit 4A Phase adjustment unit 4B Amplifier 4C Frequency modulation unit 4D Multiplication unit 4E Mixing unit 4F Control unit 5 Antenna element 5A First antenna Member 5B Second antenna member 5S Space 6 Insulating layer 6A Notch

Claims (7)

  1.  信号を送受信する送受信部と、前記送受信部に隣接して配置された1つ以上のアンテナ素子とが形成されたアンテナ層が2層以上に積層され、前記アンテナ層の積層方向において複数の前記アンテナ素子が配列された電波放射面が形成されているアンテナ部を備える、
    アレーアンテナ。
    Two or more antenna layers each including a transmitting/receiving section for transmitting and receiving a signal and one or more antenna elements arranged adjacent to the transmitting/receiving section are stacked, and a plurality of the antennas are formed in the stacking direction of the antenna layers. An antenna section having a radio wave radiating surface on which elements are arranged,
    array antenna.
  2.  前記アンテナ素子は、前記アンテナ層の表面上に金属薄膜によりパターン化されて形成されている、
    請求項1に記載のアレーアンテナ。
    The antenna element is formed by patterning a metal thin film on the surface of the antenna layer,
    The array antenna according to claim 1.
  3.  前記送受信部は、少なくとも前記アンテナ素子において送受信される信号の位相を調整する位相調整部を備える、
    請求項1または2に記載のアレーアンテナ。
    The transmitting/receiving unit comprises a phase adjusting unit that adjusts the phase of a signal transmitted/received by at least the antenna element,
    The array antenna according to claim 1 or 2.
  4.  前記アンテナ素子は、前記アンテナ層の一面側に形成された第1アンテナ部材と他面側に形成された第2アンテナ部材とを有するビバルディアンテナである、
    請求項1から3のうちいずれか1項に記載のアレーアンテナ。
    The antenna element is a Vivaldi antenna having a first antenna member formed on one surface side of the antenna layer and a second antenna member formed on the other surface side,
    The array antenna according to any one of claims 1 to 3.
  5.  前記アンテナ層は、プリント基板により形成されている、
    請求項1から4のうちいずれか1項に記載のアレーアンテナ。
    The antenna layer is formed of a printed circuit board,
    The array antenna according to any one of claims 1 to 4.
  6.  前記アンテナ部は、前記積層方向に隣接する一対の前記アンテナ層の間に設けられた絶縁層を備え、前記絶縁層の厚みにより前記積層方向に隣接する一対の前記アンテナ素子の間隔が調整されている、
    請求項1から5のうちいずれか1項に記載のアレーアンテナ。
    The antenna section includes an insulating layer provided between the pair of antenna layers adjacent in the stacking direction, and the spacing between the pair of antenna elements adjacent in the stacking direction is adjusted by the thickness of the insulating layer. there is
    The array antenna according to any one of claims 1 to 5.
  7.  前記アンテナ部は、2個以上の前記アンテナ素子が形成された前記アンテナ層を有し、
     前記積層方向に沿って見て前記アンテナ層において隣接する一対の前記アンテナ素子の間に、隣接する前記アンテナ層に形成された前記アンテナ素子が配置されている、
    請求項1から6のうちいずれか1項に記載のアレーアンテナ。
    The antenna section has the antenna layer on which two or more of the antenna elements are formed,
    The antenna element formed in the adjacent antenna layer is arranged between a pair of the adjacent antenna elements in the antenna layer when viewed along the stacking direction,
    The array antenna according to any one of claims 1 to 6.
PCT/JP2022/003543 2021-02-01 2022-01-31 Array antenna WO2022163848A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-014348 2021-02-01
JP2021014348A JP2024054432A (en) 2021-02-01 2021-02-01 Array Antenna

Publications (1)

Publication Number Publication Date
WO2022163848A1 true WO2022163848A1 (en) 2022-08-04

Family

ID=82654715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003543 WO2022163848A1 (en) 2021-02-01 2022-01-31 Array antenna

Country Status (2)

Country Link
JP (1) JP2024054432A (en)
WO (1) WO2022163848A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227808A (en) * 1991-05-31 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Wide-band L-band corporate fed antenna for space based radars
JP2013510466A (en) * 2009-11-04 2013-03-21 レイセオン カンパニー Low loss broadband planar transmission line to waveguide converter.
US20150288438A1 (en) * 2012-12-10 2015-10-08 Intel Corporation Modular antenna array with rf and baseband beamforming
US20180090827A1 (en) * 2016-09-28 2018-03-29 Toyota Motor Engineering & Manufacturing North America, Inc. Volumetric scan automotive radar with end-fire antenna on partially laminated multi-layer pcb

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227808A (en) * 1991-05-31 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Wide-band L-band corporate fed antenna for space based radars
JP2013510466A (en) * 2009-11-04 2013-03-21 レイセオン カンパニー Low loss broadband planar transmission line to waveguide converter.
US20150288438A1 (en) * 2012-12-10 2015-10-08 Intel Corporation Modular antenna array with rf and baseband beamforming
US20180090827A1 (en) * 2016-09-28 2018-03-29 Toyota Motor Engineering & Manufacturing North America, Inc. Volumetric scan automotive radar with end-fire antenna on partially laminated multi-layer pcb

Also Published As

Publication number Publication date
JP2024054432A (en) 2024-04-17

Similar Documents

Publication Publication Date Title
US11177572B2 (en) Broadband stacked patch radiating elements and related phased array antennas
CN109149068B (en) Packaged antenna system and mobile terminal
CN109088181B (en) Radio frequency device module and forming method thereof
US9819098B2 (en) Antenna-in-package structures with broadside and end-fire radiations
WO2020034715A1 (en) Aog antenna system and mobile terminal
CN109786933B (en) Packaged antenna system and mobile terminal
US10804940B2 (en) Multi-channel radio frequency module with frequency division of data reception and transmission
EP3979422A1 (en) Lens antenna module and electronic device
KR20170116558A (en) Wireless communication device with polarization-agile traveling wave phased array antenna
CN111600113A (en) Antenna module for wireless communication system and electronic device including the same
WO2020027058A1 (en) Antenna device
WO2020217689A1 (en) Antenna module and communication device equipped with same
CN111052508A (en) Vertical end-fire antenna
WO2022163848A1 (en) Array antenna
CN109786934B (en) Packaged antenna system and mobile terminal
WO2022138045A1 (en) Antenna module and communication device equipped with same
KR20200101814A (en) An antenna module including a flexible printed circuit board and an electronic device including the antenna device
US11588243B2 (en) Antenna module and communication apparatus equipped with the same
Ju et al. V-band beam-steering ASK transmitter and receiver using BCB-based system-on-package technology on silicon mother board
WO2022038868A1 (en) Communication device
CN115708262A (en) Electronic device
TWI674704B (en) Low sidelobe array antenna
EP4280383A1 (en) Antenna module and electronic device comprising same
CN113273033A (en) Phased array antenna system with fixed feed antenna
US20240106106A1 (en) Antenna module and communication device equipped with the antenna module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22746067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP